
Stateless and Statelet Flow
Protection for the Internet

Thesis for the degree of Philosophiae Doctor

Trondheim, November 2012

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Addisu Tadesse Eshete

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Addisu Tadesse Eshete

ISBN 978-82-471-3953-0 (printed ver.)
ISBN 978-82-471-3954-7 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:317

Printed by NTNU-trykk

Preface
This thesis is submitted in partial fulfillment of the requirements for the degree of
philosophiae doctor (PhD) at the Department of Telematics, Norwegian University
of Science and Technology (NTNU). The research was undertaken during the period
from January 2009 to August 2012, and I was hosted and funded by the Centre
for Quantifiable Quality of Service in Communication Systems (Q2S) which is a
Norwegian Center of Excellence at NTNU. The advisor of the thesis has been
Professor Yuming Jiang.

Apart from the scientific research, the doctoral education consists of mandatory
courses totalling 30 ECTS credits.

iii

Acknowledgements
First and foremost, I would like to express my gratitude to my thesis supervisor
Prof. Yuming Jiang who first invited me for a research visit in September 2008.
Throughout the PhD study, he continuously challenged me to aim high and helped
me to maintain my research focus. Despite his hectic schedule, he was always
available for fruitful discussions and supervision on short notices. I am thankful for
all his efforts.

My sincere gratitude also goes to my thesis adjudication committee: Dr. James
Roberts from INRIA, Prof. Michael Welzl from University of Oslo and Prof. Peder
J. Emstad from NTNU.

I am fortunate to have been at Q2S where the work environment has been imbued
with strong collegiate friendship. I sincerely thank all of my colleagues at Q2S for
that. Special thanks go to Anniken Skotvoll and Mette Veronica Olsen for orga-
nizing many social outings during my stay and saving me from the administrative
troubles, and Hans Alm̊asbakk for maintaining a very good computer facility at
Q2S. I would also like to record my gratitude to my officemates Andrés Gonzalez
for great friendship inside and outside workplace, and Anne Nevin who has always
been lending a supportive ear at all times. I also thank Kashif Mahmood and Lars
Landmark for co-authoring, and Laurent Paquereau for initial discussions on ns-2.

I am deeply indebted to Nuria Tavera for her love, encouragement and under-
standing during my long working hours. Many thanks to Andrés, Pern, Achenef,
Mark, Laurent, Dirk, Atef and Yanling for our friendship, long chats during coffee
breaks and off-work hours.

Finally, but most importantly, my deepest gratitude goes to my parents and
siblings who, despite the distance, comfort me with their unconditional love and
care throughout my life. I gladly dedicate this thesis to them.

v

Abstract
Despite its rapid and tremendous growth, the basic packet delivery service in the
Internet has largely remained best-effort and egalitarian. Consequently, the Internet
from the outset lacks powerful mechanisms for fair arbitration of its own shared
resources among the users it serves. For example, user flows injecting more bytes
per time unit can proportionally receive more service, at the expense of others with
lower rates. In the extreme case, certain flows or users can completely be denied of
service (i.e., access to link and buffer resources) in the network.

A lot of research has been conducted to correct the fairness limitation and two
general, yet complementary, approaches have been followed: end-to-end based (e.g.,
TCP) and network-based. The first solutions are congestion control algorithms
doubling as fairness control algorithms as their secondary goal. However, they
require on the part of end hosts universal adoption which limits the scope of their
applicability. The latter approaches are to be enabled at the routers and can in
turn be classified into two categories: perflow fair queueing (or scheduling) schemes
and queue management mechanisms. While the former are powerful in providing
high-quality fairness among flows, they are plagued by lack of scalability features
as they require complex per packet operations and maintenance of perflow states.
The queue management schemes, to the contrary, are generally simpler and hence
more scalable, but lack generality and quality flow protection and fairness.

In this thesis, we propose a host of simple, stateless or statelet network-based sin-
gle aggregate queue mechanisms for enforcing flow fairness, and/or flow protection
in the Internet.

For flow fairness, which is the stronger requirement, we approximate the max-
min fairness of perflow fair queueing using a single queue serving all traversing
flows. By assigning sorting tags to arriving packets, we can not only differentiate
service priorities of flows but also eliminate the complex buffer partitioning normally
required in perflow queueing schemes. Our proposed scheme has several desirable
features. It is statelet as the flow state requirement is limited mainly to those flows
taking relatively more bandwidth than the fair share. We leverage the limited
flow state to develop a packet drop policy which helps avoid unwanted lockout
(unfairness) behavior. We demonstrate by extensive simulations that the scheme
is highly fair, efficient in resource utilization and suitable for a wide range of traffic
adopting heterogenous TCP congestion control algorithms.

For flow protection, we require that the resource share of the high bandwidth
flows should be bounded. To that end, we propose, model and analyze a suite
of active queue management schemes, which generalize the well-known CHOKe
scheme. Network operators can control the desired flow protection level by tuning
a configurable parameter which also indexes the specific scheme chosen. Our flow

vii

protection framework not only remains simple and completely stateless, but is also
highly effective in controlling the resource share of aggressive flows, as proved and
verified by the tight bounds on flow buffer space shares and link utilizations. This
allows well-behaved sources to obtain better service, i.e., low queueing delays and
higher throughput, in the network.

Another key contribution of the thesis is the first analysis on the transient behav-
ior of CHOKe queue following a change in the source rate of the unresponsive flow.
The observed dynamic behaviors seem counter-intuitive as the flow’s throughput is
moving in a direction opposite to the changes in the flow’s source rate. We present
two models that characterize and explain these “perplexing” transient behaviors.

viii

Contents

Preface iii

Acknowledgements v

Abstract vii

1. Introduction 3
1.1. The Grand Challenges . 4
1.2. Thesis Motivation . 5

1.2.1. Heterogeneity of Congestion Control 5
1.2.2. Complexity of Perflow Queueing 7
1.2.3. Inefficacy of Buffer Management Mechanisms 7

1.3. Research Methodology . 8
1.4. Contributions . 9
1.5. Publication . 11
1.6. Thesis Outline . 12

2. Background and State of the Art 13
2.1. IP Router Architecture . 13
2.2. Notions of Fairness . 14

2.2.1. Idealized Fairness . 14
2.2.2. TCP Fairness . 15
2.2.3. Max-min Fairness . 16
2.2.4. Fairness Score . 16

2.3. End-to-end Congestion Control Algorithms as Fairness Mechanisms . 16
2.4. Router-Enforced Flow Fairness Mechanisms: A Taxonomy 18

2.4.1. Perflow Queueing Mechanisms 19
2.4.2. Queue Management Mechanisms 21
2.4.3. Other Schemes . 24

2.5. General Discussion . 25

3. Single-queue Approximation of Perflow Fair Queueing 27
3.1. Introduction . 27

3.1.1. Motivation . 28
3.1.2. Contribution . 28

3.2. Single-queue SFQ . 29
3.3. Performance Evaluation . 30

3.3.1. Buffer Usage Discrimination and Loss Synchronization 30

ix

Contents

3.3.2. Traffic with Contrasting RTTs and Packet Sizes 32
3.3.3. Proportional Fairness . 34
3.3.4. Impact of Unresponsive Flows 35

3.4. Loss Synchronization . 35
3.5. Discussion and Related Work . 38
3.6. Conclusion . 39

4. Generalizing the CHOKe Flow Protection 41
4.1. Introduction . 41

4.1.1. Background . 41
4.1.2. Motivation and Contribution 43
4.1.3. Chapter Organization . 43

4.2. Geometric CHOKe (gCHOKe) . 44
4.2.1. The Scheme . 44
4.2.2. Example Scenario . 45

4.3. The Model . 45
4.3.1. The System and Assumptions 45
4.3.2. Notations . 46
4.3.3. The Analytical Foundation 47

4.4. UDP Throughput Analysis of a gCHOKe(m) Queue 48
4.4.1. Examples . 51
4.4.2. Properties of gCHOKe(∞) 51
4.4.3. Multiple UDP Flows . 53

4.5. Model Validation . 54
4.5.1. Impact of Drop Reversal . 55
4.5.2. UDP Buffer Shares and Utilizations 55

4.6. Results and Observations . 57
4.6.1. Main Results and Observations 57
4.6.2. Additional Results and Observations 60

4.7. Discussion . 61
4.7.1. General Discussion . 61
4.7.2. Multiple Unresponsive Flows and Multi-link Situations 62
4.7.3. Differences with MLC(l) [88] 63

4.8. Related Work . 65
4.9. Conclusion . 67

5. Analysis of the Transient Behavior of CHOKe 69
5.1. Motivation and Contribution . 70

5.1.1. Motivating Examples . 70
5.1.2. Observation and Objective 70
5.1.3. Our Contributions . 72

5.2. CHOKe Steady State Models and Properties 73
5.2.1. Steady State Models . 73
5.2.2. Summary of Queue Properties 74

5.3. System Model and Notation . 75

x

Contents

5.4. Modeling the Transient Regime . 76
5.4.1. Rate Conservation Argument 76
5.4.2. Modified Spatial Distribution Model 79
5.4.3. Analysis on the Transient Behavior 85

5.5. Performance Evaluation . 89
5.5.1. Model Validation . 90
5.5.2. Miscellaneous Results . 91

5.6. Conclusion . 94

6. Statelet Fair Queue 95
6.1. Motivation . 95
6.2. Contributions . 98
6.3. The Scheme . 98

6.3.1. Conceptual Design of AFpFT 98
6.3.2. Full Design of AFpFT . 104
6.3.3. Generalizing the Scheme . 104

6.4. Performance Evaluation . 105
6.4.1. Topologies and Parameters 105
6.4.2. Single Congested Link . 106
6.4.3. Link Scalability and Different RTTs 109
6.4.4. Multiple Congested Links . 111
6.4.5. Other Traffic Models . 114

6.5. Discussion and Related Works . 115
6.6. Conclusion . 117

7. Embracing TCP Heterogeneity using Queue Mechanisms 119
7.1. Introduction . 120
7.2. Related Work . 121
7.3. Background . 123
7.4. Simulation Environment . 124
7.5. Evaluation and Results . 125

7.5.1. Scenario 1: TCP Friendliness 126
7.5.2. Scenario 2: Full Coexistence 129

7.6. Concluding Remarks . 132

8. Conclusions and Future Work 135
8.1. Summary of Contributions . 135
8.2. Future Work . 136

A. Appendix 139

1

1. Introduction
Fairness among best-effort connections is not just an intuitively desirable property
of queueing systems [57], but also one with immense practical benefits. First, it
ensures equitable sharing of scarce network resources by restricting the resource
allocations of each flow1—aggressive or otherwise—to the fair share. Second, it
can keep networks robust and less prone to potential system manipulation and
attacks [103]. Third, by allowing the coexistence of heterogenous end-to-end con-
gestion control algorithms (and lack thereof) in the network [90], it promotes the
proliferation of new services over the Internet. Fourth, fair scheduling disciplines
can be used together with proper traffic shaping at network ingress to provide
service guarantees (e.g., delay guarantees) to user application-flows [43, 89].

Initially designed for scalability and survivability [18], the Internet from the out-
set lacks network mechanisms that ensure fairness and protection among application-
flows.2 This is mainly because all packets—regardless of the nature of the source
generating them— receive egalitarian best-effort service. Consequently, user con-
nections injecting more bytes per time unit receive proportionally more service, at
the expense of others with lower rates.

There are two general router mechanisms proposed to address the above problem:
(1) perflow fair queueing or scheduling, and (2) buffer or queue management mech-
anisms. The vast majority of the former proposals are both stateful and complex.
Being stateful, fine-grained per-flow state information is maintained at the routers.
The amount of state information may exceed the capacity of the high-speed mem-
ory available in the routers. In addition, the application-flows are isolated into a
large number of queues [72]. This requires complex and dynamic management of
the queue architecture. In contrast to the perflow fair queueing schemes, most of
the queue management mechanisms are relatively simpler, but lack the required
flow protection level to be practically useful.

This thesis proposes and analyzes several stateless, partially stateful (a.k.a statelet),
and scalable router algorithms for ensuring flow fairness and protection in the Inter-
net. This chapter serves as the introduction to the thesis. We begin with Sec. 1.1
which identifies the general challenges associated with building efficient and scal-
able router mechanisms, followed by the motivation for the research work done in
Sec. 1.2. Sec.1.3 describes the research methodologies adopted in this work. In

1A flow can be defined as a sequence of packets having the same signatures in the packet header.
A common signature is the 5-tuple in IPv4 (which consists of source and destination IP ad-
dresses and port numbers and protocol type), or the flow label in IPv6.

2Fairness is simply an approximate equality between flows’ throughput, see Chapter 2 for more
detailed notions. It generally implies flow protection, but not vice versa [57]. By protection in
this thesis, we mean that the resource shares of misbehaving flow(s) are restricted or bounded.

3

1. Introduction

Sec. 1.4, our key research contributions are summarized. The research papers that
make up the thesis are listed in Sec. 1.5. Finally, Sec. 1.6 presents the guidelines
for reading the rest of the thesis.

1.1. The Grand Challenges
The Internet is an open-access integrated services network. End users, malicious
or otherwise, can freely grab scarce network resources at the rate of their demand,
potentially causing congestion at various points in the network. Under congestion,
the Internet is equipped neither to provide QoS guarantees nor to protect best-effort
connections from high-bandwidth (potentially malicious) flows. Current designs of
network architectures for providing flow protection or service differentiation among
flows face several closely inter-twined challenges:

• Internet line speeds are increasing.

Thanks to optical technology, Internet line speeds are increasing beyond few
giga-bits per second. Unfortunately, this decreases the time-budget required for
per-packet processing at the routers’ ports, see Fig. 2.1(b). When a packet arrives
to a router, the input port performs a lookup to determine the output port, and then
forwards the packet to it through the switching fabric. Common speed constraints
here include both the lookup operation which invokes frequent memory access and
the forwarding at the switching fabric. Once forwarded, the packet may still need
to be queued at the router’s port awaiting transmission. With dwindling time
budgets for per-packet handling, the overall forwarding operations should be simple
to scale. A notable example of a scalable design is the current Internet which
adopts very simple router schemes—FIFO packet scheduling and Drop-Tail buffer
management.3

• Internet traffic volume is increasing.

The second challenge stems from the enormous amount of traffic generated by
users. The amount may even overwhelm the available link capacities [65, 1]. Even
though, many data networks are over-provisioned and remain under moderate uti-
lizations in the core [73], this is not true everywhere, e.g., at access links and core
networks in developing countries [39]. User flows are therefore likely to experience
congestion at both ends of communication, and occasionally in the core during times
of peak transient demand. Router architectures should scale with the amount of
traffic they handle and be able to allocate resources efficiently [53]. It is also prefer-
able that routers do not keep recent histories or states for a large number of flows
they serve.

• Application or service requirements are complex.
3The recent ISC Domain Survey shows an increase by a factor of over 150 in the number of

Internet end hosts between the years 1995-2012 [3].

4

1.2. Thesis Motivation

Today, Internet applications vary in their service requirements. Some applica-
tions require end-to-end QoS (e.g., delay guarantees), and best-effort connections
require flow protection. Normally, provision of service differentiation and flow pro-
tection entails more complex per-packet processing, in a direct collision course to
the scalability requirements.

Designing network architectures with balanced trade-offs in efficiency, service
quality and scalability has been a difficult hurdle.

1.2. Thesis Motivation
The Internet provides a basic egalitarian point-to-point best-effort service [11], with
no flow fairness mechanisms in place. An arbitrary flow can increase its resource
share merely by increasing its demand. This may lead to congestion in the network
and service deterioration to other competing flows. Generally, there are two general
approaches proposed to address the flow fairness problem:

1. End-to-end (e2e) based algorithms implemented at the end hosts (e.g., TCP4)

2. Router based mechanisms; there are two broad sub-categories
(i) Queueing or scheduling mechanisms
(ii) Queue or buffer management mechanisms

Before highlighting the limitations, we provide the definitions as used in this
thesis. See Sec. 2.1 for detailed account of the differences. In this thesis, we
refer to those mechanisms at the router port that transmit packets as queueing or
scheduling mechanisms. On the other hand, those algorithms that decide which
packet to enque and / or which packet to drop are termed as buffer management
or queue management mechanisms. That is, queueing or scheduling mechanisms
are executed at dequeueing whereas the buffer (queue) management mechanisms
are executed at enqueueing. The differences are pictorially displayed in Fig. 1.1.

Both e2e-based and router-based mechanisms proposed in the literature have
limited success in addressing the generic problems stated in Sec. 1.1. Specifically,
one or more of the following limitations can be identified in the proposed mecha-
nisms: (1) inefficiency, (2) lack of generality to all flows, and (3) lack of scalability.
The limitations are discussed next.

1.2.1. Heterogeneity of Congestion Control
Most of the classic Internet flows are elastic; that is, the flows can adapt their
sending rates in response to perceived network congestion and, apart from re-
liable delivery of their packets, have no strict QoS requirements. These flows
could therefore universally adopt TCP as their end-to-end congestion control algo-
rithm. Traditional TCP is coupled with Additive-Increase-Multiplicative-Decrease

4Transmission Control Protocol

5

1. Introduction

Buffer

Enqueueing Dequeueing

(a) Perflow queueing or scheduling.

Buffer

Enqueueing Dequeueing

(b) Buffer or queue management.

Figure 1.1.: Conceptual models of flow protection architectures (note the bold label in-
dicate the major operation): (a) perflow queueing is a policy of packet dequeueing (or
transmitting), and this action is often preceded by sorting of the packets in the queues;
(b) queue management is a packet enqueueing and/or dropping policy acting when a
packet arrives.

(AIMD) [48, 16] as its congestion avoidance algorithm. When a loss is detected, the
flows cut their sending windows by half. Otherwise, the flows increase their sending
windows at most by 1 TCP segment. In an environment with synchronized losses,
as in Drop-Tail routers, the AIMD algorithm allows TCP sources to converge to
fairness [16, 32].

However, the Internet traffic is no longer controlled by a single AIMD algo-
rithm. Apart from the various flavors of TCP congestion avoidance algorithm
(e.g., Vegas [12], Highspeed TCP [32], CUBIC [45], Binary Increase Congestion
Control [100], Scalable TCP [56]), Internet is also characterized by non-TCP con-
gestion control algorithms, e.g., User Datagram Protocol (UDP) [82], Datagram
Congestion Control Protocol (DCCP) [58]. The algorithms react differently to net-
work congestion in their steady state. For example, upon detecting a packet loss,
the classic AIMD reduces its sending window by 1

2 , CUBIC by 3
10 , STCP by 1

8 ,
whereas UDP continues to send packets undeterred.

The heterogeneity in deployed e2e congestion control algorithms in the Internet
is expected to rise. In the face of diverse reactions to a packet loss, Internet flows
are not expected to converge to fairness in their throughput shares. Therefore,
achieving flow protection through e2e mechanisms may require universal adoption
of a particular TCP algorithm, e.g., the AIMD algorithm. This limits the generality
of the solution to other types of flows, which is the second limitation mentioned
above. A related problem with the end-to-end schemes is the apparent lack of
fairness enforcement since end users may adopt no congestion control, or end users
are free to adopt any greedy e2e congestion control algorithm. Chapter 7 discusses
related issues.

Having discussed e2e mechanisms and their limitations, we proceed to router
algorithms proposed for flow protection and their limitations.

6

1.2. Thesis Motivation

1.2.2. Complexity of Perflow Queueing

Queueing algorithms are literally packet dequeueing policies. We call queue-
ing algorithms designed for flow fairness perflow fair queueing or perflow queueing
for short. They determine, at each transmission epoch, which packet of a flow
from those backlogged in the buffer to send when the scheduler becomes idle, see
Fig. 1.1(a). Many of the proposed fair queueing mechanisms are technically superior
and can provide intricate flow-level fairness in fine time granularity. However, they
come with huge costs for practical implementation in high-speed routers because
they are both stateful and complex. Well-known examples of such schemes are
SFQ [44], SCFQ [41], WFQ [20, 81], WF2Q [7]. Characteristically, these schemes
isolate each flow into separate queues, and packet transmission is typically preceded
by sorting among packets found at the head of these queues. While flow isolation
acts as a fire-wall and allows for better flow protection, it also requires complex
buffer partitioning and scheduling states (e.g., the pointers to each packet queues)
required to maintain the complex queue structures [57]. With increasing line speeds
in routers, the time budget required for per-packet handling continuously decreases.

Additionally, the sheer amount of per-flow information (or history) to be main-
tained means that the routers must be shipped with large expensive high-speed
memories. A notorious example is the well-known WFQ, which needs to keep per-
flow state information of all backlogged flows both in the packet system and fluid
system that WFQ is designed to emulate [81].

1.2.3. Inefficacy of Buffer Management Mechanisms

The buffer management (a.k.a queue management) mechanism at the router out-
put port drops packets when a packet arrives to a buffer which is full, or whose
thresholds are exceeded. Since packet losses are interpreted by most TCP sources
as network congestion, buffer management mechanisms play a critical role in the
throughput performance of TCP flows in the Internet.

Based on a single queue, buffer management mechanisms are comparatively sim-
pler in design, see Fig. 1.1(b). With no flow isolation, however, they lack the quality
of flow protection afforded by per flow queueing mechanisms. A typical example is
Random Early Detection [10, 38, 36] which defines a global packet drop probability
applicable to all traversing flows. However, the global drop rate does not differ-
entiate losses among flows and hence does not yield quality flow protection. To
address this problem, a host of RED extensions with differential perflow drop rates
have been proposed, e.g., FRED [64] and RED-PD [66]. These schemes are par-
tially stateful or statelet since they keep perflow accounting on a subset of the flows
(usually the high-bandwidth flows). By leveraging the flow information, different
perflow drop rates can be defined based on the nature of the flows. A potential
concern is that the perflow drop rates of these classical schemes are usually opti-
mized to a particular TCP congestion control algorithm, risking generality to other
congestion control algorithms.

7

1. Introduction

1.3. Research Methodology
Considering the complexity of perflow queueing and inefficacy of buffer management
schemes, two logical research directions can be followed in the design of simple and
efficient router fairness schemes.

1. Avoid the complexity of the perflow queueing schemes while simultaneously
approximating their quality flow protection.

2. Improve the flow protection quality of queue (buffer) management schemes
while simultaneously retaining their simple and stateless nature.

We explore both directions in this thesis, resulting in both statelet and stateless
mechanisms. Our proposed mechanisms share the simple scalable architecture of
queue management mechanisms in at least three ways (see Fig. 1.2): (1) a design
based on single-queues shared by all flows, (2) the major packet operation is un-
dertaken at enqueueing when a packet arrives, and (3) the dequeueing operation
involves the transmission of the packet found at the queue head, making this op-
eration as simple as that of FIFO queueing. Our first major undertaking is the
provisioning of approximate flow fairness. This requires sorting of arriving packets
into the single-queue based on computed tags. Our second major task is to retain
all the scalable features of a simple and stateless queue management mechanism
called CHOKe, but at the same time generalize it as an improved flow protection
framework.

Buffer

Enqueueing Dequeueing

Figure 1.2.: Conceptual model of the proposed architecture. It sorts packets upon
enqueueing, and is coupled with a very simple packet dequeueing operation.

For all works in the thesis, testing and performance evaluations of the proposed
schemes are carried out through extensive packet-level ns2 [29] simulations. Simu-
lation offers a great deal flexibility in the choice of traffic characteristics, link and
buffer capacities and complexity of network topologies. Depending on the nature
of experiment and the level of confidence required, simulation experiments are typ-
ically replicated between 10-500 times. For some works that can be simplified,
particularly those studying the steady state and transient queue behaviors of the
stateless and simple flow protection architectures reported in Chapters 4 and 5,
analytical models are developed and the results are validated through simulations.
Analytical modeling gives more credibility to results and further insights (e.g., limit
and asymptotic behaviors). Yet the application of analytical models is limited since
the scenarios should generally be simple enough to be mathematically tractable. For

8

1.4. Contributions

the more complex general scenarios of Chapter 6, we therefore use simulations. For
result validation of the simple scenarios in Chapter 3, and partial results in Chap-
ter 6, we trace individual packets through the network. Alternatively, validation
can also be carried out through real experiments which offer much more credence,
yet are inflexible and more costly in development time. For experiments featuring
various TCP algorithms in Chapter 7, we port the real Linux implementations [99]
of the TCP algorithms to the ns-2 simulations.

1.4. Contributions
This objective of this thesis is to develop router mechanisms that are simple, prac-
tical, preferably stateless, highly efficient in resource utilization and can provide
high quality of flow fairness among flows. The proposed mechanisms are all based
on single queues. Due to the nature of the problem, some sacrifices may be neces-
sary. For providing tight flow control, our proposed scheme is not only simple and
effective, but also completely stateless. For providing a higher grade of flow fair-
ness, on the other hand, we require a statelet single queue framework which sorts
packets on arrival. The amount of flow state is, however, limited and is bounded by
the buffer size. The proposed scheme is highly fair even when flows exhibit diverse
traffic characteristics and / or adopt different congestion control algorithms.

We summarize our key research contributions as follows.

• We proposed and evaluated a partially stateful (a.k.a statelet5) flow protec-
tion architecture, see Fig. 1.2, namely Approximate Fairness through Partial
Finish Time AFpFT, which possesses a host of desirable properties. Firstly,
unlike perflow fair queueing schemes, there is no complex partitioning of the
packet buffer. Secondly, packet dequeueing is a simple task of transmitting
the head-of-the-line packet. The scheme is therefore lightweight and scalable.
The more complex operation is the sorting when packets arrive to the queue.
This may not be a big problem since the buffer (backlog) sizes in real networks
are generally limited and the packet sorting operation can be optimized. Un-
der AFpFT, an arriving packet is assigned a tag which determines the packet’s
position in the queue. This enables flows to be treated differently based on
their recent shares of bandwidth. Particularly, low and medium rate flows
get both time (scheduling) and space (scheduling) priority. Overall, AFpFT
is a statelet and scalable scheme.

• We challenge the purported inter-operability between the traditional TCP
AIMD algorithm and the various deployed high-speed TCP congestion avoid-
ance algorithms. This study is conducted in the presence of diverse queue
management mechanisms at bottleneck links. With increasing heterogeneity
of deployed TCP algorithms in operating systems, such a study is crucial for
understanding the stability of the Internet. However, literature results in this

5Only perflow state for those having packets in the queue are kept.

9

1. Introduction

regard are limited. For our specific study, we consider six different TCP al-
gorithms (namely AIMD, Vegas, HSTCP, CTCP, BIC and CUBIC) and how
fairly they share a high-speed bottleneck link adopting one of the following five
router mechanisms, namely Drop-Tail, RED, FRED, CHOKe and AFpFT. In
the presence of any of the router schemes at the bottleneck, the various TCP
algorithms fail to be fair to each other or to the traditional TCP. Particularly,
we find that short RTT BIC and HSTCP flows are highly aggressive in the
use of link bandwidth. The aggression is severe under Drop-Tail and CHOKe
queues. When all constituent flows have large comparable RTTs, however,
CUBIC flows turn out to be the most aggressive. We find an explanation
for this interesting phenomenon. An exception to the widespread unfairness
among TCP flows is our proposed scheme AFpFT which battles both the
TCP heterogeneity at traffic sources and differences in the round-trip-times
of flows to ensure a high fairness score among the flows. In addition, AFpFT
is the most efficient in resource utilization as its link utilization is also the
highest.

• We introduce and extensively analyze a suite of active queue management
schemes called Geometric CHOKe (gCHOKe), each indexed with a param-
eter maxcomp. gCHOKe rewards successful matching of flow packets with a
bonus matching trial. For each packet arrival to queue, the matching process
stops either when a total of maxcomp matching trials are executed or when
a no-match is encountered. The arriving packet and all matched packets
are dropped. The bonus trials improve the traffic controlling power of the
scheme. When maxcomp=∞, the number of matching trials per packet arrival
is geometrically distributed. The upper bounds both in buffer share and link
utilization of the unresponsive flow improves by about 20% in comparison
to those in CHOKe. In addition, up to 14% of the bottleneck link capacity
can be saved from the unresponsive flow, allowing responsive or rate-adaptive
flows to obtain a better share of resources in the router. CHOKe turns out
to be the simplest case of gCHOKe with maxcomp set to 1.

• Most studies on CHOKe are limited to the steady state equilibrium behavior
of the queue serving many long-lived TCP flows and a UDP flow of fixed
source rate. We relaxed the assumptions by allowing the UDP source rate
to change over time. Before the queue settles into a new steady state follow-
ing the UDP rate change, we find that the CHOKe queue first enters into a
transient regime characterized by “strange” queue behaviors. We provide an
analysis (the first to the best of our knowledge) that characterizes this very
intriguing or “perplexing” behavior of CHOKe during the transient regime.
For example, when the UDP rate change is upward, the utilization suddenly
drops during the transient time, before eventually stabilizing to a new equi-
librium value. Our analysis explains this behavior, which is validated through
simulations. Similar analysis can be conducted for all gCHOKe variants.

10

1.5. Publication

1.5. Publication
Papers Included in the Thesis
The thesis is based on the papers [24, 23, 27, 26, 25, 28] written by the candidate
under the supervision of Prof. Yuming Jiang. The papers are listed below:

[A] Addisu Tadesse Eshete and Yuming Jiang. “On the Flow Fairness of Aggre-
gate Queues.” In Proceedings of the First Baltic Congress on Future Internet
Communications (BCFIC), Riga, Latvia, February 2011.

[B] Addisu Tadesse Eshete and Yuming Jiang. “Approximate Fairness through
Limited Flow List.” In Proceedings of the 23rd International Teletraffic Congress
(ITC), San Francisco, USA, September 2011.

[C] Addisu Tadesse Eshete and Yuming Jiang. “Protection from Unresponsive
Flows with Geometric CHOKe.” In Proceedings of the 17th IEEE Symposium
on Computers and Communications (ISCC), Cappadocia, Turkey, July 2012.

[D] Addisu Tadesse Eshete and Yuming Jiang. “Generalizing the CHOKe Flow
Protection.” Computer Networks journal, Elsevier, September 2012.

[E] Addisu Tadesse Eshete and Yuming Jiang. “On the Transient Behavior of
CHOKe.” Submitted to IEEE/ACM Transaction on Networking, November
2011.

[F] Addisu Tadesse Eshete, Yuming Jiang and Lars Landmark.6 “Fairness among
High Speed and Traditional TCP under different Queue Management Mecha-
nisms.” To appear in Proceedings of the 8th Asian Internet Engineering Con-
ference (AINTEC), November 2012.

Other Papers by the Author
[G] Addisu Tadesse Eshete and Yuming Jiang. “Statelet Fair Queueing.” In Work-

shop on Traffic Engineering and Dependability in the Network of the Future,
Trondheim, Norway, June 2011.

• This is an early version of Chapter 6.

[H] Kashif Mahmood, Yuming Jiang and Addisu Tadesse Eshete. “On The Mod-
eling of Delay and Burstiness for Calculating Throughput.” In Proceedings of
the 33rd IEEE Sarnoff Symposium, New Jersey, April 2010.

[I] Addisu Tadesse Eshete and Yuming Jiang. “Flow Aggregation Using Dynamic
Packet State (workshop paper).” In 16th EUNICE/IFIP WG 6.6 Workshop,
Trondheim, Norway, June 2010.

6[F]: Lars Landmark participated in the discussion of the ideas and results.

11

1. Introduction

[J] Addisu Tadesse Eshete, Andrés Arcia, David Ros and Yuming Jiang. “Im-
pact of WiMAX Network Asymmetry on TCP.” In Proceedings of the IEEE
Wireless Communications and Networking Conference (WCNC), Budapest,
Hungary, April 2009.

1.6. Thesis Outline
The rest of this thesis is structured as follows. The next chapter is devoted to
general background information on the router model, flow fairness and de facto
and proposed router fairness mechanisms. The chapter elaborates on the notions
of fairness as used in this thesis and the metrics used to express it, and presents the
paradigms followed in the technical design of router fairness algorithms, backed by
some example router algorithms proposed in the literature. The design trade-offs
between complexity and the quality of flow protection is emphasized.

Chapters 3-7 constitute the major body of research work done. Chapter 3 de-
scribes the intuitive simplification of perflow queueing mechanisms to a stateful
single-queue mechanism serving all flows over a single link. This work identifies
an important design challenges in single queue mechanisms, which is the synchro-
nization of losses to certain flows that in turn can significantly undermine the flow
fairness of such mechanisms.

In Chapter 4, we develop lightweight generalizations of the CHOKe flow protec-
tion algorithm without tampering with its simple and stateless design principle.
The generalization principle is: “repeat packet flow matching trials for an arriving
packet until a no-match is encountered or as limited by an integral control parame-
ter.” As it turns out, this simple rule not only generalizes CHOKe, but also radically
improves its flow protection.

A first study on the transient regime of CHOKe, initiated when the rate of
unresponsive flow changes is undertaken in Chapter 5. In order to explain and
characterize the transient behavior, this chapter presents two models—one based
on “the rate reservation argument” and the other on ordinary differential equations
(ODE), which is validated by ns-2 simulations in the latter part of the chapter.

Note that the mechanism proposed in Chapter 3 is both stateful, and prone
to severe unfairness due to the loss synchronization problem. In Chapter 6, we
extend and enhance it as a general router fairness framework called AFpFT. By
leveraging the limited flow state maintained at the router, a drop policy is devised
to counteract the synchronization. The scheme is shown to be highly fair, statelet
and simple—all hallmarks of a scalable architecture.

Chapter 7 uses extensive simulations to compare the throughput performance
of six different TCP congestion control algorithms in the presence of several well-
known router mechanisms at the bottleneck links. Among other things, the study
shows that our AFpFT mechanism proposed in Chapter 6 is indeed fair in a traffic
mix of heterogenous TCP congestion control algorithms.

Finally, Chapter 8 concludes the thesis by presenting a summary of our main
results and limitations, and discussing potential directions for future work.

12

2. Background and State of the Art
Since the theme of this thesis is on router-based flow fairness or protection mecha-
nisms, this chapter describes some general background relevant in that regard.

The chapter begins with an architectural view of routers and IP networks as
used in the thesis. Sec. 2.2 presents some of the various notions of fairness and
the performance metrics used in this thesis to express flow fairness. Traditionally,
Internet fairness control is achieved through congestion control algorithms at end
users. Sec. 2.3 is devoted to some discussion on TCP congestion control. We present
the state of the art on router based fairness mechanisms and their categories in
Sec. 2.4. Finally, Sec. 2.5 engages in general discussion on contentious and open
issues related to fairness.

2.1. IP Router Architecture
Routers are the building blocks of packet-switched networks such as the Internet,
see Fig. 2.1. They consist of ports to which packets arrive (“input ports”) and ports
from which packets depart (“output ports”). See [62, 22] and references therein for
more thorough presentations. Typically, a router port defines a separate network.
Router ports are interconnected by high-speed switching fabrics. A primary goal
of routers is to switch packets arriving at an input port to an output port using
the switch fabric, or equivalently from one network to another. This is usually
determined by destination address carried by the packet and a lookup of the routing
table maintained by the router.

ROUTERS

core edgeedge

(a)

O2

I1

I2

O1

Ik On
queuing/buffer mgmt.

Input ports Output ports
switching fabric

(b)

Figure 2.1.: High-level view of (a) a network and (b) a router model.

13

2. Background and State of the Art

More often than not, several packets destined to the same output port may arrive
to several of the input ports at the same time. Since the output ports are probably
just as fast as the input ports which are bufferless, some of the incoming packets
may need to be dropped at the output port, while some may need to be queued at
the output port and scheduled for transmission. This is where the various router
based queueing and buffer management mechanisms discussed in Chapter 1 are
required, (see Figs. 1.1(a), 1.1(b), 1.2).

The above architecture describes what is called output queued (OQ) switches or
OQ routers. OQ switches are generally impractical since the speeds of the switch
fabric should increase both with line speeds and number of input ports. They are,
however, easier to model and understand.

Practical routers include, among others, input queued (IQ) switches with buffers
only at the input ports, and combined input output queued (CIOQ) switches with
buffers both at input and output ports. When packets arrive to an input port of
an IQ router equipped with a switch fabric not fast enough (relative to input line
speeds) or busy with the transfer of other packets from other ports, the new arrivals
may be queued at the input port for later transmission. Even though IQ switches
are common in practice, they are usually modeled as output queued switches for
ease of understanding [22]. Hence, our subsequent discussion is on OQ switches.

Since the input ports of output queued switches are bufferless, they are required
to operate at line speed, which could be very high in core routers. That means,
a lookup and packet forwarding (to the appropriate output port) have to be com-
pleted before the next packet arrives at the input port. There are several opti-
mizations to expedite the lookup process, e.g., using content addressable memories
(CAMs) or other type of hardware-based lookups, lookups based on efficient data
structures or caches, see [97] and references therein. It is possible that several in-
put ports—operating at line speeds—may receive packets to be forwarded to the
same output port, instantly building up the queues in the process. In order for
the output port to cope with this challenge, the packet scheduling (queueing) and
dropping mechanisms adopted at the router should be computationally simple.

2.2. Notions of Fairness
A simple meaning of fairness is that all backlogged flows have approximately equal
shares of the network resources, typically bandwidth. There are several notions
of fairness, e.g., idealized fluid fairness [81], max-min fairness [8] and TCP based
fairness. We explain some of these concepts next ([33] lists additional pointers).

2.2.1. Idealized Fairness
In the idealized fluid fairness (e.g., found in the Fluid Fair Queueing (FFQ) scheme),
flows can not only transmit in infinitely divisible entities or bits, but also simulta-
neously. A flow is characterized by a flow weight / share rf which quantifies the
normalized service wf it can receive in a unit of time. Suppose flow f is backlogged

14

2.2. Notions of Fairness

during (t1, t2), the normalized service received by the flow is:

wf (t1, t2) =
Wf (t1, t2)

rf
(2.1)

where Wf (t1, t2) is the amount of service received by the flow (i.e., number of flow
bits transmitted) during (t1, t2).

The following relation holds for two arbitrary flows f and g continuously back-
logged during (t1, t2) or symbolically f, g ∈ B(t1, t2).

wf (t1, t2) = wg(t1, t2) ⇒
∣∣∣∣Wf (t1, t2)

rf
− Wg(t1, t2)

rg

∣∣∣∣ = 0 (2.2)

(2.2) says that FFQ provides perfect weighted fairness to competing flows. How-
ever, FFQ is hypothetical because (i) flows can practically send only in units of
packets and not in bits, (ii) a real server or router cannot serve several flows at
the same time. Nevertheless, the objective of the real packetized approximations of
FFQ such as WFQ, SFQ and SCFQ is to keep the fairness measure | · | in Eq. 2.2
as close to zero as possible [44, 41].

2.2.2. TCP Fairness
TCP fairness is basically fulfilling the TCP-friendliness criterion: A flow is said to
be TCP fair or TCP friendly if it has approximately the same flow rate as a stan-
dard TCP [48, 5] or TCP Friendly Rate Control [84] flow under the same network
conditions (e.g., similar packet loss rates and round-trip times). The average TCP
flow throughput T (pkts/sec) is governed by the square-root formula [35] (see [75]
for a more general TCP throughput formula),

T =
1

RTT

√
3
2p

(2.3)

where p and RTT are the loss event rate and the round-trip time, respectively.
Equivalently, the average TCP sending window W in packets is given by the TCP
response function,

W =
√

3
2p

(2.4)

Note that TCP-fairness does not imply RTT-fairness; specifically, the throughput
ratio is a power law of the inverse RTT ratio. When packet losses are synchronized,
as is common in Drop-Tail routers, the ratio between two TCP flow throughput of
different RTTs is T1/T2 ∼

(
RT T2
RT T1

)α

[100], where 1 < α < 2. That means, short
RTT TCP flows gain more bandwidth than long RTT flows.

15

2. Background and State of the Art

2.2.3. Max-min Fairness
Another well-known fairness is the max-min fairness, which naturally favors smaller
rate flows. It is an allocation where a flow resource share cannot be increased
without decreasing the share of a flow with a smaller resource share.

For a congested link with output capacity C and serving n flows, the max-min
fair share rate Φshare uniquely satisfies the condition:

C =
n∑

i=1
min(Φi ,Φshare) (2.5)

where Φi is the demand (e.g., incoming rate) of flow i.
Example: Consider 4 flows with incoming rates 2, 4, 6 and 8 competing for a

resource of capacity C =12. Applying (2.5), the fair share becomes Φshare = 10
3 . So

the first flow obtain its full demand of 2, and the remaining three are constrained
with the resource share rate of 10

3 .

2.2.4. Fairness Score
How do we quantify the fairness among resource allocations? One well-known
fairness score is Jain’s fairness index [16]. For a resource shared by n connections,
where the resource share of connection i is denoted by xi, i ∈ {1, · · · , n}, the fairness
index f becomes,

f =
(
∑

xi)2

n
∑

x2
i

(2.6)

Note that 1/n ≤ f ≤ 1. The fairness score becomes m/n when m ≤ n connections
share the full resource equally. The ideal fairness score is 1 which is achieved when
xi = 1/n for all i. A completely unfair system where a single connection grabs all
the shared resource has a fairness score of 1/n.

2.3. End-to-end Congestion Control Algorithms as
Fairness Mechanisms

Congestion control is a (typically distributed) algorithm to share network resources
among competing traffic flows [79]. Apart from the efficiency in the use of network
resources (see Sec. 2.5), one objective of congestion control is to provide fairness
among competing flows [9, 33, 63]. This is logical since fairness as a desirable per-
formance goal is more meaningful under congestion situations. As a result, mech-
anisms to enforce fairness in the Internet are often proposed as congestion control
mechanisms, hence our subsequent discussion on congestion control algorithms.

Internet congestion is generally a network phenomenon caused by traffic sources
at end hosts. Therefore, there are generally two parts to Internet congestion con-
trol: (1) those implemented at the end-hosts to reactively or proactively respond to

16

2.3. End-to-end Congestion Control Algorithms as Fairness Mechanisms

network connection, called in [55] primal congestion control, and (2) those imple-
mented in the routers, called in [55] dual congestion control. Default approach in
the Internet is based on the former, as Internet mainly depends on TCP-based rate
control with the network involvement reduced to announcing limited congestion
information implicitly in the form of packet drops and delays, or explicitly using
Explicit Congestion Notification (ECN) marks [84].

The end-to-end congestion control is typically exemplified by the Standard TCP [48,
5, 4] which provides reliable in-order delivery of bytes. Traditional TCP adopts the
Additive Increase Multiplicative Decrease AIMD(1,1

2) congestion avoidance algo-
rithm, whereby a TCP source increases its window by at most 1 TCP segment per
loss-free round-trip time, but decreases it by 1

2 upon a packet loss event. The AIMD
algorithm also allowed Internet connections to converge to fairness [16]. Recall from
Sec. 2.2.2 earlier that traditional TCP flows under similar network conditions ob-
tain compatible flow throughput. By ensuring equitable sharing among Internet
flows and averting the congestion collapse of the 1980s [71, 48], the traditional
TCP algorithm has contributed greatly to the robustness of the Internet.

The success of the traditional algorithms is not permanent, however, as their
limitations in adapting to new networks (e.g., high-speed and large delay links)
and in fulfilling applications’ QoS requirements become increasingly evident. We
specifically point out two issues next (see also the closely related discussion in
Sec. 1.2.1).

• The AIMD window increases are deemed too conservative to efficiently utilize
the vast link capacities available now. As a result, a host of high-speed
TCP congestion avoidance implementations begin to take foothold. Refer to
Chapter 7 for details.

• TCP provides reliable delivery of bytes, and this is done by retransmitting
lost or delayed packets. Many other Internet applications may prefer timely
delivery to reliable delivery. These applications may not even adopt conges-
tion control mechanisms at all, and hence send packets undeterred in the
face of network congestion. Some applications implement congestion control
algorithms at the application layer, rendering TCP based congestion control
mechanisms redundant and unnecessary.

Because of the above limitations, a large number of Internet end users may adopt
other forms of congestion control algorithms, or no congestion control at all. In the
face of increasing heterogeneity, the traditional TCP algorithms may no longer work
optimally (fairly). For example, TCP flows usually relinquish the use of network
resources in the presence of aggressive connections (e.g., UDP flows). Hence, the
traditional TCP algorithms fail to provide performance incentives for widespread
user adoption. In order to impose fairness despite the heterogeneity in deployed
TCP congestion control algorithms, the intervention from routers may be necessary.
The next section deals with router-based fairness mechanisms.

17

2. Background and State of the Art

2.4. Router-Enforced Flow Fairness Mechanisms: A
Taxonomy

The architectural blueprint of the original Internet is the end-to-end design princi-
ple [85] which argues:

The function in question can completely and correctly be implemented
only with the knowledge and help of the application standing at the end
points of the communication system. Therefore, providing that ques-
tioned function as a feature of the communication system itself is not
possible.

Following the above principle, the bulk of network communication functions were
moved to end user applications. The routers keep no fine-grained state information
about the flows / connections they are serving—a design approach called “fate-
sharing” [18]. As a direct consequence of the approach, TCP at Internet end hosts
implement sophisticated congestion control and flow control functions. And the
routers, on the other hand, simply forward packets based on a simple FIFO principle
and, when the packet buffers become full, drops incoming packets based on a simple
Drop-Tail buffer management strategy.

The end-to-end design principle and the “fate-sharing” approach greatly con-
tribute to the scalability and robustness of the Internet. But as it turns out,
without cooperation between the end hosts, a simple network cannot enforce any
sort of flow fairness or protection. Internet started to become vulnerable to users,
who intentionally or unintentionally, do not adopt any kind of end-to-end based
congestion control. Users lacking congestion control can control the scarce net-
work resources at the rates of their traffic injection. So starting from the work of
Nagle [72], sophisticated router-enforced fairness mechanisms started to pop up, de-
viating from the “traditional” scalable design principles in the process. In general,
two broad categories of router-enforced fairness mechanisms have been proposed
(see also Sec. 1.2):

1. Perflow (fair) queueing or scheduling mechanisms which are typically exem-
plified by SFQ [44], WFQ [20], WF2Q [7] and SCFQ [41]

2. Queue or buffer management mechanisms which are typically exemplified by
RED [10, 38, 36]

The two mechanisms can be thought of as resource allocation policies; specifi-
cally, they allocate the link bandwidth and the buffer space, respectively. Queue-
ing mechanisms dequeue packets over the outgoing link, while queue management
mechanisms drop incoming packets or admit them into the queue.

First, we mention the basic de facto router schemes in the Internet. Default
queueing scheme is FIFO which serves or transmits packets based on first come
first served basis. And the default queue management scheme is Drop-Tail that
drops incoming packets when the buffer is full, and admits them otherwise.

18

2.4. Router-Enforced Flow Fairness Mechanisms: A Taxonomy

2.4.1. Perflow Queueing Mechanisms
Recall from Sec. 2.2.1 that perfect fairness can be provided by the fluid fair queue-
ing FFQ. FFQ is, however, unrealistic. Researchers have therefore proposed various
packet-level approximations to FFQ. Prominent real packetized approximations in-
clude Weighted Fair Queueing (WFQ) [20, 81], Worst-case Weighted Fair Queue-
ing WF2Q [7], Start-time Fair Queueing (SFQ) [44] and Self-Clocked Fair Queueing
(SCFQ) [41]. These packetized algorithms attempt to closely emulate FFQ’s perfect
fairness. For example, the service (in bits transmitted) received by a backlogged
flow under WFQ can only lag behind that of the corresponding flow service under
FFQ by no more than the maximum packet length.

All the above algorithms use the concept of virtual time v(t) and finish timestamp
F (·) and start timestamp S(·) defined for each arriving packet. Let us denote,

v(t) : the virtual time of the server or queue at real time t

pj
f : the jth packet flow f

S(pj
f) : the start timestamp of pj

f

F (pj
f) : the finish timestamp of pj

f

The computations of the packet timestamps follow. Upon arrival of packet pj
f to

queue, the timestamps for the arriving packet pj
f become:

S(pj
f) = max(v[A(pj

f)], F (pj−1
f)) j ≥ 1 (2.7)

F (pj
f) = S(pj

f) +
lj
f

rf
j ≥ 1 (2.8)

where v[A(pk
f)] is the server virtual time at the time of pk

f ’s arrival to queue, lk
f is

packet length, and rf is the flow’s weight.
A major difference between the schemes is how the packet’s service tag is defined,

which in turn impacts how the packets are scheduled for transmission in the system.
For SFQ, a packet’s service tag is the start timestamp of the packet, hence the name
of the scheme. However, for WFQ and SCFQ, the service tag is the finish timestamp
of the packet. Another key difference between the schemes is the definition of the
server’s virtual time v(t) at time t,

• [FFQ, WFQ]
dv

dt
=

C∑
k∈B(t) rk

(2.9)

where B(t) denotes the set of flows that are backlogged at time t.

• [SCFQ, SFQ] v(t) is the service tag of the packet in service at t. That is,
when an arbitrary packet arrives to queue at t, the virtual time is the start
tag (in SFQ) or finish tag (in SCFQ) of the packet being transmitted.

Note that under all of the above schemes,

19

2. Background and State of the Art

• packets are served in increasing order of the service tags.

• when the server becomes idle (i.e. no busy period), v(t) is reset to 0.

As can be seen, as a direct packet approximation of FFQ, WFQ shares identical
server virtual time definition to that of the fluid FFQ. SFQ’s and SCFQ’s v(t)
equals the service tag of the packet under transmission at that time and hence
is self-clocked to the schemes. That means, v(t) under SFQ and SCFQ takes up,
respectively, the start timestamp and the finish timestamp of the packet undergoing
transmission at t.

Perflow queueing mechanisms have a lot of desirable features. By building fire-
walls around flows, they provide robust protection from potential aggressive or ma-
licious flows. Together with resource reservation and admission policies, they are
known to provide strong QoS guarantees at flow granularity levels [80, 57, 43, 89].
For example, the service delivered by WFQ to a flow does not fall behind the cor-
responding FFQ system by more than one maximum packet size. Because of their
strong service semantic, perflow queueing mechanisms are one of the elements in
the provision of real-time services in the Integrated Services framework [11].

However, their strong semantic also counts against their scalability for high-speed
implementations. A first scalability constraint arises from the isolation of flows into
separate physical or logical queues. This requires complex buffer partitioning or a
large number of physical queues, see Fig. 1.1(a). Second, in order to determine the
most eligible packet to transmit, the head-of-the-line packets in the queues may
need to be sorted with respect to their service tags. A third constraint may arise
from sorting among queues preceding packet dropping decisions.1 For example, a
common drop policy associated with perflow queueing mechanisms is the Longest
Queue Drop (LQD) [94]. When the buffer becomes full, LQD drops packets from
the flow queue holding the largest amount of traffic and this calls for sorting among
the queues. A fourth scalability limitation is their stateful nature. For example,
to compute the start tag of every arriving packet in (2.7), the server needs to
hold the finish tag of the previous packet. An extreme example is WFQ. WFQ
keeps the information of the flows both for the packet and the fluid FFQ system
which it attempts to emulate. A majority of Internet flows are short-lived [105, 87,
14, 83]. Continuously installing, updating and removing the flow states may be a
cumbersome computation at current line speeds.

There are some less complex implementations of perflow fair queueing such as
DRR [86]. Packet handling in DRR is a simple O(1) operation. Nevertheless, both
the partitioning of the buffer into thousands of logical queues and the maintenance
of flow states may still be necessary if DRR is to replicate the fairness of other
perflow queueing algorithms.

Recent works [60, 59] show that the actual number of flows that require scheduling
at a router is limited and this number does not increase with link speeds. The
finding is significant since it directly challenges the earlier claims of complexity
associated with high-speed implementation of perflow fair queueing mechanisms.

1Sorting is unnecessary if the drop policy is simple, e.g., Drop-Tail.

20

2.4. Router-Enforced Flow Fairness Mechanisms: A Taxonomy

While the number of flows in progress increases with link speed, the number that
requires scheduling is merely in hundreds even on gigabit-per-second links.

2.4.2. Queue Management Mechanisms
The default fairness and congestion control mechanism in the Internet is FIFO
queueing together with Drop-Tail buffer management strategy at routers, and TCP
congestion control algorithms at end hosts. However, this arrangement has several
drawbacks, as documented in the RED manifesto [10] and [38]. First, it may result
in a lock-out where only few flows monopolize the buffer space denying service to
other flows. This may result in extreme unfairness in the system. Second, Drop-Tail
is characterized by global TCP synchronization where most of the TCP connections
receive notifications to reduce their windows at the same time, resulting in loss of
throughput in networks and sustained periods of under-utilization. Third, due to
oscillations in queue size and the tendency to maintain full queue under overloaded
situations, both the maximum and average queueing delays can be unpredictable
and large. Furthermore, Drop-Tail biases against bursty flows.

2.4.2.1. Random Early Detection (RED)

To correct the above shortcomings, researchers proposed the RED scheme [10, 38,
36] and recommended it for widespread deployment. The main idea behind RED is
to start dropping or marking packets long before the buffer becomes full, signaling
early congestion notifications to sources that can then gracefully slow down. RED
is based on a host of tunable parameters: the maximum and minimum queue
thresholds maxth and minth, respectively, maximum drop probability maxp and
queue averaging constant wq. The basic RED operation is briefly described here.

When a packet arrives to a RED queue, there are two basic operations to de-
termine the packet drop rate or drop probability r. First, the average queue
length avg is computed as avg = (1 − wq) × avg + wq × q where q is the cur-
rent queue size. Second, the packet dropping probability is computed as r =
maxp(avg − minth)/(maxth − minth). Based on the value of avg, we can define
three regions of dropping probability. If avg < minth, r = 0 and no packet is
dropped or marked. Let us call this regime the no drop region. Note that pack-
ets can still be dropped if the queue overflows. As avg increases from minth to
maxth, r increases linearly from 0 to maxp. This corresponds to early drop where
the incoming packet is dropped probabilistically. When avg ≥ maxth, r = 1, the
incoming packet is discarded outright and this deterministic drop is called forced
drop. Forced drop can also happen when queue q becomes full.

It is fitting to mention some proposed enhancements to the basic RED described
above. When avg slowly moves up and down maxth, r abruptly alternates between
maxp and 1.0. To avoid this problem, the gentle parameter is introduced [30].
With gentle set, as avg increases from maxth and 2 × maxth, r increases linearly
from maxp to 1.0. That means, the region of early drop is expanded when gentle
is set. Another parameter is adaptive [36] which periodically (by default every

21

2. Background and State of the Art

0.5s) updates the value of maxp so that the average queue length avg is maintained
in the interval [minth +0.4(maxth − minth), minth +0.6(maxth − minth)]. This can
improve the throughput performance of basic RED.

Just like FIFO and Drop-Tail, RED is oblivious to flow identities. RED applies
equal or global drop rate to all flows, regardless of their traffic nature. Depending
on the nature of flows—duration and size, presence or absence of underlying con-
gestion control algorithm and the mode of operation (e.g., slow start or congestion
avoidance)—equal drop rate does not generally result in fairness in a network with a
mixture of various types of traversing flows. For example, some flows are unrespon-
sive to packet drops and do not back off; some flows back off, but immediately grab
any spare bandwidth when it becomes available (adaptive-large/responsive-large);
and yet some flows back off but do not raise sending rates much even when a spare
bandwidth becomes available (responsive-small). The responsive-large flows may
be TCP flows operating in congestion avoidance phase whereas the responsive-small
flows usually reside in a TCP slow start phase. The reactions to packet loss are
different among these flow types: The unresponsive flows send packets undeterred;
responsive-large flows halve their congestion windows; responsive-small reset their
windows and hence their sending rates.

The above fairness limitation of RED leads to research on queue management
(QM) schemes that improve on RED by differentiating losses among flows.

2.4.2.2. Statelet Approximately Fair RED enhancements

An important component missing in RED is a mechanism that identifies the flows
that contribute greatly to the network congestion and then applies correspondingly
higher per-flow drop rates to those flows (in addition to the global RED drop
rate). Several such algorithms have been proposed, e.g., Flow RED (FRED) [64],
RED with Preferential Dropping (RED-PD) [66], Approximate Fairness through
Differential Dropping (AFD) [76], CHOose and Keep for responsive Flows and
CHOose and Kill for unresponsive Flows (CHOKe) [78]. The main differences
between the above schemes lie in the flow identification mechanisms adopted. Some
key insights obtained from the underlying RED can be handy for identification:

Observation 1. Since a RED queue is unleaky with FIFO queueing discipline,
the flow packet distributions must be uniform throughout the queue. Therefore, a
higher rate flow must also have a correspondingly higher buffer share in RED.

Observation 2. Similarly, since the RED drop rate is equal to all flows, a
higher rate flow must have a correspondingly larger number of drops.

The improved flow fairness over RED does not come for free, however. The flow
identification requires that the queue management schemes keep per-flow account-
ing on the flows, making them partially stateful or statelet. The amount of flow-level
state, however, is generally limited, since state is kept only for those flows that have
packet(s) in the queue. We now describe the algorithms succinctly, and emphasize
the identification engines in each.

22

2.4. Router-Enforced Flow Fairness Mechanisms: A Taxonomy

FRED attempts to share the buffer space equitably among the active flows. In
addition to the RED parameters, FRED defines global parameters minq, maxq and
avgcq, and perflow parameters strikef and qlenf . minq and maxq are respectively
the minimum and maximum number of packets a flow is allowed to buffer. qlenf

holds the number of flow f’s packets found in the buffer, and avgcq is the average
number of packets buffered per flow. A flow can freely buffer up to minq packets
without loss, but not more than maxq packets. If the queue is congested and
qlenf > minq, a flow f ’s arriving packet may be dropped with some probability. A
flow cannot buffer more than maxq packets, and every time the flow tries to exceed
the maxq limit in the buffer, the flow parameter strikef is incremented. Flows with
higher strikef ’s are not allowed to buffer more than avgcq packets. High bandwidth
flows have tendencies to strike too often, raising their probabilities to be punished
with higher dropping. Small fragile flows, on the other hand, are guaranteed to
maintain minq packets in queue and receive better service than otherwise possible.

RED-PD [66] follows from Observation 2 above. A history of packet drops in
a RED queue can reveal the identities of those flows that consume larger shares
of the link capacity. High bandwidth flows are more likely to have multiple drops
in a time window. These flows are monitored and dropped at a pre-filter to bring
their rates to a target bandwidth. The high rate flows, therefore, may suffer two
level droppings—at the pre-filter and at the RED queue. The drop at the RED
queue, called the ambient drop in the paper, is common to all flows. The flows
that are monitored and filtered are only a subset with drop counts more than
that of a TCP friendly flow under similar network conditions. These flows can
be identified from the TCP throughput formula (2.3), where RTT is replaced by a
(configurable) target round-trip time RTTt and p is the ambient drop rate measured
at the imbedded RED queue. Note that there is a tradeoff between the quality of
fairness and the amount of state (i.e., number of controlled flows) to be maintained.
The quality of fairness increases with RTTt, which unfortunately increases the
amount of flow state.

A high rate flow is one with a high incoming rate. In AFD, a history of recent
packet arrivals is kept in a shadow buffer which is then used to identify the high
bandwidth flows in the queue. From this history, it is possible to estimate both
the incoming rate of each flow and the max-min fair share. Note that both the
methods of estimating flow arrival rates and of computing the perflow drop rates
are borrowed from CSFQ [92], see below. For example, for a flow i with arrival
rate Φi, the perflow drop rate is given by (2.10). Only flows with higher rates than
the fair share are kept in the shadow buffer, since the flow would have zero perflow
drop rate otherwise. To reduce the complexity and amount of perflow state, the
authors sample the arriving packets with a certain frequency.

All the above active queue management schemes are statelet since they keep
flow history on packet arrivals (AFD), RED drops (RED-PD), or count of buffered
packets (FRED). A completely stateless and simple scheme is CHOKe [78] that can
be implemented by a simple tweaking of the RED algorithm. The key idea reads:

23

2. Background and State of the Art

When a packet arrives at a congested router, CHOKe draws a packet at
random from the FIFO buffer and compares it with the arriving packet.
If they both belong to the same flow, then they are both dropped; else the
randomly chosen packet is left intact and the arriving packet is admitted
into the buffer with a probability (based on RED) that depends on the
level of congestion.

Note that the idea follows directly from Observation 1. An arriving packet of a
high rate flow has a correspondingly high probability of matching a packet randomly
picked from the queue. As can be seen, no flow state is required. Despite its
lightweight nature, CHOKe is very effective in limiting / penalizing unresponsive
flows. Using simple network settings, for example, researchers have proved that as
the rate of the unresponsive flow increases without bound, its actual throughput
indeed falls to 0 [98, 96, 77]. Such punitive actions by routers to misbehaving flows
may be necessary if networks are to avoid potential congestion collapse [31, 71, 35].

2.4.3. Other Schemes

Core-Statleess Fair Queueing (CSFQ) [92] is a scheme proposed for DiffServ-like
architectures. CSFQ edge routers are stateful but core routers are stateless, hence
the name of the scheme. It introduced a novel method of estimating flow rates
based on their packet arrival information (perflow state) at edge (more precisely,
ingress) routers. From the knowledge of flow arrival rates, ingress routers can also
compute the max-min fair share Φshare, see (2.5). Labeling the estimated incoming
rate of flow i as Φi and the computed max-min fair share Φshare, the perflow drop
rate becomes,

di = max
(

0,
Φi − Φshare

Φi

)
=

(
1 − Φshare

Φi

)+
(2.10)

If the packet is not dropped upon arrival, the flow’s new or outgoing rate becomes
(1 − di) × Φi = min (Φi, Φshare) which is then encoded into the packet header. The
packet is then passed on to the next router downstream. Being completely stateless,
core routers cannot leverage perflow information. However, they can estimate the
max-min fair share Φshare from the knowledge of the aggregate traffic rate and the
outgoing link capacity. By computing the Φshare and reading the flow incoming rate
Φi from the packet headers, core routers can use (2.10) to compute both the perflow
drop rate and the flow’s outgoing rate. The flow outgoing rate is inserted into the
packets which are then forwarded to routers downstream. This process continues
until the packet arrives to CSFQ egress routers which eventually remove the CSFQ
information from packet headers for compatibility to existing architectures.

CSFQ is probably the first attempt to eliminate or get rid of perflow scheduling
states in core routers by inserting the states into packet headers. A similar idea is

24

2.5. General Discussion

adopted in [54] for developing the core-stateless version of the Virtual Clock [104]
scheme.

2.5. General Discussion

This thesis so far focuses on the various mechanisms proposed to provide flow
fairness in the Internet. However, flow based fairness is not without its limitations
and criticisms. This section is devoted to some discussion on those contentious
topics and other miscellaneous issues.

The importance of flow rate fairness, e.g., max-min fairness, has been questioned
by Briscoe [13] who advocates for what is called the cost-fairness [55]. Accordingly,
senders should be held accountable for the congestion they cause. The metric to
arbitrate cost-fairness is the congestion volume, which is the congestion times the
bit rate of the user causing the congestion, summed over time. An example is pro-
vided using two users sending at rates 200kbps and 300kbps into a 450kbps line for
0.5s. Congestion in this case is (200+300-450)/(200+300)=10%, so the congestion
volume each causes is 200k × 10% × 0.5=10kb and 15kb respectively. As it turns
out, the cost—hence the ‘blame for congestion attributed to the sender’— depends
on not only the flow rate but also on the congestion. For realizing cost-fairness,
protocols may need to be developed at higher levels to integrate the congestion
costs across different flows over time.

Other views on the topic of fairness is the following. Floyd and Allman [34] argue
that flow rate fairness is practically useful, stating their case with the current Inter-
net where most TCP congestion control algorithms enable best-effort connections
to achieve rough flow rate fairness. Other researchers argue that the difference
between the max-min and cost-fairness is hardly significant [60] realistically, or is
a trivial issue of how to share out the excess capacity [79].

Regardless of the differing views, there are several limitations and/or open is-
sues regarding flow fairness; see [79, 34] for details. These include the absence of
fairness enforcement mechanisms, the definition of flow granularity, the relation-
ship between flow bandwidth and RTT, fairness measured in packets per second
or bits per second, and the precision of fairness (what benchmark is the fairness
goal?). Probably the most important limitations are the first two. Since the bulk
of the thesis discusses the enforcement mechanisms, we only and briefly consider
the second open issue here: the flow granularity.

A flow can be defined by any combination of the elements among the 5-tuple.
Recall from Chapter 1 that a flow is mainly defined in this thesis based on all
elements of the five-tuple. If fairness is defined per connection, a flow can cheat by
splitting its identity into multiple little flows. Single-user web clients and peer-to-
peer traffic are allowed to create multiple connections between two end users [34].

25

2. Background and State of the Art

For example, a single HTTP 1.1 user client can maintain two persistent connections
with any server, while Windows XP Pro allows up to ten simultaneous peer-to-peer
connections. A flow can also be defined based on source-destination IP addresses.
Still, a single IP address may represent multiple end entities residing behind a NAT.
On the other hand, a single host can cheat by creating (spoofing) several source
addresses. Without the precise definition of flows, it may be difficult to enforce
fairness among flows.

This thesis concerns mainly with flow fairness enforcement mechanisms, using
algorithms implemented at routers. This, however, should not rule out the im-
portant roles that e2e congestion control algorithms play for fair, and particularly
efficient, utilization of resources. To illustrate this point, we discuss two situations:
(1) the avoidance of congestion collapse from undelivered packets [35], and (2)
improving the service quality of voice and video connections on best-effort Inter-
net [39]. For (1), imagine flows, some of which lack congestion control, traversing
multiple congested links. Even if we adopt perflow fair queueing in the network,
the flows may still squander significant portions of scarce bandwidth because most
packets are carried through the network only to be dropped eventually on down-
stream congested links. This problem could be avoided through the use of e2e
congestion control which enables the flows to adapt their rates to the bandwidth
available end-to-end. For (2), imagine a highly congested bottleneck link adopt-
ing fair queueing mechanisms and traversed by voice flows running over best effort
(say, UDP) connections. With excessive congestion, the voice flows suffer drops.
Lacking e2e congestion control, most of the flows react by adding more FEC level
which unfortunately exacerbates the underlying congestion. The voice flows could
avoid excessive packet drops and make more efficient use of resources if they employ
end-to-end rate control and codecs that adapt to the available bandwidth.

26

3. Single-queue Approximation of
Perflow Fair Queueing

This chapter presents a simplified design and implementation of perflow fair queue-
ing mechanisms. The objective is to avoid the complex buffer partitioning asso-
ciated with perflow fair queueing while retaining approximate, if not total, flow
fairness. This is accomplished by a single aggregate queue serving all flows. For
prototyping, we use the well-known Start-time Fair Queueing (SFQ), hence we coin
the term ‘Single-queue SFQ’ or S-SFQ to the specific implementation. The aggre-
gate queue orders packets based on their timestamps rather than order of arrivals.
Our simulations show that S-SFQ offers significantly better flow fairness than other
default single-queue schemes such as RED and FIFO while retaining higher link uti-
lization. We also discuss the adverse effect of packet loss synchronization problem
common in such aggregate queues. The fairness qualities of aggregate queue based
router schemes may easily and single-handedly be taken away by this problem.
Loss synchronization is caused by timing effects and may surface during overloaded
(rather than early) drops when the buffer becomes full (e.g., FIFO) or certain
(upper) buffer thresholds are exceeded (e.g., RED).

The remainder of the chapter is structured as follows. Sec. 3.1 presents the
motivation for this work and some background, followed by the design of S-SFQ in
Sec. 3.2. The loss synchronization problem and the associated buffer and link usage
discrimination against certain flows is initially discussed at the beginning Sec. 3.3.
A further discussion of the problem with emphasis on RED follows in Sec. 3.4. The
rest of Sec. 3.3 deals with simulation experiments and description of the results.
We present some general comments in Sec. 3.5 before presenting our conclusions
and directions for future work in Sec. 3.6.

3.1. Introduction

Apart from the e2e congestion control schemes at the end hosts, two major types
of router mechanisms have been proposed to achieve congestion control, and flow
protection in the Internet, see Sec. 2.4. Probably the most common ones are perflow
fair queueing algorithms (e.g., [44, 20, 86]), defined in the framework of Integrated
Services, which maintain a separate FIFO queue for each flow and, at each trans-
mission epoch, decide the next packet to send from among the backlogged queues

27

3. Single-queue Approximation of Perflow Fair Queueing

(flows). Since flows are isolated into their own queues, a flow can be protected
from misbehaving ones and fairness can be achieved. Perflow dropping or buffer
management mechanisms have a simpler design with a single FIFO queue and de-
termine the network conditions and connections for packet discard in order to meet
certain capacity or quality of service conditions. Such schemes may need to main-
tain some perflow information to ensure flow protection. Examples of such schemes
are variants of Random Early Detection (RED), e.g., Fair RED (FRED [64]).

3.1.1. Motivation

We intend to replicate the fairness of perflow queueing mechanisms using the sim-
ple queue design of buffer management mechanisms. In particular, we study the
performance of Start-time Fair Queueing (SFQ) [44] using a single global queue for
all flows, rather than the norm of assigning a FIFO queue for every flow serviced by
the router. Assigning a queue for each incoming flow may practically become too
cumbersome to be deployable in the Internet when the number of flows can be very
high. We call such a modification to SFQ as single-queue SFQ or S-SFQ for short.
S-SFQ keeps some perflow information, but does not hold detailed statistics of how
many perflow packets have been dropped or are currently found in the queue. We
have chosen SFQ because of its proven qualities routinely required in integrated
services network (data, video, audio): low implementation complexity compared
to the well-known Weighted Fair Queueing (WFQ), better flow isolation compared
with a competing fair queueing algorithm called Self-Clocked Fair Queueing [41],
ability to provide fairness under variable server capacity (e.g., in wireless networks)
and ability to provide low average and maximum delay. An SFQ variant has also
found use in real networks [61].

3.1.2. Contribution

The contribution of this chapter is twofold. First, we provide a design and imple-
mentation of perflow fair queueing mechanisms in general, and SFQ in particular,
based on a single shared queue, rather than a rack of queues. This in turn calls for
a non-FIFO queue that can sort packets based on their encoded timestamps. This
is because all flows share the queue and the policy for flow scheduling should not
merely base on the order of packet arrivals. Upon arrival, packets are assigned start
tags computed by the underlying SFQ algorithm. Additionally, S-SFQ’s potential
in terms of fairness and link utilization is investigated through simulation, and com-
pared against the other well-known single-queue-based router schemes such as FIFO
(Drop-Tail) and RED. The second important contribution is that we identify and
discuss a recurring problem in the context of this work called loss synchronization
that has a potential to obliterate the desirable qualities of the underlying scheme.
We find that this problem commonly arises in shared queues with no specialized
(randomized) buffer management.

28

3.2. Single-queue SFQ

3.2. Single-queue SFQ

Recall from Sec. 2.4.1 that a packet’s service tag under SFQ equals its start times-
tamp S(·). The timestamp computation is given by (2.7) [44]. Note that the start
tag computation depends on the finish timestamp—computed by (2.8)— of the
previous packet of the same flow which may already have left the server.1 Arriving
packets are first assigned service tag before being transmitted in ascending order
of their tags.

The objective of S-SFQ is to approximate the per-flow SFQ, keep its desirable
properties while getting rid of the per-flow queue requirements, or the complexity
of buffer partitioning, by employing a single global queue. We implemented S-SFQ
in ns-2 [29] and the pseudocode of the implementation is shown in Fig. 3.1. The
flow information we intend to keep or save under S-SFQ can be seen at line 7 of
the Enqueueing Algorithm. The v(t) (line 4, Dequeueing) is the server virtual time
at time t, and this value is used in start tag computation (line 5, Enqueueing).
v(t) is reset when the queue becomes idle or empty (line 7, Dequeueing). As
discussed before, the queue Q is not FIFO since packets are served (i.e., queued and
transmitted) in increasing order of their start tags rather than order of their arrivals.
A packet service tag is computed on arrival using Eq. 2.7. The packet is then placed
in the right slot in Q based on this value. When the buffer becomes full, we pick the
packet at the tail to drop since it has the largest start tag. Unlike FIFO/Drop-Tail,
this packet may not be the packet that arrives last. The dequeueing procedure is
very simple since S-SFQ draws a packet from Q head for transmission.

1A flow entry is removed after a certain period of inactivity (timeout).

Enqueueing Algorithm Dequeueing Algorithm
1: Upon receiving pj

f at t

2: if (pj
f first of f) then

3: add f to flow list F;
4: end if
5: compute S(pj

f); // (2.7)
6: encode S(pj

f) into pj
f ;

7: compute F (pj
f) and save; // (2.8)

8: enque pj
f into Q // non-FIFO

9: if Q-size ≥ Q-limit then
10: draw packet p from Q tail;
11: drop p ;
12: end if

1: draw p from Q head
2: if (p exists) then
3: extract S(p) from p header
4: v(t) ⇐= S(p);
5: else
6: // Q empty; resetting params
7: v(t) ⇐= 0.0
8: ∀f ∈ F reset f finish tag to

0.0
9: end if

10: return p

Figure 3.1.: Enqueueing and Dequeueing in S-SFQ

29

3. Single-queue Approximation of Perflow Fair Queueing

3.3. Performance Evaluation

This section is devoted to evaluation of S-SFQ using extensive simulation. To
give some context we compare and contrast its performance to the status quo
having global queues (FIFO, and RED). Unless otherwise stated, the default RED
parameter values are used, e.g., the initial maxp = 0.1, minth = 5 and maxth = 15.
Since the setting of optimal RED parameters is more empirical than exact, rather
than hardcode the parameters, we enable both gentle and adaptive parameters,
see Sec. 2.4.2 for detail. These parameters allow RED to ‘auto-tune’ to improve
network performance. The main performance metrics of interest in this chapter are
fairness (simple and weighted), flow throughput and link utilization.

Every simulation is replicated 30 times and the 90%-level confidence intervals
are computed. The confidence intervals are very small in the majority of cases and
therefore, unless stated otherwise, they are not reported here. The flow start times
are uniformly distributed, mostly on [0,1].

3.3.1. Buffer Usage Discrimination and Loss Synchronization

Early at this stage, we would like to emphasize probably the most important ob-
servation in this work—the problem of loss synchronization caused by buffer usage
discrimination against some flows. The impact of the problem is so severe that it
can totally impair the fairness of the underlying mechanism. However, we discover
that this problem is not unique to S-SFQ. In Sec. 3.4, we point out scenarios where
the problem manifests in RED during forced drop.

For clarity of exposition, we use an oversimplified topology shown in Fig. 3.2(a).
Two CBR sources generate packets at the same constant rates, say 1 pkt/s. It may
be possible to get such packet trains in sub-RTT time-scales when a window of TCP
packets are transmitted [50]. The guaranteed rates of both flows (rf in Eq. 2.8)
are also 1 pkt/s. The router has a buffer size of 2 packets and link capacity C of
1 pkt/s and link delay 1ms. Both flows start transmission at time 0. We expect the
router to be congested and the two flows to share the link approximately equally.
Surprisingly, we found that all but 2 packets from flow 2 are dropped (Fig. 3.2(b)).
All flow 1 packets are transmitted.

Let us find out the reason why. At time 0, packets p1
1 and p1

2 are at the link in
that order. Both have start tags of 0. p1

1 is transmitted immediately and p1
2 queued.

Their finish tags F (p1
1) = S(pj

f) + lj
f /rf are 0 + 1/1 = 1. At t = 1, packets p2

1 and
p2

2 arrive, both of which observe a server virtual time of 0. Note that the virtual
time in SFQ is the start tag of the packet being dequeued. When p2

1 and p2
2 arrive,

p1
1 is being transmitted. Since the packet start tag is computed as the maximum

between the virtual time on arrival and the finish time of previous packet, then
both S(p2

1) and S(p2
2) are 1. And the finish times F (p2

1) and F (p2
2) become 2. In

30

3.3. Performance Evaluation

R2
S1

S2 1pkt/sec,1ms
S-SFQ link

R1
D1

D2

(a) S-SFQ bottleneck, C=2 pkt/sec, B=2 pkt, 1ms link delay.

Flow
1

Flow
2

0 1 2 3 4 5

0 1 2 3 4 5

t

t

(b) Packets transmitted and dropped (marked X).

Figure 3.2.: Start tag of packet pk
f is S(pk

f) = k − 1, and F (pk
f) = k where k ≥ 1. All

packets of flow 1 but only the first two packets of flow 2 are transmitted as shown.

short, for any packet pk
f of both flows, we find that S(pk

f) = k − 1 and F (pk
f) = k.

By t = 2, packets p1
1 and p1

2 have already left, p2
1 is being transmitted, p2

2 holds one
slot in the queue, and packets p3

1 and p3
2 just arrive. One of the last two packets

should be dropped as the buffer space is exhausted. Since both have service tags
of 2, the packet that arrives slightly later—which is p3

2—is dropped. This process
continues. All but the first two packets of the second flow are dropped and we
verify by simulation this is indeed the case. All packets belonging to the first flow
are transmitted. A repeat experiment with buffer size of N does not fundamentally
solve the problem. In that case, all packets from flow 1 and only N packets from
flow 2 are transmitted.

The problem lies on synchronization and timing of drops. Regardless of its size,
the buffer always becomes full exactly when a certain flow 2 packet arrives. The
result is that flow 2 gets discriminated from getting its fair share of buffer space and
link bandwidth, resulting in a total loss of flow fairness in S-SFQ. This synchronized
drop problem is similar to the lockout exhibited by the Drop-Tail routers where few
flows monopolize the link. The above experiment is repeated using FIFO/Drop-
Tail queue.2 All but the first packet of flow 2 are dropped and all packets of flow
1 are transmitted.

2FIFO is the default queueing algorithm in routers. Therefore, in the rest of this thesis, when we
say a Drop-Tail / RED / CHOKe / gCHOKe queue, the FIFO queueing discipline is implicit.
Similarly, when we say a ‘FIFO’ queue without stating the packet drop policy, Drop-Tail is
implicit. That means, unless stated otherwise, FIFO, Drop-Tail and FIFO/Drop-Tail are used
inter-changeably in this thesis.

31

3. Single-queue Approximation of Perflow Fair Queueing

Sec. 3.4 continues the discussion on this problem in some detail with special
emphasis on RED.

3.3.2. Traffic with Contrasting RTTs and Packet Sizes

The topology is shown in Fig. 3.3. All links are 10Mbps, and link delays are as
shown. Both sources S1 and S2 adopt TCP New Reno and transmit packet sizes of
1000 and 512 bytes respectively. The maximum window sizes are 250 segments for
both. The bottleneck is the link connecting the router to the sink. All buffer sizes
are 50kB. The router applies different scheduling or buffer management schemes.

Sink10Mbps
10ms

S2 10Mbps
30ms

10Mbps
10ms Router

S1

Figure 3.3.: TCP sources of different packet lengths and round-trip times.

Under the status quo (that is, FIFO and RED), we expect flow 2 to have less
throughput and link utilization since it has smaller packet sizes and longer RTTs.
Note the maximum advertised window for both is equal in number of segments,
but the segment sizes in bytes vary almost by a factor of two. Recall that average
TCP sending rate is proportional to W/RTT (see (2.3) and (2.4)), where W is the
average congestion window. It is therefore trivial to understand that flows with
longer RTTs and smaller segment sizes obtain poorer throughput. The results are
tabulated in Table 3.1.

Table 3.1.: Flow link utilization under three router schemes shown in Fig. 3.3.
Metric Flows FIFO RED S-SFQ

Perflow link utilization [%]
Flow 1 75 64 59
Flow 2 22 30 38

Total 97 94 97

Even though we are far from achieving total fairness, Table 3.1 clearly shows the
performance improvement in total link utilization and particularly in flow fairness
of the S-SFQ over FIFO and RED. We do not see any total dominance of any
particular flow as in FIFO where flow 1 link utilization is 3.5 times that of flow
2. And RED does not render fairness at all: flow 1 still grabs more than 65% of
the used capacity. We discuss this RTT unfairness in Sec. 2.2.2. In addition, link
utilization in RED is poorer than both FIFO and our mechanism. In a bid for
lower queueing delays, RED commits less than the full buffer capacity.

32

3.3. Performance Evaluation

Is there a way to improve the flow fairness of S-SFQ shown in Table 3.1? We vary
the bottleneck buffer capacity from 25kB to 200kB. We adopt a strategy of twice
the delay bandwidth product (of flow 2) as a buffer limit for our simulation, i.e.,
2 × RTT × BW = 2 × 80ms × 10Mbps = 200kB. For each combination of buffer
capacities and router schemes, we run a batch of 30 replications and the results are
reported below.

Table 3.2 shows the bottleneck link utilization as buffer capacity is varied. While
larger buffer sizes often translate into better link utilizations under both FIFO
and S-SFQ, this is not generally the case in Adaptive RED as can be seen from
Table 3.2. As explained in Sec. 2.4.2, RED is designed to lower average queueing
delay by controlling the average queue size avg. Rather than committing the full
buffer capacity, avg is maintained somewhere between two queue thresholds. Recall
from Sec. 2.4.2 that avg is allowed to go as high as 2 × maxth when gentle is set
and as high as maxth otherwise. Since an incoming packet may be dropped before
the buffer becomes full, the bottleneck may not be fully utilized. As a consequence,
RED has poorer link utilization than both FIFO and S-SFQ. The performance of
RED may be improved by fine-tuning3 of parameters when we know the traffic
characteristics of the network. This may not be possible in real networks. Apart
from lack of exact principles on how to set the RED parameters, some earlier works
argue that modifying these parameters may have no significant improvements in
its performance [17, 69] or that the “best” parameters chosen for one metric may
result in poorer performance in another metric [17].

Fig. 3.4 shows the ratios of average link utilizations between the two TCP flows of
Fig. 3.3 and their error bars. The per-flow link utilizations can easily be computed
by consulting the ratios from the figure and the total link utilizations from Table 3.2.
With an increasing buffer size, the sorting becomes excessive, but that allows S-
SFQ to significantly improve its fairness performance. The fairness can approach
the ideal value of 1 with large buffer sizes. For Adaptive RED, there is no real gain
in fairness with increasing buffer sizes. Just like in Table 3.1, the link share of flow

3For example, in this case, we can set minth and maxth to vary with the available buffer sizes.

Table 3.2.: Effect of buffer capacity on link utilization under different router schemes.

Buffer Size Link Utilization [%]
FIFO RED S-SFQ

25kB 91 94 90
50kB 97 94 97
75kB 98 94 98
100kB 98 94 99
125kB 98 94 98
175kB 98 94 98
200kB 98 94 99

33

3. Single-queue Approximation of Perflow Fair Queueing

1

2

3

4

5

20 40 60 80 100 120 140 160 180 200
Buffer size (kB)

R
at

io
of

flo
w

th
ro

ug
hp

ut FIFO

RED

S-SFQ

Figure 3.4.: TCP throughput ratio.

1

2

3

4

5

6

60 80 100 120 140 160 180 200
Buffer size (kB)

TCP 1

TCP 2

TCP 3Fl
ow

lin
k

sh
ar

e
(M

bs
)

Figure 3.5.: S-SFQ’s proportional fairness.

1 (short RTT flow) is more than twice than that of flow 2. Even worse than RED
is FIFO which unfairly allocates to flow 2 an arbitrary, yet small, fraction of the
link share used by flow 1.

3.3.3. Proportional Fairness

In Sec. 3.3.2, the SFQ weights or rates (rf in Eq. 2.8) given to all flows are equal;
hence flow fairness is basically an approximate equality between the flows’ through-
put. S-SFQ can provide approximate weighted fair share allocation [57]. This is
possible by manipulating the different weights allocated to the flows. We use the
same topology and flows of Figure 3.3. An additional TCP flow (flow 3) is intro-
duced with the same RTT and packet size of flow 2. However, flow 3’s receiver (or
advertised) window rwnd is limited to 25 segments. Flow 2 which is the longer RTT
and 512 byte-sized flow is allocated twice the weight of the other flows. Fig. 3.5
shows how the link is shared among the three flows.

The equivalent integral weights (or rates) are 1, 2, 1 respectively for flows 1, 2
and 3. In an ideal fair scheme, the flows attain link shares in Mbps of 2.5, 5, and
2.5, respectively. Since flow 3’s window is capped at 25, its maximum throughput
of W/RTT = 25 × 552† × 8/(2 × 0.04) ≈ 1.4Mbps is less than its allocated share.
The left over bandwidth 10−1.4 = 8.6Mbps must be split between flows 1 and 2 in
proportion to their weights. The end result is ideally: 2.9Mbps for flow 1, 5.7Mbps
for flow 2, and 1.4Mbps for flow 3. The ideal fair ratio of link utilizations between
flow 1 and flow 2 is 1

2 . Fig. 3.5 demonstrates that S-SFQ’s approximate fairness
improves with increasing buffer sizes. While flow 2 may claim a larger share via its
weight, it is inherently at disadvantage due to its longer RTT and smaller packets.
Applying the average TCP throughput formula W × PktSize/RTT crudely to the
flows, flow 2 would receive throughput approximately 25% of that of flow 1 under
normal situations (FIFO queues). This observation can also be verified from the

†TCP segment size is actually 512B. But since we measure utilization on the link, we add TCP/IP
header of 40B.

34

3.4. Loss Synchronization

FIFO graph of Fig. 3.4. Under such throughput prohibitive characteristics of flow
2, any gross approximation to the ideal 1

2 would be acceptable. By contrast, both
Drop-Tail and RED lack mechanisms for providing such differentiated service.

3.3.4. Impact of Unresponsive Flows

It is interesting to see whether S-SFQ fares well in the presence of unresponsive
flows. We use a dumbbell topology with three sources, 1 CBR and 2 TCP flows,
competing over an 8Mbps bottleneck in a manner similar to Fig. 3.3. The CBR
source generates at the rate of the full bottleneck capacity, i.e 8Mpbs, and is started
and stopped at 20s and 40s of simulation, respectively. The two TCP sources have
equal RTTs, equal advertised windows and start uniformly on [0,1]. We steadily
vary the buffer capacity at the bottleneck from 20kB to 100kB. The comparison
between the three router schemes are discussed below.

Figures 3.6(a), 3.6(b) and 3.6(c) report link utilizations of the flows in each
scheme with a 60kB buffer size. Results using other buffer sizes are similar. Only
S-SFQ provides nearly perfect fairness between the TCP flows with no difference of
note in their link shares at any point of our experiments. For instance, both TCP
flows receive 4Mbps in the absence of the CBR. Remarkably, when the unresponsive
flow is injected at t = 20s at full link rate, S-SFQ reacts quickly to ensure a new
fair rate to both TCP flows. Both RED and FIFO in particular relinquish the
link almost exclusively to the CBR flow, close to shutting down the TCP flows.
Fig 3.6(d) show that this link monopoly by CBR in both FIFO and RED does not
abate with increasing buffer size.

3.4. Loss Synchronization

This section continues the discussion on the most important issue that affects all the
router mechanisms we considered in this chapter—loss synchronization. It is im-
portant to distinguish this problem from global synchronization typically exhibited
by Drop-Tail queues. Global synchronization is a throughput-impairing condition
that occurs when all flows reduce their windows at the same time upon receiving
simultaneous congestion notifications or packet drops, see also Sec. 2.4.2. One of
the side goals of RED is to avoid this problem of Drop-Tail. We do not discuss
global synchronization further in this chapter.

As discussed in Sec. 3.3, synchronization of loss introduces peculiar fairness
problems in S-SFQ and Drop-Tail. The discussion in this section is a follow-up
with our focus shifted to RED.

35

3. Single-queue Approximation of Perflow Fair Queueing

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60
Time (s)

P
er

fl
ow

lin
k

ut
il.

(M
bp

s) TCP 1
TCP 2

CBR

(a) Flow Link share in FIFO.

TCP 1
TCP 2

CBR

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60
Time (s)

P
er

fl
ow

lin
k

ut
il.

(M
bp

s)

(b) Flow Link share in RED.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60
Time (s)

P
er

fl
ow

lin
k

ut
il.

(M
bp

s) TCP 1
TCP 2

CBR

(c) Almost perfect fairness.

0
1
2
3
4
5
6
7
8

20 25 30 35 40
Time (s)

Buffer size: 20kB

0
1
2
3
4
5
6
7
8

20 25 30 35 40
Time (s)

Buffer size: 100kB

FIFO

S-SFQ
RED RED

FIFO

S-SFQ

C
B

R
th

ro
ug

hp
ut

(M
bp

s)

(d) S-SFQ restricts unresponsive flows better.

Figure 3.6.: Effect of unresponsive flow sending at full rate of bottleneck. S-SFQ performs
better than the FIFO and RED.

The main argument of this section is as follows. The loss synchronization problem
of S-SFQ discussed in Sec. 3.3.1 is not unique to S-SFQ or Drop-Tail. We also noted
this problem even in RED during forced drops. A total impairment of fairness in
RED is observed during persistent congestion caused by unresponsive flows. The
topology of Fig. 3.2(a) is used where the bottleneck is a 1Mbps, 1ms Adaptive
RED link with a buffer capacity of 100 packets. Both CBR flows generate traffic
at the rate of the bottleneck capacity link (1Mbps). The two CBR sources start
at time 0 and the simulation runs for 200 seconds. From the resulting simulation
trace we found the following statistics: both flows generate 25000 packets; 24925
transmitted, 46 dropped from flow 1; but only 75 packets are transmitted from flow
2 and the remaining 24925 packets are all dropped. We set up another experiment
this time with minth and maxth configured at 25% and 75% of full buffer capacity,
respectively. The problem escalates: all except 2 packets of flow 1, but only 102
packets of flow 2 are successfully transmitted. The main reason is that RED reduces
to Drop-Tail and its fairness suffers from loss synchronization problem, see Fig. 3.7.

Since gentle parameter is set, see Fig. 3.7, the drop probability linearly and
rapidly (due to persistent congestion) increases from 0.1 (default maxp) to the

36

3.4. Loss Synchronization

0

10

20

30

40

50

60

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Time (sec)

pb

q

N
u
m
b
er

of
p
ac
ke
ts

D
ro
p
p
ro
b
.
p b

30
32

1.5

q

1.41.3

avg

Figure 3.7.: Persistent congestion in RED reduces to loss synchronization, as in Drop-Tail
routers. pb increases rapidly, but does not abruptly jump because gentle is set.

maximum of 1.0 as avg increases from maxth = 15 (default) to 2 × maxth = 30. In
the face of heavy congestion, 2×maxth is the upper limit for avg in steady state. In
the steady state and under heavy congestion, q stabilizes around avg. This is done
in two steps. Firstly, since the queue receives two packets but can transmit only
one at each epoch, it enqueues the first packet that arrives but drops the second
one. The first packet comes from flow 1 and the second from flow 2. Hence all flow
2 packets are dropped in the steady state and the dropping is synchronized to that
particular flow. This behavior is identical to lockout of Drop-Tail on full buffer.
Secondly, in the long run, receiving 2 packets but transmitting one and dropping
another only keeps q at a constant level. Since pb was small initially, the queue
has already been filled with many packets. To reduce the queue size q, say from
55 to the required value of ≈ 2 × maxth = 30, we must drop additional packets.
This explains why some flow 1 packets are occasionally dropped, causing regular
decreases of q by 2 packets—one from each flow (see the snapshot in Fig. 3.7).
When q ≈ 28 at t = 2.12s, only (in fact all) flow 2 packets are dropped thereafter.

5

15

25

35

45

0 1 2 3 4
Time (sec)

15

4.7 4.8 4.9 5

N
um

be
r

of
pa

ck
et

s avg

avg

q

(a) avg and instantaneous queue q.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
Time (sec)

0.2

0.6

1

4.8 5

pb

D
ro

p
pr

ob
ab

ili
ty

p b

(b) Flapping of drop prob. pb.

Figure 3.8.: Synchronization of flow 2 loss when gentle is not set. avg repeatedly crosses
up and down maxth (15 by default) (a), which causes p to frequently flap (b). p ≈ 1
results in forced drop which may lock RED into loss synchronization.

37

3. Single-queue Approximation of Perflow Fair Queueing

If RED’s gentle were not enabled, however, then we would expect the p to
abruptly jump to 1.0 when avg = maxth = 15 and kick start deterministic dropping
and loss synchronization at that point (see Fig. 3.8). Due to synchronization caused
by forced drop (i.e., when p = 1.0), the number of dropped packets from flow 2 is
one order of magnitude larger than flow 1; that is, 33 packets from flow 1 and 535
packets from flow 2 are dropped during the interval 0.4 ≤ t ≤ 4.68 where p = 1.

In general, during loss synchronization, arbitrary flows suffer in resource utiliza-
tion. The identities of flows that suffer seem to depend on the timing of packet
arrivals.

3.5. Discussion and Related Work

In the loss synchronization problem of Sec. 3.3.1, we could have introduced per
flow information to aid the discard policy of S-SFQ when packets of equal time-
stamps (start tags) are received on full buffer. For instance, we can define new per
flow variables to hold the number of packets of a flow so far buffered or dropped
and such information can be used to restore fairness. Implicitly or explicitly, this
indeed is the case in several of the fair per-flow architectures such as WFQ [81],
FRED [64], Cross-Protect [61]. For example, FRED uses per flow accounting to
improve the fairness of RED. For comparison, we repeat the UDP experiment of
Sec 3.4 using FRED instead of RED. FRED results in very high fairness between
the two UDP flows. Both UDP flows share the link equally and experience equal
number of drops.

We believe that if a network operator insists on a per-flow scheduling, it may be
useful to leverage the flow-level information in the discard policies as well. Similar
argument is presented in [94]. In addition, it is possible to deploy such flow level
architectures at the edge of networks where the number of flows and capacity of res-
idential routers are both limited. However, deployment of stateful per-flow schemes
at core routers may not be scalable and indeed counters the spirit of many (poten-
tially stateless) single global-queue proposals. In this chapter, we only keep limited
flow states in order to approximate the per flow SFQ. The well-known global queue
management algorithms—Drop-Tail and Random Early Detection (RED)—serve
all flows using single queues without keeping per flow state information. While
both are based on simple-queue design with FIFO scheduling, they cannot repli-
cate the fairness of perflow scheduling schemes. Both are vulnerable to the loss
synchronization problem as stated earlier.

In the original RED paper [38], the following conclusion is drawn:

The probability of marking a packet from a particular connection is
roughly proportional to that connection’s current share of bandwidth
through the RED gateway.

38

3.6. Conclusion

This observation generally holds in the region of early drops. Since this region is
insignificant under heavy congestion (Figs. 3.7 and 3.8), the assumption may not
always reflect a typical RED operation. During forced drop, loss synchronization
may prevail and invalidate the assumption. As a result, a flow with a lion share of
buffer space and link usage may still experience the fewest drops, and increase its
buffer share and dominate the link.

3.6. Conclusion

In this chapter, we first present an intuitive SFQ design using a single queue. The
queue orders packets in order of their time-stamps rather than arrivals. Though we
have used unrealistic network topologies, the simulation experiments raise severe
fairness issues under de facto single-queue schemes currently available, i.e., RED
and FIFO/Drop-Tail. S-SFQ can provide high fairness among flows, regardless
of the flow traffic type, packet sizes or round-trip times. Especially under larger
buffer sizes, S-SFQ’s fairness can closely approximate the intricate fairness afforded
by perflow SFQ. S-SFQ’s advantage over the perflow equivalents is its relatively
simple single-queue design. S-SFQ still keeps some perflow information in order to
approximate the fairness of SFQ. The flow information is removed when there are
no more packets of the flow in the queue, and when the flow timer expires.

The second important contribution of this chapter is the study on flow buffer
discrimination caused by synchronized packet loss. As it turns out, S-SFQ fairness
performance can be heavily impaired. We observe that this is a common problem
in all schemes we study in this chapter. The problem may manifest itself during full
buffers in FIFO and S-SFQ and forced drops in RED. It is less prevalent in closed-
loop traffic situations. The problem has a severe debilitating effect on the qualities
of the underlying scheme. We believe the deterministic nature (e.g., pb ≈ 1) of
packet drops is to blame. We propose a solution in Chapter 6.

39

4. Generalizing the CHOKe Flow
Protection

There exists a natural tussle between simplicity of router algorithms, and the qual-
ity of service they provide. On the one hand, flow-oblivious buffer management
mechanisms such as Drop-Tail and RED are simple, completely stateless and highly
scalable. However, they allow traffic flows to increase the shares of bandwidth and
buffer space merely by increasing their sending rates. On the other hand, per-
flow fair queueing algorithms are characterized by strong perflow service semantic
and flow-level fairness achieved by complex buffer partitioning, and maintenance
of perflow states. Since achieving the best of the two worlds has proved elusive,
the two challenges that may naturally follow are (Sec. 1.3): (1) to “approximate”
the service quality of perflow fair queueing using the simple aggregate queue design
of buffer management schemes, or (2) to compromise the strong service semantic
of perflow fair queueing using the framework of simple stateless designs? The last
chapter attempts to address the first challenge, and a more thorough development
of the scheme will follow in Chapter 6. In this chapter, we present one way to
address the second challenge. To that end, we propose a suite of very simple and
completely stateless active queue management mechanisms, collectively called geo-
metric CHOKe or gCHOKe. The price paid for the lightweight and scalable design
is powerful flow protection in lieu of full-fledged flow fairness.

4.1. Introduction

4.1.1. Background

The perflow fair queueing schemes and the flow-myopic router algorithms (Drop-
Tail and RED) stand at the opposite ends of both the fairness and complexity
spectra. The simple stateless RED, for example, allows flows to grab network
resources at their traffic injection rate. Perflow queueing schemes, on the other
hand, are complex and stateful but provide max-min fairness. In order to produce
the synergy of the two desirable qualities (simplicity vs. quality flow fairness),
some sacrifices may be necessary. In this chapter, we trade flow protection, which
is a softer1 requirement than flow fairness, for simplicity and statelessness. To this

1Fairness automatically provides flow protection, but the converse is not true [57].

41

4. Generalizing the CHOKe Flow Protection

end, we propose a suite of simple and stateless active queue management (AQM)
schemes, collectively called geometric CHOKe (gCHOKe), to protect responsive
flows from unresponsive ones. Rather than requiring max-min flow fairness as in
complex perflow queueing mechanisms, the interest here is how much traffic control
the protection mechanism wields over the use of bandwidth and buffer space by the
unresponsive or malicious flow(s).

Our proposed gCHOKe scheme has its root in and is a generalization of the
CHOKe scheme, which in turn can be extended from the RED queue. For clarity
of presentation, we repeat the observation that leads to the design of CHOKe (see
Sec. 2.4.2.2). Remember that packet drops and admissions at a congested RED
queue are randomized. Due to this, both the packet admission and drop histories
at the RED queue form an unbiased statistics about the state of affairs regarding
the rate of active flows in the queue. Specifically, a flow is more likely to have
packet drops or admission tallies in proportion to its arrival rate. CHOKe uses the
recent packet admissions—packets queued in the RED buffer—to penalize the high
bandwidth flows. It reads:

“When a packet arrives at a congested router, CHOKe draws a packet at random
from the FIFO buffer and compares it with the arriving packet. If they both belong
to the same flow, then they are both dropped; else the randomly chosen packet is left
intact and the arriving packet is admitted into the buffer with a probability (based
on RED) that depends on the level of congestion.”

It turns out that CHOKe keeps no explicit flow information and can be designed
with simple tweakings of the RED algorithm.

Apart from its simple and stateless implementation, another desirable property
of CHOKe as a flow protection mechanism is that it ensures bounded bandwidth
and buffer shares [98, 96, 77]. Specifically, an unresponsive flow in CHOKe cannot
exceed a certain bandwidth share or buffer limit in the presence of many responsive
flows. The following theorems [98] provide an overview of this property, where UDP
represents the extreme of unresponsive traffic:

Theorem 4.1.1 (i) The maximum UDP bandwidth share in CHOKe is bounded
by (e + 1)−1 = 26.9%.

(ii) This is attained when UDP input rate, after congestion based dropping, is
C(2e − 1)/(e + 1) = 1.193C, where C is the link capacity, and

(iii) In that case, CHOKe-based UDP dropping rate is (e − 1)/(2e − 1) = 38.7%.

Theorem 4.1.2 When UDP input rate increases without bound, its buffer share
approaches 50% but its link utilization approaches 0.

Router mechanisms may be required to apply such punishment strategies to
unresponsive flows of extreme rates [31, 71, 35].

42

4.1. Introduction

4.1.2. Motivation and Contribution

Given the nice properties of CHOKe described above, it is natural to ask if CHOKe
can be generalized and/or if its performance can be improved without tampering
with its simple and stateless design. Trying to give answers to these questions forms
the motivation of this work. Particularly, we aim to generalize CHOKe, while re-
taining its desirable features (i.e., simplicity and statelessness), and simultaneously
empower it with tighter or more powerful controls on the use of link bandwidth
and buffer space.

We propose geometric CHOKe (gCHOKe), which turns out to be highly intuitive
and inherits the design principle of CHOKe. The basic principle is to reward each
successful flow comparison of packets with an extra or bonus flow matching trial.
The scheme is characterized and indexed by a single configurable control parameter
called maxcomp ∈ [1, . . . , ∞) which limits the maximum number of successful flow
comparison attempts that can be tried per arrival. As we shall see in Sec. 4.3.3,
when maxcomp is unlimited, the number of matching trials executed per arriving
packet follows a geometric distribution, hence the name of the scheme. If maxcomp is
limited, we obtain a truncated geometric distribution. It turns out that CHOKe is
just a special case with maxcomp 1. The power of flow protection generally improves
with maxcomp. When maxcomp> 1, the per packet processing in gCHOKe can be
slightly more complex than in CHOKe.2 Still, gCHOKe is lightweight as the mean
number of matching trials per arrival in the worst case is very few, see Sec. 4.7.

In this chapter, we provide an accurate analysis on the throughput and buffer
occupancy that an unresponsive flow can maximally receive under gCHOKe of
any maxcomp. The analysis, which is validated through simulation, shows that
gCHOKe—compared to the plain CHOKe (which is just the simplest case of gCHOKe)—
can achieve over 20% improvement in the bounds of both bandwidth and buffer
space used by the aggressive flow. In addition, up to 14% of the total link capacity
can be saved from the unresponsive flow, allowing responsive or rate-adaptive flows
to obtain a better share of resources in the router.

4.1.3. Chapter Organization

The rest of this chapter is structured as follows. Sec. 4.2 outlines the main idea
behind gCHOKe. The gCHOKe model and assumptions for the analysis are pre-
sented in Sec. 4.3. Sec. 4.4 presents theoretical analysis of UDP throughput. Model
validation and simulation results are presented in Secs. 4.5 and 4.6, respectively.
Sec. 4.7 engages in further discussion related to gCHOKe. Sec. 4.8 presents the
related works. Finally, our conclusions are presented in Sec. 4.9.

2Though CHOKe is a special case, when we draw comparisons between CHOKe and gCHOKe,
we mean gCHOKe with maxcomp> 1.

43

4. Generalizing the CHOKe Flow Protection

4.2. Geometric CHOKe (gCHOKe)

4.2.1. The Scheme

A schematic diagram of gCHOKe is shown in Fig. 4.1. When a packet arrives to a
congested queue, gCHOKe randomly samples (picks) a packet from the queue. If
the incoming and the sampled packets belong to the same flow, gCHOKe continues
to sample another random packet from the queue. Either of the two conditions
can stop the matching process: (i) when a matching trial fails, or (ii) when a total
of maxcomp trials are executed. All matched packets and the arriving packet are
dropped. In the event of no matching at first attempt, the sampled packet is re-
stored to the queue, but the arriving packet may still be dropped with a probability
that depends on the level of congestion. If the buffer is managed by RED, which is
the case in this work, this probability is determined by the RED parameter setting.
Throughout this chapter, we call this congestion-based dropping probability the
ambient drop rate, see also RED-PD in Sec. 2.4.2.2.

gCHOKe RED

packet loss packet loss

packet

Figure 4.1.: Schematic of a gCHOKe queue.

The alert reader may have noticed that setting maxcomp to 1 reduces gCHOKe
to CHOKe.

Recall that the main idea and design principle behind CHOKe is that a high-
bandwidth unresponsive flow will likely have more packets in the buffer, hence
a higher probability for flow matching and consequently dropping. Due to this,
CHOKe punishes the unresponsive flow from completely dominating the use of the
buffer and the link. This principle of CHOKe is inherited by gCHOKe, and so
are the statelessness and simplicity. Additionally, gCHOKe rewards each successful
matching with a bonus trial. A sequence of matching trials per arrival provide an
extra level of protection to rate-adaptive flows from unresponsive ones. By choosing
/ tuning maxcomp, a desired protection level may be achieved. This introduces
flexibility for traffic control, which is however lacking in the original plain CHOKe.

Note that maxcomp can assume any integer in the range [1, · · · , ∞). When the
maximum number of trials per arrival is unlimited, i.e., maxcomp→ ∞, the matching
process can stop only through the fail of a matching trial. This is an extreme case
specifically studied in [27]. maxcomp value between 1 and infinity, exclusive, gives
performance between that of plain CHOKe and this extreme gCHOKe.

44

4.3. The Model

4.2.2. Example Scenario

We compare gCHOKe with unlimited maxcomp against CHOKe and RED using
simulation of the network setup shown in Fig. 4.3 where there are N = 32 TCP
flows and the link capacity is 1Mbps. The result (Fig. 4.2) shows that RED has no
fairness mechanism in place. The UDP flow controls over 90% of the link capacity
and this starves out the TCP flows. Under CHOKe, UDP is restricted to 26% of
the link capacity. Using the enhanced flow protection afforded by gCHOKe, UDP
throughput is restricted further down to 19%—a saving of a modest 7% of the
link capacity, or an overall improvement of 27% over CHOKe. The savings on link
capacity can be much higher with higher rate UDP flows (see Fig. 4.10(a)).

RED

gCHOKe
CHOKe

U
D

P
ba

nd
w

id
th

sh
ar

e
(k

bp
s)

200175150125
100

190

260

500

1100

Time (s)

Figure 4.2.: gCHOKe can restrict high bandwidth flows better than CHOKe and RED.

4.3. The Model

This section lays out the model and theoretical foundation for the study of steady
state performance of gCHOKe.

4.3.1. The System and Assumptions

The main studied system is shown in Fig. 4.3.3 The link capacity is C (packets/sec).
We study behavior in the steady state which we assume exists. The backlog size in
steady state is assumed to stabilize at b.4 There is a single unresponsive / aggressive
UDP flow and N rate-adaptive similar TCP flows. Note that similar model and
assumptions have been used for CHOKe analysis [98] [96].

For analytic simplicity, we consider a gCHOKe queue where the ambient and
gCHOKe based droppings are reversed, see Fig. 4.4. The terms h0, r and pgCHOKe(m)

3See Secs. 4.4.3 and 4.7.2 for scenarios involving multiple UDP flows and multiple congested
links.

4Note b depends on the traffic load and the maxcomp, see Sec. 4.6.2.

45

4. Generalizing the CHOKe Flow Protection

UDP

TCP

TCP

R1 R2
C

0

1

N

0

1

N

Figure 4.3.: System model.

will become clear in later sections. The idea of reversing the order of RED and
CHOKe parts was initially suggested in [98] and has also been adopted in [96]. We
will illustrate in Sec. 4.5.1 that the errors due to this reversal are negligible.

packet

RED

packet loss

gCHOKe

packet loss
(1− r)pgCHOKe(m)

1− r

r

Incoming

Figure 4.4.: Schematic of the gCHOKe analytic model.

4.3.2. Notations

Notations are shown in Table 4.1. Flows are indexed by i, where i ∈ (0, N).
Index 0 denotes the UDP flow, and indices 1 . . . N denote TCP flows. gCHOKe(m)
denotes a gCHOKe scheme with maxcomp value set to m. Loss rate, loss probability,
dropping rate, and dropping probability are used interchangeably in this chapter.

Table 4.1.: Notation.
Parameters Semantics
m maxcomp of the gCHOKe under study
xi source rate of flow i
μi utilization of flow i
bi number of flow i packets in buffer
b total backlog b =

∑N
i=0 bi in packets

pi total flow i drop or loss rate (both RED and gCHOKe)
caused by the arrival of a flow i packet to queue

hi the ratio bi/b (matching probability)
τ the steady-state queueing delay for TCP flows
r congestion or RED-based dropping probability, i.e.,

the ambient drop probability (common to all flows)

46

4.3. The Model

4.3.3. The Analytical Foundation

The analysis is based on deriving the overall loss / admission probabilities in the
steady state for an arbitrary flow.

Consider a flow i whose packet reaches the gCHOKe(m) queue. Since the first
dropping is due to RED, by assumption, the packet is dropped with probability r
or is admitted by RED with probability 1 − r. After admission by RED, a random
packet is sampled from the queue for matching. The flow matching probability is
hi = bi/b. If the packets match, the arriving packet earns a bonus to continue
further matching by drawing another packet. Matching is aborted either when a
no-match is encountered or when a maximum of m comparisons have been tried.
Assuming that hi does not change much in a matching experiment, this results in a
sequence of conditional Bernoulli trials. The probability of exactly k ∈ {1, . . . , m −
1} successful matches (or hits) is given by hk

i (1 − hi) and this results in a loss of
k + 1 packets from flow i.5 However, if a total of m matchings are performed, the
process stops outright with a loss of m + 1 packets. Therefore, every packet arrival
from flow i causes an average packet loss of,

r + (1 − r)

[
m−1∑
k=1

(k + 1)hk
i (1 − hi) + (m + 1)hm

i

]
(4.1)

Now, let us assume that a total of P packets of flow i arrive to queue during
a long interval of time in the steady state. These arrivals, on the average, incur
P×(4.1) losses. The resulting overall packet loss probability becomes P×(4.1)/P .
That means, (4.1) represents the overall packet loss probability pi caused by a
packet arrival. Notationally,

pi = r + (1 − r)

[
m−1∑
k=1

(k + 1)hk
i (1 − hi) + (m + 1)hm

i

]
(4.2)

A second way to derive the overall drop probability is as follows. Consider an
arbitrary packet of flow i arriving to queue. This packet survives both dropping
and gets queued to the tail with probability (1 − r)(1 − hi). This packet may
still be dropped when future packets of the same flow trigger potentially multiple
matchings. How many comparisons or samplings can be tried per each incoming
packet? In other words, how many matching trials can be performed before the
matching process becomes aborted either by a flow mismatch or due to exhaustion
of the allowed m matchings / hits? The two conditions are explained below,

(1) Matching process stopped by a flow mismatch. If n ≤ m comparisons are exe-
cuted, the first n − 1 of them must be matching or hits and the last one is the
mismatch that aborts the process. This happens with probability hn−1

i (1−hi).
5k matched packets plus the arriving packet are dropped.

47

4. Generalizing the CHOKe Flow Protection

(2) Matching process stopped outright after m successful hits. This can happen
with probability of hm

i .

The expected number of matching trials per arriving packet is the sum,
m∑

n=1
n · (1 − hi)hn−1

i + mhm
i (4.3)

Consequently, when m → ∞, the number of matching trials follows a geometric
distribution. Otherwise, it follows the truncated geometric distribution

Since a steady state queueing delay τ is assumed, an average of xi(1 − r)τ flow
i packets arrive during τ . A total of τxi(1 − r)

[∑m
n=1 n(1 − hi)hn−1

i + mhm
i

]
flow

matchings can be tried before the enqueued packet gets transmitted. The proba-
bility of a trial failing to match the enqueued packet is (1 − 1/b). Therefore, the
overall probability with which the enqueued packet of flow i survives all droppings
is given by,

1 − pi = (1 − r)(1 − hi)
(

1 − 1
b

)τxi(1−r)[
∑m

n=1
n(1−hi)hn−1

i
+mhm

i]
. (4.4)

4.4. UDP Throughput Analysis of a gCHOKe(m)
Queue

Using the gCHOKe model developed in the last section, we are interested in how
much bandwidth UDP can “steal” in the presence of many TCP sources. For a
given gCHOKe(m) queue, the only independent parameter in the analysis is the
incoming rate x0 of UDP.

We assume that the gCHOKe link is fully utilized, i.e.,

x0(1 − p0) + Nx1(1 − p1) = C. (4.5)

For large N ,

h1 =
b1
b

=
b1

b0 + Nb1
≤ 1

N
≈ 0. (4.6)

Using (4.6) in (4.2), we get for a TCP flow

p1 ≈ r. (4.7)

Eqs. (4.6) and (4.7) imply that TCP packets seldom trigger matching and are
mostly dropped due to ambient dropping. This is encouraging since TCP flows
suffer losses no more than they would under RED (see also Sec. 4.6.2).

48

4.4. UDP Throughput Analysis of a gCHOKe(m) Queue

The approximations (4.6) and (4.7) together with (4.5) can be used to derive
τ . The number of TCP packets in the buffer is Nb1 = b − b0 = b(1 − h0), and the
aggregate TCP rate is given by Nx1(1 − p1). By virtue of Little’s Theorem,

τ =
Nb1

Nx1(1 − p1)
=

b(1 − h0)
C − x0(1 − p0)

. (4.8)

From (4.8) and (4.4), we find for flow 0,

1 − p0 = (1 − r)(1 − h0)
(

1 − 1
b

) bx0(1−r)(1−h0)
C−x0(1−p0) [

∑m

n=1
n(1−h0)hn−1

0 +mhm
0]

For large b, the approximation (1−1/b)b ≈ e−1 can be used to simplify the above
equation to,

1 − p0 = (1 − r)(1 − h0)e− x0(1−r)(1−h0)
C−x0(1−p0) [

∑m

n=1
n(1−h0)hn−1

0 +mhm
0] (4.9)

From (4.2),

1 − p0 = 1 −
(

r + (1 − r)

[
m−1∑
k=1

(k + 1)hk
0(1 − h0) + (m + 1)hm

0

])

= (1 − r)
(

1 −
[

m−1∑
k=1

(k + 1)hk
0(1 − h0) + (m + 1)hm

0

])
= (1 − r)(1 − pgCHOKe(m)) (4.10)

where,

pgCHOKe(m) :=
m−1∑
k=1

(k + 1)hk
0(1 − h0) + (m + 1)hm

0

= 2h0 +
m∑

k=2
hk

0 . (4.11)

For a packet to be finally transmitted, it must escape both the ambient dropping
and successive matching trials from incoming packets. The factor (1 − r) in (4.10)
corresponds to the probability of surviving the ambient (RED) drop, while the
second factor (1 − pgCHOKe(m)) is the probability of escaping gCHOKe based
packet loss. Therefore, pgCHOKe(m) is the packet loss probability solely due to
gCHOKe. pgCHOKe(m) captures a packet’s drop probability caused by the packet
matching queued packets on its arrival or by being matched by future packets of
the same flow. It is clearly marked in the gCHOKe schematic depicted in Fig. 4.4.
Trivially for CHOKe,

pgCHOKe(1) = pchoke = 2h0. (4.12)

49

4. Generalizing the CHOKe Flow Protection

Remark It is easy to see that pgCHOKe(m), m > 1 is convex increasing with h0
while pchoke v.s. h0 is linear. That means, at higher buffer shares, gCHOKe(m),
m
= 1 increases its drop rate faster than CHOKe.

Equating (4.10) and (4.9) for flow 0 and simplifying, we obtain

1 − h0
1 − pgCHOKe(m)

= exp

(
x0(1 − r)(1 − h0)
C − x0(1 − p0)

[
m∑

n=1
n(1 − h0)hn−1

0 + mhm
0

])

= exp

(
x0(1 − r)(1 − h0)/C

1 − x0(1 − p0)/C

[
m∑

n=1
n(1 − h0)hn−1

0 + mhm
0

])
(4.13)

Define the UDP utilization μ0,

μ0 = x0(1 − p0)/C. (4.14)

From (4.10), (4.11), and (4.14), we obtain for x0(1 − r)/C,

x0(1 − r)/C = μ0/(1 − pgCHOKe(m)) (4.15)

Remark (4.15) effectively captures the UDP traffic input to the gCHOKe block.
See Fig. 4.4.

Using (4.14) and (4.15) in (4.13), we obtain

1 − h0
1 − pgCHOKe(m)

= exp

(
μ0

1 − μ0
· (1 − h0)

1 − pgCHOKe(m)

[
m∑

n=1
n(1 − h0)hn−1

0 + mhm
0

])
(4.16)

Equation (4.16) is the departure point for deriving the UDP throughput and buffer
shares in a gCHOKe(m) queue. Taking the ln on both sides and organizing, we
obtain generic expression for the UDP utilization,

μ0 =
ln

(
1 − h0

1 − pgCHOKe(m)

)
γm(h0) + ln

(
1 − h0

1 − pgCHOKe(m)

) (4.17)

where

γm(h0) =
(1 − h0)

1 − pgCHOKe(m)

[
m∑

n=1
n(1 − h0)hn−1

0 + mhm
0

]

=
1 − hm

0
1 − pgCHOKe(m)

. (4.18)

50

4.4. UDP Throughput Analysis of a gCHOKe(m) Queue

4.4.1. Examples

In this section, we clarify the queue properties using m = 1, 2, 4 as examples. Note
that CHOKe is just a special case when m = 1. We reserve a special mention for
m → ∞ in Sec. 4.4.2.

pgCHOKe(1) = pchoke = 2h0, γ1(h0) =
1 − h0
1 − 2h0

pgCHOKe(2) = h2
0 + 2h0, γ2(h0) =

1 − h2
0

1 − (h2
0 + 2h0)

pgCHOKe(4) = h4
0 + h3

0 + h2
0 + 2h0, γ4(h0) =

1 − h4
0

1 − (h4
0 + h3

0 + h2
0 + 2h0)

Substituting the above equations into (4.17) gives the UDP throughput, graphi-
cally illustrated in Fig. 4.5 for CHOKe, and gCHOKe with m = 2, 4, ∞.

The figure shows that even with m = 2, the protection quality of gCHOKe is
superior to CHOKe. The difference between gCHOKe(4) and gCHOKe(∞) re-
sults is very small. Practically, this means we require per arriving packet only
few matching trials to accurately approximate the best protection afforded by the
gCHOKe(∞) scheme. The peak UDP utilizations are found to be μ0,m=4 = 20.6%
and μ0,m=∞ = 20.5% both measured around h0 = 29.2%.

 0.2

m = 2

m = 4

m =∞

m = 1 (CHOKe)

0 0.1
UDP buffer share h0

0.3 0.4 0.5

0.05

0

0.1

0.15

0.2

0.25

0.3

U
D

P
ut

ili
za

tio
n
μ
0

Figure 4.5.: μ0 v.s. h0 under CHOKe, and gCHOKe with m = 2/4/∞.

4.4.2. Properties of gCHOKe(∞)

Since m → ∞ is the gCHOKe benchmark in flow protection, we will study the
properties of this queue further in this section. The only stopping condition for the
matching process is a mismatch. Consequently, the terms (m + 1)hm

i and mhm
i in

(4.2), (4.3) and subsequent equations vanish as m → ∞.

51

4. Generalizing the CHOKe Flow Protection

For this queue, we opt to drop all references of m in this section. Equations (4.2),
(4.4) and (4.11) for the UDP flow become (see also [27]),

p0 = r + (1 − r)
2h0 − h2

0
1 − h0

(4.19)

1 − p0 = (1 − r)(1 − h0)
(

1 − 1
b

)τx0(1−r)/(1−h0)
(4.20)

pgCHOKe = 2h0 +
∞∑

k=2
hk

0 =
2h0 − h2

0
1 − h0

. (4.21)

In addition, setting m → ∞ in (4.18), we obtain

γ(h0) =
1 − h0

h2
0 − 3h0 + 1

. (4.22)

Upon substitutions into (4.17), μ0 in gCHOKe(∞) becomes,

μ0 =
ln [(1 − h0)γ(h0)]

γ(h0) + ln [(1 − h0)γ(h0)]
. (4.23)

The next two theorems summarize the limit properties of this queue.

Theorem 4.4.1 The maximum UDP link utilization under gCHOKe(∞) is μmax
0 ≈ 20.5%,

which is achieved when h0 ≈ 29%.

Proof Eq. (4.23) has a maximum within the allowed h0 range (see Fig. 4.5 and
the next theorem). Numerically, we obtain the maximum at h∗

0 ≈ 0.29, and

μ0 ≤ ln [(1 − h∗
0)γ(h∗

0)]
γ(h∗

0) + ln [(1 − h∗
0)γ(h∗

0)]
≈ 0.205.

Theorem 4.4.2 The UDP buffer share in gCHOKe(∞) is upper-bounded as h0 ≤
(3 − √

5)/2 ≈ 38.2%.

Proof The proof follows from (4.21) and the constraint that pgCHOKe =
2h0 − h2

0
(1 − h0)

≤
1. Solving 2h0 − h2

0 ≤ 1 − h0 gives h0 ≥ 3+
√

5
2 or h ≤ 3−√

5
2 . The first is invalid

since h0 cannot be greater than 1. The proof follows from the second.

52

4.4. UDP Throughput Analysis of a gCHOKe(m) Queue

From Theorems 4.4.1 and 4.4.2, it is easy to see that large UDP buffer occupation
does not generally yield high UDP utilization in gCHOKe due to the leaky nature
of the queue. This property is a sharp contrast to nonleaky queues with FIFO
service discipline, such as RED. In addition, as h0 increases from 0.29 to hmax

0 =
(3 − √

5)/2 ≈ 0.382, pgCHOKe, as a convex function of h0, rapidly increases to 1
and the UDP utilization quickly falls off from the maximum possible μ∗

0 = 0.205 to
near zero.

From (4.15), (4.21) and (4.22), we find the ratio of UDP traffic admitted by
gCHOKe:

μ0
x0(1 − r)/C

=
h2

0 − 3h0 + 1
1 − h0

=
1

γ(h0)
. (4.24)

That means, out of x0(1 − r) UDP rate that survives the ambient drop, μ0C are
transmitted by gCHOKe and x0(1 − r) − μ0C are dropped by gCHOKe. The rate
of gCHOKe based dropping is then,

x0(1 − r) − μ0C

x0(1 − r)
= 1 − μ0C

x0(1 − r)

= 1 − 1
γ(h0)

=
2h0 − h2

0
1 − h0

= pgCHOKe. (4.25)

It follows that 1/γ(h0) and pgCHOKe are gCHOKe’s admission and dropping rates
respectively.

4.4.3. Multiple UDP Flows

As long as the number of UDP flows are not too many, or that the aggregate UDP
traffic rate is not too high to turn the ambient drop rate r significant (see Sec. 4.5.1),
the gCHOKe model can be extended with multiple ν UDP flows. Without loss of
generality, we assume that the UDP flows have equal source rates x0. This change
is reflected in the queueing delay τ . Eq. (4.8) changes to,

τ =
Nb1

Nx1(1 − p1)
=

b(1 − νh0)
C − νx0(1 − p0)

. (4.26)

Inserting (4.26) into (4.4) and following similar arguments as before, we obtain for
UDP utilization (instead of (4.17))

μ0 =
ln

(
1 − h0

1 − pgCHOKe(m)

)
γm(h0) + ν ln

(
1 − h0

1 − pgCHOKe(m)

) (4.27)

53

4. Generalizing the CHOKe Flow Protection

where pgCHOKe(m) is still given by (4.11) and

γm(h0) =
(1 − νh0)

1 − pgCHOKe(m)

[
m∑

n=1
n(1 − h0)hn−1

0 + mhm
0

]

=
(1 − νh0)

∑m
k=1 hk−1

0
1 − pgCHOKe(m)

. (4.28)

For m = ∞, we have:

γm(h0) =
(1 − νh0)

(1 − h0)(1 − pgCHOKe(m))
.

Note that (4.11), (4.27) and (4.28) are generic system equations that describe
queue properties of gCHOKe of arbitrary maxcomp in the presence of one or more
UDP flows of similar source rates x0.

Table 4.2.: Summary of steady state gCHOKe model with multiple UDP inputs.
Parameter gCHOKe(m) Model Formulation Equations
gCHOKe drop date pgCHOKe(m) = 2h0 +

∑m

k=2 hk
0 (4.11)

Intermediate variable γm(h0) =
(1−νh0)

∑m

k=1
hk−1

0
1−pgCHOKe(m) (4.28)

UDP utilization ln[(1−h0)/(1−pgCHOKe(m))]
γm(h0)+ν ln[(1−h0)/(1−pgCHOKe(m))] (4.27)

UDP I/O relation x0(1 − r)/C = μ0/(1 − pgCHOKe(m)) (4.15), (4.24)

A summary of the theoretical results for the gCHOKe(m) model is given in
Table 4.2. The table is useful for understanding the relationships between the
various parameters of the model. Many of them are self-explanatory and can be
obtained from the formulae above. The “I/O(input/output)” in the last row refers
to the relation between the input UDP traffic after ambient dropping, i.e., x0(1−r),
and the UDP utilization or transmission rate μ0C.

4.5. Model Validation

We have implemented gCHOKe and all simulations are performed in ns2-34 using
the following default parameters. m = 10 for gCHOKe(∞). There are N = 400
TCP sources, each adopting SACK and connected to R1 (see Fig. 4.3) by access
links whose latencies are uniformly distributed on [30, 50]ms. All packets are of
1000 bytes size. The bottleneck link capacity is C = 45Mbps, its link latency is
50ms and buffer capacity B = 1MB, which is around 100% of the bandwidth-delay
product. The RED buffer thresholds are set at minth = 100 and maxth = 1000.

54

4.5. Model Validation

Flow start times are random and uniformly distributed on [0, 10]s. All simulations
are replicated 10 times and run for 200s, but only the results of the last 100s are
considered. The 95% confidence intervals are very small and hence are not reported.

As mentioned before, the only independent parameter of the model is the input
UDP traffic rate x0 (ν = 1 is assumed, unless stated otherwise). We study gCHOKe
queue properties as we vary the input UDP rate x0 from 0.1C to 10C.

4.5.1. Impact of Drop Reversal

In the interests of analytic simplicity, the actual RED and gCHOKe based droppings
depicted in Fig. 4.1 have been reversed in Fig. 4.4. We remark that the drop reversal
does not introduce noticeable p0 approximation errors in (4.2). If we followed the
actual gCHOKe scheme depicted in Fig. 4.1, instead of (4.2), the total loss rate
would be,

p0 = pgCHOKe(m) + r(1 − h0) (4.29)

where pgCHOKe(m) is given by (4.11).

We assert that the difference between (4.29) and (4.2) is r(pgCHOKe − h0) which
is insignificant, largely due to small r. Fig. 4.6 plots r as the input UDP traffic
rate varies from 0.1C to 10C. Compared to that of plain RED, the ambient loss
rate r in gCHOKe is generally lower. This is because gCHOKe drops excessively
in response to increasing input x0, making the average queue size avg significantly
smaller in gCHOKe. Even though UDP load increases 100-fold, r in gCHOKe rises
in the worst case to 9.1%.

0.07

0.08

0.09

0.1

0.1 1 10

A
m

bi
en

td
ro

p
ra

te
r

x0(1− r)/C

RED
CHOKe

gCHOKe(∞)

Figure 4.6.: Ambient loss rates r

4.5.2. UDP Buffer Shares and Utilizations

Fig. 4.7 demonstrates both simulation and theoretical results on UDP utilization
and buffer shares as we vary the input UDP load from 0.1C to 10C. The theoretical
plots are obtained based on parameter interdependencies summarized in Table 4.2.

55

4. Generalizing the CHOKe Flow Protection

The match between theoretical and simulation results is strikingly remarkable,
validating the analytical model and results of gCHOKe. The figure illustrates
results only for m = 2 and m = ∞. We obtain consistent observation for other
m values, but we do not show the results to save space. For example, for CHOKe
where m = 1, our analysis and simulations reproduce those results reported in [98].

0

0.05

0.1

0.15

0.2

0.1 1 10

U
D

P
ut

ili
za

tio
n
μ
0

x0(1− r)/C

gCHOKe(∞)
gCHOKe(∞) sim

(a) gCHOKe(∞): μ0

0.1

0.2

0.3

0.4

0.1 1 10
U

D
P

bu
ff

er
sh

ar
e
h
0

x0(1− r)/C

gCHOKe(∞)
gCHOKe(∞) sim

(b) gCHOKe(∞): h0

0

0.05

0.1

0.15

0.2

0.25

0.1 1 10

U
D

P
ut

ili
za

tio
n
μ
0

x0(1− r)/C

gCHOKE(2) sim
gCHOKE(2)

(c) gCHOKe(2): μ0

0.1

0.2

0.3

0.4

0.1 1 10

U
D

P
bu

ff
er

sh
ar

e
h
0

x0(1− r)/C

gCHOKE(2) sim
gCHOKE(2)

(d) gCHOKe(2): h0

Figure 4.7.: Model validation with a single UDP flow (ν = 1): μ0 and h0 under gCHOKe
with maxcomp m = ∞, 2.

0.1

0.2

0.3

0.1 1 10

Pe
r-

U
D

P
μ
0

x0(1− r)/C

gCHOKe(∞) sim
gCHOKe(∞)

(a) gCHOKe(∞): μ0

0.1

0.2

0.3

0.4

0.1 1 10

Pe
r-

U
D

P
h
0

x0(1− r)/C

gCHOKe(∞) sim
gCHOKe(∞)

(b) gCHOKe(∞): h0

Figure 4.8.: Model validation involving ν = 2 UDP flows. Per-UDP flow μ0 and h0 under
gCHOKe with maxcomp m = ∞.

56

4.6. Results and Observations

Likewise, the graphs in Fig. 4.8 validate the model presented in Sec. 4.4.3 using
ν = 2 simultaneous UDP flows. As can be seen, the model fairly matches the
simulation results, despite the bottleneck being subjected to an aggregate UDP
traffic rate of up to 20× the link capacity. Remarkably, the two UDP flows together
take up about 75% of the buffer space, but receive a total throughput less than
10% of the link capacity.

4.6. Results and Observations

4.6.1. Main Results and Observations

In this section, we are concerned with observations regarding the main performance
metrics of this chapter—UDP utilization and buffer shares. Unless stated other-
wise, the following observations are based on the analytical model and results. We
refer the reader to Fig. 4.9, which concisely shows the comparative flow control per-
formance of CHOKe and gCHOKe(∞) (for other m, see the end of this section).
We highlight the following salient points:

• UDP utilization bounds: CHOKe (26.9%) and gCHOKe(∞) (20.5%); UDP
buffer share bounds: CHOKe (50%) and gCHOKe (38.2%). Both gCHOKe(∞)
bounds are tighter by over 20% over CHOKe’s. The corresponding figures for
gCHOKe(2) are μmax

0 = 21.8%, hmax
0 = 41.4%.

• For low and moderate UDP traffic rate, there is no significant difference be-
tween CHOKe and gCHOKe in terms of UDP utilization or buffer share levels.

• Increasing UDP input rate initially increases the buffer share, but does not
allow complete buffer monopoly (see Fig. 4.9(b)). UDP’s buffer shares even-
tually stabilize around their peaks (see also Fig. 4.5).

• In sharp contrast to Drop-Tail and RED (e.g., see Fig. 4.2), while indefinitely
increasing UDP input traffic will increase the corresponding buffer share, it
may not yield higher utilization for UDP in both CHOKe an gCHOKe(∞) (see
Fig. 4.9(a)). Particularly, increasing the input rate beyond 0.682C backfires in
gCHOKe(∞) since each incoming UDP packet potentially triggers a sequence
of successful comparisons at soaring rate. UDP utilization peaks at 20.5% in
gCHOKe(∞) (vs. 26.9% in CHOKe). This occurs when 29% of the packets
in buffer are UDP (vs. 39% for CHOKe). This means, as UDP buffer ratio
increases from 29% to 38.2% due to increased input, pgCHOKe(∞) → 1 and
UDP utilization steadily declines from the maximum 20.5% to almost 0.

• The contrast between high UDP buffer occupancy and low UDP utilization
(see Fig. 4.9(a) and Fig. 4.9(b)) at high incoming UDP rate implies nonuni-
form UDP packet distribution in the queue where most of the UDP packets
may have been clustered closer to the tail of the queue.

57

4. Generalizing the CHOKe Flow Protection

20.5%

26.9%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.1 1 10

U
D

P
ut

ili
za

tio
n
μ
0

x0(1− r)/C

CHOKe
gCHOKe(∞)

(a) u0 versus x0 (1 − r)/C .

0.1

0.2

0.3

0.4

0.5

0.1 1 10
x0(1− r)/C

U
D

P
bu

ff
er

sh
ar

e
h
0

CHOKe
gCHOKe(∞)

(b) h0 versus x0 (1 − r)/C .

Figure 4.9.: UDP share u0 and h0 vs. UDP incoming rate x0 .

An intuitive explanation of the last property is as follows. It is easy to see that
packets enter the queue tail at a rate [x0(1 − h0) + Nx1(1 − h1)] (1 − r), but exit
only at the rate of C. When x0 is high, since h1 ≈ 0 (see Eq. 4.6) and r is assumed
insignificant (see Fig. 4.6), most of the UDP packets must have been dropped by
matching as they advance towards the head of the queue. Assuming a fluid model,
we say the UDP flow is thinned by flow matching. The power of thinning depends
on the UDP flow rate x0. The flow controlling or thinning powers of the schemes
are explicitly captured by Eq. (4.20). An arriving UDP packet gets enqueued at
queue tail with probability (1 − r)(1 − h0). The UDP flow gets thinned due to
flow matching by factors of (1 − 1/b)τx0 (1−r) and (1 − 1/b)τx0 (1−r)/(1−h0), re-
spectively for CHOKe and gCHOKe(∞), before the flow packet can reach the head
of the queue. When h0 is excessively high, due to high input UDP traffic rate x0,
the thinning exponent of gCHOKe(∞) increases faster. This allows gCHOKe(∞)
to restrict the UDP bandwidth and buffer shares to lower levels. It is worth high-
lighting, however, the average number of matching trials is reasonably low. For
gCHOKe(∞), the average is 1/(1 − h0) as implied by (4.3) for geometric distri-
bution. In the extreme case when hmax

0 = 0.382, each arriving UDP packet in
gCHOKe(∞) performs, on average, 1/(1 − hmax

0) ≈ 1 .62 matching trials.

Fig. 4.10(a) illustrates the difference between UDP utilizations obtained under
the CHOKe and gCHOKe(∞) schemes for selected UDP traffic rates. While it is
difficult to derive Δμ = μchoke(x0) − μgCHOKe(x0) in closed form, the individual
UDP utilization values can be obtained numerically (or read from Fig. 4.9(a))
for a given UDP rate x0. The resulting Δμ0 is plotted in percentage of C in
Fig. 4.10(a). As can be seen, gCHOKe wields better control on high bandwidth
flows. Remarkably, up to 14% of the total link bandwidth can be saved by switching
to gCHOKe(∞). To give numbers, consider the scenario with x0 = 3C. The UDP
utilizations are found to be 21.02% and 7.36%, respectively, under CHOKe and
gCHOKe(∞). This corresponds to a saving of 13.66% of C or a decent improvement
of 65% over CHOKe. As a consequence, gCHOKe provides better throughput to

58

4.6. Results and Observations

0

2

4

6

8

10

12

14

16

0.5 1 1.5 2 2.5 3 3.5 4 4.5

7.2%

12.2%
13%

11.2%

x0(1− r)/C
5

13.7%

Δ
μ
0
/C

[%
]

(a)

85

95

105

115

0.1 1 10

A
ve

ra
ge

T
C

P
sh

ar
e

[k
bp

s]

x0(1− r)/C

CHOKe sim
gCHOKe(∞) sim

CHOKe
gCHOKe(∞)

(b)

Figure 4.10.: More bandwidth is available for TCP flows under gCHOKe(∞).

TCP flows, as demonstrated in Fig. 4.10(b). At any level of UDP source rate, the
average perflow TCP throughput obtained from simulation fits the theoretical TCP
throughput obtained from (4.5) very well.

Finally, we turn to results when m
= {1, ∞}. Fig. 4.11 demonstrates the bounds
in UDP bandwidth and buffer space occupation and complements the results in
Fig. 4.5. Both the maximum bandwidth and buffer occupancy that can be claimed
by the unresponsive flow decline with increasing m. For each point in Fig. 4.11(a),
we indicate in units of C the input traffic rate x0 which results in the maximum
UDP utilization. For instance, for CHOKe (m = 1), the UDP utilization cannot
exceed 26.9% and this can be achieved when input UDP traffic rate is x0 ≈ 1.12C.
The figures clearly illustrate that the controlling power of gCHOKe improves with
m.

1.12C

0.715C 0.69C 0.686C 0.68C

0.79C

654321
0.2

0.22

0.24

0.26

0.28

maxcompm

m
ax

im
um

U
D

P
ut

ili
za

tio
n

(a)

maxcompm
54 6321

0.38

0.42

0.5

0.46

m
ax

im
um

U
D

P
bu

ff
er

sh
ar

e

(b)

Figure 4.11.: Maximum possible (a) bandwidth and, (b) buffer space used by the unre-
sponsive flow under gCHOKe(m).

59

4. Generalizing the CHOKe Flow Protection

4.6.2. Additional Results and Observations

The focus of the previous section has been on UDP bandwidth and buffer shares. To
gain a deeper understanding of gCHOKe, we comment on loss rates and queueing
delays in this section.

Overall TCP and UDP loss rates: It is important to note that TCP flows and
the unresponsive flow have drastically different total loss rates. Since flow matching
is negligible, TCP flows suffer losses only due to congestion, i.e., r. However, the
unresponsive flow suffers both congestion based loss and gCHOKe-based loss. That
is,

• Total TCP loss rate p1 = r

• Total UDP loss rate p0 = r + (1 − r)pgCHOKe(m)

Since r << 1 (especially for low input rates, see Fig. 4.6), TCP flows rarely suffer
losses while losses to the unresponsive flow are largely due to flow matching. As
depicted in Fig. 4.6, gCHOKe(∞) has the least TCP loss rate r.

Queueing delay τ : Recall from (4.8) that the queueing delay experienced by
TCP/UDP packets in leaky gCHOKe is τgCHOKe = b(1−h0)

C(1−μ0)) where b is the steady-
state backlog. For a nonleaky RED queue, quite simply, τRED = b/C. Obviously,
b depends on the load and the dropping scheme (that is, maxcomp). When UDP
load x0 increases indefinitely in RED, τRED = B/C, where B is the buffer size.
In gCHOKe, however, there are two factors tugging the τgCHOKe in opposite di-
rections. Increasing the x0 increases b but decreases the factor (1 − h0)/(1 − μ0).6
Generally, initial increases of x0 quickly ramp up the b, with the net effect of in-
creasing τgCHOKe. When x0 is much higher, the b increases are milder, and τ
appears to be pulled down by the plummeting (1 − h0)/(1 − μ0). The simulation
results are plotted in Fig. 4.12.

0.08

0.1

0.12

0.14

0.16

0.18

0.1 1 10

Q
ue

ui
ng

de
la

y
τ

[s
ec

]

x0(1− r)/C

RED
CHOKe

gCHOKe(∞)

Figure 4.12.: Comparison of TCP queueing delays τ in RED, CHOKe, gCHOKe(∞).

6For example, for CHOKe, we proved in [25] that (1 − h0)/(1 − μ0) ≈ 1/2 at high x0.

60

4.7. Discussion

Summary of the results and observations: From the results so far, we can
conclude the following. Without tampering with the desirable features of CHOKe,
gCHOKe offers an improved control on the use of network resources by (potentially)
malicious flows. Coincidentally, rate adaptive flows do not only obtain better share
of resources but also generally experience fewer packet losses and lower queueing
delays.

4.7. Discussion

4.7.1. General Discussion

This section reflects on miscellaneous topics useful for thorough understanding of
gCHOKe.

• Processing and complexity: Having inherited its design principle from CHOKe,
gCHOKe is simple and completely stateless, and its service discipline is FIFO.
Flow matching may be done with a simple implementation in hardware. For
dropping packets, the authors of CHOKe [78] proposed marking them in their
header, rather than plucking them out of their linked list. When these packets
reach at queue head, instead of being transmitted, they are dropped.

gCHOKe routers are configured with maxcomp which is a delicate tradeoff
between protection level and packet processing overhead. However, we see
that protection with m ≥ 4 is approximately the same as that of m = ∞, and
that even with m = ∞, the average matching trials per arrival in the worst
case is only 1.62 as discussed in Sec. 4.6.1. Furthermore, only the rogue flow
incurs matching on its packet arrival. The rest of the flow population requires
processing no further than RED.

• gCHOKe vs. M-CHOKe: Note that gCHOKe is not M-CHOKe. M-
CHOKe [78] is a CHOKe extension whereby M packets are randomly sampled
from the buffer and compared to the arriving packet. The matching pack-
ets are all dropped together with the arrival. Using the system setup and
assumptions of this chapter for M-CHOKe, the M-CHOKe based dropping
from a flow with buffer share hi can be approximated by,

M∑
k=1

(k + 1)
(

M

k

)
hk

i (1 − hi)M−k. (4.30)

As can be seen, the number of M-CHOKe flow matching trials per arrival
is a Binomially distributed random variable. With large M , the Binomial
coefficients rapidly increase the flow matching probabilities. Consequently,
the TCP matching probabilities may not be too insignificant to be ignored.
While this maybe desirable to control the rogue flow, it may degrade TCP

61

4. Generalizing the CHOKe Flow Protection

throughput by incurring multiple TCP packet losses. Further work is required
to understand the true behavior.

4.7.2. Multiple Unresponsive Flows and Multi-link Situations

Sec. 4.4.3 and Fig. 4.8 present some insights on gCHOKe in the presence of mul-
tiple UDP flows. Fig. 4.13 demonstrates a simulative performance comparison of
gCHOKe(∞) against CHOKe when there are two UDP flows of equal source rate
x0 (see also Fig. 4.8). The advantage of gCHOKe is very clear, particularly when
the UDP flows are highly aggressive.

0.1

0.2

0.3

0.4

0.1 1 10

Pe
r-

U
D

P
μ
0

x0(1− r)/C

CHOKe: sim
gCHOKe(∞) sim

Figure 4.13.: Comparison of gCHOKe(∞) and CHOKe in the presence of two UDP flows,
each of rate x0.

Nevertheless, in the presence of many unresponsive flows, the controlling power
of gCHOKe may decline as gCHOKe matching becomes less frequent. In such cases,
much like in CHOKe, we may define M-gCHOKe(m). Upon a packet arrival, the
scheme picks M packets. For those matching packets, the matching continues in
parallel until each is aborted by a no-match or as limited by m serial attempts. It
may be interesting to study the comparative performance and complexity of this
scheme in relation to M-CHOKe, but we leave this as a future work.

Another way to deal with unresponsive UDP flows is to treat them as a single
aggregate flow when they arrive at the gCHOKe queue. This is indeed simpler to
implement since identifying individual UDP flows compares several header fields,
e.g., the 5-tuple (source and destination IP addresses and ports, and protocol type).
Identifying the UDP aggregate, on the other hand, needs to consider only the
protocol type field. For the multiple-congested-links simulation experiment shown
in Fig. 4.14, the latter way is adopted. The eight connected links L1, · · · , L8 all
adopt the gCHOKe scheme, and each has capacity C = 45Mbps, buffer size 1MB,
and link delay of 10ms. The number of TCP flows on each link is 200. One hundred
of those TCP flows, together with one UDP flow, pass through end-to-end across
the connected links L1, · · · , L8. The other 100 TCP flows are cross flows that start
at the sources at the bottom and end a single hop away at the sinks on the upper

62

4.7. Discussion

tcp

tcp

Legend

k UDP sources

tcp

tcptcp

tcptcp

R0 R1 R7 R8

(1-100)
tcp

(1-100)
21

UDP

1 8

k

100 TCP sources

Traffic Destinations

L1 L8

tcp

8

7

Figure 4.14.: Multiple unresponsive flows under multiple congested gCHOKe links.

part of the figure. There are also an increasing number of cross UDP flows as we
move from the first link L1 to L8; specifically, link Li has i cross UDP flows. That
means, there are a total of i + 1 UDP flows traversing link Li. Each UDP flow has
a rate of C/4 at its source.

Table 4.3 compares the theoretical values with the simulation averages for the
UDP utilizations across each link. Note that the UDP utilization on link Li, to-
gether with the i + 1 cross UDP flows, forms the UDP input to Li+1. As shown,
the theory results predict the simulation results reasonably.

Table 4.3.: gCHOKe with multiple UDP flows under multiple congested links.

Link 1 2 3 4 5 6 7 8
UDP Input (%C) 50 69.9 95.5 120 143 167 190 214
μ0 (theory, %) 19.9 20.5 19.7 18.3 16.7 15.1 13.5 12
μ0 (simulation, %) 19.5 20.0 20.1 19.2 17.6 15.9 14.2 12.6

4.7.3. Differences with MLC(l) [88]

A CHOKe-like stateless scheme related to gCHOKe is Multi-level Comparison with
Index l, MLC(l), which is proposed for providing max-min fairness in networks con-
trolled by TCP flows [88]. Recall that achieving max-min fairness without a com-
plex stateful perflow mechanism has been a difficult research problem. Before high-
lighting the differences between gCHOKe and MLC, we present the MLC scheme
briefly. MLC maintains several global parameters: block size l, iteration variable
hM , refresh interval Δ0, target link utilization μt, multiplicative increase/decrease
factor γ. MLC works as follows. When a packet arrives to an MLC queue, l − 1
packets are randomly sampled from the queue: if all the l packets match, the ar-
riving packet is dropped but the sampled packets remain intact. However, if any of
the sampled packets do not match the arriving packet, the above matching exper-
iment is repeated. The number of repetitions is dictated by hM : It is �hM
 with
probability hM − �hM �, and �hM � with the remaining probability of �hM
 − hM .
hM is dynamically adapting to the link utilization. Every Δ0, the link utilization

63

4. Generalizing the CHOKe Flow Protection

is compared to the target μt. If utilization falls below μt, the new hM decreases to
hM /γ. If utilization is higher than μt, hM increases to hM × γ.

Note that the basic idea and objectives behind gCHOKe are different from those
of MLC. In gCHOKe, repetition of the matching experiment per arrival is governed
by the success of the previous matching experiment. The number of matching
retrials is linked to the probability of matching itself, leading to the geometric
distribution. A successful “first” matching in gCHOKe drops at least two packets.
That is how gCHOKe controls the unresponsive flows. However, in MLC, repetition
of the matching experiment per arrival is governed by the failure of the previous
matching experiment. The number of matching retrials is linked to an external
parameter (namely, the target link utilization). Unlike gCHOKe, MLC drops only
the arriving packet, but none of the matched sampled packets. This makes MLC
more difficult to drop the same amount of traffic.

To highlight the differences, we implemented MLC(l) in ns-2 and conducted simu-
lation experiments with one high rate UDP flow and many TCP flows in a dumbbell
topology. We simulate a total of 100 (99 TCP plus 1 UDP) flows. Overall round-
trip propagation delays for the 100 sources are uniformly distributed on [40,140]ms.
The scheme at the bottleneck is an MLC queue with buffer size 0.5MB, link de-
lay 10ms, and link speed 20Mbps. The MLC configurations are l=2, μt = 0.98,
and γ = 1.01. Δ0 is configured as min(min(RTTi), 0.1). Fig. 4.15 demonstrates
how MLC performs with respect to an unresponsive UDP flow of various source
rates. To avoid diverging the focus of this chapter, only selected results with two
cases of UDP source rates— given in percentages of the bottleneck capacity— are
presented.

For UDP rate x0 = 25%C, Fig. 4.15(a) shows that the TCP link utilization
fluctuates. One possible reason is as follows. Due to the aggressive UDP flow, the
link utilization is usually over the target μt, which in turn increases hM . Since the
packet drop/matching attempts are persistently retried, a high hM increases the
chance of TCP packets getting dropped. Consequently, many of the TCP flows
suffer losses simultaneously, and back off. This reduces the overall link utilization.
When the utilization falls below the target μt, hM starts to decrease. This cyclic
growth of link utilization and hM continues. Overall in this case, hM , i.e. the
number of trials, remains at a reasonably low level. In addition, UDP traffic gets
close to 20% share of the capacity.

For UDP rate x0 = 75%C, Fig. 4.15(b) shows that hM can reach at an alarming
2500. Indeed, similar evolution of hM over time as seen in Fig. 4.15(a) can be
observed, but with much larger cycle period. In addition, the total link utilization
and the aggregate TCP link utilizations are just below 100% and 55%, respectively,
and UDP traffic grabs the remaining 45% of the capacity. In contrast to the first
case, the fluctuating TCP link utilization is hardly seen for the increased UDP rate
case. This contrast may be interesting to study and is left as a future work.

64

4.8. Related Work

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

hM

Time(s)

h
M

Total util.
Aggt. TCP util.

L
in

k
ut

ili
za

tio
n

(a
ll,

T
C

P
)

(a) UDP rate x0 = 25% of C.

 0.2

 0.4

 0.6

 0.8

 1

 60 80 100 120 140

L
in

k
ut

ili
za

tio
n

(a
ll,

T
C

P
)

Time(s)

hM
0

1e3

2e3

3e3

4e3

5e3

Aggt. TCP util.
Total util.

h
M

(b) UDP rate x0 = 75% of C.

Figure 4.15.: Total and TCP link utilization and the dynamic evolution of hM under
MLC(2) in the presence of a UDP flow.

Overall, in MLC, hM is sensitive to the source rate of the UDP flow and can
reach a very high value when the UDP source rate increases. Furthermore, when
UDP source rate increases, there is no clear limit on the UDP link share, and when
there is, the limit may be too loose to protect TCP flows from unresponsive UDP
traffic.

4.8. Related Work

Probably due to their impact7 on the performance of TCP flows, which shape much
of the Internet flow dynamics, a lot of interesting queue management schemes have
been proposed and studied by the research community. This section is devoted to
a discussion on some of the related queue management mechanisms, with emphasis
on those intended to improve upon RED and CHOKe.

The classic drop policy Drop-Tail is characterized by severe under-utilization
of network resources, see Sec. 2.4.2. To correct this shortcoming and others, re-
searchers proposed and recommended RED for widespread deployment in the In-
ternet [10, 38, 36]. RED is characterized by a packet loss probability which is
computed as a function of the average queue size avg and applied indiscriminately
to all flows. As explained in Sec. 2.4.2, this does not result in fairness since flows
generally have different responses / throughput to RED-type equal drop rates.

The research community have therefore proposed RED extensions and other
dropping policies to improve flow protection and fairness. Recall Flow RED (FRED) [64],
RED with Preferential Dropping (RED-PD) [66], and Stabilized RED (SRED) [74].

7Packet losses are implicit indicators of congestion, whereupon most TCP flows back off and
decrease their sending rates.

65

4. Generalizing the CHOKe Flow Protection

Unlike RED, these policies are based on identifying the high bandwidth flows. Un-
like CHOKe, all of them maintain state for all active or in-progress flows, making
them partially stateful. By bookkeeping perflow information, the high bandwidth
flows can be identified and the shares of their buffer space and bandwidth can be
selectively restricted.

Of the above schemes, CHOKe is closest to SRED which is particularly designed
to maintain the queue size at a preset value. However, SRED bases the dropping
rates on two factors: instantaneous queue size q and the number N of active flows.
It maintains a flow cache (“zombie list”) which is a list of M flows recently seen
at the router. When a packet arrives, SRED randomly samples a record from the
cache and determines whether there is a match (Hit 1) or a mismatch (Hit 0). Based
on the frequency of hits, computed as an exponential moving average, the number
of active flows can be estimated. We highlight two concerns here: (1) there may
be lack of quality perflow dropping rates since both q and N are global variables;
(2) N estimation is based solely on TCP flow assumption, and this may lead to
inaccurate drop rate computation in the presence of non TCP-friendly flows. We
illustrate the last concern with a concrete example in Sec. 6.1.

In the remaining part of this section, we turn to some works pertaining to CHOKe
extensions, including XCHOKe [15] and REHOKe [42], MLC [88], and CHOKe
analysis [25, 77, 96, 98]. We already discussed MLC [88] in Sec. 4.7.3, so we will
discuss XCHOKe and RECHOKe in the following.

Both XCHOKe and RECHOKe forgo the design principle of CHOKe since they
lack the stateless property. They maintain a lookup table, where the flow iden-
tities and hit counters of potential misbehaving (malicious) flows are kept. The
table is refreshed every time-to-live (TTL) period. When a packet arrives to an
XCHOKe/RECHOKe queue, its flow ID is first checked in the table. If there is
a table entry for the flow (i.e., a table hit), the packet is marked for dropping
with a probability p∗ = min(1, r × 2n), where n stands for the flow’s hit counter
maintained in the same table and r is the RED drop rate. The packet is then sent
to the CHOKe module for matching. One main difference between XCHOKe and
RECHOKe is how the flow’s hits n are counted. In XCHOKe, n depends solely on
CHOKe hits. However n in RECHOKe represents: (1) table hit, when the packet’s
flow ID is found in the table; (2) CHOKe hit when the arriving packet’s ID matches
that of the randomly chosen packet; (3) RED hit, when the packet is chosen for
dropping / marking with the RED drop probability r.

Most of the analytic studies on CHOKe assume a fluid model and generally
proceed along two distinct lines of approach: (i) computation of the overall loss
rates, e.g., [98], and (ii) derivation of the spatial distributional properties of the
queue [25, 77, 96]. The first approach derives the steady state UDP utilization
and buffer shares by deriving the overall flow dropping probabilities as shown in
this chapter. The second approach is based on obtaining the spatial distribution

66

4.9. Conclusion

of flows (e.g., packet velocity at any position of a CHOKe queue in steady state)
using queue properties at the tail and head as boundary conditions.

4.9. Conclusion

Regardless of the outcome of the matching experiment, CHOKe maximally triggers
a single trial of flow matching per packet arrival. Therefore, flow protection in
CHOKe is flat. In this chapter, we present a suite of active queue management
schemes, collectively named gCHOKe, as a lightweight generalizing framework of
CHOKe. gCHOKe offers an additional power of protection and at the same time
retains the statelessness and simplicity of CHOKe. It rewards a successful flow
matching with a bonus trial. Depending on the recent admission history of the
flow, or the ratio of flow packets queued in the buffer, a single packet arrival may
trigger a succession of packet droppings. Each instance of the gCHOKe framework
is indexed by a parameter called maxcomp which controls the maximum number of
matching trials that can be tried per arriving packet. The quality of protection
generally improves with maxcomp without significantly increasing the per packet
processing complexity. In this way, a flow with relatively many recent arrivals can
be controlled further, leaving the network resources (buffer and link bandwidth)
to responsive flows. Compared to CHOKe, the flow protection performance of
gCHOKe is superior ensuring tighter upper bounds in the use of network resources
by unresponsive UDP traffic.

In the next chapter, we investigate the transient behaviors of CHOKe when
the UDP traffic rate x0, the sole independent parameter of all CHOKe steady
state models discussed so far in the literature (to the best of our knowledge), is
changing. This provides a more thorough understanding of the scheme under more
realistic and dynamic situations. As we will see shortly, the steady state properties
studied in this chapter are very important for modeling the transient behaviors of
the CHOKe queue.

67

5. Analysis of the Transient Behavior
of CHOKe

Previous works including the analysis in Chapter 4 have proven that CHOKe is
able to bound both the bandwidth and buffer shares of (a possible aggregate)
UDP traffic on a link without introducing complex operational overhead. However,
these studies consider, and pertain only to, a steady state where the queue reaches
equilibrium in the presence of many TCP flows and an unresponsive UDP flow of
fixed arrival rate. If the steady state conditions are perturbed, particularly when
the UDP traffic rate changes over time, it is unclear whether the protection property
of CHOKe still holds. Indeed, it can be observed, for example, that when the UDP
rate suddenly becomes 0 (e.g., when the flow ends), the unresponsive flow may
assume close to full utilization in sub-RTT scales, potentially starving out the TCP
flows. To explain this apparent discrepancy, this chapter investigates CHOKe queue
properties in a transient regime, which is the time period of transition between
two steady states of the queue, initiated when the rate of the unresponsive flow
changes. Explicit expressions that characterize flow throughput in transient regimes
are derived. The results in this chapter provide more in-depth understanding of
CHOKe (and by extension, all other gCHOKe1 variants) in realistic and dynamic
network environments, and give some explanation on its intriguing behavior in the
transient regime.

The rest of the chapter is structured as follows. Sec. 5.1 explains the motivation
using illustrative examples and summarizes the research contributions made. The
transient phase or regime is defined as the transition period between two steady
states, and we find that understanding the steady state queue models is as relevant.
To that end, we review the background required on steady state CHOKe models and
queue properties in Sec. 5.2. Sec. 5.3 presents the system setup, basic assumptions
and notations used in this chapter. The studied setup is similar to the one in
Chapter 4. Our theoretical models are presented in Sec. 5.4. In particular, Sec. 5.4.1
derives the insightful rate conservation argument and obtains further simplifying
assumptions required for the transient analysis; Sec. 5.4.2 lays out the theoretical
foundation on the spatial distribution model just before rate change; Sec. 5.4.3
tracks the UDP link utilizations and derives its properties during the transient
period. Sec. 5.5 presents model validation and simulation results. Sec. 5.6 concludes
the chapter.

1The analysis in this chapter can easily be extended to other variants of gCHOKe.

69

5. Analysis of the Transient Behavior of CHOKe

5.1. Motivation and Contribution

5.1.1. Motivating Examples

We clarify our motivation using two example scenarios employing the network setup
depicted in Fig. 4.3. There are N = 100 TCP sources and a UDP flow whose arrival
rate is dynamically varying. The simulation parameters are described in full in Sec.
5.5.

Example 1: We conduct two separate experiments. The initial UDP arrival
rate x0 is 0.5C and 0.25C for Experiment 1 and Experiment 2, respectively, where
C is the link capacity. At t = 21s, the x0 suddenly jumps by factors of 4 and 12
to 2C and 3C, respectively, and then returns back to 0.5C and 0.25C at t = 22s.
We conduct 500 replications of the two experiments and the resulting average UDP
flow utilizations (as measured using time intervals of 10ms) are shown in Fig. 5.1.

Example 2: The initial UDP arrival rate is 10C. Starting at t = 21s, the input
UDP rate alternates between 1C and 10C every 250ms, as shown in Fig. 5.2. The
figure shows UDP utilization averaged over 1000 replications, with measurements
taken every 1ms.

 0.6

U
D

P
ut

ili
za

tio
n
μ
0

Time(s)
21 21.5 22 22.5

0

0.1

0.2

0.3

0.4

0.5
Experiment 1: 4X
Experiment 2: 12X

Figure 5.1.: Transient UDP utilizations as x0 changes by a factor of 4 and 12.

5.1.2. Observation and Objective

In this chapter, we are interested in the peculiar behaviors (e.g., shaded in Fig. 5.1)
when UDP arrival rate varies. The behaviors can represent transitions of a CHOKe
queue from one steady-state to another and typically lasts no more than a full
queueing delay. We note during this transient phase that,

• While UDP buffer and utilization bounds stipulated in earlier works ([96, 98]
and Chapter 4) hold in the steady-state, they are easily violated during the
transient phase. For example, CHOKe UDP utilization μ0 ≤ 27% for ∀x0
during steady-state (refer to Fig. 5.3(a) or Fig. 4.9). However, during the

70

5.1. Motivation and Contribution

10C

1C

U
D

P
in

pu
tr

at
e

x
0

Time (s)
21 21.25 21.5 21.75 22 22.25 22.5 22.75 23 23.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
D

P
ut

il
ii

za
ti

o
μ
0

Figure 5.2.: Transient UDP utilizations when x0 flaps between 1C and 10C.

transient phase, μ0 may increase abruptly by several factors. In Fig. 5.2, for
instance, μ0(21.7s) = 72%.

• The queue does not simply undergo a smooth transition between two steady
states. Surprisingly, the change in transient UDP utilization is not determined
by the μ0 values of the two steady states. Rather, it follows the direction
opposite to the arrival rate change. Specifically, if UDP arrival rate goes
up, its utilization dips and vice-versa. For example, consider Experiment 2
shown in Fig. 5.1. Instead of steadily increasing from a steady state value
μ0,0.25C ≈ 16% to another steady state value μ0,3C ≈ 21%, the transient UDP
link utilization first whittles down to 3.75% at t ≈ 21.18s. (See Fig. 5.3(a) to
find out steady state CHOKe UDP utilization μ0 values.)

What are the lowest and highest UDP utilizations during the transient phase?
Note that these extreme UDP utilizations during the transient regime depend on
the measurement interval / window. With large windows, the transient behavior
gets diffused and evened out by the adjacent steady-state results. The objective of
this work is to obtain the extreme packet-level UDP utilizations (i.e., the highest
or lowest utilizations as measured for each packet) by analysis.

These transient behaviors have important consequences on the performance of
competing flows. For instance, Internet flows, mainly dominated by short Web
transfers, see fluctuating available bandwidth. When the UDP arrival rate drops,
for example, the strong increase in UDP link utilization may suddenly inflate the
completion times of competing flows, or decrease the number of those completing
service.

Since the transient regime represents a departure from a stable queue state,
its behavior may be influenced by the earlier steady state, as we shall soon see.
Therefore, it is fitting to briefly discuss the steady state behaviors, which we do in
Sec. 5.2.

71

5. Analysis of the Transient Behavior of CHOKe

5.1.3. Our Contributions

To the best of our knowledge, all previous analytical studies on CHOKe [96, 98,
77, 27, 26] are restricted to the steady state where the traffic rate of the UDP
flow is assumed constant. However, this assumption is too restrictive, limiting
more in-depth understanding of CHOKe. The focus of this chapter is therefore
to contribute to comprehensive understanding of CHOKe (and, by extension, all
other gCHOKe variants) in the face of dynamically changing UDP rates while
simultaneously generalizing its steady state properties. In particular, this chapter
investigates CHOKe queue properties in a transient regime, which is defined as a
period of transition between two steady states of the queue and is started when the
rate of the unresponsive flow changes.

From a modeling perspective, the study of the transient behavior of CHOKe is an
arduous task for two main reasons: (1) the leaky nature of the queue, meaning that
packets already in queue may be dropped later, (2) the continuous state transition
of the queue in the transient regime. Due to (1), the delay of a packet is not merely
the backlog the packet sees upon arrival divided by the link capacity as in non-
leaky queues. Besides, the spatial packet distribution of a flow in the queue can be
nonuniform throughout the queue. Due to (2), many parameters that characterize
the queue (e.g., flow matching probability, backlog size, skewed packet distributions
of flows in the queue) are likely to be dynamically changing. Both constraints
prohibit us from making “safe” simplifying assumptions in analyzing the transient
behavior of CHOKe.

Two specific problems are dealt with in this study: (1) how UDP utilization
evolves in transient time, and more importantly (2) the limits, i.e., how far the UDP
utilization goes up or down in transient time. As we noticed earlier, as the UDP
arrival rate goes up or down, its transient transmission rate goes to the opposite
direction in a dramatic fashion. For example, when the UDP rate sharply decreases,
its utilization rapidly soars, potentially exceeding the steady state limits studied
in Chapter 4. Extreme transient behaviors are observed when a very high rate
UDP flow abruptly stops. In such cases, UDP transient utilization can suddenly
jump from 0% to over, say, 70% (see the examples in the previous section). This
intriguing phenomenon cannot be explained with literature results.

Our contribution in this chapter is several-fold. First, this study is the first, to the
best of our knowledge, to report the “perplexing” transient CHOKe queue behaviors
in the aftermath of change in the UDP traffic rate. Second, for any given UDP
traffic rate, we derive the queue parameters that characterize the spatial properties
of the queue in a steady state. Third, by leveraging the queue parameters derived
and abstracting the UDP rate change by a factor, both the evolution and the
extreme points of UDP throughput in transient regime are analytically formulated
for any arbitrary UDP rate change. Last but not least, we obtain generic plots that
succinctly summarize both transient and steady state UDP throughput behaviors.
Extensive simulations confirm the validity of the theoretical results.

72

5.2. CHOKe Steady State Models and Properties

5.2. CHOKe Steady State Models and Properties

Since the transient regime is a transition between two steady states, some back-
ground on steady state models and properties of the CHOKe queue is necessary.

5.2.1. Steady State Models

Generally, two types of steady state CHOKe models are relevant: (1) the overall
loss model presented in Chapter 4 (see [98, 27] for special cases of this model),
and (2) the spatial distribution model [96]. Both models assume that the CHOKe
dropping and RED-based dropping are reversed for analytic simplicity, as depicted
in Fig. 4.4. The only independent parameter in both models is the UDP flow
arrival rate, x0.2 A change in x0 causes a departure from current UDP utilization
and kicks start the transient regime.

Overall Loss Model (OLM)

The OLM model derives the steady-state UDP utilization μ0 and buffer shares h0
by first deriving the flow loss probability incurred by both CHOKe and RED parts
of the CHOKe queue, see the gCHOKe model in Chapter 4. For CHOKe with
single input UDP flow, we substitute ν = 1 and maxcomp m = 1 into the model
summarized in Table 4.2. We obtain nonlinear numerical equations between UDP
link utilization μ0, UDP buffer share h0 and UDP input rate x0 as formulated by
(5.1), (5.2) and graphically demonstrated by Fig. 5.3 (also Fig. 4.9).

μ0 =
ln

(
1 − h0
1 − 2h0

)
(

1 − h0
1 − 2h0

)
+ ln

(
1 − h0
1 − 2h0

) (5.1)

x0(1 − r)
C

=
μ0

1 − 2h0
(5.2)

A glance at Fig. 5.1 shows that the steady state simulation results (i.e., the areas
outside the shade) match the theoretical μ0 values plotted in Fig. 5.3(a).

2For our model in Chapter 4, the number of UDP flows ν is another independent parameter.

73

5. Analysis of the Transient Behavior of CHOKe

x0(1− r)/C

U
D

P
ut

ili
za

tio
n
μ
0

1010.1
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) UDP utilization μ0.

x0(1− r)/C

U
D

P
bu

ff
er

sh
ar

e
h
0

1010.1
0.1

0.2

0.3

0.4

0.5

(b) UDP buffer share h0.

Figure 5.3.: Steady-state UDP utilization μ0 and buffer share h0 under CHOKe.

Spatial Distribution Model (SDM)

Tang, Wang and Low developed a novel ordinary differential equation model [96] of
the CHOKe queue in steady state. The model captures the spatial distribution of
flows in a CHOKe queue using queue properties at the tail and head as boundary
conditions. This spatial distribution includes the packet velocity and the probability
of finding a flow packet at a position in the queue. An important concept introduced
is thinning which refers to the decaying of UDP packet velocity as the packet
moves along towards the queue head. This steady state model, and the notion of
thinning, are useful for studying the transient properties as well. We present the
basic model, and provide pertinent assumptions that enable us to extend the model
to the transient regime in Sec. 5.4.

5.2.2. Summary of Queue Properties

The two analytic models of CHOKe reveal the following interesting and peculiar
steady-state properties of the queue. It is also possible to infer or imply some of
these properties from the plots in Fig. 5.3 or Fig. 4.9.

• Limits: An unresponsive UDP flow cannot exceed certain limits in both buffer
and link bandwidth shares. The maximum UDP bandwidth share is (e +
1)−1 = 26.9% of link capacity, and the maximum buffer share is 50%.

• Asymptotic property: As the UDP rate increases without bound, its buffer
share can asymptotically reach 50% and its queueing delay decreases, but its
link utilization drops to zero.

• Spatial distribution: The spatial packet distribution in the queue can be highly
nonuniform [96]. The probability of finding a packet belonging to a high rate
flow in the queue diminishes dramatically as we move towards the head of
the queue. Correspondingly, the flow distribution in the queue is skewed with

74

5.3. System Model and Notation

most packets of high rate flows found closer to the queue tail while packets
of low rates are found closer to the queue head. See the last observation on
Page 57.

5.3. System Model and Notation

We use the system setup of Chapter 4 together with the same assumptions and
notations. The studied setup is depicted in Fig. 4.3, where N rate-adaptive similar
TCP flows share a link with a single unresponsive / aggressive UDP flow. Due to
the additional notations we adopted in this chapter and for the sake of clarity and
self-containment, we present the assumptions and notations fully in this section.

As before, flows are indexed from 0, · · · , N , where 0 denotes the UDP flow.
Since TCP flows are assumed to be similar, 1 hereafter denotes a typical TCP
flow. As in Chapter 4, the steady-state backlog size in packets is denoted by b. We
assume large N and b.

The full notation is summarized in Table 5.1. The key performance metric is the
flow (link) utilization denoted by μi, i ∈ [0, 1]. Given UDP link utilization μ0 and
link capacity C, the throughput of all flows can be computed.

A queue parameter that is not indexed with a control variable, say time t, desig-
nates the value of the parameter in the steady state. Otherwise, the parameter is
dependent on that control variable. For example, μ0 designates UDP utilization in
a steady state, while μ0(t) is changing with t, more likely during a transient regime.

Table 5.1.: Notation
Symbol Description
N number of TCP flows
r congestion(RED)-based dropping probability, or

ambient drop probability (common to all flows)
xi source rate of flow i
μi link utilization of flow i
bi amount of flow i packets in buffer
b total backlog b =

∑N

i=0 bi in packets
hi the ratio bi/b (matching probability)
y ∈ [0, b] position in queue
v(y) packet velocity at y
τ(y) queueing delay to reach at y
ρi(y) prob. of finding flow i ∈ [0, 1] at position y

As in (4.6), for a TCP flow, the packet matching in CHOKe is approximated by,

h1 =
b1
b

=
b1

b0 + Nb1
≤ 1

N
≈ 0 (5.3)

75

5. Analysis of the Transient Behavior of CHOKe

5.4. Modeling the Transient Regime

Before delving into the transient model, we explain the transient queue behaviors
in Sec. 5.4.1 using an argument which we call the rate conservation argument. This
argument also provides an insight to extending the SDM to transient regimes. The
SDM extension is then treated in Sec. 5.4.2.

5.4.1. Rate Conservation Argument

Before a UDP packet can be admitted into a CHOKe queue, it must survive both
the RED and the CHOKe based dropping. The probability of packet admission
into queue is then (1 − r)(1 − h0(t)). Once in the queue, the UDP packets can
still be lost. This is because incoming packets that evade RED-based dropping
(with probability 1 − r) may trigger flow matching (with probability h0(t)) and
cause dropping of the matched packets. In addition, UDP packets can also leave
the queue due to transmission with rate μ0(t)C. Summarizing, we get a system
invariant that captures the rate of change in UDP buffered packets as follows:

db0(t)
dt

= x0(t)(1 − r)(1 − h0(t)) − x0(t)(1 − r)h0(t) − μ0(t)C

= x0(t)(1 − r)(1 − 2h0(t)) − μ0(t)C (5.4)

Let us call (5.4) the rate conservation argument. That is, the rate of change in
UDP buffer occupancy is the difference between the flow queueing rate x0(t)(1 −
r)(1 − h0(t)) and the outgoing rate. The outgoing rate in turn is the sum of
the departure/transmission rate given by μ0(t)C and the leaking rate given by
x0(t)(1 − r)h0(t). Here the leaking rate denotes the rate with which a queued UDP
packet matches the incoming packet and is consequently dropped.

The corresponding equation for a TCP flow is, as h1 = 0 (see (5.3)),

db1(t)
dt

= x1(t)(1 − r) − μ1(t)C, (5.5)

where, since the link is fully used,

μ1(t) =
1 − μ0(t)

N
. (5.6)

Since, trivially, b(t) = b0(t) + Nb1(t), we get

db(t)
dt

=
db0(t)

dt
+ N

db1(t)
dt

. (5.7)

Remark During a stable / steady state dbi(t)/dt ≈ 0, i ∈ (0, 1) (see Fig. 5.4).

76

5.4. Modeling the Transient Regime

Now, let us assume an abrupt change in UDP arrival rate x0 and note the follow-
ing in the immediate aftermath: TCP flows react slowly in response to the sudden
change in UDP arrival rate. Notably, TCP flows react in an RTT timescale, but
the transient behavior lasts for sub-RTT scales. Hence, during the transient phase,

db1(t)
dt

≈ 0 ⇒ db(t)
dt

≈ db0(t)
dt

(5.8)

Fig. 5.4 plots the simulation results for the two experiments of Example 1 in
Sec. 5.1.1. The figures confirm the argument above and Eq. (5.8). As can be seen,
during the transient parts of the simulations, the changes in total buffer occupancy
b are almost solely due to changes in UDP buffer occupancy b0.

We warn the reader that (5.8) may not hold outside the transient regime. For
instance, when the UDP flow arrival rate plummets at t = 22s, TCP flows respond
by increasing their sending rates after around a round-trip delay (see especially
Fig. 5.4(b)). Subsequently, db1/dt
= 0, but db0/dt ≈ 0. From (5.7), db/dt ≈
Ndb1/dt. That means, db/dt swings from db0/dt during the transient phase to
Ndb1/dt following the transient phase. However, since the TCP flows are largely
in a congestion avoidance phase, the rise in Ndb1/dt is not as significant as that of
db0/dt in the transient phase. After absorbing TCP bursts for a while (say, a few
round-trip cycles), the queue eventually settles to a new steady state determined
by the new UDP arrival rate, and then dbi/dt ≈ 0, i ∈ (0, 1) once again.

Remark Combining (5.5) and (5.8), we conclude that TCP packet arrival rate to
the CHOKe queue matches its transmission rate during the transient regime.

Now we are in a position to explain the transient behaviors shaded in Fig. 5.1
and Fig. 5.2 from the perspective of the rate conservation argument. Rearranging
(5.4), we get

μ0(t) =
x0(t)(1 − r)

C
(1 − 2h0(t)) − 1

C

db0(t)
dt

(5.9)

d
b 0
/d

t
an

d
d
b/
d
t

db/dt

21 21.5 22 22.5 23
-1000

-500

0

500

1000

1500
db0/dt

Time(s)

(a) Experiment 1 (0.5C/2C).

d
b 0
/d

t
an

d
d
b/
d
t

db/dt

-1500

-500
0

500

1500

2500

3500

21 21.5 22 22.5 23
Time(s)

db0/dt

(b) Experiment 2 (0.25C/3C).

Figure 5.4.: Transient regime: db/dt ≈ db0/dt and db1/dt ≈ 0. Steady state:
db/dt ≈ 0, db0/dt ≈ 0, db1/dt ≈ 0.

77

5. Analysis of the Transient Behavior of CHOKe

Interestingly, (5.9) captures all pertinent behaviors of the system. In the steady
state, db0(t)/dt ≈ 0, and

μ0 =
x0(1 − r)

C
(1 − 2h0) (5.10)

which is (5.2). We have reproduced one of the key equations in the OLM steady
state model depicted in Fig. 5.3.

Now, let us return to the transient behaviors. We explain only the dips in μ0
shown in Fig. 5.1 but similar arguments follow for the peaks as well. An abrupt
injection of UDP rate x0 at t = 21s rapidly ramps up the second term on the right
hand side (r.h.s.) of (5.9) (see also Fig. 5.4). Despite the rapid rise of x0(1 − r)/C,
its contribution to μ0(t) is approximately counteracted by a corresponding rise in
h0(t) = b0(t)/b(t) (see Fig. 5.5 where h0(t) → 45%). Therefore,

Remark The transient UDP utilization in CHOKe μ0(t) is mainly influenced in-
versely by the rate db0(t)/dt.

See the contrast between Fig. 5.4 and Fig. 5.1. Specifically, focusing on Fig. 5.1
and using measurement intervals of 10ms, we observed the following : when x0
increases 12-fold at t = 21s, db0/dt → 3500 (as shown in Fig. 5.4(b)) but the
utilization μ0 → 3.75%. Conversely, when x0 slackens by a factor of 12 at t = 22s,
the db0/dt falls to 1000 below 0 (as shown in Fig. 5.4(b)) but the UDP link
bandwidth share soars to 56.5%.

While the rate conservation argument explains the transient queue dynamics
qualitatively, due to several dynamically changing parameters (h0(t), b0(t), b(t)) in
the transient regime, it is difficult to derive quantitative μ0 results directly from
(5.9). Nevertheless, some of the insights we gained prove to be useful for extending
the SDM model to the transient regime, as we shall soon see.

b

b0
h0

Time (s)
21 21.5 22 22.520.5

100

250

400

550

700

850
50

45

40

35

30

25

20

15

B
uf

fe
r

oc
cu

pa
tio

ns
b,
b 0

U
D

P
bu

ff
er

sh
ar

e
h
0

(%
)

Figure 5.5.: At t = 21, UDP buffer share h0 jumps radically, nullifying the impact
on μ0 of the sudden change in x0.

78

5.4. Modeling the Transient Regime

5.4.2. Modified Spatial Distribution Model

This section is dedicated to the development of the SDM in concert with the tran-
sient regime. A schematic diagram of this model is illustrated in Fig. 5.6.

5.4.2.1. Model parameters

The SDM can be described by a few key parameters (see Fig. 5.6 and Table 5.1).
The parameters are queue positions/points/slots y ∈ [0, b], the packet velocity v(y)
at y, the probability ρi(y) of finding a flow i packet at y, and the queueing delay
τ(y) for the packet at the tail to arrive at slot y. Queue position y is indexed from
tail to head as {0, · · · , b}. The packet velocity v(y) is the speed with which packets
move towards the head of the queue, and is defined as:

v(y) = dy/dt. (5.11)

The packet velocity at queue tail v(0) is simply the full queueing rate
∑N

i=0 xi(1−
r)(1 − hi) (see Fig. 4.4). At queue head, however, v(y) is merely the link capacity,
i.e., v(b) = C. The packet velocity v(y) is related to the queueing delay τ(y)
accumulated in going from tail y = 0 to slot y as follows,

dt = dy/v(y) ⇒ τ(y) =
y∫

0

1
v(s)

ds (5.12)

where the equation on the left side is obtained from (5.11).

Of course, the full queueing delay is τ(b). Alternatively, τ(b) can be derived
using queueing principles. The rate of departure of TCP packets is C(1 − μ0), and

ρ0(y)v(y)

Nρ1(y)v(y)
Nρ1(0)v(0)

ρ0(0)v(0)

v(0)

Nρ1(b)C

ρ0(b)C

= μ0C

= (1− μ0)C

0/tail b/heady
s

Figure 5.6.: Schematic diagram: Decay of UDP velocity ρ0(y)v(y) in queue. Look
at the similarity to Fig. 5.7(b) when x0 = 10C.

79

5. Analysis of the Transient Behavior of CHOKe

average number of TCP packets in queue is given by b(1 − h0). As far as the TCP
flows are concerned, the model is a non-leaky queue (since h1 = 0). Therefore, we
apply Little’s law to obtain,

τ(b) =
b(1 − h0)
C(1 − μ0)

. (5.13)

Another useful spatial parameter is ρi(y)—the probability of finding a flow i
packet at slot y. Trivially,

ρ0(y) + Nρ1(y) = 1 y ∈ [0, b] (5.14)

Here, ρi(y) is closely related to the packet velocity v(y): It quantifies the fraction
of flow i’s packet velocity at y to the total packet velocity v(y). For instance, at
queue head where y = b, ρi(b) = μi, i.e., the probability is simply the flow link
utilization.

Summarizing the two important parameters ρi(y) and v(y) at queue tail and
head, the following boundary conditions apply, which are also illustrated in Fig. 5.6.
Here, we ignore TCP flow matching since from (5.3) h1 ≈ 0.

v(0) = x0(1 − r)(1 − h0) + Nx1(1 − r)(1 − h1)
≈ x0(1 − r)(1 − h0) + Nx1(1 − r) (5.15)

ρ0(0) =
x0(1 − h0)(1 − r)

[x0(1 − h0) + Nx1](1 − r)
≈ x0(1 − h0)

x0(1 − h0) + Nx1
(5.16)

ρ1(0) =
x1

x0(1 − h0) + Nx1
(5.17)

v(b) = C, ρ0(b) = μ0, ρ1(b) = μ1 =
1 − μ0

N
(5.18)

Note that ρ1(b) in (5.18) is the same as (5.6). As mentioned in Sec. 5.4.1, TCP
transmission rates do not change during the transient regime, resulting in constant
TCP packet velocities throughout the queue. In a congested CHOKe queue with
high UDP rate x0, however, the total packet velocity v(y) is continuously decreasing
because UDP arrivals trigger packet drops through flow matching. In fluid terms,
we say the UDP fluid gets thinned as it moves along the queue. We formalize the
notion of thinning and use it to derive the slot parameters next.

5.4.2.2. Ordinary Differential Equation model

The UDP portion of the packet velocity at the tail (y = 0) is given by ρ0(0)v(0) =
x0(1 − h0)(1 − r) and the amount of UDP fluid in small time dt at the tail by

80

5.4. Modeling the Transient Regime

ρ0(0)v(0)dt. The corresponding values at y are ρ0(y)v(y) and ρ0(y)v(y)dt, respec-
tively. Traveling from queue tail to y takes τ(y) during which time x0(1 − r)τ(y)
new packets would arrive to the queue. Each arrival triggers a flow matching trial
and drops the small volume of fluid with success probability 1/b. The probability
that the UDP volume escapes matchings by all arrivals is (1 − 1/b)x0(1−r)τ(y). The
UDP packet velocity at y is therefore thinned or weakened as,

ρ0(y)v(y) = ρ0(0)v(0)(1 − 1/b)x0(1−r)τ(y) (5.19)

Note the similarity to (4.4), where m = 1 for CHOKe. On the other hand, there is
no thinning for TCP and hence a constant TCP packet velocity throughout.

Nρ1(y)v(y) = Nρ1(0)v(0) = (1 − μ0)C (5.20)

During the transient regime, (5.20) is still valid due to the slow reaction of TCP
congestion control, as discussed in Sec. 5.4.1.

Rearranging (5.20) and using (5.14), we get

v(y) =
ρ1(0)v(0)

ρ1(y)
=

(1 − μ0)C
Nρ1(y)

=
(1 − μ0)C
1 − ρ0(y)

(5.21)

Define parameters a and β as follows, which will often be used throughout the
rest of the chapter:

a : =
1 − ρ0(0)

ρ0(0)
β : = ln(1 − 1/b)

Using (5.14), (5.15), (5.16) and (5.20), a can equivalently be rewritten as,

a =
1 − ρ0(0)

ρ0(0)
=

Nρ1(0)
ρ0(0)

=
Nρ1(0)
ρ0(0)

v(0)
v(0)

=
(1 − μ0)C

x0(1 − r)(1 − h0)
.

Taking logarithm of key equation (5.19) first and then differentiation w.r.t. y,
we get

ln(ρ0(y)v(y)) = ln(ρ0(0)v(0)) + x0(1 − r)βτ(y)

ρ
′
0(y)

ρ0(y)
+

v
′
(y)

v(y)
= 0 +

x0(1 − r)β
v(y)

(5.22)

where τ ′(y)=1/v(y) from (5.12).

Applying (5.21) for v(y) and v
′
(y) and inserting into l.h.s. of (5.22), the following

ordinary differential equation (ODE) is obtained.

81

5. Analysis of the Transient Behavior of CHOKe

ρ
′
0(y)

ρ0(y)
+

ρ
′
0(y)

1 − ρ0(y)
=

x0(1 − r)β
v(y)

(5.23)

Eq. (5.23) establishes a foundation for the analysis in the remaining part of the
chapter.

First, solving ρ0(y) from ODE (5.23) (see the Appendix for the proof), we have
the following relation between ρ0(y) and τ(y):

Lemma 5.4.1

ρ0(y) =
ex0(1−r)βτ(y)

a + ex0(1−r)βτ(y) . (5.24)

In addition, substituting (5.21) for v(y) in (5.23) gives,

ρ
′
0(y)

ρ0(y)
+

ρ
′
0(y)

1 − ρ0(y)
=

x0(1 − r)β
(1 − μ0)C

(1 − ρ0(y)).

Dividing by (1 − ρ0(y)), we obtain

ρ
′
0(y)

ρ0(y)(1 − ρ0(y))
+

ρ
′
0(y)

(1 − ρ0(y))2 =
x0(1 − r)β
(1 − μ0)C

Upon integrating w.r.t. y, we get
y∫

0

x0(1 − r)β
(1 − μ0)C

ds =
y∫

0

ρ
′
0(s)

ρ0(s)(1 − ρ0(s))
ds +

y∫
0

ρ
′
0(s)

(1 − ρ0(s))2 ds

x0(1 − r)β
(1 − μ0)C

s

∣∣∣∣y

0
= ln

[
ρ0(s)

1 − ρ0(s)

]∣∣∣∣y

0
+

1
1 − ρ0(s)

∣∣∣∣y

0

Let K = x0(1−r)β
(1−μ0)C . We then get:

Ky = ln
[

ρ0(y)
1 − ρ0(y)

1 − ρ0(0)
ρ0(0)

]
+

1
1 − ρ0(y)

− 1
1 − ρ0(0)

(5.25)

from which, the following relation between y and ρo(y) is easily established:

Lemma 5.4.2

y =
1
K

ln
[

aρ0(y)
1 − ρ0(y)

]
+

1
K

ρ0(y) − ρ0(0)
(1 − ρ0(y))(1 − ρ0(0))

(5.26)

where K =
x0(1 − r)β
(1 − μ0)C

and as above, a :=
1 − ρ0(0)

ρ0(0)
=

(1 − μ0)C
x0(1 − r)(1 − h0)

.

82

5.4. Modeling the Transient Regime

Remark Lemma 5.4.1 and Lemma 5.4.2 are crucial, through which, the slot and
its associated parameters are inter-related as defined by ρ0(y) (5.24), y (5.26), v(y)
(5.21) and τ(y) (A.4). However, from the model in [96], it is difficult to obtain for
each slot y corresponding explicit expressions of the spatial parameters ρ0(y), v(y)
and τ(y), hence limiting the application of results in [96] to the transient analysis.
This is because ρ0(y) and v(y) were given in terms of queueing delay τ(y), but
no explicit relations were afforded between queue slot y and anyone of the triplets
(v(y), ρ0(y), τ(y)) in [96].

Remark The analytical principles leading to Lemma 5.4.1 and Lemma 5.4.2 also
apply to the transient regime, making later transient analysis possible.

5.4.2.3. Properties of Queue Dynamics

This section briefly outlines properties of queue dynamics ρ0(y), v(y) and τ(y).
The detailed proofs are in the Appendix.

We start with ρ0(y). To prove the properties of ρ0(y) in Lemma 5.4.4, we need
the following intermediate result.

Lemma 5.4.3
1 ≤ 1 − μ0

1 − h0
≤ 2

The following properties hold for ρ0(y), and follow from (5.24) and Lemma 5.4.3.

Lemma 5.4.4 Given x0 > 0,

(i) If x0 ≤ C/2, ρ0(y) is strictly convex decreasing.

(ii) Otherwise, ρ0(y) is concave decreasing from ρ0(0) to ρ∗
0, and convex decreasing

from ρ∗
0 to ρ0(b) where the critical point (y∗, ρ∗

0) is given by

ρ∗
0 = ρ0(y∗) =

1
3

y∗ =
1
K

ln
(

a

2

)
+

1
K

1 − 3ρ0(0)
2(1 − ρ0(0))

.

For v(y), applying (5.24) to (5.21), the following property can be verified:

Lemma 5.4.5 Given x0 > 0, and boundary values v(0) and v(b) defined respec-
tively by (5.15) and (5.18), the packet velocity v(y) is convex decreasing throughout
the queue.

83

5. Analysis of the Transient Behavior of CHOKe

For τ(y), the following property holds.

Lemma 5.4.6 Given x0 > 0, τ(0) = 0 and τ(b) defined by (5.13), queueing delay
τ(y) is strictly convex increasing.

To visualize the queue dynamics, Fig. 5.7 plots for each queue position y the
probabilities ρ0(y), the packet velocities v(y) and the queueing delays τ(y). For low
and moderate rate x0, the spatial properties v(y) and ρ0(y) look uniform in queue,

 0

Queue slot y

x0 = 0.25C

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y
ρ
0
(y
)

x0 = 10C
x0 = 2C

b0.8b0.6b0.4b0.2b0

(a) UDP packet probability vs queue slot.

x0 = 0.25C

0

1

2

3

4

5

6

Queue slot y

Pa
ck

et
ve

lo
ci

ty
v
(y
)/
C

x0 = 10C
x0 = 2C

0 0.2b 0.4b 0.6b 0.8b b

(b) Packet velocity at queue slot.

Queue slot y

0

0.1

0.2

0.3

0.4

Q
ue

ue
in

g
de

la
y
τ
(y
)

x0 = 10C
x0 = 2C

x0 = 0.25C

b0.8b0.6b0.4b0.2b0

(c) Queuing delay to reach at a queue slot.

Figure 5.7.: Spatial characteristics of a CHOKe queue under different intensities of
input UDP arrival rates.

84

5.4. Modeling the Transient Regime

and the queueing delay τ(y) is approximately linearly rising, like in a regular non-
leaky queue. With increasing rate x0, however, the spatial distribution becomes
increasingly asymmetrical in queue, and most of the UDP packets are piled up
closer to the tail. Additionally, the packet velocity sharply decreases to C as we
move towards the head of queue. In such cases, since the packet velocities are
nonuniform in queue, the queueing delays are also nonuniform. When x0 → ∞,
the queueing delay becomes 1

2
b
C —fictitiously half of the queueing delay possible in

a non-leaky queue with the same backlog size b.3

5.4.3. Analysis on the Transient Behavior

The transient behavior is a transition between two stable queue states excited by a
change in UDP arrival rate. Without loss of generality, let us assume that the UDP
arrival rate changes from x0 to x02 at time t = 0. At that instant, the snapshot
of the queue exhibits the steady state characteristics defined by x0 (see Fig. 5.6).
We are interested in transient behaviors that surface within a time of τ(b) (the
full queueing delay) after rate change. Thereafter, we assume the queue enters the
steady state defined by the new rate x02. We shall focus on queue properties during
the transition regime [0, τ(b)].

While Lemma 5.4.1 and Lemma 5.4.2 lay a foundation for the analysis, we still
need to make assumptions to proceed. We boldly assume during [0, τ(b)] that,

(1) the buffer occupancy remains constant at b, and

(2) TCP arrival rates remain the same.

Remark It is worth highlighting that while Assumption (2) is valid or accurate
based on our observation of TCP reactions in Sec. 5.4.1, Assumption (1) may be
strong (see Fig. 5.5). Incidentally, this assumption may be the cause of approxima-
tion errors in the analysis. Nevertheless, results based on this assumption are very
satisfactory.

We are now ready to conduct the analysis. Consider at time t = 0 the UDP
fluid at position y. It has a velocity ρ0(y)v(y), and a remaining age in the queue of
τ(b) − τ(y). Owing to FIFO, the UDP flow transmission rate at time τ(b) − τ(y)
is due to the transmission of this UDP fluid. By transmission time τ(b) − τ(y), the
UDP velocity has been thinned according to the new rate x02 as:

ρ0(y)v(y)(1 − 1/b)x02(1−r)(τ(b)−τ(y)). (5.27)

Remark (5.27) is similar to (5.19). Unlike (5.19), however, there are two distinct
parts of thinning for the UDP fluid located at slot y ∈ [0, b] at t = 0. First, in

3Queueing delay does not precisely reduce by half because the backlog size b varies with x0.

85

5. Analysis of the Transient Behavior of CHOKe

going from tail to y, the thinning is according to x0, and the duration of thinning
is the queueing delay so far, i.e., τ(y). This part is reflected in (5.27) by ρ0(y)v(y).
Second, for the remaining duration τ(b) − τ(y), the thinning is due to the new rate
x02. Overall thinning, before eventual transmission, of the UDP fluid found at slot
y at t = 0 is then,

ρ0(0)v(0)(1 − 1/b)x0(1−r)τ(y)(1 − 1/b)x02(1−r)(τ(b)−τ(y)).

Above, we use the same RED / congestion-based drop probability r even when
the UDP arrival rate changes. In fact, our extensive simulations show that r is often
insignificant and can be ignored altogether (recall similar observations in Chapter
4, especially Sec. 4.5.1). CHOKe’s excessive flow dropping keeps the average queue
size avg in check, and this in turn lowers the r in comparison to that in plain RED.
Hereafter we choose to ignore r. That is,

r ≈ 0. (5.28)

With Assumption (2), the total packet velocity v at time τ(b) − τ(y) is the sum:

v(τ(b) − τ(y)) = ρ0(y)v(y)(1 − 1/b)x02(τ(b)−τ(y))

+ (1 − μ0)C (5.29)

where the second term represents the velocity contributed by the TCP flows, given
by (5.20).

The instantaneous UDP link utilization μ0 follows from (5.27) and (5.29) simply
as,

μ0(τ(b) − τ(y)) =
ρ0(y)v(y)(1 − 1/b)x02(τ(b)−τ(y))

v(τ(b) − τ(y))
(5.30)

Note that, from (5.21), which holds for both the steady-state and the transient
regime, we can express the UDP packet velocity, ρ0(y)v(y), as

ρ0(y)v(y) =
ρ0(y)

1 − ρ0(y)
(1 − μ0)C (5.31)

with which, we further obtain

μ0(τ(b) − τ(y)) =
[
1 +

1 − ρ0(y)
ρ0(y)

(
1 − 1

b

)−x02(τ(b)−τ(y))]−1

=
[
1 +

1 − ρ0(y)
ρ0(y)

e−x02β(τ(b)−τ(y))
]−1

(5.32a)

=
[
1 + ae−x02βτ(b)+βτ(y)(x02−x0)

]−1
(5.32b)

86

5.4. Modeling the Transient Regime

In obtaining the reduced forms (5.32a),(5.32b), we used (5.31) and (5.24) respec-
tively.

(5.32b) captures the evolution of UDP utilization during the transient regime.
We summarize it in the following lemma.

Lemma 5.4.7 Assume at t = 0, UDP arrival rate changes from x0 to x02. The
UDP link utilization at time ΔT ∈ [0, τ(b)] is given by,

μ0(ΔT) =
[
1 + ae−x02βτ(b)+β(τ(b)−ΔT)(x02−x0)

]−1
.

where, b is the backlog size at t = 0 and τ(b) is given by (5.13).

It is trivial to see that μ0(0) = μ0. In addition, it is easy to prove that when
x02 = x0, μ0(ΔT) = μ0 for ∀ΔT ∈ [0, τ(b)]. The proof is similar to the proof of
Lemma 5.4.9.

Theorem 5.4.8 Assume a CHOKe queue characterized by steady state UDP prob-
abilities ρ0(y), y ∈ [0, b] and input UDP rate x0. Further assume the UDP rate
changes to x02 ≥ 0 at t = 0.

(a) The transient UDP utilization is upper bounded by ρ0(0).

(b) This upper bound can be achieved when x02 = 0 and at time t = τ(b).

Proof Since τ(b) ≥ τ(y) (see Lemma 5.4.6) and β < 0 in (5.32a), we have
exp(−x02β(τ(b) − τ(y))) ≥ exp(0) = 1 and

μ0(τ(b) − τ(y)) ≤
[
1 +

1 − ρ0(y)
ρ0(y)

]−1

≤ ρ0(y) ≤ ρ0(0) (5.33)

In (5.33), we used the property that ρ0(y) is a decreasing function (see Lemma 5.4.4)
to state that μ0(τ(b) − τ(y)) ≤ ρ0(0). When x02 = 0 in (5.32a), μ0(τ(b) − τ(y)) =
ρ0(y). See Fig. 5.8 for the relationship between ρ0(y) in queue and transient UDP
rate.

Theorem 5.4.8 states that if the UDP flow stops (x02 = 0), it will attain ex-
actly the utilizations ρ0(y) in reverse order of time shown in Fig. 5.6 (resulting in
the ‘mirror reflection’ Fig. 5.8). That means, the steady-state probabilities ρ0(y)
associated with the “old” UDP input rate x0 successively turn out as transient
utilizations when the flow stops. Therefore, the transient utilizations increase from
ρ0(b) = μ0 at t = 0 to ρ0(0) at t = τ(b).

87

5. Analysis of the Transient Behavior of CHOKe

τ(b)t = 0 τ(b)− τ(y)

μ0(τ(b))=ρ0(0)

μ0

=ρ0(y)μ0(τ(b)− τ(y))

=ρ0(b)

Figure 5.8.: Relationship between steady-state ρ0(y) and transient UDP utilization
μ0(t) when the flow stops, i.e., x02 = 0.

Theorem 5.4.8 vindicates our choice to leverage steady-state CHOKe model for
understanding the transient behavior.

So far we have discussed the two special cases when x02 = x0 (no change) and
x02 = 0. Now consider a scenario where x02 /∈ {0, x0}, in particular x02 → ∞.
It is plausible that when x02 is very high, the exponential terms in (5.32a), and
in Lemma 5.4.7, may become so large that the utilization may quickly plunge to
very low values. From this observation, we remark that the UDP utilization in the
transient phase moves in the opposite direction to the change of UDP input rate
that triggers the phase. The is similar to the observation in Sec. 5.4.1 that the
UDP utilization moves in a direction opposite to that of db0/dt.

We now generalize our findings and obtain the extreme values. Note that from
Lemma 5.4.7, μ0(ΔT) is decreasing or increasing with ΔT , depending on whether
x02 is greater than x0 or not, so the extreme is obtained when ΔT = τ(b). In
other words, the extreme (lowest or largest) values occur at a time of τ(b) after
the rate change. That means, the last packet of the old rate x0 is transmitted with
the extreme utilization μ∗

0 = μ0(τ(b)). The next theorem gives the maximum or
minimum value. First, we start with Lemma 5.4.9 which captures the special case
when α = 1.

Lemma 5.4.9 For α = 1, μ0(τ(b)) = μ0.

Theorem 5.4.10 Assume the current steady-state utilization μ0 when the input
UDP rate is x0. If x02 = αx0 at t = 0, α ∈ [0, ∞), then the extreme (minimum /
maximum) UDP utilization during the transient regime is given by

μ0(τ(b)) =
[
1 + a

(
1 − μ0

aμ0

)α]−1
. (5.34)

See the Appendix for proofs of Theorem 5.4.10 and Lemma 5.4.9.

88

5.5. Performance Evaluation

Corollary 5.4.11 For α = 0, or when the UDP flow stops, μ0(τ(b)) = ρ0(0).

Theorem 5.4.10 is a key finding in this work and can be visualized using Fig. 5.9.
Note that the figure illustrates both steady-state and (extreme) transient UDP
utilizations for the selected UDP arrival rates. When α = 1, by Lemma 5.4.9, the
values shown are the steady-state utilization μ0 for the given UDP arrival rate x0.
When the UDP arrival rate x0 changes (i.e., α
= 1), the graph shows how far the
UDP utilization can go up/down when x0 abruptly decreases/increases to x02. For
example, assume an initial UDP rate of x0 = 2C. The utilization for this input is
read from the figure at α = 1 (also from Fig. 5.3) as μ0 = 25.0%. When x02 = 0.2C
which corresponds to rate change by a factor of α = 0.1, the transient utilization
surges to μ0(τ(b)) = 56.5%. If the flow stops, by Corollary 5.4.11, the utilization
instead jumps to ρ0(0) = 60% (see also Fig. 5.7(a)). Similarly, when a flow of initial
UDP arrival rate x0 = 3C stops, the transient utilizations can surge to a whopping
67% from the initial 21%.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.01 0.1 1 10
α = x02/x0

x0 = 0.25C

x0 = 3.0C
x0 = 2.0C
x0 = 1.0C
x0 = 0.5C

T
ra

ns
.U

D
P

ut
il

.μ
0
(t

0
+
τ
(b
))

Figure 5.9.: The impact of the multiplicative factor α = x02/x0 on extreme UDP
utilizations. Five previous inputs x0 ∈ {0.25C, 0.5C, 1C, 2C, 3C} are shown.

5.5. Performance Evaluation

In this section, we validate the results using simulations performed in ns-2.34. The
network setup shown in Fig. 4.3 with the following settings is used: C = 20Mbps or
2500 pkt/sec, link latency 1ms, buffer size 1000 packets, N = 100 TCP flows each
of type SACK, RED buffer thresholds (in packets) minth = 20 and maxth = 1000.
Packet sizes are 1000 bytes. Flows start randomly on the interval [0,2] sec.

We conducted extensive experiments, each simulation replicated 500 times if not
otherwise highlighted. The 95% confidence intervals are so small that they are
not reported. We remark that in computing the simulation results, unless stated
otherwise, we have used a time window of 1ms. Since C=2500 pkts/sec, this is 2.5

89

5. Analysis of the Transient Behavior of CHOKe

times more than the per packet transmission interval assumed by the model, but
the error due to this disparity is small and can be ignored. Sec. 5.5.1 presents the
validation of the model, and Sec. 5.5.2 presents additional simulation results.

5.5.1. Model Validation

In this section, we validate the two important results of this work: Theorem 5.4.10
and Lemma 5.4.7.

5.5.1.1. Validation of Theorem 5.4.10

In Fig. 5.10, we show for selected initial UDP arrival rates the impact of rate change
by factor α ∈ [0.01, 10]. As can be seen, the simulation results accurately match
the model predictions. For instance, for x0 = 3C and x02 = 0.03C, or α = 0.01, the
maximum utilizations obtained by the model and simulations are 67% and 65%,
respectively.

 1

Sim: x0 = 0.5C
Th: x0 = 0.5C

Th: x0 = 2.0C

Th: x0 = 3.0C
Sim: x0 = 2C

Sim: x0 = 3C

0.10.01 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α = x02/x0

E
xt

re
m

e
tr

an
s.

U
D

P
ut

il
iz

at
io

n
μ
0

Figure 5.10.: Validation of extreme utilization stated by Th. 5.4.10.

5.5.1.2. Validation of Lemma 5.4.7

For rate factors of α = 5, 1/5, 10, 1/10, Fig. 5.11 shows the evolution of transient
UDP utilizations obtained through simulation and the analytical model as stated
by Lemma 5.4.7. The steady state backlog size b required for the theoretical plot
is taken from the steady state simulation just before the rate change.

As discussed earlier, there may be two sources of approximation errors for the
theoretical results. First, the assumption of constant backlog size b during the
transient phase may be strong. Second, the difference in measurement intervals.

90

5.5. Performance Evaluation

20.95 21 21.05 21.1 21.15 21.2

0.05

0.1

0.15

0.2

0.25

Time (s)

U
D

P
 u

til
iz

at
io

n
μ

0

Simulation
Model

(a) x0 = 0.25C, α = 5

20.95 21 21.05 21.1 21.15 21.2

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

U
D

P
 u

til
iz

at
io

n
μ

0

Simulation
Model

(b) x0 = 3C, α = 1/5

20.95 21 21.05 21.1 21.15 21.2

0.05

0.1

0.15

0.2

Time (s)

U
D

P
 u

til
iz

at
io

n
μ

0

Simulation

Model

(c) x0 = 0.25C, α = 10

20.95 21 21.05 21.1 21.15 21.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

U
D

P
 u

til
iz

at
io

n
μ

0

Simulation
Model

(d) x0 = 3C, α = 1/10

Figure 5.11.: Validating the transient utilization Eq. (5.32b)

The model results are shown for each packet transmission time (0.4ms), while
simulation results are averages over 1ms intervals. Despite these differences, the
model and simulation results are reasonably matching, even more so for moderate
initial x0 values (see Fig. 5.11(a)). In all figures, the approximation errors are
negligible at the beginning. As we move further in time during the transient phase,
however, the buffer occupancy b changes and the errors become larger as a result.
Still, those errors are not significant.

Probably the more important results are the extreme UDP utilizations of the
transient regime (i.e., the lowest utilization in Figs. 5.11(a) and 5.11(c), and highest
utilization in Figs. 5.11(b) and 5.11(d)). These extreme model results, which can
also be verified from the generic utilization plots shown in Fig. 5.10, are very close
in value to the simulation results.

5.5.2. Miscellaneous Results

The next three subsections present additional results. The first two return to the
motivational examples discussed in Sec. 5.1. The results in Sec. 5.5.2.3 are based
on a different traffic model—Web Traffic.

91

5. Analysis of the Transient Behavior of CHOKe

5.5.2.1. Results on Example 1

For the two experiments of Example 1 discussed in Sec. 5.1.1, Table 5.2 tabulates
three sets of extreme UDP utilization values: theoretical values based on Theo-
rem 5.4.10; and two sets of simulation values averaged over measurement windows
of 0.4ms and 10ms. Note that since transient utilization is continuously changing,
the time granularity of measurement windows are critical (see also Sec. 5.1.2). In
Fig. 5.1, the curves are based on a 10ms window. Compared with simulation re-
sults, the theoretical values in Table 5.2 seem to represent lower utilization bound
when α > 1 and upper utilization bounds when α < 1. Nevertheless, the theoretical
and simulation values based on packet transmission time window are remarkably
close, and the bounds are tight.

Table 5.2.: Lowest and highest transient UDP utilizations for the experiments of
Example 1 in Sec. 5.1.

Scenarios Extreme UDP utilization

x0/C x02/C α Model Simulation
W=0.4ms W=10ms

0.50 2.0 4 6.7% 7.5% 10.5%
2.0 0.50 1/4 50.8% 49.3% 44.5%
0.25 3.0 12 1.3% 2.0% 3.8%
3.0 0.25 1/12 63.2% 61.4% 56.7%

5.5.2.2. Results on Example 2

Next, for the motivational example in Sec. 5.1.1 where the UDP arrival rate alter-
nates between 1C and 10C, the two extreme utilization values using Theorem 5.4.10
are found to be 0.015% (for change from 1C to 10C) and 75% (for change from 10C
to 1C). Similar to what has been observed in the previous section, the extreme val-
ues are tight bounds. Even using a gross measurement window of 10ms for Fig. 5.2,
we still observe a peak utilization of 72%. In addition to the extreme values, the
model allows us to explore the average utilization in a time period within the tran-
sient regime. To demonstrate this, Table 5.3 shows average utilizations (per every
500ms) using four methods: (1) steady state utilization corresponding to average
UDP arrival rate 5.5C, (2) average of steady state utilizations corresponding to
UDP arrival rates 1C and 10C, (3) average utilization based on the model, i.e.,
Lemma 5.4.7, and (4) simulation results, using measurement time windows of 1ms.
Steady state values for the first two methods are based on the OLM model de-
scribed in Sec. 5.2.1. For using Lemma 5.4.7, the values for backlog size b at each
250ms interval are required. Our extensive simulations show that the backlog size
is wildly changing over time. We took the backlog size at the onset of rate change
and fed it as the input b0 into Lemma 5.4.7. For example, at t = 21 b0 = 765

92

5.5. Performance Evaluation

and at t = 21.25 b0 = 675. As the table shows, the steady-state analytical bounds
are far from the simulation results. On the contrary, the transient analysis nicely
represents the picture of the queue even under radically changing traffic conditions.

Table 5.3.: Average UDP utilizations for Example 2 in Sec. 5.1.
Time Average UDP utilization in %
Interval μ0,5.5C

μ0,1C +μ0,10C

2 Model Simulation
[21, 21.5) 11.7 14.8 17.6 18.9
[21.5, 22) 11.7 14.8 19.1 19.4
[22, 22.5) 11.7 14.8 17.6 18.9
[22.5, 23) 11.7 14.8 18.3 19.4
[23, 23.5) 11.7 14.8 18.0 19.3

5.5.2.3. Results using Web Traffic

Since the Internet flow dynamics is heavily shaped by short Web transfers, we
conducted a 500-replicated experiment explained below. The UDP arrival pattern
is the same as in Fig. 5.2 except that x0 = 10C for t < 21 and x0 = 1C for t > 23.
The Web traffic is modeled as follows: Starting from t = 20s, each of the 100 TCP
sources (see Fig. 4.3) generates a Poisson process with an average arrival rate of
25 Hz. The size of each session (file) is Pareto-distributed with an average size of
10kB (about 10 packets) and a shape parameter of 1.3. This model captures the
heavy tailed nature of Web file sizes and their transmission times [19]. Simulation
lasts for 25 seconds and over 9000 Web sessions have been generated. The result is
illustrated in Fig. 5.12.

Time (s)
20.5 21 21.5 22 22.5 23 23.5 24

0

0.1

0.2

0.3

0.4

0.5

0.6

U
D

P
ut

il
ii

za
ti

o
μ
0

Figure 5.12.: UDP utilization in the presence of Web flows.

Due to the huge and highly bursty Web traffic generated, the buffer is always full.
Like in the long-lived TCP scenarios, UDP exhibits widely fluctuating throughput
patterns during transient regimes. However, the extreme points of transient regime
are generally lower in value. For example, UDP utilization can get as low as 0.08%,
and as high as 56%. Nevertheless, in both cases, they are bounded, albeit loosely
by the analytical extreme values 0.015% and 72% as discussed in Sec. 5.5.2.2. The

93

5. Analysis of the Transient Behavior of CHOKe

smaller simulation values are probably due to the high ambient drop rate r which
becomes significant as RED deals with persistent full buffer occupancy. Further
study is still required to refine these findings.

The results in this section show that the analytical results and observations made
in this chapter may apply to a wider context than studied here.

5.6. Conclusion

While existing works on CHOKe reveal interesting structural, asymptotic and limit
behaviors of the queue, their results are limited to the steady state when the queue
reaches equilibrium in the presence of many long-lived TCP flows and constant
rate UDP flows. Unfortunately, they lack showing properties of the queue in a
possibly more realistic network setting where the exogenous rates of unresponsive
flows may be dynamically changing, and consequently the model parameters, rather
than being static, may be continuously evolving.

This is the first study on CHOKe behavior in the aftermath of rate changes in
UDP traffic arrival. In particular, we are concerned with CHOKe queue behaviors
during the transient regime which we model as a transition from one steady queue
state to another. We found that the performance limits predicted by existing steady
state models do not hold for such transient regimes. Depending on the nature of
rate change, the queue exhibits instant fluctuations of UDP bandwidth sharing
in reverse direction. This behavior has ramifications on the smooth operation of
the Internet where most flows are rate-adaptive. Such flows may see fluctuating
available link bandwidth and degrade in performance. By extending and leveraging
the spatial distribution model, we analytically (1) determine the extreme points of
UDP utilization (observed within an order of queueing delay after rate change),
and (2) track the evolution of the transient UDP utilization following rate change.
In addition, the model allows us to obtain generic UDP utilization plots that help
explain both the transient extreme characteristics and steady-state characteristics.
The analytic results have been rigorously validated through extensive simulations.
The analytical approach used in this chapter can be easily extended to studying
transient behaviors of other leaky queues, including other gCHOKe variants.

94

6. Statelet Fair Queue

Motivated by the fairness performance of S-SFQ in simplified network topologies
(see Chapter 3), we seek to extend the algorithm for arbitrary networks and gen-
eralize it as a statelet fairness framework. To this end, we present a specific router
fairness algorithm we call Approximate Fairness through partial Finish Time (AF-
pFT) in this chapter. AFpFT addresses two important limitations of S-SFQ. First,
S-SFQ is stateful and hence a naive extension into inner routers would be infeasi-
ble. AFpFT solves this problem by keeping flow state only for a subset of the flows.
This is generally acceptable since completely stateless flow protection schemes such
as those in Chapter 4, despite being powerful, cannot impose high quality fairness
among competing flows. Secondly, S-SFQ can suffer the unfortunate fate of loss
synchronization which completely obliterates its fairness quality. AFpFT solves
this problem by leveraging the statelet flow information into a simple, yet effective,
drop policy that in turn eliminates the buffer and link usage discriminations. Us-
ing extensive simulations, we show that the scheme is highly fair and potentially
scalable unlike other proposed schemes.

The rest of the chapter is organized as follows. We start by presenting the
motivation of this work in Sec. 6.1 followed by research contributions in Sec. 6.2.
Our proposed scheme AFpFT is fully explained using pseudocodes and illustrative
examples in Sec. 6.3. Sec. 6.4 provides our simulation results and performance
comparisons of the scheme against RED, FRED and CSFQ. Sec. 6.5 discusses this
work in the general context of other related works. Sec. 6.6 concludes the chapter.

6.1. Motivation

Replicating the fairness of perflow fair queueing algorithms such as SFQ [44] and
SCFQ [41] without maintaining perflow states is a difficult challenge [54]. This is be-
cause the perflow parameters (e.g., the virtual flow finish times) are not stand-alone
but depend on all flows traversing the router. Due to this dependency, encoding
the perflow parameters of SFQ and SCFQ into packets at ingress nodes, and using
them later for scheduling inside the network is not possible.

The key objective of AFpFT is to retain the nice fairness qualities of perflow
schemes without keeping states for all flows. In this section, we state the limi-
tations of the existing approaches which motivate this work. In a broader sense,

95

6. Statelet Fair Queue

these limitations impact the scalability for high-speed implementation, or their
widespread acceptability among the various network stakeholders.

Recall from Sec. 2.3 that the two broad approaches to impose flow fairness in
networks are either end-to-end based and router-based. Fairness based on e2e
schemes is dependent on cooperation or universal adoption. Universal adoption
may not be possible for reasons outlined in Secs. 1.2.1 and 2.3. As explained, with
increasing heterogeneity in deployed end-to-end based congestion control schemes,
equitable resource sharing among Internet flows may not be possible.

The second approach for flow fairness is router-based as described in Sec. 2.4.
There are two sub-categories in this regard: (1) perflow fair queueing and (2) queue
management mechanisms. The flow protection in the former comes with a large
number of physical queues, or else with expensive buffer partitioning and dynamic
scheduling states (e.g., the pointers to each packet queues) required to maintain
the resulting queue structures [57]. Another binding constraint is that the perflow
schemes are inherently stateful requiring the maintenance of flow-level state or
history [92], see Sec. 2.4.1. Other commonly cited constraints are sorting of queues
that may precede a packet transmission and, in some cases, packet dropping. At
each transmission epoch, the scheduler may need to identify the queue or flow from
which to send the next packet. In SFQ and SCFQ, for example, it may be from
the queue whose head-of-line packet has the smallest service tag. Likewise, when a
packet arrives to a full buffer, the policy for dropping may be preceded by sorting
the queues. The schemes may discard a packet from the most backlogged queue
(i.e., Longest Queue Drop LQD [94]).

Queue management mechanisms, on the other hand, offer simplicity at the ex-
pense of generality and quality flow protection. A flow-myopic solution of applying
equal drop probabilities indiscriminately to all flows, as in RED, does not result
in a fair allocation, as demonstrated by the simulation results of the RED queue
in Chapter 3. As pointed out in Sec. 2.4.2.2, several statelet RED extensions that
identify the high-bandwidth flows and apply additional perflow drop rates have
been proposed. We raise two performance problems with these schemes. First,
lacking the powerful flow isolation of perflow queueing, the flow protection of QMs
is generally poorer even with the additional perflow drop rates. Secondly, the
flow identification policy assumes that the flows conform to the Standard TCP.
Because of this, they may perform sub-optimally in the presence of other traffic
types. Examples of mechanisms that rely on this assumption are FRED, Stabilized
RED (SRED) [74], and RED-PD. For example, the authors of FRED recommend
minq = 3 since a Standard TCP sends no more than 3 packets back-to-back. RED-
PD identifies and punishes at a pre-filter those flows having more recent drops than
a reference Standard TCP with round-trip time RTTt. We demonstrate the pitfall
of the Standard TCP assumption with an example using SRED.

Example. SRED is a queue management scheme designed to keep queue size
at a preset value, say Q0. The average congestion window W of TCP congestion

96

6.1. Motivation

avoidance algorithms in the steady state is linked to the loss event rate p as W ∼
p−d, where 0.5 ≤ d ≤ 1 is a constant dependent on the TCP algorithm. For
example, d = 0.5 for the traditional TCP. See also Sec. 7.2. Inflight packets of the N
flows occupy the target buffer occupation Q0. SRED assumes all N flows adopt the
traditional TCP algorithm. That means, Q0 ≈ N ×p−0.5, or the drop rate becomes
p ≈ (N

Q0
)2. N is approximated as 1/P (t), where P (t) is the exponential weighted

hitting frequency. The p computation is not accurate for other non-traditional TCP
traffic. As a result, the N or P (t) estimation would be grossly imprecise in mixed
traffic situations. In order to clarify, we run two separate experiments each with
200 sources: (i) all TCP, and (ii) all except 1 UDP source are TCP (UDP source
rate is 50% of link capacity C). Fig. 6.1 shows the error in N approximation,
hence the flaw in the dropping rates p computation in the second experiment. The
all-TCP experiment approximates N ≈ 160, while in the second experiment N ≈ 6
which significantly decreases the drop computation. As a result, the UDP takes up
almost as much bandwidth as its sending rate (50% of link capacity).

Time (s)

199 TCP, 1 UDP

125120115110105100
1

All TCP

E
st

im
at

e
of

N

1000

100

10

Figure 6.1.: Flaw in estimation of flow count N .

The idea of ensuring flow fairness with no or limited perflow state is not new. A
notable example in this regard is the Core-Stateless Fair Queueing CSFQ [92], see
Sec. 2.4.3. CSFQ core routers compute the local max-min fair share rate Φshare

before inserting the new outgoing flow rate min(Φshare, Φi) into packet headers
and forwarding the packets to downstream routers. It is easy to see that the
computation of the fair share, and hence flow dropping rates, is based on implicit
trust of upstream nodes in the network. A faulty router along the flow’s path can
therefore insert inconsistent values into packet headers and severely undermine the
fairness, and the overall performance, of CSFQ [93]. Therefore, CSFQ can neither
transcend network boundaries nor withstand malfunctioning or wrongly configured
routers.

Summary: While technically superior, many of the existing approaches (1)
may be stateful and complex, (2) target specific traffic type and hence may lack
generality, (3) are based on implicit trust and hence lack robustness to cope mis-
configurations. In a broader sense, one or more of these shortcomings can limit
their scalability and potential widespread deployability.

97

6. Statelet Fair Queue

6.2. Contributions

In this chapter, we propose a powerful flow fairness router mechanism called Ap-
proximate Fairness through partial Finish Time (AFpFT) which has the following
features: (1) a single-aggregate queue shared by all flows, (2) a drop policy free of
a particular TCP assumption, (3) statelet, or keeps state for a limited number of
flows which become listed in a flow list FL, and (4) packet sorting upon arrival
but not upon packet dequeueing and dropping. AFpFT is a specific example of
statelet fair queue, see Sec. 6.3.3. Due to the nature of packet sorting or tag com-
putation following packet arrival to queue, packets of low or moderate rate flows
obtain “favorable” tags which push them closer to the queue head, while those
packets coming from persistent high rate flows are placed near queue tail, prob-
ably incurring losses or delays before transmission. The favorable tagging allows
low rate flows to obtain time (or scheduling) and space (or buffering) priorities.
Incidentally, the flows whose states are kept in the flow list FL at inner routers
are relatively higher in arrival rates and fortunately fewer in number, making the
scheme statelet. We conduct extensive simulations under different operating condi-
tions. The results demonstrate that AFpFT is superior in fairness to other related
schemes such as FRED and CSFQ. It can, for instance, restrict the high bandwidth
flows (e.g., TCP flows with small round-trip times or aggressive flows that lack e2e
congestion control) to a common fair share rate.

6.3. The Scheme

6.3.1. Conceptual Design of AFpFT

When a packet of a flow arrives to an AFpFT queue, it is assigned a timestamp or
tag which defines its position in the queue. Packets are sorted in ascending order
of their tag values from head to tail of the queue. Regardless of whether the buffer
is already full or not, the arriving packet is always sorted first in the queue before
any decision to drop a packet is made. If the buffer becomes full, the packet at
the queue tail will be dropped. More than one packet may be dropped since the
arriving packet may be larger than the one(s) at the tail. The pseudocode is shown
in Fig. 6.2. Note that the dequeue operation is trivial and not shown: the packet
at the queue head is always the one that is dequeued for transmission.

Apart from the sorting queue, the most important functional components of
AFpFT are the tag computation, the flow list FL and the drop policy, which we
describe shortly.1

1 After a period of inactivity, idle flows expire and are removed from the flow list FL.

98

6.3. The Scheme

1: Upon packet p arrival to queue
2: if previous packet p̂ in queue then
3: // expensive tag
4: Γp = Γ

p̂
+ Δ

p̂
5: else
6: // cheap tag: note −→p is packet in transmission
7: Γp = Γ−→p
8: end if
9: Put p in ascending order of Γp in queue

10: while queue full do
11: drop a packet from the queue tail
12: end while

Figure 6.2.: Conceptual pseudocode of AFpFT enqueueing and dropping

6.3.1.1. Tag Computation

As can be seen there are two ways of tag computation for an arriving packet, labeled
cheap and expensive in Fig. 6.2. Expensive tag is applied when a previous packet
p̂ of the same flow is found in queue, in which case the tag of the arriving packet
Γp is a small increment Δ

p̂
over that of p̂.2 If multiple previous packets of the

flow are found in queue, only the one that arrives last is considered. If no previous
packet of the flow is found, however, the tag Γp just takes up the tag of the packet
in transmission, −→p , regardless of whether or not −→p belongs to the same flow as
the arrival. This latter case is cheap tagging for the flow. Cheap tagging allows
the arriving packet to get sorted closer to the head of the queue, in the process
receiving higher priority than those with expensive tagging.

Illustrative Example: Consider an AFpFT queue at an arbitrary busy time t
when a flow f2 packet is in service (i.e., being transmitted), see Fig. 6.3. At time
t, let us assume that the queue serves five flows f1, · · · , f5 which have 0, 0, 1, 2, 1
packets in the queue, respectively. The horizontal bars show the flows’ timestamps,
i.e., the tag of the last (previous) packet of the flows in queue. Let us also assume
that all packets have equal length.

Since packets are sorted in ascending order of tags, f1’s tag Γf1 must be smaller
than all others, and that the tag Γf4 must be the greatest of all the five flows. If
a packet of flow f1 (or f2) were to arrive at time t, since the flow has no packet in
queue, it would invoke cheap tagging that allows the arriving packet to obtain the
tag of the packet in transmission, i.e., Γf2. On the contrary, however, if a packet
of flow f3 were to arrive, it would receive an expensive tag of Γf3 + Δp. Similar
expensive tagging is invoked for packet arrivals of flows f4, and f5. While an f1
arrival obtains the least tag and gets sorted to the front of the queue, incoming
packets belonging to flows f3, f4 and f5 are placed away from the head. If the buffer
becomes full, these arrivals—particularly those of f4—may even be dropped.

2Δp = Lp/LM , where Lp and LM are the sizes of packet p and the maximum packet, respectively.

99

6. Statelet Fair Queue

f1 f5 f4f3f2 f4

f2
f3
f4

f1

Flow tags Γf at t

f5

packets

QueueScheduler

incoming

Figure 6.3.: Structural view of the queue in operation.

Observation 1. All packets already buffered in AFpFT queue at any time t
must have tags greater than that of the packet in transmission.

The rationale for the differential tag computations is as follows.

• Consider a high-bandwidth flow. It is more likely that such a flow is bottle-
necked since it naturally sends many packets, some of which may reside in
the buffer. The incoming packets of such a flow are likely to incur expensive
tag computation, see line 4 in Fig. 6.2.

• Consider a flow with a rate lower than the fair share rate, or a newly started
or restarted flow. Such a flow is unlikely to see previous packets of own flow
upon arrival. Its arriving packets invoke cheap or “favorable” tagging which
allows them to be scheduled close to the queue head.

A consequence of the differential tag computation is that the distribution of flow
packets in AFpFT queue is most likely to be non-uniform.3 High bandwidth flows
have their packets clustered closer to the queue tail, and packets from lower rate
flows closer to the head of the queue.

It is trivial to see that the tag computed for a packet is only meaningful for local
packet scheduling decisions. A wrong service tag computed at an arbitrary AFpFT
node does not impact the tag computation at downstream nodes, making AFpFT
more robust against router errors, unlike CSFQ [93, 90]. The tag encoding at a
router is merely based on the availability of flow’s entry in the list.

6.3.1.2. AFpFT as a Statelet Scheme

From an implementation perspective, AFpFT is a statelet scheme, keeping state for
a subset of the active flows in its flow list FL. The amount of state in FL is limited
by the buffer size. For the non-bottlenecked flows, incoming packets can simply

3Other queues exhibiting this behavior are CHOKe [78, 98] and Geometric CHOKe in Chapter 4.

100

6.3. The Scheme

pluck their tagging directly from the packet in transmission. For bottlenecked
flows, however, AFpFT needs to keep the Γ

p̂
—the tag of the last packet of the flow

found in the queue. The flow list size in FL is thus limited by the buffer size.

The two important perflow fields in FL are counti which stores the number of
flow i packets in the queue and finishi which stores the finish tag Γ

p̂
+ Δ

p̂
of the

last arrived packet of flow i, respectively. As packets arrive to queue, both fields
are updated to reflect the change. finishi is a relative measure of the amount of
service received by flow i (amount of flow traffic transmitted in units of LM). For
example, a high bandwidth flow i has relatively frequent arrivals and enqueueing,
and this increases the finishi (or the corresponding horizontal bar in Fig. 6.3)
significantly. When packets of flow i arrive, they assume increasingly larger service
tags which in turn push them to the queue tail. On the other hand, packets of new
flows would start with smaller finish as they have not received any service.

FL lists mostly the bottlenecked flows which are often the relatively high band-
width flows. Numerous measurement studies [105, 83, 66, 76] report that Internet
flow distribution is highly skewed with respect to sizes, and rates of flows. Accord-
ingly, a large proportion of Internet flows are indeed short-lived web traffic that
end up in TCP slow start phase. And, the “heavy-hitters”, or large and fast flows
in the Internet, are very few in number but contribute the lion share of Internet
traffic in volume. Other studies based on real network traces, e.g., [60], show that
even though the number of flows in progress can be very high at a router, the actual
number requiring buffering is limited to few hundreds both at very high-speed and
residential links. Using AFpFT, therefore, we mainly need to manage in FL the
few (potentially “heavy-hitting”) flows that regularly have packets queued in the
buffer. By keeping state only for a very small subset of in-progress flows, AFpFT
makes sure that the few relatively high rate flows cannot get more than the fair
share. In addition, most low rate flows often use cheap tagging to get service ahead
of the high rate flows. Since small flows are naturally disadvantaged, this prefer-
ential treatment is probably a desirable quality of router mechanisms [21]. AFpFT
inevitably fulfills that objective without making it an explicit design goal.

6.3.1.3. Drop Policy

Packet dropping in AFpFT is preceded by packet enqueueing. That is, when a
packet arrives to an AFpFT queue whose buffer capacity or threshold is reached,
the arriving packet must first be enqueued based on its tag. Then, the packet(s)
found at the tail are dropped. More than one packet may be dropped per arrival.
This is because the arriving packet may be larger in size than the one(s) that are
dropped. But this is only half of the story.

When packets are dropped, their corresponding flows receive no service. A
dropped packet has earlier updated the flow’s finish time when it arrived to the
queue. Therefore, a packet dropping should immediately be followed by some cor-

101

6. Statelet Fair Queue

rection of the flow finish time finish, and also count, in the FL. In order to un-
derstand the correction required, consider a congested router serving well-behaved
flows and an aggressive high rate flow f . Flow f often finds its packets queued near
the tail. When a flow f packet arrives, it first updates finishf in FL before being
queued near the tail. Later, the packet may be pushed to the tail and dropped
because of arrivals from other competing flows. In the long run, the flow’s finish
time no longer, as it should, indicates the flow’s transmission progress (or service
received), but the sum of the service received plus the dropped traffic (“obituaries”)
of the flow. Therefore, when a packet p of a flow is dropped, since the packet’s con-
tribution to the flow’s throughput is zero, the flow’s state (e.g., finishf) should be
as if the packet had never arrived to the queue in the first place. In short, we must
cancel out the contribution of p’s arrival to the flow finish time. Finding the exact
contribution is generally not possible because the finishf updating is done upon
p’s arrival, usually earlier than the time of its dropping. Since we lack information
about the previous finishf values, we cannot recover the value of finishf when p
arrived. Therefore, we fairly approximate this contribution by Δp. Summarizing,
when a packet p belonging to a flow f is about to be dropped, we update the flow
state as follows. If there are no other packets of the same flow in the queue, the
flow is removed from the flow list FL. Otherwise, countf decrements by 1, and the
current value of finishf is decremented by Δp.

In order to emphasize the importance of the flow finish time correction follow-
ing packet drops, we provide two examples. The first is the loss synchronization
problem of Sec. 3.3.1.

Example 1: We use the same terminology as in the original example and let us
assume that Δp = 1. From that example, service tag S(pk

f) = k − 1 for both flows
f ∈ {1, 2}. By time t = 2, packets p1

1 and p1
2 have been transmitted, and p2

1 is under
transmission, and packets p2

2 and p3
1 occupy the queue. Packet p3

2 arrives surplus
to the buffer capacity with a tag of 2. At t = 2, the finish tags of both flows would
be k = 3. Since p3

2 is dropped, finish2 is reduced to 2. By t = 3, p1
1, p1

2, p2
1 are all

gone, p2
2 under transmission, p3

1 occupies one slot in buffer, and packets p4
1 and p4

2
just arrive to queue. One of the last two arrivals must be dropped. Due to finish
time correction of flow 2, p4

2 obtains a smaller tag than p4
1 and gets ahead of it, even

though it arrives slightly later. The sequence of packet drops is then alternating,
and the full fairness restored as shown in Fig. 6.4.

Flow
1

Flow
2

0 1 2 3 4 5

0 1 2 3 5

t

t
4

Figure 6.4.: Riddance of loss synchronization.

102

6.3. The Scheme

Example 2: Figure 6.5 shows the result of 20 CBR sources sending at four dif-
ferent flow rates of 0.5Mbps, 1Mbps, 1.5Mbps, and 2Mbps for a total traffic rate
of 25Mbps. The capacity of the AFpFT link is 20Mbps. Flow groups 3 and 4
send more than the fair share rate of 1.25Mbps. As can be seen, without the finish
time correction following packet drops, the flows in the last group are punished
while the third flow group is transmitting at full incoming rate (see Fig. 6.5(a)).
With the correction, both high rate flow groups are limited to their fair share (see
Fig. 6.5(b)).

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

kb
ps

)

Flow ID

Offered Load and Flow Throughput

Flow Arrival
Flow Departure

(a) AFpFT without finishf adjustment.

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

kb
ps

)

Flow ID

Offered Load and Flow Throughput

Flow Arrival
Flow Departure

(b) AFpFT with finishf adjustment.

Figure 6.5.: Offered Load and Flow Throughput of 20 CBR sources under AFpFT.

6.3.1.4. Router Roles

AFpFT can be put into a DiffServ-like framework with edge and inner/core router
implementations. Since the number of flows are often limited at the edge, edge
routers can afford to add all in-progress flows to the list FL and maintain the full
perflow information; that is, edge routers can indeed perform perflow fair queueing
such as SFQ [44].4 This allows all traffic entering the network to be conditioned
at the local router. On the other hand, an inner router maintains flow information
only if the flow has some packets in the queue, as explained before. The question is:
how to differentiate the routers? One solution is for traffic sources to tag packets
with invalid or negative values. The first router where the flow enters the network
acts as edge / ingress upon reading the negative tag values. If the packet tag value
is nonnegative, the router assumes that the tag must have been assigned by an
upstream node and therefore acts as an inner node to the flow. From the above
description, we see that there is no hard-and-fast router configuration as such. The
router acts as an edge to a flow where that particular flow enters the network, and
acts as inner router to the flow otherwise.

4The flows can be removed from FL of edge routers through flow timeouts.

103

6. Statelet Fair Queue

6.3.2. Full Design of AFpFT

Figs. 6.6 and 6.7, respectively, demonstrate more complete pseudocodes of the AF-
pFT enqueueing and dequeueing operations at inner nodes. The following notations
are used in the pseudocodes.

Flow list FL variables
countf count of flow f packets in AFpFT queue Q
finishf finish timestamp of flow f

Functions and other variables
Γp service tag of packet p
V tag of packet in service / transmission
conn(p) flow/connection id of packet p

Variable V keeps track of the service tag of the packet under transmission. Note
that V is the smallest among all tags of queued packets. When a packet p of flow f
arrives to queue, the following router actions occur. If the flow is not listed, a flow
entry is created before packet p is assigned a tag. Then, f ’s flow parameters are
updated in the flow list FL and p is enqueued. If the buffer overflows, the packet(s)
found at the tail are dropped. Let us assume that the dropped packet(s) belong
to flow i. Flow i parameters are updated in FL following packet loss(es). If the
counti decrements to zero, flow i is removed from the flow list. For transmission,
on the other hand, a packet at the head of the queue is chosen. The tag of the
dequeueing packet is copied to V , followed by updating of counti in the flow list,
and a potential removal of flow entry in FL if the flow has no more queued packets.
When the queue is empty, V is reset and all flows entries are removed.

6.3.3. Generalizing the Scheme

AFpFT is a statelet fair queue—our generic term for AFpFT-like single queues
shared by all flows. Such queues sort arriving packets based on packet tags, and
have drop policies similar to that of AFpFT. They keep state only for those flows
having packets in queue. By varying the tag computation, we can define other
statelet fair queues. A generalized tag computation is given below. When packet p
of flow i arrives to queue, the packet tag assumes either of the two values:

Γp = Γ−→p + f1(Δp, Δ−→p) // cheap tagging (no flow i packet in queue)
Γp = Γ

p̂
+ f2(Δp, Δ

p̂
) // expensive tagging (previous flow i packet p̂ in queue)

where f1(·) and f2(·) are some functions. For AFpFT, f1(·) = 0, and f2(·) = Δ
p̂
.

As in AFpFT, packets are sorted into the queue in ascending tag values, and
hence queued packets have higher tags than the packet in service. A possible
future work is the close examination of other statelet fair queue tag computations
and their performance comparisons to that of AFpFT.

104

6.4. Performance Evaluation

1: Upon receiving p
2: f ⇐= conn(p)
3: if (f /∈ FL) then
4: Add f to flow list FL; initialize countf = 0
5: end if
6: if (countf ≥ 1) then
7: Γp ⇐= finishf //expensive tag
8: else
9: Γp ⇐= V //cheap tag

10: end if
11: //The next two lines update the f variables in FL
12: finishf ⇐= Γp + Δp

13: countf ⇐= countf + 1
14: enque p into Q // based on Γp value
15:

16: //Block A—drop policy when queue Q becomes full
17: while (Q-size ≥ Q-limit) do
18: Draw packet p from Q tail
19: i ⇐= conn(p)
20: if (i ∈ FL) then
21: counti ⇐= counti − 1
22: finishi ⇐= finishi − Δp //discrediting “obituaries”
23: end if
24: if (counti < 1) then
25: remove flow i from FL
26: end if
27: drop p
28: end while

Figure 6.6.: AFpFT packet enqueueing and dropping.

6.4. Performance Evaluation

6.4.1. Topologies and Parameters

We implemented AFpFT in ns-2. Unless stated otherwise, the topologies shown in
Fig. 6.8, and simulation parameters summarized in Table 6.1 are used for evaluation.
AFpFT flow fairness and link utilization are compared with Adaptive RED [36],
FRED [64], and CSFQ [92]. FRED and CSFQ implementations are freely available
[91]. As described in Chapter 2, FRED fairness mechanism is through fair allocation
of buffer space to flows, while CSFQ adopts perflow dropping rates (Φi − Φshare)/Φi
to bring down the outgoing rates of bottlenecked flows to Φshare. K and Kα are
averaging constants (time windows) used for estimating incoming flow rates and

105

6. Statelet Fair Queue

1: Draw −→p from Q head
2: if (−→p exists) then
3: // Block B— −→p is packet in service
4: V ⇐= Γ−→p
5: i ⇐= conn(−→p)
6: if (i ∈ FL) then
7: counti ⇐= counti − 1
8: end if
9: if (counti < 1) then

10: remove flow i from FL
11: end if
12: else
13: //Block C— Q empty; reset the queue & remove flows from FL
14: V ⇐= 0.0
15: ∀j ∈ FL : remove flow j from FL
16: end if
17: return −→p

Figure 6.7.: AFpFT packet Dequeueing.

n

0

bottleneck

(a) Single Congested Link.

R 1 R 2 R K R K+1

CBR-1 CBR-10

CBR-1 CBR-10

CBR-11 CBR-20 CBR-K1 CBR-K10

CBR/TCP-0

CBR/TCP-0

Source Sink

CBR-K1 CBR-K10

(b) Multiple Congested Links.

Figure 6.8.: Topology used for evaluation.

the fair share Φshare, respectively. In AFpFT, the only free parameter is LM which
is set to 1kB.

6.4.2. Single Congested Link

Fig. 6.8(a) shows 32 long-lived TCP (New Reno) flows and a single CBR flow
competing for a scarce 1Mbps bottleneck. The CBR flow sends at full bottleneck
capacity of 1Mbps, and the TCP windows are unlimited. The bottleneck buffer
size is 100kB. Figures 6.9 shows the results averaged over 30 replications. The fair
share rate in the above scenario is 30.3kbps per flow. AFpFT is an extremely fair
scheme, providing an average of 29.5kbps to each TCP flow, close to the ideal fair
share. It also manages to restrict the nonadaptive UDP flow to the fair share. The
same cannot be said for RED which allows unfair link domination (in excess of

106

6.4. Performance Evaluation

Table 6.1.: Default Settings used for Evaluation.

General Parameters Algorithms
Link and Buffer RED

Link speed 1Mbps minth 25% Buf lim.
Prop. delay 1ms maxth 75% Buf lim.
Buf. limit 50kB adaptive yes

Traffic Source FRED
TCP New Reno minth 25% Buf lim.
TCP segment size 960 B maxth 75% Buf lim.
UDP packet size 1000 B CSFQ
Flow start time t ∈ [0.0, 5.0) K 100 ms

Simulation Kα 200 ms
Simul. Duration 50s Buf thresh. 50% Buf lim.
Results taken 2nd half Flow weights Equal
Replications 30 or 100 AFpFT
Confidence level 90% LM 1kB

a whopping 70%) by the unresponsive flow. Average TCP flow throughput is a
meagre 8.4 kbps in RED. All flows are uniformly punished even though only UDP
is responsible for congestion. FRED significantly improves upon RED due to its
per flow dropping rates. Nevertheless, UDP still gets twice as much as an average
TCP flow (57kbps vs 28 kbps). In addition, despite the fact that all TCP flows
are identical with respect to round trip times, congestion control algorithm and
receiver window sizes, a maximum difference of 12kbps (≈ 40% of ideal share) is
noted between TCP flow throughput values in FRED. Using CSFQ and AFpFT
this difference is, however, less than 3kbps and 1kbps, respectively. The Jain’s
fairness index (see Sec. 2.2.4) scores between these identical TCP flows are: 0.9329
(RED), 0.9905 (FRED), 0.9994 (CSFQ) and 0.9999 (AFpFT). While CSFQ is better
than FRED in fair distribution of bandwidth among TCP flows, its performance
with regards to TCP bandwidth quota is generally poorer than FRED. Average
TCP flow throughput is 26kbps and UDP takes up more than three times the fair
share. This may largely be explained by the inadvertent packet dropping scheme
employed by CSFQ and its consequential impact on TCP throughput. CSFQ’s per
flow dropping rate is based entirely on the incoming flow rate Φi and fair share
Φshare and is given by Φi−Φshare

Φi
. CSFQ’s objective is to limit the throughput of a

congested flow i to the fair share Φshare. Dropping with the above rate can, due to
the unresponsive nature of UDP, successfully bring down UDP flow output rates to
Φshare. However, dropping TCP flows with the above rate5, rather than limit the

5A TCP friendly drop rate in the steady state should consider the desired average TCP through-
put and round trip delays ([75, 35, 66]). See also Eq. (2.3).

107

6. Statelet Fair Queue

TCP
UDP

 100

 1000

RED FRED CSFQ AFpFT

Throughput fairness between TCP and UDP (in Kbps).

8

700

28
57

26

93

29 30

 1

 10

Figure 6.9.: UDP and average TCP throughput [kbps].

 10 50 100 500 1000 5000
 0

 5

 10

 15

 20

 25

 30

 35

UDP Arrival Rate (Kbps)

RED
FRED
CSFQ

AFpFT

(a) Average TCP Throughput Comparison.

 1000

 10

UDP Arrival Rate (Kbps)

RED
FRED
CSFQ

AFpFT
 100

50 100 500 1000 500010

(b) UDP Throughput Comparison.

Figure 6.10.: Average TCP and UDP Throughput [kbps] as incoming UDP rate is varied.

flow rate to the fair rate Φshare, may potentially reset the congestion windows. This
occasional but unfortunate situation can degrade average TCP flow throughput.

What happens to TCP throughput if we vary the incoming rate of the UDP flow?
In Fig. 6.10, the UDP source rate increases by a factor of 500 along the x-axis. Most
values are in logarithmic scale. Performance difference becomes clearer with higher
incoming UDP rates. RED is very poor at restricting high bandwidth flows. The
linear RED curve in 6.10(b) indicates that the UDP share is a linear function of
the incoming UDP rate. When the UDP arrival rate is 5Mbps, over 99.99% of link
capacity is used by UDP, completely starving out the well-behaved TCP flows. As
before, CSFQ offers approximately 100kbps to UDP which is several times larger
than the TCP share. While FRED is better at controlling high bandwidth flows
than CSFQ, the TCP share slightly decreases with increasing UDP traffic rate.
AFpFT provides precisely the same fair share to TCP at all levels of incoming
UDP noise.

Another set of experiments consisting of only CBR flows is carried out, and
the results are shown in Figure 6.11. A total of 32 flows (with flow i sending at

108

6.4. Performance Evaluation

 0

UDP Flow IDs

RED
FRED
CSFQ

AFpFT

B
an

dw
id

th
/F

ai
r

ra
te

0.5

1

2

2.5

3

3.5

1.5

4 8 12 16 20 24 28 32

Figure 6.11.: Normalized throughput allocated for UDP flows.

i × 0.3125Mbps) are simulated. Following our argument earlier in this section, this
all UDP scenario is the natural environment for CSFQ’s fair bandwidth allocation.
AFpFT performs as good as CSFQ, allocating exactly the fair share of 0.3125Mbps
to all flows even though the last flow, for instance, sends 32 times as fast as the
first one. FRED, by contrast, fails to deliver the fair bandwidth allocation; indeed,
the maximum allocation can be several times larger than the minimum allocation.

6.4.3. Link Scalability and Different RTTs

This section considers fairness when TCP flows have largely distinct RTT delays
in a high-speed environment. The link speed at bottleneck is set to 1Gbps and the
link latency to 5ms. Now we have a total of 100 TCP flows divided, based on their
RTTs, into four equal groups: G1, G2, G3, G4. The RTTs are respectively 20ms,
40ms, 80ms, and 100ms. The queueing delay at a gigabit link is insignificant. Flow
i belongs to G�i/25	. We use 500 packets as our buffer size, which is a small fraction
of the bandwidth-delay product (BDP). The BDP is traditionally used as a general
rule of thumb to provision buffer size [6]. Under current routers (Drop-Tail) where
synchronous packet losses could be common, average TCP throughput is inversely
proportional to RTT [75]. Specifically from Sec. 2.2.2, the ratio between throughput
of two TCP flows is given by T1/T2 ∼

(
RT T2
RT T1

)α

[100], where 1 < α < 2. Letting α =
1 (optimistic assumption), the flows in groups G1,. . . ,G4 would attain throughput
r1, r1/2, r1/4, r1/5, respectively, where the G1 flow throughput r1 = 21 .33Mbps.
Figure 6.12(a) illustrates per flow throughput under different schemes.

First, the most unexpected of the observations: with default K = 100ms and
Kα = 200ms, CSFQ performance, labeled CSFQ1 in the figure, is worse than RED
and FRED. Using RED, for instance, the average throughput per G1/G4 flow are
20.6/3.9 Mbps, respectively. Corresponding CSFQ values are 24.3 and 2.6 in Mbps.
We believe that the averaging constants are too relaxed for CSFQ to be able to
accurately estimate and control the rates of low RTT high speed TCP flows. With
tighter window constants of K = 20ms and Kα = 40ms, CSFQ fairness shown

109

6. Statelet Fair Queue

 4

 8

 12

 16

 20

 24

 10 20 30 40 50 60 70 80 90 100 0

FRED
RED

AFpFT

Flow ID

Ideal Share

T
hr

ou
gh

pu
t (

M
bp

s) CSFQ1

CSFQ2

(a) Flow Throughput Fairness over a Gigabit link

Adaptive RED

 0

 50

 100

 150

 200

 250

 300

 18.6 18.8 19 19.2 19.4 19.6 19.8 20

A
ve

ra
ge

 q
ue

ue
 s

iz
e

av
g

(i
n

Pa
ck

et
s)

Time (s)

Static RED wq = 1/C

FRED wq = 1/CFRED wq = 0.002

(b) Impact of parameter sensitivity on FRED’s link utilization.

Figure 6.12.: Results for Sec. 6.4.3.

as CSFQ2 is much better, e.g., the average G1/G4 per flow throughput are 19
Mbps and 3.4 Mbps. Of all schemes, however, only AFpFT is significantly fair: G1
flows obtain only 20% more than the fair share and G4 flows receive on average
12% less than the fair share. We find that FRED is unfair and only marginally
better than RED. G1 flows in FRED receive on average 4.8× than those of G4.
Therefore, fairness in a network with a mix of different RTT flows, as is the case in
the Internet, could be very poor under FIFO, RED, FRED and CSFQ. In addition,
FRED produces both the least total throughput and total link utilization of all
schemes. In steady state, we obtain the following link utilizations: RED (99.9%),
FRED (92.7%), CSFQ (95.7%) and AFpFT (98.9%).

110

6.4. Performance Evaluation

The RED version imbedded in FRED is to blame for the poorer link utilization
of FRED. FRED was proposed much earlier than the adaptive and gentle6 pa-
rameters introduced to enhance RED’s performance. FRED may therefore suffer
from poor queue utilization caused by sensitivity to the parameters (see [36, §5.1]).
The default FRED values maxp = 0.1 and wq = 0.002 are too conservative for the
scenario in hand. RED’s recommended queue averaging constant wq, for instance,
is 1 − exp(−1/C), where C is the link speed in packets/sec. Since C is very high—
1.25 × 105 in this case—we can fairly approximate it as wq � 1.0/C.7 Without
the adaptive feature, the static parameters do not allow FRED to operate opti-
mally. Adaptive RED, on the other hand, can improve throughput performance by
self-tuning, enabling it to maintain a target avg away from maxth. And gentle
smoothly increases the dropping probability pb when the avg exceeds maxth. As
a consequence, queue utilization in FRED, and generally in non-adaptive RED, is
poor. Figure 6.12(b) shows the link utilization curves for non-adaptive RED, Adap-
tive RED with gentle, FRED with default wq = 0.002, and FRED with wq = 1/C
all in a typical run of heavy load scenario. Adaptive RED always attempts to main-
tain avg around 1

2 (maxth + minth) = 250. We see that the default value wq = 0.002
is too large, making FRED’s avg extremely sensitive to the actual queue size. The
behavior of FRED (wq = 1/C) is similar to the non-adaptive RED (with default
wq = 1/C), i.e. both increase avg in cycles corresponding to alternating periods of
high loss and low loss. Hereafter, we use wq = 1/C for FRED.

6.4.4. Multiple Congested Links

This section discusses how flow throughput fairness is affected across multiple con-
gested links. Topology for this section is borrowed from [92] and shown Fig. 6.8(b).
The links connecting hosts to routers are 20Mbps, and routers to routers 10Mbps.
Each 10Mbps link is traversed by 11 flows: 10 UDP (CBR) cross flows each with
rates 2 Mbps and a well-behaved flow 0. In the first experiment, flow 0 is TCP. In
the second experiment, flow 0 is CBR sending close to the fair share of 0.909Mbps.
We collect throughput of flow 0 as a function of the number of congested links L.
Flows start times are uniformly distributed on [0, 5.0]. Results from 100 replications
are shown in Fig. 6.13.

Regardless of whether the flow is TCP or CBR, its throughput decreases as it
traverses multiple congested links. Since UDP does not react to congestion, its
throughput is generally higher than that of TCP. There is a total lack of protection
for TCP flow when RED is used, see Fig. 6.13(a). Corresponding UDP throughput
decays with increasing number of links when using RED, see Fig. 6.13(b). The
results here are generally consistent with those in [92, Fig. 8]. In FRED, UDP

6Recall from Sec. 2.4.2.1 that adaptive and gentle parameters can improve RED performance.
7We use the approximation: (1 − 1

C
)C � e−1. wq ≈ 1/C for all realistic cases since C is usually

large enough. Following this approximation, RED’s avg computation can then be simplified
as: avg = (1 − wq)avg + wqq = ((C − 1)avg + q)/C.

111

6. Statelet Fair Queue

 1

RED

Ideal Share

0

200

400

600

800

1000

2 3 4 5 6
Number of congested links (L)

Throughput (Kbps) of TCP flow.

FRED

CSFQ AFpFT

(a) Flow 0 is TCP.

Number of congested links (L)

0

200

400

600

800

1000

1 2 3 4 5 6

Throughput (Kbps) CBR-0 flow.

RED FRED

CSFQ AFpFT

(b) Flow 0 is UDP with rate 1 Mbps.

Figure 6.13.: How flow throughput scales with number of congested links.

throughput decreases steadily with the number of congested links. CSFQ scales
much better than both RED and FRED: It provides a stable throughput share to
UDP with increasing links, and a slowly decreasing share to TCP. The only excep-
tion to the usual trend of throughput decline is AFpFT which provides reasonably
fair share to the flow no matter what the kind of flow traffic or the number of links
traversed. A very important, but seemingly discrepant, observation is the fact that
TCP flow throughput slightly increases with L in AFpFT. This non-intuitive ob-
servation is in sharp contrast to all other schemes, and can be explained as follows.
For small L, due to smaller propagation delays, many packets may arrive before
previous packets of the flow have left the queue. The flow becomes listed in flow
list FL, and the arriving packets may be queued at or near the queue tail. This
means there is a higher probability of packet drops and/or higher queueing delays.
This in turn causes timeouts and slower TCP sending rates. For large propaga-
tion delays (i.e., multiple congested links), it is the opposite: When packets arrive,
there may be no previous packets in the queue. Such packets use cheap tagging
(see Sec 6.3.1.1) and are pushed to the front of the queue as soon as they arrive.
The overall result is fewer packet drops, smaller average queueing delay, and higher
flow throughput.

We verify the above observation by tracking TCP packet arrivals and departures
at the R1-R2 link (Fig 6.8(b)). Three case studies are provided: when the total
number of congested links L are 1, 6 and 10 (see Fig 6.14). For all cases of L, we
consider the TCP flow packets on the link R1-R2.

Fig. 6.14(a) shows that TCP packets arrive frequently when L = 1, since the
propagation delay is the smallest of all cases. When the traffic destination is 10
multiple congested links away, windows of TCP packet arrive slowly and are dis-
tinctly separated by time delay. In L = 1 case, packets arrive before the previous
packets leave the buffer (see Fig. 6.14(c)). The flow becomes listed and arriving

112

6.4. Performance Evaluation

Time of packet arrivals

Link 1
Link 6

Link 10

Pa
ck

et
Se

qu
en

ce
N

um
be

r

21.81.61.41.21
40

80

120

160

200

(a) Initial TCP flow arrival rate on R1-R2.

Pa
ck

et
Se

qu
en

ce
N

um
be

r

Time of packet arrivals

Link 1
Link 6

15.6 15.8 16 16.2 16.4
1550

1650

1750

1850

Link 10

(b) Steady state TCP flow arrival on R1-R2.

Time

Queueing Delay for flow 0. Link = 1

Arrivals
Departures

Pa
ck

et
Se

qu
en

ce
N

um
be

r

21.81.61.41.21

100

140

180

220

(c) Queuing delay L = 1 (initially).
Time

Queueing Delay for flow 0. Link = 1

Arrivals
Departures

16.416.21615.815.6
1740

1780

1820

1860

Pa
ck

et
Se

qu
en

ce
N

um
be

r

(d) Queuing delay L = 1 (steady state).

Time

Queueing Delay for flow 0. Link = 6

Arrivals
Departures

Pa
ck

et
Se

qu
en

ce
N

um
be

r

21.81.61.41.21
60

100

140

180

(e) Queuing delay L = 6 (initially).
Time

Queueing Delay for flow 0. Link = 6

Arrivals
Departures

Pa
ck

et
Se

qu
en

ce
N

um
be

r

16.416.21615.815.6

1780

1820

1860

1900

(f) Queuing delay L = 6 (steady state).

Time

Queueing Delay for flow 0. Link = 10

Arrivals
Departures

Pa
ck

et
Se

qu
en

ce
N

um
be

r

21.81.61.41.21

60

80

100

120

140

(g) Queuing delay L = 10 (initially).
Time

Queueing Delay for flow 0. Link = 10

Arrivals
Departures

Pa
ck

et
Se

qu
en

ce
N

um
be

r

16.416.21615.815.6

1560

1580

1600

1620

1640

(h) Queuing delay L = 10 (steady state).

Figure 6.14.: Study of TCP flow under multiple congested links.

113

6. Statelet Fair Queue

packets get queued near the tail, and therefore both the average queueing delay and
packet drops are the highest for L = 1. For our simulation run of 50s: the average
queueing delays are 40ms (L = 1), 24ms (L = 6), 17ms (L = 10) and packet drops
are 300, 85 and 55 respectively. As can be seen in Fig. 6.14(g),(h), most TCP
packets leave the queue as soon as they arrive for L = 10. Even though the flow
for L = 10 is not listed most of the time, TCP throughput still suffers because
of large propagation delays, or equivalently large round-trip delays. That means,
TCP throughput share when L = 10 (not shown) is less than the TCP throughput
share when L = 6.

When L = 6, on the other hand, the flow has moderate round-trip delay. This
occasionally allows flow’s previous packets to empty the queue before new flow’s
packets arrive (see Fig. 6.14(f)). When such packets arrive, they are queued near
the front of the queue and are scheduled for transmission immediately.

6.4.5. Other Traffic Models

6.4.5.1. Web Traffic Model.

We consider performance of Web traffic which forms the most dominant portion
of Internet traffic. Such flows are typically short-lived and often end up during
the slow start phase. We model such traffic as a Poisson arrival process with an
average of 25 new sessions per second, and the size of each session (file) Pareto
distributed with average size of 30kB (about 30 packets) and shape parameter 1.3.
The model captures the heavy-tailed (highly variable) nature of Web file sizes and
their transmission times [19]. Session statistics such as mean transfer times are
important for such flows. We simulate the flows together with a 5Mbps CBR flow
under a dumbbell topology: 10Mbps, 1ms link with buffer size of 100 packets. The
results are summarized in Table 6.2.

AFpFT performs the best in terms of fulfilling the short transfer demands of
mice flows. Half of the web flows finish the transfers under 50ms. The mean
transfer times of flows are 640ms (RED), 150 ms (FRED), 220ms (CSFQ) and
110ms (AFpFT). A flow, on the average, completes its web transfer twice as fast
in AFpFT as in CSFQ. In all schemes, over a thousand flows have completed their
transfers within 50s of simulation. The number of flows that complete transfers is
larger in AFpFT than in any other scheme.

6.4.5.2. ON-OFF Traffic Model.

The bottleneck is now used by N − 1 CBR sources sending at the fair rate, and 1
bursty ON-OFF source. We choose N = 20. The ON and OFF periods are taken
from exponential distributions with means of 0.2s and (N − 1) × 0.2s = 19 × 0.2s,

114

6.5. Discussion and Related Works

Table 6.2.: Web Session Statistics under Different Router Schemes.

Scheme
Percentage of Flows With Transfer Times

< 0.05s < 0.5s < 1.0s < 2.0s < 5.0s ≥ 5.0s
≥ 0.05 ≥ 0.5 ≥ 1.0 ≥ 2.0

RED 6.70 64.75 16.00 6.50 4.80 1.30
FRED 26.90 69.50 2.28 0.89 0.33 0.09
CSFQ 24.60 67.74 5.00 1.50 0.97 0.16
AFpFT 50.20 47.23 1.46 0.74 0.28 0.08

respectively. During ON period, the ON-OFF source sends at full link capacity
of 10Mbps, making it highly bursty. Then it goes idle during the OFF period.
ON-OFF sources are normally challenging for AFpFT because at the start of an
ON period a packet potentially arrives after packets of previous ON periods have
left the buffer. Our interest here is how well the algorithms can restrict this bursty
source. Of all packets sent by the ON-OFF source, 92% (RED), 22% (FRED), 28%
(CSFQ) and 21% (AFpFT) have been delivered. The result confirms that AFpFT
matches FRED in restricting the bursty ON-OFF source.

6.5. Discussion and Related Works

One major motivation for this work is the widespread consensus that perflow fair
queueing algorithms are both stateful and complex. We believe that AFpFT is
relatively simpler and more scalable as it is based on a single aggregate queue, and
its design lacks the complex buffer partitioning and associated dynamic scheduling
states. AFpFT’s packet transmission is a very simple operation of dequeueing
the packet at the head of the queue. The only complex operation seems to be the
sorting of packets upon their arrival. But the complexity of this operation, and also
the amount of flow-level state, is limited by the buffer (backlog) size. Note that
the buffer size is a trade-off between performance and complexity. With increasing
buffer sizes, AFpFT closely approaches the perflow queueing mechanisms in amount
of flow state, operational complexity and quality of flow fairness. Nevertheless, in a
more mature form of AFpFT, several optimizations can be applied to simplify the
packet sort operation. For instance, since we have two kinds of tag computation,
we can define two queues: one for the cheaply tagged packets and another one for
the expensively tagged packets. The former is apparently a FIFO queue having a
higher priority than the latter. The sort operation is then restricted only to the
latter queue. We discuss other optimizing enhancements shortly.

Recent studies on real network traces and analysis based on the statistical na-
ture of Internet flows, e.g., [60], have contradicted the earlier claims of complexity
associated with perflow fair queueing algorithms. Accordingly, even though the

115

6. Statelet Fair Queue

number of flows in progress can be very high at a router, the actual number of
flows requiring buffering or scheduling (i.e., active flows) is limited to few hundreds
both at very high-speed and residential links. Still, implementations may require
that the buffer space be partitioned among the active flows or that each active flow
be assigned a physical queue. An example of perflow fair queueing proposed for
high-speed implementation is [47] which adopts the latter approach: It dynamically
maps a physical queue to an active flow. In light of the finding above that “only
few flows are active and need buffering”, AFpFT and statelet fair queues in general,
rather than being dismissed, can be regarded as simple alternative implementations
of perflow fair queueing algorithms operating on a small buffer size.

AFpFT sorts packets on arrival and always serves the packet at the head of
the line. This kind of queue is not entirely new to our work. It has also been
adopted in the Cross-protect architecture [61] which is probably the most related
to this work. Cross-protect eliminates the explicit signaling of IntServ and packet
marking of DiffServ in order to provide implicit service differentiation between
best-effort and streaming flows. It has two mutually complementary functional
components: perflow fair queueing and implicit admission control. The perflow
fair queueing scheme adopted, called Priority Fair Queueing (PFQ), is an enhanced
version of the SFQ algorithm. PFQ gives higher priority to packets if they are of
smaller sizes or if their corresponding flows have incoming rates less than the fair
share rate. This arrangement allows for streaming flows and lower rate elastic flows
to obtain better QoS implicitly without signaling or packet marking. There are
several similarities and differences between AFpFT and Cross-protect. We outline
apparent similarities first: both can use SFQ for tagging packets; both maintain
a list of active flows; both use similar type of sorting queues as mentioned above.
One of the differences between AFpFT and Cross-protect is that packet dropping
in the latter is Longest Queue Drop (LQD). The active flow list in Cross-protect
maintains the flow backlog field. From this information, it is possible to identify
the most backlogged flow from which to drop a packet. Another difference is how
implicit service differentiation is realized. Cross-protect assigns higher priority for
lower rate flows and explicitly to small-sized packets; AFpFT assigns cheap tagging
to packets coming from the lower rate flows and this allows the packets to jump
closer to the queue head.

Cross-protect is highly optimized. The implicit admission control enables the
architecture to be scalable, stable and provides for service guarantees. In addition,
the flow list is also protected from exhaustion by some probabilistic insertion of
new flows to the list. Some of these optimizations can directly be borrowed to
produce a more mature form of AFpFT. For example, listing flows (into FL) based
on a probabilistic criterion can be useful to simplify the per-packet operation and
alleviate flow list exhaustion. In this regard, when packets of a newly started flow
arrive to a queue, for example, we directly apply cheap tagging to those packets,
and we list the flow into FL only with a small probability, say p. The majority
of small flows are then scheduled without being entered into the flow list. Such

116

6.6. Conclusion

simplifying optimizations based on probabilities or sampling frequencies are also
adopted in a number of other schemes in the literature [74, 76].

6.6. Conclusion

Designing core-stateless versions of fair perflow fair queueing is not an easy task [54].
One hurdle is that computation of perflow parameters is dependent on other in-
teracting flows and it is generally not possible to determine these parameters at
network edges. The goal of AFpFT is to approximate the fairness of per flow fair
queueing algorithms with minimum states possible. Unlike some of the existing
works [64, 66], we make no assumptions about the kind of traffic in the Internet,
nor do we explicitly configure routers as core or edge as in [92]. Where flows enter
the network, the first router acts as edge and keeps the flow state. This is generally
a sound assumption since edge routers manage fewer flows and, being closest to the
traffic sources, are ideally suited to provide flow level fairness. Inside the network
where there are many more flows, we manage only a subset of those flows that
have relatively high rates. Following the heavy-tailed Internet flow distribution,
this subset is generally manageable in number. The state requirement in the core
network can therefore be limited (from above by the buffer size). Extensive simula-
tions show that the fairness performance of AFpFT is superior to related schemes
such as CSFQ, RED, and FRED.

Chapter 7 continues the evaluation of AFpFT in enforcing flow fairness in the
face of heterogeneity in TCP congestion avoidance algorithms at the traffic sources.

117

7. Embracing TCP Heterogeneity
using Queue Mechanisms

A large portion of our work so far in this thesis is concerned with how router algo-
rithms in the literature—including those proposed in this thesis—fare in terms of
ensuring fairness among TCP flows or protecting TCP flows against unresponsive
flows lacking congestion control (e.g., UDP flows). The considered TCP flows adopt
the Additive-Increase-Multiplicative-Decrease (AIMD) algorithm [48]. During the
last decade, however, the Internet has continuously been embracing a tremendous
amount of heterogeneity in deployed TCP congestion avoidance algorithms. Having
no standards to follow, these newer algorithms are ad hoc implementations adopted
by various operating system vendors. This begs the question of whether these het-
erogeneous TCP algorithms are fair or compatible both to each other and to the
classical TCP algorithm. The objective of this chapter is to investigate the fair-
ness among commonly deployed TCP variants in the presence of several well-known
queue management (QM) schemes at the bottleneck. Our simulation results show
that most of the TCP algorithms are surprisingly highly unfair to each other or to
the traditional TCP algorithm under several queue management schemes. The AF-
pFT scheme presented in Chapter 6, however, helps battle the TCP heterogeneity
and enforce fairness among the various TCP variants considered.

This chapter has six sections. Sec. 7.1 introduces the unfairness problem among
TCP algorithms and motivates the problem with an illustrative example, followed
by an overview of the related works in Sec. 7.2. Sec. 7.3 provides some background
on the various TCP congestion avoidance algorithms considered in this work. Our
study is based on extensive simulation experiments, and Sec. 7.4 is devoted to
clarifying the simulation environment and the default parameters of the router
mechanisms used in the study, before presenting our results in Sec. 7.5. Performance
of six different TCP congestion avoidance algorithms (traditional AIMD, Vegas,
HSTCP, CTCP, BIC and CUBIC) are considered under two general scenarios. The
first scenario compares the TCP friendliness of the various TCP algorithms, and
the second scenario studies the full coexistence of all the TCP algorithms operating
together. Our closing remarks are presented in Sec. 7.6.

119

7. Embracing TCP Heterogeneity using Queue Mechanisms

7.1. Introduction

By allowing traffic sources to adapt their sending rates to the network congestion
level, the traditional TCP algorithm has contributed greatly to the robustness
of the Internet. Its window increase-decrease function is governed by AIMD(1,
1
2) [48]. That means, TCP increases its sending window by 1 TCP segment size
following a loss-free round-trip-time, but cuts its sending window by half upon
a packet loss. This traditional TCP algorithm has been standardized by IETF
and widely deployed at end hosts. Hereafter, we refer to this type of TCP as the
Standard TCP, see Sec. 7.3. Due to its ubiquitous popularity, the Standard TCP
algorithm has also shaped the design of several queue management mechanisms,
such as RED [10, 38, 36], FRED [64], RED-PD [66], and SRED [74]. Refer to
Sec. 2.4.2 and Sec. 4.8. Such mechanisms are often designed to be TCP-aware
since their packet drop functions are optimized to the Standard TCP. That is, the
drop policies implicitly assume that the flows traversing the routers conform to the
Standard TCP and react to packet losses as such. For example, the packet drop
principle of RED-PD recognizes that a packet drop does not merely result in the
loss of the packet, but also abruptly reduces the TCP window by half.

Today, the Internet is no longer controlled by a single TCP algorithm. Due to
its failure to scale and adapt, the Standard TCP congestion control algorithm is
losing its default status in many of the newer operating systems designed for high
speed environments.1 The Standard TCP’s window increase of 1 TCP segment per
round-trip-time (RTT) is deemed too conservative to efficiently utilize the vast link
capacities available in such networks, and especially so when the RTTs are large. In
order to address this scalability problem, the research community responded with
several high-speed variants of TCP such as HighSpeed TCP (HSTCP) [32], Scalable
TCP (STCP) [56], Binary Increase Congestion Control (BIC) [100], CUBIC [45],
Compound TCP (CTCP) [95], eXplicit Congestion control Protocol (XCP) [52] and
FAST TCP [51]. These proposals claim to operate just like the Standard TCP in
low and medium speed environments, to be compatible or fair to legacy TCP flows.
When the window reaches a certain threshold, called the low window, they switch to
their “scalable modes” whereby the window increases per RTT become significantly
larger than 1. Little attention is paid to how these various proposed scalable TCP
variants interact in networks [79], and how they behave in the presence of queue
management algorithms designed with Standard TCP in mind.

In this chapter, we set out to study a rarely addressed problem: the TCP inter-
protocol flow compatibility in networks.2 Specifically, how do the new conges-
tion control schemes interact with Standard TCP and with each other in
the presence of (i) Drop-Tail routers, or (ii) other queue schemes (that
are normally designed for Standard TCP)? End users have freely adopted

1Sample default TCP deployments are BIC and CUBIC in Linux distributions [2], and CTCP
in some Windows operating systems.

2The general problem has recently generated a lot of interest on the end2end mailing list [67].

120

7.2. Related Work

various end-to-end congestion control algorithms. In fact, a recent measurement
study shows that only a small percentage of popular Web servers deploy the Stan-
dard TCP algorithms [102].3 Due to the heterogeneity in end-to-end algorithms
and the potential for incompatibility, the mandate of ensuring equitable sharing of
scarce network resources may routinely fall on the network provider. This is usually
accomplished by enabling the right queue mechanisms along the user’s flow path.
Since the drop policies of some classical queue management schemes are optimized
to the Standard TCP, it is interesting to understand how the queue management
schemes cope in the presence of heterogeneous TCP congestion control.

We motivate the TCP protocol incompatibility problem with a simple example.
Fig. 7.1 depicts the bandwidth shares of six distinct TCP flows (i.e., Standard
TCP, Vegas, HSTCP, CTCP, BIC and CUBIC) competing on a 500Mbps Drop-
Tail bottleneck link, with a propagation delay of 10ms. We employed the Linux
implementations [99] of the TCP variants in a 200-second ns-2 simulation. Signifi-
cant Web and long-lived TCP flows were introduced as background traffic in both
forward and reverse directions, to avoid phase effects [40]. As can be seen, cur-
rent Internet routers may not have the required mechanism to enforce protection
to competing flows, even when the flows are equipped with end-to-end congestion
control algorithms. In this scenario, CUBIC and CTCP look compatible or fair to
the Standard TCP. However, BIC obtains an average throughput of over 180 Mbps,
which is more than the sum of the throughput of all the other five flows, or more
than 50 times than the throughput of Vegas (not shown).

HSTCP

CTCP/Standard/CUBIC

BIC

20

60

100

140

180

150 160 170 180 190 200
Time (s)

T
hr

ou
gh

pu
t(

M
bp

s)

Figure 7.1.: Unfairness among different TCP congestion control algorithms.

7.2. Related Work

Most analytic works on high-speed TCP throughput are restricted to Drop-Tail
routers where synchronous loss events are common [32, 100]. Along this line, the

3Approx. 45% of Web servers adopt BIC / CUBIC.

121

7. Embracing TCP Heterogeneity using Queue Mechanisms

steady-state average TCP window W is formulated by the TCP response function

W =
c

pd
(7.1)

where c and d are protocol constants, and p is the loss event rate or probability.
See plots of TCP response functions for selected TCP algorithms in Fig. 7.2. Recall
from Eq. (2.4) that for Standard TCP c =

√
3/2 and d = 1/2. And for HSTCP,

c = 0.12 and d = 0.835.

1e-21e-31e-41e-51e-61e-71e-8

1e+2

1e+4

1e+6
Standard TCP

BIC
HSTCP

Loss event rate p

1e+0

W
(p

ac
ke

ts
)

Figure 7.2.: TCP response functions. For BIC, β = 1
8 , Smax = 32, Smin = 0.01.

The original works of the high-speed TCPs [100, 95, 45] focus on the proposed
protocol’s (i) scalability, that is efficient use of the high link capacities available,
(ii) TCP compatibility, that is whether they are fair to Standard TCP in medium
or low speed environments, and (iii) intra-protocol RTT-fairness in the presence of
Drop-Tail routers.

Though important for understanding the stability of the Internet, the study of
inter-protocol fairness among high-speed TCP algorithms has received little at-
tention, see [70] for survey-style review of such works. Often, the inter-protocol
evaluation works consider a mix of just two high-speed protocols operating in Drop-
Tail networks. To the best of our knowledge, there seems to be no comprehensive
inter-protocol throughput performance study in the presence of other QM schemes.
A recent exception is [101] which is an experimental evaluation of high-speed TCPs
over certain queue management schemes operating in 10Gbps networks. The study
is limited and does not, for example, consider CTCP and BIC which are two pop-
ular Web server deployments today [102]. In this chapter, the aim is to bridge the
gap by studying whether the high-speed TCPs (1) are fair to the Standard TCP, (2)
can coexist in the presence of the incumbent scheme, i.e., Drop-Tail, and other QM
schemes that are probably proposed to be (Standard) TCP-aware. In a broader
sense, the importance of the study is to (1) understand the stability of the Internet
which evolves with an increasing heterogeneity of the deployed TCP algorithms,
and (2) question the suitability of existing QM schemes in embracing the changing
dynamic of Internet traffic.

122

7.3. Background

7.3. Background

TCP congestion control is complex and consists of, among others, the slow start
mechanism, congestion avoidance mechanism and loss recovery mechanism. Typ-
ical examples of loss recovery mechanisms are Reno [4], NewReno [37, 46] and
SACK [68]. Examples of congestion avoidance algorithms are AIMD [48], Vegas [12]
and BIC [100]. By diverse combinations of the constituent mechanisms, different
flavors of TCP congestion control algorithms can be created. These TCP conges-
tion control algorithms are customarily named after their loss recovery mechanism
or the congestion avoidance algorithm. By Standard TCP in this chapter, we mean
TCP adopting AIMD(1,1

2) and SACK as its congestion avoidance and loss recovery
mechanisms, respectively. The focus of this section is the description of the various
congestion avoidance algorithms compared in this work.

AIMD(α, β)

TCP’s window is characterized by a linear increase and an exponential decrease,

W =
{

W + α(W) // linear increase upon no packet loss
W × (1 − β(W)) // multiplicative decrease upon a packet loss

Examples of AIMD schemes are Standard TCP and HSTCP. For Standard TCP,
α(W) = α = 1 and β(W) = β = 0.5. That means, the window increases by
1 segment when there is no packet loss in the previous round, and cut by half
otherwise. In HSTCP, however, α(W) and β(W) are taken from a generated table
of values based on the current W . Generally, as W increases above 16, β(W)
decreases from 0.5 towards 0.1, but α(W) increases from 1 to over 70 [32]. Example:
Let a packet loss is detected when W = 75, 000. Standard TCP responds by halving
the window to Wstd = 75, 000(1 − β) = 75, 000(1 − 0.5) = 37, 500, while HSTCP
responds by Whstcp = 75, 000(1 − β(W)) = 75, 000(1 − 0.1) = 67, 500 packets.
However, if no packet loss (or “congestion”) is detected in the previous round-trip-
time, Wstd = 75, 001 and Whstcp = 75, 000 + 69 = 75, 069. As a result, Standard
TCP is very conservative in window increases whereas HSTCP is suited for high
capacity links.

BIC and CUBIC

BIC window growth function is marked by binary search increases and additive
increases. In order to understand BIC further, let us exemplify with a packet loss.
Before a packet loss, the advertised window size is Wmax, and the new window
after the loss (or multiplicative decrease), is Wmin which equals (1 − β)Wmax. BIC
finds the midpoint between Wmin and Wmax. If the distance from the current /
minimum window Wmin to midpoint is larger than a configurable parameter Smax,

123

7. Embracing TCP Heterogeneity using Queue Mechanisms

the window increases additively by Smax. Otherwise, the window jumps to the
midpoint. If there is no loss after attaining the new window, Wmin takes on the
current window. If there is a loss, however, the window before loss becomes the new
Wmax and the window after loss becomes Wmin. This window function continues
until the distance to midpoint falls below another parameter Smin.

CUBIC is proposed as an improvement over BIC. Its window is a cubic function
of T or the time elapsed since the last loss event,

W = C(T − K)3 + Wmax (7.2)

where C is a constant, K = 3
√

Wmaxβ
C , and Wmax is—as in BIC—the window size

just before the last multiplicative reduction. This real-time window increase of
CUBIC allows for better TCP friendliness and RTT-fairness in low speed or short
RTT situations.

Vegas

Note that AIMD, BIC and CUBIC are all loss-based approaches. That means, the
network congestion is implicitly signaled to the TCP sources through the loss of
packets. Vegas is a delay-based approach. It samples RTT variances to deduce net-
work congestion. An increased round-trip-delay indicates congestion and is followed
by a linear reduction of the window, and vice versa. If a stable RTT is maintained,
the window size remains unchanged.

Vegas has better RTT-fairness than the Standard TCP, and yields better through-
put in the absence of competition from the loss-based TCP flows.

CTCP

This is a synergy of loss and delay based approaches, or equivalently, the Standard
TCP coupled with a scalable delay based component. The delay based component
makes CTCP protocol RTT-fair and efficiently scale to large bandwidth. Just like
in Vegas, the delay component senses the underlying network load from packet delay
samples. If the network is not congested, the delay component quickly enables the
flow to ramp up its sending rate or window.

7.4. Simulation Environment

This section outlines the simulation environment and default configurations used in
this chapter. The system topology is shown in Fig. 7.3. There are N TCP sources
competing over a bottleneck link of capacity C = 1000Mbps, buffer size B, and a

124

7.5. Evaluation and Results

bottleneck link propagation delay D. Unless stated otherwise, B is dimensioned as
2×C×D, which is less than 100% of the bandwidth-delay product. We used the ns2
implementations of Standard TCP, Vegas, HSTCP, CTCP, BIC, and CUBIC ported
from Linux [99] and without changing the default parameters. Since most end
users have neither the expertise nor the desire to change TCP protocol parameters,
deployments often operate with their default parameter values.

The bottleneck link implements one of the five schemes Drop-Tail, RED [10,
38, 36], CHOKe [78], FRED [64], and AFpFT presented in Chapter 6. Drop-Tail
and RED are presented as baseline cases. CHOKe and FRED are extensions of the
RED queue with differential flow drop rates. While CHOKe is completely stateless,
FRED and AFpFT are statelet.

In order to avoid phase effects [40] in simulations, we introduce significant Web
and Standard TCP traffic (with advertised windows ≤ 50) in both directions. For
example, the background traffic constitutes about 11-18% of the link capacity for
Scenario 1 experiments. The background traffic provide competition with TCP
data flows in the forward direction, and with ACKs in the reverse direction. Default
queue configurations are as follows. For RED, CHOKe and FRED: minth = B/4,
and maxth = 3B/4. Recall from Table 3.2 and the ensuing discussion that ad-
justing maxth and minth to the available buffer size helps improve the throughput
performance of Adaptive RED. For RED and the RED component embedded in
CHOKe, both gentle [30] and adaptive [36] parameters are enabled; for FRED,
queue averaging constant wq = 1/C, see Sec. 6.4.3.

TCP

TCP

TCP

R1 R2
C

1

2

N N

2

1

B

Sources Sinks

Figure 7.3.: System model.

7.5. Evaluation and Results

Our major performance metric in this study is flow fairness as quantified by Jain’s
fairness index [49] (see Sec. 2.2.4). Additional performance metrics is the link
efficiency as measured by the total link utilization.

We conduct extensive experiments using two general scenarios. Scenario 1 inves-
tigates TCP friendliness, or whether or not the various TCP types can be fair to
competing Standard TCP flows and is presented in Sec. 7.5.1. Scenario 2 considers
the coexistence of all TCP types, and is presented in Sec. 7.5.2. Both scenarios are

125

7. Embracing TCP Heterogeneity using Queue Mechanisms

carried out in the presence of different QM schemes at the bottleneck. In general,
for a given QM scheme, we compare the inter-protocol fairness among the TCP
variants when the flows experience similar and different round-trip-times, and bot-
tleneck buffer capacities. The first 100 seconds were not considered when reporting
steady-state results.

7.5.1. Scenario 1: TCP Friendliness

This scenario investigates the compatibility of different congestion control algo-
rithms with Standard TCP. In each experiment, there are N = 6 TCP flows compet-
ing on the bottleneck link; three flows are of type Standard TCP and the remaining
three belong to “Other” TCP flows of the same type, e.g., Vegas. The flows have
three different round-trip-times, labeled as rtti, i ∈ {1, 2, 3}. Disregarding the
queueing delays, the RTTs are rtt1 = 60ms, rtt2 = 120ms, rtt3 = 240ms. One
flow each from Standard TCP and the “Other” TCP has an RTT of rtti. That is,
Standard-1 and “Other”-1 have rtt1, and Standard-2 and “Other”-2 have rtt2, and
Standard-3 and “Other”-3 have rtt3.

Figure 7.4 shows the result of the 25 experiments (five per QM scheme), aver-
aged over 10 replications. A cluster of 3 stacked bars represent one experiment.
“Standard” represents the Standard TCP. The type of the “Other” TCP is indi-
cated in the x-axis, and so are the respective flow RTTs. For example, the first bar
in Fig. 7.4(a) shows the throughput obtained (under Drop-Tail bottleneck queue)
by the Standard (solid fill) and Vegas flows having rtt1. Tables 7.1 and 7.2, re-
spectively, show the Jain’s fairness indices and the total link utilizations for the 25
experiments. From the tables and Fig. 7.4, the following key observations can be
made (suffixing the flows with −k to designate their rttk).

Table 7.1.: Fairness indices of 25 experiments.
“Other” Scheme
TCP Drop-Tail RED FRED CHOKe AFpFT
Vegas 0.71 0.64 0.69 0.75 0.97
HSTCP 0.22 0.54 0.51 0.23 0.99
CTCP 0.82 0.78 0.85 0.82 0.99
BIC 0.27 0.52 0.48 0.25 0.99
CUBIC 0.52 0.72 0.74 0.56 0.98

7.5.1.1. Impact of QM schemes

AFpFT achieves the most superior fairness, regardless of the competing TCP types
and their RTTs, without sacrificing the link utilization. By contrast, Drop-Tail and
CHOKe have poor fairness. Surprisingly, FRED has only marginally better fairness

126

7.5. Evaluation and Results

than RED. Even when all flows are of the Standard TCP type (result not shown),
the fairness in FRED is just comparable to that of Drop-Tail. This observation is
similar to the one in Fig. 6.12(a).

�
�
�
�

��
��
��
��

�
�
�
�

�� �
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

����
����

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
� �
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

������Other

32121 3321321321
0

10

20

30

40

50

60

70

80

Fl
ow

th
ro

ug
hp

ut
(i

n
%

C
)

VEGAS HSTCP CTCP BIC CUBIC

Standard

(a) Drop-Tail.

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
� �
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
���� 45 Standard

1 2 321 33211 2 31 2 3

5

15

25

35

Fl
ow

th
ro

ug
hp

ut
(i

n
%

C
)

VEGAS HSTCP BICCTCP CUBIC

Other

(b) RED.

����
����
����

����
����
����

����
����
����
����

��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

21 321 3321 1 2 3 1 2 3

5

15

25

35

45

VEGAS HSTCP CTCP BIC CUBIC

Fl
ow

th
ro

ug
hp

ut
(i

n
%

C
) Standard

Other

(c) FRED.

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
����
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

����
����
����
����Standard

Other

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

70

60

50

40

30

10

20

0

VEGAS HSTCP CTCP BIC CUBIC

Fl
ow

th
ro

ug
hp

ut
(i

n
%

C
)

(d) CHOKe.

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

 0

Standard Other

1 2 3 1 2 3 1 2 13 2 3 21 3

5

10

30

35

25

20

15

VEGAS HSTCP BIC CUBICCTCP

Fl
ow

th
ro

ug
hp

ut
(i

n
%

C
)

(e) AFpFT.

Time(s)
156154152150 158 160

500

1500

2500

3500
Standard-1
Standard-2
Standard-3

Vegas-1
Vegas-2
Vegas-3

C
on

ge
st

io
n

w
in

do
w
W

(f) Simultaneous TCP window reductions
(CHOKe).

Figure 7.4.: Fairness among various TCP congestion avoidance schemes in the presence
of Drop-Tail, RED, FRED, CHOKe or AFpFT at the bottleneck. (a)-(e) compare the flow
bandwidth shares of Standard TCP with those of the indicated TCP type. (f) demon-
strates the synchronization of packet losses among many TCP flows under CHOKe.

127

7. Embracing TCP Heterogeneity using Queue Mechanisms

Table 7.2.: Link utilization in (%) of the 25 experiments.
Other Scheme
TCP Drop-Tail RED FRED CHOKe AFpFT
Vegas 97 97 93 89 99
HSTCP 99 99 92 96 99
CTCP 99 99 99 98 99
BIC 99 99 95 98 99
CUBIC 99 99 97 97 99

7.5.1.2. TCP-compatibility

CTCP looks the most fair to Standard TCP, across all classic QM schemes. We
conjecture that the dual nature of CTCP as loss and delay based scheme offers this
compatibility benefit. On the other hand, HSTCP and BIC are the most unfair to
Standard TCP. The HSTCP-1 and BIC-1 flows seem to overly dominate the link
and starve out the legacy TCP traffic.

7.5.1.3. RTT-fairness

HSTCP and BIC have both very poor intra-protocol RTT-fairness. Except under
AFpFT, HSTCP-1 and BIC-1 receive between 4-50 and 4-20 times the throughput
of HSTCP-3 and BIC-3, respectively. The worst cases are observed under Drop-
Tail and CHOKe. HSTCP and BIC window increases are inversely related to their
flow RTTs. At small RTTs, the windows grow faster and quickly reach the low
window after which point the window increases are more than 1 segment per RTT,
aggravating the unfairness. The most RTT-fair high-speed protocols are CTCP
and CUBIC. CTCP-1 receives around 1.3-2.6 times that of CTCP-3, and CUBIC-1
gets 1.3-3 times of CUBIC-3. Similarly, Vegas-1 throughput is around 2.5-5 times
than that of Vegas-3.

7.5.1.4. Interaction between QM and TCP algorithms

CTCP and Standard TCP seem to interact very well under all QM mechanisms,
resulting in both high fairness and link utilization. However, HSTCP + Standard
and BIC + Standard combinations under Drop-Tail and CHOKe are literally bro-
ken as shared networks. The respective Drop-Tail and CHOKe fairness scores are
low (less than 0.3). Under Drop-Tail, for example, the HSTCP-1 and BIC-1 flows
obtain whopping link shares of 74% and 67%! And Standard-3 in those systems
receive less than 1.0% of the link.4 Indeed, the unfairness between Standard TCP

4Corresponding figures in AFpFT are around 11%.

128

7.5. Evaluation and Results

and HSTCP or Standard TCP and BIC is even worse than the classical incompat-
ibility of Standard TCP and Vegas flows under Drop-Tail. In the Standard+Vegas
combination under Drop-Tail, the Standard-1 grabs 32% of the link capacity (see
Fig. 7.4(a)), and Vegas-3 receives 4.4%.

7.5.1.5. Link utilization

AFpFT equals or betters the other mechanisms in link utilization, see Table 7.2.
FRED is generally poorer in overall link utilization, probably due to the lack in
FRED of gentle and adaptive performance tuning parameters, as explained in
Chapter 6. CHOKe’s link utilization in the Standard+Vegas is poor as well. The
underlying reason, which is also an important observation on its own, seems to be
the apparent synchronization of packet losses among the flows in CHOKe (see Fig.
7.4(f)).5 Recall that each arriving packet triggers a flow matching trial in CHOKe.
When a TCP flow dominates the CHOKe queue, the flow’s matching probability,
hence the packet loss probability, becomes higher. The loss of a packet is followed
by a reduction in the TCP window and draining of its packets from the queue. This
in turn escalates the matching / dropping probabilities of the other flow(s) in the
queue. While the high-speed TCP variants can instantly compensate with rapid
increases of congestion windows, Standard TCP and Vegas do not recover soon
enough due to their conservative window increases. This multiple-flow reduction
problem in CHOKe looks more severe than the global TCP synchronization problem
in Drop-Tail. Note in Fig. 7.4(f) that flows with larger RTTs such as Standard-
3 may look to have larger windows W , but not necessarily higher throughput.
Average flow throughput is given as W/RTT .

7.5.2. Scenario 2: Full Coexistence

This section investigates the mix of the six different congestion control algorithms.
In each experiment of this section, there are six flows—one from each type of TCP—
all having similar round-trip-times. The results are shown in Fig. 7.5(a). There are
a total of 15 experiments and each stacked bar represents the throughput of the
six flows in one experiment. For each experiment, the link delay [ms] and the QM
scheme at the bottleneck are clearly marked on the x-axis. For example, the first
bar shows the “normalized” TCP throughput shares of the six flows, all traversing
a Drop-Tail router and a bottleneck link delay of 10ms. The fairness indices of the
15 experiments are reported in Table 7.3.

The results demonstrate the exceptional fairness qualities of AFpFT, and the
poor fairness under CHOKe and Drop-Tail where the BIC and HSTCP flows dom-
inate the links. In general, with large buffer sizes, the fairness of AFpFT is close
to that of perflow fair queueing schemes. In all other schemes, Vegas is starved out

5Similar to global TCP synchronization common in Drop-Tail routers.

129

7. Embracing TCP Heterogeneity using Queue Mechanisms

Table 7.3.: Fairness indices of 15 experiments in Scenario 2.
Link Scenario 2 experiments
delay Drop-Tail RED FRED CHOKe AFpFT
10ms 0.39 0.53 0.61 0.39 1.0
50ms 0.51 0.58 0.65 0.47 1.0
100ms 0.56 0.54 0.61 0.53 1.0

��
��
��

��
��
��

����

��
��
��

��
��
��

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
������

�
�
�
�

�
�
�

�
�
���
��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

����

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��

��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

0

0.4

0.6

0.8

1

Drop-tail RED FRED CHOKe AFpFT
10050100 50 10010 10 1050 10010 10 50 10050

BIC
CUBIC

HSTCP
CTCPVegas

Standard

R
el

at
iv

e
fl

ow
sh

ar
es

0.2

(a)

��
��
��
��
�
�
�
�
�
�
�
���������

�
�
�
�����

��
��
��

��
��
��
�
�
�
���

�
�
�

�
�
���

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
�� �

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��

��
��
��
��
��

���
���
���
�������

����
����
����

0

0.2

0.4

0.6

0.8

1

RED FRED CHOKe AFpFT
10 50 10 50 10 50 10 50 10 50

CTCP
HSTCP

CUBIC
BICStandard

Vegas

100100100100100
Drop-tail

R
el

at
iv

e
fl

ow
sh

ar
es

(b)

Figure 7.5.: The coexistence of the six TCP types under bottleneck buffer sizes of (a)
bandwidth-delay product, and (b) a fixed 20Mb.

obtaining under 4% of the shares. But the throughput of CTCP once again looks
proportional to those of Standard TCP. Surprisingly, CUBIC becomes increasingly
aggressive with longer propagation delays, which is generally the opposite situation
to that of the Standard TCP. The fairness scores approximate how many flows
dominate the link. For example, for both Drop-Tail and CHOKe, the scores im-
prove from 0.39 to more than 0.5 when bottleneck link delay increases from 10ms to
100ms. The is because the number of flows dominating the link has increased from
two to three as CUBIC, at higher RTTs, joins the list of dominating flows (BIC
and HSTCP). AFpFT aside, the best fairness score seen is a poor 0.65, achieved
under FRED whose fairness is slightly better than that of RED.

The buffer sizes in the above experiments vary with the bottleneck link delays.
As a result, those buffer sizes are probably very excessive. We repeat all of the
experiments with fixed buffer sizes set at 20Mb. The results are demonstrated in
Fig. 7.5(b). We saw no discrepancy to Fig. 7.5(a), except that the exceptionally
high fairness scores of AFpFT start to decline.

As noted earlier, both Figs. 7.5(a) and 7.5(b) demonstrate increasing throughput
shares of CUBIC as the bottleneck link delays increase from 10ms towards 100ms.
In the rest of this section, we investigate the increasing aggressiveness of CUBIC
when the round-trip-times increase. We conduct another set of experiments using a
bottleneck link delay of 250ms, running for 300 seconds. The Standard TCP based

130

7.5. Evaluation and Results

Table 7.4.: Fairness indices of Scenario 2 experiments with fixed buffer sizes.
Link Scenario 2 experiments
delay Drop-Tail RED FRED CHOKe AFpFT
10ms 0.30 0.56 0.62 0.37 1.000
50ms 0.45 0.61 0.67 0.47 0.999
100ms 0.54 0.63 0.74 0.60 0.975
250ms 0.43 0.48 0.47 0.45 0.760

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���������

���
���
���

���
���
�����
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��

��
��
��
��
��

10 250 10 250 10 250 10 250 10 2500

0.2

0.4

0.6

0.8

1

AFpFTCHOKeFREDREDDrop-Tail

R
el

at
iv

e
fl

ow
sh

ar
es

(a) Relative throughput shares of TCP
flows.

0

5e3

15e3

25e3

35e3

45e3

50 100 150 200 250
Time(s)

Standard
HSTCP

CTCP
BIC

CUBIC

C
on

ge
st

io
n

w
in

do
w
w

(b) Typical TCP window runs under
Drop-Tail and 250ms link delay.

Figure 7.6.: TCP CUBIC can be extremely aggressive in similar high RTT environments

cross-traffic takes up only 2% of the link capacity because of the long link delays.
The fairness results are remarkably different; CUBIC turns into the most aggressive
among the considered TCP types (see Fig. 7.6). Fig. 7.6(a) contrasts the relative
TCP bandwidth shares with those obtained from the 10ms bottleneck delay shown
earlier in Fig. 7.5(b). From the figure, it is clear that under all QM schemes except
AFpFT, CUBIC bandwidth share equals or is more than the sum of all the five
TCP shares. For example, under Drop-Tail, CUBIC share alone constitutes 56%
of the whole sum! See also the last row of Table 7.4. The fairness index of AFpFT
suffers as CUBIC joins the band of aggressive flows. An important question to
pose is whether CUBIC is actually aggressive or merely grabs the otherwise free
bandwidth? Another similar experiment without CUBIC demonstrates that the
five flows together manage to grab 70% of the full link capacity under Drop-Tail.
In the presence of CUBIC, however, the overall share of the five flows shrinks
approximately to 40% of the link bandwidth. Even though the presence of CUBIC
allows for very high link utilization (e.g., around 94% vs. 70% without), it can also
become a bandwidth hog for the other TCP flows.

Next, we look for an empirical reasoning for the increasing CUBIC aggression,
focussing on the Drop-Tail bottleneck link. Recall from Eq. 7.2 that the CUBIC
window increase function is dependent on the time elapsed since the last packet
loss (for clarity, let us call the interval between loss events inter-loss interval or

131

7. Embracing TCP Heterogeneity using Queue Mechanisms

0

15e3

25e3

35e3

45e3

50 100 150 200 250 300
Time(s)

CUBIC, 50ms
CUBIC, 100ms
CUBIC, 250ms

5e3
C

on
ge

st
io

n
w

in
do

w
w

Figure 7.7.: CUBIC window runs under different inter-loss durations. Under homoge-
nously long RTT environments, the inter-loss intervals are longer which in turn enables
CUBIC to invoke the aggressive max-probing phase and rapidly ramp up its window.

duration). On the other hand, BIC and HSTCP are RTT-unfair and their win-
dow increase functions depend inversely on the RTT. Under short RTTs, BIC and
HSTCP can become aggressive, increase their windows and fill up the buffer quickly,
and subsequently invoke frequent router actions to drop the packets. The inter-loss
intervals are short and CUBIC cannot freely increase its window size. Under long
RTT situations, however, BIC and HSTCP window increase functions slow down,
packet losses become infrequent, and the interval between loss events become longer
on the average (see Fig. 7.7). With its window function being independent of RTT,
CUBIC senses unused bandwidth and easily reaches the current Wmax following
Eq. 7.2. If there is no packet loss event at Wmax, CUBIC probes the network
to find a new and higher maximum window, Wmax. This probing phase is called
max-probing in [45] and corresponds to strong linear increases just before t = 130
seconds in Fig. 7.6(b). We summarize this important finding as follows.

In a network where TCP flows have all long RTTs, BIC and HSTCP connections
are relatively conservative in their use of the bandwidth due to the slow window
increases. The durations between packet loss events are long, and this enables the
CUBIC window to quickly reach the current Wmax, invoke the max-probing phase
and tune to a new higher Wmax. In short RTT environments, however, the BIC and
HSTCP flows are more aggressive, fill the queues up frequently, and cause frequent
packet losses. The duration between loss events would become too short for CUBIC
to reach its current maximum window and invoke the max-probing phase.

7.6. Concluding Remarks

The Internet is being transformed as new high-speed TCP algorithms are increas-
ingly being deployed. This work makes important contributions to the compati-
bility study of deployed TCP algorithms. The performance of the common TCP
deployments in the presence of various queue management schemes at bottleneck

132

7.6. Concluding Remarks

links is considered. Despite claims of their TCP-friendliness, only CTCP seems
to be truly compatible to Standard TCP, and also intra-protocol RTT-fair in the
considered network environments. In environments with heterogenous algorithms
involving flows of different RTTs, those BIC and HSTCP flows with the least RTTs
seem to overly dominate the links. Unfairness is far worse in the current default
Drop-Tail queues and as well as in CHOKe queues. If all flows have similar RTTs,
the dominant flows will be mostly BIC and HSTCP (if the common RTTs are
small), or CUBIC (if RTTs are large). At large common round-trip-times, losses
seem synchronized and infrequent and this allows CUBIC to frequently invoke the
max-probing phase, and turn increasingly aggressive and dominant. When and to
what extent CUBIC becomes aggressive is an interesting future work.

Our results show that the TCP-friendly CTCP flow suffers in the presence of BIC
and/or CUBIC flows. With lack of incentives that reward compliance to a standard
algorithm, networks can become hotbeds for heterogeneous—yet incompatible—
TCP algorithms. Internet users are naturally inclined to adopt aggressive al-
gorithms. This may lead to “arms race” in the development of aggressive algo-
rithms [70]. We show that both the incumbent (i.e., Drop-Tail) and the considered
queue schemes cannot provide the required incentives and traffic control.

If future congestion control algorithms and / or queue mechanisms are required to
be TCP-compliant or TCP-aware, what particular TCP protocol should be defined
as a reference standard is still an open question. Our simulations show that fair
queue mechanisms such as AFpFT can facilitate the coexistence of heterogeneous
end-to-end algorithms without sacrificing the link utilization or declaring a new
TCP reference protocol.

133

8. Conclusions and Future Work

In this chapter, we conclude the thesis by summarizing our major contributions
and pointing out the limitations that can be addressed in future works.

8.1. Summary of Contributions

In Chapter 2, an overview on the two tradeoffs in building router flow fairness mech-
anisms is given. They are the simplicity in per packet operations and the quality
of the flow fairness. One or both of the two features are usually missing in the
proposed architectures found in the literature. Existing approaches are either com-
plex and stateful, or lack generality in ensuring flow fairness and protection. This
thesis presents the designs and analysis of a host of relatively simpler and efficient
router-based flow fairness and flow protection mechanisms. All the mechanisms
proposed in the thesis are single aggregate queues shared by all flows.

Chapter 3 introduces an intuitive design and implementation of perflow fair
queueing. The scheme is significantly enhanced and generalized as a statelet flow
protection framework in Chapter 6. Since this statelet scheme normally maintains
state for those flows having packets currently in the queue, the amount of flow state
is bounded by the buffer size. The flow state is leveraged in two important func-
tions. First, it is used for service tag computation to arriving packets. Secondly,
when the queue overflows and packet(s) are dropped, it allows for the correction
of the corresponding flow parameters and the riddance of a potential lockout be-
havior. The packet transmission is as a simple operation as the FIFO queueing
discipline; that is, at each transmission epoch, the packet at the head of the queue
is dequeued. A flow fairness comparison of the scheme against popular single-queue
schemes in the literature is conducted in the presence of both Standard TCP and
unresponsive flows in Chapter 6. Further performance evaluations are presented in
Chapter 7 which demonstrate that the scheme is highly fair and efficient in resource
utilization despite the heterogeneity in TCP congestion control algorithms at the
sources. None of the compared schemes in the literature performs as well.

In discussing flow protection in this thesis, we use the upper bounds in link
utilizations and buffer space shares that can be taken up by the aggressive (unre-
sponsive) flows. Chapter 4 presents a suite of active queue management schemes for
flow protection, namely geometric CHOKe (gCHOKe), that are completely state-
less and simple. gCHOKe schemes are indexed by a configurable integral parameter

135

8. Conclusions and Future Work

maxcomp m, as in gCHOKe(m), which caps the number of Bernoulli flow matching
trials that can be tried per arriving packet. Flow protection improves with m. The
CHOKe scheme turns out to be the simplest of the schemes with m = 1. An attrac-
tive property is that even for gCHOKe(∞), the additional per packet processing
over that of CHOKe is very small whereas its flow protection is significantly better
than that of CHOKe. An extremely aggressive flow asymptotically obtains zero
service under gCHOKe.

Chapter 5 presents the first study that characterizes the “perplexing” transient
behaviors of the CHOKe queue following changes in the exogenous rate of the unre-
sponsive flow. When the UDP source rate increases, the transient UDP utilization
decreases and vice versa. For a given UDP source rate, the highest transient utiliza-
tion is achieved when the flow stops or finishes. These intriguing transient queue
behaviors cannot readily be explained by existing literature results. By factoring
the UDP rate change into the spatial distribution model of CHOKe, we track not
only the evolution of the flow utilizations, but also derive the flow utilization (up-
per or lower) bounds during the transient regime. Extensive simulations verify the
model. The model can easily be extended for other gCHOKe variants.

8.2. Future Work

In the rest of this chapter, we expose some of the limitations, focussing on the
AFpFT scheme presented in Chapter 6.

Sec. 6.5 points out further optimizations for a more mature form of AFpFT. In
general, for common buffer sizes and traffic scenarios under AFpFT, we observe
no unfairness problems even under congestion. In the presence of a smaller buffer
size, or equivalently a smaller flow list FL size, and a large number of aggressive
high bandwidth flows, however, AFpFT’s fairness performance may suffer. This is
because some of the high bandwidth flows may escape being listed as their packets
are dropped from the small buffer size and the flows’ parameters are subsequently
reset or removed. When new packets of the flows arrive to queue, they may invoke
cheap tagging and get unfair advantage in service. One simple, yet coarse, remedy
for this problem is the following. The moment when the flow’s packets in the queue
reduces to 0 (i.e., countf = 0), we can start a flow timer. The flow parameters are
then removed / reset when the timer expires. Therefore, the new arrivals of the
flows obtain cheap tagging only if the corresponding flow parameter count is zero
and the respective flow timer already expires. For new flows, their first packets
are guaranteed to be prioritized as before. Yet, what value to set for the timer as
default is left as a future work.

A related future work is the study of the spatial queue properties of AFpFT.
We expect non-uniform distribution of flows in the queue, much like the CHOKe
queue studied in Chapter 5. This is because packets are usually assigned cheap

136

8.2. Future Work

tagging if they belong to small (often non-bottlenecked) flows, and expensive tag-
ging otherwise. This study requires deriving an analytical model that captures
the distributions of flows given, amongst others, the source traffic characteristics
(e.g., source rates), the buffer size, and the bottleneck link capacity. Such a study
even under static traffic conditions can be useful for several reasons. Firstly, it
can be useful for dimensioning the buffer and link capacities so that any potential
unfairness situations as described earlier in this section, if any, could be averted.
Secondly, the study helps to understand the extent of service priority (scheduling
and buffer space) provided to smaller flows.

Apart from Chapter 5, we focussed on the flow fairness performance of queue
mechanisms in the steady state. A very interesting future work is the fairness
performance of TCP flows during slow start and how the queue mechanisms impact
the flow throughput in that regime.

137

A. Appendix

This appendix is devoted to proving the lemmas and theorems in Sec. 5.4.2. We
need the following intermediate results.

From (5.12) and (5.21), respectively, we get

τ
′
(y) = 1/v(y) (A.1)

v
′
(y)/v(y) = ρ

′
0(y)/(1 − ρ0(y)). (A.2)

Using ρ
′
0(y) from (A.2) into (5.22) and solving for v

′
(y),

v
′
(y) = x0(1 − r)βρ0(y). (A.3)

Proof of Lemma 5.4.1

Proof The following set of equations are trivial and follow from (5.23).

x0(1 − r)β
y∫

0

1
v(s)

ds =
y∫

0

ρ
′
0(s)

ρ0(s)
ds +

y∫
0

ρ
′
0(s)

1 − ρ0(s)
ds

x0(1 − r)βτ(y) = ln(ρ0(s))|y0 − ln(1 − ρ0(s))|y0
x0(1 − r)βτ(y) = ln

[
ρ0(y)
ρ0(0)

1 − ρ0(0)
1 − ρ0(y)

]
τ(y) =

1
x0(1 − r)β

ln
[

ρ0(y)
1 − ρ0(y)

1 − ρ0(0)
ρ0(0)

]
τ(y) =

1
x0(1 − r)β

ln
[
a

ρ0(y)
1 − ρ0(y)

]
(A.4)

From (A.4), ρ0(y) can be expressed as (5.24).

139

A. Appendix

Proof of Lemma 5.4.3

Proof From (5.10) or (5.2), practical values of h0 must satisfy h0 < 0.5. For h0 = 0
and μ0 = 0, the proof is trivial. We only need to prove the bounds of 1−μ0

1−h0
for

h0 ∈ (0, 0.5).

We need (5.1) and the well known property of natural logarithms shown next.

ln x ≤ x − 1 for x > 0 (A.5)

The proof is by contradiction and has two parts.

(i) First, we establish that (1 − μ0)/(1 − h0) ≥ 1. Let us assume:

1 − μ0
1 − h0

< 1 ⇒ h0 < μ0. (A.6)

From (A.6) and (5.1), we get

h0 <
ln[1−h0

1−2h0
]

[1−h0
1−2h0

] + ln[1−h0
1−2h0

]
(A.7)

Since 0 < h0 < 0.5, (1 − h0)/(1 − 2h0) > 1 and ln[(1 − h0)/(1 − 2h0)] > 0.
Multiplying both sides of (A.7) by the denominator term found on the r.h.s.
and simplifying, we obtain:

h0
1 − 2h0

< ln
1 − h0
1 − 2h0

. (A.8)

On the other hand, since 1−h0
1−2h0

> 0, we can apply property (A.5) on 1−h0
1−2h0

to obtain:
ln

1 − h0
1 − 2h0

≤ 1 − h0
1 − 2h0

− 1 =
h0

1 − 2h0
(A.9)

which is a contradiction to (A.8) . Hence, we prove that 1−μ0
1−h0

≥ 1. 1−μ0
1−h0

= 1
when both μ0, h0 = 0.

(ii) Here we establish that (1 − μ0)/(1 − h0) ≤ 2. As before, let us contradict by
assuming that,

1 − μ0
1 − h0

> 2 ⇒ μ0 < 2h0 − 1. (A.10)

Since h0 < 0.5, (A.10) says that μ0 < 0, which is not possible. This means
the assumption in (A.10) must be wrong, or that (1 − μ0)/(1 − h0) ≤ 2.

Combining (i) and (ii) completes the proof.

140

Proof of Lemma 5.4.4

Proof Solving for ρ
′
0(y) from (A.2) and (A.3),

ρ
′
0(y) = x0(1 − r)β

[
ρ0(y) − ρ0(y)2

v(y)

]
(A.11)

Since β < 0, and probabilities ρ0(y) < 1, ρ0(y) is decreasing with y. Taking
the differentiation further and using (A.3),(A.11) in place of v

′
(y) and ρ

′
0(y) and

simplifying, we obtain

ρ
′′
0 (y) = x0(1 − r)β

ρ
′
0(y)v(y)(1 − 2ρ0(y)) − v

′
(y)ρ0(y)(1 − ρ0(y))

v2(y)

= x2
0(1 − r)2β2 ρ0(y)(1 − ρ0(y))(1 − 3ρ0(y))

v2(y)
(A.12)

The critical point (y∗, ρ0(y∗)) where ρ
′′
0 (y) = 0 is given as,

ρ∗
0 = ρ0(y∗) =

1
3

(A.13)

y∗ =
1
K

ln
(

a

2

)
+

1
K

1 − 3ρ0(0)
2(1 − ρ0(0))

. (A.14)

(A.14) is obtained upon substituting ρ∗
0 for ρ0(y) in (5.26). It is easy to see that

ρ0(y) decreases in concave fashion on y ∈ [0, y∗] and in convex fashion on y ∈ [y∗, b].
See Fig. 5.7(a) for an example.

Note that the critical point (y∗, ρ∗
0) exists when the UDP arrival rate x0 exceeds

a certain value x∗
0, calculated using (5.16) as,

x∗
0 = min{x0 | ρ0(0) ≥ ρ∗

0} = min
[

C

2
1 − μ0
1 − h0

]
=

C

2
. (A.15)

Above, we use Lemma 5.4.3 to state that 1−μ0
1−h0

≥ 1. From (A.15), it follows that
when x0 ≤ C/2, ρ0(y) is strictly convex decreasing.

For arrival rate x0 ∈ [C/2, ∞), since ρ0(0) ≥ ρ∗
o by (A.15) and ρ0(b) := μ0 ≤

26.9% ≤ ρ∗
0 by the Limit property (see Sec. 5.2.2), the critical point exists some-

where y∗ ∈ [0, b].

141

A. Appendix

Proof of Lemma 5.4.5

Proof From (A.3), it is trivial to see that v(y) is decreasing with y since v
′
(y) < 0.

Differentiating (A.3) and using (A.11),

v
′′
(y) = x2

0(1 − r)2β2ρ0(y)
1 − ρ0(y)

v(y)
(A.16)

Since v′′(y) > 0, v(y) is convex decreasing throughout the queue. See Fig. 5.7(b).

Proof of Lemma 5.4.6

Proof The queueing delay is a strict convex increasing function, since from (A.1)
and (A.3), respectively,

τ
′
(y) = 1/v(y) > 0 (A.17)

τ
′′
(y) = − 1

v2(y)
v

′
(y) = −x0(1 − r)βρ0(y)

v2(y)
> 0 (A.18)

Proof of Lemma 5.4.9

Proof Set ΔT = τ(b) and α = 1, i.e., x02 = x0 in Lemma 5.4.7.

μ0(τ(b))|α=1 =
1

1 + ae−x0τ(b)β
=

1
1 + ae−x0τ(b) ln(1−1/b)

=
1

1 + a(1 − 1/b)−x0τ(b) (A.19a)

=
ρ0(0)

ρ0(0) + (1 − ρ0(0))(1 − 1/b)−x0τ(b) (A.19b)

=
ρ0(0)v(0)(1 − 1/b)x0τ(b)

ρ0(0)v(0)(1 − 1/b)x0τ(b) + Nρ1(0)v(0)
(A.19c)

=
ρ0(b)v(b)

ρ0(b)v(b) + Nρ1(0)v(0)
= μ0 (A.19d)

In the above step, we use ρ0(b) = μ0, v(b) = C from (5.18), and Nρ1(0)v(0) =
(1 − μ0)C from (5.20).

142

Proof of Theorem 5.4.10

Similar to proof of Lemma 5.4.9, we proceed for the general α as,

μ0(τ(b)) =
1

1 + a(1 − 1/b)−αx0τ(b) (A.20)

But from proof of Lemma 5.4.9 above, we find for α = 1 that μ0 = 1/(1 + a(1 −
1/b)−x0τ(b)). After rearranging, we obtain (1 − 1/b)−x0τ(b) = (1 − μ0)/aμ0. Substi-
tuting this into (A.20) for general α completes the proof.

143

Bibliography

[1] Minnesota Internet Traffic Studies (MINTS).
http://www.dtc.umn.edu/mints/, Nov 2009.

[2] BIC and CUBIC project webpage. http://research.csc.ncsu.edu/netsrv/,
June 2012.

[3] The ISC Domain Survey. http://www.isc.org/solutions/survey, Jan 2012.

[4] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control.
http://tools.ietf.org/html/rfc5681, Sep 2009. RFC 5681.

[5] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control.
http://tools.ietf.org/html/rfc2581, Apr 1999. RFC 2581.

[6] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon. Ex-
perimental Study of Router Buffer Sizing. In Proc. of Internet Measurement
Conference, 2008.

[7] J. C. R. Bennett and H. Zhang. WF2Q: Worst-case fair weighted fair queue-
ing. In Proc. of IEEE INFOCOM, 1996.

[8] D. P. Bertsekas and R. G. Gallager. Data Networks. Prentice-Hall Inc., 1991.

[9] T. Bonald and L. Massoulie. Impact of Fairness on Internet Performance. In
Proc. of ACM SIGMETRICS, 2001.

[10] B. Braden and et. al. Recommendations on queue management and conges-
tion avoidance in the internet. http://tools.ietf.org/html/rfc2309, April 1998.
RFC 2309.

[11] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet
architecture: an overview. http://tools.ietf.org/html/rfc1633, 1994. RFC
1633.

[12] L. S. Brakmo, S. W. OMalley, and L. L. Peterson. TCP Vegas: New tech-
niques for congestion detection and avoidance. In Proc. of ACM SIGCOMM,
1994.

[13] B. Briscoe. Flow rate fairness: dismantling a religion. ACM SIGCOMM
Computer Communication Review, 37(2), Apr 2007.

145

Bibliography

[14] K. chan Lan and J. Heidemann. A measurement study of correlations of
internet flow characteristics. Computer Networks, Elsevier, 50(1), Jan 2006.

[15] P. Chhabra, A. John, H. Saran, and R. Shorey. Controlling malicious sources
at internet gateways. In Proc. of IEEE ICC, 2003.

[16] D.-M. Chiu and R. Jain. Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks. Journal of Computer Networks
and ISDN, 17(1), 1989.

[17] M. Christiansen, K. Jeffay, D. Ott, and F. D. Smith. Tuning RED for Web
Traffic. IEEE/ACM Trans on Networking, 9(3), June 2001.

[18] D. Clark. The design philosophy of the darpa internet protocols. In Proc. of
ACM SIGCOMM, Aug 1988.

[19] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic:
evidence and possible causes. In Proc. of ACM SIGMETRICS, 1996.

[20] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In Proc. of ACM SIGCOMM, 1989.

[21] D. M. Divakaran, G. Carofiglio, E. Altman, and P. V.-B. Primet. A flow
scheduler architecture. In Proc. of IFIP Networking, 2010.

[22] D. M. Divakaran, S. Soudan, P. V.-B. Primet, and E. Altman. A survey on
core switch designs and algorithms. http://hal.inria.fr/inria-00388943/, 2009.
Technical report.

[23] A. T. Eshete and Y. Jiang. Approximate Fairness Through Limited Flow
List. In Proc. of International Teletraffic Congress (ITC), 2011.

[24] A. T. Eshete and Y. Jiang. On the Flow Fairness of Aggregate Queues. In
Proc. of BCFIC, Feb 2011.

[25] A. T. Eshete and Y. Jiang. On the Transient Behavior of CHOKe. Nov 2011.
Submitted to IEEE/ACM Trans. on Networking.

[26] A. T. Eshete and Y. Jiang. Generalizing the CHOKe Flow Protection. Com-
puter Networks, Elsevier, Sep 2012. In Press.

[27] A. T. Eshete and Y. Jiang. Protection from Unresponsive Flows with Geo-
metric CHOKe. In Proc. of IEEE ISCC, 2012.

[28] A. T. Eshete, Y. Jiang, and L. Landmark. Fairness among High Speed and
Traditional TCP under different Queue Management Mechanisms. In Proc.
of AINTEC (to appear), Nov 2012.

[29] K. Fall and K. Varadhan. ns–network simulator (v2.34).
http://www.isi.edu/nsnam/ns/, Nov 2011.

146

Bibliography

[30] S. Floyd. RED project webpage. http://www.icir.org/floyd/red.html.

[31] S. Floyd. Congestion Control Principles. http://www.ietf.org/rfc/rfc2914.txt,
Sep 2000. RFC 2914.

[32] S. Floyd. HighSpeed TCP for Large Congestion Windows.
http://www.ietf.org/rfc/rfc3649.txt, Dec 2003. RFC 3649.

[33] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms.
http://tools.ietf.org/html/rfc5166, Mar 2008. RFC 5166.

[34] S. Floyd and M. Allman. Comments on the Usefulness of Simple Best-Effort
Traffic. http://www.ietf.org/rfc/rfc5290.txt, Jul 2008. RFC 5290.

[35] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in
the internet. IEEE/ACM Trans. on Networking, 7(4), 1999.

[36] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for
increasing the robustness of RED’s Active Queue Management. Tech. Report,
2001.

[37] S. Floyd, T. Henderson, and A. Gurtov. The NewReno modification to TCP’s
fast recovery algorithm. http://www.ietf.org/rfc/rfc3782.txt, Apr 2004. RFC
3782.

[38] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Trans. on Networking, 1(4), 1993.

[39] S. Floyd and J. Kempf. IAB Concerns Regarding Congestion Control for
Voice Traffic in the Internet. http://tools.ietf.org/html/rfc3714, Mar 2004.
RFC 3714.

[40] S. Floyd and E. Kohler. Internet research needs better models. ACM SIG-
COMM Computer Communication Review, 33(1), 2003.

[41] S. J. Golestani. A Self-Clocked Queueing Scheme for Broadband Applications.
In Proc. of IEEE INFOCOM, June 1994.

[42] V. V. Govindaswamy, G. Záruba, and G.Balasekaran. RECHOKe: A Scheme
for Detection, Control and Punishment of Malicious Flows in IP Networks.
In Proc. of IEEE GLOBECOM, 2007.

[43] P. Goyal, S. S. Lam, and H. M. Determining end-to-end delay bounds in
heterogeneous networks. Multimedia System, 5(3), May 1997.

[44] P. Goyal, H. M. Vin, and H. Cheng. Start-time Fair Queuing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks. IEEE/ACM
Trans. on Networking, 5(5), 1997.

[45] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed TCP
Variant. ACM SIGOPS Operating Systems Review, 42, 2008.

147

Bibliography

[46] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. http://tools.ietf.org/html/rfc6582,
2012. RFC 6582.

[47] C. Hu, Y. Tang, X. Chen, and B. Liu;. Per-Flow Queueing by Dynamic Queue
Sharing. Proc. of IEEE INFOCOM, 2007.

[48] V. Jacobson. Congestion avoidance and control. In Proc. of ACM SIGCOMM,
1988.

[49] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley
and Sons, 1991.

[50] H. Jiang and C. Dovrolis. Why is the internet traffic bursty in short time
scales? In ACM SIGMETRICS Performance Evaluation Review, 2005.

[51] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: motivation, architecture,
algorithms, performance. In Proc. of IEEE INFOCOM, 2004.

[52] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for high
bandwidth-delay product networks. In Proc. of ACM SIGCOMM, 2002.

[53] J. Kaur. Scalable Network Architectures for Providing Per-flow Service Guar-
antees. PhD thesis, The University of Texas at Austin, Aug 2002.

[54] J. Kaur and H. M. Vin. Core-stateless guaranteed rate scheduling algorithms.
In Proc. of IEEE INFOCOM, 2001.

[55] F. Kelly, A. Maulloo, and D. Tan. Rate control for communication networks:
shadow prices, proportional fairness and stability. Journal of the Operational
Research Society, 49(3), 1998.

[56] T. Kelly. Scalable tcp: improving performance in highspeed wide area net-
works. ACM SIGCOMM Computer Communication Review, 33(2), 2003.

[57] S. Keshav. An engineering approach to computer networking: ATM networks,
the Internet, and the telephone network. Addison-Wesley Longman Publishing
Co, 1997.

[58] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control protocol
(dccp). http://www.ietf.org/rfc/rfc4340.txt, Mar 2006. RFC 4340.

[59] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. On the scalability of
fair queueing. In Proc. of ACM SIGCOMM HotNets, 2004.

[60] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. Evaluating the num-
ber of active flows in a scheduler realizing fair statistical bandwidth sharing.
In Proc. of ACM SIGMETRICS, 2005.

[61] A. Kortebi, S. Oueslati, and J. Roberts. Cross-protect: implicit service differ-
entiation and admission control,. In High Performance Switching and Rout-

148

Bibliography

ing, 2004.

[62] J. F. Kurose and K. W. Ross. Computer Networking: a top down approach
(4th edition). Addison-Wesley, 2008.

[63] J.-Y. Le Boudec. Rate adaptation, Congestion Control and Fairness: A Tu-
torial, Dec. 2008.

[64] D. Lin and R. Morris. Dynamics of random early detection. ACM SIGCOMM
Computer Communication Review, 27(4), 1997.

[65] S. Lohr. Video road hogs stir fear of internet traffic jam.
http://www.nytimes.com/2008/03/13/technology/13net.html, Marc 2008.

[66] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows
at the congested router. In Proc. of IEEE ICNP, 2001.

[67] S. Mascolo. Reasons not to deploy TCP BIC/CUBIC.
http://www.postel.org/pipermail/end2end-interest/, Nov 2011.

[68] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-
edgment Options. http://tools.ietf.org/html/rfc2018, Oct 1996. RFC 2018.

[69] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED. In
Proc. of IEEE IWQoS, May-June 1999.

[70] K. Munir, M. Welzl, and D. Damjanovic. Linux beats Windows! - or the
Worrying Evolution of TCP in Common Operating Systems. In Proc. of
PFLDnet, 2007.

[71] J. Nagle. Congestion Control in IP/TCP Internetworks.
http://www.ietf.org/rfc/rfc896.txt, Jan 1984. RFC 896.

[72] J. Nagle. On packet switches with infinite storage. IEEE Trans. on Commu-
nications, 35(4):435—438, 1987.

[73] A. M. Odlyzk. Data networks are mostly empty and for good reason,. IT
Professional, 1(2), Mar-Apr 1999.

[74] T. J. Ott, T. Lakshman, and L. H. Wong. Sred: Stabilized RED. In Proc. of
IEEE INFOCOM, 1999.

[75] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput:
a simple model and its empirical validation. In Proc. of ACM SIGCOMM,
1998.

[76] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness
through differential dropping. ACM SIGCOMM Computer Communication
Review, 33, 2003.

149

Bibliography

[77] R. Pan, C. Nair, B. Yang, and B. Prabhakar. Packet dropping schemes, some
examples and analysis. In Proc. of Allerton Conference on Communication,
Control and Computing, 2001.

[78] R. Pan, B. Prabhakar, and K. Psounis. CHOKe - a stateless active queue
management scheme for approximating fair bandwidth allocation. In Proc.
of IEEE INFOCOM, 2000.

[79] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe. Open research issues
in internet congestion control. http://tools.ietf.org/html/rfc6077, Feb 2011.
RFC 6077.

[80] A. K. Parekh. A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Networks. PhD thesis, Massachusetts Institute of Tech-
nology, Feb 1992.

[81] A. K. Parekh and R. G. Gallager. A generalized processor sharing ap-
proach to flow control in integrated services networks: The single node case.
IEEE/ACM Trans. Networking, 1(3), June 1993.

[82] J. Postel. User datagram protocol. http://www.ietf.org/rfc/rfc768.txt, Aug
1980. RFC 768.

[83] F. Qiana, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger.
TCP Revisited: A Fresh Look at TCP in the Wild. In Proc. of Internet
Measurement Conference, Nov 2009.

[84] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-
tion Notification (ECN) to IP. http://tools.ietf.org/html/rfc3168, Sep 2001.
RFC 3168.

[85] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2, 1984.

[86] S. Shreedhar and G. Varghese. Efficient fair queueing using deficit round
robin. IEEE/ACM Trans. Networking, 4, June 1996.

[87] B. Sikdar, S. Kalyanaraman, and K. S. Vastola. An integrated model for
the latency and steady-state throughput of tcp connections. Performance
Evaluation, 46(2-3), 2001.

[88] R. Stanojević and R. Shorten. Beyond CHOKe: stateless fair queueing. In
Proc. of NET-COOP, 2007.

[89] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis
of traffic scheduling algorithms. IEEE/ACM Transactions on Networking,
6(5), 1998.

[90] I. Stoica. Stateless Core: A Scalable Approach for Quality of Service in the
Internet. PhD thesis, CMU, Pittsburgh,USA, Dec 2000.

150

Bibliography

[91] I. Stoica. CSFQ project webpage. http://www.cs.berkeley.edu/ istoica/csfq/,
June 2012.

[92] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: Achieving
approximately fair bandwidth allocations in high speed networks. In Proc. of
ACM SIGCOMM, 1998.

[93] I. Stoica, H. Zhang, and S. Shenker. Self-Verifying CSFQ. In Proc. of IEEE
INFOCOM, 2002.

[94] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury. Buffer Management
Schemes for Supporting TCP in Gigabit Routers with Per-flow Queueing.
IEEE Journal on Selected Areas in Communications, 17(6), Jun 1999.

[95] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach
for High-Speed and Long Distance Networks. In Proc. of IEEE INFOCOM,
2006.

[96] A. Tang, J. Wang, and S. H. Low. Understanding CHOKe: Throughput and
Spatial Characteristics. IEEE/ACM Trans. on Networking, 12(4), 2004.

[97] M. Waldvogel, G. Varghese, J. Turner, and B. Plattneri. Scalable High Speed
IP Routing Lookups. In Proc. of ACM SIGCOMM, 1997.

[98] J. Wang, A. Tang, and S. H. Low. Maximum and asymptotic UDP throughput
under CHOKe. In Proc. of ACM SIGMETRICS, 2003.

[99] D. X. Wei and P. Cao. NS2 TCPLinux: An NS2 TCP Implementation
with Congestion Control Algorithms from Linux. In Proc. of Valuetools—
Workshop on NS2, 2006.

[100] L. Xu, K. Harfoush, and I. Rhee. Binary Increase Congestion Control (BIC)
for Fast Long-Distance Networks. Proc. of IEEE INFOCOM, 2004.

[101] L. Xue, C. Cui, S. Kumar, and S.-J. Park. Experimental evaluation of the
effect of queue management schemes on the performance of high speed TCPs
in 10Gbps network environment . In Proc. of IEEE ICNC, 2012.

[102] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu. TCP Congestion Avoidance
Algorithm Identification. In Proc. of IEEE ICDCS, 2011.

[103] D. K. Y. Yau, J. C. S. Lui, F. Liang, and Y. Yam. Defending against
distributed denial-of-service attacks with max-min fair server-centric router
throttles. IEEE/ACM Trans. on Networking, 13(1), 2005.

[104] L. Zhang. Virtual clock: a new traffic control algorithm for packet switching
networks. In Proc. of ACM SIGCOMM, 1990.

[105] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics and
origins of internet flow rates. Proc. of ACM SIGCOMM, 2002.

151

