
Access control of NUTS uplink

Sandesh Prasai

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Stig Frode Mjølsnes, ITEM
Co-supervisor: Roger Birkeland, IET

Department of Telematics

Submission date: July 2012

Norwegian University of Science and Technology

PROBLEM DESCRIPTION

 Name of student: Sandesh Prasai

Course: TTM4905, Master Thesis

Thesis title: Access control of NUTS uplink

Thesis description:

The radio link protocol of the NUTS satellite will probably be (some version of) AX.25. This

protocol does not give us any means of authenticate commands. It has been proposed to use

CubeSat Space Protocol (CSP) to transfer data between internal modules in the satellite, as well

as between the satellite and the ground station. The student should study previous analysis work

on the radio link access control and CSP, and then propose a design and an implementation of

the CSP for the satellite microcontroller.

 In addition, security in a proposed network of ground stations (GENSO) could be addressed

and discussed.

Department: Department of Telematics

Supervisor: Roger Birkeland

Responsible Professor: Stig Frode Mjølsnes

Date: 04/07/2012

ABSTRACT

Access control of NUTS uplink

The goal of this thesis is to investigate the cryptographic parameters in access control of NTNU

Test Satellite (NUTS), and to make recommendations for secure uplink of NUTS. NUTS is a

nano-satellite popularly known as CubeSat which is being developed by NTNU. The ease and

low cost in construction cost shows that there is growing demand for developing and launching

CubeSat. This thesis analyzed the communication protocol, security protocol, protection

against replay and integrity of uplink commands for NUTS.

The brief introduction of NUTS and requirement of security parameters were presented along

with the scope of thesis. The analysis of the security protocols used by similar CubeSat projects

was done, nonetheless very few had implemented a security protocols. The security issues in

wireless communication systems were discussed with the advantages and disadvantages of

different security protocols. Also, NUTS hardware and software platform was discussed to

insight the NUTS architecture.

The integrity protection was focused than the confidentiality of message in uplink. Therefore,

this thesis analyzed the threats in protocol adopted for communication between internal

modules of satellite as well as between space and ground station. In addition, the possible ways

of mitigation were explained. Here, three different hash functions were tested in AVR platform

to check the computation efficiency in microcontroller. The efficient hash was proposed to use

in HMAC for integrity protection. The different key exchange mechanisms were also discussed

to address the key distribution and resynchronization between satellite and ground segment.

Finally, some modifications were recommended in existing protocol that makes the system

secure against the integrity and replay. The results also show that the addition of sequence

number to check the freshness of message, HMAC code and CRC is feasible to transmit within

AX.25 frame. Last but not the least, further modification to this research and possible future

extension were proposed.

ACKNOWLEDGMENT

First and foremost, I would like to thank my department for giving me an opportunity to work

with Access control of NUTS uplink and department of electronics for offering this thesis topic.

I am pleased to express my sincere gratitude towards Professor Stig Frode Mjølsnes at

department of Telematics, Norwegian University of Science and Technology (NTNU), for his

excellent guidance and readiness to help during my work. His valuable feedback and

suggestions throughout the thesis and report writing phase were incredible. Further, I would

like to pour sincere thanks to my co-supervisor Roger Birkeland for his immense help during

entire thesis phase and providing valuable input in my work.

I wish to thank Professor Danilo Gligoroski for providing the source code of hash functions

BMW and Edon. His guidance in interpreting result was very helpful for concluding output.

Last but not the least, I would like to thank my friends and may family who helped me directly

and indirectly to accomplish this thesis.

Sandesh Prasai

Trondheim, Norway,

PREFACE

This text is submitted as partial fulfillment of the requirements of degree in MSc in Telematics

at the Norwegian University of Science and Technology (NTNU). This master thesis has been

carried out at the Department of Telematics under the co-operation with Department of

Electronics (NTNU) during the period February from 2012 to July 2012 under the guidance

and supervision of Professor Stig Frode Mjølsnes (Telematics department) and Mr. Roger

Birkeland (Project manager of NUTS CubeSat). I would like to thank both of them for their

immense guidance and feedback throughout my work. Their comments have helped me a lot to

accomplish this thesis with fruitful outcome.

Trondheim, Norway, July 2012

Sandesh Prasai

1

TABLE OF CONTENTS

Contents
Problem Description .. i

Abstract .. iii

Acknowledgment ... v

Preface .. vii

Table of Contents ... 1

List of figures ... 5

List of Tables .. 7

Acronyms ... 9

Chapter 1... 11

Introduction .. 11

1.1 Scope of thesis ... 12

1.2 Methodology .. 13

1.3 Similar Projects .. 14

1.4 Summary .. 15

Chapter 2... 17

Theory behind CubeSat and security ... 17

2.1 Introduction to CubeSat: .. 17

2.2 NUTS background ... 18

2.3 Implementation Platform ... 19

2.3.1 Microcontroller AVR32UC3 ... 19

2.3.2 FreeRTOS ... 20

2.3.3 AVR Studio 5.1 .. 20

2.4 Ground Segment equipment .. 21

2.5 Security Issue ... 21

Chapter 3... 31

Uplink threat analysis .. 31

2

3.1 CubeSat Space Protocol (CSP) .. 31

3.2 eXtended Tiny Encryption Algorithm (XTEA) .. 33

3.3 Integrity of message ... 33

3.4 Choice of hash function ... 33

3.4.1 Attacks on SHA1 .. 33

3.4.2 Alternative digests function: .. 34

3.4.3 Efficiency and code size comparison ... 35

3.5 Cyclic redundancy check for error detection .. 40

3.6 Secure Key Exchange Mechanisms .. 41

3.6.1 Symmetric Key Distribution .. 41

3.6.2 Merits and demerits of Symmetric Key Distribution 43

3.6.3 Asymmetric Key Distribution .. 44

3.6.4 Merits and demerits of Asymmetric Key Distribution 45

3.6.5 Why Symmetric key and Why not Public key? ... 46

3.7 Countermeasures against replay .. 46

3.8 GENSO .. 47

Chapter 4... 49

Proposed csp for secure uplink in nuts .. 49

4.1 Key size and hash function .. 49

4.2 Countermeasures against replay .. 50

4.3 Modification in CSP header .. 53

4.4 Length of Sequence field ... 54

4.5 Sequence number synchronization .. 54

4.6 Frame size considering sequence number ... 58

4.7 Transmitting with Time Stamp .. 59

Chapter 5... 61

Conclusion .. 61

5.1 Discussion and conclusion ... 61

5.2 Further enhancement.. 62

References .. 65

Appendix A .. 69

3

Proposed Telemetry signals for NUTS ... 69

Command set format .. 75

Request format ... 75

Response format ... 76

4

5

LIST OF FIGURES

Figure 1: SwissCube AX.25 frame format, taken from [28] .. 15

Figure 2: CubeSat Goals .. 17

Figure 3: Symmetric encryption where Alice encrypts with secret key K and Bob decrypts with

the same shared secret key K... 22

Figure 4: Asymmetric encryption and decryption, taken from [8] 24

Figure 5: Authentication in asymmetric encryption algorithm, taken from [8] 24

Figure 6: An example of man in the middle attack in which Darth intercepts the communication

between Alice and Bob .. 25

Figure 7: Message authentication process, taken from [8] ... 27

Figure 8: HMAC generation, taken from [8] .. 28

Figure 9: CSP version 1+ header ... 32

Figure 10: CSP Frame ... 32

Figure 11: Performance of Three hash functions in HMAC using 20 byte key 39

Figure 12: Performance of Three hash functions in HMAC using 64 byte key 39

Figure 13: Proposed NUTS Secure Uplink ... 50

Figure 14: Proposed NUTS secure receiver .. 52

Figure 15: Modified CSP header, SN flag used in 27
th

 bit ... 53

Figure 16: Algorithm checks SN flag to distinguish the types of received command 57

6

Figure 17: NUTS AX.25 radio packet ... 59

7

LIST OF TABLES

Table 1: Computational speed of Edon-R256 for different input and key size 36

Table 2: Computational speed of BMW-256 for different input and key size 37

Table 3: Computational speed of SHA-1 for different input and key size 38

Table 4: Request command format from NUTS draft .. 55

Table 5: Proposed Request command description .. 55

Table 6: Response format from NUTS draft ... 55

Table 7: Proposed response description .. 55

‘

8

9

ACRONYMS

NUTS NTNU Test Satellite

LEO Lower Earth Orbit

CalPoly California Polytechnic State University

SSDL Space Systems Development Laboratory

NAROM Norwegian Centre for Space-related Education

OBC ON Board Computer

ADCS Attitude Determination and Control System

AES Advance Encryption Standard

SHA-1 Secure Hash Algorithm-1

BMW Blue Mid-night Wish

MAC Message Authentication Code

HMAC Hash-based Message Authentication Code

CSP CubeSat Space Protocol

XTEA Extensible Tiny Encryption Algorithm

CRC Cyclic Redundancy Check

10

TTP Trusted Third Party

DoS Denial of Service

OTP One Time Password

NIST National Institute of Standards and Technology

SUPERCOP System for Unified Performance Evaluation Related to

Cryptographic Operations and Primitives

TCP Transmission Control Protocol

USB Universal Serial Bus

GENSO Global Education Network for Satellite Operations

AUS Authentication Server

MCC Mission Control Client

GSS Ground Station Server

11

 CHAPTER 1

INTRODUCTION

This master thesis is carried out on the base of project report done by master student Vilius

Visockas on date 2011-2012 [17]. Since, both the works are based on the same platform; it also

possesses similar concepts of uplink security. However, this report is concentrated in the

authentication and integrity in NTNU Test Satellite (NUTS) uplink rather than encryption.

Absence of security parameters in a payload results unauthorized user

(hacker/attacker/malicious user) to retransmit the command or tamper the payload. They can

intentionally make CubeSat to execute a false command and control upon the resources or even

destroy the CubeSat. This may leads to denial of service from satellite or even loss of the

satellite permanently. Therefore, it is necessary to protect our system to get access from such

attacker. There are several cryptographic approaches to protect against the attacker. Here, we

preferred to protect integrity of source and data rather than encryption. Encryption only protects

the confidentiality of message but fails to protect integrity. Meaning that, it has no confidence

from where the message is coming and the originality of data. In this scenario, it is very

important to protect the integrity of message. In NUTS, we decided to use HMAC based

integrity protection. NUTS use CubeSat Space Protocol (CSP) to communicate between the

internal module as well as space and ground segment. This CSP includes SHA-1(secure hash

algorithm-1) for integrity protection but we also checked the feasibility of other two different

hash functions. In addition, we solved our major concern of replay attack with the

implementation of sequence number (SN) in every CSP packet. We also analyzed the

feasibility of SN and HMAC code in CSP and radio packets. The analyses of different key

exchange mechanisms are also presented which we found infeasible to use trusted third party.

Finally, the design of uplink transmitter from the ground segment and receiver of satellite

segment were also presented. All these work were done within the limitation of CubeSat

constraints and making system as simple as possible which was the great challenge.

12

This thesis has five chapters in which first chapter introduces NUTS briefly and the scope of

this thesis. The objective and methodology are explained in this chapter which also includes the

introduction of similar successful projects. The hardware and software platform used in NUTS

project are explained in chapter two. Later part of this chapter points out the need of security in

satellite communication systems.

The detail security analysis of cryptographic algorithms used in uplink is analyzed in chapter

three. It also includes the analysis and necessity of secure hash function and key exchange

mechanism. In chapter four, the best possible mechanisms and techniques are listed and

explained which mitigates the security threats. The design of uplink and the downlink is also

proposed in this chapter. Finally, chapter five consists of conclusion and the possible extensions

of this work in future.

1.1 Scope of thesis

In every communication systems, the information should be protected in both the ways (i.e.

uplink and downlink). However, in case of NUTS, the uplink data is only protected whereas

downlink data is not encrypted at all. It contains educational data like weather information,

pictures and videos of space which can be accessed by tuning a correct frequency. Thus, it is

not vulnerable to access the downlink data from any other stations. Nevertheless, the uplink

command must be sent by legitimate user. The task of employing a successful access control

solution lies in determining the appropriate authentication and authorization mechanisms. On

Board Computer (OBC) in CubeSat should verify the command or data received is being

transmitted from the legitimate ground station. In this thesis, an uplink security of CubeSat is

analyzed and the changes in CubeSat Space Protocol (CSP) are proposed. For secure uplink,

the encryption algorithm is untouched whereas authentication and integrity is explained in

detail.

This thesis work is carried out within the following objectives;

 To analyze the current CSP protocol and recommend the best approach for NUTS

access control and uplink security.

13

 To substitute the hash function SHA-1 with either Blue Midnight Wish (BMW) or

Edon-R in CSP for better security and efficiency in execution.

 To find a solution to the replay protection by using some counter mechanism

 To address the problem of resynchronization.

Current CSP protocol uses SHA-1 in HMAC and XTEA as encryption algorithm. Still, they

cannot guarantee against the replay. The idea behind the substitution of message digest function

SHA-1 by BMW or Edon-R is to use a different hash function which is efficient in terms of

speed and size of code with higher security. To avoid more power consumption in satellite

which is power limited, an efficient but highly secure hash function is proposed. The detail

explanation is presented in chapter three about the choices of hash function. Hash function

protects the integrity of the message which is also explained in chapter two. Resynchronization

is an important issue in long distance wireless propagation. Attenuation and degradation of

signals by interference make the signal unreachable in the destination. Similarly, delay in the

propagation should be considered that breaks the synchronization in communication between

source and destination. These effects are considered in the later chapter and the best approach

for security and synchronization are proposed for NUTS.

1.2 Methodology

To test the computational speed and the size of hash function, we compiled all the three hash

functions in Atmel AVR Studio 5.1 and Microsoft Visual Studio 11. We used visual studio to

cross check the output of HMAC with AVR studio. After successful compilation of the code in

Atmel AVR Studio 5.1 which was written in C, a hex code is generated. We then checked the

size of generated hex file of each hash algorithm to determine the size content by it. This is the

size of program code that resides in the memory of microcontroller. The reason we are focused

towards the memory of microcontroller is due to limitation in its internal memory.

AT32UC3A3256 which has 256 Kbytes is only memory which is responsible for processing

and storing its software [11]. Hence, it is very important to consider the size of code during the

choice of hash function. However, NUTS is working to expand external memory up to 16 MB

which will eliminate the memory limitation problem. The computational speed is determined

14

simply by calculating the clock pulse difference before and after the executing source code. In

other words, hashing the messages of different size and taking the average clock pulse required

to digest the message. Moreover, Atmel AVR Studio 5.1 is also used to benchmark the

execution speed.

Finally, different mechanisms were analyzed against the replay protection and key exchange

mechanism. The most efficient key exchange mechanism, integrity protection and replay

protection approach for the NUTS CubeSat was discussed and proposed.

1.3 Similar Projects

It is found that the CubeSats launched up to this date has not been focused intensely in its

security. Most of the CubeSats uses AX.25 protocol and cyclic redundancy check (CRC) for

radio packet transmission and error detection respectively. AX.25 is a link layer protocol which

is used to transmit radio packets among the sender and receiver. Data is encapsulated in a frame

and transmitted as a packet [26], the maximum packet size transmitted is 256 bytes. It provides

very low level of security through bits in control field with checking the frame order, sequence

and the arrival timing. Furthermore, CRC (Cyclic Redundancy Check) is used as an error

detecting code in communication systems. The algorithm which is based on cyclic codes will

generate a sequence of bits. These bits are appended with the original data during the

transmission. Similarly, at the receiving end the CRC is recalculated and compared with the

received one. It keeps the integrity of the message up to some level. However, it is not

sufficient to protect against an intentional attacker. It is possible for an attacker to alter the

message, recalculate the CRC value and retransmit towards the destination.

SwissCube

It is a Swiss CubeSat designed to conduct research into nightglow within Earth’s atmosphere

[28]. It uses AX.25 protocol to frame format in uplink and downlink as well. It used CRC with

polynomial x
16

 + x
12

 + x
5
 + 1 to check the error in payload [28].

15

Figure 1: SwissCube AX.25 frame format, taken from [28]

In figure 8, frame sequence check value of 16 bit is assigned for CRC. But it has not

implemented any additional security measures against integrity protection and replay.

AUSAT II

This CubeSat is built and operated by students from Alborg University in Denmark. It uses

modified AX.25 protocol and AAUSAT-II protocol which was developed by them [30].

AAUSAT –II protocol contains the features of acknowledgement from satellite to earth station

after the reception of data frames. Reception of NACK enables earth segment to resend data

frame [31]. There is no security mechanism implemented besides error checking with ACK and

NACK in AUSAT-II.

AubieSat-1

AubieSat-1 is the first student built CubeSat in Auburn University with volume and weight of

1000 cm3 and 1.03-kg respectively. This CubeSat studies radio wave propagation through the

ionosphere test solar panel protective films [32]. Besides Morse code, it does not have any

cryptographic approaches implemented to protect against the attacker or malicious user [33].

1.4 Summary

The outcome of this research work is expected to decide the implementation of security

features in uplink of NUTS. Security parameters used in CubeSat Space Protocols are analyzed

and some new changes are proposed. It considers the sequence number to protect against replay

16

and HMAC code to protect integrity. It was found that resynchronization of sequence number

was an issue in long distance wireless propagation and this could be address by implementation

of time stamp. Therefore, time stamping can be a better solution than sequence number.

17

 CHAPTER 2

THEORY BEHIND CUBESAT AND SECURITY

2.1 Introduction to CubeSat:

CubeSat is a miniaturized satellite launched into a low-earth orbit (LEO) and used for

education and scientific purpose. The idea of launching small satellite named CubeSat was first

presented by California Polytechnic State University (CalPoly) and the Space Systems

Development Laboratory (SSDL) at Stanford University. They targeted University students to

provide knowledge about space science exploration [2]. CubeSats are constructed within many

constraints which are shown in figure 2 [1].

Figure 2: CubeSat Goals

18

After the successful launch of their CubeSat, several other Universities are following this trail

by developing and deploying this sort of nano-satellite for space exploration and educational

purposes.

The motivations behind popularity of CubeSat are as follows [3];

 The advancement of technology has greatly decreased the electronic chip size

resulting in the production of complex and very small integrated circuits (ICs).

 Enormously increasing in the processing capability and reduce the power

consumption.

 Student from the different faculties are involved in making CubeSat.

 It is cost friendly.

 Lower earth orbit allows higher data rates with less error because of short

communication distance.

2.2 NUTS background

NTNU Test Satellite (NUTS) is the part of the Norwegian Student Satellite program which is

hold by Norwegian Centre for Space-related Education [NAROM]. The goal of this project is

to design, manufacture and launch a double CubeSat by 2014 [4]. It project is being carried out

by students from various departments like; IET (Department of Electronics and

Telecommunication), ITK (Department of Engineering Cybernetics), IPM (Department of

Engineering Design and Materials), PHYS(Department of Physics), IDI (Department of

Computer and Information Science) and ITEM (Department of Telematics). The project is run

and managed by IET but students from different departments have their own Professor from

respective department as a supervisor. The satellite lab and ground station room are located in

the fifth floor which serves common place for all project members to work together, study,

weekly progress meeting etc. Each student is working on their own respective area. These areas

are categorized as communication, internal data bus OBC and power management, ACDs,

payload, mechanics and system. Including NUTS, CUBEstar at university of Oslo and

19

HINCube at Narvik University College are two other CubeSat projects run by NAROM.

However, NUTS have its own model including size (10*10*20) cm, communication bus,

security protocols etc.

2.3 Implementation Platform

2.3.1 Microcontroller AVR32UC3

AVR32UC3 is a 32-bit RISC microprocessor architecture designed by Atmel. It was designed

by Øyvind Strøm and Erik Renno in Atmel's Norwegian design center. In this microcontroller,

most instructions are executed in single-cycle. It is the most efficient microcontroller with high

performance and low power consumption [5].

Some of the key features of AVR UC3 are listed below [6];

 Software Library — All UC3 devices are supported by AVR Software Framework, a

complete library of device drivers and middleware.

 Connectivity — USB device and host, Ethernet MAC, SDRAM, NAND flash, and

fast serial interfaces are ideal for complex applications.

 Arithmetic performance — Integrated FPU increases precision and dynamic range in

digital signal processing.

 High data throughput — Peripheral DMA, multi-layered databus and large on-chip

SRAM remove bottlenecks in high-speed communication.

 Low power consumption — picoPower® technology delivers the industry's lowest

power consumption in active and sleep modes.

In NUTS project, we are using AT32UC3A3256 microcontroller which has inbuilt software

library. Out of all, encryption library is the one function that supports cryptographic functions

for adding security to any application [6]. The library contains AES, 3DES, MD2, MD4, MD5,

SHA1, SHA256, RSA1024, X.509 TLS version 1 and SSL version 3. These cryptographic

20

functions can be used for secure communication between parties. These are also integrated with

other libraries like TCP/IP and USB communication stack.

2.3.2 FreeRTOS

FreeRTOS is a very small portable, robust and open source operating system. Therefore, it is

suitable for small applications on small platforms. Due to this feature many processors and

microcontrollers implement FreeRTOS. Some features of FreeRTOS that make it a most

popular operating system as explained in [7]are listed below.

 Very small memory footprint, low overhead, and very fast execution.

 Scheduler can be configured for both preemptive and cooperative operation.

 Co-routine support (Co-routine in FreeRTOS is a very simple and lightweight task

that has very limited use of stack)

 Trace support through generic trace macros. Tools such as FreeRTOS+ trace

(provided by the FreeRTOS partner Percepio) can thereby record and visualize the

runtime behavior of FreeRTOS-based systems. It includes task scheduling and kernel

calls for semaphore and queue operations.

The OBC in NUTS project uses FreeRTOS because CSP we using is ported to FreeRTOS.

2.3.3 AVR Studio 5.1

This toolkit is the Integrated Development Environment (IDE) for developing and debugging

embedded Atmel AVR applications. It is simple to use and supports all 8-bit and 32-bit AVR

microcontrollers. The AVR Studio® 5.1 editor simplifies code editing and let us to write code

more efficiently. This IDE connects easily to Atmel AVR debuggers and development kits for

C/C++ and assembler code [10].

21

2.4 Ground Segment equipment

In order to communicate with space segment, various software and hardware equipment are

required in ground segments. Those are mentioned as follows;

 Computer with Window XP operating system.

 Antenna Yagi-Uda for UHF and VHF.

 WXTrack and decoders for satellite tracking.

2.5 Security Issue

Here, some security related issues during communication between ground station and satellite

station are discussed. Similarly, simple principle of some cryptographic mechanism like

encryption, MAC and HMAC are also mentioned. However, this thesis is focused solely in

integrity.

Risk with unsecure satellite communication

There are, of course, risks to unsecured satellite based communication. Specifically, if one got

access to a satellite systems then that may damage the satellite or even disastrous consequences

may ensue. What might happen, for example, if sensitive military information is disclosed?

What if the upcoming information of natural disaster is prevented to transmit? What if high

level diplomatic communication is intercepted and replied? All these may lead to the unwanted

consequences. The likelihood of attack is low in educational satellite like CubeSat which is also

mentioned in project report by Vilius [17]. However, author in [25] describes gaming, profit or

revenge and ego as the source of the common motivations for an attack are popular in wireless

networks. According to [25], a hacker who enjoys his free time in tracking and attacking

other’s system is gaming attack. Attackers are also motivated with profit or revenge, such that

collapsing and corrupting of other’s system may lead to the profit or tangible reward to an

attacker.

22

Need of encryption

The area covered by the satellite beam on the earth surface is called footprint. The signal

transmitted by the satellite disperses in conical fashion as it approaches the surface of the earth.

Thus, signal may be made available over a wider geographic area than would be optimally

desirable. In the absence of encryption, anyone tuning the radio in that region can receive the

message. Confidentiality protects against the malicious disclosure of information but in

CubeSat only the uplink data are encrypted. The uplinked payload is encrypted in CubeSat so

that attacker without key cannot read the data easily. Generally, simple encryption algorithm is

preferred in CubeSat due to its design. The downlink data is kept unencrypted so that anyone

can tune the correct frequency and extract the information. This is because; it contains only

educational information about space behavior which does not need much that of security like

that of Defense System.

Symmetric Encryption

Also known as private key encryption in which same key is used for both encrypting and

decrypting of message. For instance, if party A wants to communicate with party B via satellite

using symmetric encryption method, then both A and B must agree on a unique secret key. As

long as the key remains secret, it serves to authenticate both parties. Advance Encryption

Standard (AES), RC4, Data Encryption Standard (DES) and Triple DES or 3DES are the

commonly used symmetric encryption algorithms.

Figure 3: Symmetric encryption where Alice encrypts with secret key

K and Bob decrypts with the same shared secret key K

23

From Figure 3, Alice uses her secret key to encrypt the message and transmits to Bob. Bob, as a

receiver decodes or decrypts the message sent by Alice with the same key shared with her.

Consider the case, if Alice also wants to communicate with third person Carla, then both of

them must agree on their own unique secret key. In this way, a symmetric encryption system

needs different and unique keys among all participants. Otherwise, Bob could masquerade as

Alice or Carla. Nevertheless, symmetric encryption is very simple to implement.

Problem with Symmetric Encryption:

A symmetric encryption needs to establish a unique secret key in advance among all other

communicating parties. This approach to satellite communication is annoying since, it should

have either pre-shared key or key exchange mechanism. The tradeoff exists in both mentioned

mechanisms. Pre-shared key mechanism will be destructive if the key is compromised and the

key exchange mechanism adds the complexity in the CubeSat system.

Asymmetric Encryption

In an asymmetric encryption, the keys used for encryption and decryption are different. For

instance, if Alice wants to setup Bob a secure communication, Alice first asks Bob for his

public key, which can be transmitted over an unsecured connection. Alice then encodes a secret

message using Bob’s public key. This message is secure because only Bob’s private key can

decode the message. To authenticate herself to Bob, she needs only to re-encode the entire

message using her own private key before transmitting the message to Bob. On receiving the

message, Bob can establish if it was sent by Alice, because only Alice’s private key could have

encoded a message that can be decoded with Alice’s public key. In this way it can protect

authentication of source to some extent.

24

Figure 4: Asymmetric encryption and decryption, taken from [8]

Figure 5: Authentication in asymmetric encryption algorithm, taken

from [8]

Problem with Asymmetric Encryption

Alice must request Bob’s public key over an unsecured channel. If this request is intercepted by

third person Darth, he can supply Alice with his own (i.e., Darth’s) public key. Alice will then

encrypt the message with Darth’s public key, after which she will re-encrypt the result of the

first encryption operation with her own private key. Alice will then transmit the encrypted

25

message to Bob, which will again be intercepted by Darth. Using Alice’s public key in

conjunction with his own private key, Darth will be able to decrypt and read the message.

The figure below summarizes the entire process of replay process in four steps:

1. Darth intercept message sent by Alice to Bob which contains the request of Bob’s

public key for secure communication setup.

2. Darth reply with his own public key.

3. Alice will re-encrypt the message with Darth’s public key and her own private key

and send to Darth, assuming Bob is the receiver.

4. Darth can decrypt and read the message.

Figure 6: An example of man in the middle attack in which Darth

intercepts the communication between Alice and Bob

In above figure, it is possible for Darth to masquerade the communication between Alice and

Bob. Consider a scenario where Darth after viewing or modifying the message from Alice, re-

encrypt with Bob’s public key and transmit to Bob. In this case, Bob has no idea about the

originality of message. This type of tampering and resend of message is called replay attack. In

CubeSat, this type of attack could be dangerous since anyone who gets accessed can send the

forge command to CubeSat. Also, asymmetric encryption is slower than symmetric encryption.

26

It requires far more processing power to both encrypt and decrypt the content of the message

which is not feasible approach in CubeSat [17].

When deciding on which encryption method to use, designer must consider the value of the

data being transmitted, the purpose of the transmission, and the technological and

computational limitations of the target satellite. CubeSat is not commercial satellite, it is purely

lunched for educational purpose, and thus the risk of attack is low. However, anybody can harm

the satellite if the security is compromised.

Need of Integrity and Authentication

Another major problem associated with satellite encryption is related to the identity and

authenticity of the sender. A satellite needs to confirm that the control signals and commands it

is receiving from the ground are originated from a legitimate source, this is source integrity.

Otherwise, attacker may tamper with bad commands and disrupts the functioning of satellite.

Encryption provides only confidentiality not the integrity of the message [29]. A mechanism

should be used to protect data integrity. Encryption cannot protect against the replay attack, it

only make information opaque such that attacker cannot read the content. Therefore,

authentication is needed to avoid spoofing and unauthorized access. Integrity of data should be

checked for the telecomands. Thus, in telemetry integrity is highly considered than encryption.

Hash Function, MAC and HMAC

Hash function is an algorithm that maps the message of arbitrary length to a smaller set of fixed

length. The value returned by a hash function is called hashes or hash value. A Hash value is a

checksum that calculated upon a file on piece of data to produce a unique value. Hash value can

be used to verify that a file has not been altered after the hash was generated. Collision resistant

and one way are the two important properties of function that should be satisfied to be a good

hash function [8]. These properties explain that the two different inputs to hash function do not

produce a same output. This implies the fact that every input has unique hash output. These

properties of hash function allow using the hash values as digital signatures.

27

Message Authentication Code (MAC)

Encryption provides the confidentiality of the message but cannot ensure that a message

coming from the alleged source has not been tampered. Authentic encryption can be achieved

by combining encryption algorithm with authentication algorithm [29] Message authentication

protects the integrity of a message, validates identity of originator, & non-repudiation of origin

[8]. MAC is similar to encryption but may not be reversible.

MAC = CK(M)

Where,

M – Input message

C – MAC function

K – Shared secret key

MAC – Message authentication code

Figure 7: Message authentication process, taken from [8]

Hash-based Message Authentication Code (HMAC)

A MAC mechanism which is based on cryptographic hash functions is called HMAC. HMAC

can be used in combination with any cryptographic hash functions like MD5, SHA-1, SHA-2,

Whirlpool, Tiger, HAVAL etc. It takes underlying hash function as a black box. Figure 8,

shows a generation of HMAC using any of these hash function.

28

Figure 8: HMAC generation, taken from [8]

HMACK (M) = Hash [(K+ XOR opad) || Hash [(K+ XOR ipad) || M)]]

Where,

K+ is the key padded out to size

opad, ipad are outer and inner specified padding constants respectively.

The key length for HMAC can be of any size; longer keys are first hashed and used whereas

shorter keys are strongly discouraged as it would decrease the security strength of the function

[9]. HMAC is considered very secure but its security depends on underlying hash algorithm.

The output of HMAC has the same size as that of the underlying hash function, although it can

29

be truncated which is not recommended [9]. Truncation results in fewer bits to transmit over

communication link and reduce an authentication algorithm overhead, but it has less security

strength than original sequence. Thus, except brute force attack and birthday attack, it is very

difficult to destroy HMAC.

CubeSat Space Protocol (CSP) uses Secure Hash Algorithm-1 (SHA-1) as iterative algorithm

for HMAC. However, SHA1 is vulnerable to collision resistance (discussed in chapter three)

and also slower than other hash functions. In this thesis, we are intending to replace SHA1 with

other message digest function which is secure and efficient too.

30

31

 CHAPTER 3

UPLINK THREAT ANALYSIS

3.1 CubeSat Space Protocol (CSP)

CubeSat Space Protocol (CSP) is a network-layer delivery protocol designed by the students at

Aalborg University for CubeSats. The protocol has 32-bit header which contains both network

and transport layer information. Its implementation is designed for embedded systems such as

the 8-32-bit AVR microprocessor from Atmel but not limited to these microcontrollers. The

source code is written in C language and can run on FreeRTOS, POSIX and Linux operating

systems. CSP version 1.1 supports Mac OS X and Microsoft Windows too.

Implementation of this protocol is actively maintained by the students at Aalborg University

and the spin-off company GomSpace. The source code and other necessary documentations are

found under LGPL license and it is hosted by GitHub [12]. CSP corresponds to the same layers

as the TCP/IP model. The implementation supports a connection oriented transport protocol

(Layer 4), a router-core, and several network-interfaces.

Features of CSP [13]:

 Simple API similar to Berkeley sockets.

 Router core with static routes. Supports transparent forwarding of packets over e.g.

spacelink.

 Support for both connectionless operation (similar to UDP), and connection oriented

operation (based on RUDP).

 Service handler that implements ICMP-like requests such as ping and buffer status.

 Support for loopback traffic. This can for instance, be used for Inter-process

communication between subsystem tasks.

 Optional support for broadcast traffic if supported by the physical interface.

32

 Optional support for promiscuous mode if supported by the physical interface.

 Optional support for encrypted packets with XTEA in CTR mode.

 Optional support for HMAC authenticated packets with truncated SHA-1 HMAC.

There are two versions of the CSP header. The latest version (1+) was released on November

2010, which supports more hosts and ports. It can be noted that length field is not mentioned in

header.

Version 1+

In the new version, the header was redefined to support more hosts and ports. CSP now

supports up to 32 hosts on the network, with 64 ports available on each host. The port range is

still divided into three adjustable segments. Ports 0 to 7 are used for general services such as

ping and buffer status, and are implemented by the CSP service handler. The ports from 8 to 47

are used for subsystem specific services. All remaining ports, from 48 to 63, are ephemeral

ports used for outgoing connections. The bits from 28 to 31 are used as flag for HMAC, XTEA

encryption, RDP header and CRC32 checksum.

Figure 9: CSP version 1+ header

CSP Header

32 bits

Payload

(0-65535) bytes

Figure 10: CSP Frame

33

3.2 eXtended Tiny Encryption Algorithm (XTEA)

XTEA is the extension of Tiny Encryption Algorithm which was designed by David Wheeler

and Roger Needham. Since, some weakness was found in TEA which is referred in [14],

XTEA was developed as improved version of TEA. XTEA is 64 bit block cipher with feistel

structure and key size of 128 bits. The payload in CSP is encrypted using XTEA during the

uplink.

3.3 Integrity of message

In the mini-satellite like CubeSat, prime importance is given to the protection of source

integrity and data integrity. Source integrity provides the assurance that the data received is as

sent by an authorized entity. It gives the confidence to the receiver end that the communication

is bind with the legitimate entity. Data integrity gives the assurance that the data received has

not been modified in the way. Therefore, integrity protection keeps the originality and

authenticity of message. There are several cryptographic techniques used for integrity

protection like IPsec, CRC, MAC, HMAC etc. However, HMAC is our interest due to its

security strength and feasibility.

3.4 Choice of hash function

3.4.1 Attacks on SHA1

Secure Hash Algorithm SHA1 is a cryptographic hash function with the output digest size of

160 bits. These generated output is unique thus, HMAC is used in digital signatures, MAC,

password table, hash tables etc. In [20], authors proposed a collision in SHA1 in 2
69

 hash

operations. This attack is about 2,000 times faster than brute force attack which finds the

collision in 2
80

 rounds. In simple words, probability of occurring same hash output of two

different messages is in 2
69

 calculations. In contrast, this practically needs quite large time and

34

energy to obtain this hash value. Therefore, it is not realizable in practical scenario. However,

this is not secure enough for future applications since the semiconductor performance doubles

in every 18 months (Moore’ law) and computer performance per dollar doubles every 21

months (Robert’s law) [21]. Furthermore, paper [27] presents an interesting concept of rainbow

table which stores all the computed hash. These pre-computed values are used to find the match

of hash function and immensely reduce the burden to re-compute hash. Therefore, this method

is very efficient for an attacker and saves a huge amount of time.

The hash of data is a prime component in message signing and validating process. In this

scenario, if any two different messages hashed to a same digest value, then it is possible to

execute unwanted command by a CubeSat. This should be considered or guaranteed in

designing a secure CubeSat transmission. Interestingly, we have different alternatives for SHA-

1 like SHA-2, whirlpool, RIPEMD etc. However, with the recommendation of more secure and

efficient hash function like Blue Midnight Wish (BMW-256) or HAIFA-EDON-R256 (Edon-

R256); we are intended to replace SHA1.

3.4.2 Alternative digests function:

BMW and Edon-R

BMW [22]and Edon-R [23] are the cryptographic hash functions. These hash functions were

submitted as a candidate for SHA-3 hash competition organized by National Institute of

Standards and Technology (NIST). BMW and Edon-R are a cryptographic hash function with

output size of 224, 256, 384 or 512 bits. In this thesis, BMW-256 and Edon-R256 are being

discussed for NUTS project. Both the hash functions are resistant against length extension

attacks and resistant against multi collision attacks [22]and [23]. Though some attacks have

been carried out in BMW and Edon in [24], it is not feasible in current technology. Another

reason for selecting these hash functions was computational efficiency. These hash functions

are designed to be much more efficient than SHA-1 and SHA-2, with higher level of security.

Faster the algorithm, efficient it is from power economic point of view. Power consumption is

one constraint that should be considered in CubeSat. In NUTS, photo voltaic cell provides the

35

energy whereas external batteries are used for backup. It could be interesting to design a system

with power efficient in satellite segment.

3.4.3 Efficiency and code size comparison

In this section, the results of all three hash functions are presented. All these hash functions

were used to generate HMAC with key 20 byte and 64 byte key and input message of different

size. They clock frequency used was 16 MHz for AVR UC3 [11]. The clock cycle was

initialize to zero before the start of HMAC and marked after HMAC is generated. Here, input

message was taken less than 1024 bytes to observe because CubeSat has small data bytes to

hash. Also, 20 bytes and 64 bytes of key size were originally provided with the source code and

we believe they are strong enough against birthday paradox. Therefore, common inputs for all

the hash functions were fed. The average value of output clock cycles were obtained in the

table and cycles per byte were calculated. The outputs for 128 and 256 bytes are highlighted

since AX.25 frame format can send maximum packet size of 256 bytes. Therefore, input and

output of 128 and 256 bytes message for all three hash functions are marked.

This source code was compiled with AVR studio 5.0 in Window 7, 32-bit operating system.

The processor of Intel core2 duo with 2.27 and 2.26 GHz with the ram of 4 GB was used.

36

Table 1: Computational speed of Edon-R256 for different input and key

size

Edon-R256

Size of input

message

Average cycles

(for 20 byte key)

Cycles/byte Average cycles

(for 64 byte key)

Cycles/byte

8 8920 1115 9362

1170.25

16 8876 554.75

9318 583.375

32 8803 275.09 9246 288.93

64 10515 164.29 10958 171.21

128 12071 94.30 12512 97.75

256 15179 59.29 15620 61.02

512 21395 41.78 21836 42.64

1024 33827 33.03 34268 33.46

37

Table 2: Computational speed of BMW-256 for different input and key

size

BMW-256

Size of input

message

Average cycles

 (for 20 byte

key)

Cycles/byte Average cycles

 (for 64 byte

key)

Cycles/byte

8 14158

1769.75

14600

1825

16 14114 822.13 14556 909.75

32 14041 438.78 14484 452.65

64 16155 252.42 16598 259.34

128 18081 141.25 18522 144.70

256 21929 85.66 22370 87.38

512 29625 57.86 30066 58.72

1024 45017 43.96 45458 44.37

38

Table 3: Computational speed of SHA-1 for different input and key size

SHA-1

Size of input

message

Average cycles

(for 20 byte key)

Cycles/byte Average cycles (

for 64 byte key)

Cycles/byte

8 14563 1820.37 14951 1868.87

16 14256 891 14760 922.5

32 14322 447.56 14538 454.31

64 16387 256.04 17605 275.07

128 18670 145.85 19833 154.94

256 22062 86.178 23770 92.85

512 30921 60.39 31206 60.94

1024 45634 44.55 45896 44.82

Form the information obtained from three tables, two graphs are drawn below which

demonstrates the computational efficiency of all three hash functions to generate HMAC using

20 byte and 64 byte key. The horizontal axis represents the size of message hashed and the

vertical axis shows the time required to hash relative to cycles per byte.

39

Figure 11: Performance of Three hash functions in HMAC using 20

byte key

Figure 12: Performance of Three hash functions in HMAC using 64

byte key

40

In figure 11 and 12, bar with green color represent the computational speed of Edon-R, blue

represents BMW and red represents SHA-1 against the different message size. From figure,

Edon-R 256 and BMW-256 are faster than SHA-1 for all the input bytes. It also shows that

Edon-R256 is much faster than BMW256 and SHA-1 in all formats. An important conclusion

can be drawn from the graph is that with the increase of input message size, the efficiency of

hash function increases. Another remarkable conclusion is the size of key, larger is the key size

slower is the computation of HMAC. Similar tests are being carried by VAMPIRE in different

platforms and results obtained are analogous to our result. VAMPIRE develop a toolkit called

SUPERCOP (System for Unified Performance Evaluation Related to Cryptographic Operations

and Primitives) to measure the performance of cryptographic software [38]. This toolkit

benchmark the time to hash the different sized data. In [34] and [35], the different hash

functions are compared and presented in tabular form and graph. Their output for different

processors and frequency are congruent to the result incurred from our analysis.

After compiling the source code, hex file is obtained for respective hash functions. These hex

files can be used to determine the size of source code. For these functions, Edon-R256 has the

smallest size of 40 KB, followed by SHA-1 which has 74 KB and finally BMW which has 92

KB. Since, these hash functions were not designed for AVR platform; they still can be

optimized for AVR platform in term of execution efficiency and code size.

3.5 Cyclic redundancy check for error detection

A 32-bit checksum is used in CSP to detect an error in transmission. A sequence is obtained as

the remainder of polynomial division of their contents; these values are similar at both the

transmitting and receiving end for error free transmission. It is simple to implement and good

algorithm in detecting error caused by noise. It keeps the message of original transmitted

message therefore keeps an integrity of message. However, CRC is not suitable for protection

against the intentional professional hacker. Most of the launched CubeSat used CRC due to its

simplicity and less overhead in transmission.

41

3.6 Secure Key Exchange Mechanisms

We have already discussed the cause of replay attack in earlier chapter. Replay and tampering

is possible if an attacker has an access to a key. Strong encryption algorithm or strong hash

algorithm does not remain secure if their key is compromised. Thus, secure key exchange

mechanism is foremost for secure communication. In NUTS, same key has to be shared

between ground segment and satellite segment. This section analyzed the possible efficient

mechanism to share the key between two parties. Here are some commonly adopted approaches

for secure key exchange between two parties.

3.6.1 Symmetric Key Distribution

Some common forms of symmetric key distribution are describes in this section. This approach

uses same key between two communicating parties and most of them uses Trusted Third Party

to assist key.

Wide-Mouth Frog

This is symmetric key management protocol and involves Trusted Third Party (TTP) to

distribute a new shared key. It also protect against the replay of old messages by providing the

timestamp. Two parties wishing to establish a secret session has to share a unique key with

TTP. However, this protocol suffers from following problems:

 A is not assured that B exists

 Insecurity while distributing initial key between TTP and other party

 Initiator must be able enough to generate strong keys

 Synchronization of clock is needed to generate timestamp

Kerberos

It provides mutual authentication between clients and servers in distributed environment and

also protects against replay and eavesdropping [8]. It uses two TTPs, a ticket granting server

and authentication server. After authentication of client, ticket granting server issues a ticket

42

and session key to client. Interaction between clients and server is protected with key and ticket

which has fixed life time. This protocol provides mutual authentication between client and

server, timestamps to protect against replay. There are still some problems associated which are

as follows;

 Since it uses timestamps, thus synchronization is needed.

 It needs the continuous availability of central server.

 Authentication server and ticket granting server can be a target for DOS attack.

Otway Rees

This is also authentication protocol which uses TTP for shared session key. Mutual

authentication is done between party A and B and also uses index number to protect against

replay. All these interacting messages are encrypted thus gives more security. Some problems

related to this method are follows;

 Secure generation and distribution of key between communicating parties and TTP is needed.

 During authentication process may leads malicious intruder to access shared key.

Needham-Schroeder

This protocol is primarily an authentication protocol in first phase. After authentication is

completed, a shared symmetric key is established between the parties. This protect against

replay by the use of random numbers that provides the freshness of message. This protocol uses

symmetric cryptography which makes it faster. Some limitations of Needham-Schroeder are

listed below [8];

 Replay attack is possible if old session key is used.

 TTP is a single point of failure.

 TTP must be trusted by both the parties.

Blom’s Scheme

This is based on symmetric key pre-distribution scheme and does not need third party. The

security of Blom’s scheme depends on the chosen value of “t” which is called Blom’s secure

43

parameter. Larger the value of “t” higher the resilience but increase the amount of memory

required to store the key.

 Tradeoff lies between key size and memory requirement.

 In order to prevent share key computation by attacker, all the sets of parameters selected by

user should be linearly independent.

Decentralized scheme

In this scheme, only two parties are involved in secure key exchange. These are based in

challenge response based. Therefore, one party acts as initiator and another act as responder.

This scheme is simple to implement and does not need third party for key distribution.

However, it is not free from limitations which are listed below.

 Risk of attack is high.

 Attacker can intercept and masquerade.

3.6.2 Merits and demerits of Symmetric Key Distribution

Several symmetric key exchange and key distribution schemes have been explained in previous

section. The advantages and disadvantages have been found for all schemes, some common of

them are listed below.

Advantages of Symmetric Key Distribution

 It is easy to manage entities in network and easy to change entity’s keys except for

Kerberos.

 Only one permanent key is stored.

 Symmetric-key ciphers are faster.

Demerits of Symmetric Key Distribution

Most of the key exchanges mentioned make use of a Trusted Third Party, where every entity

shares a pre-established initial key with the TTP. Therefore, in every communications require

initial contact with TTP. Here are the lists of issues associated with TTP [39]:

44

 “Trusted Distributor” problem: the secure communicating channel and the trusted

distributor are needed and TTP is the single point of failure.

 TTP must store keys for all the communicating parties of parties.

 Secret keys may be compromise during transmission

 TTP can read all messages therefore trust is required by all entities.

 Since TTP is center for all communication parties, it shows performance bottleneck.

 Lots of communication through TTP makes it target for attack.

3.6.3 Asymmetric Key Distribution

Asymmetric or public key cryptosystem require two separate keys known as public key and

private key for each user. Public key is known to all where are private key is secret to user.

Public key is used to encrypt the message and corresponding private key will be able to decrypt

that message. Unlike, symmetric key algorithm, an asymmetric algorithm does not need to

establish initial session to exchange secret keys between communicating parties.

Some schemes of public key distribution are discussed below.

Diffie-Hellman Key Exchange

This method allows two unknown parties to jointly establish a shared secret key over an

insecure public network. Here session key is only created when it is needed, so it is not

necessary to store it. This decreases the risk of exposure of key. There are some problems listed

in this approach which is listed below.

 Likelihood of man in the middle attack, since communicating parties is not

authenticated.

 Its strength depends on the choice of prime numbers.

ElGamal Key Agreement

This algorithm is based on Diffie-Hellman key exchange. It consists of encryption algorithm,

decryption algorithm and key generator component. The security of ElGamal depends on

underlying cyclic group and padding scheme used on the message. The message can be

45

encrypted to many possible cipher texts which add confusion to the attacker. Some problems

associated with this algorithm are mentioned below.

 ElGamal key exchange is slow.

 Increase the overhead since the size of cipher text is twice than that of original

message.

 No authentication of entity.

Shamir’s Three-Pass Protocol

This protocol allows one party to securely send a message to a second party without the need to

exchange or distribute encryption keys. The sender and the receiver exchange three encrypted

messages in three phases. Problem associated with this public key distribution protocol is man

in the middle attack since there is no authentication of entities.

Digital Signature Algorithm

The DSA signature scheme has advantages, being both smaller and faster, over RSA [8]. DSA

cannot be used for encryption or key like RSA. Nevertheless, it is a public-key technique. The

DSA is based on the difficulty of computing discrete logarithms, and is based on schemes

originally presented by ElGamal and Schnorr. But, this algorithm is slower than symmetric

approach.

3.6.4 Merits and demerits of Asymmetric Key Distribution

Some of the common advantages and disadvantages of public key distribution are listed.

Merits of Public Key Crypto for Key Exchange

 Asymmetric key cryptography offers additional features which are not easily

obtainable with symmetric cryptography

 -Online TTP is not required

 -Source integrity and authentication

 The number of keys necessary in large network may be considerably smaller than in

the symmetric-key environment.

 Only the private key should be kept secret.

46

Demerits of Public Key Crypto for Key Exchange

 Public key distribution methods are slow compared to symmetric cryptography.

 Key sizes are typically much larger than those required for symmetric-key encryption.

 An encrypted message can only be sent to a single recipient.

3.6.5 Why Symmetric key and Why not Public key?

Public key encryption/decryption algorithm is a fundamental and widely used technology

around the globe. But it is complex, slower and consumes more power. Therefore, it is not

common among ultra-low power environments like wireless sensors and CubeSat [19].

Therefore, Symmetric key encryption algorithm with low-energy consumption is used in low

power environments. Furthermore, public key encryption is slower than symmetric encryption

of same security level. It needs more computation time for the computation of public and

private keys. From this scenario, symmetric key is considered as simple, fast and low power

consuming methodology. Moreover, the important scenario of CubeSat should be accounted

while designing or selecting the key exchange protocol. The propagation delay between earth

segment and space segment makes the protocol with several authentication steps and multiple

round trips are not feasible to use in CubeSat. Since, probability of interference due to noise is

higher in long distance wireless transmission, Signal to Noise Interference (SNI) decreases

resulting in error in transmission. Multiple round trip authentication mechanism has to setup

handshake before establishing communication between two parties. Therefore, multiple round

trips have high probability of getting error which results in authentication failure. Similar

problem may appear for synchronization which results in denial of service.

3.7 Countermeasures against replay

It is clear that we are not encrypting the uplink payload. Our intension is to protect the integrity

and replay messages so that tampered and replayed payload is rejected at the satellite segment.

We mentioned HMAC to protect integrity of message but it fails to protect against replay. For

instance, an attacker with an idea of reboot command of CubeSat can retransmit again and

47

again which makes the satellite continuously restarting resulting into DoS. This section

discusses some techniques used in communication to prevent form replay. One time passwords,

session tokens are mostly used in web based client server authentication model. One Time

Password (OTP) is used to authenticate only once and renewed for next authentication.

Similarly, session tokens are the data that carries the information for that communication

session. These two concepts protect replay attack since they relies in non-reuse of key. So, in

future an attacker cannot use the previous password or session token to establish a

communication. Besides these techniques, uses of time stamp and sequence number are other

techniques widely used in communication systems against replay attack.

3.8 GENSO

Global Education Network for Satellite Operations (GENSO) is a software standard developed

with the goal to release a global network of university ground stations and radio amateur to

support the operation of CubeSat. The interconnection between ground stations is done via the

internet and software allows to share and free access to other station. Therefore, it allows

commanding their CubeSat from other part of world [40].

The visibility of CubeSat is about 20 minutes in a day, in rest of the time ground station is in

ideal state. In this scenario, an idea of GENSO is very innovative towards the utilization of

station from any part of the world and also, to get access similar data from other CubeSat.

GENSO has three components Ground Station Server (GSS), Authentication Server (AUS) and

Mission Control Client (MCC). Ground station operator run GSS and MCC is run by mission

controller. GSS after receiving the data notifies AUS. AUS is center core for authentication and

control access control among the permitted bounded entities. Now, AUS after receiving

notification from GSS pass the notification to MCC owning the satellite. MCC then retrieves

all the locally stored data from GSS.

48

NUTS is also planning to use GENSO but till this date the software has not been released. It is

very important to study its access control and authentication measure before adopting the new

software. Nevertheless, this software seems very efficient in term of utilization of CubeSat.

49

 CHAPTER 4

PROPOSED CSP FOR SECURE UPLINK IN NUTS

This chapter finds the best approach for the NUTS access control and uplink security within

underlying constraints. The modified CSP is presented along with its merits and demerits. We

are not using any encryption mechanism on uplink payload which will only add complexity in

CubeSat system.

4.1 Key size and hash function

We propose symmetric key distribution, 20 byte key hardcoded in both ground segment and

satellite segment. The key length of 20 bytes has good resistance to birthday attack and strong

enough for brute force attack. The calculation shows that 20 bytes (160 bits) hash has

approximately 1.46*10
48

 different outputs. If these are all equally probable then it will take

around 1.5*10
24

attempts to generate collision using brute force. It was also observed that 20

bytes key was faster than key length of 64 bytes to generate HMAC.

 Single key is used for HMAC, though we discussed about the different key exchange

mechanism, it is not suitable to use either TTP or any protocol using multiple RTT.

Propagation delay and loss of signal makes the authentication process complex and also

generates the resynchronization problem. It is difficult to resynchronize the key in robust

wireless environment and may leads to denial of service. So, HMAC code protects the system

against integrity but adds an overhead in communication system and complexity of calculating

as well as comparing the code in satellite segment.

50

4.2 Countermeasures against replay

Sequence number in other hand solves the problem of replay attack. Sequence number is the

random sequence that adds the freshness in every message and keeps the information about

following message. Attacker cannot replay with old sequence number which is already

registered in the receiver’s entry. Also, if an attacker tries to insert the new sequence then he

could not modify the HMAC content. HMAC is very strong cryptographic function which

produces fixed byte output depending upon the key used. The data is initialized; sequence

number is added and encapsulated with CSP header to form CSP packet. HMAC is calculated

upon this complete CSP packet and concatenated with CSP packet. CRC is calculated upon

entire packet (from CSP header to HMAC code) and appended with this packet to form

payload. This final block is ready to send using AX.25 protocol. This complete procedure is

shown in the figure 13.

Figure 13: Proposed NUTS Secure Uplink

51

This complete frame at transmission section shown in Figure 13 is encapsulated in AX.25 radio

link protocol and transmitted towards receiver’s end in form of radio packets. In the receiving

end, the packets are received and processed. Figure 14 shows the complete steps of information

extraction process in proposed secure NUTS receiver.

In order to eliminate confusion regarding the term used for packets, we assume them as

follows;

CSP information field: Data

Complete CSP packet: CSP header+ SN+ Data

CSP payload: CSP header+ SN+ Data+ HMAC code+ CRC code

Complete AX.25 packet: AX.25 frame/ radio packet

AX.25 information field: Information field (CSP payload)

Figure 14 shows the proposed secure transmitter for NUTS. It is assumed that the radio packets

are received and buffered in initial condition, and then the operation of system is explained as

follows; get the radio packets from the buffer which is AX.25 radio frames. This radio packet

constitutes of head, information field and tail bits. Information field encapsulates CSP payload

which is extracted in the next step. AX.25 tail bits contain 16 bit frame check sequence to

determine the error on frame during transmission. Upon detection of error, the frame is

discarded and computes for the new frame. The next security check computes for CRC-32,

compare with the received CRC code and makes a decision. Similarly, HMAC of complete

CSP packet is calculated and compared with the received HMAC code. An unaltered sequence

will have same code and is proceed further but the packets are discarded if different values are

detected. Upon successful verification of HMAC, sequence number is checked against replay.

The packet is discarded again if sequence number is already registered in receiver’s entry. If the

fresh sequence number is found then packet is further processed and sequence number is

updated. The commands are extracted and sent to other subsystem and the system again starts

extraction with new radio packet. Also, after rejecting packets, system will start with extraction

of fresh packet.

52

Figure 14: Proposed NUTS secure receiver

53

The replayed sequence is identified in almost last stage which is the primary disadvantage of

this design. Therefore, if an attacker releases numerous replayed packets then all these packets

are able to execute up to almost final stage. This will only engage the processor and results

worthless with loss of energy and resources. But this issue can be resolved prioritizing the SN

checking mechanism which can be placed between A and B in Figure 14 . By prioritizing the

SN check results another priority issue for HMAC. Here again same problem appear for

HMAC which is checked at the last stage therefore altered packed are executed up to last stage.

The use of CRC prevents packets from being alter but cannot prevent professional hacker to

alter the original message. Therefore, this tradeoff should be considered during the design.

4.3 Modification in CSP header

Figure 15: Modified CSP header, SN flag used in 27th bit

Figure 15, shows the modified proposed CSP header on version1.0+. In this modified header,

SN flag is incorporated as 27th bit; this bit was reserved for future purpose. The enable of this

flag indicated the presence of sequence number in the packet. In NUTS, every CSP packet will

be consisting of sequence number. New fresh sequence number will be assigned in each new

CSP packet.

54

4.4 Length of Sequence field

We have proposed to use the sequence number of 16 bit long. It gives 65536 unique counts

which is enough to send the unique number with each CSP packet till life time of NUTS. It is

assumed that the life time of NUTS ranges from 2 month to maximum of 2 years. From the

simulation by NUTS member, earth segment can communicate 28 times in a week with satellite

station. Also, multiple commands are uploaded at a time, in this scenario; 16-bit sequence is

quite realistic to provide unique identity for each CSP frame.

4.5 Sequence number synchronization

It is necessary to synchronize a sequence number after the reboot of system in satellite. Also,

consider the worst case when all the transmitted commands from ground station are lost on the

way to satellite. Then, transmitting a set of new commands next time will have new sequence

number while satellite segment has previous old SN. This type of unusual leaped sequence

may be rejected by the system, resulting in denial of service. Therefore, a command is

necessary to synchronize the SN and keep it updated. Therefore, to avoid the rejection of all

packets due to mismatch problem in SN a special command request “SYN_NEW_SN” is sent

that does not has sequence number. This command makes the OBC of satellite components to

fetch the latest sequence number used and send as response towards ground station. Similarly,

this concept is also useful in reboot command. We can set a reboot command without SN such

that synchronization would not be necessary, this makes the reboot efficient since no

computation for SN is required and no synchronization is checked.

Request format

The request and response command forma are drafted by NUTS members. To synchronize the

sequence number we have proposed two commands which are discussed below.

55

Table 4: Request command format from NUTS draft

16 48

Command type Command argument

Table 5: Proposed Request command description

Response format

On successful reception and handling of a request, the success bit will be set high in the

response data and send the latest updated sequence number to the ground station. With the idea

of latest SN, ground station can then transmit CSP packet with new sequence.

Table 6: Response format from NUTS draft

1 7 1 7 24 2^24

Success bit

Command type

Last response Options Length Payload

Table 7: Proposed response description

Response type Description Parameter Parameters

Request type Description Parameter

SYN_NEW_SN Synchronize with

received sequence

number

16 bit fresh sequence

56

RES_GEN_ERROR General error N/A

RES_SYN_NEW_SN Response to synchronize SN command Fetch latest

updated SN

Table 7 shows two commands as a response to request command. RES_GEN_ERROR is a

response to general error which is already proposed and drafted in NUTS whereas we propose

another error response RES_SYN_NEW_SN to distinct from general error. This error indicates

that the satellite cannot fetch the latest SN from the entry. In this situation we have no

alternative to reboot the system and request for latest SN. All the drafted commands for NUTS

are given in an appendix A.

These special commands needs the SN check mechanism at the receiver to distinguish from the

normal commands. This mechanism is shown in flowchart of Figure 16. It assumes that the

radio packets are received and extracted. Therefore, it only focuses in the validation of SN flag

that determines the types of commands.

57

Check the SN flag

If SN flag=1
Check command

type
Check the SN

If command

=reboot or Sync

Discard packet Execute command

YesNo

No Yes

B

A

B

Figure 16: Algorithm checks SN flag to distinguish the types of received command

From figure 16, system checks for SN flag first and if the SN flag is found high then it will

check the SN to verify replay. The further processing can be found in Figure 14. However, if

the SN is low then it will check for type of command. If the command received is to reboot or

resynchronize then it will execute the command as shown in Figure 14 else discard that

command assuming bogus data. This is how it prevents bogus packets without SN flag to

compute further.

58

Effects with the removal of Sequence number

After the removal of SN in reboot and synchronization request, reboot can be performed

without an idea of previous SN and same as for synchronization. The primary advantage of this

implementation is in the execution of these two commands.

 With no SN, computation is faster.

 No need to synchronize the SN.

 Probability of rejection of packet due to SN mismatch is decreased.

However, some serious problems arise with the removal of SN which are listed as follows;

 With no SN, an attacker can replay with packets and make system continuously

rebooting.

 If attacker has an accessed to a key, then he can request the SYN command to receive

the latest SN from the satellite segment and try new SN to execute command. This may

leads an attacker to have permanent access on satellite.

The solution to this problem could be the use of time stamp in every packet. In NUTS project,

we have not decided to implement time although discussion about the use of absolute and

relative time was held. Therefore, after the decision is made to use time in satellite, it could be

studied to use the time stamp instead of sequence number against replay.

4.6 Frame size considering sequence number

It is clear that our data is encapsulated in CSP frame which is again encapsulated within AX.25

protocol. In this section we have calculated the maximum size of our final radio packets ready

to transmit in ideal case.

Modified CSP header: 32-bit

Sequence Number: 16-bit

Command: 64-bit (maximum size)

59

CRC: 32-bit

HMAC code: 256-bit

Total payload: 32-bit+ 16-bit+64*16(sixteen commands at a time)-bit + 32-bit+256-bit=1360

bits

AX.25 header + flag: 128-bit+8-bit=136 bits

AX.25 information field: 816 bits (maximum information that AX.25 can carry is 2048 bits)

AX.25 tail (frame check sequence+ flag): 16-bit + 8-bit=24-bit

Maximum size of NUTS uplink radio frame=136-bit+ 1360-bit+24-bit= 1520 bits

 Figure 17: NUTS AX.25 radio packet

4.7 Transmitting with Time Stamp

It is clear that time stamp gives strong solution against relay. Also, time stamp does not need

synchronization and of sequences between earth and satellite segment. Therefore, the two

commands proposed earlier for synchronization request-response is not necessary. The only

thing need to consider is the time drift between received and transmitted time. The time margin

should be allocated such that the multipath propagated signal can reach the destination within

bounded time. The packets received after the time limited could be considered as replay.

Therefore, attacker has no chance to replay the packets. If an attacker attempts to modify the

time stamp then the HMAC code will be altered which can be detected at the receiving end.

60

61

 CHAPTER 5

CONCLUSION

5.1 Discussion and conclusion

After the analysis of entire system, this part of report is focused in the important outcome of

each task carried through the research. Firstly, we found the integrity protection of message is

more significant in CubeSat than its confidentiality. CubeSat is launched with motivation to

explore the space and fetch the informative educational information. Therefore, visibility of

uplink command to an outsider does not matter unless an outsider tries to tamper it. Thus, to

protect the commands from being altered by an attacker was the prime target so we preferred to

use HMAC code. Nevertheless, integrity protection and encryption gives very strong protection

but adds the overhead in the transmission.

Secondly, we decided to use HMAC code to protect integrity of uplinked message. An attacker

trying to tamper the message will result differently HMAC code which can be detected at the

receiver end. Here, we analyzed three hash functions to test its efficiency in AVR 32-bit

microcontroller platform which was not performed till now. This analysis was completely a

new task and the results obtained were very satisfactory. We found that Edon-R was very fast

with small code size (hex file) than BMW and SHA1. But security strength of BMW is higher

than Edon and SHA1 according to the various documentation of cryptanalysis. It is up to the

NUTS authority to decide the choice of hash function for HMAC. In [36]and[37], writer

presents a fact that even weak hash function can be used in HMAC and can produce a strong

output due to the secure nature of HMAC. We also found the 20 byte key was efficient to

produce HMAC code and can provide enough security for NUTS. Regarding the key for

HMAC, it can be hardcoded in the memory of microcontroller at satellite segment and earth

62

segment. With the use of single permanent key, the problem of key distribution and

synchronization is avoided but add the risk of key compromise.

Finally, we agreed to use sequence number to provide the freshness in message, it protect

against replay. NUTS has a life time of 2 years (maximum consideration), so 16-bit SN is far

enough to send each CSP packet with unique number. These sequence number may loss

synchronization between transmitter and receiver which may leads to DoS. To prevent this, we

added a command that synchronizes the SN. This command will make the OBC of satellite

segment to fetch the latest updated (entered) SN from the memory and transmit to ground

station. With the idea of this received SN, it is possible to use fresh SN and transmit new radio

packet. In contrast, these two commands make system vulnerable to a replay attack which may

results continuously rebooting of a CubeSat. We also presented in brief that time stamp could

be a good solution against replay attack and to eliminate a resynchronization problem due to

SN mismatch. In addition, the use of CRC has significant role in error detection and rejection

of fake or corrupted packet such that the further processing is ended. This also saves the time of

processor to engage in processing of corrupted packets.

Last but not the least, working with NUTS provides me the opportunity to explore new ideas

and analyze the real term project closely. It also helps to understand the real environment, co-

operate with the project members from different fields of expertise. Since all of us involved in

the NUTS project were from different departments. In addition, we believe that this result will

help NUTS authority to adopt the proper security parameters.

5.2 Further enhancement

This thesis was a research to analyze the threats and the possible solution to mitigate the threats

in NUTS. We hope this report fulfills the target assigned for the secure uplink of NUTS.

However, some enhancement can be done on this work. In future, the security of ground station

can be analyzed.

63

Integrity and encryption gives strong security but it adds overhead too, in future this can be a

matter of study. If overhead has less effect in transmission then it is better to make system

secure. But, significance of these should be determined first in contrast, it is clear that

launching CubeSat is getting popular this days and in future more and new version of nano-

satellite will be developed and release. May be this will focus and motivates an attacker.

We worked on uploading 16 commands at a time which optimizes the radio resources, still we

can upload more commands to optimize radio channel. Till this date, all the command set has

not been finalized for NUTS. As it is cleared that mismatch of sequence number will results in

denial of service. Therefore, it could be first tested the reliability of commands to synchronize

SN before launching.

We have proposed that time stamp could be a good and strong solution against replay attack.

This could be studied further. Nevertheless, first the decision should be made by NUTS

authority about the implementation of relative or absolute time in CubeSat.

It is found that GENSO network is suitable for CubeSat where ground station is idle for around

90% of time. IN this scenario concept of joining GENSO sounds interesting. However, access

control and authentication in the GENSO network can be analyzed.

Finally, the main task remaining will be to develop the software implementing all the proposed

methodology. We are already lagging in software in compared to hardware.

64

65

REFERENCES

[1] A. Toorian, E. Blundell, J. P. Suari and R. Twiggs, "CubeSats as responsive satellites,"

Aerospace Engineering, vol. 805, pp. 756--6479, 2005.

[2]

K. Cote, "Mechanical, Power, and Propulsion Subsystem Design for a CubeSat,"

WORCESTER POLYTECHNIC INSTITUTE, 2011.

[3] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka and R. Twiggs, "CubeSat: A new

generation of picosatellite for education and industry low-cost space experimentation,"

Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, pp. 1--19,

2000.

[4] R. Birkeland, "NTNU Test Satellite NUTS-1 Mission Statement," 2011.

[5] Wikipedia, “AVR32”, http://en.wikipedia.org/wiki/AVR32, Accessed date 27/022012.

[6] Atmel,"Datasheet",http://www.atmel.com/Images/doc7919.pdf, Accessed date 27/02/2012.

[7] K. Andersson and R. Andersson, "A comparison between FreeRTOS and RTLinux in

embedded real-time systems," Linköping University, Suecia, 2005.

[8]

W. Stallings, Cryptography and network security, Prentice hall, 2003.

[9] H. Krawczyk, R. Canetti and M. Bellare, "HMAC: Keyed-hashing for message

authentication,", ITEF, 1997.

[10] AVR, "Atmel AVR32931: UC3-L0 Xplained Getting Started Guide,"

http://www.atmel.com/Images/as5installer-stable-5.1.208-readme.pdf, Accessed date

21/04/2012.

[11] Atmel, "Datasheet," http://www.atmel.com/devices/at32uc3a3256.aspx#datasheets,

Accessed date 21/04/2012.

[12] GomSpac, "CSP library," https://github.com/GomSpace/libcsp, Accessed date 02/03/2012.

[13] Wikipedia, "CubeSat Space Protocol,"

http://en.wikipedia.org/wiki/Cubesat_Space_Protocol , Accessed date 21/04/2012.

[14] J. Kelsey, B. Schneier and D. Wagner, "Related-key cryptanalysis of 3-way, biham-des,

http://www.atmel.com/devices/at32uc3a3256.aspx#datasheets

66

cast, des-x, newdes, RC2, and tea," Information and Communications Security, pp. 233--

246, 1997.

[15] J. Lu, "Related-key rectangle attack on 36 rounds of the XTEA block cipher,"

International Journal of Information Security, vol. 8, no. 1, pp. 1--11, 2009.

[16] G. Sekar, N. Mouha, V. Velichkov and B. Preneel, "Meet-in-the-middle attacks on

reduced-round XTEA," Topics in Cryptology--CT-RSA 2011, pp. 250--267, 2011.

[17] V. Visockas, "Access control and securing of the NUTS uplink," NTNU, 2011.

[18] J. P. Kaps, "Chai-tea, cryptographic hardware implementations of xTEA," Progress in

Cryptology-INDOCRYPT 2008, pp. 363--375, 2008.

[19] G. Gaubatz, J. Kaps and B. Sunar, "Public key cryptography in sensor networks—

revisited," Security in Ad-hoc and Sensor Networks, pp. 2--18, 2005.

[20] X. Wang, Y. Yin and H. Yu, "Finding collisions in the full SHA-1," in Advances in

Cryptology--CRYPTO 2005, Springer, 2005, pp. 17-36.

[21] L. G. Roberts, "Beyond Moore's law: Internet growth trends," Computer, vol. 33, no. 1,

pp. 117--119, 2000.

[22] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amundsen and S. f. Mjølsnes,

"Cryptographic Hash Function BLUE MIDNIGHT WISH," NTNU, Trondheim, 2008.

[23] D. Gligoroski, L. Kocarev, R. S. Ødegård, M. Mihova and S. J. Knaspog, "Cryptographic

Hash Function EDON-R," NTNU, Trondheim, 2008.

[24] L. Andreicheva, "Attacks on SHA-3 candidate functions: Keccak and Blue Midnight Wish

(BMW)," 2011.

[25] J. Edney and W. A. Arbaugh, Real 802.11 security: Wi-Fi protected access and 802.11 i,

Addison-Wesley Professional, 2004.

[26] W. A. Beech, D. E. Nielsen and J. Taylor, "AX. 25 Link Access Protocol for Amateur

Packet Radio," Tucson Amateur Packet Radio Corporation web site, version, vol. 2, 1998.

[27] P. Oechslin, "Making a faster cryptanalytic time-memory trade-off," Advances in

Cryptology-CRYPTO 2003, pp. 617--630, 2003.

[28] F. George , "Telemetry and Telecommand Transfer Frames Format," SwissCubesat, 2007.

67

[29] R. D. Standard and R. Book, "CCSDS cryptographic algorithms," 2010.

[30] AAUSAT II,"Alborg University CubeSat ",

http://www.space.aau.dk/aausatii/eng/index.php?n=Site.GndSetup, Accessed date

18/05/2012.

[31] AAUSAT II, "Alborg University CubeSat Protocol",

http://www.space.aau.dk/aausatii/homepage/index.php?language=en&page=dok/hsn,"

Accessed date 18/05/2012.

[32] AubieSat, "Alburn University CubeSat", http://space.auburn.edu/index.htm, Accessed

date 18/05/2012.

[33] AMSAT-UK, "Armateur Radio CubeSats Launch", http://www.uk.amsat.org/2271,"

Accessed date 18/05/2012.

[34] ECRYPT Benchmarking of Cryptographic Systems, "eXternal Benchmarking eXtension",

http://bench.cr.yp.to/xbx.html, Accessed date 23/05/201.

[35] ECRYPT Benchmarking of Cryptographic Systems, “Measurements of hash functions",

http://bench.cr.yp.to/results-hash.html, Accessed date 23/05/2012.

[36] M. Bellare, "New proofs for NMAC and HMAC: Security without collision-resistance,"

Advances in Cryptology-CRYPTO 2006, pp. 602--619, 2006.

[37] C. Madson and R. Glenn, "The use of HMAC-MD5-96 within ESP and AH," RFC, 1998.

[38] ECRYPT Benchmarking of Cryptographic Systems, "SUPERCOP",

http://bench.cr.yp.to/supercop.html, Accessed date 24/05/2012.

[39] CCSDS, "CCSDS Key Management Techniques," CCSDS Secretariat, Washington DC,

2005.

[40] GENSO, "Introduction of GENSO", http://www.genso.org, Accessed date 13/06/2012.

http://bench.cr.yp.to/xbx.html
http://bench.cr.yp.to/supercop.html

68

69

APPENDIX A

Proposed Telemetry signals for NUTS

Note: These signals are proposed by NUTS member working in communication protocol.

Signal classes. (Maybe we could use only 8 bits for this. We’ll have to revise)

● Backplane voltages: 0x0100

● Backplane currents: 0x0200

● Temperatures: 0x0300

● EPS: 0x0400

● ADCS: 0x0500

● Payload: 0x0600

● OBC: 0x0700

● Radio: 0x0800

ID Signal Description Size Resolutio
n

Range Value

0x0101 MOD1_3V_V 3 V bus
voltage

16 0.01 V 0 - 5.12 V meas. value
* scale =
phys. value

0x0201 MOD1_3V_A 3 V bus
current

16 2 mA 0 - 1024
mA

0x0102 MOD2_3V_V 3 V bus
voltage

0x0202 MOD2_3V_A 3 V bus
current

0x0103 MOD3_3V_V 3 V bus
voltage

0x0203 MOD3_3V_A 3 V bus
current

0x0104 MOD4_3V_V 3 V bus
voltage

0x0204 MOD4_3V_A 3 V bus

70

current

0x0105 MOD5_3V_V 3 V bus
voltage

0x0205 MOD5_3V_A 3 V bus
current

0x0106 MOD6_3V_V 3 V bus
voltage

0x0206 MOD6_3V_A 3 V bus
current

0x0107 MOD7_3V_V 3 V bus
voltage

0x0207 MOD7_3V_A 3 V bus
current

0x0108 MOD8_3V_V 3 V bus
voltage

0x0208 MOD8_3V_A 3 V bus
current

0x0109 MOD1_5V_V 5 V bus
voltage

16 0.02 V 0 - 10.24 V

0x0209 MOD1_5V_A 5 A bus
current

16 2 mA 0 - 1024
mA

0x010A MOD2_5V_V 5 V bus
voltage

0x020A MOD2_5V_A 5 A bus
current

0x010B MOD3_5V_V 5 V bus
voltage

0x020B MOD3_5V_A 5 A bus
current

0x010C MOD4_5V_V 5 V bus
voltage

0x020C MOD4_5V_A 5 A bus
current

0x010D MOD5_5V_V 5 V bus

71

voltage

0x020D MOD5_5V_A 5 A bus
current

0x010E MOD6_5V_V 5 V bus
voltage

0x020E MOD6_5V_A 5 A bus
current

0x010F MOD7_5V_V 5 V bus
voltage

0x020F MOD7_5V_A 5 A bus
current

0x0110 MOD8_5V_V 5 V bus
voltage

0x0210 MOD8_5V_A 5 A bus
current

0x0301 BATT_TEMP Battery temp

0x0302 RADIO_TEM
P

Radio PCB
temp

0x0303 ZENIT_TEMP Zenit panel
temp

0x0304 NADIR_TEM
P

Nadir panel
temp

0x0401 CELL_A_V Solar cell A
voltage

16 0.01 V 0 - 5.12 V

0x0402 CELL_A_A Solar cell A
current

16 1.2 mA 0 - 614.4
mA

0x0403 CELL_B_V Solar cell B
voltage

0x0404 CELL_B_A Solar cell B
current

0x0405 CELL_C_V Solar cell C

72

voltage

0x0406 CELL_C_A Solar cell C
current

0x0407 CELL_D_V Solar cell D
voltage

0x0408 CELL_D_A Solar cell D
current

0x0409 CELL_E_V Solar cell E
voltage

0x040A CELL_E_A Solar cell E
current

0x0701 OBC_RTC_E
POC

Seconds
since epoc

 seconds
since epoc

0x0501 ADCS_MAG_
X

Magnetomet
er X value
[nT]

16 TBD TBD

0x0501 ADCS_MAG_
Y

Magnetomet
er Y value
[nT]

0x0501 ADCS_MAG_
Z

Magnetomet
er Z value
[nT]

0x0501 ADCS_SAT_
DIR

Pointing
direction

 TBD TBD TBD

0x0501 ADCS_MODE Regulated or
“free”

0x0410 MOD1_V_ST
AT

Status of
voltage bus

2 ON/OFF/ER
R

0x0411 MOD2_V_ST
AT

0x0412 MOD3_V_ST

73

AT

0x0413 MOD4_V_ST
AT

0x0414 MOD5_V_ST
AT

0x0415 MOD6_V_ST
AT

0x0416 MOD7_V_ST
AT

0x0417 MOD8_V_ST
AT

0x0710 MOD1_BUS_
STAT

Status of I2C
bus

2 ON/OFF/ER
R

0x0712 MOD2_BUS_
STAT

0x0713 MOD3_BUS_
STAT

0x0714 MOD4_BUS_
STAT

0x0715 MOD5_BUS_
STAT

0x0716 MOD6_BUS_
STAT

0x0717 MOD7_BUS_
STAT

0x0718 MOD8_BUS_
STAT

0x0420 EPS_MODE 2 SIMPLE/MP
PT TBD

0x0421 EPS_5V_A_S
TAT

 2 ON/OFF/ER
R (Can be
determined?
??)

74

0x0422 EPS_5V_B_S
TAT

0x0423 EPS_3V_A_S
TAT

0x0424 EPS_3V_B_S
TAT

 EPS_

0x0720 OBC_CPU_L
OAD

CPU-load 8 0.4 % 0 - 100 %

0x0721 OBC_CPU_F
REQ

 8 0.4 Hz 0 - 100 Hz Needed???
?

0x0722 OBC_FLASH
_USE

% of used
flash space

8 0.4% 0 - 100 %

0x0723 OBC_IMG_V
ER

Version of
running
image

8 Needed???
?

0x0801 COMM_VHF_
STAT

Status of
VHF-radio

8 May be wise
to make a
bit-mask and
extract data
from this.
RX/TX/LOW
_PWR/ERR
osv....

0x0802 COMM_UHF_
STAT

Status of
UHF-radio

8 As above

0x0803 COMM_B_ST
AT

Beacon
status

8 ON/OFF/CH
ANGED/ORI
GINAL ….
TBD

75

Command set format

Command set proposed to NUTS by NUTS member working in communication protocol.

Request format

16 48

Command type Command argument

Request type Description Parameter Resp

onse

CAM_TAKE_PIC take picture N/A

CAM_SET_EXP exposure time exposure time in

millisecnds

CAM_SET_RES resolution

OBC_TAKE_PIC Schedule

CAM_TAKE_PIC

When the

CAM_TAKE_PIC should

be issued to the camera,

in seconds relative to now

GEN_GET_STATUS Get sensor status N/A

76

ADCS_DETUMBLE

ADCS_EARTH_ORIENT

ADCS_ROT_Z

Target radians/sec

ADCS_ROT_Z

Target radians/sec

ADCS_ROT_Y

Target radians/sec

GEN_SYSTEM_RESET

GEN_RESET_SUBSYS

Module number

GEN_PWR_ON_SUBSYS

Module number

GEN_PWR_OFF_SUBSYS

Module number

RADIO_BEACON_ON

N/A

RADIO_BEACON_OFF

N/A

RADIO_BEACON_START

RADIO_BEACON_APPEND

RADIO_BEACON_END

EPS_GET_STATUS

EPS_SET_MODE

Response format

On successful reception and handling of a request, the success bit will be set high.

1 7 1 7 24 2^24

77

Success bit Command type Last response Options Length Payload

Response type Description Parameter Parameters

RES_GEN_ERROR General error N/A

RES_CAM_TAKE_PIC Response to take a picture

command

4

	Title Page
	Problem Description
	Thesis description:

	Abstract
	Acknowledgment
	Preface
	Table of Contents
	List of figures
	List of Tables
	Acronyms
	Chapter 1
	Introduction
	1.1 Scope of thesis
	1.2 Methodology
	1.3 Similar Projects
	1.4 Summary

	Chapter 2
	Theory behind CubeSat and security
	2.1 Introduction to CubeSat:
	2.2 NUTS background
	2.3 Implementation Platform
	2.3.1 Microcontroller AVR32UC3
	2.3.2 FreeRTOS
	2.3.3 AVR Studio 5.1

	2.4 Ground Segment equipment
	2.5 Security Issue

	Chapter 3
	Uplink threat analysis
	3.1 CubeSat Space Protocol (CSP)
	3.2 eXtended Tiny Encryption Algorithm (XTEA)
	3.3 Integrity of message
	3.4 Choice of hash function
	3.4.1 Attacks on SHA1
	3.4.2 Alternative digests function:
	3.4.3 Efficiency and code size comparison

	3.5 Cyclic redundancy check for error detection
	3.6 Secure Key Exchange Mechanisms
	3.6.1 Symmetric Key Distribution
	3.6.2 Merits and demerits of Symmetric Key Distribution
	3.6.3 Asymmetric Key Distribution
	3.6.4 Merits and demerits of Asymmetric Key Distribution
	3.6.5 Why Symmetric key and Why not Public key?

	3.7 Countermeasures against replay
	3.8 GENSO

	Chapter 4
	Proposed csp for secure uplink in nuts
	4.1 Key size and hash function
	4.2 Countermeasures against replay
	4.3 Modification in CSP header
	4.4 Length of Sequence field
	4.5 Sequence number synchronization
	4.6 Frame size considering sequence number
	4.7 Transmitting with Time Stamp

	Chapter 5
	Conclusion
	5.1 Discussion and conclusion
	5.2 Further enhancement

	References
	Appendix A
	Proposed Telemetry signals for NUTS
	Command set format
	Request format
	Response format

