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Introduction

Since Newton and Leibniz invented calculus independently, differential equa-

tions have been the most important tool for modeling continuous physical sys-

tems and an important area of study for mathematicians. For many differential

equations, finding a closed form solution is a difficult or impossible task [39].

This necessitates the study of numerical approximations to differential equa-

tions, an area of study called numerical analysis, which has a long history [29].

The first and most simple numerical approach for ordinary differential equa-

tions was described by Euler (1768) in his "Institutiones Calculi Integralis".

Inspired by the idea of Euler, Runge and later Heun and Kutta tried to extend

the Euler method to more advanced schemes which provide higher accuracy and

are called Runge–Kutta methods, [9]. In the last few decades, general-purpose

numerical methods for ordinary differential equations, including mainly Runge–

Kutta methods and linear multistep methods, have been well studied [10]. How-

ever, recently much attention has been paid to purpose-designed numerical

methods, which are tailored to a class of problems possessing geometric prop-

erties, for example the preservation of energy, angular momentum, volume or

symplecticity. Numerical methods that can preserve one or more of these prop-

erties are called geometric numerical integrators, which are shown to produce

not only an improved qualitative behaviour, but also a more accurate long-time

solution compared to general-purpose methods [32].

One of the most important classes of differential equations are Hamiltonian

systems, which have two well-known geometric properties: the preservation of

symplecticity and the preservation of energy [32]. Therefore numerical integra-

tors that are symplectic and that are energy-preserving are of particular interest

for Hamiltonian systems. Symplectic methods and energy-preserving meth-

ods have their own advantages. However, there is no numerical integrator that

can be simultaneously symplectic and energy-preserving for a general Hamilto-

nian system, except for a time-reparametrization of the exact solution1 [18, 62].

Symplectic integrators are shown to have a bounded energy error and a lin-

1In addition the system is assumed to have no other conserved quantities than the Hamiltonian

and functions of the Hamiltonian [62].
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Introduction

ear global error growth for integrable systems over long-time integration [32].

Examples of such types of integrators can be found in [37, 56]. In this thesis,

we focus on energy-preserving methods. In the continuous time setting, the

concept of energy and its conservation has a far-reaching importance through-

out the physical sciences [26]; one example is that the exact preservation of

energy plays an important role in the study of orbital stability of soliton so-

lutions to certain Hamiltonian partial differential equations [3]. Even from a

numerical point of view, the energy-preserving property is found to be crucial

in the proof of stability and convergence for some numerical methods, see for

example [24, 41]. Some examples of energy-preserving methods are discrete

gradient methods [48, 49], the average vector field method [54], and Hamilto-

nian boundary value methods [7, 8].

Most of the existing energy-preserving integrators for Hamiltonian systems

are implicit [12, 61], and so a nonlinear system has to be solved at each time

step. This might lead to either a high computational cost or to a loss of the con-

servation property due to the non-negligible truncation error in the numerical

solution of the nonlinear system [21]. An alternative idea is to build a linearly

implicit method, for which one linear system is needed to be solved at each time

step [21, 46]. In this thesis, we focus on solving Hamiltonian partial differen-

tial equations (PDEs) and Hamiltonian ordinary differential equations (ODEs)

with numerical integrators that are energy-preserving and linearly implicit. For

ODEs it is common to develop rather general structure-preserving frameworks.

However it is somewhat different from the usual practice with PDEs where each

considered equation normally requires a dedicated scheme [21]. Nevertheless

there exist certain fairly general methodologies that can be used for developing

structure-preserving methods for PDEs, and we consider two of them in this

thesis. The first one is to discretize the Hamiltonian PDE in space and make

sure to obtain a Hamiltonian ODE to which geometric numerical integrators

are applied, see for example [12]. The other approach is to reformulate the

PDE into a multisymplectic form and then apply a scheme that preserves the

conservation laws inherent in the multisymplectic structure [44].

The semi-discretization of Hamiltonian PDEs may lead to large and sparse

linear Hamiltonian ODEs, for example the discretization of the wave equa-

tions [25] and the Maxwell equations [45]. Moreover, large and sparse linear

Hamiltonian systems have also been widely considered in engineering, like the

models in network dynamics [58]. Another topic of the thesis is to consider

energy-preserving methods for such systems. Krylov subspace methods have

been extensively used to solve eigenvalue problems [60], linear systems [55]

and linear differential equations [34]. However, when applied to Hamiltonian

ODE systems, the standard Krylov subspace methods, e.g. the Arnoldi projec-

tion method [17], will in general fail to preserve geometric properties, such as

2



1.1 Discrete gradient methods and linearly implicit schemes

energy and symplecticity, see for example [13]. In this thesis, we focus on con-

structing the energy-preserving Krylov subspace methods, using a symplectic

basis [23, 43]. Besides such methods, we also consider modifying the classical

Arnoldi projection method to construct an energy-preserving method.

In the following we will briefly review the basic concepts used in the papers

that constitute the main contribution of this thesis, and give a summary of each

paper.

1.1 Discrete gradient methods and linearly implicit
schemes

We consider an initial value problem

ẏ = f (y), y(t0) = y0, (1.1.1)

where y(t ) ∈Rn , f : Rn →Rn . A differentiable function I(y) is said to be a first

integral of the ODE (1.1.1) if

dI(y)

d t
|y=y(t )=∇I(y)ẏ =∇I(y) f (y) = 0, ∀y ∈Rn .

Then I(y) is a conserved quantity along the flow of equation (1.1.1): I(y(t ))−
I(y(t0)) =∫t

t0
∇I(y)ẏd t = 0. It is shown in [48] that an ODE system with a first

integral I(y) can generally be written into the form

ẏ = S(y)∇I(y),

where S(y) is a skew-symmetric matrix, under some mild assumptions. The

most well-known example of a first integral is the energy of Hamiltonian ODEs

which arise in many areas of physics [38]. Henceforth, we make no distinction

between integral-preserving integrators and energy-preserving integrators. Let

us restrict to systems (1.1.1) of the form

ẏ = S∇H(y), y(t0) = y0, (1.1.2)

where S is a constant skew-symmetric matrix and H(y) is a scalar function. A

popular class of methods to solve systems of the form (1.1.2) are the discrete

gradient methods. The basic idea is to introduce a map ∇H : Rn ×Rn → Rn

called the discrete gradient of H(y), which is an approximation to ∇H(y) and

3



Introduction

satisfies

H(y)−H(x) =∇H(x, y)T (y −x),

∇H(x, x) =∇H(x).

Given the discrete gradient ∇H , the discrete gradient method for (1.1.2) is

defined by

yk+1 − yk

Δt
= S∇H(yk , yk+1). (1.1.3)

The above scheme (1.1.3) preserves the energy of (1.1.2) since

H(yk+1)−H(yk ) =∇H(yk , yk+1)
T

(yk+1 − yk )

=Δt∇H(yk , yk+1)
T

ST ∇H(yk , yk+1)

= 0.

There are a number of ways to create a discrete gradient and the most used

examples are

• the average vector field (AVF) discrete gradient [33]

∇HAVF(x, y) =
∫1

0
∇H(ξx + (1−ξ)y)dξ,

• the midpoint (MP) or Gonzalez discrete gradient [31]

∇HMP(x, y) =∇H(
x + y

2
)+ H(y)−H(x)−∇H( x+y

2 )T (y −x)

||y −x||2
(y −x),

• the Itoh–Abe (IA) discrete gradient [35]

∇HIA(x, y)l =
⎧⎨
⎩

H(
∑l

i=1 yi ei+∑n
i=l+1 xi ei )−H(

∑l−1
i=1 yi ei+∑n

i=l xi ei )
yl−xl

, if xl �= yl ,
∂H
∂xl

(
∑l−1

i=1 yi ei +∑n
i=l xi ei ) if xl = yl ,

where el denotes the lth Euclidean unit vector field. The AVF and MP discrete

gradients are symmetric with respect to x and y , leading to symmetric energy-

preserving methods of second order. The Itoh–Abe discrete gradient is not

symmetric, however, it can be symmetrized by ∇HSIA(x, y) := 1
2 (∇HIA(x, y)+

∇HIA(y, x)).

Discrete gradient methods were systematically studied for ODEs in [31,48].

The idea was applied to solve PDEs in [49], in [7, 12] where the AVF method

was considered, and in [27] where the discrete variational derivative method

4



1.1 Discrete gradient methods and linearly implicit schemes

was considered. These methods are normally fully implicit, and one drawback

for such kind of methods is that one has to solve a non-linear system at each

time step. To avoid this drawback, linearly implicit energy-preserving meth-

ods may be considered. One technique to generate linearly implicit methods

was proposed by introducing the concept of “multiple points discrete varia-

tional derivative”, see [46]. Following the idea there, a general framework for

constructing linearly implicit methods which allow for an arbitrary number of

variables with derivatives of any order, was presented in [21]. In this thesis,

we consider a numerical comparison of two linearly implicit energy-preserving

methods for Hamiltonian PDEs: one method is achieved by applying the tech-

nique introduced in [21, 46] to the semi-discrete Hamiltonian ODE systems,

and the other is obtained by applying Kahan’s method to the semi-discrete sys-

tems, see next section for a definition. In [21], Dahlby and Owren introduced

a notion of polarised Hamiltonian and polarised discrete variational derivative

(PDVD) for introducing the linearly implicit schemes, see also [46] for related

work. In the following, we consider a simplified version of the definitions

in [21] adapted to cubic Hamiltonian functions.

Definition 1.1. For a cubic polynomial energy function H : Rn → R, consider

the polarised energy function H̃ : Rn ×Rn →R satisfying the properties

H̃(x, x) = H(x), H̃(x, y) = H̃(y, x),

then the polarised discrete gradient (PDG) for H̃ is defined by ∇H̃ : Rn ×Rn ×
Rn →Rn satisfying

H̃(y, z)− H̃(x, y) = 1

2
(z −x)T ∇H̃(x, y, z),

∇H̃(x, x, x) =∇H(x).

The corresponding polarised discrete gradient scheme for system (1.1.2) is

given by

yk+2 − yk

2Δt
= S∇H̃(yk , yk+1, yk+2). (1.1.4)

There exist many ways to build a PDG and one is based on the work by Matsuo

and coauthors [46], where plenty of examples are considered for polynomial

functions. Two more examples are the generalizations of the AVF discrete

gradient and IA discrete gradient:

• the polarised discrete gradient based on AVF [21]

∇AVFH̃(x, y, z) = 2
∫1

0
∇x H̃(ξx + (1−ξ)z, y)dξ,

5



Introduction

where ∇x H̃(x, y) is the partial derivative of H̃(x, y) with respect to its

first argument;

• the polarised discrete gradient based on Itoh–Abe (IA) discrete gradient

[22]

∇IAH̃(x, y, z)l = 2

⎧⎨
⎩∂̄H̃(x, y, z)l if xl �= zl ,

∂H̃
∂xl

(
∑l−1

i=1 zi ei +∑n
i=l xi ei , y)) if xl = zl ,

where

∂̄H̃(x, y, z)l =
H̃(
∑l

i=1 zi ei +∑n
i=l+1 xi ei , y)− H̃(

∑l−1
i=1 zi ei +∑n

i=l xi ei , y)

zl −xl
.

1.2 Kahan’s method

To introduce Kahan’s method, we start with the problem in the form

ẏ = f (y) = A(y)+B y + c, (1.2.1)

where A(y) is an Rn-valued quadratic form, B ∈ Rn×n is a symmetric con-

stant matrix, c is a constant vector. A system of the type (1.2.1) looks quite

simple and restrictive, however it appears often in applications, for example

air pollution models [63] and ordinary differential equations that arise after

semi-discretisation of a PDE, like the Korteweg–de Vries equation [36] or the

Camassa–Holm equation [22]. For the above problem (1.2.1), consider the

following discretization

yk+1 − yk

Δt
= A(yk , yk+1)+B

yk + yk+1

2
+ c, (1.2.2)

where

A(yk , yk+1) = 1

2
(A(yk , yk+1)− A(yk+1)− A(yk )),

is a symmetric bilinear form which is obtained by the polarization of the

quadratic form A, [16]. The scheme (1.2.2) is symmetric and linearly implicit.

We will call this scheme Kahan’s method as in [16]. Kahan’s method can be

shown to coincide with the following Runge–Kutta method

yk+1 − yk

Δt
=−1

2
f (yk )+2 f (

yk + yk+1

2
)− 1

2
f (yk+1). (1.2.3)

6



1.2 Kahan’s method

when applied to quadratic vector fields, see [16]. Using the Runge-Kutta form

(1.2.3), it is shown in [16] that Kahan’s method applied to a Hamiltonian ODE

with quadratic vector field has a conserved modified Hamiltonian and an in-

variant measure, a combination previously unknown amongst Runge–Kutta

methods applied to nonlinear vector fields. Inspired by this property, large

classes of integrable rational mappings are found, examples including [14, 53].

Kahan’s method was generalized to higher degree polynomial vector fields and

the discretization was shown to preserve modified versions of the measure and

energy when Hamiltonian vector fields are considered in [15].

Suppose we restrict the problem (1.2.1) to be a Hamiltonian system on

either a symplectic vector space or a Poisson vector space with constant Poisson

structure:

ẏ = S∇H(y), (1.2.4)

where S ∈Rn×n is a constant skew-symmetric matrix and H : Rn →R is a cubic

polynomial Hamiltonian function. We first consider the Hamiltonian H to be

homogeneous, and according to [15], Kahan’s method applied to (1.2.4) can be

rewritten by

yk+1 − yk

Δt
= 1

2
SH̄(yk , yk+1, ·), (1.2.5)

where H̄(·, ·, ·) : Rn×Rn×Rn →R is a symmetric 3-tensor and satisfies H̄(x, x, x) =
H(x). We now consider the 3-tensor2 H̄(x, y, z) = xT Q(y)z, where Q(y) =
1
6 H ′′(y) with H ′′(y) the Hessian of H , and we can rewrite Kahan’s method

(1.2.5) as

yk+1 − yk

Δt
= 3S

∂H̄(x, y, z)

∂x
|(yk ,yk+1), (1.2.6)

which we will use in Paper 2 in this thesis.

Consider a nonhomogeneous cubic Hamiltonian

H(y) = yT Q(y)y + yT B y + cT y +d ,

where y = [y1, . . . , yn]T , Q(y) is an n×n symmetric matrix whose elements are

homogeneous linear polynomials, B is an n ×n symmetric matrix, c ∈Rn is a

2Denote the elements in Q(y) by qi j y =∑k qk
i j yk , where qk

i j , i , j ,k = 1, · · · ,n, are scalars

and yk is the kth element of y . We observe that qk
i j satisfies qk

i j = q
j
ki = qi

j k since qk
i j =

1
6

∂3 H(y)
∂yi ∂y j ∂yk

, which is unchanged under any permutation of i , j ,k. This provides the symmetry

of the three tensor H̄(x, y, z).

7



Introduction

vector and d is a number, with B , c, and d constant. We follow the method

in [16]: adding one variable ỹ = [y0, y1, . . . , yn]T , extending S to S̃ by adding a

zero initial row and column, extending the nonhomogeneous Hamiltonian H(y)
to a homogeneous function H̃(ỹ) so that H̃(ỹ)|y0=1= H(y), and finally solving

instead a Hamiltonian system with homogeneous cubic Hamiltonian problem
˙̃y = S̃∇H̃(ỹ) with y0 = 1. In such way we can also get the reformulation of

Kahan’s method as (1.2.6) with

H(x, y, z) = xT Q(y)z + 1

3
(xT B y + yT B z + zT B x)+ 1

3
cT (x + y + z)+d .

1.3 Multisymplectic Hamiltonian PDEs

The classical concept of a finite-dimensional Hamiltonian system has been

generalized to an infinite-dimensional form for PDEs, which results in the

Hamiltonian PDEs of the form

∂u

∂t
=DδH

δu
, (1.3.1)

where D is a skew-adjoint differential operator with constant coefficients, H is

an energy function and δH
δu is the variational derivative of H [51]. In a finite-

dimensional system, the Hamiltonian formulation is obtained by applying a

Legendre transform to the Lagrangian equation. When it comes to an infinite-

dimensional system, taking Klein–Gordon equation as an example; considering

the variational formulation with Lagrangian density L(u,ut ,ux ), in [6] it is

shown that the Hamiltonian formulation (1.3.1) is obtained by a partial Leg-

endre transform using a new variable v = ∂L(u,ut ,ux )
∂ut

. A complete Legendre

transform introduces also a variable w = ∂L(u,ut ,ux )
∂ux

in addition to v , leading to

the multi-symplectic formulation [6],

M zt +K zx =∇z S(z), z ∈Rn , (x, t ) ∈R2, (1.3.2)

where n depends on the number of variables needed to put the differential

equations into multisymplectic form (it is 3 for Klein–Gordon equation), M
and K are two n ×n constant skew-symmetric matrices and S : Rn → R is a

scalar-valued function [6]. The finite-dimensional Hamiltonian formulation

(1.1.2) treats time as a preferred direction compared with space and it is most

useful when the spatial domain is finite. On the other hand the multisymplectic

formulation (1.3.2) puts space and time on an equal footing, and it is a natural

framework for analysing and proving particular properties of dispersive wave

8



1.3 Multisymplectic Hamiltonian PDEs

propagation in conservative systems [6], one example is the rigorous proof of

the instability of periodic travelling waves that is predicted by the Whitham

modulation equation [4].

Following the analysis in [5, 6], it can be shown that multisymplectic PDEs

have the following local conservation laws [38, 50]:

• the multisymplectic conservation law

∂tω+∂xκ= 0,

where ω= d z∧M+d z, κ= d z∧K+d z, with ∧ the exterior product of two

differential forms, and M+ and K+ are splittings of M and K satisfying

M = M+−M T+ , K = K+−K T+ ;

• the local energy conservation law

Et +Fx = 0,

where E(z) = S(z)+ zT
x K+z is the energy density and F (z) =−zT

t K+z is

the energy flux;

• the local momentum conservation law

It +Gx = 0,

with I (z) = −zT
x M+z the momentum density and G(z) = S(z)+ zT

t M+z
the momentum flux.

Example The Klein–Gordon equation [6]

ut t −uxx =V ′(u), x ∈R, t > 0, (1.3.3)

where V (u) is a smooth nonlinear function of u. The Lagrangian functional for

(1.3.3) is

L=
∫∫

L(u,ut ,ux )d xd t with L(u,ut ,ux ) = 1

2
u2

t −
1

2
u2

x +V (u).

Taking the change of variables v = ut and w = ux , equation (1.3.3) has the

multisymplectic form (1.3.2) with S(z) = w 2−v2

2 +V (u),

M =
[

0 1 0−1 0 0
0 0 0

]
and K =

[
0 0 −1
0 0 0
1 0 0

]
.
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The multisymplectic form (1.3.2) can be generalized to problems in a high-

dimensional spatial domain. Consider a Hamiltonian PDE on a d-dimensional

domain, according to [6], the corresponding multisymplectic form can be writ-

ten as

M zt +
d∑

α=1
K αzxα

=∇z S(z), z ∈Rn , (x, t ) ∈Rd ×R, (1.3.4)

where M and K α,α= 1, · · · ,d are constant n ×n skew-symmetric matrices and

S : Rn → R is a smooth functional. Equation (1.3.4) has the following local

energy conservation law

Et +
d∑

α=1
Fα

xα
= 0,

where E(z) = S(z)+∑d
α=1 zT

xα
K α+ z, Fα =−zT

t K α+ z, and K α+ are splittings of K α

satisfying K α = K α+ −K α+
T .

The multisymplectic structure motivates the study of geometric numeri-

cal integration for the Hamiltonian PDEs from a new perspective. There

is numerical evidence that the methods, which preserve discrete approxima-

tions to at least one of the above local conservation laws, perform well when

applied to multistymplectic PDEs. Examples include multisymplectic inte-

grators [2, 19, 47, 57], and integrators preserving energy conservation laws,

[11, 20, 30, 42].

1.4 Krylov subspace methods and linear Hamiltonian
systems

Krylov subspace methods have been widely used for solving large problems.

A Krylov subspace of dimension r based on a given matrix A ∈ Rn ×Rn and

vector b ∈Rn is defined by

Kr (A,b) := span{b, Ab, · · · , Ar−1b}. (1.4.1)

The columns of Krylov subspace Kr are normally linearly independent for

small values r . However, in practice, orthonormal basis have computational

advantages. One well-known technique to generate an orthonormal basis is

using the Arnoldi algorithm [1].

Methods that use Krylov subspace are called Krylov subspace methods

or Krylov projection methods and have a long history [59]. Such methods

are mostly used in solving linear systems [55], eigenvalue problems [52] and

10



1.4 Krylov subspace methods and linear Hamiltonian systems

computing matrix exponentials [28]. In this thesis, we focus on using the

Krylov projection method to solve linear Hamiltonian ODEs and explore the

geometric properties behind it. Given a linear Hamiltonian ODE

ẏ = f (y) = Ay = J H y, y(t0) = y0, J = J2m =
[

0 Im−Im 0

]
, (1.4.2)

where y(t ) ∈ R2m , H ∈ R2m×2m is symmetric, y0 ∈ R2m , and Im is the m ×m
identity matrix. The idea of Krylov projection methods is to build numerical

approximations for (1.4.2) in the Krylov subspace Kr of dimension r << 2m.

Let us consider even dimension r = 2n. The Krylov projection method based

on Arnoldi algorithm gives a 2m ×2n matrix V2n with orthonormal columns,

and an upper Hessenberg 2n ×2n matrix T2n such that

I2n =V2n
T V2n , T2n =V T

2n AV2n .

The approximation of y(t ) is

y A(t ) :=V2n z(t ), where ż = T2n z, z(0) = z0 =V T
2n y0.

The Krylov projection method based on the Arnoldi algorithm for solving gen-

eral ODE systems has been studied in [17, 34]. However, this method fails in

general to preserve energy for Hamiltonian systems [13], except for the case

when A is skew-symmetric and the case when

A =
[

0 I−H11 0

]
, and y0 = (0, pT

0 )T .

It is shown in [40] that the Arnoldi method preserves a certain number of first in-

tegrals and has a bounded energy error over a long integration time in the former

case, and the latter case ensures the Arnoldi method to be energy-preserving.

Consider a symmetric and positive definite matrix H ; one way to improve the

behaviour of the Arnoldi algorithm applied to the general Hamiltonian system

is to modify the classical Arnoldi algorithm by replacing the Euclidean inner

product by a new inner product 〈·, ·〉H := 〈·, H ·〉. It is shown in [40] that the

modified Arnoldi projection method turns out to be energy-preserving. The

modified Arnoldi projection method leads to a 2m × 2n matrix V2n with or-

thonormal columns, and an upper Hessenberg 2n ×2n matrix T2n such that

I2n =V2n
T HV2n , T2n =V T

2n H AV2n .

The approximation of y(t ) is

y A(t ) :=V2n z(t ), where ż = T2n z, z(0) = z0 =V T
2n H y0.

11
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Another preferable alternative could be to build a symplectic basis, for which

the projected system inherits the structure of a Hamiltonian system. The Krylov

projection methods using a symplectic basis give rise to a 2m ×2n matrix S2n

with symplectic columns, and an upper Hessenberg 2n ×2n matrix T2n such

that

J2n = S2n
T J2mS2n , T2n = J2nST

2n HS2n . (1.4.3)

The approximation of y(t ) is

y A(t ) := S2n z(t ), where ż = T2n z, z(0) = z0 = J−1
2n ST

2n J y0. (1.4.4)

If the matrix S2n in the equation (1.4.3) does not depend on y0 and a symplectic

map is used to solve the projected system (1.4.4), then the projection method

(1.4.4) is symplectic. However, concerning the efficiency of the projection

method itself, S2n normally depends on y0. Nevertheless this projection method

preserves the energy and gives good numerical behaviour over long time [23,

40].

1.5 Summary of papers

This thesis consists of four papers and one appendix. Paper 1 and 2 concern

linearly implicit energy-preserving numerical methods for Hamiltonian ODEs

and PDEs. In papers 3 and 4, we consider the energy preservation property

of Krylov subspace methods for linear Hamiltonian systems. The appendix

considers the analysis of the propagation of the roundoff errors in the energy

preservation of one method considered in Paper 4. To fit the thesis format, we

reformulate the layout and typography of the published papers.

Paper 1: Linearly implicit structure-preserving schemes for Hamiltonian
systems

Sølve Eidnes, Lu Li and Shun Sato
Submitted

In this paper, we consider a comparative study of two linearly implicit

energy-preserving methods for Hamiltonian PDEs with cubic Hamiltonian.

One method is based on using a two-step generalization of the discrete gra-

dient [46] and is called a polarised discrete gradient (PDG) method. The other

is based on Kahan’s method. We present a general class of two-step meth-

ods encompassing both methods considered in the paper. We apply these two

methods to the Hamiltonian ODEs from the semi-discretization of Hamiltonian

PDEs, such as the KdV equation and the Camassa–Holm equation. A number
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1.5 Summary of papers

of numerical experiments have been performed here, for the KdV equation

with one and two solitons, and the Camassa–Holm equation with one and two

peakons. The experiments show that Kahan’s method is more stable; it allows

for a larger time step-size than the PDG method when the same spatial step-size

is considered. Kahan’s method also yields more accurate results, as we have

observed in the energy error and the shape and phase error with respect to the

analytical solutions.

Paper 2: Linearly implicit local and global energy-preserving methods for
Hamiltonian PDEs

Sølve Eidnes and Lu Li
Submitted

In this paper, we present a new linearly implicit local energy-preserving

algorithm and a class of linearly implicit global energy-preserving methods for

multisymplectic PDEs, of the form M zt +K zx =∇z S(z) with the scalar func-

tion S a cubic polynomial. The construction of linearly implicit local energy-

preserving method follows two steps. First we apply the midpoint scheme in

space to get a semi-discrete system. Then we use Kahan’s method for the

semi-discrete system to get the full discretization. The linearly implicit global

energy-preserving method is created by semi-discretizing the spatial operator

∂x with a skew-symmetric differentiation matrix and then applying Kahan’s

method to the semi-discrete system to get the full discretization. We prove that

the new local energy-preserving method has a discrete local energy conserva-

tion law, from which a global preservation of discrete energy can be deduced.

We also show that the global energy-preserving methods preserve a discrete

global energy conservation law. In addition, all the results can be general-

ized for multisymplectic forms in a high-dimensional spatial domain. We test

our methods on Hamiltonian PDEs, such as the KdV equation and Zakharov–

Kuznetsov equation. The proposed methods give good approximations to the

exact wave profiles for both systems over long integration times and they are

comparable to the implicit energy-preserving methods in [30], however with

much less computational cost.

Paper 3: Symplectic Lanczos and Arnoldi Method for Solving Linear Ham-
iltonian Systems: Preservation of Energy and Other Invariants

Elena Celledoni and Lu Li
Published in: Progress in Industrial Mathematics at ECMI 2016

In this paper we report several numerical experiments for different Krylov

subspace methods applied to linear Hamiltonian systems: the projection method

based on the classical Arnoldi algorithm; the projection method based on the
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symplectic Lanczos algorithm. The Arnoldi projection method, which com-

putes an orthonormal basis of the Krylov subspace, fails in general to preserve

the energy or symplecticity of the exact solution under numerical discretiza-

tion. However, we find that for some special Hamiltonian systems the Arnoldi

projection method preserves the energy and even some other invariants, for

example the case when the Hamiltonian matrix is skew-symmetric. The Sym-

plectic Lanczos projection method constructed by using a J-orthogonal basis of

the Krylov subspace is shown to be energy-preserving with a good numerical

behaviour for long-time integration.

Paper 4: Krylov projection methods for linear Hamiltonian systems

Elena Celledoni and Lu Li
Published in: Numerical Algorithms

Krylov subspace methods are popular for the approximation of solutions

of large and sparse linear systems of ordinary differential equations. One well

known technique is based on the method of Arnoldi which computes an or-

thonormal basis of the Krylov subspace. However, when applied to Hamilto-

nian linear systems of ODEs, this method fails in general to preserve the sym-

plecticity or energy. In this work, we show that the Arnoldi projection method

preserves the energy and even a number of invariants when the Hamiltonian

vector field has a special structure. Moreover, we modify the classical Arnoldi

algorithm by using a new inner product and get a new energy-preserving method

that is shown to preserve several other invariants. We also consider methods

based on the use of the Symplectic Lanczos algorithm, and on model reduction

techniques and other new strategies, like combining the Arnoldi algorithm and

QR factorization to construct a J-orthogonal basis of the Krylov subspace. We

test our methods on randomly generated Hamiltonian matrices and Hamiltonian

systems corresponding to semi-discretization of Hamiltonian PDEs.
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Linearly implicit structure-preserving
schemes for Hamiltonian systems

Abstract. Kahan’s method and a two-step generalization of the discrete gra-

dient method are both linearly implicit methods that can preserve a modified

energy for Hamiltonian systems with a cubic Hamiltonian. These methods are

here investigated and compared. The schemes are applied to the Korteweg–de

Vries equation and the Camassa–Holm equation, and the numerical results are

presented and analysed.

2.1 Introduction

The field of geometric numerical integration (GNI) has garnered increased

attention over the last three decades. It considers the design and analysis of

numerical methods that can capture geometric properties of the flow of the

differential equation to be modelled. These geometric properties are mainly

invariants over time; they are conserved quantities such as Hamiltonian energy,

angular momentum, volume or symplecticity. Numerical schemes inheriting

such properties from the continuous dynamical system have been shown in

many cases to be advantageous, especially when integration over long time

intervals is considered [12].

For general non-linear differential equations, most of the geometric numer-

ical integrators are fully implicit schemes [3, 5, 22]. Then a non-linear system

must be solved at each time step. Typically this is done by the use of an itera-

tive solver where a linear system is to be solved at each iteration. This quickly

becomes a computationally expensive procedure, especially since the number

of iterations needed in general increases with the size of the system. A fully

explicit method on the other hand, may over-simplify the problem and lead to

the loss of important information, and will often have inferior stability prop-

erties. The golden middle way may be found in linearly implicit schemes, i.e.

schemes where the non-linear terms are discretized such that the solution at

the next time step is found from solving one linear system; see a numerical

example comparing the computational cost for implicit and linearly implicit

methods in [7].

This paper focuses on a study of linearly implicit geometric numerical inte-

grators for differential equations. We consider ordinary differential equations
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(ODEs) that can be written in the form

ẋ = f (x) = S∇H(x), x ∈Rd ,

x(0) = x0,
(2.1.1)

where S is a constant skew-symmetric matrix and H is a cubic Hamiltonian

function. The well-known geometric characteristic for equations like (2.1.1) is

that the exact flow is energy-preserving,

d

d t
H(x) =∇H(x)T d x

d t
=∇H(x)T S∇H(x) = 0,

and symplectic if S is a canonical1 skew-symmetric matrix,

Ψx0 (t )T SΨx0 (t ) = S,

where Ψx0 (t ) := ∂ϕt (x0)
∂x0

, with ϕt : Rd → Rd , ϕt (x0) = x(t ) the flow map of

(2.1.1) [12]. A numerical one-step method is said to be energy-preserving if H
is constant along the numerical solution, and symplectic if the numerical flow

map is symplectic [12]. Both the energy-preserving methods and the symplectic

methods, the latter of which has the ability to preserve a perturbation of the

Hamiltonian H of (2.1.1), have their own advantages. However, there is no

numerical integration method that can be simultaneously symplectic and energy-

preserving for a general Hamiltonian system, which has no other conserved

quantities than the Hamiltonian and functions of the Hamiltonian [23]. We will

focus on the energy preservation property. In the continuous setting, it is shown

in [21] that the conservation of energy plays an important role in proving the

existence and uniqueness of solutions for partial differential equations (PDEs).

From the numerical view, the energy-preserving property has been found to be

crucial in the proof of stability for several such numerical methods, see e.g [8].

Some examples of energy-preserving methods are [2, 18, 19].

In this paper, we give a study of two types of existing linearly implicit

methods with energy-preseving property. The first one is Kahan’s method for

quadratic ODE vector fields [14], which by construction is linearly implicit,

and for which the geometric properties have been studied in [4]. This is a one-

step method, but we will also give its formulation as a two-step method, for

the convenience of comparison with other methods. The other method to be

studied here, is based on the linearly implicit method for PDEs presented by

Furihata, Matsuo and coauthors in the papers [15–17] and the monograph [10].

A generalization of this method, from two-step schemes to general multistep

1Here the 2n×2n canonical skew-symmetric matrix is a matrix of the form
[

0n×n In×n−In×n 0n×n

]
,

with In×n the identity matrix.
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2.2 Linearly implicit schemes

schemes, is given by Dahlby and Owren in [7]. We present here the two-step

method as it looks for ODEs of the form (2.1.1), from which the schemes of the

aforementioned references may arise after semi-discretizing the Hamiltonian

PDE in space to obtain a system of Hamiltonian ODEs.

This paper is divided into two main parts. In the next chapter, we present the

methods in consideration, and give some theoretical results on their geometric

properties. In Chapter 3, we present numerical results for the Camassa–Holm

equation and the Korteweg–de Vries equation, including analysis of stability

and dispersion, comparing the methods.

2.2 Linearly implicit schemes

We will present the ODE formulation of the linearly implicit schemes presented

by Furihata, Matsuo and coauthors in [10, 15–17] and by Dahlby and Owren

in [7]. Following the nomenclature of the latter reference, we call these schemes

polarised discrete gradient (PDG) methods. Then we present a special case of

this polarization method in the same framework as Kahan’s method, with the

goal of obtaining more clarity in comparison of the methods.

2.2.1 Polarised discrete gradient methods

The idea behind the PDG methods is to generalize the discrete gradient method

in such a way that a relaxed variant of the preservation property is intact, while

nonlinear terms are discretized over consecutive time steps to ensure linearity

in the scheme. Let us first recall the concept of discrete gradient methods. A

discrete gradient is a continuous map ∇H : Rd ×Rd → Rd such that for any

x, y ∈Rd

H(y)−H(x) = (y −x)T ∇H(x, y). (2.2.1)

The discrete gradient method for (2.1.1) is then given by

xn+1 −xn

Δt
= S∇H(xn , xn+1),

which will preserve the energy of the system (2.1.1) at any time step. Here and

in what follows, xn is the numerical approximation for x at t = tn and xn
k is

the numerical approximation for the kth component of x at t = tn . Restricting

ourselves to two-step methods, we define the PDG methods as follows.

25



Linearly implicit structure-preserving schemes for Hamiltonian systems

Definition 2.1. For the energy H of (2.1.1), consider the polarised energy as a

function H̃ : Rd ×Rd →R satisfying the properties

H̃(x, x) = H(x),

H̃(x, y) = H̃(y, x).

A polarised discrete gradient (PDG) for H̃ is a function ∇H̃ : Rd ×Rd ×Rd →Rd

satisfying

H̃(y, z)− H̃(x, y) = 1

2
(z −x)T ∇H̃(x, y, z),

∇H̃(x, x, x) =∇H(x),
(2.2.2)

and the corresponding polarised discrete gradient scheme is given by

xn+2 −xn

2Δt
= S∇H̃(xn , xn+1, xn+2). (2.2.3)

Proposition 2.1. The numerical scheme (2.2.3) preserves the polarised invari-
ant H̃ in the sense that H̃(xn , xn+1) = H̃(x0, x1) for all n ≥ 0.

Proof.

H̃(xn+1, xn+2)− H̃(xn , xn+1) = 1

2
(xn+2 −xn)T ∇H̃(xn , xn+1, xn+2)

=Δt∇H̃(xn , xn+1, xn+2)T ST ∇H̃(xn , xn+1, xn+2)

= 0,

where the last equality follows from the skew-symmetry of S.

We remark here that in the cases where we seek a time-stepping scheme

for the system of Hamiltonian ODEs resulting from discretizing a Hamiltonian

PDE in space in an appropriate manner, e.g. as described in [3], H will be a

discrete approximation to an integral H. Thus a two-step PDG method and a

standard one-step discrete gradient method, the latter in general fully implicit,

will preserve two different discrete approximations separately to the same H.

The task of finding a PDG satisfying (2.2.2) is approached differently in our

two main references, [10,15–17] and [7]. Furihata, Matsuo and coauthors apply

a generalization of the approach introduced by Furihata in [9] for finding dis-

crete variational derivatives, while Dahlby and Owren suggest a generalization
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2.2 Linearly implicit schemes

of the average vector field (AVF) discrete gradient [18], given by

∇AVFH̃(x, y, z) = 2
∫1

0
∇x H̃(ξx + (1−ξ)z, y)dξ,

where ∇x H̃(x, y) is the gradient of H̃(x, y) with respect to its first argument.

Provided that the spatial discretization is performed in the same way, these two

approaches lead to the same scheme for an H̃ quadratic in each of its arguments,

as does a generalization of the midpoint discrete gradient of Gonzalez [11].

Based on this, we now propose a new, straightforward approach for finding this

specific PDG:

Proposition 2.2. Given a polarised energy function H̃(x, y) which is at most
quadratic in each of its arguments, define ∇x H̃(x, y) as the partial derivative
of H̃ with respect to its first argument. Then a PDG for H̃ is given by

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y). (2.2.4)

Proof. We may write

H̃(x, y) = xT A(y)x +b(y)T x + c(y),

for some symmetric A : Rd →Rd×d , b : Rd →Rd and c : Rd →R. Then

∇x H̃(x, y) = 2A(y)x +b(y),

and

∇x H̃(
x + z

2
, y)T (z −x) = (2A(y)

x + z

2
+b(y))T (z −x)

= zT A(y)z +b(y)T z −xT A(y)x −b(y)T x

= H̃(y, z)− H̃(x, y).

The last equation follows from definition 2.1 for a polarised energy. Further-

more, we have

∇H̃(x, x, x) = 2∇x H̃(x, x) =∇H(x).

As remarked in Theorem 4.5 of [7]: if the polarised energy H̃(x, y) is at

most quadratic in each of its arguments, the scheme (2.2.3) with the PDG (2.2.4)

is linearly implicit.

An alternative to (2.2.4) could be a generalization of the Itoh–Abe discrete
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Linearly implicit structure-preserving schemes for Hamiltonian systems

gradient [13], defined by its i -th component

∇IAH̃(x, y, z)i = 2

⎧⎨
⎩∂̄H̃(x, y, z)i if xi �= zi ,

∂H̃
∂xi

(
∑i−1

j=1 z j e j +∑n
j=i x j e j , y)) if xi = zi ,

where e j denotes the jth Euclidean unit vector field, and

∂̄H̃(x, y, z)i =
H̃(
∑i

j=1 z j e j +∑n
j=i+1 x j e j , y)− H̃(

∑i−1
j=1 z j e j +∑n

j=i x j e j , y)

zi −xi
.

A symmetrized variant of this, given by ∇SIAH̃(x, y, z) := 1
2 (∇IAH̃(x, y, z)+

∇IAH̃(z, y, x)) is again identical to (2.2.4), whenever H̃ is quadratic in each of

its arguments.

2.2.2 A general framework and Kahan’s method

For ODEs of the form (2.1.1), consider the two-step schemes of the form

xk+2 −xk

2Δt
= S

3∑
i , j=1

αi j (H ′′(xk−1+i )xk−1+ j +β(xk−1+i )), (2.2.5)

where H ′′ : Rd → Rd ×Rd is the Hessian matrix of H and β(x) := 2∇H(x)−
H ′′(x)x. For cubic H , this scheme is linearly implicit if and only if α33 = 0.

It can be shown that many well known Runge–Kutta methods composed with

themselves over two consecutive steps are methods in the class (2.2.5) when

applied to (2.1.1) with cubic H . As two examples, the implicit midpoint method

over two steps is (2.2.5) with α11 = α33 = 1
16 ,α21 = α22 = α23 = 1

8 , αi j = 0
otherwise, while the trapezoidal rule is (2.2.5) with α11 = α33 = 1

8 ,α22 = 1
4 ,

αi j = 0 otherwise. The integral-preserving average vector field method [20]

over two steps is (2.2.5) with α11 = α21 = α23 = α33 = 1
12 ,α22 = 1

6 , αi j = 0
otherwise.

In this section, we first consider the case when the Hamiltonian is a cubic

homogeneous polynomial, in which case the term β(x) in (2.2.5) will disappear,

and then we get the following results.

Theorem 2.1. The scheme (2.2.5) with α21 =α23 = 1
4 , αi j = 0 otherwise, i.e.

xn+2 −xn

2Δt
= 1

4
SH ′′(xn+1)(xn +xn+2), (2.2.6)

is Kahan’s method composed with itself over two consecutive steps when ap-
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2.2 Linearly implicit schemes

plied to ODEs of the form (2.1.1) with homogeneous cubic H .

Proof. As shown in [4], Kahan’s method can be written into a Runge–Kutta

form

xn+1 −xn

Δt
=−1

2
f (xn)+2 f (

xn +xn+1

2
)− 1

2
f (xn+1).

Two steps of this can be written as

xn+2 −xn

2Δt
=− 1

4
f (xn)− 1

2
f (xn+1)− 1

4
f (xn+2)

+ f (
xn +xn+1

2
)+ f (

xn+1 +xn+2

2
).

(2.2.7)

Inserting f (x) = S∇H(x) in (2.2.7) and noting that for homogeneous cubic H
we have ∇H(x) = 1

2 H ′′(x)x, H ′′(x)y = H ′′(y)x and H ′′(x+ y) = H ′′(x)+H ′′(y),
we can obtain (2.2.6).

Remark 2.1. From [4], it can be easily deduced that Kahan’s method preserves
the polarised energy H̃(x, y) = 1

3∇H(x)y = 1
3∇H(y)x = 1

6 xT H ′′( x+y
2 )y .

A special case of the PDG method which preserves the same polarised

Hamiltonian as Kahan’s method, can also be written on the form (2.2.5):

Theorem 2.2. For a homogeneous cubic H and the polarised energy given by
H̃(x, y) = 1

6 xT H ′′( x+y
2 )y , the scheme (2.2.3) with the PDG (2.2.4) applied to

(2.1.1) is equivalent to (2.2.5) with α21 =α22 =α23 = 1
6 , αi j = 0 otherwise, i.e.

xn+2 −xn

2Δt
= 1

6
SH ′′(xn+1)(xn +xn+1 +xn+2).

Proof.

∇x H̃(x, y) = 1

6
H ′′(

x + y

2
)y + 1

6
H ′′(

y

2
)x = 1

12
H ′′(2x + y)y,

and thus

∇H̃(x, y, z) = 2∇x H̃(
x + z

2
, y) = 1

6
H ′′(x + y + z)y = 1

6
H ′′(y)(x + y + z).

When a non-homogeneous H is considered, one can use the technique

employed in [4], adding one variable x0 to generate an equivalent problem to

29



Linearly implicit structure-preserving schemes for Hamiltonian systems

the original one, for a homogeneous Hamiltonian H̄ : Rd+1 → R defined such

that H̄(1, x1, . . . , xd ) = H(x1, . . . , xd ). Also constructing the (d+1)×(d+1) skew-

symmetric matrix S̄ by adding a zero initial row and a zero initial column to S,

we get that solving the system

˙̄x = S̄∇H̄(x̄), x̄ ∈Rd+1

x̄(0) = (1, x0),
(2.2.8)

is equivalent to solving (2.1.1). Following the above results for the homoge-

neous H̄ and (2.2.8), we can generalize Theorem 2.1 and Theorem 2.2 for

all cubic H . Generalizations of the preservation properties follow directly;

e.g., Kahan’s method and the PDG method can preserve the perturbed energy

H̃(xn , xn+1) := 1
6 (x̄n)T H̄ ′′( x̄n+x̄n+1

2 )x̄n+1 also for non-homogeneous cubic H .

2.3 Numerical experiments

To have a better understanding of the above methods, we will apply them to

systems of two different PDEs: the Korteweg–de Vries (KdV) equation and

the Camassa–Holm equation. We will compare our methods to the midpoint

method, which is a symplectic, fully implicit method. We solve the two PDEs

by discretizing in space to obtain a Hamiltonian ODE system of the type (2.1.1)

and then apply the PDG method (denoted by PDGM), Kahan’s method (denoted

by Kahan) and the midpoint method (denoted by MP) to this.

2.3.1 Camassa–Holm equation

In this section, we consider the Camassa–Holm equation

ut −uxxt +3uux = 2ux uxx +uuxxx

defined on the periodic domain S :=R/LZ. It has the conserved quantities

H1 [u] = 1

2

∫
S

(u2 +u2
x )dx, H2 [u] = 1

2

∫
S

(
u3 +uu2

x

)
dx.

Here we consider the variational form of the Hamiltonian H2:

(1−∂2
x )ut =−∂x

δH2

δu
,

δH2

δu
= 3

2
u2 + 1

2
u2

x − (uux )x . (2.3.1)

We follow the approach presented in [3] and semi-discretize the energy H2
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of (2.3.1) as

H2(u)Δx = 1

2

K∑
k=1

(
u3

k +uk
(δ+x uk )2 + (δ−x uk )2

2

)
Δx,

where the difference operators δ+x uk := uk+1−uk
Δx , δ−x uk := uk−uk−1

Δx . For later use,

we here also introduce the notation δ〈1〉x uk := uk+1−uk−1
2Δx , δ〈2〉x uk := uk+1−2uk+uk−1

(Δx)2 ,

μ+
x uk := uk+1+uk

2 , μ−
x uk := uk+uk−1

2 , and the matrices corresponding to the differ-

ence operators δ+x , δ−x , δ〈1〉x , δ〈2〉x , μ+
x and μ−

x are denoted by D+, D−, D〈1〉, D〈2〉,
M+ and M−. Denoting the numerical solution U = [u1, ...uK ]T , and by using

the properties of the above difference operators, we thus get

∇H2(U ) = 3

2
U 2

··· +
1

2
M−(D+U )2

··· −
1

2
D〈2〉U 2

··· ,

where U 2··· is the elementwise square of U . Then the semi-discretized system

for the Camassa–Holm equation becomes

U̇ = S∇H2(U ) =−(I −D〈2〉)−1D〈1〉∇H2(U ). (2.3.2)

The above-mentioned schemes applied to (2.3.2) give us

(I −D〈2〉)
U n+1 −U n

Δt
=−D〈1〉∇H2(

U n+1 +U n

2
), (MP)

(I −D〈2〉)
U n+1 −U n

Δt
=−1

2
D〈1〉H

′′
2 (U n)U n+1, (Kahan)

(I −D〈2〉)
U n+2 −U n

2Δt
=−D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM)

where H
′′
2 (U ) = 3diag(U )+M−diag(D+U )D+−D〈2〉diag(U ) is the Hessian of

H2(U ) and ∇H̃2(U n ,U n+1,U n+2) is the PDG of Proposition 2.2 with polarised

discrete energy

H̃2(U n ,U n+1) :=1

2

K∑
k=1

(
un

k un+1
k

un
k +un+1

k

2
+a(μ+

x

un
k +un+1

k

2
)(δ+x un

k )(δ+x un+1
k )

+ (1−a)
(μ+

x un
k )(δ+x un+1

k )2 + (μ+
x un+1

k )(δ+x un
k )2

2

)

for some a ∈R, typically between −1 and 2.

Remark 2.2. We performed numerical experiments for finding a good choice
of the parameter a in PDGM and based on these set a = 1

2 in the following.
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Numerical tests for the Camassa–Holm equation

Example 1 (Single peakon solution): In this numerical test, we consider the

same experiment as in [6], where multisymplectic schemes are considered for

the Camassa–Holm equation with

u(x,0) = cosh(|x − L
2 |− L

2 )

cosh(L/2)
,

x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, spatial step size Δx = 0.04 and time step size

Δt = 0.0002. From Figure 2.2 (the right two), we observe that all considered

methods keep a shape close to the exact solution except some small oscillatory

tails, resulting from the semi-discretization, as observed in [6]. The numerical

simulations show that the global error is mainly due to the shape error2, see

Figure 2.1. In Figure 2.2 (the left one), we can see that the numerical energy

for all the methods oscillate, but appears to be bounded. Here we consider also

coarser grids. We observe that there appear some small wiggles for both PDGM

and Kahan’s method for Δt = 0.02 and long time integration T = 100. However,

the wiggles in the solution by PDGM are much more evident than those in the

solution of Kahan’s method, see Figure 2.3 (the left two plots). We keep on

increasing Δt to 0.15 and 0.2; we observe that the numerical solution obtained

by the PDGM suffers from evident numerical dispersion when Δt = 0.15, while

Kahan’s method seems to keep the shape well when comparing to the exact

wave. Spurious oscillations appear also in Kahan’s method when the time-step

is increased to the value Δt = 0.2, see Figure 2.3 (right).
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Figure 2.1: In this experiment, space step size Δx = 0.04 and time step size Δt =
0.0002. Left: shape error, middle: phase error, right: global error.

2 Shape error is defined by εshape := min
τ

∥ U n −u(· −τ) ∥2
2, and phase error is defined by

εphase := |argmin
τ

∥U n −u(·−τ) ∥2
2 −ctn |, [7].
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Figure 2.2: In this experiment, Δx = 0.04, Δt = 0.0002. Left: relative energy errors.

middle: propagation of the wave by PDGM. right: propagation of the wave by Ka-

han’s method.
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Figure 2.3: In this experiment, space step size Δx = 0.04. Left: propagation of the

wave by PDGM, Δt = 0.02, middle: propagation of the wave by Kahan’s method,

Δt = 0.02, right: propagation of the wave by Kahan’s method, Δt = 0.15.

Example 2 (Two peakons solution): Now we consider the initial condition

u(x,0) = cosh(|x − L
4 |− L

2 )

cosh(L/2)
+ 3

2

cosh(|x − 3L
4 |− L

2 )

cosh(L/2)
,

where x ∈ [0,L], L = 40, t ∈ [0,T ], T = 5, and Δx = 0.04, Δt = 0.0002. We

observe that all the methods keep the shape of the exact solution very well

and the numerical energy appears bounded, see Figure 2.5. The numerical

simulation shows that the global error is mainly due to the shape error, see

Figure 2.4. When a coarser time grid and longer integration time is considered,

Δt = 0.02 and T = 100, small wiggles appear in the solution of PDGM and

Kahan’s method, see Figure 2.6 (the left two figures). We increase Δt to

0.2, and observe that PDGM fails to preserve the shape of the solution, while

Kahan’s method can still keep a shape close to the exact solution even though

also for this method the numerical dispersion increases, see Figure 2.6 (right).
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Figure 2.4: In this experiment, space step size Δx = 0.04, time step size Δt = 0.0002.

Left: shape error, middle: phase error, right: global error.
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Figure 2.5: In this experiment, Δx = 0.04, Δt = 0.0002. Left: relative energy errors,

middle: propagation of the wave by PDGM, right: propagation of the wave by Kahan’s

method.
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Figure 2.6: In this experiment, Δx = 0.04. Left: propagation of the wave by PDGM,

Δt = 0.02, middle: propagation of the wave by Kahan’s method, Δt = 0.02, right:
propagation of the wave by Kahan’s method, Δt = 0.2.

2.3.2 Korteweg–de Vries equation

In the previous example, the vector field of the semi-discretized system based

on the Camassa–Holm equation is a homogeneous cubic polynomial. In this

section, we deal with the KdV equation, for which the vector field of the semi-

discretized equation is a non-homogeneous cubic polynomial.
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2.3 Numerical experiments

The KdV equation

ut +6uux +uxxx = 0 (2.3.3)

on the periodic domain S :=R/LZ has the conserved Hamiltonians

H1(u(t )) = 1

2

∫
S

u2 dx, H2(u(t )) =
∫
S

(
−u3 + 1

2
u2

x

)
dx.

In the following we consider the variational form based on the Hamiltonian

H2:

ut = ∂x
δH2

δu
,

δH2

δu
=−3u2 −uxx . (2.3.4)

Numerical schemes for the KdV equation

We discretize the energy H2 for the KdV equation (2.3.4) as

H2(U )Δx =
K∑

k=1

(
−u3

k +
(δ+x uk )2 + (δ−x uk )2

4

)
Δx.

From simple calculations, the corresponding gradient is given by

∇H2(U ) =
(
−3U 2

··· −D〈2〉U
)

,

and thus we have the semi-discretized form for (2.3.4):

U̇ = D〈1〉
(
−3U 2

··· −D〈2〉U
)

. (2.3.5)

Applying the schemes under consideration to (2.3.5) gives

U n+1 −U n

Δt
=D〈1〉∇H2(

U n +U n+1

2
), (MP)

U n+1 −U n

Δt
=− 1

2
D〈1〉(∇H(U n)+∇H(U n+1))

+2D〈1〉∇H(
U n +U n+1

2
), (Kahan)

U n+2 −U n

2Δt
=D〈1〉∇H̃2(U n ,U n+1,U n+2), (PDGM)

where H
′′
2 (U ) = −6diag(U )−D〈2〉 is the Hessian of H2(U ), and the polarised

discrete gradient ∇H̃2(U n ,U n+1,U n+2) is found as in Proposition 2.2, with
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polarised discrete energy

H̃2(un
k ,un+1

k ) :=
d∑

k=1
(−un

k un+1
k

un
k +un+1

k

2
+ a

2
(δ+x un

k )(δ+x un+1
k )

+ 1−a

2

(δ+x un
k )2 + (δ+x un+1

k )2

2
)Δx.

Remark 2.3. We perform several numerical simulations to find a good choice
of parameter a, and we take a = −1

2 for PDGM in the following numerical
examples for KdV equation.

Stability analysis of the schemes

To analyse the stability of the above methods, we perform the von Neumann

stability analysis for the Kahan and PDGM schemes applied to the linearized

form of the KdV equation (2.3.3)

ut +uxxx = 0.

The equation for the amplification factor for Kahan’s method is

(1+ iλ(cosθ−1)sinθ)g + iλ(cosθ−1)sinθ−1 = 0,

and its root is

g = 1− iλ(cosθ−1)sinθ

1+ iλ(cosθ−1)sinθ
,

where λ := Δt
Δx3 . Since g is a simple root on the unit circle, Kahan’s method is

unconditionally stable for the linearized KdV equation.

The equation for the amplification factor for PDGM is

g 2 −1+ iλ(3g 2 −2g +3)(cosθ−1)sinθ = 0.

The two roots of the above equation are thus

g1 = 3b2 +



1+8b2 + i b(3



1+8b2 −1)

1+9b2 ,

g2 = 3b2 −



1+8b2 − i b(3



1+8b2 +1)

1+9b2 ,

where b = λ(1 − cosθ)sinθ. We observe that |g1| = |g2| = 1, and g1 �= g2,

therefore the PDGM is unconditionally stable for the linearized KdV equation.
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2.3 Numerical experiments

Numerical tests for the KdV equation

Example 1 (One soliton solution): Consider the initial value

u(x,0) = 2sech2(x −L/2),

where x ∈ [0,L], L = 40. We apply our schemes over the time interval [0,T ],
T = 100, with step sizes Δx = 0.05, Δt = 0.0125. From our observations, all the

methods behave well. The shape of the wave is well kept by all the methods,

also for long integration time, see Figure 2.7. The energy errors of all the

methods are rather small and do not increase over long time integration, see

Figure 2.8 (left). We then use a coarser time grid, Δt = 0.035, and both methods

are still stable, see Figure 2.9 (left two). However we observe that the global

error of PDGM becomes much bigger than that of Kahan’s method. When

an even larger time step-size, Δt = 0.04, is considered, the solution for PDGM

blows up while the solution for Kahan’s method is rather stable. In this case, the

PDGM applied to the nonlinear KdV equation is unstable and the numerical

solution blows up at around t=8. Even if we increase the time step-size to

Δt = 0.1, Kahan’s method still works well, see Figure 2.9 (middle). When

Δt = 0.15 is considered, we observe evident signs of instability in the solution

of Kahan’s method. The solution will blow up rapidly when Δt = 0.2 �Δx.
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Figure 2.7: Space step size Δx = 0.05, time step size Δt = 0.0125. Left: shape error,

middle: phase error, right: global error.
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Figure 2.8: With Δx = 0.05, Δt = 0.0125. Left: relative energy errors, right two:
propagation of the wave by PDGM and Kahan’s method.
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Figure 2.9: With Δx = 0.05. Left: Δt = 0.035, propagation of the wave by PDGM,

middle: Δt = 0.1, propagation of the wave by Kahan’s method, right: dispersion

relation for λ= 1.

Example 2 (Two solitons solution): We choose initial value

u(x,0) = 6sech2x,

and consider periodic boundary conditions u(0, t ) = u(L, t ), where x ∈ [0,L],
L = 40. We set the space step size Δx = 0.05 and apply the aforementioned

schemes on time interval [0,T ] with T = 100, Δt = 0.001. All the methods

behave stably. The profiles of Kahan’s method and the midpoint method are

almost indistinguishable, and the profiles for the midpoint method are thus

not presented here. Kahan’s method and PDGM preserve the modified energy,

and accordingly the energy error of all the methods are rather small over long

time integration, see Figure 2.10 (left). After a short while the solution has

two solitons; one is tall and the other is shorter, see Figure 2.10 (the right two

plots).

When we consider a coarser time grid, Δt = 0.00375, both methods are still

stable, see Figure 2.11 (the left two). However, there appear more small wig-

gles in the solution by PDGM and we observe that the solution of PDGM will

blow up soon, around t = 1, for an even coarser time grid Δt = 0.005. When

we increase the time step size to Δt = 0.0125 and consider T = 100, the shape

of the exact solution is still well preserved by Kahan’s method, even though

there appear some small wiggles in the solution at around t = 100. We observe

that the solution of Kahan’s method will blow up when Δt = 0.05 is consid-

ered. Similar experiments as in this subsection, but for the multisymplectic box

schemes, can be found in a paper by Ascher and McLachlan [1]. However, here

we consider even coarser time grid than there, and the numerical results show

that Kahan’s method is quite stable, even though it is linearly implicit.
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Figure 2.10: In this experiment, Δx = 0.05, Δt = 0.001. Left: relative energy errors,

right two: propagation of the wave by PDGM and Kahan’s method.
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Dispersion analysis

We consider the traditional linear analysis of numerical dispersion relations

for the numerical schemes applied to the KdV equation, getting the dispersion

relation of frequency ω and wave number ξ to be

ω= ξ3, (exact solution) (2.3.6)

sinω=λ(1−cosξ)(3cosω−1)sinξ, (PDGM) (2.3.7)

sinω

1+cosω
=λ(1−cosξ)sinξ, (Kahan) (2.3.8)

where λ = Δt
Δx3 . The dispersion curve is displayed in Figure (2.9) (right). We

observe that Kahan’s method is better than PDGM at preserving the exact

dispersion relation. This coincides with the behaviour of the methods applied

to the nonlinear KdV equation shown in Section 2.3.2.
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2.4 Conclusion

In this paper we perform a comparative study of Kahan’s method and what we

call the polarised discrete gradient method (PDGM). To that end, we present

a general form encompassing a class of two-step methods that includes both

a specific case of the PDGM and Kahan’s method composed with itself. We

also compare the methods for completely integrable Hamiltonian PDEs, the

KdV equation and the Camassa–Holm equation. Both Kahan’s method and

the PDGM are linearly implicit methods, which will save the computational

cost. A series of numerical experiments has been performed here, for the KdV

equation with one and two solitons, and the Camassa–Holm equation with

one and two peakons. These experiments show that Kahan’s method is more

stable than the PDGM. They also indicate that Kahan’s method yields more

accurate results, as we have witnessed in the energy error and the shape and

phase error when comparing to analytical solutions. Based on our results, we

would recommend the use of Kahan’s method if one seeks a linearly implicit

scheme for a Hamiltonian system with cubic H .
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Linearly implicit local and global
energy-preserving methods for Hamiltonian

PDEs

Abstract. We present linearly implicit methods that preserve discrete approx-

imations to local and global energy conservation laws for multi-symplectic

PDEs with cubic invariants. The methods are tested on the one-dimensional

Korteweg–de Vries equation and the two-dimensional Zakharov–Kuznetsov

equation; the numerical simulations confirm the conservative properties of the

methods, and demonstrate their good stability properties and superior running

speed when compared to fully implicit schemes.

3.1 Introduction

In recent years, much attention has been given to the design and analysis of nu-

merical methods for differential equations that can capture geometric properties

of the exact flow. The increased interest in this subject can mainly be attributed

to the superior qualitative behaviour over long time integration of such structure-

preserving methods, see [13, 19, 21]. A popular class of structure-preserving

methods are energy-preserving methods. In particular, the energy preservation

property has been found to be crucial in the proof of stability for several of

these numerical methods, see e.g [16–18].

Energy-preserving methods are well studied for finite-dimensional Hamilto-

nian systems [5,7,27,32]. It is also highly conceivable that the ideas behind the

finite-dimensional setting can be extended to the infinite-dimensional Hamilto-

nian systems or Hamiltonian partial differential equations (PDEs) [4]. There

are two popular ways to construct energy-preserving methods for Hamiltonian

PDEs. One approach is to semi-discretize the PDE in space so that one obtains

a system of Hamiltonian ordinary differential equations (ODEs), and then apply

an energy-preserving method to this semi-discrete system, see for example [7].

In this way, it is straightforward to generalise the energy-preserving methods

for finite-dimensional Hamiltonian systems to Hamiltonian PDEs. However,

such methods conserve only a global energy that relies on a proper boundary

condition, such as a periodic boundary condition. If this is not present, the

energy-preserving property will be destroyed. The other approach is based on

a reformulation of the Hamiltonian PDE into a multi-symplectic form, which

provides the PDE with three local conservation laws: the multi-symplectic

conservation law, the energy conservation and the momentum conservation

law [2, 3, 28]. Then one may consider methods that preserve the local con-
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servation laws, see for example [36]. These locally defined properties are not

dependent on the choice of boundary conditions, giving the methods that pre-

serve local energy an advantage over methods that preserve a global energy,

especially since local conservation laws will always lead to global conservation

laws whenever periodic boundary conditions are considered. The concept of a

multi-symplectic structure for PDEs was introduced by Bridges in [2, 3], see

also [30] for a framework based on a Lagrangian formulation of the Cartan

form. Local energy-preserving methods were first studied in [35], and have

garnered much interest recently, see for example [20, 29, 36].

Most of the local energy-preserving methods proposed so far are fully im-

plicit methods, for which a non-linear system must be solved at each time step.

This is normally done by using an iterative solver where a linear system is

solved at each iteration, which can lead to computationally expensive proce-

dures, especially since the number of iterations needed in general increases

with the size of the system. A fully explicit method on the other hand, may

over-simplify the problem and often has inferior stability properties, so that a

strong restriction on the grid ratio is needed. A good alternative may therefore

be to develop linearly implicit schemes, where the solution at the next time step

is found by solving only one linear system.

One example of linearly implicit methods for Hamiltonian ODEs is Ka-

han’s method, which was designed for solving quadratic ODEs [26] and whose

geometric properties have been studied in a series of papers by Celledoni et

al. [8, 10, 11]. For Hamiltonian PDEs, Matsuo and Furihata proposed the idea

of using multiple points to discretize the variational derivative and thus design

linearly implicit energy-preserving schemes [31]. Dahlby and Owren gener-

alised this concept and developed a framework for deriving linearly implicit

energy-preserving multi-step methods for Hamiltonian PDEs with polynomial

invariants [14]. A comparison of this approach and Kahan’s method applied

to PDEs is given in [15]. Recently, more work has been put into developing

linearly implicit energy-preserving schemes for Hamiltonian PDEs, e.g. the

partitioned averaged vector field (PAVF) method [6] and schemes based on the

invariant energy quadratization (IEQ) approach [37] or the multiple scalar aux-

iliary variables (MSAV) approach [25]. However, little attention has been given

to linearly implicit local energy-preserving methods. To the best of the authors’

knowledge, the only existing method is one based on the IEQ approach, specific

for the sine-Gordon equation [24]. In this paper, we use Kahan’s method to

construct a linearly implicit method that preserves a discrete approximation to

the local energy for multi-symplectic PDEs with a cubic energy function.

The rest of this paper is organized as follows. First, we give an overview

of Kahan’s method and formulate it by using a polarised energy function.
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3.2 Kahan’s method

A brief introduction to multi-symplectic PDEs and their conservation laws

are presented in Section 3.3. In Section 3.4, new linearly implicit local and

global energy-preserving schemes are presented. Numerical examples for the

Korteweg–de Vries (KdV) and Zakharov–Kuznetsov equations are given in

Section 3.5, before we end the paper with some concluding remarks.

3.2 Kahan’s method

Consider an ODE system

ẏ = f (y) = Q̂(y)+ B̂ y + ĉ, y ∈RM , (3.2.1)

where Q̂(y) is an RM valued quadratic form, B̂ ∈RM×M is a symmetric constant

matrix, and ĉ ∈RM is a constant vector. Kahan’s method is then given by

yn+1 − yn

Δt
= Q̄(yn , yn+1)+ B̂

yn + yn+1

2
+ ĉ,

where

Q̄(yn , yn+1) = 1

2

(
Q̂(yn + yn+1)−Q̂(yn)−Q̂(yn+1)

)
is the symmetric bilinear form obtained by polarisation of the quadratic form

Q̂ [10]. Polarisation, which maps a homogeneous polynomial function to a

symmetric multi-linear form in more variables, was used to generalise Kahan’s

method to higher degree polynomial vector fields in [9].

Suppose we restrict the problem (3.2.1) to be a Hamiltonian system on a

Poisson vector space with a constant Poisson structure:

ẏ = A∇H(y), (3.2.2)

where A is a constant skew-symmetric matrix, and H : RM → R is a cubic

polynomial function. We first consider the Hamiltonian H to be homogeneous.

Then, following the result in Proposition 2.1 of [9], Kahan’s method can be

reformulated as

yn+1 − yn

Δt
= 3AH̄(yn , yn+1, ·), (3.2.3)

where H̄(·, ·, ·) : RM×RM×RM →R is a symmetric 3-tensor satisfying H̄(x, x, x) =
H(x). Consider the 3-tensor H̄(x, y, z) = xT Q(y)z, where Q(y) = 1

6∇2H(y),
with ∇2H being the Hessian of H ; then we can rewrite Kahan’s method (3.2.3)
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as

yn+1 − yn

Δt
= 3A

∂H̄

∂x

∣∣∣∣
(yn ,yn+1)

, (3.2.4)

where ∂H̄
∂x denotes the partial derivative with respect to the first argument of H̄ .

Consider then the cases where the Hamiltonian in problem (3.2.2) is non-

homogeneous, i.e. of the general form

H(y) = yT Q(y)y + yT B y + cT y +d , (3.2.5)

where Q(y) is the linear part of ∇2H(y) and thus a symmetric matrix whose

elements are homogeneous linear polynomials, B is the constant part of ∇2H(y)
and thus a symmetric constant matrix, c is a constant vector and d is a constant

scalar. We follow the technique in [10], adding one variable to y = (y1, . . . , yM )T

to get ỹ = (y0, y1, . . . , yM )T , extending A to Ã by adding a zero initial row and

a zero initial column, considering a homogeneous function H̃(ỹ) based on the

non-homogeneous Hamiltonian H(y) such that H̃(ỹ)|y0=1= H(y), and finally

solving instead of (3.2.2) the equivalent, homogeneous cubic Hamiltonian prob-

lem
˙̃y = Ã∇H̃(ỹ)

with y0 = 1. In this way we can still get the reformulation of Kahan’s method

as (3.2.4) with

H̄(x, y, z) = xT Q(y)z + 1

3
(xT B y + yT B z + zT B x)+ 1

3
cT (x + y + z)+d .

(3.2.6)

Remark 3.1. The R-valued function H̄(x, y, z) in (3.2.6) has the following
properties:

1. H̄(x, y, z) is symmetric1 w.r.t. x, y and z,

2. H̄(x, x, x) = H(x),

3. ∂H̄(x,y,z)
∂x =Q(y)z + B(y+z)

3 + c
3 is symmetric w.r.t. y and z.

1Denote the elements in Q(y) by qi j y = ∑k qk
i j yk , where qk

i j , i , j ,k = 1, · · · , M , are

scalars and yk is the kth element of y . We have that qk
i j satisfies qk

i j = q
j
ki = qi

j k since

qk
i j = 1

6
∂3 H

∂yi ∂y j ∂yk
, which is unchanged under any permutation of i , j ,k. This provides the

symmetry of H̄(x, y, z).
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3.3 Conservation laws for multi-symplectic PDEs

In this paper, we will use the form of Kahan’s method in (3.2.4) to prove

the energy preservation of the proposed methods.

3.3 Conservation laws for multi-symplectic PDEs

Many PDEs, including all one-dimensional Hamiltonian PDEs, can be written

on the multi-symplectic form

K zt +Lzx =∇S(z), z ∈Rl , (x, t ) ∈R×R, (3.3.1)

where K , L ∈Rl×l are two constant skew-symmetric matrices and S : Rl �→R is

a scalar-valued function. Following the results about multi-symplectic structure

in [3], it can be shown that multi-symplectic PDEs satisfy the following local

conservation laws [33]: the multi-symplectic conservation law

∂tω+∂xκ= 0, ω= d z ∧K+d z, κ= d z ∧L+d z,

the local energy conservation law (LECL)

Et +Fx = 0, E = S(z)+ zT
x L+z, F =−zT

t L+z, (3.3.2)

and the local momentum conservation law (LMCL)

It +Gx = 0, G = S(z)+ zT
t K+z, I =−zT

x K+z,

where K+ and L+ satisfy

K = K+−K T
+ , L = L+−LT

+.

Decomposition of the matrices is done to make deduction of the conservations

laws for energy and momentum more efficient [28, Section 12.3.1].

The multi-symplectic form (3.3.1) can also be generalised to problems in

higher dimensional spaces. Consider d spatial dimensions; based on the work

by Bridges [3], a multi-symplectic PDE can then be written as

K zt +
d∑

α=1
Lαzxα

=∇S(z), z ∈Rl , (x, t ) ∈Rd ×R, (3.3.3)

where K , Lα ∈ Rl×l (α = 1, . . . ,d) are constant skew-symmetric matrices and

S : Rl → R is a smooth functional. Equation (3.3.3) has the following local
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energy conservation law:

Et +
d∑

α=1
Fα

xα
= 0, (3.3.4)

where E(z) = S(z)+∑d
α=1 zT

αLα+z, Fα = −zT
t Lα+z, and Lα+ are splittings of Lα

satisfying Lα = Lα+− (Lα+)T .

Say we have (3.3.3) defined on the spatial domain Ω ∈ Rd with periodic

boundary conditions. Integrating over the domain Ω on both sides of the equa-

tion (3.3.4) and using the periodic boundary condition then leads to the global

energy conservation law for the multi-symplectic PDEs,

d

d t
E(z) = 0, (3.3.5)

where E(z) =∫Ω E(z)dΩ.

Example 3.1. Korteweg–de Vries equation. Consider the KdV equation for
modeling shallow water waves,

ut +ηuux +γ2uxxx = 0, (3.3.6)

where η,γ ∈ R. Introducing the potential φx = u, momenta v = γux and the
variable w = γvxφt + γ2u2

2 by the covariant Legendre transform from the La-
grangian, we obtain

1

2
ut +wx = 0,

−1

2
φt −γvx =−w + η

2
u2,

γux = v,

−φx =−u,

(3.3.7)

from which we find the multi-symplectic formulation (3.3.1) for the KdV equa-
tion with z = (φ,u, v, w)T , the Hamiltonian S(z) = v2

2 −uw + ηu3

6 , and

K =

⎡
⎢⎢⎣

0 1
2 0 0

−1
2 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , L =

⎡
⎣ 0 0 0 1

0 0 −γ 0
0 γ 0 0
−1 0 0 0

⎤
⎦ .

As for the conservation laws, there are many choices of K+ and L+, for example
K+ = K

2 ,L+ = L
2 , or K+ and L+ being the upper triangular parts of K and L,

respectively.

Example 3.2. Zakharov–Kuznetsov equation. Zakharov and Kuznetsov intro-
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duced in [39] a (2+1)-dimensional generalisation of the KdV equation which
includes weak transverse variation,

ut +uux +uxxx +ux y y = 0. (3.3.8)

A multi-symplectification of this leads to a system (3.3.3) for two spatial dimen-
sions,

K zt +L1zx +L2zy =∇S(z), z ∈R6, (x, y, t ) ∈R2 ×R. (3.3.9)

Following [4], we have that (3.3.8) is equivalent to a system of first-order PDEs,

φx = u,

1

2
φt + vx +wy = p − 1

2
u2,

wx − vy = 0,

−1

2
ut −px = 0,

−ux +qy =−v,

−qx −uy =−w,

(3.3.10)

which is (3.3.9) with z = (p,u, q,φ, v, w)T , the Hamiltonian S(z) = up− 1
2 (v2+

w2)− 1
6 u3, and the skew-symmetric matrices

K =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 1

2 0 0
0 0 0 0 0 0
0 − 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , L1 =

⎡
⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0

⎤
⎥⎥⎥⎦ , L2 =

⎡
⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

⎤
⎥⎥⎥⎦ .

3.4 New linearly implicit energy-preserving schemes

In [20], Gong, Cai and Wang present a scheme that preserves the local energy

conservation law (3.3.2) of a one-dimensional multi-symplectic PDE, obtained

by applying the midpoint rule in space and the averaged vetor field (AVF)

method in time. They also present schemes that preserve the global energy,

but not (3.3.2), obtained by considering spatial discretizations that preserve the

skew-symmetric property of the difference operator ∂x . We build on their work

by considering Kahan’s method for the discretization in time, ensuring linearly

implicit schemes and also energy preservation.

To introduce our new schemes, we begin with some basic difference opera-
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tors:

δt vn
j :=

vn+1
j − vn

j

Δt
, δx vn

j :=
vn

j+1 − vn
j

Δx

μt vn
j :=

vn+1
j + vn

j

2
, μx vn

j :=
vn

j+1 + vn
j

2
.

The operators satisfy the following properties [36]:

1. All the operators commute with each other, e.g.

δtδx vn
j = δxδt vn

j , δtμx vn
j =μxδt vn

j , μtδx vn
j = δxμt vn

j .

2. They satisfy the discrete Leibniz rule

δt (uv)n
j = (εun+1

j +(1−ε)un
j )δt vn

j +δt un
j ((1−ε)vn+1

j +εvn
j ), 0 ≤ ε≤ 1.

Specifically,

δt (uv)n
j = un

j δt vn
j +δt un

j vn+1
j , for ε= 0,

δt (uv)n
j =μt un

j δt vn
j +δt un

j μt vn
j , for ε= 1

2
,

δt (uv)n
j = un+1

j δt vn
j +δt un

j vn
j , for ε= 1.

One can obtain a series of similar commutative equations and discrete Leibniz

rules that are not presented here, but which are also crucial in the proofs of the

preservation properties of the schemes to be introduced in the remainder of this

section.

3.4.1 A local energy-preserving scheme for multi-symplectic PDEs

In this section, we apply the midpoint rule in space and Kahan’s method in

time to construct a local energy-preserving method for multi-symplectic PDEs.

Introducing the concept by first considering the one-dimensional system (3.3.1),

we apply the midpoint rule in space to get

K∂tμx z j +Lδx z j =∇S(μx z j ), j = 0, . . . , M −1.

Then applying Kahan’s method gives us the linearly implicit local energy-

preserving (LILEP) scheme

Kδtμx zn
j +Lδxμt zn

j = 3
∂S̄

∂x

∣∣∣∣
(μx zn

j ,μx zn+1
j )

. (3.4.1)
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Here we consider S of the form S(y) = yT Q(y)y+yT B y+cT y+d , as in (3.2.5),

and accordingly S̄(x, y, z) of the form (3.2.6).

Theorem 3.1. The scheme (3.4.1) satisfies the discrete local energy conserva-
tion law

δt (ĒL)n
j +δx (F̄L)n

j = 0, (3.4.2)

where

(ĒL)n
j = S̄(μx zn

j ,μx zn
j ,μx zn+1

j )

+ 1

3
(δx zn

j )T L+μx zn
j +

1

3
(δx zn

j )T L+μx zn+1
j + 1

3
(δx zn+1

j )T L+μx zn
j ,

(3.4.3)

(F̄L)n
j =−1

3
(δt zn

j )T L+μt zn
j −

1

3
(δt zn

j )T L+μt zn+1
j − 1

3
(δt zn+1

j )T L+μt zn
j .

Proof. Taking the inner product with 1
3δtμx zn

j on both sides of (3.4.1) and

using the skew-symmetry of matrix K , we have

1

3
(δtμx zn

j )T Lδxμt zn
j = (δtμx zn

j )T ∂S̄

∂x

∣∣∣∣
(μx zn

j ,μx zn+1
j )

. (3.4.4)

Taking the inner product with 1
3δtμx zn+1

j on both sides of (3.4.1), we get

1

3
(δtμx zn+1

j )T Kδtμx zn
j +

1

3
(δtμx zn+1

j )T Lδxμt zn
j = (δtμx zn+1

j )T ∂S̄

∂x

∣∣∣∣
(μx zn

j ,μx zn+1
j )

.

(3.4.5)

Taking the inner product with 1
3δtμx zn

j on both sides of the scheme (3.4.1) for

the next time step, we get

1

3
(δtμx zn

j )T Kδtμx zn+1
j + 1

3
(δtμx zn

j )T Lδxμt zn+1
j = (δtμx zn

j )T ∂S̄

∂x

∣∣∣∣
(μx zn+1

j ,μx zn+2
j )

.

(3.4.6)

Adding equations (3.4.4), (3.4.5) and (3.4.6) and using the skew-symmetry of
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matrix K , we obtain

1

3

(
(δtμx zn

j )T Lδxμt zn
j + (δtμx zn+1

j )T Lδxμt zn
j + (δtμx zn

j )T Lδxμt zn+1
j

)

= (δtμx zn
j )T ∂S̄

∂x
|(μx zn

j ,μx zn+1
j ) +(δtμx zn+1

j )T ∂S̄

∂x

∣∣∣∣
(μx zn

j ,μx zn+1
j )

+ (δtμx zn
j )T ∂S̄

∂x

∣∣∣∣
(μx zn+1

j ,μx zn+2
j )

,

= 1

Δt

(
S̄(μx zn+1

j ,μx zn+1
j ,μx zn+2

j )− S̄(μx zn
j ,μx zn

j ,μx zn+1
j )

)
,

= δt S̄(μx zn
j ,μx zn

j ,μx zn+1
j ).

(3.4.7)

On the other hand, using the aforementioned commutative laws and discrete

Leibniz rules for the operators, we can deduce

δt ((δx zn
j )T L+μx zn

j ) = (δtδx zn
j )T L+μtμx zn

j + (δxμt zn
j )T L+δtμx zn

j ,

δx ((δt zn
j )T L+μt zn

j ) = (δtδx zn
j )T L+μtμx zn

j + (δtμx zn
j )T L+δxμt zn

j ,

δt ((δx zn+1
j )T L+μx zn

j ) = (δtδx zn+1
j )T L+μtμx zn

j + (δxμt zn+1
j )T L+δtμx zn

j ,

δx ((δt zn+1
j )T L+μt zn

j ) = (δtδx zn+1
j )T L+μtμx zn

j + (δtμx zn+1
j )T L+δxμt zn

j ,

δt ((δx zn
j )T L+μx zn+1

j ) = (δtδx zn
j )T L+μtμx zn+1

j + (δxμt zn
j )T L+δtμx zn+1

j ,

δx ((δt zn
j )T L+μt zn+1

j ) = (δtδx zn
j )T L+μtμx zn+1

j + (δtμx zn
j )T L+δxμt zn+1

j .

(3.4.8)

Using the above relations (3.4.8), the fact that L = L+−LT+ and the result (3.4.7),

we obtain

δt E n
j +δx F n

j =δt S̄(μx zn
j ,μx zn

j ,μx zn+1
j )

+ 1

3

(
δt ((δx zn

j )T L+μx zn
j )+δt ((δx zn

j )T L+μx zn+1
j )

+δt ((δx zn+1
j )T L+μx zn

j )
)− 1

3

(
δx ((δt zn

j )T L+μt zn
j )

+δx ((δt zn
j )T L+μt zn+1

j )+δx ((δt zn+1
j )T L+μt zn

j )
)

=δt S̄(μx zn
j ,μx zn

j ,μx zn+1
j )− 1

3

(
(δtμx zn

j )T Lδxμt zn
j

+ (δtμx zn+1
j )T Lδxμt zn

j + (δtμx zn
j )T Lδxμt zn+1

j

)
=0.
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Corollary 1. For periodic boundary conditions z(x+P, t ) = z(x, t ), the scheme

(3.4.1) satisfies the discrete global energy conservation law

Ēn+1
L = Ēn

L , Ēn
L :=Δx

M−1∑
j=0

(ĒL)n
j , (3.4.9)

where Δx = P/M and (ĒL)n
j is given by (3.4.3).

Proof. With periodic boundary conditions, we get
∑M−1

j=0 δx (F̄L)n
j = 0, and thus

(3.4.9) follows from (3.4.2).

The polarised global energy Ēn
L may be considered as a function of the

solution in time step n only, similarly to the modified Hamiltonian defined in

Proposition 3 of [10].

Proposition 3.1. With the solution zn+1 found from zn by (3.4.1), the discrete
global energy Ēn

L of (3.4.9) satisfies

Ēn
L = En

L +Δx
M−1∑
j=0

1

3
(∇EL(zn

j ))T (zn+1
j − zn

j ), (3.4.10)

where

En
L :=Δx

M−1∑
j=0

EL(zn
j ), EL(zn

j ) := S(μx zn
j )+ (δx zn

j )T L+μx zn
j , (3.4.11)

while zn+1
j − zn

j satisfies

RL(zn
j )(zn+1

j − zn
j ) =Δt gL(zn

j ), (3.4.12)

with gL(zn
j ) =∇S(μx zn

j )−Lδx zn
j and RL(zn

j ) = Kμx − Δt
2 ∇gL(zn

j ).

Proof. Note that

S̄(μx zn
j ,μx zn

j ,μx zn+1
j ) = S(μx zn

j )+ 1

3
∇S(μx zn

j )T (μx zn+1
j −μx zn

j )

= S(μx zn
j )+ 1

3
∇zn

j
(S(μx zn

j ))T (zn+1
j − zn

j ),
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and

1

3
(δx zn

j )T L+μx zn
j +

1

3
(δx zn

j )T L+μx zn+1
j + 1

3
(δx zn+1

j )T L+μx zn
j

= (δx zn
j )T L+μx zn

j +
1

3

(
(δx zn

j )T L+μx (zn+1
j − zn

j )+ (δx (zn+1
j − zn

j ))T L+μx zn
j

)
= (δx zn

j )T L+μx zn
j +

1

3

(
(μx zn

j )T LT
x δx + (δx zn

j )T Lxμx
)
(zn+1

j − zn
j )

= (δx zn
j )T L+μx zn

j +
1

3

(
∇zn

j

(
(δx zn

j )T L+μx zn
j

))T
(zn+1

j − zn
j ).

Inserting this in (3.4.3), we get (3.4.10) from (3.4.9). Furthermore, observing

that

3
∂S̄

∂x

∣∣∣∣
(μx zn

j ,μx zn+1
j )

=∇S(μx zn
j )+ 1

2
∇2S(μx zn

j )(μx zn+1
j −μx zn

j ),

we may rewrite (3.4.1) as

(
Kμx + Δt

2
Lδx − Δt

2
∇2S(μx zn

j )μx

)
(zn+1

j − zn
j ) =Δt

(∇S(μx zn
j )−Lδx zn

j

)
,

which is (3.4.12).

Note that (3.4.11) is the discrete energy preserved by the fully implicit

local energy-preserving method of [20]. Also, for methods based on the multi-

symplectic structure, instead of solving for z directly, the normal procedure is

to eliminate the auxiliary variables from the scheme and get an equation for one

variable u. Therefore we do not give an explicit expression for the modified

energy in zn . However, in Section 3.5, we present an explicit expression for

the modified energy in un when our scheme is applied to the KdV equation.

The results about the energy conservation for the LILEP method applied

to one-dimensional multi-symplectic PDEs can be generalised to problems in

spatial dimensions of any finite degree. Consider for example a 2-dimensional

multi-symplectic PDE

K zt +L1zx +L2zy =∇S(z), z ∈Rl , (x, y, t ) ∈R3, (3.4.13)

for which we have the following corollary. This is presented without its proof,

which is rather technical but similar to the proof of Theorem 3.1.

Corollary 2. The scheme obtained by applying the midpoint rule in space and
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Kahan’s method in time to equation (3.4.13),

Kδtμxμy zn
j ,k +L1δxμtμy zn

j ,k +L2δyμtμx zn
j ,k = 3

∂S̄

∂x

∣∣∣∣
(μxμy zn

j ,k ,μxμy zn+1
j ,k )

,

(3.4.14)

where j = 0, . . . , Mx −1 and k = 0, . . . , My −1, satisfies the discrete local energy

conservation law

δt (ĒL)n
j ,k +δx (F̄ 1

L )
n
j ,k +δy (F̄ 2

L )
n
j ,k = 0,

where

(ĒL)n
j ,k =S̄(μxμy zn

j ,k ,μxμy zn
j ,k ,μxμy zn+1

j ,k )

+ 1

3
(δxμy zn

j ,k )T L1
+μxμy zn

j ,k +
1

3
(δxμy zn

j ,k )T L1
+μxμy zn+1

j ,k

+ 1

3
(δxμy zn+1

j ,k )T L1
+μxμy zn

j ,k +
1

3
(δyμx zn

j ,k )T L2
+μxμy zn

j ,k

+ 1

3
(δyμx zn

j ,k )T L2
+μxμy zn+1

j ,k + 1

3
(δyμx zn+1

j ,k )T L2
+μxμy zn

j ,k ,

(F̄ 1
L )

n
j ,k =− 1

3
(δtμy zn

j ,k )T L1
+μtμy zn

j ,k −
1

3
(δtμy zn

j ,k )T L1
+μtμy zn+1

j ,k

− 1

3
(δtμy zn+1

j ,k )T L1
+μtμy zn

j ,k ,

(F̄ 2
L )

n
j ,k =− 1

3
(δtμx zn

j ,k )T L2
+μtμx zn

j ,k −
1

3
(δtμx zn

j ,k )T L2
+μtμx zn+1

j ,k

− 1

3
(δtμx zn+1

j ,k )T L2
+μtμx zn

j ,k .

3.4.2 Global energy-preserving methods for multi-symplectic PDEs

As shown in Section 3.3, Hamiltonian PDEs of the form (3.3.1) with periodic

boundary conditions have global energy conservation which can be deduced

from the local conservation law. On the other hand, the local conservation law

is not inherent in the global conservation law. In this section, we will focus on

giving a systematic method that preserves the global energy conservation law

directly. We discretize ∂x with an antisymmetric differential matrix D and get

the semi-discretized variant of (3.3.1),

K∂t z j +L(Dz) j =∇S(z j ), j = 0,1, . . . , M −1, (3.4.15)

where z := (z0, z1, . . . , zM−1)T ∈ RM×l and (Dz) j =∑M−1
k=0 D j ,k zk . We then ap-

ply Kahan’s method to (3.4.15) and obtain the linearly implicit global energy-
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preserving (LIGEP) scheme

Kδt zn
j +L(Dμt zn) j = 3

∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

. (3.4.16)

Define the polarised energy density by

Ē n
j = S̄(zn

j , zn
j , zn+1

j )+ 1

3
(Dzn)T

j L+zn
j +

1

3
(Dzn)T

j L+zn+1
j + 1

3
(Dzn+1)T

j L+zn
j ,

(3.4.17)

and we get the following result.

Theorem 3.2. For periodic boundary conditions z(x+P, t ) = z(x, t ), the scheme
(3.4.16) satisfies the discrete global energy conservation law

Ēn+1 = Ēn , Ēn :=Δx
M−1∑
j=0

Ē n
j , Δx = P/M . (3.4.18)

Proof. Taking the inner product with 1
3δt zn

j on both sides of equation (3.4.16)

and using the skew-symmetry of the matrix K , we get

1

3
(δt zn

j )T L(Dμt zn) j = (δt zn
j )T ∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

. (3.4.19)

Taking the inner product with 1
3δt zn+1

j on both sides of (3.4.16), we get

1

3
(δt zn+1

j )T Kδt zn
j +

1

3
(δt zn+1

j )T L(Dμt zn) j = (δt zn+1
j )T ∂S̄

∂x

∣∣∣∣
(zn

j ,zn+1
j )

.

(3.4.20)

Furthermore, taking the inner product with 1
3δt zn

j on both sides of (3.4.16) for

the next time step, we have

1

3
(δt zn

j )T Kδt zn+1
j + 1

3
(δt zn

j )T L(Dμt zn+1) j = (δt zn
j )T ∂S̄

∂x

∣∣∣∣
(zn+1

j ,zn+2
j )

. (3.4.21)

Adding equations (3.4.19), (3.4.20) and (3.4.21), we get

1

3

(
(δt zn

j )T L(Dμt zn) j + (δt zn
j )T L(Dμt zn+1) j

+(δt zn+1
j )T L(Dμt zn) j

)= δt S̄(zn
j , zn

j , zn+1
j ).

(3.4.22)
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By using the commutative laws and discrete Leibniz rules,

δt ((Dzn)T
j L+zn

j ) = (Dδt zn)T
j L+μt zn

j + (Dμt zn) j L+δt zn
j ,

δt ((Dzn)T
j L+zn+1

j ) = (Dδt zn)T
j L+μt zn+1

j + (Dμt zn) j L+δt zn+1
j ,

δt ((Dzn+1)T
j L+zn

j ) = (Dδt zn+1)T
j L+μt zn

j + (Dμt zn+1) j L+δt zn
j .

(3.4.23)

Based on the above equations (3.4.22) and (3.4.23), we obtain

δt E n
j

= δt S̄(zn
j , zn

j , zn+1
j )+ 1

3

(
δt ((Dzn)T

j L+zn
j )+ (Dzn)T

j L+zn+1
j + (Dzn+1)T

j L+zn
j

)
= 1

3

(
(δt zn

j )T L+(Dμt zn) j + (Dδt zn)T
j L+μt zn

j

)
+ 1

3

(
(δt zn+1

j )T L+(Dμt zn) j + (Dδt zn+1)T
j L+μt zn

j

)
+ 1

3

(
(δt zn

j )T L+(Dμt zn+1) j + (Dδt zn)T
j L+μt zn+1

j

)
=

N−1∑
k=0

(D) j ,kG j ,k ,

where

G j ,k :=1

3

(
(δt zn)T

j L+μt zn
L + (δt zn)T

L L+μt zn
j

)
+ 1

3

(
(δt zn+1)T

j L+μt zn
L + (δt zn+1)T

L L+μt zn
j

)
+ 1

3

(
(δt zn)T

j L+μt zn+1
L + (δt zn)T

L L+μt zn+1
j

)
.

Since D is skew-symmetric and G j ,k =Gk, j , we get

M−1∑
j=0

δt Ē n
j = 0,

which implies that the discrete global energy conservation law Ēn+1 = Ēn is

satisfied.

The polarised energy Ē preserved by (3.4.16) may also be expressed as a

modification of the discrete energy

En :=Δx
M−1∑
j=0

E(zn
j ), E(zn

j ) = S(zn
j )+ (Dzn)T

j L+zn
j , (3.4.24)

59



Linearly implicit energy-preserving methods for Hamiltonian PDEs

which is preserved by the fully implicit global energy-preserving scheme of [20].

The proof of the following proposition is similar to the proof of Proposition 3.1,

and hence omitted.

Proposition 3.2. If the solution zn+1 is found from zn by (3.4.16), the discrete
global energy Ēn of (3.4.18) satisfies

Ēn = En +Δx
M−1∑
j=0

1

3
(∇E(zn

j ))T (zn+1
j − zn

j ),

and zn+1
j − zn

j satisfies

R(zn
j )(zn+1

j − zn
j ) =Δt g (zn

j ),

where g (zn
j ) =∇S(zn

j )−L(Dz)n
j and R(zn

j ) = K + Δt
2 ∇g (zn

j ).
The above global conservation results can be generalised to multi-symplectic

formulations in higher spatial dimensions, as demonstrated by the following

corollary for the two-dimensional case, whose omitted proof is in the same vein

as the proof of Theorem 3.2.

Corollary 3. Discretizing ∂x and ∂y by skew-symmetric differential matri-

ces Dx and D y in equation (3.4.13) and then applying Kahan’s method to the

semi-discrete system, one obtains the linearly implicit global energy-preserving

(LIGEP) scheme

Kδt zn
j ,k +L1μt (Dx zn) j ,k +L2μt (D y zn) j ,k = 3

∂S̄

∂x

∣∣∣∣
(zn

j ,k ,zn+1
j ,k )

, (3.4.25)

where j = 0, . . . , Mx −1 and k = 0, . . . , My −1. For periodic boundary conditions

z(x+Px , y, t ) = z(x, y, t ), z(x, y+Py , t ) = z(x, y, t ), the scheme (3.4.25) satisfies

the discrete global energy conservation law

Ēn+1 = Ēn ,

where

Ēn :=ΔxΔy
Mx−1∑

j=0

My−1∑
k=0

Ē n
j ,k , Δx = Px /Mx , Δy = Py /My ,

Ē n
j ,k = S̄(zn

j ,k , zn
j ,k , zn+1

j ,k )

+ 1

3
(Dx zn)T

j ,k L1
+zn

j ,k +
1

3
(Dx zn)T

j ,k L1
+zn+1

j ,k + 1

3
(Dx zn+1)T

j ,k L1
+zn

j ,k ,

+ 1

3
(D y zn)T

j ,k L2
+zn

j ,k +
1

3
(D y zn)T

j ,k L2
+zn+1

j ,k + 1

3
(D y zn+1)T

j ,k L2
+zn

j ,k .

60



3.5 Numerical examples

3.5 Numerical examples

In this section, we apply our proposed new linearly implicit energy-preserving

schemes to the KdV equation and Zakharov–Kuznetsov equation, and com-

pare them with fully implicit schemes. Among our reference methods are the

methods introduced in [20], for which the local energy-preserving method is

denoted by LEP, and the global energy-preserving method by GEP. For the

GEP and LIGEP schemes, two different choices are considered for approx-

imating the spatial derivative: the central difference operator δc
x defined by

δc
x vn

j := 1
2 (δx vn

j−1+δx vn
j ) and the first order Fourier pseudospectral operator [4].

The latter results in the M ×M matrix D, given explicitly by its elements

Di , j =
⎧⎨
⎩

π
P (−1)i+ j cot

(
π(i − j )/M

)
, if i �= j ,

0, if i = j ,

evaluated on the domain
[
0,P
]
, where we assume M even and periodic bound-

ary conditions [12]. If M is odd, we have instead

Di , j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π
P (−1)i+ j cot

(
π(i − j )/M

)
, if |i − j | < M/2,

π
P (−1)i+ j cot

(
π( j − i )/M

)
, if |i − j | > M/2,

0, if i = j .

3.5.1 Korteweg–de Vries equation

Consider the multi-symplectic structure of the KdV equation as presented in

Example 3.1. Applying the LILEP scheme (3.4.1) to (3.3.7), we obtain

1

2
δtμx un

j +δxμt wn
j = 0,

−1

2
δtμxφ

n
j −γδxμt vn

j =−μtμx wn
j +

η

2
μx un

j μx un+1
j ,

γδxμt un
j =μtμx vn

j ,

δxμtφ
n
j =μtμx un

j .

By eliminating the auxiliary varibles φ, v and w , we see that this is equivalent

to

δtμtμ
3
x un

j +
η

2
δxμtμx (μx un

j μx un+1
j )+γ2δ3

xμ
2
t un

j = 0.
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Omitting the average operator μt gives us

δtμ
3
x un

j +
η

2
δxμx (μx un

j μx un+1
j )+γ2δ3

xμt un
j = 0. (3.5.1)

The polarised discrete energy preserved by this scheme is

Ēn
L =Δx

M−1∑
j=0

(
− 1

6
γ2((δx un

j )2 +2δx un
j δx un+1

j

)+ 1

6
η
(
μx un

j )2μx un+1
j

)
. (3.5.2)

On the other hand, the discrete energy preserved by the LEP method of [20] is

En
L =Δx

M−1∑
j=0

(
− 1

2
γ2(δx un

j )2 + 1

6
η(μx un

j )3
)
. (3.5.3)

By Proposition 3.1 and elimination of the variables φ, v and w , (3.5.2) can be
expressed as a modification of (3.5.3): we may rewrite (3.5.1) as

un+1
j −un

j =−Δt
(
μ3

x+
Δt

2
γ2δ3

x+
Δt

2
ηδxμxdiag(μx un)μx

)−1(
γ2δ3

x un+η

2
δxμx (μx un)2),

where (μx un)2 denotes the element-wise square of μx un . Inserting this in

(3.5.2), we get

Ēn
L =En

L − Δt Δx

3

(−γ2δT
x δx un + η

2
μT

x (μx un)2)T
(
μ3

x +
Δt

2
γ2δ3

x +
Δt

2
ηδxμxdiag(μx un)μx

)−1(
γ2δ3

x un + η

2
δxμx (μx un)2)

=En
L + Δt

3
(∇En

L )T (μ3
x −

Δt

2
ζ′L(un)

)−1
ζL(un),

with

ζL(un) =−γ2δ3
x un − η

2
δxμx (μx un)2,

where ∇En
L means the gradient of En

L with respect to un , and ζ′L(un) denotes

the Jacobian matrix of ζL(un).

Similarly for the LIGEP method (3.4.16); applying it to the the multi-

symplectic KdV equations (3.3.7) and eliminating the auxiliary varibles φ, v
and w , we obtain

δtμt un
j +

η

2
μt (D(unun+1)) j +γ2μ2

t (D3un) j = 0,

where unun+1 denotes element-wise multiplication of the vectors. Omitting
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the average operator μt , we get

δt un
j +

η

2
(D(unun+1)) j +γ2μt (D3un) j = 0. (3.5.4)

The discrete global energy preserved by the GEP method is

En =Δx
M−1∑
j=0

(
− 1

2
γ2(Dun)2

j +
1

6
η(un

j )3
)
, (3.5.5)

while the polarised discrete energy preserved by (3.5.4) is

Ēn =Δx
M−1∑
j=0

(
− 1

6
γ2((Dun)2

j +2(Dun) j (Dun+1) j
)+ 1

6
η
(
un

j )2un+1
j

)

=En − Δt Δx

3

(−γ2DT Dun + η

2
(un)2)T

(
I + Δt

2
γ2D3 + Δt

2
ηD diag(un)

)−1(
γ2D3un + η

2
D(un)2)

=En + Δt

3
(∇En)T (I − Δt

2
ζ′(un)

)−1
ζ(un),

(3.5.6)

where ζ(un) =−γ2D3un − η
2 D(un)2.

Test problem 1

In the first numerical experiment, we consider the problem introduced in [38]

and then used by Zhao and Qin [40] and Ascher and McLachlan [1] to test

various symplectic and multi-symplectic schemes: the KdV equation with γ=
0.022, η= 1, and initial value

u0(x) = cos(πx),

with x ∈ [0,P ], P = 2. This problem is also considered in Example 3 of [20],

where it is solved by implicit schemes that preserve local and/or global energy.

As observed by Gong et al., the global energy-preserving scheme (GEP) with

the central difference operator used to approximate ∂x gives unsatisfactory re-

sults for this problem; we observed that the same is true for the LIGEP scheme.

Therefore, the Fourier pseudospectral operator is used to approximate the spa-

tial derivatives in the GEP and LIGEP schemes. This seems to result in more

accurate solutions than the LEP and LILEP schemes for the same number of

discretization points, but at a considerably higher computational cost, as seen

from Table 3.1. From Figure 3.1, we can conclude that our linearly implicit

schemes give results close to their fully implicit counterparts introduced in [20],
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and that the different schemes converge to the same solution. Here and in the

following test problem, we have solved the fully implicit schemes in each step

by Newton’s method until ‖F (un)‖2 < 10−10.

M 200 400 600 800 1000 1500 2000
LEP 1.87 3.16 4.43 11.18 13.81 21.53 28.54
LILEP 4.24e-1 7.40e-1 1.07 1.39 1.73 2.67 3.58
GEP 12.29 78.11 242.48 1016.57 1888.69 5793.18 13154.20
LIGEP 2.16 11.15 33.50 73.94 136.93 398.53 894.52

Table 3.1: Computational time, in seconds, for finding the solution of the first test

problem at time t = 5 by a temporal step size Δt = 0.005 and various number of

discretization points in space, M .
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Figure 3.1: Solution of test problem 1 at time t = 5 by our schemes and the fully

implicit schemes of Gong et al. Left: M = 250, Δt = 0.02. Right: M = 1000, Δt =
0.002.

Compared to the schemes tested in [1, 40], our schemes do also perform

well; see Figure 3.2, where we have plotted solutions by our schemes for the

same discretization parameters used in Example 5.3 of [1]. The reference

solution is found by the implicit midpoint scheme of [1] with θ = 1 and very

fine discretization in space and time: M = 2000 and Δt = 0.0001. We observe

that the LILEP scheme behaves similarly to the multi-symplectic box scheme

of Arscher and McLachlan (see figures 3 and 4 in [1]), seemingly with the

same superior stability for rough discretization in space and time. The LIGEP

scheme, on the other hand, starts to blow up at around t = 1 when M = 60,

Δt = 1/150, but produces for M = 100, Δt = 0.004 a solution that is much

closer to the correct solution than any of the schemes tested in [1] (see Figure

3 in that paper for comparison).
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Figure 3.2: Solutions of test problem 1 at time t = 10 by our schemes and the implicit

midpoint scheme (IMP) as given in [1] (with θ = 2/3 in the left figure and θ = 1 in the

right figure). Left: M = 60, Δt = 1/150. Right: M = 100, Δt = 0.004.

Test problem 2

To get quantitative results on the performance of our methods, we wish to

study a problem with a known solution. For the KdV equation with γ= 1, η=
6, initial value u0(x) = 1

2 c sech2(−x +P/2) and periodic boundary conditions

u(x+P, t ) = u(x, t ), the exact solution is a soliton moving with a constant speed

c in the positive x-direction while keeping its initial shape. That is,

u(x, t ) = 1

2
c sech2((−x + ct ) mod P −P/2).

In our numerical experiments, c = 4 and P = 20. For this problem, we have

used the central difference operator to approximate ∂x in the GEP and LIGEP

schemes, since it gives good results and yields considerably shorter computa-

tional time than if the pseudospectral operator is used. The proposed methods

all show very good stability conditions when applied to this problem, as ex-

pected by methods conserving some invariant. The initial shape of the wave is

well kept for long integration times, even when quite large step sizes in space

and time are used; Figure 3.3 gives a good illustration of this. As in the previous

example, we again observe that little is lost in accuracy by choosing linearly im-

plicit over fully implicit time integration. A close inspection of Figure 3.3 also

indicates that the local energy-preserving schemes preserve the shape of the

wave better than the global energy-preserving schemes, while on the other hand,

the GEP and LIGEP schemes are better than the LEP and LILEP schemes at

preserving the speed of the wave. This is confirmed in Table 3.2 by measuring
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the shape error

εshape :=min
τ

∥U N −u(·−τ) ∥2
2

and phase error

εphase := c |argmin
τ

∥U N −u(·−τ) ∥2
2 −ct |,

where U N is the numerical solution at end time t .
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Figure 3.3: The soliton solution of the KdV equation at time t = 100, with M = 250
discretization points in space and a time step Δt = 0.01.

M 200 400 600
εshape εphase CT εshape εphase CT εshape εphase CT

LEP 4.67e-3 1.12 21.86 1.22e-3 3.81e-1 35.89 5.86e-4 2.43e-1 51.92
LILEP 4.10e-3 1.23 5.14 5.26e-4 4.88e-1 8.26 1.45e-4 3.50e-1 10.89
GEP 1.62e-2 8.61e-1 19.53 3.66e-3 1.16e-1 34.09 1.71e-3 2.32e-2 49.45
LIGEP 1.71e-2 7.50e-1 6.84 4.39e-3 5.19e-5 8.10 2.47e-3 1.31e-1 12.52

Table 3.2: Phase and shape errors and the computational time (CT) for different

schemes applied to test problem 2 of the KdV equation, for varying number of dis-

cretization points M , with time step Δt = 0.01 and end time t = 100.

In Figure 3.4, we have plotted the computational time required to reach

a certain accuracy in the global error for the different methods, both at time

t = 0.5 and at time t = 10. We compare our methods to the fully implicit LEP

and GEP schemes of [20], and also to two of the schemes studied in [1]: the

multi-symplectic box scheme (MSB) and the implicit midpoint scheme (IMP).

Most notably we see from both plots in Figure 3.4 that the linearly implicit

schemes perform better than the fully implicit schemes. Also, we see that at

time t = 0.5 the global error is lowest for the LILEP scheme, while at t = 10 it

is lowest for the LIGEP scheme. This is in accordance with the schemes’ phase

and shape errors, which can be observed from Figure 3.3 and Table 3.2; with
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increasing time, the phase error becomes more dominant, and thus the scheme

with the smallest phase error becomes increasingly advantageous.
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Figure 3.4: Computational time required to reach a given global error, with Δx
Δt fixed,

for test problem 2 of the KdV equation solved at time t . Left: t = 0.5, Δx
Δt = 40. Right:

t = 10, Δx
Δt = 8.
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Figure 3.5: Error in discrete approximations to the global energy, by our methods and

the fully implicit schemes of Gong et al. Left: The error in (3.5.2) for LEP/LILEP and

the error in (3.5.6) for GEP/LIGEP, for test problem 2 solved with M = 250 discretiza-

tion points in space and time step Δt = 0.01. Right: The error in (3.5.3) for LEP/LILEP

and the error in (3.5.5) for GEP/LIGEP.

Figure 3.5 illustrates how the different schemes preserve a discrete approxi-

mation to the energy to machine precision. That is, the linearly implicit schemes

LILEP and LIGEP preserve exactly the discrete energies (3.5.2) and (3.5.6), re-

spectively, while keeping the discrete energies (3.5.3) and (3.5.5), respectively,

within some bound which depends on the discretization parameters. Likewise,
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the reverse is true for the fully implicit schemes. These observations fit well

with our above results about the different discrete approximations to the en-

ergy: that for both the local energy preserving and the global energy preserving

schemes, either discrete energy given can be seen as a modification of the other

approximation. Finally, we have included plots in Figure 3.6 which confirm

that our schemes are of second order in space and time.
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Figure 3.6: Order plots for the LILEP and LIGEP schemes, solving the second test

problem for the KdV equation at time t = 1. The black, dashed line is a reference line

with slope 2 in both plots. Left: Fixed temporal step Δt = 2×10−4. Right: Fixed spatial

step Δx = 4×10−3.

3.5.2 Zakharov–Kuznetsov equation

Kahan’s method is previously shown to have nice properties when applied to

integrable ODE systems [8,10], and to perform well compared to other linearly

implicit methods when applied to the KdV and Camassa–Holm equations [15],

which are completely integrable PDEs. We wish to test our methods also on

non-integrable systems, as well as on higher-dimensional problems. Therefore

we consider the Zakharov–Kuznetsov equation, which is a non-integrable PDE

[22,34]. This two-dimensional generalisation of the KdV equation has a variety

of applications, see e.g. [23] for a brief summary.

Applying the (2+1)-dimensional LILEP method (3.4.14) to the Zakharov–
Kuznetsov equation (3.3.8) multi-symplectified as described in Example 3.2,
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we find

δxμtμyφ
n
j ,k =μtμxμy un

j ,k ,

1

2
δtμxμyφ

n
j ,k +δxμtμy vn

j ,k +δyμtμx wn
j ,k =μtμxμy pn

j ,k −
1

2
μxμy un

j ,kμxμy un+1
j ,k ,

δxμtμy wn
j ,k −δyμtμx vn

j ,k = 0,

−1

2
δtμxμy un

j ,k −δxμtμy pn
j ,k = 0,

−δxμtμy un
j ,k +δyμtμx qn

j ,k =−μtμxμy vn
j ,k ,

−δxμtμy qn
j ,k −δyμtμx un

j ,k =−μtμxμy wn
j ,k .

Upon eliminating all variables except u, we are left with

δtμtμ
3
xμy un

j ,k +
1

2
δxμtμxμy (μxμy un

j ,kμxμy un+1
j ,k )+δ3

xμ
2
t μ

2
y un

j ,k +δxδ
2
yμ

2
t μ

2
x un

j ,k = 0.

The operator μt is again superfluous. Hence we get the scheme

δtμ
3
xμy un

j ,k+
1

2
δxμxμy (μxμy un

j ,kμxμy un+1
j ,k )+δ3

xμtμ
2
y un

j ,k+δxδ
2
yμtμ

2
x un

j ,k = 0.

This scheme preserves

Ēn
L = 1

6
ΔxΔy

Mx−1∑
j=0

My−1∑
k=0

(
2δxμy un+1

j ,k δxμy un
j ,k + (δxμy un

j ,k )2

+2δyμx un+1
j ,k δyμx un

j ,k + (δyμx un
j ,k )2 − (μxμy un

j ,k )2(μxμy un+1
j ,k )

)
,

which is a two-step discrete approximation of the energy

E =
∫

(
1

2
(∇u)2 − 1

6
u3)dΩ.

Similarly, applying the linearly implicit global energy-preserving method

(3.4.25) to (3.3.10), we get the scheme

δt un
j ,k +

1

2
(Dx (unun+1)) j ,k +μt (D3

x (un)) j ,k +μt (Dx D2
y (un)) j ,k = 0,

which preserves the two-step discrete energy approximation

Ēn = 1

6
ΔxΔy

Mx−1∑
j=0

My−1∑
k=0

(
2(Dx un) j ,k (Dx un+1) j ,k + ((Dx un) j ,k )2

+2(D y un) j ,k (D y un+1) j ,k + ((D y un) j ,k )2 − (un
j ,k )2un+1

j ,k

)
.
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Test problem

Taking a note from a numerical experiment performed in [4], we study the

formation of cylindrical soliton pulses on the domain
[
0,P
]× [0,P

]
, P = 30,

following the initial condition

u0(x, y) = 3c sech2(1

2



c(x −P/2)

)+ξ(y),

where ξ(y) is a random perturbation.

Upon trying the different schemes we can immediately conclude that the

local energy-preserving schemes are superior for this problem when compared

to the global energy-preserving schemes. The GEP and LIGEP schemes are too

costly when the pseudospectral operator is used, and gives oscillatory behaviour

in the y-direction when the central difference operator is used, unless the dis-

cretization in this direction is very fine. Although the global energy-preserving

schemes with the central difference operator are slightly faster then the local

energy-preserving schemes, as can be seen in Table 3.3, this is undermined

by the cost of the extra discretization points needed to avoid oscillations in

the former case. As was the case for the KdV problem, we see little differ-

ence between the linearly implicit schemes and their fully implicit counterparts.

This can be seen in Figure 3.7, as can the oscillations in y-direction of the

solution found by the GEP and LIGEP methods. The plots in Figure 3.7 can

be compared to the plot in Figure 3.8, where the same problem is solved by the

LILEP method using finer discretization in space and time. The initial random

perturbation in y-direction over 75 points is then transferred over to 225 points

using linear interpolation.

M 45 75 105 135 165 195 225 255
LEP 5.10 32.20 48.43 101.59 125.23 258.64 353.98 510.00
LILEP 2.04 8.87 14.57 31.02 37.25 78.98 108.02 157.91
GEP 3.62 19.54 41.87 73.59 122.31 186.74 258.19 352.36
LIGEP 1.38 6.00 13.45 23.79 39.31 60.27 83.32 113.13

Table 3.3: Running time, in seconds, for computing 100 steps in time by the various

schemes and various number of discretization points M = Mx = My in each spatial

direction, solving our test problem for the Zakharov–Kuznetsov equation. As for

the KdV equation test problems, a tolerance of 10−10 is used when solving the fully

implicit schemes by Newton’s method.
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(a) LEP (b) LILEP

(c) GEP (d) LIGEP

Figure 3.7: The test problem of the Zakharov–Kuznetsov equation solved at time t =
15 by the different schemes, with M = Mx = My = 75 points in each spatial direction

and Δt = 0.1.

3.6 Concluding remarks

In this paper, we propose two types of linearly implicit methods with conser-

vation properties for cubic invariants of multi-symplectic PDEs. The linearly

implicit local energy-preserving (LILEP) method preserves a discrete approxi-

mation to the local energy conservation law, and by extension, the global energy

whenever periodic boundary conditions are considered. The linearly implicit

global energy-preserving (LIGEP) method preserves the global energy without

inheriting the local preservation from the continuous system.

We test our methods on two PDEs: the one-dimensional, integrable KdV

equation and the two-dimensional, non-integrable Zakharov–Kuznetsov equa-

tion. The numerical experiments confirm that the proposed methods are of

second order both in space and time and that they preserve the expected lo-

cal and global energy conservation laws. We have observed excellent stability

properties for the LILEP scheme in particular, and very high accuracy in the

LIGEP scheme even for quite coarse discretization when a Fourier pseudospec-
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Figure 3.8: The test problem of the Zakharov–Kuznetsov equation solved at time

t = 15 by the LILEP scheme, with M = Mx = My = 225 discretization points in each

spatial direction and a temporal step size Δt = 0.001.

tral operator is used to approximate the spatial derivative. Compared to the

fully implicit methods of Gong et al. in [20], which was an inspiration for this

paper, our methods show comparable wave profiles, global errors and energy

errors, at a significantly lower computational cost. For two-dimensional prob-

lems, where fully implicit schemes quickly become very expensive to compute,

the combination of local energy-preservation and a linearly implicit method

seems to provide for a very competitive method.

Although we have only considered the preservation of cubic invariants in

this paper, our schemes can be extended to preserve higher order polynomials

by the polarisation techniques for generalising Kahan’s method suggested in [9].

This would result in (p −2)-step methods for preservation of a discrete p-order

polynomial invariant.
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Symplectic Lanczos and Arnoldi Method
for Solving Linear Hamiltonian Systems of

ODEs: Preservation of Energy and Other
Invariants

Abstract. Krylov subspace methods have become popular for the numerical

approximation of matrix functions as for example for the numerical solution

of large and sparse linear systems of ordinary differential equations. One

well known technique is based on the method of Arnoldi which computes an

orthonormal basis of the Krylov subspace. However, when applied to Hamilto-

nian linear systems of ODEs, this method fails to preserve the symplecticity of

the solution under numerical discretization, or to preserve energy. In this work

we apply the Symplectic Lanczos Method to construct a J-orthogonal basis of

the Krylov subspace. This basis is then used to construct a numerical approxi-

mation which is energy preserving. The symplectic Lanczos method is widely

used to approximate eigenvalues of large and sparse Hamiltonian matrices, but

the approach for solving linear Hamiltonian systems is not well known in the

literature. We also show that under appropriate additional assumptions on the

structure of the linear Hamiltonian system, the Arnoldi method can preserve

certain invariants of the system. We finally investigate numerically the energy

and global error behaviour for the methods.

4.1 Arnoldi Projection Method

Consider a linear Hamiltonian initial value problem of the form

ẏ = Ay

y(0) = y0 t > 0, (4.1.1)

where y(t ) ∈ R2m , A ∈ R2m×2m and J A = H is symmetric, and y0 ∈ R2m . We

denote by J the 2m ×2m matrix

J =
(

0 Im−Im 0

)
, (4.1.2)

with Im the m ×m identity matrix. The energy of system (4.1.1) is

H(y) = 1

2
yT J Ay ≡ 1

2
y0

T H y0, (4.1.3)

and it is preserved along solution trajectories, i.e.
d H(y(t ))

d t = 0.
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Consider the Krylov subspace of dimension n, generated by the matrix A
and the vector y0:

Kn(A, y0) := span{y0, Ay0, · · · , An−1 y0}. (4.1.4)

The basic idea of Krylov projection methods is to build a numerical approxima-

tion for the solution of (4.1.1) evolving in the Krylov subspace. This is done

by solving (projected) linear systems of ordinary differential equations (ODEs)

of much lower dimension than the original system.

One well known Krylov projection method is the one based on the Arnoldi

algorithm [1,3,5]. This algorithm generates an orthonormal basis for Kn(A, y0),
which is stored in a 2m ×n matrix Vn , and an upper Hessenberg n ×n matrix

Hn , such that Vn and Hn satisfy

AVn =Vn Hn +wn+1eT
n , wn+1 = hn+1,n vn+1,

Vn
T Vn = In , (4.1.5)

where vn+1 is the last column of Vn+1 and hn+1,n is the (n+1,n) entry of Hn+1.

The Arnoldi projection method (APM) is then defined by searching for an

approximation y A(t ) =Vn z(t ) of y(t ), where z is the solution of the following

smaller system

ż = Hn z,

z(0) = z0. (4.1.6)

When applied to Hamiltonian systems, the APM fails in general to preserve

symplecticity or energy. However, we will see that in special cases, the APM

can show a very good behaviour with respect to energy-preservation.

In Fig. 4.1 we report numerical tests performed with the APM on the prob-

lem (4.1.1) when A is Hamiltonian and simultaneously skew-symmetric. In

the case when A is Hamiltonian and simultaneously skew-symmetric, the APM

shows almost preservation of energy and boundedness of the global error over

long time integration. This does not occur for general Hamiltonian matrices,

as can be confirmed by numerical experiments with JA symmetric block diago-

nal or symmetric block tridiagonal. We will explain this behaviour in the next

section.

For all the experiments including all the figures in the following chapters,

we always consider A ∈R200×200, and we will fix the dimension of the Krylov

subspace to be 4; A and y0 are randomly generated.
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Figure 4.1: Fig. 4.1a: we plot the global error || y(t )− y A(t ) ||2 versus time, where

y(t ) is the reference solution. The reference solution is always computed using Cayley

transform. Fig. 4.1b: we plot the energy error, where energy error is H(y A(0))−
H(y A(t )), and y A(0) = y0.

4.1.1 APM Case When J A = AJ

In this section we consider a Hamiltonian matrix A such that A and J commute.

Proposition 4.1. Suppose A is a Hamiltonian matrix. Then J and A commute
if and only if the matrix A is skew-symmetric.

So, in this case, the numerical experiments of Fig. 4.1 show that the global

error and the energy error remain bounded over time. One can show that in this

case (4.1.1) has m preserved first integrals in involution, and APM preserves r
modified first integrals.

Proposition 4.2. If J A = AJ , the Hamiltonian system (4.1.1) has m first inte-
grals in involution, Hk (y) := 1

2 yT A2k y for k = 0,1, . . . ,m −1, and in involution
with the Hamiltonian H.

Proposition 4.3. Applying the Arnoldi projection method to the Hamiltonian
system (4.1.1), under the assumption J A = AJ , the numerical approximation
preserves the following first integrals

HA
k (y) := 1

2
yT Vn(Hn)2kV T

n y, k = 0,1, . . .r,

with r = n/2−1 if n is even and r = (n −1)/2−1 if n is odd.

In Fig. 4.2 we have performed experiments with n = 4, under the assumption

that J A = AJ , APM preserves r = 2 first integrals, these are HA
0 (y A) = 1

2 y A
T y A ,

and HA
1 (y A) =−1

2 y A
T Vn Hn

2Vn
T y A .
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Figure 4.2: Preservation of the two first integrals by APM for a skew-symmetric

and Hamiltonian matrix A. Fig. 4.2a: numerical error HA
0 (y A(0))−HA

0 (y A(t )), and

y A(0) = y0. Fig. 4.2b: numerical error HA
1 (y A(0))−HA

1 (y A(t )).

The case J A = AJ is not the only case when the energy error for APM

appears to be bounded. We will introduce and explain another example in the

following subsection. In what follows, we rewrite J A = H in a block form

H =
(

H11 H12

H T
12 H22

)
, (4.1.7)

and then the original Hamiltonian system (4.1.1) has the form

ṗ =−H T
12p −H22q

q̇ = H11p +H12q, (4.1.8)

where (pT , qT )T = y .

4.1.2 APM Case When H1,2 = 0, H1,1 = I and y0 = (p0
T ,0)T

If we consider Hamiltonian system (4.1.8) with H1,2 = 0, H1,1 = I and an initial

vector of the form y0 = (p0
T ,0)T , we can show that the APM preserves the

energy.
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(a) Energy error versus time

0 500 1000 1500 2000
0

0.5

1

1.5

Time

G
lo

ba
l e

rr
or

−
A

P
M

(b) Global error versus time

Figure 4.3: For both experiments we consider A, such that H1,2 = 0, H1,1 = I , and

an initial vector y0 = (p0
T ,0)T . (4.3a) Energy error versus time. (4.3b) Global error

versus time.

In Fig. 4.3, one can see the good performance of the APM when H1,2 = 0,

H1,1 = I and y0 = (p0
T ,0)T . The energy of the original system is preserved and

the global error is bounded. This can be explained by the following proposition.

Proposition 4.4. In the case when H1,2 = 0, H1,1 = I and y0 = (p0
T ,0)T (and

subject to a suitable permutation of the equations), the projected system (4.1.6)
for the APM is a Hamiltonian system. The energy of the original system (4.1.1)
is preserved by the numerical solution of the APM.

Remark 4.1. The APM applied to the special case when H1,2 = 0, H1,1 = I and
y0 = (p0

T ,0)T corresponds to performing a structure preserving model reduc-
tion in the spirit of [4]. Let Vn be the basis of the Krylov subspace Kn(−H22, p0).
The approximations to the position q and the momentum p are restricted to
evolve on this Krylov subspace and to take the form Vn p̂ and Vn q̂ . Deriving the
Euler-Lagrange equations and the corresponding Hamiltonian equations under
this assumption, leads to a projected Hamiltonian system which coincides with
(4.1.6).

4.2 Symplectic Lanczos Projection Method

Instead of using an orthonormal basis, we consider applying the Symplectic

Lanczos algorithm to construct a J-orthogonal basis for the Krylov subspace

[2, 6].

Denote by J2n the matrix (4.1.2) with m = n. Given the Hamiltonian matrix

A ∈ R2m,2m and the starting vector y0 ∈ R2m , the symplectic Lanczos method
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generates a sequence of 2m ×2n matrices

S2n = [v1, ..., vn , w1, ...wn], (4.2.1)

which satisfy

AS2n = S2n H2n + rn+1eT
2n , (4.2.2)

where H2n is a tridiagonal Hamiltonian 2m ×2m matrix, S2n is a symplectic

matrix, i.e.,

S2n
T JS2n = J2n , (4.2.3)

and rn+1 = ζn+1vn+1 is J-orthogonal to the columns of S2n , see [6] for details.

The Symplectic Lanczos projection method (which we here denote SLPM)

constructs the approximation yS = S2n ẑ(t ) of y(t ), where ẑ is the exact flow

for the following smaller system

˙̂z = H2n ẑ,

ẑ(0) = ẑ0. (4.2.4)

Proposition 4.5. The SLPM method preserves the energy when applied to the
system (4.1.1) with A a Hamiltonian matrix.

In Fig. 4.4, we report the performance of the SLPM on symmetric block

diagonal J A, similar results have been obtained with a range of different Hamil-

tonian matrices. As expected, the energy is preserved and the global error

remains bounded.
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Figure 4.4: Fig. 4.4a: we plot the global error || y(t )− yS (t ) ||2 versus time. Fig. 4.4b:

we plot the energy error, where energy error is H(y A(0))−H(yS (t )), and yS (0) = y0.
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4.3 Conclusion

4.3 Conclusion

In this paper we have reported some experiments with different Krylov sub-

space methods for linear Hamiltonian systems: a method based on the sym-

plectic Lanczos method, which always preserves the energy; and a projection

method based on the classical Arnoldi algorithm. We have seen that the Arnoldi

projection method can preserve some modified integrals when applied to spe-

cial systems (i.e., when A is Hamiltonian and skew-symmetric), and the APM

preserves the energy when applied to some other special Hamiltonian matri-

ces. We have recently obtained other Krylov subspace methods based on Gram

Schmidt processes similar to the Arnoldi method, which preserve energy by

solving exactly smaller Hamiltonian systems obtained by projection. The prop-

erties of all these Krylov methods and an appropriate comparison in terms

of performance, stability with respect to propagation of rounding errors, and

computational complexity will be discussed in a forthcoming paper.
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Hamiltonian systems

Abstract. We study geometric properties of Krylov projection methods for

large and sparse linear Hamiltonian systems. We consider in particular energy-

preservation. We discuss the connection to structure preserving model re-

duction. We illustrate the performance of the methods by applying them to

Hamiltonian PDEs.

5.1 Introduction

Large and sparse linear Hamiltonian systems arise in many fields of science

and engineering, examples are models in network dynamics [27] and the semi-

discretization of Hamiltonian partial differential equations (PDEs), like the

wave equation [15, 22] and Maxwell’s equations [21, 25]. In the context of

Hamiltonian PDEs, the energy conservation law often plays a crucial role in the

proof of existence and uniqueness of solutions [26]. Energy-preservation under

numerical discretization can be advantageous as it testifies correct qualitative

behaviour of the numerical solution, and it is also useful to prove convergence of

numerical schemes [24]. There is an extensive literature on energy-preserving

methods for ordinary differential equations (ODEs) [10, 11, 18, 23], but these

methods need to be implemented efficiently to be competitive for large and

sparse systems arising in numerical PDEs. Krylov projection methods are at-

tractive for discrete PDE problems because they are iterative, accurate and they

allow for restart and preconditioning strategies. But their structure preserving

properties are not completely understood and should be further studied. This

paper is a contribution in this direction.

It is well known that integration methods cannot be simultaneously sym-

plectic and energy-preserving for general Hamiltonian systems [30]. However,

the situation changes when we restrict to linear systems. An example is the mid-

point rule which is symplectic and is also energy-preserving on linear problems;

this is because the energy is quadratic for linear problems and the midpoint rule

preserves all quadratic invariants. The midpoint method is implicit and requires

the solution of one linear system of algebraic equations at each time step. The

structure preserving properties are then retained only to the precision of the

linear iterative solver. In this paper, we investigate preservation of geometric

properties in Krylov projection methods for the exponential function. These are

popular methods for the solution of discrete linear time-dependent PDEs [9,13],

but because of the Krylov projection, structure is only preserved to the accu-
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racy of the method. On the other hand, we show that some of these Krylov

projection methods can be energy-preserving to a higher level of precision, and

can preserve several first integrals simultaneously. We finally discuss the con-

nections to structure-preserving model reduction and variational principles. In

particular, we consider modified Hamilton’s principle as the natural variational

formulation for projection methods based on block J-orthogonal basis. Previ-

ous work in the context of structure preserving Krylov projection methods can

be found in [2,20] and for Hamiltonian eigenvalue problems for example in [8].

The structure of this paper is as follows. We discuss symplecticity in sec-

tion 6.1. Section 5.3 is devoted to the preservation of first integrals. Section

5.4 is devoted to projection methods based on block J-orthogonal bases and

their connection to structure preserving model reduction. In Section 5.5, the

geometric properties of the considered methods are illustrated by numerical

examples.

5.2 Krylov projection and symplecticity

Consider a linear Hamiltonian initial value problem of the form

ẏ = f (y) = J H y, y(t0) = y0, J = J2m =
[

0 Im−Im 0

]
, (5.2.1)

where y(t ) ∈R2m , H ∈R2m×2m is symmetric, H T = H , y0 ∈R2m , and Im is the

m×m identity matrix. In what follows we denote by A the product A = J H . The

matrix J is skew-symmetric, J T =−J , and it defines a symplectic inner product1

on R2m , ω(x, y) := xT J y. Considering the energy function H(y) := 1
2 yT H y , we

have the gradient of H is ∇H(y) = H y . The vector field of equation (5.2.1) is

a Hamiltonian vector field, i.e. ω( f (y), v) =∇H(y)T v, ∀v ∈R2m . From this it

follows that the flow map,

ϕt : R2m →R2m , y0 �→ y(t ),

is a symplectic map [17], i.e. it satisfies

Ψy0 (t )T J Ψy0 (t ) = J , where Ψy0 (t ) := ∂ϕt (y0)

∂y0
.

A non-constant function I(y) is a first integral of the ODE ẏ = f (y), if I(y)

satisfies
dI(y)

d t |y=y(t )= ∇I(y)ẏ = ∇I(y) f (y) = 0 for all y . So I(y) is constant

1A symplectic inner product on a vector space is a nondegenerate skew-symmetric bilinear

form [3].
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along the solution trajectory: I(y(t ))−I(y(t0)) =∫t
t0
∇I(y)ẏd t = 0. The energy

function H(y) is a first integral of (5.2.1). An approximation one-step method

for (5.2.1) is said to be energy-preserving if H is constant along the numerical

solution, and symplectic if the numerical one-step method (numerical flow map)

φh : R2m →R2m , y0 �→ ỹ ≈ y(t0 +h)

is such that
∂φh(y0)

∂y0

T

J
∂φh(y0)

∂y0
= J ,

[17].

The idea of Krylov projection methods is to build numerical approximations

for (5.2.1) in the Krylov subspace:

Kr (A, y0) := span{y0, Ay0, · · · , Ar−1 y0},

which is a subspace of R2m of dimension r << 2m. Let us consider even dimen-

sion r = 2n. A basis of K2n(A, y0) is constructed. The most well-known Krylov

projection method is the one based on the Arnoldi algorithm [4] generating an

orthonormal basis for K2n(A, y0). The method gives rise to a 2m ×2n matrix

V2n with orthonormal columns, and to an upper Hessenberg 2n×2n matrix T2n

such that I2n =V2n
T V2n , and T2n =V T

2n AV2n . The approximation of y(t ) is

y A(t ) :=V2n z(t ), where ż = T2n z, z(0) = z0 =V T
2n y0. (5.2.2)

We will denote this method by Arnoldi projection method (APM). Consider J2n

and the corresponding symplectic inner product in R2n , ω(u, v) := uT J2n v . If

n < m, unless we make further assumptions on H , the projected system (5.2.2)

is not a Hamiltonian system in R2n , this is because J−1
2n T2n = J−1

2n V T
2n J HV2n is

in general not symmetric and J−1
2n T2n z is in general not the gradient of some

energy function.

Instead of using an orthonormal basis, one can construct a J-orthogonal

basis for K2n(A, y0) using the symplectic Lanczos algorithm [6]. The matrix

S2n whose columns are the vectors of this J-orthogonal basis satisfies

ST
2n JS2n = J2n .

We will denote the corresponding Krylov projection method by Symplectic

Lanczos projection method (SLPM). The projected system for SLPM is analog

to (5.2.2), with V2n replaced by S2n , T2n by J2nST
2n HS2n and an appropriate

z0 (see Section 5.3.3). This projected system is a Hamiltonian system. But for

n < m, the approximation yS(t ) := S2n z(t ) is not symplectic. In fact, yS is the
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solution of the system

ẏS = (S2n J2nST
2n) H yS , yS(t0) = y0, (5.2.3)

and (5.2.3) is a Poisson system with Poisson structure given by the matrix

S2n J2nST
2n which is skew-symmetric and depends on the initial condition2. For

n = m, J2m = J , and yS = y. However, the case n < m is the most relevant for

the use of the method in practice. In spite of not preserving the symplectic

inner product ω, SLPM clearly shares important structural properties with the

exact solution of (5.2.1) and is energy-preserving, see Section 5.3.3.

The symplectic Lanczos algorithm is not the only way to obtain a ba-

sis which is symplectic for the Krylov subspace. We will consider block J-

orthogonal bases in Section 5.4 and show that they can be viewed as techniques

of structure preserving model reduction, in the spirit of [19]. We propose one

Krylov algorithm based on these ideas.

5.3 Preservation of first integrals and energy

We first present a result about the first integrals for a general linear Hamiltonian

system. Recall that two first integrals F and G of an ODE are said to be in

involution if their Poisson bracket {F,G} := (∇F )T J∇G vanishes [17].

Proposition 5.1. For A = J H where J is skew-symmetric and invertible, and H
is symmetric and invertible, the system ẏ = Ay , y(t0) = y0 has the following first
integrals in involution, Hk (y) = 1

2 yT H A2k y , for k = 0,1, . . . . The Hamiltonian
of the system is H=H0.

Proof. We consider the derivative of Hk along solution trajectories y(t )

d

d t
Hk (y(t )) = 1

2

[
ẏT H(J H)2k y + yT H(J H)2k ẏ

]
= 1

2

[
−yT H J H(J H)2k y + yT H(J H)2k J H y

]
= 1

2

[
−yT H(J H)2k+1 y + yT H(J H)2k+1 y

]
= 0,

so Hk (y), k = 0, . . . , are preserved: Hk (y(t )) =Hk (y0). The integrals are in

2A Poisson system in Rd is a system of the type ẏ =Ω∇H(y), where Ω is a skew-symmetric

matrix, not necessarily invertible and can depend on y . Ω must satisfy the Jacobi identity, [17].

In our case, Ω depends on y0.
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involution because their Poisson bracket is zero,

{Hk ,Hp } = (∇Hk )T J∇Hp = (A2k y)T H J H(A2p y)

= yT ((J H)2k )T H J H(J H)2p y = yT H(J H)2(k+p)+1 y = 0,

where we have used the skew-symmetry of H(J H)2(k+p)+1.

In what follows, we will discuss the preservation of the first integrals of

Proposition 5.1 when applying Krylov projection methods.

5.3.1 Preservation of first integrals for the APM

It can be observed from numerical simulations that the APM fails in general to

preserve energy when applied to Hamiltonian systems, Figure 5.1 (left), Sec-

tion 5.5, but structure-preserving properties can be ensured for such method via

a simple change of inner product. Assume that H is symmetric and positive

definite so that 〈·, ·〉H := 〈·, H ·〉 defines an inner product. We modify the Arnoldi

algorithm by replacing the usual inner product 〈·, ·〉 by 〈·, ·〉H . We then show

that the numerical solution given by this method preserves to machine accu-

racy certain first integrals. The modified Arnoldi algorithm (see Algorithm 5.1)

generates a H-orthonormal basis, which is stored in the 2m ×n matrix Vn , sat-

isfying V T
n HVn = In . This algorithm generates a skew-symmetric tridiagonal

matrix Tn such that

AVn =VnTn +wn+1eT
n , wn+1 = hn+1,n vn+1,

Vn
T HVn = In , Vn

T H wn+1 = 0.

In what follows, we consider the Krylov projection method

yH :=Vn z, where z satisfies ż = Tn z, z(t0) =Vn
T H y0.

Proposition 5.2. The numerical approximation yH for the solution y of (5.2.1)

preserves the following first integrals:

H̄k (yH ) = 1

2
yT

H HVn(Tn)2kVn
T H yH

for all k = 0,1, . . . .

Proof. We observe that Tn = Vn
T H J HVn is skew-symmetric. So the ODE

system for z has first integrals: Ik (z) = 1
2 zT (Tn)2k z, for all k = 0,1, . . . .
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Therefore, we have H̄k (yH ) = 1
2 yT

H HVn(Tn)2kVn
T H yH = 1

2 zT (Tn)2k z and
d

d t H̄k (yH (t )) = d
d t Ik (z(t )) = 0, so the first integrals are preserved.

Remark 5.1. If n is even, the above Krylov projection method induces a pro-
jected problem which is conjugate to a Hamiltonian system, i.e., it can be writ-
ten in the form (5.2.1) via change of variables. Since Hn is skew-symmetric, Hn

can be factorized as Hn =Un JnDnU−1
n where Dn is diagonal. Then, Hn can

be transformed to a Hamiltonian matrix by a similarity transformation using
Un .

5.3.2 Hamiltonian system with J A = AJ

We now consider J given by (5.2.1). Assume that A and J commute, then A
is skew-symmetric, and the Hamiltonian system (5.2.1) has two Hamiltonian

structures, one associated to A with Hamiltonian 1
2 yT y , the other to J with

Hamiltonian 1
2 yT H y . The APM with Euclidean inner product 〈·, ·〉 preserves

modified first integrals. To proceed, we first give the following result.

Proposition 5.3. Suppose A is a Hamiltonian matrix. Then J and A commute
if and only if the matrix A is skew-symmetric.

Proof. Suppose A is a Hamiltonian matrix and A = J H , where J and H are

defined as in equation (5.2.1). Then the fact that J and A commute implies

that J J H = J H J , i.e. −H = J H J and by multiplying J−1 from right side, we

get −(J H)T = J H , namely AT = −A. On the other hand, the fact that A is

skew-symmetric implies that (J H)T =−J H and using this we get J A = J J H =
−J (J H)T = J H J = AJ .

The first integrals of the system (5.2.1) are given by the following proposi-

tion.

Proposition 5.4. If J A = AJ , the Hamiltonian system (5.2.1) has the following
first integrals in involution, Hk (y) = 1

2 yT A2k y for k = 0,1, . . . , and the first
integrals are in involution with the Hamiltonian H(y) = 1

2 yT H y .

Proof. From Proposition 5.3 we know that A is skew-symmetric. Then Propo-

sition 5.1 holds with J replaced by A, and H replaced by the identity matrix.

The integrals are in involution with the Hamiltonian H(y) = 1
2 yT H y in fact

{Hk ,H} = yT A2k J H y = yT A2k Ay = 0, k = 0, . . . .

94



5.3 Preservation of first integrals and energy

Remark 5.2. By a direct application of Proposition 5.2, the APM to the Hamil-
tonian system (5.2.1), under the assumption J A = AJ , gives a numerical ap-
proximation y A :=Vn z which preserves the following modified first integrals

H̄k (y A) := 1

2
yT

A Vn(Hn)2kV T
n y A , k = 0,1, . . . .

We next prove that the Hamiltonian of (5.2.1) is bounded by y A under the

assumption that J and A commute.

Proposition 5.5. Assume the APM is applied to (5.2.1). Under the assump-
tion J A = AJ , the energy H(y) = 1

2 yT J−1 Ay, is bounded along the numerical
solution.

Proof. This result follows directly from Remark 5.2 with k = 0, i.e.,

1

2
y A

T J−1 Ay A ≤ 1

2
y A

T y A‖J−1 A‖2 = 1

2
y0

T y0‖J−1 A‖2.

Proposition 5.5 explains the good behaviour of the APM in [12].

5.3.3 Symplectic Lanczos projection method

We now consider the symplectic Lanczos projection method (SLPM). Krylov

subspace methods based on the symplectic Lanczos algorithm are widely used

for the computation of eigenvalues of large and sparse Hamiltonian matrices

[5, 14, 29]. For their use in the approximation of linear Hamiltonian systems

see [1], [13].

Given A ∈R2m,2m and the starting vector y0 ∈R2m , the symplectic Lanczos

method generates a sequence of matrices

S2n = [v1, ..., vn , w1, ...wn] satisfying AS2n = S2nT2n + rn+1eT
2n ,

where T2n is a tridiagonal Hamiltonian matrix, and rn+1 = ζn+1vn+1 is J-

orthogonal with respect to the columns of S2n . Since S2n has J-orthogonal

columns, i.e., S2n
T JS2n = J2n , we know that

T2n = J−1
2n ST

2n J AS2n = J2nST
2n HS2n ,

and the projected system is a Hamiltonian system, where z0 = J−1
2n ST

2n J y0. More-
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over, we have

HS(z) = 1

2
zT J−1

2n T2n z ≡ 1

2
zT

0 J−1
2n T2n z0. (5.3.1)

Proposition 5.6. The SLPM is an energy-preserving method for (5.2.1).

Proof. The result follows by computing the Hamiltonian of (5.2.1) along nu-

merical trajectories yS = S2n z, H(yS) = 1
2 yS

T J−1 AyS , and then using (5.3.3)

and (5.3.1).

5.4 Projection methods based on block J-orthogonal
basis

We now consider a general strategy for Krylov projection methods to obtain

J-orthogonal bases, this will lead automatically to energy preserving methods

for (5.2.1). In what follows we will use the notation (qT , pT )T = y and write H
in block form, and rewrite (5.2.1) accordingly:

q̇ = H T
12q +H22p,

ṗ =−H11q −H12p,
H =

[
H11 H12
H T

12 H22

]
.

Assume that we can construct two matrices with linearly independent columns

Vn ∈Rm×n and Wn ∈Rm×n such that Vn
T Wn = In . Then the matrix

S2n :=
[

Vn 0
0 Wn

]
(5.4.1)

has J-orthogonal columns. We will approximate y by the following projection

method: y ≈ yB defined by

yB = S2n z, where z satisfies ż = J2n ST
2n J−1 AS2n z, z(t0) = z0, (5.4.2)

and for the SLPM z0 = J−1
2n ST

2n J y0.

Proposition 5.7. If y0 = S2n z(t0), then the energy of the original Hamiltonian
system (5.2.1) will be preserved by the numerical solution (5.4.1)-(5.4.2).

Proof. Notice that H(S2n z) = 1
2 zT ST

2n J−1 AS2n z is constant with respect to t
because z is the solution of a Hamiltonian system with energy of the form

E(z) = 1
2 zT (ST

2n J−1 AS2n) z. The result then follows directly from the fact that

E(z) ≡ E(z0) =H(y0).
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We here propose one strategy to construct S2n as in (5.4.1) with W T
n Vn = In

and Vn = Wn . Let Kn be the Krylov matrix 2m ×n, and consider the first m
rows of Kn and the last m separately:

Kn := [y0, Ay0, . . . , An−1 y0], Kn =
[

K q
n

K p
n

]
.

We then find an orthonormal basis Vn for span{K q
n ,K p

n } ⊂ Rm by either a QR-

factorisation (algorithm 5.2 in the Appendix 3) or a Gram-Schmidt process.

5.4.1 Structure preserving model reduction using Krylov subspaces

In this section we consider Hamilton’s phase space variational principle (also

called modified Hamilton’s principle) [16, Ch. 8-5] which is the fundament of

the projection methods based on block J-orthogonal basis. Since our system

(5.2.1) is given in the form of an Hamiltonian system, it is natural to use the

phase space variational principle, which is formulated in terms of the variables

p and q and the Hamiltonian function H(q, p), rather than the classical Hamil-

ton’s principle which is formulated in terms of q and q̇ and the Lagrangian

function L(q, q̇). Following [19], we restrict the phase space variational princi-

ple to low dimensional subspaces of Rm and derive the projected Hamiltonian

system taking variations on the low dimensional subspaces.

Assume [qT , pT ]T := y and q and p are m-dimensional vectors belonging

to Rm and its dual respectively, and that the Hamiltonian H : Rm × (Rm)∗ →R

is H(q, p) :=H(y).4 Considering the action functional S : Rm × (Rm)∗ →R

S(q, p) :=
∫tend

t0

(
pT q̇ −H(q, p)

)
d t , (5.4.3)

Hamilton’s phase space variational principle states that

δS = 0

for fixed q0 = q(t0) and qend = q(tend ), and it is equivalent to Hamilton’s

equations (5.2.1), [16, Ch. 8-5] . By projecting q and p separately on ap-

propriate subspaces span{Vn} ⊂ Rm and span{Wn} ⊂ (Rm)∗, i.e., q ≈ Vn q̂
and p ≈ Wn p̂, one restricts the variational principle to span{Vn}× span{Wn}:

3Notice that to obtain a stable algorithm it is an advantage to replace the Krylov matrix with

an orthonormal matrix obtained by the Arnoldi algorithm.
4The duality pairing between Rm and (Rm )∗ is here simply 〈p, q〉 := pT q .
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Ŝ(q̂ , p̂) :=S(Vn q̂ ,Wn p̂). Taking variations

0 = δŜ(q̂ , p̂) = δ

∫tend

t0

(Wn p̂)T Vn
˙̂q −H(Vn q̂ ,Wn p̂)d t

for fixed endpoints q̂0 = q̂(t0) and q̂end = q̂(tend ), we obtain the Hamiltonian

equations associated to this reduced variational principle

˙̂p =−Vn
T H12Wn p̂ −Vn

T H11Vn q̂ ,

˙̂q =Wn
T H22Wn p̂ +Wn

T H T
12Vn q̂ ,

which coincide with the system for z in (5.4.2). This explains the connection of

the projection methods based on block J-orthogonal basis, (5.4.1) and (5.4.2),

with the techniques of structure preserving model reduction derived in [19] and

here modified for the phase space variational principle.

Assuming additional structure on H , we will show in the next section that

the usual APM applied to the resulting system falls in the same class of projec-

tion methods based on block J-orthogonal basis and is a structure preserving

model reduction method in the spirit of [19]. Model reduction methods for

general second order systems obtained projecting the differential systems onto

Krylov subspaces using an Arnoldi or a Lanczos process have been previously

studied [7].

5.4.2 Special case H1,2 =O, H2,2 = I .

This special case is directly related to the setting in [19]. Denoting y = (qT , pT )T ,

we consider the corresponding Hamiltonian system

ẏ = Ay with A =
[

0 I−H11 0

]
. (5.4.4)

and we notice that p = q̇ in this case. The action functional (5.4.3) from the

previous section is the integral of the Lagrangian density function

L(q(t ), q̇(t )) = 1

2
q̇(t )T q̇(t )− 1

2
q(t )T H11q(t ), (5.4.5)

and in this case because q̇ = p the phase space variational principle coin-

cides with Hamilton’s principle. Let Vn be the basis of the Krylov subspace

Kn(−H11, p0) obtained via the Arnoldi algorithm. The reduced Lagrangian

becomes

L(q̂(t ), ˙̂q(t )) = 1

2
˙̂q(t )

T ˙̂q(t )− 1

2
q̂(t )T Vn

T H11Vn q̂(t ), (5.4.6)
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and the corresponding Hamiltonian equations are

˙̂q = p̂,

˙̂p =−Vn
T H11Vn q̂(t ).

(5.4.7)

By solving (5.4.7), we obtain (q̂T , p̂T )T and then can construct the model re-

duction approximation ((Vn q̂)T , (Vn p̂)T )T ≈ (qT , pT )T .

Proposition 5.8. When applied to (5.4.4) with y0 = (0, pT
0 )T , the model reduc-

tion procedure outlined in (5.4.5)-(5.4.7) coincides with the APM.

Proof. Let e1,e2 ∈ R2 be the two vectors of the canonical basis in R2. Denote

by ⊗ the Kronecker tensor product. We have

K2n(A, y0) = span{e1 ⊗p0,e2 ⊗p0,e1 ⊗ (−H11p0),e2 ⊗ (−H11)p0, . . . }.

Denote by U2n ∈R2m×2n the orthogonal matrix generated by the usual Arnoldi

algorithm with matrix A, vector y0 = (0, pT
0 )T and Euclidean inner product.

Then U2n is given by

U2n =
[

0 v1 0 v2 0 . . . 0 vn
v1 0 v2 0 v3 . . . vn 0

]
,

and satisfies

U2n
T AU2n =Π2n

[
0 In

−V T
n H11Vn 0

]
Π2n

T and U2nΠ2n =
[

Vn O
O Vn

]
,

where v1, v2, . . . vn are the columns of Vn and Π2n is a 2n × 2n permutation

matrix. After a permutation of the variables w =Π2n
T z, the projected system

by APM ż =U2n
T AU2n z, z(t0) =U2n

T y0 can be rewritten in the form (5.4.1)-

(5.4.2).

5.5 Numerical Examples

In this section, several numerical examples are presented to illustrate the behav-

ior of the following methods:

• APM: Arnoldi projection method using Euclidean inner product, Section

5.3;

• APMH: Arnoldi projection method using the inner product 〈·, ·〉H , Sec-

tion 5.3;
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• SLPM: symplectic Lanczos projection method, Section 5.3.3;

• BJPM: block J-orthogonal projection method with QR factorization, Sec-

tion 5.4.1.

These methods are applied to solve randomly generated linear Hamiltonian

systems, and linear systems arising from the discretization of Hamiltonian

PDEs. If not stated otherwise, the dimension of the original space is set to be

2m = 400 and the dimension of the Krylov subspace is chosen to be 2n = 4,

for all Krylov methods compared. The reference solution is computed using

the Cayley transformation (midpoint rule) with step-size 0.004. The solution

of the projected system (5.2.2) is obtained with the same method and the same

step-size used for the reference solution. All the errors in energy and in first

integrals are relative errors.

To obtain a desired global error accuracy on [0,T ] for large T , we either use

a sufficiently large dimension of the Krylov subspace or use a time-stepping

(restart) procedure. More precisely, this entails subdividing [0,T ] into subinter-

vals [tr , tr+1] and performing the projection on each subinterval recomputing

the basis of the Krylov subspace with starting vector yr ≈ y(tr ). In the exper-

iments, we use subintervals of size tr+1 − tr = 0.2. The restart procedure is

of practical interest because it allows to use a Krylov subspace of low dimen-

sion. In exact arithmetic the first integrals would be preserved exactly, however,

due to the propagation of roundoff errors, a small linear drift in the preserved

quantities is observed. The numerical experiments show that the drift in the

energy error can be lessened by applying the restart technique. However, the

restart compromises the preservation of the first integrals of Propositions 6.1

and 5.4 for APM and APMH simply because the basis Vn is recomputed on

each subinterval.

5.5.1 Randomly generated Hamiltonian matrices

Case J A = AJ: APM

In the experiment considered in Figure 5.1 (left), H = J−1 A is block diagonal,

symmetric and positive definite but with no particular extra structure. There

is a clear drift in the energy for the APM, and the energy is preserved for the

APMH and SLPM. Similar experiments show that the global error of APMH

and SLPM is bounded, while the global error of the APM is not (these errors

are not reported here). If we apply the APM to an example where J A = AJ , the

first integrals are preserved and the energy error and global error are bounded,

see [12].
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Figure 5.1: Left: Methods without the restart applied to a block diagonal matrix A.

Energy drift for APM and energy conservation for SLPM and APMH. Middle: Global

error of APM and Model reduction versus time. Right: Relative energy error of APM

and Model reduction versus time.

Case H1,2 =O, H2,2 = I : Model reduction

In this numerical test, we consider a Hamiltonian matrix A of the special form

(5.4.4) with an initial vector of the form y0 = (0, pT
0 )T and we apply the APM to

this system. For comparison, we use the model reduction procedure described

in Section 5.4.2: we generate the orthogonal matrix Vn using the Arnoldi al-

gorithm with matrix −H11 and vector p0. The methods behave as predicted,

(see Figure 5.1, the middle and right figures). The experiment confirms that

the APM in this case behaves as the model reduction method and preserves the

energy. A small linear drift is observed at the level of roundoff and we will

consider this error propagation in the next subsection.

Full matrices: Comparison of APMH, SLPM, BJPM

In this subsection, we consider a randomly generated, full Hamiltonian matrix

A = J H . In Figure 5.2, we report numerical results for the methods APMH,

SLPM and BJPM without restart. The left panel of Figure 5.2, reports the

relative energy error for the methods. The right panel of Figure 5.2, illustrates

the convergence of the methods: the global error at T = 2 decreases when the

dimension of the Krylov subspace increases.

APMH is the method that better preserves the energy, but a linear error

growth in time at the level of roundoff can be observed for all the methods

and also in the error of the first integrals for APMH. To examine this prop-

agation of roundoff errors, we compare the relative energy error and the er-

ror in the Cayley transformation as a function of time, see middle panel of

Figure 5.2. For tk = Δt k, we denote the Cayley transformation approxi-

mating exp(tk Tn) by Cay(tk Tn) :=
(
(I − Δt

2 Tn)−1(I + Δt
2 Tn)

)k
. The error in

the Cayley transformation is measured by verifying the orthogonality of the
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matrix Cay(tk Tn). After one step (t1 = Δt), this error is close to machine

accuracy, ‖(Cay(ΔtTn))T Cay(ΔtTn)) − I‖2 = 1.1224e − 16, but we see that

‖(Cay(tk Tn))T Cay(tk Tn))− I‖2 grows with tk and comparably to the relative

energy error. Likely, this error is the main cause of the roundoff error propaga-

tion in the energy. In this experiment, we have chosen Δt := 2−s , where s is the

minimum positive integer such that 2−s‖Tn‖1 ≤ 1
2 , see for example [28].

In Figure 5.3 (left), we see that the roundoff error drift is mitigated by

applying the restart technique. In the right figure, we observe that for the

methods with restart, the global error behaves well and stops increasing after a

certain time.
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Figure 5.2: Krylov projection methods applied to full matrices. Left: energy error

for SLPM, APMH and BJPM, methods without restart. In this experiment Δt := 2−s ,

where s > 0 is such that 2−s ‖Tn‖1 ≤ 1
2 . Middle: relative energy error of APMH

(solid line), reference line ‖(Cay(tk Tn))T Cay(tk Tn))− I‖2 (dotted square). Error in

orthogonality and skew-symmetry: ‖V T
n HVn − I‖2 = 2.8728e−16, ‖T T

n +Tn‖2 = 0 and

‖(Cay(ΔtTn))T Cay(ΔtTn))− I‖2 = 1.1224e −16. Same step-size as left panel. Right:
global error versus dimension of the Krylov subspace.
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Figure 5.3: Left: energy error. Right: global error, methods with restart.
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5.5.2 Hamiltonian PDEs

In this section we apply the methods to Hamiltonian PDEs, including the wave

equations and the Maxwell’s Equations.

Wave equation

We consider the 2D wave equations

φ̇=ψ, ψ̇=�φ,

on [0,1]× [0,1] with homogeneous Dirichlet boundary conditions φ(t ,0, y) =
φ(t ,1, y) = φ(t , x,0) = φ(t , x,1) = 0 and a randomly generated initial vector.

Semi-discretizing on an equispaced grid xi = i Δx and y j = j Δy , Δx = Δy ,

i , j = 0, . . . , N and assuming u(xi , y j ) ≈Ui , j , we obtain a system

U̇ = AU , U (0) =U0, A =
[

0 I
G 0

]

with G the discrete 2D Laplacian obtained by using central differences. This is a

Hamiltonian system with energy H= 1
2U T J AU ≡ 1

2U (0)T J AU (0). We perform

experiments with all the Krylov projection methods discussed in this paper. The

left figure in Figure 5.4 shows that all the methods are energy-preserving.
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Figure 5.4: Left: energy error for Wave equation in 2d ; methods with restart are

considered and the dimension of the problem is 392, namely N = 15. Right: energy

error for Maxwell’s equations in 1d; method with restart is considered.

1D Maxwell’s equations
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We consider 1D Maxwell’s equations

∂t E = ∂x B ,

∂t B = ∂x E
(5.5.1)

for x ∈ [0,1] and t > 0 with boundary conditions E(0, t ) = E(1, t ) = 0, Bx (0, t ) =
Bx (1, t ) = 0 and initial conditions E(x,0) = sin(πx) and B(x,0) = cos(πx). After

semi-discretization with E(xi , t ) ≈ Ei (t ) and B(xi , t ) ≈ Bi (t ), i = 0, . . . , N , we

get a system of ODEs

U̇ = S̄DU , U (0) =U0, (5.5.2)

where U = [E1, ...,EN−1,B0, ...,BN ]T and

S̄ = 1

2h

⎡
⎢⎣

0N−1,N+1 G

−GT 0N+1,N−1

⎤
⎥⎦, G =

⎡
⎢⎢⎢⎢⎣
−2 0 1−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0 2

⎤
⎥⎥⎥⎥⎦

and D = diag(IN−1, 1
2 , IN−1, 1

2 ). Equation (5.5.2) fits the framework of section

5.3, with S̄ skew-symmetric and D symmetric and positive definite; therefore

APMH can be applied to this problem. The numerical approximation of U
obtained applying the APMH preserves the first integrals Hk (Ū ) of Proposition

6.1. The tables about preservations of first integrals are not reported here. In

the right panel of Figure 5.4, we consider the Maxwell equation (5.5.1) with

fixed and given initial value and also the restart technique is used. We observe

that the energy is preserved well.

5.5.3 Numerical results for 3D Maxwell’s equations

We consider 3D Maxwell’s equations in CGS units for the electromagnetic field

in a vacuum

∂t E =−c∇×B ,

∂t B = c∇×E .
(5.5.3)

The boundary conditions are zero and the initial conditions are randomly gen-

erated for both fields. We consider c = 1. We get the following Hamiltonian

system after semi-discretization:

U̇ = AU , A =
[

0 −G1
G1 0

]
, U (0) =U0, (5.5.4)
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where U = [E x
1,1,1, ...,E z

N−1,N−1,N−1,B x
1,1,1, ...,B z

N−1,N−1,N−1]T and G1, symmet-

ric and of the size 3(N −1)3, is the discretization of the curl operator ∇×.

Remark 5.3. The matrix A is skew-symmetric in equation (5.5.4). Therefore
the APMH with J = A, H = I applied to the system (5.5.4), equals the APM and
preserves the first integrals Hk (Ū ) of Proposition 6.1.

Remark 5.4. Equation (5.5.4) can be rewritten as a Hamiltonian equation U̇ =
J HU , with H = J−1 A a symmetric matrix. Therefore we can also apply SLPM
and BJPM to system (5.5.3) and the energy H(U ) = 1

2U T J−1 AU is preserved.
However, APMH cannot be used here because H is not a positive definite matrix,
and the inner product 〈·, ·〉H is degenerate. This can lead to instabilities and
both global error and energy error might blow up during the iteration.
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Figure 5.5: The dimension of the problem is 384, namely N = 5. Left: the energy

error considered here is following from the energy in Remark 5.3. Middle: the method

with the restart technique is used, and the energy error is based on Remark 5.4. Right:
we consider L2 norm of the global error at t = T = 2 as a function of the dimension of

the Krylov subspace.

The left figure in Figure 5.5 shows that the energy error of APM is bounded

as stated in Remark 5.3. The middle one in Figure 5.5 shows that the energy

H(U ) = 1
2U T J−1 AU is preserved for BJPM as stated in Remark 5.4. In the

right panel of Figure 5.5, we report convergence plots for the methods. As the

dimension of the Krylov subspace increases, the global error decreases very

fast for all the methods. All the methods converge well also for larger end time,

such as T = 200. Also in this example, we observed a small linear growth in the

error of the first integrals, due to the propagation of round-off errors (figures

are not presented here).
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Appendix

Algorithm 5.1 Arnoldi’s algorithm with modified inner product

1: Input: a matrix J ∈ Rm×m , H ∈ Rm×m , a vector b ∈ Rm , a number n ∈ N
and a tolerance ι ∈R.

2: A = J H

3: v1 = b/〈b,b〉
1
2
H

4: for j = 1 : n do
5: compute w j = Av j
6: for k = 1 : 2 do
7: for i = 1 : j do
8: hi , j = 〈vi , w j 〉H
9: w j = w j −hi , j vi

10: end for
11: end for
12: h j+1, j = 〈w j , w j 〉

1
2
H

13: if h j+1, j < ι then
14: Stop
15: end if
16: v j+1 = w j /h j+1, j
17: end for
18: Output: Tn ,Vn , vn+1,hn+1,n .

Algorithm 5.2 Algorithm to generate Vn (by QR factorization)

1: Matrix A ∈R2m×2m , vector b ∈R2m , number n ∈N.
2: v = b
3: Kn = v
4: for i = 1 : n −1 do
5: v = Av
6: Kn = [Kn , v]
7: end for
8: K q

n = Kn(1 : m, :)
9: K p

n = Kn(m +1 : 2m, :)
10: [Q,R] = qr ([K q

n ,K p
n ])

11: Vn =Q(:,1 : k), k = rank([K q
n ,K p

n ]) ≤ 2n
12: Output Vn .
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Rounding error analysis for the energy error
of APMH

In this chapter, we study the propagation of roundoff errors in the energy error

of the modified Arnoldi projection method in Paper 4 in this thesis. In the first

section, we recall the method applied to a linear Hamiltonian system. In the

second section, we consider an analysis for the propagation of rounding errors

in the computation of numerical energy.

6.1 Energy-preserving methods for linear Hamiltonian
systems based on Arnoldi algorithm

Consider a linear Hamiltonian initial value problem of the form

ẏ = f (y) = J H y, y(t0) = y0 ∈Rm , J = Jm =
[

0 Im/2−Im/2 0

]
, (6.1.1)

where m is an even number, and H ∈Rm×m is a symmetric and positive definite

matrix. We denote by APMH the projection method based on the Arnoldi

algorithm with respect to the inner product 〈·, ·〉H [3]. With this inner product,

the Arnoldi algorithm generates an H-orthonormal basis. Suppose the first n
vectors of this basis are stored in the m×n matrix Vn . The algorithm generates

an n ×n skew-symmetric matrix Tn such that

AVn =VnTn +wn+1eT
n , wn+1 = hn+1,n vn+1,

Vn
T HVn = In , Vn

T H wn+1 = 0.

The APMH method is to solve y for (6.1.1) by considering the Krylov projec-

tion method

yH :=Vn z, where z satisfies ż = Tn z, z(t0) =Vn
T H y0. (6.1.2)

Proposition 6.1. [3] The numerical approximation yH for the solution y of
(6.1.1) preserves the energy H(yH ) = 1

2 yT
H H yH , and also the following first

integrals:

Hk (yH ) = 1

2
yT

H HVn(Tn)2kVn
T H yH ,

for all k = 0,1, . . . .

In particular, we focus on the energy preservation here. Note that one can

not get the exact solution for z in the projected system (6.1.2), and a numerical
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time-stepping method must be used. To ensure the energy preservation of

APMH, an energy-preserving numerical method is preferred for solving z, and

we choose the midpoint rule in our experiments in [3]. Even if the APMH is an

energy-preserving method for linear Hamiltonian systems, a drift in the energy

at the level of roundoff can be observed in numerical experiments, see [3]. In

this note we consider an analysis of the propagation of roundoff errors in the

preservation of energy for this Krylov projection method.

6.2 Propagation of rounding errors in the energy

Let us denote the conversion of a real number into its floating point representa-

tion by fl(·). Consider the time interval [0,T ] and denote the time step size by

Δt = T /N , where N is the number of the iterations for solving y(T ). From the

analysis in [4], a better choice of the time step size was to be Δt := 2−s , where

s satisfies 2−s‖Tn‖1 ≤ 1/2. We chose s to be the minimum positive negative

number such that 2−s‖Tn‖ ≤ 1/2 for the experiments in [3]. In the next, we will

introduce two lemmas which provide the basis for our analysis.

Lemma 6.1. [2] Denote the machine precision by ε, for two vectors x, y ∈Rm ,
we have

|fl(xT y)−xT y | ≤ mε|xT ||y |+O(ε2).

Lemma 6.2. [2] Consider a n×m matrix A and a m×r matrix B , and suppose
mε≤ 0.01, we have

|fl(AB)− AB | ≤ mε|A||B |+O(ε2).

In section 6.1 we have seen that the APMH method can be divided in three

main parts:

• Performing the modified Arnoldi algorithm to compute Vn and Tn ;

• Finding the numerical solution of the projected system (6.1.2) with the

midpoint rule, which amounts to applying the matrix C = (I−Δt
2 Tn)−1(I+

Δt
2 Tn) to a vector repeatedly several times zk =C zk−1;

• Calculating yk =Vn zk , for k = 1,2, . . . , N .

Propagation of rounding errors occurs in all the three parts. The rounding errors

in the first part has already been determined by the matrix factorization. So in

this note we will focus on the roundoff analysis in the last two parts. Let us
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suppose fl(Vn) =Vn +εE1, and fl(Tn) = Tn +εE2 by the modified Arnoldi algo-

rithm [3]. According to the roundoff analysis in [1] and by similar calculation,

we can deduce that |E1| and |E2| depends on A and y0. Let us also assume that

fl(C ) =C +εE3. By our calculation |E3| depends on Δt , Tn and E2. In this note,

we focus more on the propagation of rounding errors in applying the midpoint

rule to solve zk and yk , for k = 1,2, . . . , and we will not present the details about

the bound of |E1|, |E2| and |E3|. In the following two propositions, we will

consider the propagation of rounding errors at each time step tk = kΔt based

on the relations fl(Vn) =Vn +εE1, fl(Tn) = Tn +εE2 and fl(C ) =C +εE3 in the

computation of zk for k = 0,1, . . . , N .

Proposition 6.2. Let erz0
:= fl(z0)− z0, then we have

erz0 = εE T
1 H y0 +V T

n b01 +b02 +O(ε2), (6.2.1)

with |b01| ≤ mε|H ||y0|+O(ε2), and |b02| ≤ mε|V T
n ||H ||y0|+O(ε2).

Proof. In exact arithmetics we would compute z0 = V T
n H y0, however, taking

the rounding errors into account, we get

fl(z0) = fl
(
fl(Vn)fl(H y0)

)= (Vn +εE1)T (H y0 +b01)+b02,

where

|b01| ≤ mε|H ||y0|+O(ε2),

|b02| ≤ mε|V T
n +εE T

1 ||H y0 +b01|+O(ε2) ≤ mε|V T
n ||H ||y0|+O(ε2).

Therefore we obtain

erz0 = εE T
1 H y0 +V T

n b01 +b02 +O(ε2),

|erz0 | ≤ ε|E T
1 ||H ||y0|+2mε|V T

n ||H ||y0|+O(ε2).

Proposition 6.3. Let erzk
:= fl(zk )− zk , and bk+1 := fl(zk+1)−fl(C )fl(zk ), then

we have

erzk =C k erz0 +ε
k−1∑
i=0

(C k−1−i E3C i )z0 +
k∑

i=1
C k−i bi +O(ε2), k = 1,2, . . . , N ,

(6.2.2)

with |bi | ≤ nε|C |i |z0|+O(ε2), i = 1,2, . . . ,k.

Proof. This proof is done by induction on k. For k = 1, the exact computation
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gives z1 =C z0, however, taking the rounding errors into account, we have

fl(z1) = (C +εE3)(z0 +erz0 )+b1,

where |b1| ≤ nε(|C |+ε|E3|)(|z0|+ |erz0 |)+O(ε2) = nε|C ||z0|+O(ε2). This im-

plies that

erz1 =Cerz0 +εE3z0 +b1 +O(ε2).

Suppose (6.2.2) is satisfied for k. From

fl(zk+1) = fl(C zk ) = (C +εE3)(zk +erzk )+bk+1,

where |bk+1| ≤ nε(|C |+ε|E3|)(|zk |+ |erzk |)+O(ε2) = nε|C |k+1|z0|+O(ε2), we

can obtain

erzk+1 =Cerzk +εE3zk +bk+1 +O(ε2)

=C
(
C k erz0 +ε

k−1∑
i=0

(C k−1−i E3C i )z0 +
k∑

i=1
C k−i bi

)+εE3zk +bk+1 +O(ε2),

=C k+1erz0 +ε
k∑

i=0
(C k−i E3C i )z0 +

k+1∑
i=1

C k+1−i bi +O(ε2).

In the next proposition, we will consider the rounding error in yk based on

the above analysis for zk .

Proposition 6.4. Let eryk
:= fl(yk )− yk , and ck := fl(yk )−fl(Vn)fl(zk ), then we

have

eryk =Vnerzk +εE1zk + ck +O(ε2), for k = 1,2, . . . , N . (6.2.3)

Proof. Recall that yk =Vn zk and with the rounding errors considered, we have

fl(yk ) = (Vn +εE1)(zk +erzk )+ ck ,

where |ck | ≤ nε(|Vn |+ε|E1|)(|zk |+ |erzk |)+O(ε2) = nε|Vn ||zk |+O(ε2). There-

fore, we obtain

eryk =Vnerzk +εE1zk + ck +O(ε2).

Based on the estimation of rounding error in yk , we give the rounding error

in the energy in the following proposition.

116



6.2 Propagation of rounding errors in the energy

Proposition 6.5. Let erHk
:= fl(H(yk )) −H(yk ), with H(yk ) = 1

2 yT
k H yk de-

fined as in Proposition 6.1, and dk = fl(H yk ) − Hfl(yk ), fk = fl(yT
k H yk ) −

fl(yk )T fl(H yk ). We then have

erHk = 2yT
k Heryk + yT

k dk + fk +O(ε2), for k = 1,2, . . . , N . (6.2.4)

Proof. From fl(yk ) = yk +eryk , we have

fl(H yk ) = H yk +Heryk +dk ,

where |dk | ≤ mε|H |(|eryk |+ |yk |)+O(ε2) = mε|H ||yk |+O(ε2). Therefore we

get

fl(yT
k H yk ) = (yk +eryk )T (H yk +Heryk +dk )+ fk ,

erHk = 2yT
k Heryk + yT

k dk + fk +O(ε2).

where

| fk | ≤ mε(|eryk |+ |yk |)T (|H ||eryk |+ |H ||yk |+ |dk |)+O(ε2)

= mε|yk |T |H ||yk |+O(ε2).

In order to give the rounding error in energy error, we will consider the

rounding error in the original energy in the following proposition.

Proposition 6.6. Let erH0
:= fl(yT

0 H y0)−yT
0 H y0, g0 := fl(H y0)−H y0 and p0 :=

fl(yT
0 H y0)− yT

0 fl(H y0), we have

erH0 = yT
0 g0 +p0, (6.2.5)

with |g0| ≤ mε|H ||y0|+O(ε2) and |p0| ≤ mε|yT
0 ||H ||y0|+O(ε2)

Proof. From fl(H y0) = H y0 + g0, where |g0| ≤ mε|H ||y0|+O(ε2), we have

fl(yT
0 H y0) = yT

0 (H y0 + g0)+p0,

where |p0| ≤ mε|yT
0 ||H y0+g0|+O(ε2) = mε|yT

0 ||H ||y0|+O(ε2). Therefore we

can obtain

erH0 = yT
0 g0 +p0.
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Based on the results in proposition 6.5 and 6.6, we finally give the rounding

error in the energy error in the following theorem.

Theorem 6.1. Let erk := fl(
yT

k H yk−yT
0 H y0

yT
0 H y0

) and

β1 =
2ε
∑k−1

i=0 zT
0

(
(C T )1+i E3C i

)
z0

zT
0 z0

β2 =
2
∑k

i=1 zT
0 (C T )i bi

zT
0 z0

β3 =
2zT

0 erz0 +2yT
k H(εE1zk + ck )+ yT

k dk + fk − (yT
0 g0 +p0)

zT
0 z0

then we have

erk =β1 +β2 +β3 +O(ε2), for k = 1,2, . . . , N . (6.2.6)

Proof. From (6.2.4), (6.2.5) and (6.2.3), (6.2.2), and using C T C = I , yT
k H yk =

yT
0 H y0, we can obtain

fl(yT
k H yk − yT

0 H y0)

= erHk −erH0 +O(ε2)

= 2yT
k Heryk + yT

k dk + fk − (yT
0 g0 +p0)+O(ε2)

= 2yT
k H(Vnerzk +εE1zk + ck )+ yT

k dk + fk − (yT
0 g0 +p0)+O(ε2)

= 2zT
0 (C T )k erzk +2yT

k H(εE1zk + ck )+ yT
k dk + fk − (yT

0 g0 +p0)+O(ε2)

= 2ε
k−1∑
i=0

zT
0

(
(C T )1+i E3C i )z0 +2

k∑
i=1

zT
0 (C T )i bi +2zT

0 erz0

+2yT
k H(εE1zk + ck )+ yT

k dk + fk − (yT
0 g0 +p0)+O(ε2).

Note that yT
0 H y0 = zT

0 z0, and

fl(
yT

k H yk − yT
0 H y0

yT
0 H y0

) = fl(yT
k H yk − yT

0 H y0)

yT
0 H y0

+O(ε2),

then we can obtain (6.2.6).

In the next proposition, we show that the term β3 in theorem 6.1 can be

bounded by a constant independent of the simulating time.
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6.2 Propagation of rounding errors in the energy

Proposition 6.7.

|β3| ≤
(
2σmax(|E T

1 ||H ||Vn |)+4mσmax(|V T
n ||H ||Vn |)+2n +2m

)
ε,

where σmax(A) is the largest eigenvalue of A.

Proof. Conisder ck in Proposition 6.4, and dk , fk in Proposition 6.5, we can

suppose that there exist c̃k , d̃k and f̃k such that ck = nεVnc̃k with |c̃k | ≤ |zk |,
dk = mεHVnd̃k with |d̃k | ≤ |zk | and fk = mεyT

k HVn f̃k with | f̃k | ≤ |zk |. Thus,

we obtain

2yT
k Hck + yT

k dk + fk = εzT
k V T

n HVn(2nc̃k +md̃k +m f̃k ),

|2yT
k Hck + yT

k dk + fk | ≤ (2n +2m)ε|zk |T |zk |.
(6.2.7)

By using (6.2.1) and (6.2.5), we have

|2zT
0 erz0 − (yT

0 g0 +p0)| ≤ 2ε|z0|T |E T
1 ||H ||Vn ||z0|+4mε|z0|T ||V T

n ||H ||Vn ||z0|
(6.2.8)

Note that zT
k zk = zT

0 z0, and then from (6.2.7) and (6.2.8), we can obtain

|β3| = |2zT
0 erz0 +2yT

k H(εE1zk + ck )+ yT
k dk + fk − (yT

0 g0 +p0)|/|zT
0 z0|

≤ (2σmax(|E T
1 ||H ||Vn |)+4mσmax(|V T

n ||H ||Vn |)+2n +2m
)
ε.

We conclude this section with a remark which connects the analysis in

theorem 6.1 and the numerical experiment in Figure 5.2 (the middle figure) in

chapter 5.

Remark 6.1. Note from (6.2.6) that the rounding errors in the relative energy
error mainly consists of three terms, β1, β2 and β3. From proposition 6.7, the
bound of β3 does not increase with the number of iteration N . However, we
see clearly that β1 and β2 increases with N , or we say with T if Δt = T /N is
fixed. Therefore β1 and β2 are the dominant terms in the rounding error of the
energy error. They are mainly due to the propagation of the rounding errors in
the calculation of C N z0. When we calculate C N z0, we need to multiply with
matrix C for N times. Consider that there is an error in the calculation of C , i.e.
εE3 = fl(C )−C . The rounding errors in the calculation for C N z0 comes from
two aspects: one is due to the propagation of εE3 which results in the term1

1
2β1 in (6.2.6); the other is due to the errors by matrix multiplications in C N z0

1The rounding error in the energy (z0C N )T V T
n HVnC N z0 C N z0 will be doubled compared

to the rounding error in C N z0. Therefore we have the 1/2 in front of β1 and β2.

119



Appendix

which leads to 1
2β2 in (6.2.6). Therefore, a reasonable bound for |β1 +β2| is

N · ‖fl(C )T C − In‖2, which is close to ‖(I − T
2 Tn)−1(I + T

2 Tn)‖2. The numerical
experiment, namely the middle figure of Figure 5.2 in chapter 5 in this thesis,
coincides with this analysis.
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