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A framing link (FL) based tabu search algorithm is proposed in this paper for a large-scale multidepot vehicle routing problem
(LSMDVRP). Framing links are generated during continuous great optimization of current solutions and then taken as skeletons
so as to improve optimal seeking ability, speed up the process of optimization, and obtain better results. Based on the comparison
between pre- and postmutation routes in the current solution, different parts are extracted. In the current optimization period,
links involved in the optimal solution are regarded as candidates to the FL base. Multiple optimization periods exist in the whole
algorithm, and there are several potential FLs in each period. If the update condition is satisfied, the FL base is updated, new FLs are
added into the current route, and the next period starts.Through adjusting the borderline of multidepot sharing area with dynamic
parameters, the authors define candidate selection principles for three kinds of customer connections, respectively. Link split and
the roulette approach are employed to choose FLs. 18 LSMDVRP instances in three groups are studied and new optimal solution
values for nine of them are obtained, with higher computation speed and reliability.

1. Introduction

Nowadays, logistic cost is considered to be influential in fierce
business competitions. The logistical delivery is a process
from pickup to drop-off of goods, connecting vendors,
shippers, and customers. In related studies, Vehicle Routing
Problem (VRP) is always regarded as a significant issue, due
to its impact on optimization of delivery vehicles scheduling
and then on profit of logistic providers.

In common sense, Vehicle Routing Problem is defined
as follows: how to determine appropriate delivery routes
between series of collection and reception terminals and
guarantee delivery vehicles in a proper order, so as to
satisfy some requirements (e.g., shortest distance, minimum
cost, delivery time, and needed vehicles) within kinds of
constraints, such as amount of goods, sending time, vehicle
capacity, mileage restriction, and time limitation. Currently,
VRPs have been identified in many applications, such as
products outbound distribution scheduling [1], home care

crew scheduling [2], newspaper delivery [3], school bus
routing [4], cargo routing [5], airline crew scheduling [6],
waste collection scheduling [7], service systemdesign [8], and
computer system integration [9].

It is difficult to solve large-scale VRPs due to their com-
plexities. Lenstra and Rinnooy Kan [10] proved that capac-
ity constraint VRP (CVRP) was a NP-hard problem and
recently Hassin and Rubinstein [11] verified the availability
of polynomial-time algorithm in the cases where 𝑘 = 3 or
4 for the k-VRP issue. Imai and his partners [12] highlighted
that the Vehicle Routing Problemwith full container loadwas
also NP-hard. Furthermore, Solomon [13] realized that VRP
with time window constraints was more complicated, and
Hashimoto et al. [14] confirmed the NP-hard characteristics
of VRP with soft time windows. In the paper of Savelsbergh
[15], the author proved that it is a NP-complete problem to
decide whether a feasible solution existed or not for the TSP
with time windows. Lenstra and Rinnooy Kan [10] proved
that all types of VRPs are NP-hard problems.
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From basic capacity constraint VRP, researchers have rec-
ognized varied VRP problems, for example, VRP with time
window (VRPTW), periodical VRP (PVRP), VRP with pick-
ups anddeliveries (VRPPD), andmultidepotVRP (MDVRP).
Compared with VRP with a single depot, MDVRPwithmore
than one depot is more complicated. InMDVRP, not only the
delivery sequence but also the vehicle type and amount for
customers at each distribution center need to be determined.

Given that 𝐺 = (𝑉,𝐴) is a complete graph, 𝑉 = (1, . . . , 𝑛)
is the set of vertexes in the chart and 𝐴 is the set of arcs.
𝑉
𝑐
= (1, 2, . . . , 𝑛) represents vertexes, 𝑉

𝑑
= (𝑛 + 1, . . . , 𝑛 + 𝑚)

represents depots, and 𝑞
𝑖
is the delivery amount to vertex 𝑖.

The capacity of vehicles from depot 𝑗 is𝑊
𝑗
, 𝑗 = 𝑛+ 1, . . . , 𝑛 +

𝑚, and 𝑐
𝑖𝑗
is the delivery cost from vertex 𝑖 to 𝑗. In this paper,

MDVRP is described as how to establishmultiple paths in the
chart 𝐺, so as to satisfy the following:

(a) each path starts and ends at the same depot;
(b) all vertexes are allocated to paths, and each vertex is

allocated once;
(c) the total delivery amount of depot 𝑗 is no more than
𝑊
𝑗
, 𝑗 = 𝑛 + 1, . . . , 𝑛 + 𝑚.

A heuristic approach is adapted by most researchers in
dealing with MDVRP. It can be divided into the classical
heuristic and the metaheuristic. Initially, the classical heuris-
tic was more acceptable; for example, Gillett and Johnson
[16] applied sweep heuristic in MDVRP and Golden et al.
[17] used borderline search strategy and improved saving
algorithm. A three-level heuristic algorithmwas proposed by
Salhi and Sari [18], where feasible solutions were generated
on level 1 and delivery routes were optimized on levels
2 and 3. Sumichras and Markham [19] developed a C-W
saving method. Wasner and Zäpfel [20] proposed a local
search strategy with a series of feedback loops, and Nagy
and Sahli [21] put forward multiple enhanced optimization
strategies for MDVRP with pickups and deliveries prob-
lem (MDVRPPD). Lim and Wang [22] offered two solu-
tion methodologies—one-stage and two-stage approaches—
to solveMDVRPwith fixed distribution of vehicles. Recently,
three hybrid heuristics were proposed byMirabi et al. [23] for
MDVRP, which were based on deterministic, stochastic tech-
niques, and simulated annealing (SA) methods. Contardo
and Martinelli [24] designed a new exact method to solve
theMDVRPbased upon the vehicle-flow formulation and the
set-partitioning formulation.

Since the 1980s, some innovative optimization methods,
such as genetic algorithm, simulated annealing, tabu search,
and ant colony algorithm, have been developed greatly and
acted as creative roles in tackling VRP. Cordeau et al.
[25] proposed a tabu search heuristic effective for three
well-known routing problems: PVRP, the periodic traveling
salesman problem (PTSP), and MDVRP. Such a method
generalized a tabu search in solutions toVRP.This author [26]
then improved the above algorithm, to solve the periodic and
the multidepot vehicle routing problems with time windows
(PVRPTW and MDVRPTW). Similar methods occurred in
the studies of Renaud et al. [27] and Crevier et al. [28].
Renaud et al. [27] divided the algorithm into two stages and

employed a tabu search to optimize the feasible solutions gen-
erated with heuristic. Crevier et al. [28] combined adaptive
memory principle, a tabu search method, and the integer
programming. Belhaiza et al. [29] presented a new hybrid
variable neighborhood-tabu search heuristic for VRP with
multiple time windows. Genetic algorithm is also acceptable
by researchers. Bae et al. [30] developed an integrated VRP
solver based on an improved genetic algorithm. Ho et al.
[31] designed two hybrid genetic algorithms: one generated
initial routes randomly and another created initial routeswith
Wright saving method and the nearest neighbor heuristic. In
addition, Wang et al. [32] used genetic algorithm to study
more complicated MDVRPs with constraints of time win-
dows, limited numbers of vehicles, and multitype vehicles.
Besides, the ant colony algorithm [33] and the simulated
annealing approach [34, 35] were also applied in solving
MDVRP.

However, few existing literatures pay attention to large-
scale MDVRP (LSMDVRP, with customers more than 150),
and the effectiveness of its solving methods should be dis-
cussed further. Framing link (FL) introduced in the following
parts is helpful to reduce the searching space effectively and
is a new direction in optimizing LSMDVRP. In fact, some
scholars have accepted similar concepts in studying VRP;
for example, Tarantilis and Kiranoudis [36] presented an
adaptive memory based method for solving the Capacitated
Vehicle Routing Problem (CVRP), called bone route. Zhong
[37] proposed the concept and principium of kernel route,
and a tabu search algorithm was designed to solve open
Vehicle Routing Problem (OVRP) with capacity and distance
limits. In this paper, the authors will combine the FL with a
tabu search in solving LSMDVRP.

This paper is organized as follows. In Section 2, the
authors propose the principle of FL for LSMDVRP and
and the structure of tabu algorithm, and procedure of the
method is described in Section 3. Then, the authors measure
algorithm sensitivity and the relationship between FL and
optimization results and then compare the result of the
proposed method with those in references, which shows that
the former is performed. Conclusions occur at the end.

2. LSMDVRP Framing Link

2.1. Principle of FL and Structure of Optimization. When
an intelligent algorithm is applied in the optimization of
vehicle routes, iteration is conducted based on the previous
generation solutions. As a result, there are numerous links
between solutions of neighbor generations, and these links
are updated continuously with iterations; good links (in
optimized solutions) are kept and bad ones are decomposed
or combined with others. In the procedure of a so-called
“good” algorithm to VRP, more good links are generated. As
shown in Figures 1 and 2, the routes are achieved through
iterations of a tabu search for MDVRP case p10 in Gillett
and Johnson [16], and their solution values are 3714.28 and
3647.22, respectively.

The two solutions shown above occur at the generation
1233 and generation 1671, respectively, in the tabu search.
Although there are over 400 generations between the two
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Figure 1: The route with a solution value 3731.38.

Figure 2: The route with a solution value 3647.22.

solutions, their structures have many similar parts as illus-
trated with red lines in Figures 1 and 2. In those routes with
less generation gap, more similar links can be found. It is
possible to optimize the VRP solutions based on these kinds
of links as the skeleton, so as to obtain better results. In
this paper, links that occur in both the optimal solution and
suboptimal solutions are named as FLs.

Generation of framing links and update are keys of the
FL based algorithm for LSMDVRP. The authors construct a
FL base, which consists of links with higher frequencies in
good routes in iterations. Addition and deletion of links are
determined with the update condition. It is necessary to allo-
cate vertexes to depots so as to generate LSMDVRP FLs, but,
for those collection nodes close to several depots, possible
allocations of them to different depots in optimization can
result in generating unstable FLs and hence prevent them
from entering the FL base. Consequently, the authors specify

a FL tabu area among depots, where the generating principles
of FLs aremore rigorous.The basic structure of FL based tabu
algorithm for LSMDVRP is described in Figure 3.

2.2. Update Condition of Framing Links. If the requirement is
satisfied, an update occurs in the FL base and the generated
links are added into the base; meanwhile, those links without
high usage frequency are deleted. In this study, the update
condition of FLs includes:

(a) the update of FLs has iterated𝑁
𝑑
times;

(b) the local optimal solution keeps unchanged for 𝑁
𝑖

generations;
(c) all local and global optimums are less than 𝐵

𝑞
after𝑁

𝑞

generations since the last update.

2.3. Generation of New-Entry Links

2.3.1. Generation of Candidate Links. FLs are generated with
the continuous and large-scale optimization of current solu-
tions in the procedure of the tabu algorithm. Compared with
the premutation route, the postmutation one has different
potential FLs. If these links are in the optimal solution during
the current optimization period (one optimization period
means the duration from updating the parameters of FLs to
satisfying the next FL update condition), they are candidate
links to enter the FL base. The entry procedure includes the
following steps.

(a) Identify the optimal vertex and those local optimal
vertexes which have difference of less thanΔ𝑠max with
the current optimal vertex in solution value. Figure 4
shows the profile of parts of current solutions in
an optimization period, where the optimal values of
vertexes 𝐴, 𝐵, and 𝐶 are 𝑠

𝐴
, 𝑠
𝐵
, and 𝑠

𝐶
, respectively. 𝐵

is the optimal vertex in this period, and (𝑠
𝐴
−𝑠
𝐵
)/𝑠
𝐵
<

Δ𝑠max and (𝑠𝐶 − 𝑠𝐵)/𝑠𝐵 < Δ𝑠max.
(b) Recognize all local optimal vertexes and the local

worst solution before the optimum occurs. As shown
in Figure 4, the local worst solution vertexes before𝐴,
𝐵, and 𝐶 are 𝐴󸀠, 𝐵󸀠, and 𝐶󸀠, respectively.

(c) Compare routes of local optimums and the periodical
optimum with routes of their corresponding worst
vertexes, and then choose different links among them.
Define Ω

𝑘,𝑖
, 𝑖 = 1, 2, . . . , 𝑛

𝑘

𝐿
, as the set of different

links between the 𝑖th local optimal route and its
corresponding worst route in the optimization period
𝑘 and 𝑛𝑘

𝐿
as the number of local optimal solutions

(including the periodical optimum) in the period
𝑘. For example, in Figure 4, comparing routes of
𝐴 and 𝐴

󸀠, different links between them can be
found. Similarly, different links between 𝐵 and 𝐵󸀠 and
between 𝐶 and 𝐶󸀠 also can be obtained. Consider
Ω
𝑘
= {Ω
𝑘,1
, Ω
𝑘,2
, . . . , Ω

𝑘,𝑛
𝑘

𝐿

}.
(d) Set the corresponding link set of the optimal solution

in the optimization period 𝑘 as Ω𝑘
𝐵
and the set of
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Figure 3: The basic structure of FL based tabu algorithm for LSMDVRP.
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Figure 4: Generation of framing links.

candidate links to the FL base as Ω󸀠
𝑘
, Ω󸀠
𝑘
= {𝑙 | 𝑙 ∈

Ω
𝑘
, 𝑙 ∈ Ω

𝑘

𝐵
}. Different parts between 𝐴 and 𝐴󸀠, 𝐵 and

𝐵
󸀠, and 𝐶 and 𝐶󸀠 are extracted and compared, and

links in the route of 𝐵 are the candidate links to be
added in the FL base.

2.3.2. Selection of Links in the Sharing Area for the Base. In
Figure 5, the area 𝐴 with depot 𝑖 as the center and 𝑅

𝑖,𝑗
(𝑖, 𝑗 ∈

𝑉
𝑑
, 𝑖 ̸= 𝑗) as the radius is defined, and𝑉

𝑑
is the total collection

of all depots. The sharing area of two depots is 𝐴
𝑖
∩ 𝐴
𝑗
, 𝑖, 𝑗 ∈

𝑉, 𝑖 ̸= 𝑗, as shown in blue, red, and green shadow area. For
vertexes outside the sharing area of two depots, the rule of
generating candidate links in Section 2.3.1 is inappropriate.

Principles to generate candidate links for the FL base in
the sharing area include the following.

(a) If all vertexes in a link are located in the sharing area of
𝐴
𝑖
∩𝐴
𝑗
, 𝑖, 𝑗 ∈ 𝑉

𝑑
, 𝑖 ̸= 𝑗 (Link Type 1), this link cannot

be taken as a candidate link, as shown in Figure 6.
(b) If vertexes of a link are spread in all following areas

including 𝐴
𝑖
∩ 𝐴
𝑗
, 𝐴
𝑖
, 𝐴
𝑗
, 𝑖, 𝑗 ∈ 𝑉

𝑑
, 𝑖 ̸= 𝑗 (Link Type

2), this link cannot be taken as a candidate link, as
shown in Figure 7.

(c) If vertexes of a link are located in 𝐴
𝑖
and 𝐴

𝑖
∩ 𝐴
𝑗
,

respectively, 𝑖, 𝑗 ∈ 𝑉
𝑑
, 𝑖 ̸= 𝑗 (Link Type 3), this link

can be a candidate link, as shown in Figure 8. If a link

R i,j
R j,i

j

i

k

R
j,k

R
k,j

Ri,k

Rk,i

Figure 5: Illustration of the sharing area.

i j

Figure 6: Link Type 1.

of Type 3 is added into the FL base, it can survive until
the next 𝑁

𝑐
th generation and then will be inspected

whether to be kept in the FL base or not. Meanwhile,
the borderline of the sharing areawill be adjustedwith
the rules in Section 2.3.3.

2.3.3. Adjusting Rules of Sharing Area. After the sharing area
is initialized, its size and location will change with iterations,
following the adhering rules.

(a) Sharing area initialization: 𝑅
𝑖,𝑗
= 𝛿
𝑖,𝑗
𝑑
𝑖,𝑗
, 𝑖, 𝑗 ∈ 𝑉

𝑑
,

𝑖 ̸= 𝑗, 𝛿
𝑖,𝑗

is the borderline parameter of the sharing
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i j

Figure 7: Link Type 2.

i j

Figure 8: Link Type 3.

area, 𝑑
𝑖,𝑗
is the distance from depot 𝑖 to depot 𝑗, and

𝑉
𝑑
is the collection of all depots.

(b) Adjusting rules of sharing area: since 𝑑
𝑖,𝑗

and 𝑑
𝑗,𝑖

remain constant, the area of 𝐴
𝑖
∩ 𝐴
𝑗
is actually

determined by 𝛿
𝑖,𝑗
and 𝛿

𝑗,𝑖
together. If there is a link

of Type 3, the borderline of the sharing area will be
adjusted.Thatmeans that if vertexes are located in the
two areas 𝐴

𝑖
and 𝐴

𝑖
∩ 𝐴
𝑗
, 𝑖, 𝑗 ∈ 𝑉

𝑑
, 𝑖 ̸= 𝑗, and this

link is added to the current route after𝑁
𝑐
generations

and the current solution value is better than that
before the 𝑁

𝑐
th generation, 𝛿

𝑗,𝑖
:= 𝛿
𝑗,𝑖
+ Δ𝛿 and Δ𝛿

is the updating step of the sharing area borderline
coefficient; if the link is added to the current route
after 𝑁

𝑐
generations but the current solution value is

no better than that before the𝑁
𝑐
th generation, 𝛿

𝑗,𝑖
:=

𝛿
𝑗,𝑖
− Δ𝛿, as shown in Figure 9.

2.3.4. Selection of Qualified Links into the FL Base. Selection
of qualified links into the FL base follows several principles.

(a) Amount restriction: a number of vertexes to enter the
FL base are restricted into the range of [𝐿min, 𝐿max];
ones out of this range are excluded.

(b) Minimized split: for those routes to be added in the
base, except that the complete routes are kept, they
also should be decomposed into links connecting
𝐿min vertexes. Considering the case 3-7-4-1, 𝐿min = 2,
this route needs to be decomposed into six FLs: 3-7-
4-1, 3-7-4, 7-4-1, 3-7, 7-4, and 4-1.

(c) Backward generation: links in the FL base occur
in pairs with opposite directions, so, once a link is
selected into the FL base, its opposite link is generated
synchronously. For example, if the link 3-7-4-1 is
added, then a link 1-4-7-3 is generated.

(d) Entry: based on the minimized split results of an
optimized route, If this route does not exist in the FL
base, it will be added in.

(e) Update: once an achieved FL has more than 𝐿min
vertexes, it should be updated, as well as its subroutes.

Δ𝛿dj,i 𝛿j,idj,i

i j

Postupdate

Preupdate

Figure 9: Update of the public area.

In above case, the occurrence frequencies and corre-
sponding optimal solution values of 3-7-4-1, 3-7-4, 7-
4-1, 3-7, 7-4, and 4-1 should be updated.

2.4. Deletion Principle in the Framing Link Base

(a) Comparison between links split from the current
route is conducted every 𝜂 iterations. After 𝑘 gener-
ations, links before generation 𝑑 have been compared
for 𝑐 = [𝑘/𝜂] times. Set the usage frequency of a link
as 𝑢(𝑐). If 𝑢(𝑐) < 𝑢

𝑠
(𝑐), this link is deleted from the

FL base. Here, 𝑢
𝑠
(𝑐) is the lower limit of FL usage, as

a function of comparison times 𝑐.
(b) If the link is included in the current optimal solution,

even if its usage is less than 𝑢
𝑠
(𝑐), it cannot be deleted.

2.5. Adding Framing Links into the Current Route. In the FL
base, some link parameters are set: the optimal solution value
of the route generated based on current links, the value of the
worst solution, the average value of solutions, the usage times,
the usage frequency, and the depot. Steps of adding FLs into
the current route include the following.

(a) Computation of the link adaptability 𝑓
𝑖
= 1/𝑠

∗

𝑖
, 𝑖 =

1, 2, . . . , 𝑁
𝑙
:𝑁
𝑖
is the amount of links in the base, and

𝑠
∗

𝑖
is the optimal solution value of the route where the

𝑖th link lies in. Set 𝐻 as the collection of links in the
FL base, and𝐻󸀠 = 𝐻,𝐻∗ = Φ.

(b) Judgment on 𝐻󸀠: if it is equal to Φ, the procedure
ends.

(c) Selection of link 𝑙
𝑗
with a roulette according to the

value of 𝑓
𝑖
, 𝑙
𝑗
∈ 𝐻
󸀠: set𝐻∗ = 𝐻∗ + {𝑙

𝑗
}.

(d) Calculation with 𝐿 = {𝑙
ℎ
| 𝑙
ℎ
∈ 𝐻
󸀠

, there is V ∈

𝑙
𝑗
and V ∈ 𝑙

ℎ
}, where V is a vertex included in the link:

if𝐻󸀠 = 𝐻󸀠 − 𝐿, go back to step 2.

3. Framing Link Based LSMDVRP Tabu
Search Algorithm

In this study, the algorithm for MDVRP consists of two
parts: initial optimization and follow-up optimization. Initial
optimization is based on links extracted from the FL base, and
extracted link is regarded as a vertex, not to be decomposed,
so as to maximize FLs’ advantages in generating optimized
routes. On the other hand, follow-up optimization splits
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links individually, excluding non-FLs so as to avoid inferior
solutions.

3.1. Initial Optimization

3.1.1. 𝑝-Neighborhood. The 𝑝-neighborhood of a vertex: The
𝑝 vertexes or links in the nearest collection 𝐴 of vertex V are
the 𝑝-neighborhood of V, denoted by𝑁

𝑝
(V, 𝐴). If the element

in 𝑁
𝑝
(V, 𝐴) is a vertex, it is illustrated with V󸀠, and if it is a

link, it is described with the link V𝑠
𝑙
(𝑧
𝑠

𝑙,V) − V
2

𝑙
(𝑧
2

𝑙,V) − V
3

𝑙
(𝑧
3

𝑙,V) −

⋅ ⋅ ⋅ − V𝑒
𝑙
(𝑧
𝑒

𝑙,V) in the neighborhood, where V𝑠
𝑙
represents the

start vertex of link 𝑙 and V𝑒
𝑙
represents the ending vertex.

Furthermore, that 𝑧𝑠
𝑙,V = 0 means that V𝑠

𝑙
is not in the 𝑝

neighborhood of vertex V; otherwise, 𝑧𝑠
𝑙,V = 1. As showed

in Figure 10, if 𝑝 = 2, 𝑁
2
(4) = {8, 3(1) − 2(1) − 1(0)} and

𝑁
2
(7) = {9(1) − 10(1) − 11(0), 12(1) − 13(0)}.
The 𝑝-neighborhood of a link: 𝑝 vertexes or links in the

nearest collection 𝐴 of the start vertex V𝑠
𝑙
of link 𝑙 are the

𝑝-neighborhood of link 𝑙, represented with 𝑁𝑠
𝑝
(𝑙, 𝐴). At the

same time, 𝑝 vertexes or links in the nearest collection 𝐴 of
link 𝑙 are the 𝑝-neighborhood of the ending vertex V𝑒

𝑙
of link

𝑙, represented with𝑁𝑒
𝑝
(𝑙, 𝐴).

3.1.2. Insertion Method. For MDVRP with the coexistence of
vertexes and links, there are three kinds of insertions: (a)
insertion between two vertexes, (b) insertion between two
links, and (c) insertion between a vertex and a link. The
insertion method is similar to traditional insertion method
and the only difference is that this method treats the link as a
node. The specific content can refer to Solomon [38].

3.1.3. Generation of the Initial Solution. The generation of the
initial solution includes the following steps:

Step 1. Allocate vertexes and links to initial depots. For a
point, the nearest depot is regarded as the initial depot; for
a link, the initial depot is the one where its initial route is
included. 𝑁

𝑟
(𝑐
ℎ
) represents the collection of all unallocated

vertexes of the depot ℎ, 𝐺(𝑐
ℎ
, 𝑟) represents the total delivery

amount of the 𝑟th route of the ℎth depot 𝑐
ℎ
, 𝐺max(𝑐ℎ, 𝑟)

represents the delivery limit of vehicles in the 𝑟th route of the
depot 𝑐

ℎ
,𝑔(V
𝑘
(or 𝑙
𝑘
)) represents the delivery amount of vertex

V
𝑘
or link 𝑙

𝑘
, and𝑁

𝐶
is the amount of depots.

Step 2. Set ℎ = 0.

Step 3. Consider ℎ := ℎ + 1.

Step 4. If ℎ > 𝑁
𝐶
, go to Step 8.

Step 5. Set 𝐴
𝑐ℎ

as the collection of all vertexes or links
belonging to the depot 𝑐

ℎ
, ∀V
𝑖
(or 𝑙
𝑖
) ∈ 𝑁

𝑝
(𝑐
ℎ
, 𝐴
𝑐ℎ
), and

V
𝑗
(or 𝑙
𝑗
) ∈ 𝑁

𝑝
(𝑐
ℎ
, 𝐴
𝑐ℎ
). For the 𝑟th route 𝑅(𝑐

ℎ
, 𝑟) of the

depot 𝑐
ℎ
, 𝑐
ℎ
-V
𝑖
(or 𝑙
𝑖
)-V
𝑗
(or 𝑙
𝑗
)-𝑐
ℎ
. 𝐺(𝑐
ℎ
, 𝑟) = 𝑔(V

𝑖
(or 𝑙
𝑖
)) +

𝑔(V
𝑗
(or 𝑙
𝑗
)),𝑁
𝑟
(𝑐
ℎ
) := 𝑁

𝑟
(𝑐
ℎ
) − V
𝑖
(or 𝑙
𝑖
) − V
𝑗
(or 𝑙
𝑗
).

Step 6. For all two neighboring vertexes and links V
𝑖
(or 𝑙
𝑖
)-

V
𝑗
(or 𝑙
𝑗
) in the route 𝑟, V

𝑘
(or 𝑙
𝑘
) = min{V (or 𝑙) |

Δ𝑑(V
𝑖
(or 𝑙
𝑖
), V (or 𝑙), V

𝑗
(or 𝑙
𝑗
)). If 𝐺(𝑐

ℎ
, 𝑟) + 𝑔(V

𝑘
(or 𝑙
𝑘
)) >

1

2
3

4

5

6 7

8
9

10

11
1213

Figure 10: 𝑝-neighborhoods of vertexes and links.

𝐺max(ℎ, 𝑟), update 𝑟 := 𝑟 + 1 and turn to Step 5. Other-
wise, insert V

𝑘
(or 𝑙
𝑘
) to form a route of V

𝑖
(or 𝑙
𝑖
)-V
𝑘
(or 𝑙
𝑘
)-

V
𝑗
(or 𝑙
𝑗
).

Step 7. Update 𝐺(𝑐
ℎ
, 𝑟) := 𝐺(𝑐

ℎ
, 𝑟) + 𝑔(V

𝑘
(or 𝑙
𝑘
)), 𝑁
𝑟
(𝑐
ℎ
) :=

𝑁
𝑟
(𝑐
ℎ
) − V
𝑘
(or 𝑙
𝑘
). If 𝑁(𝑐

ℎ
) = Φ, turn to Step 3; otherwise,

turn to Step 6.

Step 8. End.

3.1.4. Construction of Neighborhood. According to the
characteristics of FL MDVRP, the authors introduce
three neighborhood operators: insertion, interchange, and
crossover.

Insertion. 𝛼 is a random number in the range of [𝛼min, 𝛼max].
In the route 𝑅(𝑐

ℎ
, 𝑟), if capacity constraint of 𝑅(𝑐

ℎ
, 𝑟) is

satisfied, 𝛼 vertexes or links are randomly selected in 𝑟, as V
𝑖

(or 𝑙
𝑖
) to V
𝑗
(or 𝑙
𝑗
).𝐴
𝑅(𝑐ℎ ,𝑟)

is set as the collection of vertexes or
links outside the route 𝑅(𝑐

ℎ
, 𝑟), and, according Section 3.1.2,

V
𝑘
(or 𝑙
𝑘
) ∈ 𝐴
𝑅(𝑐ℎ ,𝑟)

is selected.

Interchange. 𝜃 is a randomnumber in the range of [𝜃min, 𝜃max],
as well as 𝜑 in [𝜑min, 𝜑max]. Choose two routes: 𝑅(𝑐

ℎ
, 𝑟
1
) and

𝑅(𝑐
ℎ
, 𝑟
2
), and set 𝐴

𝑅(𝑐ℎ ,𝑟1)
and 𝐴

𝑅(𝑐ℎ ,𝑟2)
as the collection

of vertexes and links in 𝑅(𝑐
ℎ
, 𝑟
1
) and 𝑅(𝑐

ℎ
, 𝑟
2
). 𝜃 vertexes

and links in 𝑅(𝑐
ℎ
, 𝑟
1
) are selected randomly, and then

V
𝑚
(or 𝑙
𝑚
) ∈ 𝐴

𝑅(𝑐ℎ ,𝑟2)
is obtained based on the method in

Section 3.1.2, 𝑚 = 1, 2, . . . , 𝜃. Similarly, 𝜑 vertexes and links
in 𝑅(𝑐

ℎ
, 𝑟
2
) are selected. If neither capacity constraint of

𝑅(𝑐
ℎ
, 𝑟
1
) nor that of 𝑅(𝑐

ℎ
, 𝑟
2
) is unsatisfied after insertions,

V
𝑚
(or 𝑙
𝑚
) can be inserted into the corresponding place in

𝐴
𝑅(𝑐ℎ ,𝑟1)

, or V
𝑛
(or 𝑙
𝑛
) in 𝐴

𝑅(𝑐ℎ ,𝑟2)
. Otherwise, V

𝑚
(or 𝑙
𝑚
) and

V
𝑛
(or 𝑙
𝑛
) will be selected again.

Crossover. 𝛾
1
and 𝛾

2
are random numbers in the range of

[𝛾min, 𝛾max], where 𝛾1 < 𝛾2, and the random number 𝜆 is in
the range of [𝜆min, 𝜆max]. In the route of 𝑅(𝑐

ℎ
, 𝑟
1
), a segment

𝑠
1
from 𝛾

1
to 𝛾
2
is extracted. Meanwhile, segment 𝑠∗ = {𝑠 |

min 𝑑(𝑐
𝑠1
, 𝑐
𝑠
)}with a distance of 𝜆 is selected in a neighboring

route of𝑅(𝑐
ℎ
, 𝑟
1
), where 𝑑(𝑐

𝑠1
, 𝑐
𝑠
) represents the distance from

the center of segment 𝑠
1
to the center of the whole route 𝑠. If

the exchange of 𝑠
1
and 𝑠∗ to the counterpart routes cannot

lead to the capacity unconstraint of these two routes, this
transform is allowed; otherwise, new 𝛾

1
and 𝛾

2
need to be

selected.

3.2. Follow-Up Optimization. Although the FL method
prompts to generate more desired solutions, FLs in the initial
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Table 1: Column headings for Tables 2–10.

𝐼 Instance ID
𝑛 Number of customers
𝑚 Number of depots
𝑄 Vehicle capacity
𝐷 Maximum duration of a route
𝑐(𝑠
∗

) Previous best known solution cost
𝑐(𝑠
∗∗

) Best known solution found by proposed tabu search algorithm on FL
𝐿min, 𝐿max Min and max amount limitation for vertexes to be added into the FL base
𝛿
𝑖,𝑗

Borderline parameter of the sharing area
Δ𝛿 Updating step of 𝛿

𝑖,𝑗

Δ𝑠max Max difference between optimal vertex and local optimal vertexes in an optimization period
𝑛
𝑌

Number of optimization periods
𝑛
𝐿

The total number of local optimal vertexes
Ω
󸀠 The total number of candidate links

𝜌
𝑖

1
The proportion of customers in FLs to total customers in optimization period 𝑖

𝜌
𝑗

2
The proportion of customers in FLs to total customers in local optimal vertex 𝑗

𝜔
𝑖

1
The optimal solution value of optimization period 𝑖

𝜔
𝑗

2
The value local optimal solution 𝑗

Table 2: MDVRP instances and previous best known solution cost.

𝐼 source 𝑛 𝑄 𝐷 𝑚 GJ CGW CGL 𝑐(𝑠
∗

)

p08 GJ 249 500 310 2 4832.0 4511.6 4437.68 4437.68
p09 GJ 249 500 310 3 4219.7 3950.9 3900.22 3900.22
p10 GJ 249 500 310 4 3822.0 3727.1 3663.02 3663.02
p11 GJ 249 500 310 5 3754.1 3670.2 3554.18 3554.18
p15 CGW 160 60 0 4 — 2610.3 2505.42 2505.42
p16 CGW 160 60 200 4 — 2605.3 2572.23 2572.23
p17 CGW 160 60 180 4 — 2816.6 2709.09 2709.09
p18 CGW 240 60 0 6 — 3877.4 3702.85 3702.85
p19 CGW 240 60 200 6 — 3863.9 3827.06 3827.06
p20 CGW 240 60 180 6 — 4272.0 4058.07 4058.07
p21 CGW 360 60 0 9 — 5791.5 5474.84 5474.84
p22 CGW 360 60 200 9 — 5857.4 5702.16 5702.16
p23 CGW 360 60 180 9 — 6494.6 6095.46 6095.46
pr04 CGL 192 185 440 4 — — 2072.52 2072.52
pr05 CGL 240 180 420 4 — — 2385.77 2385.77
pr06 CGL 288 175 400 4 — — 2723.27 2723.27
pr09 CGL 216 180 450 6 — — 2153.1 2153.1
pr10 CGL 288 170 425 6 — — 2921.85 2921.85

optimization are not necessarily parts of routes in the opti-
mized solution; consequently, follow-up operation is needed
to iterate continuously after splitting links into individual
vertexes. Once the optimization solution is not yet updated 𝜉
generations after the initial optimization, follow-up optimiza-
tion should be introduced. The initial solution of the follow-
up optimization is the optimal one of the initial optimization,
and if this initial solution has occurred in previous periods,
the second optimal solution of the initial optimization can be
selected.

4. Computational Experiments

The algorithm proposed above is programmed in MS Visual
C++ 6.0 and tested with a PC with a AMD Athlon (tm) X2
2.0GHz CPU and 2GB RAM. In this paper, the authors solve
problems in existing literature with this new algorithm and
then solved different LSMDVRPs with different parameters,
in order to identify the coefficient valuing discipline.

The authors test the algorithm based on 18 instances from
literature. Instances of p8–p11 were provided in Gillett and
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Table 3: Sensitivity data of parameters 𝐿min and 𝐿max.

𝐼 𝑛 𝑚 [𝐿
∗

min, 𝐿
∗

max] Solution value % gap CPU time % gap
p08 249 2 [3, 7] 3.37 403.23
p09 249 3 [3, 6] 4.6 476.87
p10 249 4 [3, 6] 7.62 322.33
p11 249 5 [3, 5] 6.26 398.74
p15 160 4 [2, 4] 5.06 366.86
p16 160 4 [2, 4] 3.01 485.78
p17 160 4 [2, 4] 3.1 573.27
p18 240 6 [2, 4] 6.53 397.2
p19 240 6 [2, 4] 4.61 676.61
p20 240 6 [2, 4] 7.85 238.97
p21 360 9 [2, 4] 8.18 291.3
p22 360 9 [2, 4] 6.76 334.59
p23 360 9 [2, 4] 6.14 618.93
pr04 192 4 [2, 5] 7.57 474.76
pr05 240 4 [3, 6] 3.17 356.43
pr06 288 4 [3, 6] 4.31 649.79
pr09 216 6 [2, 4] 7.55 414.62
pr10 288 6 [2, 4] 3.62 689.48

Table 4: Sensitivity data of parameter 𝛿
𝑖,𝑗
and its update step Δ𝛿.

𝐼 𝑛 𝑚 𝛿
𝑖,𝑗

∗

Δ𝛿
∗ Solution value CPU time

% gap 1 % gap 2 % gap 3 % gap 4
p08 249 2 0.85 0.10 11.54 1.51 11.81 29.2
p09 249 3 0.75 0.08 9.82 1.79 19.13 34.48
p10 249 4 0.65 0.04 4.35 1.57 10.83 30.79
p11 249 5 0.65 0.04 17.68 1.2 16.61 51.14
p15 160 4 0.65 0.04 3.24 1.69 7.99 26.85
p16 160 4 0.65 0.06 16.32 1.95 8.68 41.14
p17 160 4 0.65 0.04 9.49 1.43 14.09 45.51
p18 240 6 0.7 0.06 9.59 2.59 12.67 48.92
p19 240 6 0.65 0.04 18.23 1.01 19.57 37.92
p20 240 6 0.65 0.06 13.66 1.99 17.61 44.74
p21 360 9 0.65 0.04 6.95 2.84 4.9 22.24
p22 360 9 0.65 0.04 8.49 1.9 19.68 57.11
p23 360 9 0.65 0.04 10.8 2.55 15.73 21.33
pr04 192 4 0.65 0.04 18.3 2.52 8.75 50.53
pr05 240 4 0.7 0.06 11.59 1.59 14.52 25.42
pr06 288 4 0.75 0.08 12.44 1.13 13.44 35.39
pr09 216 6 0.6 0.04 6.96 1.73 19.96 46.54
pr10 288 6 0.65 0.04 17.1 2.07 12.92 57.18
% Gap 1: % Gap between the worst and the best solution value with different 𝛿

𝑖,𝑗
and Δ𝛿 = 0.04.

% Gap 2: % Gap between the worst and the best solution value with different Δ𝛿 and 𝛿
𝑖,𝑗

∗.
% Gap 3: % Gap between the longest and the shortest CPU time with different 𝛿

𝑖,𝑗
and Δ𝛿 = 0.04.

% Gap 4: % Gap between the longest and the shortest CPU time with different Δ𝛿 and 𝛿
𝑖,𝑗

∗.

Johnson [16], p15–p23 by Chao et al. [39], and pr04–pr6, pr9,
and pr10 byCordeau et al. [25]. Table 1 is the columnheadings
for Tables 2, 3, 4, 5, 6, 7, 8, 9, and 10.

The characteristics of the instances are summarized in
Table 2 and the complete data sets and best known results
are given in the website http://neo.lcc.uma.es/radi-aeb/
WebVRP/index.html. The costs of the best solutions found
by each method are listed in Table 2.

4.1. Sensitivity Analyses

4.1.1. [𝐿min, 𝐿max]. Firstly, all other parameters are set as
constants. 𝐿max is selected from (3, 4, 5, 6, 7) and 𝐿min is
from (2, 3, 4), given 𝐿max ≥ 𝐿min. Each of the 18 instances
is calculated for 14 times, and the results are listed in Table 3.

It is not hard to find that the value of [𝐿min, 𝐿max] has
not much influence on solutions, and average gap between
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Table 5: The value range of 𝛿
𝑖,𝑗

∗ and Δ𝛿∗.

𝑛/𝑚 𝛿
𝑖,𝑗

∗

Δ𝛿
∗

≤50 [0.6, 0.7] [0.04, 0.06]

≤100 (0.7, 0.8] (0.06, 0.08]

>100 (0.8, 0.9] (0.08, 0.10]

Table 6: The calculation results of parameter Δ𝑠max.

𝐼 𝑛 𝑚 Δ𝑠
∗

max 𝑛
𝑌

𝑛
𝐿

Ω
󸀠

p08 249 2 0.03 3 17 201
p09 249 3 0.04 5 18 193
p10 249 4 0.03 7 21 187
p11 249 5 0.03 7 42 422
p15 160 4 0.06 5 18 143
p16 160 4 0.07 5 18 159
p17 160 4 0.06 5 17 129
p18 240 6 0.05 8 31 255
p19 240 6 0.06 9 48 646
p20 240 6 0.05 10 47 531
p21 360 9 0.02 10 45 559
p22 360 9 0.02 11 46 315
p23 360 9 0.02 9 43 302
pr04 192 4 0.06 5 23 309
pr05 240 4 0.03 6 36 400
pr06 288 4 0.03 6 21 215
pr09 216 6 0.05 8 27 232
pr10 288 6 0.04 7 41 343

Table 7: The value of 𝑛
𝑌
, 𝑛
𝐿
, and Ω󸀠 and the accuracies of Ω󸀠 with

different Δ𝑠max in the instance p09.

Δ𝑠
∗

max 𝑛
𝑌

𝑛
𝐿

Ω
󸀠

Ω
󸀠 accuracy

0.01 3 5 58 37.77%
0.02 3 8 101 38.37%
0.03 4 11 131 40.71%
0.04 5 18 193 42.40%
0.05 9 23 287 32.05%
0.06 10 26 402 23.77%
0.07 12 27 606 21.96%
0.08 12 40 726 15.59%
0.09 13 55 958 10.02%
0.1 15 101 974 11.23%

solutions is 5.52%. Inferior solutions always occur in the
condition where 𝐿min is relatively large and 𝐿min = 𝐿max;
for example, [𝐿min, 𝐿max] = [5, 5]. However, the value of
[𝐿min, 𝐿max] greatly affects the computation speed of the
algorithm, with an average gap of 453.88%, since 𝐿max can
control the upper limits of lengths of candidate links, and
𝐿min determines their lower limits as well as split numbers.
With the decrease in 𝐿min, the number of splits increases
with an exponential distribution. According to this case, the
relation of [𝐿∗min, 𝐿

∗

max] and 𝑛/𝑚 is revealed: a larger 𝑛/𝑚
leads to larger 𝐿∗min and 𝐿

∗

max. When the value of 𝑛/𝑚 is less

than 40, the commendation value of [𝐿∗min, 𝐿
∗

max] is [2, 4],
when 40 < 𝑛/𝑚 ≤ 100, the value is [3, 5] or [3, 6], and when
𝑛/𝑚 is more than 100, the value is [3, 7].

4.1.2. Borderline Parameter 𝛿
𝑖,𝑗
and Update Step Δ𝛿. Keeping

other parameters unchanged, the authors measure the effect
of 𝛿
𝑖,𝑗
here. Firstly, Δ𝛿 = 0.04, 𝛿

𝑖,𝑗
is in [0.5, 0.9], the interval

between successive 𝛿
𝑖,𝑗
is 0.05, and then 𝛿

𝑖,𝑗

∗ for 18 instances
are obtained through 9 times of calculations for each instance.
Next, Δ𝛿 is taken varied in [0.02, 0.12], 𝛿

𝑖,𝑗

∗ are allocated to
these instances, and the interval forΔ𝛿 is defined as 0.02.Δ𝛿∗
for 18 instances are achieved through 6 times of calculations
for each one.

According to Table 4, given Δ𝛿 is a constant, difference
between the best and the worst solution values of different
𝛿
𝑖,𝑗

is 11.48%. If 𝛿
𝑖,𝑗

is regarded as a constant, difference
between the best and the worst solution values of different
Δ𝛿 only is 1.84%. Such results illustrate that valuing of 𝛿

𝑖,𝑗

has a more obvious impact on the computation result of
the algorithm and that of Δ𝛿. Similarly, valuing of 𝛿

𝑖,𝑗
is

much more influential on the computation efficiency of the
algorithm (average difference is 39.25%) than that of Δ𝛿
(average difference is 13.83%). The values of 𝛿

𝑖,𝑗

∗ and Δ𝛿 are
proportional to the customer numbers allocated in each
depot (𝑛/𝑚). The approximate value range of 𝛿

𝑖,𝑗

∗ and Δ𝛿∗
is shown in Table 5.

4.1.3. Δ𝑠max. Set [𝐿min, 𝐿max] = [𝐿
∗

min, 𝐿
∗

max], Δ𝑠max in [0.01,
0.10], and the interval between different Δ𝑠max as 0.01. The
authors calculate 10 times for each instance, the number
of optimization periods is 𝑛

𝑌
, the number of local optimal

vertexes in optimization period 𝑘 is 𝑛𝑘
𝐿
, 𝑛
𝐿
= ∑
𝑛𝑌

𝑘=1
𝑛
𝑘

𝐿
,Ω󸀠
𝑘
is the

number of candidate links produced in optimization period
𝑘, and Ω󸀠 = ∑𝑛𝑌

𝑘=1
Ω
󸀠

𝑘
. The calculation results are shown in

Table 6.
According to the analysis results, Δ𝑠max can control

the number of local optimal vertexes 𝑛
𝐿
, and the value of

Δ𝑠max is inversely proportional to 𝑛. This is because global
optimization is difficult with the increase in 𝑛 and more
local optimal vertexes attained. As a result, a smaller Δ𝑠max
is needed to restrict the number of 𝑛

𝐿
, so as to control Ω󸀠.

Although a larger Ω󸀠 raises the possibilities to obtain FLs,
it lowers the average quality of candidate links as well, and
so some “bad” links corresponding to local optimal vertexes
far from the periodical vertex are involved in the candidate
link base. Once these unexpected links enter the FL base, the
global optimization will be staggered and its results will be
weakened. In this study, a properΔ𝑠max for computation scale
and characteristics is needed. Table 7 lists the value of 𝑛

𝑌
, 𝑛
𝐿
,

and Ω󸀠 and the accuracies of Ω󸀠 with different Δ𝑠max in the
instance p09.

As shown in Table 7, when Δ𝑠max is at its best value
Δ𝑠
∗

max, Ω
󸀠 is the most accurate, so as to guarantee the most

efficient and effective optimization. Based on this study, the
recommendation value of Δ𝑠∗max is [0.06, 0.07] when 150 <
𝑛 ≤ 200, [0.03, 0.06] when 200 < 𝑛 ≤ 300, and [0.02, 0.03]
when 300 < 𝑛 ≤ 400.
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Table 8: Numbers of FLs in every optimization period.

𝐼
Optimization period

1 2 3 4 5 6 7 8 9 10 11
p08 20 34 38 — — — — — — — —
p09 13 16 24 28 30 — — — — — —
p10 11 15 19 26 30 33 34 — — — —
p11 15 17 19 23 28 30 33 — — — —
p15 12 18 22 26 27 — — — — — —
p16 15 17 25 31 31 — — — — — —
p17 16 21 25 27 27 — — — — — —
p18 15 18 19 23 28 32 32 33 — — —
p19 13 18 22 27 32 37 37 38 40 — —
p20 10 13 12 17 23 27 32 34 36 36 —
p21 11 15 19 27 31 35 38 45 48 50 —
p22 12 17 21 27 33 39 46 51 52 52 53
p23 12 15 19 25 33 43 47 54 56 — —
pr04 14 21 25 24 25 — — — — — —
pr05 16 25 34 39 39 40 — — — — —
pr06 15 19 25 32 36 38 — — — — —
pr09 13 18 23 27 31 32 33 35 — — —
pr10 19 22 29 34 34 35 37 — — — —

Table 9: The correlation of 𝜌𝑖
1
, 𝜔𝑖
1
, 𝜌𝑗
2
, and 𝜔𝑗

2
.

𝐼 𝑛
𝑌

𝑛
𝐿

Correlation coefficient of 𝜌𝑖
1
and 𝜔𝑖

1
Correlation coefficient of 𝜌𝑗

2
and 𝜔𝑗

2

p08 3 17 −0.92 −0.91

p09 5 18 −0.91 −0.99

p10 7 21 −0.97 −0.96

p11 7 42 −0.97 −0.97

p15 5 18 −0.89 −0.89

p16 5 18 −0.97 −0.90

p17 5 17 −0.88 −0.93

p18 8 31 −0.95 −0.90

p19 9 48 −0.92 −0.95

p20 10 47 −0.93 −0.98

p21 10 45 −0.88 −0.95

p22 11 46 −0.90 −0.96

p23 9 43 −0.91 −0.93

pr04 5 23 −0.96 −0.91

pr05 6 36 −0.90 −0.89

pr06 6 21 −0.96 −0.95

pr09 8 27 −0.90 −0.92

pr10 7 41 −0.92 −0.90

4.2. FLs and Optimization Results. With the best parameters
in Section 4.1, the generation process of FLs in the optimiza-
tion is tracked. Set 𝜌𝑖

1
as the proportion of customers in FLs to

total customers in each optimization period,𝜔𝑖
1
as the optimal

solution value of optimization period 𝑖, 𝑖 = 1, 2, . . . , 𝑛
𝑌
, 𝜌𝑗
2

as the proportion of customers in FLs to total customers in
each local optimal vertex, and 𝜔𝑗

2
as the value local optimal

solution 𝑗, 𝑗 = 1, 2, . . . , 𝑛
𝐿
. Table 8 shows numbers of FLs in

every optimization period.

In Tables 8 and 9, the following can be found. (a) Average
numbers of FLs increase with the progress of optimization,
to the most in the last optimization period, and the optimal
solution is achieved at the same time. (b) Increasing speed of
FL numbers falls down gradually in the optimization process.
Due to the existence of sharing area, when the proportion of
customers on FLs reaches a certain number, the increase in
its absolute amount will be slowed. (c) The optimal solution
keeps updating with optimization. Although FLs do not
increase rapidly, the optimal search ability is not challenged.
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Table 10: The results found by proposed tabu search algorithm on FL.

𝐼 𝑛 𝑐(𝑠
∗

) 𝑐(𝑠
∗∗

)
Average CPU
time (min) % CPU time Average

solution value % solution value % above best
known solution

p08 249 4437.68 4417.46 10.40 27.04 4465.69 1.08 0.46

p09 249 3900.22 3886.82 10.32 28.60 3937.76 1.29 0.34

p10 249 3663.02 3647.22 9.61 28.20 3684.78 1.02 0.43

p11 249 3554.18 3547.70 9.20 12.03 3611.16 1.76 0.18

p15 160 2505.42 2513.43 2.88 8.31 2528.42 0.59 −0.32

p16 160 2572.23 2578.88 4.04 9.03 2591.07 0.47 −0.26

p17 160 2709.09 2709.09 3.43 11.86 2710.19 0.04 0

p18 240 3702.85 3712.61 4.22 12.45 3719.78 0.19 −0.26

p19 240 3827.06 3827.06 3.73 12.58 3853.29 0.68 0

p20 240 4058.07 4066.85 5.33 18.03 4078.59 0.29 −0.22

p21 360 5474.84 5483.31 7.72 20.46 5518.1 0.63 −0.15

p22 360 5702.16 5708.12 8.05 11.57 5743.57 0.62 −0.10

p23 360 6095.46 6095.46 7.07 17.23 6136.23 0.66 0

pr04 192 2072.52 2058.80 9.63 32.54 2081.42 1.09 0.66

pr05 240 2385.77 2369.00 8.59 19.30 2405.35 1.51 0.70

pr06 288 2723.27 2718.11 13.25 19.24 2763.24 1.63 0.19

pr09 216 2153.1 2147.40 8.04 13.21 2182.06 1.59 0.26

pr10 288 2921.85 2865.31 10.88 22.79 2934.16 2.35 1.94

% CPU time: the gap in percentage between the average CPU time and the fastest CPU time among the ten runs.
% solution value: the gap in percentage between the average value of the solutions and the best solution value among the ten runs.

In the latter periods of optimization, low quality FLs are likely
to be replaced by high quality ones. (d) the average correlation
coefficient between𝜌𝑖

1
and𝜔𝑖

1
reaches−0.924, and the number

between 𝜌𝑗
2
and 𝜔𝑗

2
is −0.933 for all 18 instances. Such a result

apparently bridges the proportion of customers in FLs and
their corresponding local optimal solutions, so as to prove
that the improvement of 𝜌𝑖

1
and 𝜌𝑗
2
prompts to achieve better

optimal solutions.

4.3. Optimization Results. The 18 instances are calculated for
10 times based on parameters recommended above, respec-
tively, and the optimization results are shown in Table 10.
Figure 11 describes the corresponding route of the optimal
solution for p09.

In 9 of all 18 instances, new optimal solutions are
obtained. The average fluctuation value of optimal solution
in 18 instances is 0.97%. This fluctuation value consolidates
the independence of optimization results to initial solutions
in the proposed algorithm, as well as its effectiveness and
robustness.

Scales of all 18 instances are large enough (150 < 𝑛 ≤

360), but the average computation duration is only 7.58min
with a little fluctuation rate of 18.03% in 10 calculations.
All these results show the improvement of this algorithm in
optimization efficiency.

For p15–p23, no better route is attained, and values of the
average computation time, fluctuation rate of computation
time, and optimal solutions are lower than the average one in
the total 18 instances. The reason is that regular distributions

Figure 11: The corresponding route of the optimal solution for p09.

and similar requirements of customers in these instances
reduce the optimization space and difficulty.

5. Conclusions

The authors propose a new tabu algorithm to optimize large-
scale multidepot routes, using FLs as skeleton to improve
search ability, speed up optimization, and then obtain better
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solutions.The validity of the new algorithm has been verified
by example of verification.

FL is a new concept proposed in view of the VRP.
However, in terms of the present study level, it is hard to
get an algorithm and recommended parameters applying
to all VRP constraints because of the complexity of VRP.
Studies of this paper only aimed at large-scale VRP and
capacity constraints. For the VRP in other conditions, this
paper has certain reference value on the way of thinking;
however, the specific operation of operator, particularly the
recommended value parameters, needs analysis case by case.
In principle, the effectiveness of FL is the result of joint action
of many factors and the designs and parameter values of
different operators are not unique. As the research of FL
under different constraint conditions of VRP and influence
factors continues, more complete processing methods and
recommended parameters will gradually form.
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