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1 Introduction

The methods of effective field theory (EFT) have proven invaluable across a range of

disciplines as a tool for simplifying practical calculations in systems with two or more

widely separated energy or length scales [1, 2]. Physical observables at long distances can

be determined using an EFT that respects the correct symmetries and only includes the

low-energy degrees of freedom. The effects of microscopic, short-distance interactions are

then encoded in a set of effective coupling constants that are determined by experiment or

computed from an underlying fundamental theory.

A major problem in the construction of an EFT is the choice of the appropriate degrees

of freedom. Fortunately, there is a large class of physical systems where this task can be

accomplished at once: whenever a global continuous symmetry is spontaneously broken, the

spectrum of the theory contains gapless excitations, the Nambu-Goldstone (NG) bosons.

Examples of NG bosons include sound waves — the phonons — in solids and (super)fluids,

spin waves — the magnons — in (anti)ferromagnets, or pions in quantum chromodynamics

(QCD). Provided there are no other soft modes in the spectrum, not associated with

symmetry, the low-energy dynamics is dominated by the NG bosons alone. This assumption

will be implicit throughout the remainder of the paper.

The formalism of EFT for the NG bosons of a spontaneously broken symmetry was

developed in full generality in high energy physics. In particular, Coleman et al. [3, 4]

showed how to construct effective Lagrangians for the NG bosons, invariant under an ar-

bitrary compact internal symmetry group. As a consequence of the spontaneously broken

symmetry, the NG bosons interact weakly at low energy or momentum, and the EFT La-

grangian can be organized as a series of terms with an increasing number of derivatives [5].

A prime example of the application of EFT methods to a precision analysis of low-energy

dynamics is chiral perturbation theory (χPT) of QCD [6, 7]. For nonrelativistic, con-

densed matter systems, the use of EFT techniques was on the other hand advocated by

Leutwyler [8], who developed a general EFT framework to leading, second order in deriva-

tives. Detailed applications including selected higher-order calculations were subsequently

worked out for the special cases of ferromagnets [9–13] and antiferromagnets [14–17].
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Despite these examples, the application of EFT to NG bosons in nonrelativistic sys-

tems has not been developed to the same extent as in relativistic field theory. Provided

quantum anomalies are absent, the effective Lagrangian of Lorentz-invariant systems in

four spacetime dimensions can be assumed to be invariant with respect to the relevant

symmetries without loss of generality [18], and the methods of refs. [3, 4] can thus be used

to construct it. Once Lorentz invariance is given up, the Lagrangian, however, becomes in

general invariant only up to a total derivative. While this still guarantees the invariance

of the action, it makes its explicit construction a nontrivial problem. In his seminal paper,

Leutwyler [8] derived a set of differential equations for the nonlinear dependence of the

leading-order effective Lagrangian on the NG fields, dictated by symmetry. In addition, he

found their solution for the special case of an (anti)ferromagnet.

A general solution to Leutwyler’s differential equations was discovered only recently [19]

(see also ref. [20] for a more detailed discussion). The objective of the present paper is to

fill a gap in the development of EFT and show, assuming absence of anomalies, how the

construction of the effective Lagrangian can be carried out at higher orders in the deriva-

tive expansion. There are good reasons to be concerned with higher-order contributions,

despite the computational complexity that accompanies such an analysis. The first one

is precision, of which the calculation of selected observables in χPT to the sixth order in

derivatives sets an example [21]. Perhaps more importantly, the leading-order Lagrangian

often possesses an accidental symmetry which is not inherent to the microscopic theory.

Higher-order operators can then actually provide a dominant contribution to certain rare

processes [22]. Finally, higher-order operators are needed as counterterms whenever loops

are taken into account, which is a necessity if one wishes to discuss the thermodynamics

of broken symmetry [23–25].

The main results of this paper are: (i) classification of all terms in the effective La-

grangian, to order four in the gradient expansion, that are invariant up to a total derivative,

announced in ref. [26]; (ii) a transparent algorithm for the construction of all the remaining,

strictly invariant terms in the Lagrangian. We moreover provide an explicit expression for

the most general effective Lagrangian up to order four in derivatives, assuming for simplic-

ity rotational invariance. The effects of explicit symmetry breaking are also discussed.

1.1 Plan of the paper

Our ultimate aim is to provide a systematic framework suitable for applications in both

high energy and condensed matter physics. This determines the structure of the paper. In

section 2, we summarize our results, introducing only the minimum amount of notation

necessary. In order to make the complicated expressions more intelligible, we furthermore

highlight contributions to the effective Lagrangian that are specific to certain spatial dimen-

sions or that encode explicit symmetry breaking. Some concrete examples are subsequently

worked out in section 3 to further clarify the formalism. These two sections constitute the

essence of the paper, necessary for the reader interested in practical applications rather

than general developments.

After introducing the practical results, the rest of the paper presents the concep-

tual background behind the construction. Following largely the foundational work of
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Leutwyler [18], section 4 explains how the construction of the effective Lagrangian can

be reduced to an elementary problem in field theory. As a warmup and for illustration,

we show in section 5 how the leading-order Lagrangian of ref. [8], including the explicit

solution for its coupling functions [19], is reproduced elegantly in our approach. We also

derive the corresponding equation of motion, which can be used to eliminate some of the

operators at higher orders. Section 6 then provides some details of the construction of

effective Lagrangians at the next two orders of the derivative expansion. In particular,

section 6.1 deals with the invariant part of the Lagrangian. The most subtle part of the

construction, namely the classification of terms invariant only up to a total derivative [26],

is reviewed in detail in sections 6.2 and 6.3. Finally, the effects of explicit symmetry break-

ing are discussed in section 6.4. Although most of the technical details are provided in

the main body of the paper, some auxiliary results that can be formulated separately are

deferred to the appendices.

2 Summary of the results

2.1 Setup and notation

To facilitate the unique definition of the effective Lagrangian, we first introduce the most

important notation necessary. More detailed properties of the individual building blocks

will be discussed below.

• Internal symmetry group: G.

• Corresponding symmetry generators: Ti,j,k,....

• Unbroken subgroup: H.

• Unbroken generators: Tα,β,γ,....

• Broken generators: Ta,b,c,....

• Structure constants: fkij ; defined by [Ti, Tj ] = ifkijTk; f
a
αβ always vanishes; fαβa = 0 is

assumed (can be ensured by a suitable choice of basis for all compact Lie algebras).

• Spacetime indices: κ, λ, µ, ν, . . . .

• Spatial indices: r, s, t, . . . .

• Nambu-Goldstone fields: πa; encoded in a matrix variable U(π); parameterization

arbitrary except for the requirement that the vacuum corresponds to π = 0, U(0) = 1.

• External gauge fields: Aiµ.

• External gauge field-strength tensor: F iµν = ∂µA
i
ν − ∂νAiµ + f ijkA

j
µAkν .

• Auxiliary field variables: φaµ, Bα
µ ; defined by U−1(AiµTi)U+iU−1∂µU = φaµTa+Bα

µTα.

• Auxiliary field covariant derivative: Dµφ
a
ν = ∂µφ

a
ν + faαbB

α
µφ

b
ν .

• Auxiliary field-strength tensor: Gαµν = ∂µB
α
ν − ∂νBα

µ + fαβγB
β
µB

γ
ν .

• Explicit symmetry breaking parameter: mρ,σ,···; enters the microscopic theory th-

rough the operator mσOσ.

• Auxiliary mass field: Ξσ; defined by Ξσ = D(U)ρσmρ, where D is the representation

of the symmetry group in which Oσ transforms.

– 3 –
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2.2 Effective Lagrangian

To the order that we are interested in, the effective Lagrangian takes the form of a poly-

nomial in the auxiliary fields φaµ and Bα
µ , the field-strength tensor Gαµν and the covariant

derivative Dµφ
a
ν . It is written as a sum Leff = Linv + LCS + Ls.b.. The first part here is

strictly invariant under simultaneous gauge transformations of the NG and external gauge

fields, while the second part is only invariant up to a surface term. Finally, the third part

incorporates the effects of explicit symmetry breaking. Each part of the Lagrangian can

be further organized as a sum of contributions L (s,t), carrying s spatial and t temporal

indices. In practice, this splitting is only necessary for Linv which includes a large number

of terms.

For the sake of simplicity, we assume invariance under continuous spatial rotations.

The same approach can, however, be applied without modifications to arbitrary spacetime

symmetry. Fully general expressions for L
(s,t)
inv with s+ t ≤ 2 and for L

(s,t)
CS with s+ t ≤ 4

are given in sections 5 and 6.2, respectively.

2.2.1 Invariant part of the Lagrangian

Here, we list all operators that appear in L
(s,t)
inv with s+ t ≤ 4, modulo ambiguities due to

integration by parts. As some operators exist in any spacetime dimensionality while others

do not, we use color coding to highlight operators particular to one, two and three spatial

dimensions. Also, we list separately operators containing the field-strength tensor Gαµν .

L
(0,1)
inv : φa0.

L
(1,0)
inv : φa1.

L
(0,2)
inv : φa0φ

b
0.

L
(1,1)
inv : φa0φ

b
1.

L
(2,0)
inv : φarφ

b
r, ε

rsφarφ
b
s.

L
(0,3)
inv : φa0φ

b
0φ

c
0, φa0D0φ

b
0.

L
(1,2)
inv : φa0φ

b
0φ

c
1, φa0D0φ

b
1, φa0D1φ

b
0,

φa0G
α
01.

L
(2,1)
inv : φa0φ

b
rφ
c
r, ε

rsφa0φ
b
rφ
c
s, φ

a
0Drφ

b
r, φ

a
rD0φ

b
r, ε

rsφa0Drφ
b
s, ε

rsφarD0φ
b
s,

φarG
α
0r, ε

rsφa0G
α
rs, ε

rsφarG
α
0s.

L
(3,0)
inv : φa1φ

b
1φ

c
1, εrstφarφ

b
sφ
c
t , φ

a
1D1φ

b
1, εrstφarDsφ

b
t ,

εrstφarG
α
st.

L
(0,4)
inv : φa0φ

b
0φ

c
0φ

d
0, φa0φ

b
0D0φ

c
0, D0φ

a
0D0φ

b
0.

L
(1,3)
inv : φa0φ

b
0φ

c
0φ

d
1, φa0φ

b
0D1φ

c
0, φa0φ

b
1D0φ

c
0, D0φ

a
0D0φ

b
1, D0φ

a
0D1φ

b
0,

φa0φ
b
0G

α
01, D0φ

a
0G

α
01.
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L
(2,2)
inv : φa0φ

b
0φ

c
rφ
d
r , ε

rsφa0φ
b
0φ

c
rφ
d
s , φ

a
0φ

b
rD0φ

c
r, ε

rsφa0φ
b
rD0φ

c
s, φ

a
rφ

b
0Drφ

c
0, εrsφarφ

b
0Dsφ

c
0,

D0φ
a
rD0φ

b
r, ε

rsD0φ
a
rD0φ

b
s, Drφ

a
0Drφ

b
0, D0φ

a
0Drφ

b
r, ε

rsD0φ
a
0Drφ

b
s,

εrsφa0φ
b
0G

α
rs, φ

a
0φ

b
rG

α
0r, ε

rsφa0φ
b
rG

α
0s, ε

rsD0φ
a
0G

α
rs, D0φ

a
rG

α
0r, ε

rsD0φ
a
rG

α
0s, Drφ

a
0G

α
0r,

Gα0rG
β
0r, ε

rsGα0rG
β
0s.

L
(3,1)
inv : φa0φ

b
1φ

c
1φ

d
1, εrstφa0φ

b
rφ
c
sφ
d
t , φ

a
0φ

b
1D1φ

c
1, εrstφa0φ

b
rDsφ

c
t , φ

a
1φ

b
1D0φ

c
1, εrstφarφ

b
sD0φ

c
t ,

D1φ
a
0D1φ

b
1, D0φ

a
1D1φ

b
1, εrstD0φ

a
rDsφ

b
t ,

εrstφa0φ
b
rG

α
st, φ

a
1φ

b
1G

α
01, εrstφarφ

b
sG

α
0t, ε

rstD0φ
a
rG

α
st, D1φ

a
1G

α
01.

L
(4,0)
inv : φarφ

b
rφ
c
sφ
d
s , ε

stφarφ
b
rφ
c
sφ
d
t , φ

a
rφ

b
sDrφ

c
s, ε

stφarφ
b
sDrφ

c
t , ε

stφasφ
b
rDtφ

c
r,Drφ

a
sDrφ

b
s,

εstDrφ
a
sDrφ

b
t , Drφ

a
rDsφ

b
s, ε

stDrφ
a
rDsφ

b
t ,

εstφarφ
b
rG

α
st, φ

a
rφ

b
sG

α
rs, ε

stDrφ
a
rG

α
st, Drφ

a
sG

α
rs, G

α
rsG

β
rs.

Each of the operators listed above comes with an effective coupling that contracts all the

internal group indices carried by the operator, as in cabαφ
a
0φ

b
rG

α
0r. Each of the couplings

cab··· ,αβ··· is required to be an invariant tensor of the unbroken subgroup H; for all allowed

values of the indices, it therefore has to satisfy the constraint

ccb··· ,αβ···f
c
γa + cac··· ,αβ···f

c
γb + · · ·+ cab··· ,δβ···f

δ
γα + cab··· ,αδ···f

δ
γβ + · · · = 0. (2.1)

We do not attempt to find a general solution to these constraints, but leave them to be

addressed case by case using tensor methods [27]. The simplest examples of couplings with

one and two indices that occur repeatedly throughout this paper are discussed to some

extent in appendix A.

The lowest-order Lagrangians, with s + t ≤ 2, are well-known by now. The special

case of rotationally invariant theories in three spatial dimensions was addressed already

in ref. [8]; the full nonlinear dependence of the associated Lagrangian on the NG fields

was found recently in ref. [19]. The cases of one and two spatial dimensions are discussed

in ref. [20]. The fully general lowest-order Lagrangian, obtained with no assumptions on

the spacetime symmetry, is given below in section 5, where we also discuss its physical

implications in more detail. Specific examples of higher-order Lagrangians, including the

corresponding invariant couplings, are finally worked out in section 3.

2.2.2 Chern-Simons terms

The contributions to the Lagrangian invariant up to a surface term are most easily organized

by the total order in derivatives, s+ t. It turns out that up to order four, only two types

of such terms exist, one at the first and another at the third order,

L
(1)
CS = eαB

α
0 ,

L
(3)
CS = cαβε

λµνBα
λ

(
∂µB

β
ν +

1

3
fβγδB

γ
µB

δ
ν

)
, where cαβ = cβα.

(2.2)

While L
(1)
CS exists regardless of the spacetime dimension, L

(3)
CS is only allowed in two or

three spatial dimensions. In the latter case, the indices λ, µ, ν should be interpreted as

– 5 –
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purely spatial ones. The effective couplings eα and cαβ are again invariant tensors of the

unbroken subgroup H, but this time with a straightforward interpretation. First, there is

one free parameter eα for every U(1) factor of H, corresponding to the vacuum expectation

value of the associated conserved charge density. Second, cαβ is proportional to the Killing

form on every simple factor of H, and thus contains one free parameter for each such factor.

The Chern-Simons terms have distinct topological properties, in which they substantially

differ from the invariant part of the effective Lagrangian, and moreover they give rise to

specific interactions amongst the NG bosons. Both of these features are discussed in detail

in the companion paper [26].

2.2.3 Effects of explicit symmetry breaking

Precisely which explicit-symmetry-breaking operators appear at a given order of the deriva-

tive expansion depends on the order that one assigns to the parameters mσ in the La-

grangian. We adhere to the usual practice and count mσ as a quantity of order two in

derivatives, which follows from the fact that the kinetic term of the NG bosons typically

acquires a contribution linear in mσ. Hence, determining the action to order four requires

classifying all terms in the Lagrangian with s+ t ≤ 2:

L
(0,0)
s.b. : Ξσ, ΞρΞσ.

L
(0,1)
s.b. : Ξσφ

a
0.

L
(1,0)
s.b. : Ξσφ

a
1.

L
(0,2)
s.b. : Ξσφ

a
0φ

b
0, ΞσD0φ

a
0.

L
(1,1)
s.b. : Ξσφ

a
0φ

b
1, ΞσD0φ

a
1, ΞσD1φ

a
0, ΞσG

α
01.

L
(2,0)
s.b. : Ξσφ

a
rφ

b
r, ε

rsΞσφ
a
rφ

b
s, ΞσDrφ

a
r , ε

rsΞσDrφ
a
s , ε

rsΞσG
α
rs.

These operators again come with effective couplings that now include one or two indices

of the type σ. The couplings cρσ···ab··· ,αβ··· are invariant tensors of H and satisfy a relation

cρσ···cb··· ,αβ···f
c
γa + cρσ···ac··· ,αβ···f

c
γb + · · ·+ cρσ···ab··· ,δβ···f

δ
γα + cρσ···ab··· ,αδ···f

δ
γβ + · · ·

+ icωσ···ab··· ,αβ···D(Tγ)ρω + icρω···ab··· ,αβ···D(Tγ)σω + · · · = 0,
(2.3)

generalizing the earlier eq. (2.1). Concrete examples of the above operators and couplings

will be discussed in section 3.

2.2.4 Lorentz-invariant Lagrangians

Above, we have listed all terms in the effective Lagrangian allowed by rotational invariance.

Relativistic Lagrangians, invariant under the full Lorentz group, are in principle a special

case thereof. However, since we treated spatial and temporal indices separately, Lorentz

invariance will only be reflected implicitly, in a set of linear constraints on the effective

couplings. For the reader’s convenience, we will now explicitly spell out the resulting La-

grangian using the usual Lorentz-covariant notation. As space and time are mixed by

– 6 –
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Lorentz transformations, the individual contributions are organized by the total degree in

derivatives, s + t. This time, we only consider the special cases of two and three spa-

tial dimensions, since in one-dimensional Lorentz-invariant systems spontaneous symmetry

breaking is prohibited by the Coleman theorem [28]. The result reads:

L
(2)
inv : φaµφ

bµ.

L
(3)
inv : ελµνφaλφ

b
µφ

c
ν , ελµνφaλDµφ

b
ν , ελµνφaλG

α
µν .

L
(4)
inv : φaµφ

bµφcνφ
dν , εκλµνφaκφ

b
λφ

c
µφ

d
ν , φaµφbνDµφ

c
ν , εκλµνφaκφ

b
λDµφ

c
ν , Dµφ

a
νD

µφbν ,

Dµφ
aµDνφ

bν ,

φaµφbνGαµν , εκλµνφaκφ
b
λG

α
µν , DµφaνGαµν , GαµνG

βµν .

LCS: ελµνBα
λ

(
∂µB

β
ν + 1

3f
β
γδB

γ
µBδ

ν

)
.

Ls.b.: Ξσ, ΞρΞσ, Ξσφ
a
µφ

bµ, ΞσDµφ
aµ.

The associated effective couplings have to satisfy the same invariance conditions as before,

see eqs. (2.1) and (2.3). The presence of a single term in the Chern-Simons sector indicates

that, as shown in ref. [18], in three spatial dimensions the effective Lagrangian can be made

strictly gauge-invariant by a proper choice of field variables and transformation rules.

2.3 Expansion in Nambu-Goldstone fields

The effective Lagrangians listed above are expressed exclusively in terms of the auxiliary

fields φaµ and Bα
µ . This is both an advantage and a drawback. On the one hand, we are

able to write the allowed interaction terms in a very compact way, largely independent of

the chosen parameterization for the NG fields. On the other hand, the implications for the

actual dynamics of the NG bosons may be somewhat obscured by this economic notation.

We wish to ameliorate the latter deficiency by providing here some explicit expressions in

terms of the NG fields πa. To this end, we first introduce the Maurer-Cartan (MC) form

ωia(π) and the rotation matrix νij(π), defined by

ωa(π) = ωia(π)Ti = −iU(π)−1∂aU(π), νj(π) = νij(π)Ti = U(π)−1TjU(π), (2.4)

where ∂a = ∂/∂πa. In terms of these objects, our auxiliary fields read by construction

φaµ(π) = Aiµν
a
i (π)− ωab (π)∂µπ

b, Bα
µ (π) = Aiµν

α
i (π)− ωαa (π)∂µπ

a, (2.5)

which can be viewed as an expanded form of the simple matrix relation

U−1AµU + iU−1∂µU = φµ +Bµ = φaµTa +Bα
µTα, (2.6)

where Aµ = AiµTi; see section 4.2 below for a justification of this definition. Let us now

choose a specific, widely used parameterization for the NG field matrix, U(π) = eiπaTa .

The virtue of the exponential parameterization is that both the MC form and the rotation

– 7 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
8

matrix νij(π) can be easily evaluated in power series expansions up to any desired order in

the NG fields,

ωia(π) = δia −
1

2
f iabπ

b +
1

6
f jabf

i
jcπ

bπc + · · · ,

νij(π) = δij + f iajπ
a +

1

2
f iakf

k
bjπ

aπb + · · · .
(2.7)

This allows one to work out explicitly both the kinetic terms and interactions of NG bosons.

For various practical purposes, it is also useful to have an explicit expression for the

symmetry transformation of the NG fields. This is discussed in detail below in section 4.1;

its finite and infinitesimal versions read

U(π′) = gU(π)h(π, g)−1 = eiεiTiU(π)e−iεikαi (π)Tα , (2.8)

where g = eiεiTi ∈ G and h ∈ H. The infinitesimal shift of the NG fields is denoted as

δπa = εihai (π). In geometrical terms, the functions hai (π) define infinitesimal group motions

on the coset space G/H, and thus correspond to the Killing vectors of the symmetry group

G. Multiplying eq. (2.8) from the left by U(π)−1 and expanding to first order in εi, we

obtain the simple relations νai = ωabh
b
i and ναi = ωαah

a
i + kαi . Using the already known

expressions for ωia and νij , we can solve these equations iteratively, and obtain for the

exponential parameterization U(π) = eiπaTa [20]

hai (π) = δai −
(
faib +

1

2
fabcδ

c
i

)
πb + · · · , kαi (π) = δαi −

(
fαib +

1

2
fαbcδ

c
i

)
πb + · · · . (2.9)

Furthermore, we can now give a particularly simple interpretation for the auxiliary field

φaµ. Plugging the relation νai = ωabh
b
i into eq. (2.5), this field can namely be written as

φaµ(π) = −ωab (π)Dµπ
b, (2.10)

where Dµπ
a = ∂µπ

a − Aiµhai (π) is a covariant derivative of the NG field. Note that this

agrees with the usual notion of a covariant derivative: the coefficient hai (π) in front of Aiµ
defines an infinitesimal symmetry transformation of the field πa.

3 Examples

3.1 Symmetric coset spaces — general considerations

In many cases of physical interest the coset space G/H turns out to be symmetric. This

means that the commutator of two broken generators is a linear combination of unbroken

generators only, or fabc = 0. Formally, this property is equivalent to the existence of an

automorphism R of the Lie algebra of G, under which R(Tα) = Tα and R(Ta) = −Ta.
Choosing the parameterization U(π) = eiπaTa and applying the automorphism R to the

transformation rule of eq. (2.8) gives R(U ′) = U ′−1 = R(g)U−1h−1. Taking the inverse

of this expression and multiplying it with eq. (2.8), we infer that there is a field variable

which, unlike U(π), transforms linearly under the entire group G,

Σ(π) = U(π)2, Σ(π′) = gΣ(π)R(g)−1. (3.1)
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Due to this property, Σ(π) (or an equivalent variable) is often taken as the starting point of

the construction of EFTs. We should nevertheless emphasize that φaµ and Bα
µ are concep-

tually more convenient, as they carry a derivative, implying that when expressed in terms

of them, the effective Lagrangian contains only a finite number of contributions at every

order in the derivative expansion. At the same time, adding a factor of Σ or Σ−1 does not

increase the order of a given operator, and one thus has to go through some extra effort to

classify all the possible terms in the Lagrangian.

The advantage of the notation (3.1) is, however, that it makes it trivial to construct

the covariant derivative

DµΣ = ∂µΣ− iAµΣ + iΣR(Aµ), (3.2)

as well as to take higher derivatives. Applying the automorphism R to the definition of

our auxiliary fields (2.6), we can project out the broken part and show that it equals

φµ = +
i

2
U−1(DµΣ)U−1 = − i

2
U(DµΣ−1)U. (3.3)

Upon a straightforward although somewhat lengthy manipulation, a similar expression can

be found for Dµφν ; one possible and rather convenient formulation for it is

Dµφν =
i

4

[
U−1(DµDνΣ)U−1 − U(DµDνΣ−1)U

]
. (3.4)

To complete the dictionary between the two formalisms, we still need to find an expression

for Gαµν in terms of linearly transforming variables. To this end, recall that a field-strength

tensor transforms covariantly, and hence by eq. (2.6) the field-strength tensor of the original

gauge field Aiµ is related to one expressed in terms of φaµ and Bα
µ via

U−1FµνU = ∂µBν − ∂νBµ − i[Bµ, Bν ]− i[φµ, φν ] + ∂µφν − ∂νφµ − i[Bµ, φν ] + i[Bν , φµ]

= Gµν − i[φµ, φν ] +Dµφν −Dνφµ. (3.5)

This allows us to express Gµν in terms of φµ, Dµφν , and Fµν , of which the former two are

given above in eqs. (3.3) and (3.4).

3.2 Pions in quantum chromodynamics

QCD possesses, apart from spacetime Poincaré invariance, an approximate global SU(N)L×
SU(N)R symmetry under independent unitary transformations of left- and right-handed

quarks, where N is the number of light quark flavors. The physically relevant cases are

N = 2, 3. In the ground state, this chiral symmetry is spontaneously broken to its diagonal

subgroup, H = SU(N)V, which leads to the spectrum of QCD containing N2 − 1 light

pseudo-NG bosons, denoted here collectively as pions. The low-energy EFT for pions (and

possibly other, heavier degrees of freedom) is the celebrated χPT, originally developed in

refs. [6, 7].
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3.2.1 Coset fields and symmetry transformations

It is customary to represent the direct product structure of the chiral group using brackets;

a general element of the group takes the form (gL, gR) with gL, gR ∈ SU(N). The unbroken

subgroup corresponds to elements of the type (g, g) and is generated by a linear combina-

tion of the left and right generators, (T,1) + (1, T ). The broken generators can be chosen

orthogonal, (T,1) − (1, T ), and the coset element thus reads U = (u, u−1). The trans-

formation rule (2.8) reads accordingly (u′, u′−1) = (gL, gR)(u, u−1)(h−1, h−1). The coset

space is symmetric due to the automorphism acting on the group as R(gL, gR) = (gR, gL).

The linearly transforming variable Σ = U2 = (u2, u−2), see eq. (3.1), can be traded for

the matrix U = u2 that transforms as U ′ = gLUg−1
R ; this is the field variable that is

usually used to construct the Lagrangian of χPT. Each of the SU(N) subgroups is asso-

ciated with an independent set of gauge fields, in terms of which the total matrix gauge

field reads Aµ = (ALµ ,1) + (1, ARµ ). The covariant derivative of Σ then decomposes as

DµΣ = (DµU ,U−1) + (U , DµU−1), where

DµU = ∂µU − iALµU + iUARµ . (3.6)

Likewise, eq. (3.3) becomes

φµ = (Φµ,1)− (1,Φµ), Φµ = +
i

2
u−1(DµU)u−1 = − i

2
u(DµU−1)u. (3.7)

Finally, carrying out the conjugation of the field-strength tensor indicated in eq. (3.5) and

projecting out the unbroken part of the result with the help of the automorphism R, we

obtain the relation

Gµν =
1

2
(u−1FLµνu+ uFRµνu

−1) + i[Φµ,Φν ], (3.8)

where the Lie algebra valued field Gµν is defined naturally by Gµν = (Gµν ,1) + (1,Gµν).

Since for the symmetry-breaking pattern of χPT both broken and unbroken generators

transform in the adjoint representation of H, the matrix elements of both basic building

blocks, (Φµ)AB and (Gµν)AB, as well as of their covariant derivatives constitute a traceless

tensor of H with the upper index A transforming in the fundamental representation and

the lower index B in its complex conjugate. The fundamental representation of SU(N) has

three algebraically independent invariant tensors, namely δAB, εABC··· and εABC···;
1 every

term in the invariant Lagrangian can be obtained by contracting the indices of Φµ and

Gµν (and possibly their covariant derivatives) with products of these tensors. Moreover,

since all our fields have the same number of upper and lower indices, such an invariant

term must necessarily contain the same number of εABC··· and εABC···, and can therefore

be decomposed into products of δAB alone. In short, every invariant term in the Lagrangian

can be written as a product of traces of Φµ, Gµν and their covariant derivatives.

1This can be viewed as a consequence of the definition of SU(N) as the set of all complex N×N matrices

satisfying the conditions UU† = 1 and detU = 1, which precisely encode the invariance of δAB and εABC···.

The absence of any other algebraically independent invariant tensor means that the matrices do not satisfy

any other independent algebraic constraints [29].
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3.2.2 Invariant Lagrangians

At the leading order (s+ t = 2), there is only one possible operator that can be assembled

from the available building blocks applying the strategy described above; using eq. (3.7),

the invariant Lagrangian thus acquires the form

L
(2)
inv ∝ Tr(ΦµΦµ) =

1

4
Tr(DµUDµU−1) (3.9)

up to an overall factor that defines the pion decay constant. This agrees with the fact that

the NG bosons span an irreducible multiplet of H.

At the next-to-leading order (s+ t = 4), the list of possible operators in the invariant

Lagrangian is considerably longer, see section 2.2.4. Taking into account the fact that

operators of the type εκλµνφaκφ
b
λφ

c
µφ

d
ν and εκλµνφaκφ

b
λDµφ

c
ν do not contribute due to the

cyclicity of the trace (the former vanishes at the level of the Lagrangian, while the latter

evaluates to a mere surface term), we obtain for the order-four invariant Lagrangian

L
(4)
inv = c1 Tr(ΦµΦµΦνΦν) + c2 Tr(ΦµΦνΦµΦν) + c3 Tr(ΦµΦµ) Tr(ΦνΦν)

+ c4 Tr(ΦµΦν) Tr(ΦµΦν) + c5 Tr(ΦµΦνDµΦν) + c6 Tr(ΦνΦµDµΦν) (3.10)

+ c7 Tr(DµΦνD
µΦν) + c8 Tr(DµΦµDνΦν) + c9 Tr(ΦµΦνGµν) + c10 Tr(DµΦνGµν)

+ c11 Tr(GµνGµν) + c12ε
κλµν Tr(ΦκΦλGµν).

In deriving this result, we have only used the invariance of the Lagrangian under the

continuous SU(N)L × SU(N)R symmetry. Nevertheless, QCD is in addition invariant un-

der the discrete symmetries of parity, charge conjugation and time reversal. We may

use the fact that under parity, the pion fields transform as πa(x) → −πa(Px), where

Pµν = diag(1,−1,−1,−1) is the spatial inversion matrix, in addition to which the left-

and right-handed background gauge fields are interchanged. In our notation, the parity

transformation can be expressed compactly as [30]

φµ(x)→ −P ν
µ φν(Px), Bµ(x)→ P ν

µ Bν(Px). (3.11)

Parity invariance of QCD thus directly rules out the c5, c6, c10 and c12 operators.

The number of independent operators in the Lagrangian (3.10) can be further reduced

by using the special algebraic properties of traceless matrices of dimension N = 2, 3 [31]. In

both cases the identity Tr(X4) = 1
2 [Tr(X2)]2 holds. Substituting X = aA+ bB + cC + dD

where A,B,C,D are traceless matrices and a, b, c, d numerical coefficients and comparing

the terms proportional to abcd, one obtains

Tr(ABCD +ABDC +ACBD +ACDB +ADBC +ADCB)

= Tr(AB) Tr(CD) + Tr(AC) Tr(BD) + Tr(AD) Tr(BC).
(3.12)

This in turn leads to a relation among the c1, c2, c3 and c4 operators,

Tr(4ΦµΦµΦνΦν + 2ΦµΦνΦµΦν) = Tr(ΦµΦµ) Tr(ΦνΦν) + 2 Tr(ΦµΦν) Tr(ΦµΦν), (3.13)
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which allows us to eliminate one of them, say c2. In fact, for N = 2 the trace of a product

of four generators can be resolved in terms of traces of a product of two generators only

using the special properties of Pauli matrices, leading to

Tr(ΦµΦµΦνΦν) =
1

2
Tr(ΦµΦµ) Tr(ΦνΦν),

Tr(ΦµΦνΦµΦν) = Tr(ΦµΦν) Tr(ΦµΦν)− 1

2
Tr(ΦµΦµ) Tr(ΦνΦν).

(3.14)

Hence for N = 2, both c1 and c2 can be eliminated. All the independent operators in this

set (c3 and c4 for N = 2, and c1, c3 and c4 for N = 3) can be easily rewritten in terms of

U using eq. (3.7).

What remains to be discussed are possible redundancies among the operators c7, c8, c9

and c11. As elaborated on in section 5.3, the leading-order equation of motion can be used

to simplify the effective Lagrangian at higher orders and thereby to reduce the number of

independent effective coupling constants. In Lorentz-invariant systems with a symmetric

coset space, this equation of motion reduces to Dµφ
µ = 0; see eq. (5.14). The c8 operator

is therefore redundant. Furthermore, the c9 and c11 operators can be expressed in terms of

the physical field-strength tensors FL,Rµν by means of eq. (3.8). Since a trace of four factors

of Φµ is already present in the c1 and c2 terms, this gives us two new operators,

Tr(u−1FLµνu+ uFRµνu
−1)2 = Tr(FLµνF

Lµν + FRµνF
Rµν + 2FLµνUFRµνU−1),

Tr{(u−1FLµνu+ uFRµνu
−1)[Φµ,Φν ]} =

1

2
Tr(FLµνD

µUDνU−1 + FRµνD
µU−1DνU).

(3.15)

Finally, one can show that the c7 operator gives, up to terms that vanish due to equation

of motion, an expression identical to the first line of eq. (3.15), just with an opposite sign

in front of 2FLµνUFRµνU−1. Since to see this requires some effort, we present the details in

appendix B in order not to interrupt the flow of the argument here.

Altogether, choosing a suitable basis of operators and redefining the coupling constants

appropriately, the most general invariant Lagrangian for QCD with two or three light quark

flavors at order four in derivatives acquires the form

L
(4)
inv = c̃1 Tr(DµUDµU−1DνUDνU−1) + c̃2 Tr(DµUDµU−1) Tr(DνUDνU−1)

+ c̃3 Tr(DµUDνU−1) Tr(DµUDνU−1)

+ c̃4 Tr(FLµνD
µUDνU−1 + FRµνD

µU−1DνU) + c̃5 Tr(FLµνUFRµνU−1)

+ c̃6 Tr(FLµνF
Lµν + FRµνF

Rµν).

(3.16)

Up to possible difference in notation, this is recognized as the familiar order-four Lagrangian

of χPT; the c̃1 term is redundant in the N = 2 case [30].

3.2.3 Explicit symmetry breaking

In real QCD, invariance of the Lagrangian under the full chiral group is violated in a

twofold manner. First, at the fourth order in derivatives, the effects of the chiral anomaly,

whose discussion goes beyond the scope of the present paper, enter the game [22]. Second,

the chiral symmetry is broken explicitly by nonzero quark masses. These appear in the
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microscopic Lagrangian of QCD through the mass term ψ̄LMψR + ψ̄RM†ψL, where M is

the quark mass matrix. It is real and diagonal, yet we treat it as a complex matrix that

transforms under a chiral rotation asM→ gLMg−1
R . One can think ofM as a background

(pseudo)scalar field akin to Aµ: gauge invariance restricts the way that M appears in

the low-energy EFT, and only at the end of the day one sets M = diag(mu,md,ms).

In line with our general procedure, the effective Lagrangian will be expressed in terms

of the composite field Ξ = u−1Mu−1 that transforms as a complex adjoint field plus a

complex singlet (corresponding to Tr Ξ) of the unbroken subgroup. Note that under parity,

Ξ(x)→ Ξ(Px)†; this further constrains the way that Ξ can appear in the Lagrangian.

At the lowest, second order in derivatives, there is only one chirally invariant operator

preserving parity, given solely by the singlet part of Ξ,

L
(0)
s.b. ∝ Tr(Ξ + Ξ†) = Tr(MU† +M†U), (3.17)

up to an overall factor that is to be treated as a free parameter. At fourth order, the

operators that contribute can be read off the list provided in section 2.2.4: ΞρΞσ, Ξσφ
a
µφ

bµ

and ΞσDµφ
aµ. The latter can be eliminated by using the equation of motion (5.14). With

the additional constraint due to parity, the remaining two operators give the following,

L
(2)
s.b. = d1 Tr(MU†) Tr(M†U) + d2[(TrMU†)2 + (TrM†U)2]

+ d3 Tr(MU†MU† +M†UM†U) + d4 Tr(MM†)
+ d5 Tr(MU† +M†U) Tr(DµUDµU†) + d6 Tr[(MU† + UM†)DµUDµU†].

(3.18)

For N = 2, we have an identity similar to eq. (3.12),

Tr(ABC +BAC) = Tr(AB) Tr(C), (3.19)

valid for traceless A, B and arbitrary C. (The proof is trivial in case A and B are Hermitian

and therefore inherit the anticommutation properties of Pauli matrices.) Applying this to

Tr(ΞΦµΦµ) reveals that the d6 operator can be expressed in terms of the d5 one for N = 2.

3.3 Spin waves in ferromagnets

Ferromagnets are nonrelativistic systems with a global internal G = SU(2) spin symmetry,

which is broken by the spontaneous magnetization in the ground state to its H = U(1)

subgroup. The two broken generators correspond to one NG mode in the spectrum: the spin

wave, or magnon. Since its dispersion relation is quadratic at low momentum, the derivative

expansion of the effective Lagrangian has to be organized accordingly; see section 5.2 for

more details. One temporal derivative counts as two spatial ones [8], as a result of which

up to order four in momenta, only L
(1,0)
eff , L

(0,1)
eff , L

(2,0)
eff , L

(1,1)
eff , L

(3,0)
eff , L

(0,2)
eff , L

(2,1)
eff and

L
(4,0)
eff need to be taken into account. In order to simplify our discussion, we will restrict

ourselves to isotropic (rotationally invariant) ferromagnets in three spatial dimensions.

This immediately rules out all operators from L
(1,0)
eff and L

(1,1)
eff . Moreover, we will assume

that the system is invariant under parity. Since angular momentum is an axial vector,

parity is not spontaneously broken in the ground state and the NG fields are parity-even:

πa(x)→ πa(Px). As a consequence, L
(3,0)
eff is ruled out.
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3.3.1 Leading-order Lagrangian

The leading, order-two Lagrangian is given by two pieces, L LO
eff = L

(0,1)
eff + L

(2,0)
eff . Ac-

cording to sections 2.2.1 and 2.2.2, the available operators are eαB
α
0 , eaφ

a
0 and ḡabφ

a
rφ

b
r.

Note that ea vanishes, being equal to the density of broken generators in the ground state.

The coset space SU(2)/U(1) is symmetric; choosing the magnetization of the ground state

without loss of generality to point in the third spin direction, the corresponding automor-

phism can be realized using the third Pauli matrix, R(g) = σ3gσ3. One can then trade the

linearly transforming variable Σ of eq. (3.1) for

N(π) = Σ(π)σ3 = U(π)σ3U(π)−1. (3.20)

The matrix N transforms in the adjoint representation of G, N(π′) = gN(π)g−1. Being

traceless, Hermitian and involutory, it can be equivalently expressed in terms of a unit

vector ~n(π) as N = ~n ·~σ. It is this variable that is usually used to write down the EFT for

ferromagnets. The invariant part of the leading-order Lagrangian then reads

L
(2,0)
eff = −ρs

4
Tr(DrNDrN) = −ρs

2
Dr~n ·Dr~n, (3.21)

where Dµ~n = ∂µ~n + ~Aµ × ~n is the covariant derivative. The gauge potentials ~Aµ can be

interpreted in terms of the intensities of external electric and magnetic fields [32], and the

parameter ρs is usually referred to as the spin stiffness.

Unlike L
(2,0)
eff , the CS part of the Lagrangian, L

(0,1)
eff = eαB

α
0 , cannot be written in

a manifestly invariant form in terms of ~n [8, 9]. There are several different, physically

equivalent but mathematically distinct, expressions for it. The most straightforward one is

based on a mere power expansion in the NG fields using eq. (2.7). It is, in fact, possible to

write the Lagrangian solely in terms of ~n, but only at the cost of extending the spacetime

by one extra dimension [8, 26, 33]. This way, one can derive the expression

L
(0,1)
eff = m

ṅ1n2 − ṅ2n1

1 + n3
+m~A0 · ~n; (3.22)

the effective coupling m has the interpretation of the spin density in the ground state. The

temporal field ~A0 stands, up to a factor, for the external magnetic field intensity, and the

term m~A0 · ~n therefore represents the usual Zeeman coupling of spin.

3.3.2 Next-to-leading-order Lagrangian

The next contributions to the Lagrangian, L
(0,2)
eff , L

(2,1)
eff and L

(4,0)
eff , are of order four

in momenta. Up to an overall factor and the replacement Dr → D0, the piece L
(0,2)
eff is

identical to L
(2,0)
eff [8]. Moreover, being bilinear in φa0 it is actually irrelevant, for it can be

eliminated using the equation of motion (5.14), which is linear in φa0 when L
(0,1)
eff is present.

As to L
(2,1)
eff , four different operators are available in three spatial dimensions; see the list

in section 2.2.1. Out of these, φa0φ
b
rφ
c
r and φarG

α
0r are clearly forbidden by symmetry since

φaµ transforms as a two-vector of the unbroken U(1) ' SO(2) whereas Bα
µ is a singlet. In

addition, the operator φa0Drφ
b
r can again be eliminated by using the leading-order equation
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of motion (5.14). Altogether, only one type of operator is therefore present: φarD0φ
b
r. In

order to make it invariant, the spin indices must be contracted either with δab or with εab.

The former however leads to an operator that is a total time derivative so that only the

latter can give a nontrivial result. Using eqs. (3.3) and (3.4) as well as the fact that in

terms of matrices, εabφ
b
µ is proportional to [σ3, φµ], we obtain upon a short manipulation

L
(2,1)
eff ∝ Tr([σ3, φr]D0φr) ∝ (~n×Dr~n) ·D0Dr~n. (3.23)

Note that despite containing just one time derivative, this interaction is strictly invariant

under time reversal, for this transforms the spin vector as ~n(t,x)→ −~n(−t,x). Under the

same transformation, the Lagrangian (3.22) shifts by a total time derivative.

Let us finally construct L
(4,0)
eff . Here we have seven different operators in three spatial

dimensions, two of which (φarφ
b
sDrφ

c
s and Drφ

a
sG

α
rs) are immediately seen to vanish by the

unbroken SO(2) symmetry. We shall consider the remaining operators in the order given

in section 2.2.1. In order to see how to combine the indices in φarφ
b
rφ
c
sφ
d
s so as to get an

invariant, it is suitable to think of the two components of φaµ as the real and imaginary parts

of a complex field Φµ. Under the unbroken U(1) symmetry, this acquires a phase. It is now

obvious that there are two independent invariant operators, Φ∗rΦrΦ
∗
sΦs and Φ∗rΦ

∗
rΦsΦs,

which can be mapped to linear combinations of Tr(φrφr) Tr(φsφs) and Tr(φrφs) Tr(φrφs).

In terms of the unit vector ~n, these can be rewritten as

L
(4,0)
eff ⊃ e1(Dr~n ·Dr~n)(Ds~n ·Ds~n) + e2(Dr~n ·Ds~n)(Dr~n ·Ds~n). (3.24)

The operators of the type Drφ
a
sDrφ

b
s and Drφ

a
rDsφ

b
s are straightforward to evaluate us-

ing eq. (3.4) and the trace properties of Pauli matrices. One thus finds, for instance,

Drφ
a
sDrφ

b
s ∝ (DrDs~n)2− (~n ·DrDs~n)2 = (DrDs~n)2− (Dr~n ·Ds~n)2, where we used the fact

that ~n ·Ds~n = 0. The last term is already contained in the e2 operator. Altogether, the

Lagrangian therefore acquires two new independent operators,

L
(4,0)
eff ⊃ e3DrDr~n ·DsDs~n+ ẽ3DrDs~n ·DrDs~n. (3.25)

The remaining two types of operators, φarφ
b
sG

α
rs and GαrsG

β
rs, both contain the auxiliary

gauge field Gαµν . In ferromagnets this has only one component, and is found with the help

of eq. (3.5) to be

G3
rs ∝ ~n · ~Frs − ~n · (Dr~n×Ds~n). (3.26)

The second term arises from the bilinear [φr, φs] and its square is already contained in the

operators e1 and e2. Using finally the fact that ~n ·Dµ~n = 0 and thus Dr~n×Ds~n is parallel

to ~n, we can write the two new operators contributing to the Lagrangian as

L
(4,0)
eff ⊃ e4

~Frs · (Dr~n×Ds~n) + e5(~n · ~Frs)(~n · ~Frs). (3.27)

The above-found operators already span a basis that gives the most general effective

Lagrangian at order four in momenta compatible with the symmetry. However, it is con-

venient to switch to a somewhat different basis in which the dependence on the NG and
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background fields is more transparent. The argument closely resembles the one in ap-

pendix B by which the operator c7 is eliminated from the χPT Lagrangian. Namely, using

integration by parts and the fact that the commutator of covariant derivatives [Dr, Ds] is

proportional to Frs, the ẽ3 operator is found to be a linear combination of the e3, e4, e5

ones and of ~Frs · ~Frs.
The operator in L

(2,1)
eff can be handled in the same way. We first write D0Dr~n =

[D0, Dr]~n+DrD0~n and observe that the first term leads to an operator of the type ~F0r ·Dr~n.

As to the second term, note that the leading-order equation of motion (5.14) takes for

ferromagnets the form mD0~n = ρs~n×DrDr~n [8]. Hence (~n×Dr~n)·DrD0~n can be absorbed

into a redefinition of the couplings e1 and e3. Putting all the pieces together, we then obtain

the most general effective Lagrangian for an isotropic, parity-invariant ferromagnet up to

order four in momenta, which we collect here for the reader’s sake,

Leff = m
ṅ1n2 − ṅ2n1

1 + n3
+m~A0 · ~n−

ρs
2
Dr~n ·Dr~n

+ e1(Dr~n ·Dr~n)(Ds~n ·Ds~n) + e2(Dr~n ·Ds~n)(Dr~n ·Ds~n)

+ e3DrDr~n ·DsDs~n+ e4
~Frs · (Dr~n×Ds~n) + e5(~n · ~Frs)(~n · ~Frs)

+ e6
~Frs · ~Frs + e7

~F0r ·Dr~n.

(3.28)

The order-four part of the Lagrangian contains seven independent couplings. In the lit-

erature, a somewhat reduced Lagrangian (see, for instance, ref. [34]) is usually employed

which can be obtained as follows. In the absence of external electric fields, ~Ar = ~0, hence

the operators e4, e5 and e6 disappear. If in addition the background magnetic field is

uniform, then ~F0r = ~0 and the e7 operator drops out as well. In uniform magnetic fields,

the order-four Lagrangian thus contains only three independent couplings: e1, e2 and e3.

4 Methodology

The problem of constructing the EFT can be transformed into an elementary exercise

in field theory by following a number of straightforward intermediate steps. In order to

stress the importance of these steps, and because they can be easily discussed on their own

footing, we formulate some of them as standalone “theorems”. Their proofs are either well

known or can be found in the literature, and we therefore only show details where it helps

to clarify the argument.

4.1 Symmetries of the effective theory

Consider now a system with a continuous internal symmetry group G. Each independent

generator Ti of this group gives rise to a conserved Noether current. When the ground

state of the system breaks the symmetry spontaneously to its subgroup H, the low-energy

dynamics is dominated by the ensuing NG bosons. Their scattering amplitudes and other

low-energy observables can be extracted from the Green’s functions of the Noether currents.

Introducing a set of background gauge fields Aiµ(x), coupled to the respective currents, the
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connected components of these Green’s functions can be collected in a generating functional

that we will denote as Γ{A}.2

Theorem 1 (Ward identities) In the absence of quantum anomalies and explicit sym-

metry breaking, the symmetry of the theory under the group G is encoded in the invariance

of the generating functional Γ{A} under a gauge transformation of the background fields,

TgAµ = gAµg
−1 + ig∂µg

−1. (4.1)

Here Aµ = AiµTi, and g ∈ G is coordinate-dependent. When g is characterized by a set of

infinitesimal parameters εi, g = eiεiTi , the transformation rule (to linear order in εi) takes

the more familiar form

δAiµ = f ijkA
j
µε
k + ∂µε

i, (4.2)

where f ijk are the structure constants of G. The low-energy observables are described

equally well by an EFT which is defined by a local action, Seff, in terms of the NG fields

πa(x), one for each broken symmetry generator Ta. Coupling the EFT to the same back-

ground gauge fields Aiµ, it must reproduce the generating functional of the underlying

microscopic theory by means of a functional integration over the NG fields,

eiΓ{A} =
1

Z

∫
Dπ eiSeff{π,A}. (4.3)

Our main task is to construct the effective action Seff, or the corresponding local effective

Lagrangian, given by Seff{π,A} =
∫

dxLeff[π,A]. It is customary, especially in high energy

physics, to assume that the Lagrangian is invariant under the group G. However, it is far

from trivial to see what the invariance of the generating functional, ensured by theorem 1,

actually implies for the effective action Seff. This problem was considered by Leutwyler, who

proved the following set of statements (abbreviated; see ref. [18] for the full formulation),

valid to all orders in the derivative expansion:

Theorem 2 (Action invariance) (i) There exists a mapping of the NG fields, πa
g−→

fa[g, π, A] under which, together with the gauge transformation (4.1) of the external fields,

the action Seff{π,A} remains invariant, Seff{f [g, π, A], TgA} = Seff{π,A}. (ii) The map

fa[g, π, A] defines a nonlinear realization of the group G, that is, obeys the composition law

fa[g2g1, π, A] = fa[g2, f [g1, π, A], Tg1A]. (iii) With a suitable change πa → π̃a[π,A] of field

variables, the map can be brought to certain canonical form (introduced below). In these

variables, the transformation law of the NG fields is determined solely by the geometry of

the group G and is independent of the background fields Aiµ.

In brief, by a suitable choice of field variables and the transformation law for NG fields,

the effective action can be made invariant under a simultaneous gauge transformation of

the NG and background gauge fields. Leutwyler presents his argument in the framework

of relativistic field theory and asserts in addition that in four spacetime dimensions, the

effective Lagrangian itself is necessarily gauge-invariant. The above-listed first three parts

2We follow the notation introduced by Leutwyler [18] and denote by curly brackets a nonlocal functional

of A. Square brackets will, on the other hand, indicate a local function of A and its derivatives.
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of his invariance theorem do not require Lorentz invariance though, and can therefore be

used without modification in the more general context of quantum many-body systems.

The “canonical” nonlinear realization of the symmetry group, asserted by theorem 2,

is defined as follows. Introduce an equivalence relation between two elements of G under

right multiplication by an element of the unbroken subgroup H: g1 and g2 are equivalent

if and only if g1 = g2h for some h ∈ H. The set of equivalence classes with respect to this

relation is called the (left) coset space and denoted as G/H. Introducing the notation for

the coset generated by a group element g, χg = {gh | h ∈ H}, one can define a natural action

of the group G on the coset space G/H by left multiplication, χg′
g−→ χgg′ . The subgroup

H forms a coset, H = χe, which is left intact by the action of H itself. In physical terms,

the coset χe represents the vacuum, invariant by assumption under the subgroup H. It is

convenient to pick a unique element u ∈ χ to represent every coset. The group action on

the coset space then takes the form u
g−→ gu = u′h(u, g) where h(u, g) ∈ H ensures that

u′ coincides with the representative element of the coset χgu. The NG fields πa can now

be thought of as coordinates on the coset space G/H. Interpreting the coset element as a

matrix, u = U(π), the transformation law for the NG fields takes finally the usual form

U(π′) = gU(π)h(π, g)−1. (4.4)

It is common to parameterize the coset element specifically as U(π) = eiπaTa . We would

therefore like to stress that our results throughout the paper apply to fairly arbitrary

parameterizations of U(π), or fairly arbitrary choices of the NG field variables, unless

explicitly stated otherwise. Namely, the only universal technical requirement is that the

trivial coset χe = H is represented by the unit matrix and corresponds to the origin in the

NG space, U(0) = 1, which implies that h(0, g) = g for all g ∈ H.

4.2 General invariant actions

The next crucial step in the construction is the observation [18] that the dependence of

the effective action on the NG fields and on the background gauge fields is closely related.

Indeed, by choosing g = U(π)−1, we can make the NG fields vanish. Gauge invariance of

the effective action, ensured by theorem 2, then implies

Seff{π,A} = Seff{0, TU(π)−1A}. (4.5)

The action is therefore fixed solely by its dependence on the gauge field. Given that the

vacuum π = 0 is H-invariant, this dependence is constrained by gauge invariance with

respect to the unbroken subgroup H. Conversely, every H-invariant functional F{A} can

be used to define the effective action as Seff{π,A} = F{TU(π)−1A}. That this is indeed

invariant under the full group G follows from eq. (4.4),

Seff{π′, A′} = F{TU(π′)−1TgA} = F{TU(π′)−1gA} = F{Th(π,g)U(π)−1A}
= F{Th(π,g)TU(π)−1A} = F{TU(π)−1A} = Seff{π,A}.

(4.6)

The problem of finding the most general G-invariant effective action for πa and Aiµ therefore

reduces to finding the most general H-invariant action for the gauge field alone. To that
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end, it is natural to split the gauge field TU(π)−1Aµ into components in the subspaces of

the broken and unbroken generators, respectively, denoted as φµ and Bµ and defined by

TU(π)−1Aµ = φµ(π) +Bµ(π) = φaµ(π)Ta +Bα
µ (π)Tα. (4.7)

From eq. (4.1) we readily obtain their transformation properties under H,

Thφµ = hφµh
−1, ThBµ = hBµh

−1 + ih∂µh
−1,

δφaµ = fabαφ
b
µε
α, δBα

µ = fαβγB
β
µε
γ + ∂µε

α.
(4.8)

This means that while Bα
µ transforms as a genuine gauge field of H, φaµ rather behaves as

a set of covariant vector fields. Altogether, using eq. (4.5), we obtain a simple algorithm

for the construction of the effective action.

Theorem 3 (Action reconstruction) Find the most general action for the field φaµ and

the auxiliary gauge field Bα
µ , invariant under the gauge H-transformations (4.8). The most

general G-invariant effective action for the NG fields πa and the original gauge fields Aiµ
is obtained by the replacement

φaµ → [U(π)−1AµU(π) + iU(π)−1∂µU(π)]a,

Bα
µ → [U(π)−1AµU(π) + iU(π)−1∂µU(π)]α.

(4.9)

We have already succeeded in reformulating the problem in terms of elementary field theory,

without referring to the geometry of the coset space G/H and the nonlinear transformation

law for the NG fields. However, the solution is still not completely straightforward. The

subtlety lies in the fact that standard field theory methods allow us to construct an invariant

Lagrangian, yet invariance of the action only requires that the Lagrangian be invariant up

to a surface term. This is not a mere technicality: a term in the Lagrangian invariant

only up to a total time derivative is responsible for the quadratic dispersion relation of

some NG bosons and for their number differing from the number of broken symmetry

generators [8, 35, 36] (see ref. [37] for a review). The problem can be further simplified

by observing that the possible surface term induced by a symmetry transformation only

affects a part of the Lagrangian, independent of the covariant field φaµ.

Theorem 4 (Lagrangian invariance) The most general H-invariant action for the

fields φaµ and Bα
µ takes the form

∫
dx (Linv[φ,B]+LCS[B]), where the Lagrangian Linv[φ,B]

is strictly gauge-invariant under H.

In order to understand this statement, note that the scalar current, defined by

Σµ
a [φ,B] =

δSeff{φ,B}
δφaµ

, (4.10)

transforms covariantly under the gauge transformation (4.8), namely δΣµ
a = −f baαΣµ

b ε
α (see

appendix C for a detailed proof). Using the fact that the functional derivative of the action

can be traded for an ordinary derivative with respect to a parameter,

∂Seff{tφ,B}
∂t

=

∫
dxφaµΣµ

a [tφ,B], (4.11)
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we can reconstruct the action by an integration of the current over this parameter,

Seff{φ,B} = Seff{0, B}+

∫
dx

∫ 1

0
dt φaµΣµ

a [tφ,B]. (4.12)

The transformation rule for φaµ is homogeneous, hence the argument of the coordinate

integral above defines a gauge-invariant Lagrangian density, Linv[φ,B]. The remaining

part of the action depends solely on the gauge field Bα
µ , as we wanted to show.

Let us now focus on the term LCS[B], which represents a gauge theory whose La-

grangian may change under the gauge transformation (4.8) by a surface term, and therefore

constitutes a generalization of the Chern-Simons theory. We will henceforth refer to such

terms in the Lagrangian as Chern-Simons (CS) terms. The construction of the CS part of

the Lagrangian follows the same steps as sketched above in the case of Linv[φ,B]. Namely,

the current

Jµα [B] =
δSCS{B}
δBα

µ

(4.13)

again transforms covariantly, that is, δJµα = −fγαβJ
µ
γ εβ (see appendix C for a proof), and

the Lagrangian can subsequently be reconstructed as

LCS[B] =

∫ 1

0
dtBα

µJ
µ
α [tB]. (4.14)

The essential difference to eq. (4.12) is that the gauge field does not transform homoge-

neously and thus the Lagrangian density is now not necessarily gauge-invariant.

4.3 Construction of effective Lagrangians

We can conclude that the construction of the effective theory reduces to the classification

of certain gauge-covariant objects: the Lagrangian densities in case of Linv[φ,B] and the

currents in case of LCS[B]. These can be obtained using common field-theoretical methods.

To be precise, let us denote as gauge-covariant a local function of the fields φaµ, B
α
µ and

their derivatives, whose infinitesimal shift under the gauge transformation (4.8) does not

contain derivatives of the parameters εα. We use the following well-known statement.

Theorem 5 (Covariance of building blocks) Consider a set of gauge fields Aiµ, and

of matter fields φa transforming in a given linear representation R of the gauge group.

Every local gauge-covariant function of φa and Aiµ and their derivatives can be expressed

solely in terms of φa, its covariant derivative Dµφ
a = ∂µφ

a− iR(Aµ)abφ
b, the field-strength

tensor F iµν = ∂µA
i
ν − ∂νAiµ + f ijkA

j
µAkν , and their covariant derivatives.

This is a standard textbook result, yet it does not seem easy to find its proof in the full

generality required here in the literature. For the sake of completeness and for the reader’s

convenience, we provide a detailed argument in appendix D.

The construction of both the invariant Lagrangian Linv[φ,B] and the covariant current

Jµα [B] now proceeds as follows. First, we find all linearly independent operators, OA,

as products of the basic building blocks (φaµ, Gαµν and their covariant derivatives) that

contribute at a given order of the derivative expansion; since each of the building blocks
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contains at least one spacetime index, there is always a finite number of such operators. The

desired covariant object (Lagrangian or current) is then written as a linear combination,∑
A cAOA, with unknown effective couplings cA. The linear independence of the set of

operators OA guarantees that each term in the sum has to be covariant separately from

the others, while the covariance of our building blocks in turn implies that the couplings,

with all the group indices restored, have to be invariant tensors of the unbroken subgroup

H. Since (continuous) spacetime symmetries are by assumption not spontaneously broken,

the building blocks also transform covariantly under those, and the effective couplings cA
have to be simultaneously invariant tensors of the spacetime symmetry group.

Altogether, the classification of effective Lagrangians boils down to the enumeration of

all possible operators expressed using our basic building blocks, and to elementary group

theory, namely to finding all invariant tensors of H and the spacetime symmetry with the

appropriate number of indices of each type: a coming from φ, α coming from B, and µ

from both. Mathematically, this amounts to taking the direct product of representations

corresponding to all the fields in a given operator OA and finding all singlets in its decom-

position into irreducible components. To that end, we will often use the fact that given the

invariant tensors of two groups G1 and G2, the invariant tensors of their product G1 ×G2

can be obtained by taking all possible products of invariant tensors of the two subgroups.

In case of the invariant Lagrangians, the resulting list of possible terms can be further

reduced. Since every operator OA is separately gauge invariant, we can rewrite it using

the integration by parts formula,∫
dxO1(DµO2) = −

∫
dx (DµO1)O2 + surface term. (4.15)

Note that gauge invariance is essential to ensure that Dµ(O1O2) = ∂µ(O1O2) here is a

mere surface term. For topologically trivial field configurations, the surface term can be

discarded, and we will always do so since we are primarily interested in the low-energy

physics of the NG bosons.

5 Leading-order effective Lagrangian

In this section, we show in detail how the strategy outlined above can be used to work out

the most general effective Lagrangian up to the second order in the derivative expansion.

Owing to the simplicity of this problem, we are able to work out the solution without

making any assumptions on the spacetime symmetry.

Let us first focus on the invariant part of the Lagrangian, Linv[φ,B]. Up to second

order in derivatives, the following operators are available,

φaµ (order 1), φaµφ
b
ν ,��

�H
HHDµφ

a
ν ,�
��Z
ZZ

Gαµν (order 2), (5.1)

where the crossed out operators do not contribute. Of them, Dµφ
a
ν is a total derivative

and thus constitutes just a surface term, while the reason why Gαµν does not contribute to

the action either will be explained shortly. The most general invariant Lagrangian up to
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second order in derivatives therefore reads

Linv = eµaφ
a
µ +

1

2
gµνab φ

a
µφ

b
ν , (5.2)

where eµa and gµνab are invariant tensors of the unbroken subgroup H, whose action on the

fields is defined by eq. (4.8). Hence, they have to satisfy the conditions eµafaαb = 0 and

gµνcb f
c
αa + gµνac f cαb = 0 for all allowed values of the indices, see eq. (2.1). Likewise, they are

invariant tensors of the assumed spacetime symmetry.

In order to determine the CS part of the Lagrangian up to the second order in deriva-

tives, we need to list all possible covariant currents Jµα [B] up to order one. Since the

simplest covariant operator one can construct out of Bα
µ is the field-strength tensor Gαµν

which is of order two, there is obviously only one possibility, namely a constant current

Jµα = eµα. The integration indicated in eq. (4.14) is in this case trivial, leading to

LCS = eµαB
α
µ , (5.3)

where the coupling is again an invariant tensor of H, that is, eµαfαβγ = 0. It is now clear

why the operator Gαµν cannot contribute to the Lagrangian. Including the appropriate

effective coupling, it would produce cµνα Gαµν , however the ∂µB
α
ν − ∂νBα

µ part of the field-

strength tensor would drop out immediately being a surface term, while the non-Abelian

part cµνα fαβγB
β
µB

γ
ν would vanish by means of the invariance condition on the coupling cµνα .

Altogether, the general leading-order effective Lagrangian together with the corre-

sponding constraints on the effective couplings can be written as

L LO
eff = eµαB

α
µ + eµaφ

a
µ +

1

2
gµνab φ

a
µφ

b
ν ,

eµi f
i
αj = 0, gµνcb f

c
αa + gµνac f

c
αb = 0,

(5.4)

where the metric gµνab introduced in eq. (5.2) can in addition be assumed symmetric, gµνab =

gνµba . This agrees with the result obtained recently in ref. [20]. In that paper, a generalization

of the EFT to the cases where the global symmetry under the group G cannot be gauged is

studied. It is obvious that assuming gauge invariance dramatically simplifies the derivation

of the most general effective Lagrangian, reducing a rather elaborate calculation to a back-

of-the-envelope argument.

In rotationally invariant systems, eµi = eiδ
µ0. In fact, even a discrete space symmetry

is sufficient to ensure this relation. In the following, we will always implicitly assume it,

since a term linear in spatial derivatives would otherwise necessarily lead to a spontaneous

breakdown of continuous translational invariance [20]. Under rotational invariance, the

bilinear part of the Lagrangian further reduces to gµνab φ
a
µφ

b
ν = ḡabφ

a
0φ

b
0 − gabφarφbr. In two

spatial dimensions, an additional, antisymmetric bilinear term is allowed, ¯̄gabε
rsφarφ

b
s.

5.1 Physical implications

With the help of eq. (2.5), we can re-express the Lagrangian (5.4) in terms of the physical

NG fields and the background gauge fields,

L LO
eff = −eµi ω

i
a(π)∂µπ

a + eµj ν
j
i (π)Aiµ +

1

2
gµνab ω

a
c (π)ωbd(π)Dµπ

cDνπ
d. (5.5)
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This Lagrangian takes the form first obtained by Leutwyler [8], and features explicit ex-

pressions for his coupling functions in terms of the objects ωia and νij , defined in eq. (2.4).

For the specific parameterization U(π) = eiπaTa , we can moreover use eq. (2.7) to obtain

the expansion of the Lagrangian in powers of the NG fields,

L LO
eff =

1

2
eif

i
ab∂0π

aπb + eiA
i
0 +

1

2
gµνabDµπ

aDνπ
b + · · · . (5.6)

Note that the same coupling ei appears both in the term linear in Aiµ and in the term

quadratic in πa with a single time derivative. The former implies that ei has the meaning

of the vacuum expectation value of the charge density associated with the generator Ti,

while the latter indicates that whenever the commutator [Ta, Tb] has a nonzero vacuum

expectation value, the field variables πa and πb are canonically conjugated [38]. Such a

pair of field variables excites one NG boson, classified as type B [35]; owing to the presence

of a term with a single time derivative, their dispersion relation is typically quadratic in

momentum [39]. On the other hand, the remaining NG fields excite one type-A NG boson

each, whose dispersion relations are, as a rule, linear in momentum.

The effective coupling in the bilinear part of the Lagrangian has a particularly simple

interpretation in the rotationally invariant case. Namely, the couplings gab and ḡab encode

the amplitude for the creation of the NG boson by the associated broken current, usually

dubbed the NG boson decay constant. Their ratio in turn determines the phase velocity of

type-A NG bosons. As follows from the discussion in appendix A, there is one parameter

of each type for every irreducible multiplet of NG bosons.

Apart from the dispersion relations of the NG bosons, the nonlinear dependence of the

Lagrangian (5.5) on πa determines the dominant interactions of NG bosons at low energy

or momentum. We emphasize what should already be clear from the above equations: this

nonlinear dependence is fixed by symmetry, and the low-energy physics of NG bosons is

fully determined by the set of leading-order effective couplings, that is, their decay constants

and phase velocities, and the charge densities in the ground state.

5.2 Power counting

Now that we have discussed the spectrum of NG bosons, we return to the question of power

counting, which determines how the derivative expansion of the Lagrangian is organized.

So far, we sorted the Lagrangian separately by the number of spatial and temporal indices.

However, for a well-defined expansion, one needs a unique expansion parameter. In fact,

we have so far been discussing the leading-order Lagrangian without having a clear notion

of what “leading-order” means.

Let us recall how the powers of derivatives are counted in χPT [30], or in general

Lorentz-invariant systems. There, spatial and temporal derivatives are treated on the

same footing, and each of them, as well as the background fields Aiµ, is counted as order

one. The propagator of a NG boson is then of order −2 and consequently a given Feynman

diagram with L loops and I propagators in d spacetime dimensions has the superficial

degree of divergence [40]

deg = dL− 2I +
∑
v

dv = 2 + (d− 2)L+
∑
v

(dv − 2), (5.7)
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where dv denotes the number of derivatives in the operator representing the vertex v. Since

every operator in the Lagrangian contains at least two derivatives, the power counting is

well defined. The leading contribution to any Green’s function or scattering amplitude is

of order two, and constitutes solely tree-level diagrams with vertices from L
(2)
eff . Adding

loops (in d ≥ 3) or vertices from higher-order operators increases the order. This guarantees

that, to any finite order in the derivative expansion, only a finite number of operators and

Feynman diagrams contribute. In the exceptional case of d = 2, adding loops does not

increase the order of the diagram. This is another manifestation of the strong infrared

fluctuations of the NG fields which eventually lead to the restoration of the symmetry [28].

The above argument applies to all systems with a purely type-A NG boson spectrum.

The fact that the phase velocities of the NG bosons are not equal to the speed of light does

not need to concern us: all that matters is that the energy scales linearly with momentum.

As a consequence, the part of the effective Lagrangian L
(s,t)
eff is assigned the order s + t,

which enters eq. (5.7) through the vertex degree dv.

Let us now consider the opposite extreme, namely a system in which all NG bosons

are of type B and have a quadratic dispersion relation, such as a ferromagnet. In order for

the NG boson propagator to have a well-defined degree, each temporal derivative now has

to be counted as two spatial derivatives. It is therefore natural to count ∂r as order one,

and ∂0 as order two. The power-counting formula (5.7) then changes accordingly,

deg = (d+ 1)L− 2I +
∑
v

dv = 2 + (d− 1)L+
∑
v

(dv − 2), (5.8)

where dv is now the total order of the vertex v, taking into account the difference between

spatial and temporal indices. The same argument asserting the existence of a well-defined

power counting as above applies, except that now one has a valid derivative expansion even

at d = 2 [41]. The Lagrangian L
(s,t)
eff is correspondingly assigned the total order s+ 2t.

The above lengthy considerations finally define the notion of a leading order in our

expansion. Barring the occurrence of operators with a single spatial derivative, this always

carries two powers of momentum. In pure type-A systems, the leading-order Lagrangian

contains terms with two spatial or two temporal derivatives. In pure type-B systems such

as ferromagnets, it contains terms with two spatial or one time derivative. Operators with

two temporal derivatives, implicit in eq. (5.5), are then only subleading, of order four.

Our discussion suggests a natural question: how to define power counting in mixed

systems where both types of NG bosons appear? This is not merely an academic question;

such systems include for instance the canted phase of ferromagnets [10] or certain models

of relativistic Bose-Einstein condensation [42, 43]. For operators built solely out of φaµ and

Gαµν without additional derivatives, one can alternatively assign a fixed order directly to

the respective component of the MC form, φaµ or Bα
µ . If the field πa belongs to a pair of

variables canonically conjugated by the coupling ei, φ
a
0 is counted as order two, otherwise

it is assigned the order one. However, this still does not give a unique prescription for

operators carrying extra covariant derivatives Dµ, since these can be moved by partial

integration within a product of fields. How to define power counting in this general case

remains a problem to be resolved in the future.

– 24 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
8

5.3 Equation of motion

It is instructive to find the equation of motion stemming from the leading-order La-

grangian (5.4). As we argue below, this allows one to eliminate some of the numerous

operators contributing at higher orders of the derivative expansion. Also, it may help to

elucidate the spectrum of the NG modes and other physical observables such as the re-

sponse of the system to external fields. In this section, we sketch its derivation in a form

manifestly covariant under all the symmetries.

It is convenient to collect the auxiliary fields φaµ and Bα
µ in a single variable, Ãµ =

ÃiµTi = TU−1Aµ = φµ +Bµ. In terms of the objects introduced in eq. (2.4), it reads

Ãµ(π) = U(π)−1(Aµ + i∂µ)U(π) = [Ajµν
i
j(π)− ωia(π)∂µπ

a]Ti. (5.9)

We know from eq. (4.5) that the effective action can be expressed solely in terms of Ãµ(π).

The general equation of motion is then

0 =
δSeff{π,A}
δπa(x)

=

∫
dy

δSeff

δÃiµ(y)

δÃiµ(y)

δπa(x)
. (5.10)

Using the above expression for Ãiµ in terms of ωia and νij , it is straightforward to evaluate

the second of the functional derivatives under the integral. In order to bring the equation

of motion into a covariant form, one can in addition use the identity ∂aνi = −i[ωa, νi] and

the Maurer-Cartan structure equation [44],

∂aωb − ∂bωa = −i[ωa, ωb], or ∂aω
i
b − ∂bωia = f ijkω

j
aω

k
b , (5.11)

both of which are easily obtained from the definitions of ωia and νij in eq. (2.4). The

equation of motion then acquires the form

ωja

(
δij∂µ

δSeff

δÃiµ
+ f ijkÃ

k
µ

δSeff

δÃiµ

)
= 0. (5.12)

Let us now see what this implies at the leading orders of the derivative expansion. In

terms of Ãiµ the Lagrangian (5.4) takes the rather compact form L LO
eff = eµi Ã

i
µ+ 1

2g
µν
ab Ã

a
µÃ

b
ν .

Plugging this into eq. (5.12) and expanding in all possible combinations of broken and

unbroken indices seems to produce a lot of terms. However, some of them vanish due to

the invariance conditions: (i) ωjaf ijkÃ
k
µe
µ
i vanishes unless both j and k are broken indices;

(ii) ωαa f
b
αkÃ

k
µ(gµνbc Ã

c
ν) = ωαa f

b
αdg

µν
bc Ã

d
µÃ

c
ν vanishes since as follows from appendix A.2, f bαdg

µν
bc

is antisymmetric under the simultaneous exchange of c, d and µ, ν. Upon some relabeling

of the indices, the equation of motion then reduces to

ωba(g
µν
bc ∂µÃ

c
ν + f cbig

µν
cd Ã

i
µÃ

d
ν + eµi f

i
bcÃ

c
µ) = 0. (5.13)

From eq. (2.7) we know that at π = 0, ωba(0) = δba. Therefore, there is a neighborhood of

the origin of the coset space G/H in which the matrix ωba(π) is nondegenerate.3 In this

3This conclusion is independent of the specific choice of parameterization, used to derive eq. (2.7).
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neighborhood, we can divide the entire equation by this factor. Upon finally splitting the

index i in the second term into its broken and unbroken part, we realize that the equation

of motion can be cast in a manifestly G-invariant form, solely in terms of φaµ,

f iabe
µ
i φ

b
µ + gµνabDµφ

b
ν + f bacg

µν
bd φ

c
µφ

d
ν = 0. (5.14)

This form of the equation of motion does not make any assumptions on the spacetime sym-

metry, and constitutes a generalization of the Landau-Lifschitz equation for the spin waves

in ferromagnets [8]. Of course, in most cases of physical interest, it takes a particularly

simple form. First, in rotationally invariant systems (in two or more spatial dimensions),

the first term reduces to f iabeiφ
b
0. Second, in rotationally invariant systems in three spa-

tial dimensions, the second term reduces to ḡabD0φ
b
0 − gabDrφ

b
r, that is, to the covariant

Laplacian. Finally, the last term is missing when the coset space G/H is symmetric.

The equation of motion (5.14) is expressed in terms of the same building blocks as

the invariant part of the Lagrangian Linv, allowing us to eliminate some of the operators

that appear at higher orders of the derivative expansion. This is equivalent to a certain

field redefinition, and therefore provides a tool to reduce redundancy in the higher-order

Lagrangians [31, 45]. How precisely this procedure works again depends on the classification

of the NG bosons. For a type-B NG boson πa, φa0 appears linearly in eq. (5.14), hence it can

be eliminated altogether from the higher-order operators. For all the remaining generators,

corresponding to type-A NG bosons, D0φ
a
0 can be eliminated in favor of Drφ

a
r and products

of φaµs. In the special case of Lorentz-invariant systems, the equation of motion allows one

to remove operators containing Dµφ
aµ.

6 Higher-order contributions

In this section, we provide some details of the construction of the order-three and four

effective Lagrangians presented in section 2. It is worthwhile to stress the conceptual sim-

plicity of our approach: we merely have to list all possible operators up to the desired order

and find all invariant tensors of the unbroken subgroup H to contract their indices. The

nontrivial task turns out not to be to make sure that the list of operators is complete, but

to detect possible redundancies. There are several tools that allow one to relate apparently

different operators for general G and H [31, 45]: integration by parts, Bianchi identity for

the field-strength tensor Gαµν , Schouten identity for the fully antisymmetric tensor ελµν···,

and the use of the leading-order equation of motion (5.14). In addition, specific algebraic

relations of the symmetry group or its representations may give rise to further constraints.

6.1 Invariant terms

In order to obtain explicit expressions for the invariant part of the Lagrangian, we re-

strict ourselves to rotationally invariant theories. However, if needed, our approach can

be straightforwardly applied to more complicated cases such as condensed matter systems

with a discrete space group. The problem to solve is then as easy as it gets: find the

appropriate invariant tensors of the unbroken subgroup H.

– 26 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
8

Following the steps outlined in section 4 and applied to the lowest orders of the deriva-

tive expansion in section 5, we first list all types of operators that contribute at orders

three and four:

order 3: φaλφ
b
µφ

c
ν , φ

a
λDµφ

b
ν ,���

��XXXXXDλDµφ
a
ν , φ

a
λG

α
µν ,���

�XXXXDλG
α
µν .

order 4: φaκφ
b
λφ

c
µφ

d
ν , φ

a
κφ

b
λDµφ

c
ν ,���

���XXXXXXφaκDλDµφ
b
ν , Dκφ

a
λDµφ

b
ν ,���

���XXXXXXDκDλDµφ
a
ν ,

φaκφ
b
λG

α
µν , Dκφ

a
λG

α
µν ,���

��XXXXXφaκDλG
α
µν ,���

��XXXXXDκDλG
α
µν , G

α
κλG

β
µν .

(6.1)

The crossed out operators are redundant since they are either total derivatives, or can be

eliminated in favor of the remaining operators using integration by parts. As the next

step, we have to determine all contractions of the Lorentz indices that are allowed by

the assumed spacetime symmetry. Here, it is convenient to discuss separately the case of

one spatial dimension, where Lorentz invariance is not an issue for spontaneous symmetry

breaking does not occur in one-dimensional Lorentz-invariant systems [28]. Since there is

no (continuous) spacetime symmetry in this case, the most straightforward approach is to

simply assign the temporal and spatial indices 0, 1 to the above operators in all possible

ways. Along the way, one encounters further redundancies as some of the operators can be

eliminated using integration by parts. For instance, φa0φ
b
0D0φ

c
1 does not appear among the

operators contributing to L
(1,3)
inv , shown in section 2.2.1, as it can be integrated by parts to

φa0φ
b
1D0φ

c
0 (but not vice versa). Similar reasoning allows us to eliminate other operators.

In higher dimensions, one can follow two approaches, resulting in somewhat different

classifications of operators in the Lagrangian. The first approach relies on the fact that the

only algebraically independent invariant tensors of the Lorentz group are the Minkowski

metric ηµν and the Levi-Civita tensor ελµν···. The assumed rotational invariance is taken

into account by introducing an additional invariant: a time-like rest-frame vector, nµ =

(1, 0, 0, . . . ). One next has to enumerate all tensors obtained by products of ηµν , ελµν···, nµ
containing the desired total number of indices. Bearing in mind that a product of two

ε’s can be decomposed into a linear combination of products of the η’s, the full list of

rotationally invariant tensors up to order four reads:

order 1: nµ.

order 2: ηµν , nµnν , εµνσn
σ. (6.2)

order 3: ηλµnν , nλnµnν , ελµν , nλεµνσn
σ, ελµνσn

σ.

order 4: ηκληµν , ηκλnµnν , nκnλnµnν , εκλµnν , εκλσn
σηµν , εκλσn

σnµnν , εκλµν , nκελµνσn
σ.

As before, we use color coding to highlight tensors that are only available for certain spatial

dimensionality; moreover, tensors that are explicitly Lorentz-invariant are highlighted by

underlining.

While the above is certainly a complete list of rotationally invariant tensors, it is,

unfortunately, not minimal. To understand why, take the antisymmetric tensor εµ1···µd in

d spacetime dimensions, and construct a tensor of rank d+ 1 as εµ1···µdnµd+1
. By summing

over cyclic permutations of the indices, we obtain a rank-(d + 1) antisymmetric tensor

which must identically vanish,

εµ1···µdnµd+1
+(−1)dεµ2···µdµd+1

nµ1 +εµ3···µd+1µ1nµ2 + · · ·+(−1)dεµd+1µ1···µd−1
nµd = 0. (6.3)
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This is a particular example of the Schouten identity. Multiplying the whole equation by

nµd+1 , we then obtain a constraint relating tensors of rank d, listed above,

(−1)d+1εµ1···µd =

d∑
k=1

(−1)(d+1)(k+1)nµkεµk+1···µdµ1···µk−1νn
ν . (6.4)

This means that a manifestly Lorentz-invariant tensor εµ1···µd can be recovered from a

linear combination of other, Lorentz-noninvariant tensors. We have in principle two options:

either keep manifest Lorentz invariance, or keep the set of tensors minimal by dropping ελµν
and εκλµν from the above list. In view of the applications of the formalism in condensed

matter physics, we use the former approach to work out the effective Lagrangian only

in Lorentz-invariant theories, see section 2.2.4. There, the result is obtained by merely

contracting all of the operators in eq. (6.1) with the tensors of eq. (6.2) at the given order.

In nonrelativistic systems one has to treat spatial and temporal indices separately,

and using the Lorentz-covariant formalism proposed above would only obscure the power

counting. We therefore use a different strategy. Instead of Lorentz-covariant tensors, we

list all rotationally invariant tensors with spatial indices only:

order 2: δrs, εrs.

order 3: εrst.

order 4: δrsδtu, δrsεtu.

(6.5)

These are again put together with operators from eq. (6.1) in all possible ways, except that

not all indices now have to be contracted; the leftover ones are assigned the value 0. This

way, one obtains the list of operators presented in section 2.2.1.

In the process, we again encounter a number of additional redundancies that somewhat

reduce the final list of operators. Let us point out some of them explicitly:

• Some of the operators can obviously be expressed in terms of others using integration

by parts. For instance, φarφ
b
rDsφ

c
s can be converted into φarφ

b
sDrφ

c
s and thus is not

independent.

• In two spatial dimensions, Gαrs = Gα12εrs, therefore the naively anticipated operators

εstφarφ
b
sG

α
rt and εstDrφ

a
sG

α
rt reduce to the operators εstφarφ

b
rG

α
st and εstDrφ

a
rG

α
st.

• In three spatial dimensions, the operator εrstDrφ
a
0G

α
st vanishes through the Bianchi

identity when integrated by parts.

• The two-dimensional operator εrsDrφ
a
0G

α
0s can be expressed in terms of εrsD0φ

a
0G

α
rs,

and the three-dimensional operator εrstDrφ
a
sG

α
0t in terms of εrstD0φ

a
rG

α
st, via the

Bianchi identity.

• The operator εrstGα0rG
β
st is a topological density and thus does not contribute to the

action.
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6.2 Chern-Simons terms

In order to determine the CS-type terms in the Lagrangian, we have to find all admissible

currents Jµα [B] and integrate them by means of eq. (4.14). The current is constrained by

the requirement of covariance (C.5), which however follows already from global symmetry

alone. The assumed gauge invariance imposes an additional constraint on Jµα . To see this,

simply express gauge invariance using the transformation rule (4.8) as

0 = δSCS{B} =

∫
dx (fαβγB

β
µε
γ + ∂µε

α)Jµα [B], (6.6)

from where an integration by parts leads us to the conservation condition

∂µJ
µ
α + fγαβB

β
µJ

µ
γ = DµJ

µ
α = 0. (6.7)

Due to theorem 5, the current can be constructed out of covariant building blocks. Since

SCS{B} depends solely on the gauge field Bα
µ , we have Gαµν and its covariant derivatives

at our disposal. The validity of eq. (C.5) is then ensured by contracting indices in the

operator with a coupling which is an invariant tensor of the unbroken subgroup H, leaving

free one overall Lorentz index and one adjoint group index. This part of the construction

is accomplished using exactly the same steps as in the case of the invariant Lagrangian

Linv[φ,B]. Finally, in order to get a gauge-invariant action, we impose the conservation

condition (6.7) which further restricts the possible values of the couplings.

Let us now proceed to the construction. It is worth stressing that up to order four in

derivatives, the CS contributions to the Lagrangian can be worked out without making any

assumptions on the spacetime symmetry. At order zero in derivatives, the current has to

be constant, Jµα = eµα. In this case, eqs. (6.7) and (C.5) impose the same condition on the

coupling, namely eµαfαβγ = 0. Integrating the current according to eq. (4.14) then recovers

the CS term shown in eq. (5.4), while the special case of rotational invariance is displayed

as L
(1)
CS in eq. (2.2). At order one, there is no covariant current since the simplest building

block we have, Gαµν , is already of order two. This explains in very elementary terms why

the part of the effective Lagrangian with two derivatives is strictly gauge-invariant.

At order two, the current has to be proportional to the field-strength tensor,

Jµα = cµνλαβ G
β
νλ. (6.8)

As explained above, the covariance of the current requires that the coupling cµνλαβ is an

invariant tensor of H. Also, without loss of generality, it can be assumed antisymmetric in

the indices ν, λ. The conservation condition (6.7) on the other hand takes the form

0 = cµνλαβ DµG
β
νλ = 2cµνλαβ ∂µ∂νB

β
λ + · · · , (6.9)

where the ellipsis denotes terms with fewer than two derivatives acting on Bα
µ . Since

all components of Bα
µ with different α and µ are in principle independent functions of

spacetime, this implies that cµνλαβ has to be antisymmetric in µ, ν. Given the assumed anti-

symmetry in ν, λ, it must thus be fully antisymmetric in all three indices µ, ν, λ. This is a
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necessary as well as sufficient condition for current conservation, since the whole cµνλαβ DµG
β
νλ

then vanishes by means of the Bianchi identity. Integration using eq. (4.14) now finally

gives

L
(3)
CS = cλµναβ B

α
λ

(
∂µB

β
ν +

1

3
fβγδB

γ
µB

δ
ν

)
. (6.10)

The coupling cλµναβ is fully antisymmetric in λ, µ, ν and is an invariant tensor of the unbroken

subgroup H. Also, it can without loss of generality be considered symmetric in α, β, since

swapping these two indices changes the Lagrangian at most by a surface term.

In one spatial dimension, a rank-three fully antisymmetric tensor does not exist, while

in two dimensions, cλµναβ has to be proportional to ελµν . Finally, in three dimensions, it

can be equivalently written in terms of the dual vector, cλµναβ = cκ,αβε
κλµν . In principle,

the internal group structure of the vector cκ,αβ can be chosen independently for each com-

ponent κ. Under the assumption of rotational invariance, only the κ = 0 component can

be nonzero, while in higher dimensions no rank-three fully antisymmetric and rotationally

invariant tensor exists. This reproduces the most general rotationally invariant CS La-

grangian of order three in derivatives, given in eq. (2.2). Note that our result is implicit in

older works dealing with the general problem of classification of effective actions without

the assumption of gauge invariance [46–48]. It is therefore worth emphasizing that we

have obtained it using solely elementary field theory. In the next subsection, we discuss its

implications in more detail.

So far, we have found nontrivial CS terms at orders one and three in derivatives. It

can be shown that no such terms appear at order four, the highest order of concern in

this paper. Although a proof of this statement is elementary, it is rather lengthy and the

details are therefore deferred to appendix E. Before concluding, it is, however, instructive

to inspect the variation of the CS Lagrangians under the gauge transformation (4.8). For

the order-one term, this is nearly trivial,

δL
(1)
CS = eµα(∂µε

α + fαβγB
β
µε
γ) = ∂µ(eµαε

α), (6.11)

where the second term drops out as a consequence of the H-invariance of eµα. Trivial

as it seems, it is good to realize that the surface term actually depends nontrivially on

the NG fields πa. Indeed, as is clear from eq. (2.8), the parameter of the compensating

transformation h ∈ H by which the auxiliary field Bα
µ shifts equals εα = εikαi (π), where εi

is the parameter of the original gauge transformation, g ∈ G. Finally, we just add that the

order-three CS term varies by

δL
(3)
CS = ∂λ(cλµναβ ε

α∂µB
β
ν ). (6.12)

The proof of this statement follows upon a brief manipulation using the invariance condition

on cλµναβ and the Jacobi identity for the structure constants.

6.3 Physical content of the Chern-Simons terms

The CS terms are singled out by our construction, based on the auxiliary field variables

φaµ and Bα
µ . A natural question then arises, whether this division is purely technical or
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whether the CS terms differ from the invariant part of the Lagrangian Linv in actual

physical consequences. One aspect of the CS terms certainly is special: as a consequence

of the global topology of the coset space G/H, the couplings eα and cαβ are, as a rule,

quantized. This follows from a rather deep analogy of our CS terms with the so-called

Wess-Zumino term in χPT [22, 49], discussed in detail in the companion paper [26]. The

topological nature of the order-one term L
(1)
CS , for instance, manifests itself in the Berry

phase that the ground state of the system acquires when adiabatically dragged through

G/H by a weak external field [20, 50].

Since our concern in this paper is the construction of EFTs for NG bosons, we now

concentrate on the perturbative interactions induced by the CS terms. The case of L
(1)
CS

was already discussed in detail in section 5.1. We saw in eq. (5.6) that this CS term affects

the spectrum of NG bosons by canonically conjugating some of the fields πa, provided two

conditions are satisfied: eα 6= 0 for some α and the existence of generators Ta, Tb such that

fαab 6= 0. The first condition amounts to the presence of an unbroken charge density in

the ground state, and can only be fulfilled when Tα (or more precisely Tα, see appendix A

for the definition of the notation) generates a U(1) factor of H. The second condition

guarantees that Tα does not commute with the whole group G, in which case the charge

density would completely decouple from the dynamics of the NG bosons [8].

Let us reformulate the latter condition in a more formal fashion which will prove

useful below when discussing L
(3)
CS . Assume that there is a set of couplings Eµi such that

Eµi f
i
jk = 0 and Eµα = eµα. This means that L

(1)
CS , expressed in terms of Bα

µ as in eq. (2.2),

can be embedded into a CS term for the entire field Ãµ = TU−1Aµ = φµ+Bµ, L̃
(1)
CS = Eµi Ã

i
µ.

Since Ãiµ differs from the original gauge field Aiµ just by a gauge transformation, the action

stays unchanged if we replace Ãiµ by Aiµ.4 On the other hand, we obviously have

L̃
(1)
CS = EµαB

α
µ + Eµaφ

a
µ = L

(1)
CS + Eµaφ

a
µ. (6.13)

Our assumption on Eµi implies as a special case that Eµa faαb = 0. Hence Eµa is an invariant

tensor of H and the term Eµaφaµ can be absorbed into the redefinition of Linv. We have

therefore established that provided the couplings Eµi exist, L
(1)
CS is actually independent of

the NG fields, being gauge-equivalent to Eµi A
i
µ plus a term that belongs to Linv. In rota-

tionally invariant systems, Eµi = Eiδ
µ0, and the couplings Ei with the desired properties

exist when the Lie algebra of G possesses a U(1) generator EiTi which, when projected to

the Lie subalgebra of H, reduces to eαTα.

The same steps can be followed in case of L
(3)
CS . We first assume that there is a set of

couplings Cλµνij such that Cλµναβ = cλµναβ and Cλµν`j f `ik +Cλµνi` f `jk = 0. We use this to promote

L
(3)
CS to a CS term containing the full gauge field Ãiµ, L̃

(3)
CS = Cλµνij Ãiλ

(
∂µÃ

j
ν + 1

3f
j
k`Ã

k
µÃ

`
ν

)
.

By an explicit manipulation, we can then show that L
(3)
CS is gauge-equivalent to

Cλµνij Aiλ

(
∂µA

j
ν +

1

3
f jk`A

k
µA

`
ν

)
− Cλµνaα φaλG

α
µν − C

λµν
ab φaλDµφ

b
ν −

1

3
Cλµνai f ibcφ

a
λφ

b
µφ

c
ν . (6.14)

4Strictly speaking, this is only true for topologically trivial NG field configurations. In general, the action

may shift by a topological θ-term, which nevertheless does not qualitatively modify our argument [26].
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In other words, L
(3)
CS is independent of the NG fields up to terms that can be absorbed

into a redefinition of the couplings in Linv.

Under what conditions does the extension Cij exist? (For the sake of simplicity, we drop

the Lorentz indices here since they are not essential for the discussion.) The coupling cαβ
defines anH-invariant symmetric bilinear form on the Lie algebra ofH, and mathematically

speaking we are therefore investigating the existence of its extension to a G-invariant

symmetric bilinear form on G. According to appendix A, cαβ commutes with all generators

of H in the adjoint representation. Provided that H is simple, its adjoint representation is

irreducible, and by Schur’s lemma cαβ has to be proportional to δαβ . In this case, it can be

naturally extended to Cij ∝ δij . When H is not simple, cαβ is allowed by Schur’s lemma to

contain several blocks, each proportional to unity, but with different eigenvalues. In case

two such blocks lie in the same invariant subspace of G under the adjoint action, there is

obviously no G-invariant extension of cαβ.

We conclude that the necessary condition for L
(3)
CS to trigger interactions among NG

bosons is that H is not simple. As a concrete example, consider the symmetry-breaking

pattern SU(2)× SU(2)→ U(1)×U(1). The adjoint action of G splits the generators into

two invariant spaces, one for each of the SU(2) factors. Consequently, the most general

G-invariant bilinear form has to be proportional to unity on either of them. Denoting the

indices of the two SU(2)s as i, j, . . . and i, j, . . . , this means that

C
i
j ∝ δ

i
j , Ci

j
∝ δij , C

i

j
= Cij = 0. (6.15)

However, the unbroken subgroup H = U(1)×U(1), assumed without loss of generality to

correspond to T3 and T3, is Abelian so that cαβ can be chosen completely arbitrarily. Once

we choose nonzero c33 = c33, an extension of cαβ to a G-invariant coupling obviously does

not exist. We can go even further and say that the parts of L
(3)
CS corresponding to c33

and c33 can be absorbed into the redefinition of Linv via eq. (6.14), while that containing

c33 = c33 will give nontrivial interactions among the NG bosons. What kind of interactions

does it then represent? Note that since G is given by a direct product of two subgroups,

the fields φaµ, Bα
µ split into completely separated parts carrying the NG and gauge fields of

the respective SU(2) factors. A glance at eqs. (5.1) and (6.1) reveals that up to order three

in derivatives, there is no term in the invariant Lagrangian the would mix the fields from

the two subgroups. Therefore, L
(3)
CS in this case provides the leading interaction among all

the NG bosons of the theory.

To see the above more explicitly, let us for simplicity discard the external gauge fields

Aiµ. Using eq. (2.5) together with the expansions (2.7), it is easy to obtain the leading

term in the power expansion of L
(3)
CS ,

L
(3)
CS =

1

4
cλµναβ f

α
abf

β
cdπ

a∂λπ
b∂µπ

c∂νπ
d + · · · . (6.16)

This interaction term is fully antisymmetric in the indices a, b, c, d, and thus requires that

the dimension of G/H is at least four. Our [SU(2)× SU(2)]/[U(1)×U(1)] example there-

fore provides a minimal model in which L
(3)
CS is nontrivial, another simple example being
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for instance the symmetry-breaking pattern SU(3)→ SU(2)×U(1). Finally, note that the

interaction (6.16) has a very similar structure to the Wess-Zumino term in χPT [30]. The

important difference between the two however is that our interaction arises from a strictly

gauge-invariant action.

6.4 Explicit symmetry breaking

So far, we have assumed that the symmetry of the physical system under the group G is

exact. However, examples of exact global symmetries are rare, and as a rule correspond to

Abelian groups. In realistic situations, non-Abelian global symmetries are broken explicitly,

albeit weakly. A prototypical example is the chiral symmetry of QCD, which is explicitly

broken by the nonzero masses of the quarks. It is therefore mandatory to understand how

to incorporate the effects of such explicit symmetry breaking in the EFT.

Following the treatment of ref. [18], we assume that in the microscopic theory, the G-

invariance is broken by a term in the Lagrangian, mσOσ, containing a set of operators that

transform in some (nontrivial) linear representation of G: Oσ g−→ O′σ = D(g)σρOρ. The in-

variance under G can be formally restored by assigning the parameters mσ a contragredient

transformation rule, m′σ = D(g−1)ρσmρ. In the EFT, the parameters mσ can be treated as

a background field with the above transformation rule. The generating functional Γ{A,m},
defined in analogy with eq. (4.3), is invariant under a simultaneous gauge transformation of

the fields Aiµ and mσ. The invariance theorem 2 can be seen to still hold in this case so that

the effective action Seff{π,A,m} is gauge-invariant under a simultaneous transformation

of all its arguments.

Upon the gauge transformation that eliminates the NG fields from the EFT, we find,

analogously to eq. (4.5),

Seff{π,A,m} = Seff{0, TU(π)−1A,Ξ(π)}, (6.17)

where Ξσ(π) = D(U(π))ρσmρ. The dependence of the action on the fields Aiµ and mσ

at π = 0 is constrained by the invariance under the unbroken subgroup H. Vice versa,

repeating the steps in eq. (4.6), it is easy to see that every H-invariant functional F{A,m}
gives rise to a G-invariant action by means of Seff{π,A,m} = F{TU(π)−1A,Ξ(π)}. The

most general effective Lagrangian respecting all the symmetries is therefore obtained using

three basic building blocks: the already familiar fields φaµ and Bα
µ , and Ξσ. By an extension

of the proof of theorem 4, one can likewise show that the full dependence of the Lagrangian

on the field Ξσ resides in its invariant part, Linv[φ,B,Ξ].

The above argument allows us to determine the dependence of the effective Lagrangian

on the explicit-symmetry-breaking parameters using the same strategy as before, namely

by listing all covariant operators up to the desired order in the derivative expansion and

contracting their indices with H-invariant tensor couplings. The precise way that Ξσ, and

hence mσ, appears in the Lagrangian depends on how we define its power counting. Since

we expect mσ to give rise to a quadratic mass term for the NG modes, it is natural to

count it as second-order in the derivative expansion. Up to order four in derivatives, we
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then have the following operators containing at least one factor of Ξσ:

order 2: Ξσ.

order 3: Ξσφ
a
µ,��

�XXXDµΞσ.

order 4: ΞρΞσ,Ξσφ
a
µφ

b
ν ,ΞσDµφ

a
ν ,���

��XXXXXDνΞσφ
a
µ,���

��XXXXXDµDνΞσ,ΞσG
α
µν .

(6.18)

We again crossed out the operators that are either total derivatives or can be expressed in

terms of the others by partial integration. Working out all the possible contractions of the

spacetime indices in these operators, allowed by the spacetime symmetry, reproduces the

result advertised in section 2.2.3.

7 Conclusions

In this paper, we have worked out a systematic framework for the construction of effec-

tive actions for the NG bosons of a spontaneously broken internal symmetry in arbitrary

quantum many-body systems. Building on the pioneering work of ref. [18], we have pro-

vided explicit expressions for the most general effective Lagrangian up to order four in the

gradient expansion. Although we have assumed rotational invariance, the generalization of

the results to other spacetime symmetries is in principle straightforward. To conclude the

paper, we would like to make a number of comments on our results.

First, we worked out the constraints on the effective Lagrangian based solely on the

continuous symmetry. Real physical systems often possess additional, discrete symmetries

such as parity, time reversal or charge conjugation. These may dramatically reduce the

number of independent parameters in the Lagrangian, as we saw in the examples discussed

in section 3.

Second, from the outset we made the assumption that NG bosons are the only low-

energy degrees of freedom. This is often not the case, a generic example being the gapless

fermionic excitations in presence of a Fermi sea. In principle, adding such non-NG degrees

of freedom is straightforward using the techniques developed in refs. [3, 4].

Last, for the sake of simplicity, we assumed that the continuous symmetry that de-

fines the EFT can be gauged, that is, there are no anomalies. Taking the anomalies into

account is nontrivial, but in principle possible [18]. One has to construct a contribution to

the effective action that reproduces the anomaly in the Ward-Takahashi identities for the

Green’s functions of the microscopic theory. Once this is found, the remaining part of the

effective action can be obtained using the methods presented in this paper.

Of course, constructing the effective action is just the initial step in a more long-

term program. To get a full-fledged EFT framework, our results need to be augmented

with tools for performing loop computations in the many-body system in question. These

have already been developed for numerous concrete examples, and will be invaluable for

the applications of the formalism presented here. To work out such explicit cases will

constitute the main direction of our future efforts.
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A Invariant tensor couplings

The effective couplings that appear in the effective Lagrangian are invariant tensors of

the unbroken subgroup H. They carry indices of the representations Rφ and RB of H

in which the fields φaµ and Bα
µ transform (the latter being the adjoint representation).

Mathematically, finding all independent parameters contained in the effective Lagrangian

therefore corresponds to finding all singlets of H in tensor products of the appropriate

number of Rφs and RBs, corresponding to the operator that one deals with. Obviously,

the actual number of independent parameters strongly depends on the size and structure of

the unbroken subgroup H. (In the unfortunate case that the continuous symmetry is fully

broken, the couplings can take completely arbitrary values.) While the general solution to

this problem is probably available in the mathematical literature, for practical purposes it

is most convenient to find it case by case using tensor methods [27].

Here we discuss the consequences of the invariance constraint (2.1) in the simplest

cases that occur repeatedly throughout our analysis. Let us first introduce the necessary

notation. Choose some faithful representation of the generators Ti and define a bilinear

form on the Lie algebra of G by ∆ij = Tr(TiTj).
5 It is assumed to be nondegenerate,

but not necessarily proportional to δij . The latter can always be ensured for compact

semisimple Lie algebras by a suitable choice of basis. The matrix ∆ij and its inverse ∆ij

can be used to lower and raise indices of covariantly transforming objects.

The matrix ∆ij represents a symmetric rank-two tensor and is obviously invariant

under the adjoint action of G, which implies a condition of the same type as (2.1),

∆`jf
`
ki + ∆i`f

`
kj = 0. (A.1)

This can also be proven directly from the cyclicity of the trace, Tr([Ti,Tk]Tj)=Tr(Ti[Tk,Tj ]).

It follows immediately that the combination ∆i`f
`
jk is fully antisymmetric in the indices

i, j, k. By restoring the proper ordering of indices in the structure constants, f ijk = f ijk,

and setting fijk = ∆i`f
`
jk, this antisymmetry can be interpreted as a generalization of the

usual property of the structure constants in a basis-independent way. Likewise, it is easy

to show that the tensor fkij∆
j` = fk `i is antisymmetric in the indices k, `.

5Our effective Lagrangian of course depends solely on the structure constants of G and hence is inde-

pendent of such a choice of representation.

– 35 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
8

In the following, we will in addition assume that ∆ij is block-diagonal with respect to

the broken and unbroken indices, that is, ∆aα = ∆αa = 0. This is reasonable: the broken

generators are defined to be “orthogonal” to the unbroken ones. More precisely, a specific

choice of indices in eq. (A.1) gives (we use the fact that the algebra of unbroken generators

always closes so that faαβ = 0)

0 = ∆γaf
γ
αβ = ∆iaf

i
αβ = −∆βif

i
αa = −∆βγf

γ
αa. (A.2)

Since ∆ij , and thus ∆αβ, is by assumption nondegenerate, we can divide by it and thereby

obtain fγαa = 0. This is nothing but our assumption that the broken generators furnish a

representation, Rφ, of the unbroken subgroup H. A practical consequence of the assumed

block-diagonal structure of ∆ij is that (un)broken indices remain (un)broken after raising

or lowering so that, for instance, uαv
α = uαvα. This would not necessarily hold otherwise.

A.1 Couplings of the type cα and ca

The invariance conditions here read cαf
α
βγ = 0 and caf

a
αb = 0, respectively. A simple

manipulation using the above-defined symmetric form ∆ij leads to

0 = cαf
α
βγ∆γδTδ = −cαf δβγ∆γαTδ = icγ [Tβ, Tγ ] = i[Tβ, c

γTγ ]. (A.3)

(In the first step, we used the antisymmetry of fαβγ∆γδ in the upper two indices.) We

conclude that the H-invariance of cα is equivalent to the statement that the matrix cαTα
commutes with all unbroken generators. Likewise, ca is an invariant tensor of H if and

only if caTa commutes with all unbroken generators. Thus, the possible existence of a

rank-one invariant tensor of H is determined by group theory: the space of (un)broken

generators must contain a singlet of H. In particular, the couplings ei in L
(0,1)
eff correspond

to the vacuum expectation values of the generators Ti. The group-theoretic condition on ei
translates into the (obvious) statement that only generators commuting with the unbroken

subgroup H can have a nonzero vacuum expectation value.

A.2 Couplings of the type cαβ and cab

The invariant tensor cαβ satisfies a condition analogous to eq. (A.1). Raising the first index

of cαβ with ∆αβ, it can be rewritten as

cαγf
γ
δβ − f

α
δγc

γ
β = 0. (A.4)

In other words, the matrix cαβ commutes with all generators of H in the adjoint representa-

tion. This determines cαβ completely up to a few unknown parameters. When H is simple,

its adjoint representation is irreducible and by Schur’s lemma, cαβ must equal δαβ up to an

overall factor. A general compact group H is given by a product H1 × · · · × Hp × U(1)q

(possibly multiplied by another, discrete group), where all Hi are simple. Then, cαβ is de-

termined by a single constant on every simple factor Hi, while it can take arbitrary values

on the Abelian part U(1)q.

A completely analogous statement holds for cab, except that now cab commutes with

all generators of H in the representation Rφ. The allowed values of cab are determined
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by the decomposition of Rφ into irreducible components. By Schur’s lemma, cab has to

be proportional to δab on every irreducible representation which appears only once in the

decomposition of Rφ. When Rφ itself is irreducible, cab must be proportional to ∆ab and so

is necessarily symmetric. This in particular means that the antisymmetric two-derivative

term εrsφarφ
b
s in the leading-order Lagrangian (5.4), allowed in two-spatial dimensions by

rotational invariance, is forbidden by the internal symmetry.

B The c7 operator in chiral perturbation theory

Here we provide the missing details behind the construction of the effective Lagrangian for

χPT, worked out in section 3.2. Our aim is to analyze the consequences of the operator c7

in eq. (3.10). Using eq. (3.4) for DµΦν and the identity

(DµDνU)U−1 + U(DµDνU−1) = −(DµUDνU−1 +DνUDµU−1), (B.1)

which follows by differentiating the relation UU−1 = 1 twice, we immediately get

Tr(DµΦνD
µΦν) =− 1

8
Tr
[
DµUDµU−1DνUDνU−1 +DµUDνU−1DµUDνU−1

− 2(DµDνU)(DµDνU−1)
]
.

(B.2)

Consequently, modulo terms that can be absorbed into a redefinition of the couplings c1

and c2, the c7 operator is proportional to Tr[(DµDνU)(DµDνU−1)]. We therefore focus on

this combination of the fields.

Let us now make a step aside and rewrite the equation of motion DµΦµ = 0, eq. (5.14),

in terms of U . Using eq. (3.4), it takes the form

DµD
µU = U(DµD

µU−1)U . (B.3)

Substituting for DµD
µU−1 from eq. (B.1), this becomes DµD

µU = (DµU)U−1(DµU), and

equivalently DµD
µU−1 = (DµU−1)U(DµU−1). As an immediate consequence, we get that

Tr[(DµD
µU)(DνD

νU−1)] = Tr(DµUDµU−1DνUDνU−1) for fields satisfying the equation of

motion. This is used in the next step, where we rewrite a similar operator using integration

by parts (the resulting equivalence up to a surface term is indicated by the symbol ∼),

Tr[(DµDνU)(DνDµU−1)] ∼− Tr[(DνDµD
νU)(DµU−1)]

∼− Tr
{

([Dν , Dµ]DνU)(DµU−1)− (DνD
νU)(DµD

µU−1)
}

= i Tr(FLµνD
µUDνU−1 + FRµνD

µU−1DνU) (B.4)

+ Tr[(DµD
µU)(DνD

νU−1)].

We also used that a commutator of two covariant derivatives gives the field-strength tensor,

[Dµ, Dν ]U = −iFLµνU + iUFRµν . (B.5)

Since the first term on the right-hand side of eq. (B.4) arises already from the c9 and c11

operators, see eq. (3.15), while the second term from c1, as argued above, we conclude that
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upon using the equation of motion, a term of the type Tr[(DµDνU)(DνDµU−1)] can be

completely dropped from the Lagrangian.

This seemingly irrelevant observation allows us to antisymmetrize the Lorentz indices

in Tr[(DµDνU)(DµDνU−1)], which is what we are eventually after. We thus obtain

Tr
{

([Dµ, Dν ]U)([Dµ, Dν ]U−1)
}

= Tr(FLµνF
Lµν + FRµνF

Rµν − 2FLµνUFRµνU−1). (B.6)

This ultimately confirms that, up to terms that vanish upon using the equation of motion

and terms that can be absorbed into a redefinition of the other couplings present in the

Lagrangian (3.10), the c7 operator reduces to the first line of eq. (3.15) with a flipped sign

in front of 2FLµνUFRµνU−1. Together, these operators therefore give rise to the independent

couplings c̃5 and c̃6 in our Lagrangian (3.16).

C Covariance of the scalar and vector currents

In this appendix, we discuss the transformation properties of the scalar and vector currents,

defined by a functional derivative of the action with respect to the fields φaµ and Bα
µ ,

Σµ
a [φ,B] =

δS{φ,B}
δφaµ

, Jµα [φ,B] =
δS{φ,B}
δBα

µ

. (C.1)

Consider an arbitrary infinitesimal shift of the fields, φaµ → φaµ + uaµ and Bα
µ → Bα

µ + vαµ ,

and the induced shift of the action,

S{φ+ u,B + v} − S{φ,B} =

∫
dx (uaµΣµ

a [φ,B] + vαµJ
µ
α [φ,B]). (C.2)

Next apply the gauge transformation (4.8) to this equation. This leads to∫
dx (uaµΣµ

a [φ′, B′] + vαµJ
µ
α [φ′, B′]) = S{φ′ + u,B′ + v} − S{φ′, B′}

= S{φ′ + u,B′ + v} − S{φ,B}.
(C.3)

Taking the difference of eqs. (C.3) and (C.2) allows us to determine the transformation of

the currents, induced by the gauge transformation of the fields (4.8),∫
dx(uaµδΣ

µ
a [φ,B] + vαµδJ

µ
α [φ,B]) = S{φ′ + u,B′ + v} − S{φ+ u,B + v}

=

∫
dx
{
fabαφ

b
µε
αΣµ

a [φ+ u,B + v] + (fαβγB
β
µε
γ + ∂µε

α)Jµα [φ+ u,B + v]
}

≈ −
∫

dx
(
f baαu

a
µε
αΣµ

b [φ,B] + fγαβv
α
µε
βJµγ [φ,B]

)
.

(C.4)

In the last step, we used invariance of the action S{φ+u,B+v} under the gauge transfor-

mation of the variables φ+u and B+v, and approximated Σµ
a [φ+u,B+v], Jµα [φ+u,B+v]

by Σµ
a [φ,B], Jµα [φ,B]. Comparison of the coefficients at uaµ and vαµ finally leads to the trans-

formation rules

δΣµ
a = −f baαΣµ

b ε
α, δJµα = −fγαβJ

µ
γ ε
β. (C.5)

These demonstrate that despite the inhomogeneous transformation of the gauge field, both

the scalar and the vector current are covariant under the gauge transformations.
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D Gauge-covariant local functions

The sole aim of this appendix is to prove in detail theorem 5. For most of what follows, we

can afford the luxury of dropping group indices. Thus, the local gauge-covariant function

under consideration can be written symbolically as

ψ[φ,A] = ψ(φ, ∂φ, ∂∂φ, . . . ;A, ∂A, ∂∂A, . . . ). (D.1)

Although we do not insist that the fields only appear with at most one derivative attached

to them (we are talking about a derivative expansion of an EFT after all), we do assume

that the degree of the derivatives appearing in ψ[φ,A] is bounded from above. Take now

a (possibly higher) derivative of φ and rewrite it in terms of the covariant derivatives,

∂nφ = ∂n−1(Dφ+ iAφ) = ∂n−1Dφ+ iA∂n−1φ+ · · · , (D.2)

where the ellipsis denotes terms with less than n − 1 ordinary derivatives acting on φ.

Iterating this manipulation, the function ψ[φ,A] can be expressed solely in terms of φ and

its covariant derivatives, and of A and its ordinary derivatives. This is merely a change of

variables; so far we have by no means used the assumed gauge covariance. The advantage

of writing ψ[φ,A] in terms of the new variables,

ψ[φ,A] = ψ(φ,Dφ,DDφ, . . . ;A, ∂A, ∂∂A, . . . ), (D.3)

of course is that the covariant derivatives of φ do not contribute terms with derivatives of

the transformation parameter ε to the gauge variation δψ.

We now proceed by induction and show that the derivatives of the gauge field can all

be combined into the field-strength tensor F and its covariant derivatives. Start with the

highest-degree derivative acting on A, say ∂nA. The gauge variation of ψ[φ,A] gets a sole

contribution with n+ 1 derivatives on ε,

δψ[φ,A] =
∂ψ

∂(∂µ1 · · · ∂µnAµn+1)
∂µ1 · · · ∂µn+1ε+ terms with less derivatives on ε. (D.4)

Next introduce two tensors with a partial (anti)symmetry under the exchange of the indices

µ1, . . . , µn+1,

Sµ1···µn+1 =

n+1∑
k=1

∂µ1 · · · ∂̂µk · · · ∂µn+1Aµk ,

Aµ1···µn+1 = n∂µ1 · · · ∂µnAµn+1 −
n∑
k=1

∂µ1 · · · ∂̂µk · · · ∂µn+1Aµk ,

(D.5)

where the hat indicates an omitted factor in the product. The n-th derivative of A can be

expressed in terms of these tensors, ∂µ1 · · · ∂µnAµn+1 = (Sµ1···µn+1 +Aµ1···µn+1)/(n+ 1). In

terms of the Abelian part of the field-strength tensor, fµν = ∂µAν − ∂νAµ, we also have

Aµ1···µn+1 =
n∑
k=1

∂µ1 · · · ∂̂µk · · · ∂µnfµkµn+1 . (D.6)
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Altogether, ∂µ1 · · · ∂µnAµn+1 can be traded for a combination of Sµ1···µn+1 and terms of the

type ∂µ1 · · · ∂µn−1fµnµn+1 . The latter are antisymmetric in a pair of indices and thus do

not contribute to δψ a term with n+ 1 derivatives on ε. From eq. (D.4) and the assumed

gauge covariance of ψ[φ,A] we then infer that ∂ψ/∂Sµ1···µn+1 = 0. Finally, re-express fµν
in terms of Fµν and a product of A’s so that the gauge-covariant function acquires the form

ψ[φ,A] = ψ(φ,Dφ,DDφ, . . . ;A, ∂A, . . . , ∂n−1A; ∂n−1F ). (D.7)

This argument can now be iterated. At each step, there are at most k derivatives acting on

each A and k ordinary derivatives acting on F and its covariant derivatives. The latter can

be reduced by expressing ∂kF in terms of ∂k−1DF and ∂k−1AF . The absence of explicit

dependence on ∂kA is then proved following the same steps as above. Eventually, we reach

the point at which the gauge-covariant function can be written as

ψ[φ,A] = ψ(φ,Dφ,DDφ, . . . ;A;F,DF, . . . ,Dn−1F ). (D.8)

Now absence of derivatives of ε in δψ simply requires that ∂ψ/∂A = 0. This completes the

proof that ψ[φ,A] can be expressed solely in terms of φ, F and their covariant derivatives.

The question of possible gauge invariance of ψ[φ,A] thus boils down to the consideration

of global symmetry transformations alone.

E Absence of Chern-Simons terms at order four

In this appendix, we sketch the proof that there are no nontrivial CS terms of order four in

derivatives. First, the most general gauge-covariant current of order three takes the form

Jµα = cµνκλαβ DνG
β
κλ, (E.1)

where cµνκλαβ is without loss of generality antisymmetric in κ, λ. The current conservation

condition (6.7) takes the form

0 = cµνκλαβ DµDνG
β
κλ = 2cµνκλαβ ∂µ∂ν∂κB

β
λ + · · · , (E.2)

where the ellipsis denotes terms with less than three derivatives acting on Bα
µ . Let us for

the moment set Tµνκ = cµνκλαβ . We can always decompose this tensor into components with

partial (anti)symmetry, Tµνκ = Sµνκ +Aµνκ + Uµνκ + V µνκ, where

Sµνκ =
1

6
(Tµνκ + Tµκν + T νκµ + T νµκ + T κµν + T κνµ), symmetric in µ, ν, κ,

Aµνκ =
1

6
(Tµνκ − Tµκν + T νκµ − T νµκ + T κµν − T κνµ), antisymmetric in µ, ν, κ,

Uµνκ =
1

3
(Tµνκ + T νµκ − Tµκν − T κµν), antisymmetric in ν, κ, (E.3)

V µνκ =
1

3
(Tµνκ + Tµκν − T νµκ − T νκµ), antisymmetric in µ, ν.

The condition (E.2) ensures that Sµνκ = 0. Moreover, both Aµνκ and Uµνκ are antisym-

metric in ν, κ, giving rise to cµνκλαβ which is fully antisymmetric in ν, κ, λ and thus drops
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out from the current thanks to the Bianchi identity. The whole tensor Tµνκ can therefore

be replaced with its part V µνκ, which finally implies that cµνκλαβ must be antisymmetric in

µ, ν. As a consequence, the conservation condition (E.2) becomes simply

cµνκλαβ fβγδG
γ
µνG

δ
κλ = 0, (E.4)

and is satisfied if and only if cµνκλαβ fβγδ is symmetric under the exchange of µ, ν and κ, λ.

Moreover, cµνκλαβ must be an invariant tensor of (the adjoint representation of) H, which

means among others that cµνκλαβ fβγδ is antisymmetric in the three indices α, γ, δ (see ap-

pendix A for details). It is now a matter of a straightforward, if somewhat tedious, calcu-

lation to show that the corresponding Lagrangian, defined by eq. (4.14), is up to a total

derivative equal to 1
4c
κλµν
αβ GακλG

β
µν . Hence the Lagrangian is necessarily gauge-invariant,

and there are no nontrivial CS terms at this order.
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