
Automated Security Compliance Tool for
the Cloud

Kazi Wali Ullah

Master in Security and Mobile Computing

Supervisor: Danilo Gligoroski, ITEM
Co-supervisor: Tuomas Aura, Aalto University

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND

ELECTRICAL ENGINEERING

PROBLEM DESCRIPTION

Student’s Name: Kazi Wali Ullah

Project Title: Automated Security Compliance Tool for the Cloud

Project Description: Security, especially security compliance, is a major concern
for large scale adoption of clouds in the enterprise environ-
ment. For business reason, enterprises require certain levels
of security compliance from cloud providers. Thus, we need
an automated compliance tool to express the service level
of various cloud providers. The tool will enable the cloud
providers to share their security compliance information us-
ing a common framework. In turn, the common framework
allows consumers to shop intelligently among various cloud
providers based on their security needs.
The security compliance can be based on a standard compli-
ance policy (e..g., HIPAA) or it can be more granular level
(e.g., multi-factor authentication = true, firewall = true,
VPN from project to users = true). The scope of this thesis
is to integrate a compliance mechanism (e.g., CloudAudit
frameworks) to a cloud platform (e.g., OpenStack). The ex-
pected output is to expose a set of APIs for OpenStack cloud
with which consumers can verify the security requirements.

Department: Department of Telematics

Responsible Professors: Tuomas Aura, Aalto University, Finland
Danilo Gligoroski, NTNU, Norway

Submission Date: 30-06-2012

i

Norwegian University of Science & Technology

Degree Programme in Security and Mobile Computing
ABSTRACT OF

MASTER’S THESIS

Author: Kazi Wali Ullah

Title:
Automated Security Compliance Tool for the Cloud

Date: June 30, 2012 Pages: viii + 67

Professorship: Data Communication Software Code: T-110

Supervisors: Professor Tuomas Aura
Professor Danilo Gligoroski

Instructors: Jukka Ylitalo D.Sc. (Tech.)
Abu Shohel Ahmed M.Sc. (Tech.)

Security, especially security compliance, is a major concern that is slowing down
the large scale adoption of cloud computing in the enterprise environment. Busi-
ness requirements, governmental regulations and trust are among the reasons why
the enterprises require certain levels of security compliance from cloud providers.
So far, this security compliance or auditing information has been generated by
security specialists manually. This process involves manual data collection and
assessment which is slow and incurs a high cost. Thus, there is a need for an
automated compliance tool to verify and express the compliance level of various
cloud providers. Such a tool can reduce the human intervention and eventually
reduce the cost and time by verifying the compliance automatically. Also, the
tool will enable the cloud providers to share their security compliance informa-
tion using a common framework. In turn, the common framework allows clients
to compare various cloud providers based on their security needs. Having these
goals in mind, we have developed an architecture to build an automated security
compliance tool for a cloud computing platform. We have also outlined four pos-
sible approaches to achieve this automation. These possible four approaches refer
to four design patterns to collect data from the cloud system and these are: API,
vulnerability scanning, log analysis and manual entry. Finally, we have imple-
mented a proof-of-concept prototype of this automated security compliance tool
using the proposed architecture. This prototype implementation is integrated
with OpenStack cloud platform, and the results are exposed to the users of the
cloud following the CloudAudit API structure defined by Cloud Security Alliance.

Keywords: Cloud Security Compliance, Cloud Audit, Cloud Control Ma-
trix (CCM), OpenStack, OpenVAS, OSAPI

Language: English

ii

Acknowledgements

It is a pleasure to thank those who made this thesis possible. I would like to
specially thank my home supervisor, Prof. Tuomas Aura, for his time and
valuable suggestions during the whole thesis work. At the same time, I am
grateful to my host supervisor, Prof. Danilo Gligoroski, for his timely help
and suggetions regarding my thesis.

I owe my gratitude to my instructors, Jukka Ylitalo and Abu Shohel Ahmed,
from NomadicLab Ericsson Research Finland, for their constant support and
guidance during the thesis work. Both of their knowledge and experience
in this field have helped me greatly to overcome many challenges during my
thesis work.

I would also like to thank NoadicLab, Ericsson Research Finland, for provid-
ing me this excellent working environment.

Last, but not the least, I want to express my gratitude to my wife, Fariha,
who keep inspiring me during the thesis work.

Espoo, June 30, 2012

Kazi Wali Ullah

iii

Abbreviations and Acronyms

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CCM Cloud Control Matrix
CLI Command Line Interface
COBIT Control Objectives for Information and related Tech-

nology
CSA Cloud Security Alliance
CSP Cloud Service Provider
EC2API Elastic Compute Cloud Application Programming In-

terface
DSS Data Security Standard
GRC Governance, Risk Management and Compliance
GUI Graphical User Interface
HIPAA Health Insurance Portability and Accountability Act
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
IaaS Infrastructure as a Service
ISO International Organization for Standardization
JSON JavaScript Object Notation
NASL Nessus Attack Script Language
NIST National Institute of Standards and Technology
NTP Network Time Protocol
NVT Network Vulnerability Tests
OAP OpenVAS Administration Protocol
OMP OpenVAS Management Protocol
OTP OpenVAS Transfer Protocol
OpenVAS Open Vulnerability Assessment System
OSAPI OpenStack Application Programming Interface
PaaS Platform as a Service

iv

PCI Payment Card Industry
REST Representational State Transfer
SaaS Software as a Service
SLA Service Level Agreement
UTC Co-ordinated Universal Time
VM Virtual Machine
WSGI Web Service Gateway Interface
XML Extensible Markup Language

v

Contents

Problem Description i

Abstract ii

Acknowledgements iii

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Research Problem . 2
1.2 Goals of the Thesis . 3
1.3 Contributions . 4
1.4 Structure of the Thesis . 5

2 Background 6
2.1 Security Compliance . 6

2.1.1 Why Security Compliance? 7
2.1.2 Challenges in Automating Security Compliance Check 8

2.2 Cloud Computing . 10
2.2.1 Service Models . 10
2.2.2 Deployment Models . 12

2.3 OpenStack: The Selected Cloud Computing Platform 14
2.3.1 OpenStack Projects . 14
2.3.2 OpenStack Nova Architecture 16

2.4 Information Security Standards 18
2.4.1 ISO 27002 . 19

2.5 Cloud Control Matrix . 20
2.6 CSA CloudAudit Framework 21
2.7 OpenVAS . 22
2.8 Related Research in this Field 26

vi

3 System Architecture 28
3.1 High Level Architecture . 28
3.2 System Architecture . 30
3.3 Design Patterns . 32

3.3.1 Application Programming Interface (API) 32
3.3.2 Vulnerability Assessment Tool 33
3.3.3 Log Analysis . 34
3.3.4 Manual Entry . 34

4 Implementation 37
4.1 Methodology . 37
4.2 Reused System Components 38
4.3 Implemented Security Controls 38

4.3.1 Clock Synchronization 39
4.3.2 Remote Administrative & Diagnostic Port Protection . 40

4.4 Exposing New OSAPI . 41
4.5 Adding NVT in OpenVAS . 43
4.6 Building Cloud Audit API/Evidence Engine 45

4.6.1 Implementation Considerations 46
4.6.2 Providing Assurance 46

4.7 OpenStack Dashboard Integration 47

5 Evaluation 48
5.1 Security Perspective . 48

5.1.1 The CIA Triad . 48
5.1.2 Possible Risks . 50

5.2 Latest Related Work . 51
5.2.1 CloudeAssurance . 51
5.2.2 Piston CloudAudit Framework 52

6 Discussion 54

7 Conclusion 56
7.1 Summary of the Work . 56
7.2 Future Work . 57

Bibliography 59

A HTML Response from CloudAudit 65

vii

List of Figures

2.1 Cloud Service Models . 11
2.2 Cloud Deployment Models . 13
2.3 OpenStack Nova Architecture 17
2.4 System Architecture for OpenVAS 4.0.0 25

3.1 High Level Architecture for an Automated Security Compli-
ance Tool . 29

3.2 System Architecture for Automated Security Compliance Tool
in OpenStack Cloud Platform 31

3.3 Control Flow for Automated Security Compliance Tool Using
Log Analysis Mechanism in OpenStack Cloud Platform 34

4.1 Control Flow for Automated Security Compliance Tool Using
the API Mechanism . 43

4.2 Control Flow for Automated Security Compliance Tool Using
Vulnerability Scanning Mechanism 44

A.1 Sample Output for the Security Control “Clock Synchroniza-
tion” from the CloudAudit Evidence Engine 66

A.2 Sample Output for the Security Control “Remote Adminis-
trative & Diagnostic Port Protection” from the CloudAudit
Evidence Engine . 67

viii

Chapter 1

Introduction

The number of cloud service providers (CSP) is increasing fast as the widely
used pay-per-use business model has attracted millions of customers over
the world. This increasing number of cloud vendors facilitates the potential
customers to get more variety options to meet the requirements of their
product. At the same time, the customer has to compare and evaluate many
different cloud vendors to select the most suitable vendor for their products.
Since, most of these cloud vendors today are using proprietary solutions to
deliver cloud based services, it is difficult to compare different cloud vendors
under common evaluation criteria.

The problem arises due to several important facts residing in the cloud com-
puting arena. One of the most important issues is that the cloud vendors
are not applying open standards available for cloud computing to build the
cloud services. The most important reasons behind this are that the cloud
computing standardization work is still ongoing and that there exist many
proprietary solutions today that have been launched even before the stan-
dards were developed. Another important issue is the cost associated with
implementing cloud services according to standards. Cloud vendors will not
willingly incur that cost unless there is a significant demand from the large
portion of the customer base to implement the standards. Again, there is
lack of motivation for some vendors to be open and compliant with standards
rather than using their closed proprietary solutions.

If all the cloud vendors are put to use open standards, then the sole problem
would be to analyze the features provided by a cloud vendor against those
standards. In reality, the use of proprietary, non-standard solutions has made
the auditing procedure very challenging and complex. The same problem

1

CHAPTER 1. INTRODUCTION 2

is at hand when it comes to analyzing the security measures of a cloud
vendor for compliance with standards. While the security issues associated
with cloud computing have been under continuous study to make the cloud
computing more and more secure, there is no mechanism available today to
compare the security features provided by the different cloud vendors against
the standards. In addition, there is no mechanism as of today to verify, in
real time, the security features implemented by a cloud vendor. And this is
identified as one of the topmost demand by the users in the Martin Kuppinger
Top Trends 2012-2013 Report [51]. In this report, it is also mentioned that
since the Cloud is beyond the immediate control of IT, there will still be a
lack of tools and standards in the areas of authorization and auditing. Also,
the lack of auditability in real time or near-real time is one of the major
obstacles for large scale adoption of cloud computing [55].

Therefore, this thesis explores the possibility to build an automated security
compliance tool for cloud computing that will allow a cloud user to verify the
security measures against the standards in an on demand basis. However, the
security area for cloud computing is itself a broad topic and there are several
different cloud platforms with different properties to work with. Therefore,
in this thesis work, we aim to develop a proof-of-concept automated security
compliance tool focusing on one cloud platform.

1.1 Research Problem

By far, the most important concern with cloud computing is the various secu-
rity issues. Although all the major cloud vendors present today provide many
security measures for their clients, it is impossible for a client to verify or
compare the security measures provided by different cloud service providers
under a common security evaluation platform. Being aware of this issue,
Cloud Security Alliance (CSA) [6] has developed some guidelines and frame-
works to facilitate a common open, extensible and secure interface through
which a cloud provider is able to provide security assurance to its customers.
CloudAudit [8] is one such framework developed by CSA.

While the CloudAudit deals with providing a common interface for the audit-
ing process for a cloud service provider, Cloud Control Matrix (CCM) [5] is
developed to guide cloud vendors and its customers to assess the risks related
to a particular cloud service provider. The CCM provides a detailed guideline
incorporating industry accepted standards such as ISO 27001/27002 [20, 21],
HIPAA [34], ISACA COBIT [10], PCI DSS [25], NIST security standards

CHAPTER 1. INTRODUCTION 3

[24]. Therefore, if all the cloud vendors present today implement their sys-
tems by the regulations summarized in the CCM and provide a common
interface, using the CloudAudit framework, for a client to verify the security
measures, then a client can confidently verify, assess and compare the risks
from different cloud vendors.

Although the framework and guidelines from CCM and CloudAudit are
already there to facilitate the security-compliance-related information flow
inside a cloud vendor, yet how to automatically generate this compliance-
related information is still under research. Even if a cloud vendor advertises
that it has implemented all the security measures according to the standards,
there is no way to verify such a claim on demand by a user. To overcome
this situation, we aim to automate the risk assessment process in a cloud
vendor. In order to automate the risk assessment process, we plan to use
various techniques that will allow us to generate the required information on
demand and without human intervention.

In this thesis, we aim to build an intelligent engine that acquires the nec-
essary information on demand from a target cloud system. The acquired
information is tested by the engine for compliance with CloudAudit, CCM
and other standards. Finally, the results will be passed on to the user. To
accomplish this task, we have chosen the open source cloud computing plat-
form OpenStack [26], which supports the Infrastructure as a Service (IaaS)
cloud service model.

Before we can jump into the actual development, we need to find answers
to a few questions. The first question that we need to answer is which
parts of the auditing can be automated. As it is not possible to automate
everything, we need to answer this question and focus on a small part that
we are going to automate in this project. The second challenging question
is how to integrate the automated auditing process in the targeted cloud
infrastructure (OpenStack). And the final question is what approaches are
there that can be utilized for the automated security compliance analysis
based on the CSA requirements.

1.2 Goals of the Thesis

This thesis project is primarily focused on cloud security compliance, with
the following goals:

1. Analyze the CloudAudit and Cloud Control Matrix (CCM) for cloud

CHAPTER 1. INTRODUCTION 4

security specifics that is going to be used in order to build the frame-
work. Here, the cloud security specifics refer to the cloud security
controls, interface definitions, relation with different standards, etc.

2. Analyze different approaches to automating the compliance check pro-
cess in light of the OpenStack cloud computing platform.

3. Design an architecture for building an automated security compliance
tool for the cloud incorporating CloudAudit, CCM and other necessary
3rd party tools in the OpenStack cloud computing platform.

4. Build a proof-of-concept prototype of the automated security compli-
ance tool for cloud.

1.3 Contributions

The main contribution of this thesis is that we have developed a novel ar-
chitecture for building an automated security compliance tool for the cloud.
Although our architecture is developed focusing on a specific cloud platform,
OpenStack, it can be used in other cloud platforms as well with only minor
modifications. Furthermore, we have also implemented a proof-of-concept
solution using this architecture integrated with OpenStack cloud platform.
While developing the architecture, we have found four possible ways of col-
lecting data from the cloud to build the automatic security compliance check.
Two of these four possible ways are novel and we have implemented these
two ways as a proof of concept.

Besides the main contribution stated above, another important contribution
can be pointed out here. During the thesis work, we have reached the con-
clusion that many of the compliance checks can not be done automatically.
Many of the security controls in the standards need to be checked manually
or can be automated only partially. Considering this issue, we have devel-
oped our architecture in such a way that the administrator of a cloud vendor
can insert manual entries in the automated security compliance tool for these
controls. These manual entries, however, cannot be verified by the tool and
hence create a trust issue between the client and the vendor.

CHAPTER 1. INTRODUCTION 5

1.4 Structure of the Thesis

The rest of the thesis is organized as follows: Chapter 2 introduces the neces-
sary background information that is required to understand the technologies
involved in this project. Chapter 3 gives an overview of the design decisions
that we have made to implement the solution. Chapter 4 gives detailed infor-
mation about the implementation of our solution. In chapter 5, we evaluate
our work against various evaluation criteria. Chapter 6 discusses some ana-
lytical perspectives on the developed solution. And finally in Chapter 7, we
conclude our report along with some suggestions for future work.

Chapter 2

Background

This chapter introduces the necessary background information that is essen-
tial for understanding the rest of this thesis project. Since our thesis project
is about security compliance, we start this chapter by describing briefly what
security compliance is. Later, we move on to cloud computing, related secu-
rity terms, frameworks and standards. Finally, we introduce an open source
vulnerability scanner named OpenVAS that we have used in our prototype
implementation of an automated security compliance tool for cloud.

2.1 Security Compliance

In order to understand the security compliance, we have to distinguish it
from security itself. While security refers to a mechanism that have to be
used in order for a system to be in a safe state from prospective threats,
security compliance refers to a state of compliance with a given set of security
requirements. Therefore, while security itself is used to protect a system from
threats, security compliance has nothing to do with this protection. Rather,
security compliance ensures that the security measures taken to protect the
system are compliant with the necessary requirements. In general, the audit
and compliance refers to the process that an organization implements to
achieve the followings [53]:

• Identifying the set of requirements that the organization must abide
with.

• Acting accordingly so that the requirements are met.

6

CHAPTER 2. BACKGROUND 7

• Monitoring the systems that the processes are followed consistently.

To focus more on the security side of the compliance procedure, Klaus Julisch
from IBM Research has defined the security compliance as follows [49]:

“Security compliance, in IT systems, is the state of conformance
with externally imposed functional security requirements and of pro-
viding evidence (assurance) thereof.”

Now we can summarize the security compliance as to comply, for a system,
with external security requirements. This external security requirements can
be the government issued regulations, industry accepted best practices or any
internal company policies. However, these days security compliance generally
indicates the compliance with industry accepted security standards such as
NIST, ISO 270001/27002, HIPAA, PCI, etc. This is the compliance that we
have targeted to achieve in this thesis project. Although there is a human
behavioural side of the security compliance whether an employee wants to
comply with the policy or not [59], we, in this project, focus only in the
technical part of the security compliance.

2.1.1 Why Security Compliance?

Cloud computing can be seen as a new term for an old trend. This viewpoint
arises from the fact that cloud computing is generally used to deliver the
same old products such as email service or web service using a different
mechanism. It is important to realize that we already have well defined
protocols and standards for these sort of services for many years. Therefore,
the question arises why it is important to have the security compliance for
cloud infrastructure while it is providing the same set of services. Nathaniel
Borenstein and James Blake from Mimecast [14] have answered this question
by saying that this compliance is important to gain the trust of the nervous
users [41]. This is understandable as the companies willing to move towards
a cloud service provider to deliver their product, looses the control over the
underlying system and do not know the inner workings of the cloud systems.
Hence, the clients opt for a cloud vendor to be compliant with standards that
they can trust.

While compliance helps drive security, it does not equal actual security.
Nonetheless, if a system is compliant with a well-established security stan-
dard, it can survive the most common security threats. The 2012 Data

CHAPTER 2. BACKGROUND 8

Breach Investigation Report [63] presented by Verizon [64] outlines the fact
that non-compliance is one of the main reasons for data breaches in the Pay-
ment Card Industry. In this report, it was stated that 96% of the companies
that suffered the breach have not achieved compliance with the PCI DSS.
Only the remaining 4% of companies were still under attack despite having
achieved the compliance with PCI DSS. This is a clear indication of how
much difference can it make to have the security compliance.

There are several other important reasons for security compliance in general.
The first important and essential use of security compliance is the auditing
procedure. It is because of the fact that what is being audited and enforced
is compliance, not security. The second important aspect of compliance is
that despite extensive research [52], it is difficult to measure the security,
in general, for a system. However, measuring for compliance is feasible and
there are matrices published for this purpose [48, 65]. The third importance
of compliance, specially the security compliance, is that it plays a significant
role in ensuring governance and service level agreements (SLA) between the
cloud vendor and the client as indicated in [43]. Finally, in today’s world,
security compliance or auditing plays a significant role for a security tool to
be successful in business. If there is a new security tool that pops out of
some research lab which is not recognized or used by any security auditor,
there may be no value or business for that tool.

2.1.2 Challenges in Automating Security Compliance
Check

Security compliance check refers to verifying a system against some security
standards to determine whether the system complies with the standard or
not. So far, there have been manual auditing procedures for this purpose.
This manual auditing process involves data collection and decision making
by security experts and generally costs a lot of money and time. In contrast,
using automated security compliance check procedures, human intervention
can be reduced to a great extent which can be very time and cost efficient.
However, we have identified several challenges that need to be overcome in
order to build an automated security compliance tool for a system. These
challenges are listed in the following:

• The first challenge in automating the security compliance is to formalize
the set of external requirements with which the system has to comply.
The requirements determination is difficult due to having a large num-

CHAPTER 2. BACKGROUND 9

ber of standards and the fact that not all standards are suitable for all
types of systems. At a more granular level, even every security control
of a standard may not be appropriate for all systems.

• Unfortunately, the standards that we have at our disposal today, are
very abstract with no or minimal guidance for implementation. This
property of the standards have made the automation process extremely
difficult, as for the implementation of some controls, heuristic values
need to be chosen to verify the compliance status.

• Third challenge is to determine what data or information needs to be
extracted from the system to verify the security controls.

• Fourth challenge is to determine a feasible way to extract these data.
Some of the information required for verification can be obtained ex-
ternally while there are some information that can only be extracted
internally by the system itself.

• To extract these data, the system may need to be modified which can
be challenging for an already deployed and functional system.

• Data must be delivered in a secure way to the authorized compliance
tool so that it does not fall into the hands of an attacker.

• Finally, providing assurance for the compliance status determined by
the automated tool is also a big challenge. Since there may be some
heuristic values to determine the compliance status, client needs to be
assured about the decision or needs to be given more information about
the compliance check procedure.

Another barrier for automating the security compliance is that many of the
controls stated in the standards require manual intervention which can not
be automated. For example, the physical security (personnel physical entry
or exit to the facility, hardware security, etc.) related controls cannot be
verified using the automated security compliance tool.

All the above mentioned challenges are generic in nature and apply to au-
tomating the security compliance check for any system. There are even more
challenges in the cloud computing platforms to achieve the same security
compliance check. Based on the State of Enterprise Security Report 2010
[61] by Symantec Corporation [60], the most problematic areas from the
security perspective are (most problematic on the top):

• Infrastructure as a Service

• Platform as a Service

CHAPTER 2. BACKGROUND 10

• Server Virtualization

• Endpoint Virtualization

• Software as a Service

All of the above areas are inherent to cloud computing making the automa-
tion of security compliance check much more challenging in the cloud com-
puting arena.

2.2 Cloud Computing

Cloud computing is a relatively new paradigm for delivering computing re-
sources as a service to heterogeneous end users. End users typically use a
web-based interface to access the cloud computing service. There may be
also desktop-based or mobile-based interfaces to access the cloud services.
Users use these interfaces from their machine to access the service while the
business logic or the software and data remain in the cloud system. The most
common definition used by the researchers to define cloud computing is the
definition provided by NIST which is quoted in the following [54]:

“Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

The characteristics that have made cloud computing exalted are: on-demand
self-service, broad network access, resource pooling, rapid elasticity and mea-
sured service [54]. All of these characteristics are of utmost importance for a
company that does not want to have the hassle of maintaining its own com-
puting infrastructure. Therefore, the company can only concentrate on its
products while offloading the setup of the computing infrastructure, mainte-
nance, security, etc. to the CSP by paying a fee.

2.2.1 Service Models

From the user perspective of a cloud system, the most important considera-
tion is the service model as it defines the boundary about how much control

CHAPTER 2. BACKGROUND 11

the user will be given for the service. There are three different types of service
models available in cloud computing which are as follows [54]:

Software as a Service (SaaS): SaaS model allows the consumer of the
cloud only to access the application running on a cloud infrastructure. The
consumer will have no control over the cloud infrastructure or over the ap-
plication itself rather than setting some application configuration related
parameters. In this model, the client usually do not have any information re-
garding the underlying components of the system over which the application
is running. This makes easier for the consumers as they do not have to main-
tain the underlying operating system, network, storage, etc. by themselves.
All of these resources are maintained by the cloud service provider. There
are endless examples of business using SaaS model today, some of the best
knowns are Google Docs [16], Salesforce Customer Relationship Management
[11], etc.

Figure 2.1: Cloud Service Models

Platform as a Service (PaaS): PaaS model allows a consumer to deploy
his/her own application into the cloud infrastructure. However, the applica-
tion created by the consumer must comply with the programming languages,
libraries, services and tools provided by the cloud service provider. In this
model, the consumer does not have any control on the underlying compo-
nents on which the application is running, but has complete control over the

CHAPTER 2. BACKGROUND 12

application that is owned and deployed by him. Examples of PaaS service
provider are Google App Engine [15], Microsoft’s Windows Azure [36], etc.

Infrastructure as a Service (IaaS): IaaS model provides the bare com-
puting resources to a consumer upon which a consumer can run any pieces of
software at his will. This choice of software includes operating systems and
any other application that the consumer requires. In this model, the con-
sumer does not manage the underlying cloud infrastructure. However, the
consumer can mange its storage requirements, operating systems and appli-
cations and possibly be able to choose some network configurations. Some
of the best known IaaS service providers are Amazon Web Services (AWS)
[2], Rackspace [4], etc.

2.2.2 Deployment Models

Based on the specific business, operational, and technical requirements, each
company chooses a deployment model for a cloud computing solution . There
are four different deployment models available today and these are:

Private Cloud: In this deployment model, only a single organization owns
or uses the cloud infrastructure. However, the management and maintenance
can be administered by the organization itself or by any other third party
company.

Community Cloud: This deployment facilitates the use of cloud infras-
tructure by multiple companies sharing common interests. The shared inter-
ests or concerns may include business area, security requirements, business
policy, compliance issues etc.

Public Cloud: This deployment scenario occurs when the cloud provider
allows the cloud infrastructure to be used by general public. The usage of
the cloud service may be free or for a fee depending on the cloud service
provider’s policy.

Hybrid Cloud: Hybrid cloud deployment occurs when the cloud infras-
tructure is a combination of two or more above mentioned models. This

CHAPTER 2. BACKGROUND 13

Figure 2.2: Cloud Deployment Models

scenario is useful when an organization has a private cloud to support its
regular business, however requires more computing resources due to traffic
burst for a short amount of time. During the traffic burst, the organization
can balance the load by utilizing a community or public cloud. In this way,
the organization can make sure that it never goes overloaded and all the
services are delivered in time. However, utilizing a hybrid cloud deployment
model requires strong co-ordination of data and control logics between two
or more different clouds.

It is this deployment model which defines the level of control that an orga-
nization may have over the cloud infrastructure. In the private cloud model,
the organization owns the cloud and have the total control over the cloud
infrastructure. The reverse is true for the public clouds where an user of the
cloud have minimal control over the cloud infrastructure.

CHAPTER 2. BACKGROUND 14

2.3 OpenStack: The Selected Cloud Com-

puting Platform

OpenStack [26] is the open source cloud computing platform that has drawn
significant amount of attraction from the cloud community in just couple of
years. OpenStack is relatively new in the cloud arena and was launched in
the year 2010 when the U.S. National Aeronautics and Space Administration
(NASA) and Rackspace founded this OpenStack organization for the devel-
opment of open-source cloud computing platform. Although the OpenStack
community initially started with only two companies, NASA and Rackspace,
currently (June 18, 2012) the OpenStack community has 180 companies as
participating members including companies like Dell, AMD, Intel, Cisco, HP,
Ericsson to name a few. The mission of OpenStack includes:

• To produce an open-source Cloud Computing platform that will meet
the needs of public and private clouds regardless of size.

• Simple to implement.

• Massively scalable.

• Feature rich.

The initial version of OpenStack was released in October, 2010, and was
named Austin. After that OpenStack has released 4 more versions named
Bexar, Cactus, Diablo and Essex while Essex is the latest, released in May,
2012. In our thesis project, we have worked with the release Diablo, and
from here on, all the discussion about OpenStack will be done in light of the
release Diablo.

2.3.1 OpenStack Projects

Being a collaborative software project, OpenStack runs many projects to sup-
port its mission. There are currently three core projects running in Open-
Stack and these are OpenStack Compute, OpenStack Object Storage and
OpenStack Image Service. Along with these three core projects, two new
projects named OpenStack Identity and OpenStack Dashboard are being in-
cubated with the release Diablo. All of these five OpenStack projects are
described briefly in the following paragraphs.

CHAPTER 2. BACKGROUND 15

OpenStack Compute: The codename for this project is Nova which was
initially developed at NASA. Nova is the cloud computing fabric controller,
the main part of IaaS cloud system, designed to provision and manage large
networks of virtual machines, creating a redundant and scalable cloud com-
puting platform. Nova provides all the necessary pieces of software, control
panels and APIs that are required to create, run and maintain a cloud sys-
tem. The design guidelines that influenced the development of Nova are -
component based architecture, high availability, fault tolerance, recoverable,
open standards, API compatibility.

OpenStack Object Storage: The codename for this project is Swift
which is also the name given at Rackspace where it was developed initially.
Swift allows the creation of object storage using clusters of standardized
servers that can store and access data in the range of petabytes. One thing
to understand about Swift is that it is not a filesystem or a real time data
storage system, rather a long term data storage system intended to store,
retrieve, leverage, modify a more permanent type of data such as virtual
machine images, photo storage, email storage, etc. Swift provides software
logic for data distribution and replication across the servers and therefore
cheap commodity hardware can be used to build this massive storage service
in stead of using dedicated expensive hardware. Popular use cases of Swift
include service providers who wants to provide IaaS based storage service,
document storage, archiving and backend of Microsoft SharePoint.

OpenStack Image Service: This project allows OpenStack to provide
discovery, registry and delivery services for virtual machine images. As with
the earlier projects, this project also has a codename and the name is Glance.
Using Glance, a user can query for the stored images that are stored in
various back end storages. Glance provides RESTful API services in order
to facilitate the querying for the stored images.

OpenStack Identity: This is one of the two new projects included in the
Diablo release with the codename Keystone. Keystone implements Open-
Stack’s identity APIs and provides identity, token, catalog and policy ser-
vices to the OpenStack projects. All the APIs are RESTful and uses SSL
over HTTP (HTTPS) to protect the secret credentials.

CHAPTER 2. BACKGROUND 16

OpenStack Dashboard: This project provides the baseline user interface
for managing OpenStack services. This project is more commonly known
with its codename Horizon. Horizon provides an web based user interface for
OpenStack and is developed using Django [12] framework. Horizon was ini-
tially developed with support for the Nova project only. Later on, it started
to support other OpenStack projects such as Swift and Glance. Although
Horizon only provides basic user interface for OpenStack services, it is ex-
tensible and manageable by an administrator by adding new functionalities
into the project.

Among these five above mentioned OpenStack projects, only Nova and Hori-
zon are important from the perspective of the thesis. We have carried out
the security compliance check against the Nova system and for that reason
we had to add new functionality in the Nova project. Also we have used
a modified Horizon project to display our security compliance related infor-
mation in to the OpenStack dashboard. Since Nova is the most important
OpenStack project from this thesis’s perspective, we will take a deeper look
at Nova in the next section.

2.3.2 OpenStack Nova Architecture

OpenStack is an Infrastructure as a Service (IaaS) cloud computing platform
and Nova, also known as OpenStack Compute, is the core piece of software
that facilitates the IaaS cloud computing platform for OpenStack. Nova is
similar in scope to Amazon EC2 [1] and Rackspace cloud servers [7]. Figure
2.3 depicts the architecture for OpenStack Nova and the components are -

Cloud Controller is at the heart of Nova which interacts with other mod-
ules in different ways such as Hyper Text Transfer Protocol (HTTP), Ad-
vanced Message Queuing Protocol (AMQP) and local methods. It also man-
ages the global state of the system.

Object Store provides the storage related facilities. OpenStack Swift is
an example of object storage service that can be integrated with Nova.

Auth Manager provides the authentication and access related functional-
ity. Initially the nova.auth.manager class handled the authentication related

CHAPTER 2. BACKGROUND 17

Figure 2.3: OpenStack Nova Architecture

functionality which is now deprecated. OpenStack Keystone project has now
taken place in order to provide the authentication functionality.

Volume Controller controls the storage related functionality such as cre-
ation, deletion, attaching, detaching, etc. for a compute node. In this way, a
compute node can have a persistent storage medium as the storage attached
to a compute node is non-persistent and loses all the data when the compute
storage is detached or the instance is terminated.

Network Controller configures the network for the host machine in Open-
Stack. It manages the IP addressing, VPN configurations, creating security

CHAPTER 2. BACKGROUND 18

groups etc. for compute nodes.

Scheduler maps the API calls to an appropriate OpenStack component.
It also runs an algorithm to select the resource from an available pool of
resources for a task.

Compute Controller is responsible for compute resources where the in-
stances are deployed.

API Server is the interface for the outside world to interact and manage
the OpenStack cloud infrastructure. It provides RESTful APIs to the outside
world and it communicates to other modules of Nova through the cloud
controller.

2.4 Information Security Standards

Despite having installed security mechanisms, we often hear about informa-
tion security breaches. One reason behind this is that the security mecha-
nisms are not applied correctly. To address this issue, information security
standards and various regulations have been introduced. These standards
and regulations provide a guideline to ensure that an adequate level of se-
curity is in place, resources are used properly and the best known security
practices are adopted.

These standards and regulations are often initiated by industry bodies, orga-
nizations and governments. Some organizations, having same business, can
create a standard for that business which everybody has to follow to ensure
interoperability, to prevent vendor lock-in, to permit open middleware, etc.
One example of such standard is the Payment Card Industry (PCI) Data
Security Standard (DSS) [25]. This standard was developed by a number
of major credit card companies including American Express, MasterCard
worldwide and VISA international.

Some industries are often regulated by the government, and the government
introduces acts and regulations for this purpose. One such example is the
Health Information Privacy and Accountability Act (HIPAA) [34]. This act
was developed by the US government to not only protect the security of

CHAPTER 2. BACKGROUND 19

the health-related data but also to improve the portability and continuity of
health insurance and for many other purposes.

Besides the above two types of standards and regulations, there are some
standards developed which are generic in nature and may be applicable to any
information system. Some of the best known information security standards
in this aspect are ISO 27001 [20], ISO 27002 [21] and NIST [24]. Since, we
have used ISO 27002 in our project for the compliance, we will give a brief
description of the ISO 27002 standard in the following section.

2.4.1 ISO 27002

ISO 27002 was developed by International Organization for Standardization
(ISO) and the latest version is ISO 27002:v2005 with the title - “Information
technology - Security techniques - Code of practice for information security
management”. This is an internationally accepted standard that has been
followed by tens or hundreds of thousands of organizations worldwide as a
norm for good practices in the information security arena.

ISO 27002:v2005 is not a true information security standard; it is more like
an advisory document. This document provides a structured way to address
the information security risks. The best practices in the information security
arena are presented in this standard in 11 security domains:

1. Security policy

2. Organizing information security

3. Asset management

4. Human resources security

5. Physical and environmental security

6. Communications and operations management

7. Access control

8. Information systems acquisition, development and maintenance

9. Information security incident management

10. Business continuity management

11. Compliance

CHAPTER 2. BACKGROUND 20

These 11 security domains are covered with 39 main security categories and
there are hundreds of security controls specified for these main security cat-
egories. Each main security categories composed of two components -

1. A control objective that states what is to be achieved by this security
category.

2. One or more controls to achieve the control objective.

Each control is composed of three components. These are -

Control statement: Defines what this specific security control does to
satisfy the control objective.

Implementation guidance: Provides some guidance to implement this
security control.

Other information: Some additional information is provided that may be
important when implementing the control.

Example controls from ISO 27002 can be found in section 4.3.1 and section
4.3.2.

2.5 Cloud Control Matrix

The Cloud Control Matrix (CCM) [5] is a control framework with the set
of baseline security controls for cloud computing to provide a guideline for
the cloud users to assess the risk associated with a cloud service provider.
The set of baseline security controls are defined by Cloud Security Alliance
(CSA) [6] with the goal of promoting the use of best practices in the cloud
computing arena to facilitate the security assurance. The goal of the CSA
CCM is to bridge the gap between cloud security and industry accepted
security standards and thus to provide a standard for the cloud security
area.

The CSA CCM provides a detailed understanding of security principles and
concepts that are aligned with the CSA’s security guidance [32] in 13 security
domains. These 13 domains are denoted as the critical focus areas in cloud
computing by CSA:

1. Cloud Computing Architectural Framework

2. Governance and Enterprise Risk Management

CHAPTER 2. BACKGROUND 21

3. Legal and Electronic Discovery

4. Compliance and Audit

5. Information Lifecycle Management

6. Portability and Interoperability

7. Traditional Security, Business Continuity, and Disaster Recovery

8. Data Center Operations

9. Incident Response, Notification, and Remediation

10. Application Security

11. Encryption and Key Management

12. Identity and Access Management

13. Virtualization

While this CSA security guidance provides a guideline for security assurance
in 13 security domains in cloud computing, the CSA CCM provides a cus-
tomized relationship with other industry accepted standards present today.
These industry accepted standards include - ISO 27001/27002, HIPAA, CO-
BIT, PCI and NIST standard. This mapping between cloud security controls
and the industry accepted standards’ controls is the foundational core of the
CCM.

For the security compliance check in cloud computing platform against a
industry accepted standard, CCM provides the starting point by giving the
list of security controls from that standard that must be aligned with cloud
security. Therefore, by analyzing the CCM, one readily knows which controls
to check from the standard for the cloud system to be compliant with that
standard.

2.6 CSA CloudAudit Framework

CSA CloudAudit [8, 42] framework is a standardized way to facilitate infor-
mation regarding the performance and security of a cloud service provider
to an authorized client. This standardized way of getting information about
performance and security enables a customer to analyze various performance
and security status and thus enables comparing the services between different
cloud service providers. Also, in this way it is easier for the cloud vendors to

CHAPTER 2. BACKGROUND 22

maintain and deliver the information to multiple customers. Using CloudAu-
dit framework, cloud vendors can provide the information once and update
it periodically or when any change in the system occurs.

The development code name for CloudAudit was A6 - Automated Audit,
Assertion, Assessment and Assurance API. The specification provides, ac-
cording to the Internet Engineering Task Force (IETF) CloudAudit 1.0 draft
document [42], “a common interface, naming convention, set of processes and
technologies utilizing the HTTP protocol to enable cloud service providers to
automate the collection and assertion of operational, security, audit, assess-
ment, and assurance information”. The project was initiated by Christofer
Hoff, director of cloud and virtualization systems at Cisco Systems Inc. [3],
and later it became an official project of the Cloud Security Alliance (CSA)
during October, 2010.

There are three core aspects of CloudAudit framework. First core part of
CloudAudit is that it is HTTP based. An authorized user can receive the
service only using HTTP. This also means that the service can be received
from anywhere via Internet. The second core part of CloudAudit is that
it defines two types of namespaces for providing the service. These two
namespaces are the glossary namespace and service namespace. The glossary
namespace provides definitions and sometimes additional documentation for
a service, while the service namespace provides assertions about the local
or remote services. The response from service namespace must be a valid
HTML in a human readable form.

The final core part of CloudAudit is the compliance packs. These compliance
packs define the namespaces for the controls defined in CCM and for the cor-
responding control from a particular standard. Currently there are five com-
pliance packs available. These are CloudAudit-COBIT Compliance Pack,
CloudAudit-HIPAA Compliance Pack, CloudAudit-ISO 27002 Compliance
Pack, CloudAudit-NIST800-53 Compliance Pack and CloudAudit-PCI Com-
pliance Pack. These compliance packs are made available to the public as Mi-
crosoft Office Excel files. A sample structure of CloudAudit-ISO27002 Comp-
liance Pack is shown in Table 2.1.

2.7 OpenVAS

The Open Vulnerability Assessment System (OpenVAS) [27] is a comprehen-
sive and powerful vulnerability scanning and management solution. It is a

CHAPTER 2. BACKGROUND 23

C
o
n
t
r
o
l

A
r
e
a

C
o
n
t
r
o
l

I
D

C
o
n
t
r
o
l

S
p

e
c
ifi

c
a
t
io

n
I
S
O

2
7
0
0
2
-2

0
0
5

C
o
m

p
li

a
n
c
e

N
u
m

b
e
r

C
o
n
t
r
o
l

N
a
m

e
D

e
s
c
r
ip

t
io

n
C

S
A

C
lo

u
d
A

u
d
it

/
A

6

C
o
m

p
li
a
n
c
e

-
A

u
d
it

P
la

n
-

n
in

g

C
O

-0
1

A
u
d
it

p
la

n
s,

a
c
ti

v
it

ie
s

a
n
d

o
p

e
ra

ti
o
n
a
l

a
c
-

ti
o
n

it
e
m

s
fo

c
u
si

n
g

o
n

d
a
ta

d
u
p
li
c
a
ti

o
n
,

a
c
-

c
e
ss

,
a
n
d

d
a
ta

b
o
u
n
d
a
ry

li
m

it
a
ti

o
n
s

sh
a
ll

b
e

d
e
si

g
n
e
d

to
m

in
im

iz
e

th
e

ri
sk

o
f

b
u
si

n
e
ss

p
ro

c
e
ss

d
is

ru
p
ti

o
n
.

A
u
d
it

a
c
ti

v
it

ie
s

m
u
st

b
e

p
la

n
n
e
d

a
n
d

a
g
re

e
d

u
p

o
n

in
a
d
v
a
n
c
e

b
y

st
a
k
e
h
o
ld

e
rs

.

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
5
.3

.1
In

fo
rm

a
ti

o
n

sy
s-

te
m

s
a
u
d
it

c
o
n
-

tr
o
ls

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
c
lo

u
d
se

c
u
ri

ty
a
ll
ia

n
c
e
/

g
u
id

a
n
c
e
/
C

O
-0

1
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
5
-3

-
1
/

In
fo

rm
a
ti

o
n

S
e
c
u
ri

ty
-

D
ia

g
n
o
st

ic
/

C
o
n
fi

g
u
-

ra
ti

o
n

P
o
rt

s
A

c
c
e
ss

IS
-3

0
U

se
r

a
c
c
e
ss

to
d
ia

g
n
o
st

ic
a
n
d

c
o
n
fi

g
u
ra

ti
o
n

p
o
rt

s
sh

a
ll

b
e

re
st

ri
c
te

d
to

a
u
th

o
ri

z
e
d

in
d
i-

v
id

u
a
ls

a
n
d

a
p
p
li

c
a
ti

o
n
s.

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
1
.4

.4
R

e
m

o
te

d
ia

g
n
o
s-

ti
c

a
n
d

c
o
n
fi

g
u
ra

-
ti

o
n

p
o
rt

p
ro

te
c
-

ti
o
n

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
c
lo

u
d
se

c
u
ri

ty
a
ll
ia

n
c
e
/

g
u
id

a
n
c
e
/
IS

-3
0
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
1
-4

-
4
/

S
e
c
u
ri

ty
A

rc
h
it

e
c
tu

re
-

C
lo

c
k

S
y
n
-

c
h
ro

n
iz

a
ti

o
n

S
A

-1
2

A
n

e
x
te

rn
a
l

a
c
c
u
ra

te
,

e
x
te

rn
a
ll
y

a
g
re

e
d

u
p

o
n
,

ti
m

e
so

u
rc

e
sh

a
ll

b
e

u
se

d
to

sy
n
c
h
ro

-
n
iz

e
th

e
sy

st
e
m

c
lo

c
k
s

o
f

a
ll

re
le

v
a
n
t

in
fo

r-
m

a
ti

o
n

p
ro

c
e
ss

in
g

sy
st

e
m

s
w

it
h
in

th
e

o
rg

a
n
i-

z
a
ti

o
n

o
r

e
x
p
li

c
it

ly
d
e
fi

n
e
d

se
c
u
ri

ty
d
o
m

a
in

to
fa

c
il
it

a
te

tr
a
c
in

g
a
n
d

re
c
o
n
st

it
u
ti

o
n

o
f

a
c
-

ti
v
it

y
ti

m
e
li
n
e
s.

N
o
te

:
sp

e
c
ifi

c
le

g
a
l

ju
ri

s-
d
ic

ti
o
n
s

a
n
d

o
rb

it
a
l

st
o
ra

g
e

a
n
d

re
la

y
p
la

t-
fo

rm
s

(U
S

G
P

S
&

E
U

G
a
li
le

o
S
a
te

ll
it

e
N

e
t-

w
o
rk

)
m

a
y

m
a
n
d
a
te

a
re

fe
re

n
c
e

c
lo

c
k

th
a
t

d
iff

e
rs

in
sy

n
c
h
ro

n
iz

a
ti

o
n

w
it

h
th

e
o
rg

a
n
iz

a
-

ti
o
n
s

d
o
m

ic
il
e

ti
m

e
re

fe
re

n
c
e
,

in
th

is
e
v
e
n
t

th
e

ju
ri

sd
ic

ti
o
n

o
r

p
la

tf
o
rm

is
tr

e
a
te

d
a
s

a
n

e
x
p
li
c
it

ly
d
e
fi

n
e
d

se
c
u
ri

ty
d
o
m

a
in

.

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.6

C
lo

c
k

sy
n
c
h
ro

-
n
iz

a
ti

o
n

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
c
lo

u
d
se

c
u
ri

ty
a
ll
ia

n
c
e
/

g
u
id

a
n
c
e
/
S
A

-1
2
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

6
/

S
e
c
u
ri

ty
A

rc
h
it

e
c
-

tu
re

-
A

u
d
it

L
o
g
g
in

g
/

In
tr

u
si

o
n

D
e
te

c
ti

o
n

S
A

-1
4

A
u
d
it

lo
g
s

re
c
o
rd

in
g

p
ri

v
il
e
g
e
d

u
se

r
a
c
c
e
ss

a
c
ti

v
it

ie
s,

a
u
th

o
ri

z
e
d

a
n
d

u
n
a
u
th

o
ri

z
e
d

a
c
-

c
e
ss

a
tt

e
m

p
ts

,
sy

st
e
m

e
x
c
e
p
ti

o
n
s,

a
n
d

in
-

fo
rm

a
ti

o
n

se
c
u
ri

ty
e
v
e
n
ts

sh
a
ll

b
e

re
ta

in
e
d
,

c
o
m

p
ly

in
g

w
it

h
a
p
p
li
c
a
b
le

p
o
li
c
ie

s
a
n
d

re
g
u
-

la
ti

o
n
s.

A
u
d
it

lo
g
s

sh
a
ll

b
e

re
v
ie

w
e
d

a
t

le
a
st

d
a
il
y

a
n
d

fi
le

in
te

g
ri

ty
(h

o
st

)
a
n
d

n
e
tw

o
rk

in
tr

u
si

o
n

d
e
te

c
ti

o
n

(I
D

S
)

to
o
ls

im
p
le

m
e
n
te

d
to

h
e
lp

fa
c
il

it
a
te

ti
m

e
ly

d
e
te

c
ti

o
n
,

in
v
e
st

ig
a
-

ti
o
n

b
y

ro
o
t

c
a
u
se

a
n
a
ly

si
s

a
n
d

re
sp

o
n
se

to
in

c
id

e
n
ts

.
P

h
y
si

c
a
l
a
n
d

lo
g
ic

a
l
u
se

r
a
c
c
e
ss

to
a
u
d
it

lo
g
s

sh
a
ll

b
e

re
st

ri
c
te

d
to

a
u
th

o
ri

z
e
d

p
e
rs

o
n
n
e
l.

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.1

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.2

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.3

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.4

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
0
.1

0
.5

IS
O

/
IE

C
2
7
0
0
2
-

2
0
0
5

1
5
.2

.2

A
u
d
it

lo
g
g
in

g
,

M
o
n
it

o
ri

n
g

sy
st

e
m

u
se

,
P

ro
-

te
c
ti

o
n

o
f

lo
g

in
fo

rm
a
ti

o
n
,

A
d
-

m
in

is
tr

a
to

r
a
n
d

o
p

e
ra

to
r

lo
g
s,

F
a
u
lt

lo
g
g
in

g
a
n
d

T
e
c
h
n
ic

a
l

c
o
m

p
li
-

a
n
c
e

c
h
e
c
k
in

g

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
c
lo

u
d
se

c
u
ri

ty
a
ll
ia

n
c
e
/

g
u
id

a
n
c
e
/
S
A

-1
4
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

1
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

2
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

3
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

4
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
0
-1

0
-

5
/

/
.w

e
ll
-k

n
o
w

n
/
c
lo

u
d
a
u
d
it

/
o
rg

/
is

o
/
2
7
0
0
2
-2

0
0
5
/
1
5
-2

-
2
/

T
ab

le
2.

1:
C

lo
u
d
A

u
d
it

-I
S
O

27
00

2
C

om
p
li
an

ce
P

ac
k

S
tr

u
ct

u
re

CHAPTER 2. BACKGROUND 24

framework of several tools and services distributed as free software. Open-
VAS started its journey as a fork from another open source network vulnera-
bility scanning tool named Nessus [23]. Nessus is now an proprietary solution
and for the free development of the solution, OpenVAS is distributed under
GNU General Public Licence. The original company still contributes for the
development of OpenVAS.

OpenVAS is used to scan a target machine or many target machines at the
same time to find vulnerabilities. These vulnerabilities are mostly network
security related, however, not limited to only network security. By using
OpenVAS it is possible to test local system security, policy checks, patch
management, etc. for a system. After the scanning is complete, OpenVAS
produces a report with the vulnerabilities found for a target system associated
with the risk level. Risk is defined in three levels: High, Medium and Low.
This gives an indication of which vulnerability is the most threatening at this
moment. Using this report, a system or network administrator can make the
necessary changes to the system to make it more secure by alleviating the
vulnerabilities.

The latest released version of OpenVAS is 5.0 and it was released in May,
2012. Therefore, we have used the earlier version of OpenVAS (version 4.0.0
released in March, 2011) in building our automated security compliance tool.
The architecture for OpenVAS 4 is given in Figure 2.4. OpenVAS 4 structure
is divided into three layers. The first layer is the Client layer, which basically
constitutes the graphical or command line interface that is used to access
and use the services of OpenVAS. The second layer is the Service layer and
consists the scanning daemon along with the managerial and administrative
daemons for OpenVAS. The final layer is the Data layer and consist a pool
of tens of thousands of Network Vulnerability Tests (NVTs) and a database
to hold the configurations and results. In the following paragraphs, each of
the components depicted in Figure 2.4 is described briefly.

OpenVAS CLI: The command line interface (CLI), called the OpenVAS
CLI, is used to access, manage and use OpenVAS system using only com-
mands. This client is a module consisting a tool called omp, which is de-
veloped and maintained by Greenbone Networks [17]. OpenVAS CLI allows
the automation of batch processes for OpenVAS. This CLI is particularly
important for us as we have used this interface to integrate OpenVAS in our
automated security compliance tool.

CHAPTER 2. BACKGROUND 25

Figure 2.4: System Architecture for OpenVAS 4.0.0

Greenbone Security Assistant: Greenbone Security Assistant is the web
based interface to access, manage and use the services of OpenVAS. This
interface is again developed by Greenbone and has gained the most popularity
among the user community.

Greenbone Security Desktop: This is the desktop base interface for
OpenVAS developed using Qt framework. This desktop based control center
for OpenVAS is also developed and maintained by Greenbone.

OpenVAS Manager: At the core of OpenVAS system lies the OpenVAS
manager. All the intelligence required to build a full-fledged vulnerability
management solution rather than just building a simple vulnerability scan-
ner are put into the OpenVAS manager. This module controls the OpenVAS
Scanner and the database. In order to control the scanner, it uses OpenVAS
Transfer Protocol (OTP). And for other modules that want to communi-
cate with the OpenVAS manager, it offers OpenVAS Management Protocol
(OMP) which is an XML based stateless protocol. All the clients communi-
cates to the OpenVAS system using this OMP protocol.

CHAPTER 2. BACKGROUND 26

OpenVAS Administrator: This module offers a command line tool or a
full fledged service for user management and NVT feed management for the
OpenVAS system. It offers the OpenVAS Administration Protocol (OAP)
to carry out the management related tasks. Users only with the admin role
can use this OAP functionality.

OpenVAS Scanner: OpenVAS scanner is the core module that does the
actual vulnerability tests. In order to do so, it executes the NVTs and returns
the results. This module offers the OpenVAS Transfer Protocol (OTP) for
carrying out the scanning-related task and using this protocol. The OpenVAS
Manager controls this module.

Database: This is a SQLite [33] based database for OpenVAS system to
hold all the configuration related data. It also holds all the scan results that
have been done so far.

NVTs: Network Vulnerability Tests or NVTs are the scripts that enable
the OpenVAS to detect the vulnerabilities. All of these NVTs are written
in the Nessus Attack Script Language (NASL) [22]. Since every now and
then new type of vulnerabilities are exposed, the OpenVAS has to cope with
these new threats by being able to detect them. In order to do so, OpenVAS
introduces new NVTs or modifies old ones in its pool of NVTs so that they
can detect the new vulnerabilities. Therefore, the NVT pool is updated
almost daily basis and there are currently around twenty five thousands of
NTVs in the OpenVAS system.

For our automated security compliance tool, the most important parts of
OpenVAS are the CLI and the NVTs. By using the “omp” tool for CLI we can
access and use the OpenVAS service and therefore, can integrate OpenVAS
in our solution. NVTs are essential for our solution as it is the NVTs that
detect the vulnerabilities and generate the report for them. Therefore, if
someone is looking for a new type of vulnerability or new type of report,
then a new NVT must be created for that purpose.

2.8 Related Research in this Field

Despite the importance of automated auditing for security compliance in the
cloud computing arena, we discovered that little research have been done in

CHAPTER 2. BACKGROUND 27

this field. Nonetheless, quite a lot of research has been done in the related
field of auditing in the cloud computing arena. For example, Prafullchan-
dra et al. [57] and Rasheed [58] has identified the challenges for auditing
against the PCI DSS standard in the cloud environment. Also, a theoretical
architecture to achieve PCI compliance has been presented [57].

Soren Bleikertz et al. [39][40] has shown an approach to assess the network
security configuration in the IaaS cloud platforms. This approach uses reach-
ability and attack graphs in order to determine network related vulnera-
bilities in the system. Their approach is automated in the sense that the
configuration data retrieval and the decision making is done without human
intervention. The scope of their work is limited to only network security
assessment.

Other related research has been published in the area of cloud privacy and
risk assessment. Tancock et al. [62] have demonstrated a Privacy Impact
Assessment Tool that can be used in order to assess the privacy law compli-
ance. Furthermore, Kaliski et al. [50] has proposed to deliver assessment-as-
a-service in the cloud computing environment since the environment is rather
different than regular computing environment.

A particular related area of interest is cloud monitoring. Hasselmeyer and
D’Heureuse [47] have identified the domain that separates the cloud comput-
ing environment from a regular computing environment from the perspective
of monitoring. We believe that the results of such research are also valuable
to achieve automated security compliance in the cloud environment as it also
provides a guideline for where to look for the information. Chaves et al. [45]
has indicated several challenges for cloud monitoring, some of which are also
in line with our work. The reason we mention cloud monitoring here is that,
since the cloud monitoring is already gathering data about the cloud system,
one approach for automating security compliance tool could be to use these
data. Therefore, cloud monitoring can be used as a part of the automated
security compliance tool, or information from an existing cloud monitoring
system can be reused to build an automated security compliance tool.

Chapter 3

System Architecture and Design
Patterns

In this chapter we present the design of the developed solution in detail. Dif-
ferent components are put together to build the architecture. These include
OpenStack, CloudAudit, Cloud Control Matrix, OpenVAS and ISO 27002.
We start by presenting a high level description of our approach that we have
taken to build this automated security compliance tool. Later we describe
the system architecture in detail and finally we describe different approaches
for collecting the data that are essential for this tool.

3.1 High Level Architecture

Figure 3.1 depicts the high level overview of the solution architecture. The
first step to verify the compliance status of a system against a control is to
collect the necessary data for that purpose. Therefore, as shown in Figure
3.1, we start by collecting data from the cloud in an engine which we call
the data collection engine. Then we feed this data to the verification engine,
which takes the decision whether the system is compliant or not. Finally,
the verification engine exposes this compliance status to the client using the
CloudAudit API.

From the Figure 3.1 we identify three core parts of the automated security
compliance tool. These are:

28

CHAPTER 3. SYSTEM ARCHITECTURE 29

Figure 3.1: High Level Architecture for an Automated Security Compliance
Tool

Data Collection Engine: The first essential part to build an automated
security compliance tool is to collect data effectively and efficiently. By being
effective we mean being able to collect all the necessary pieces of data and
by being efficient we mean using resources efficiently while fetching the data.
There can be many possible ways to collect data from a cloud and some of
these are described in section 3.3.

Verification Engine: This is the core part of the automated security com-
pliance tool. All the necessary intelligence for decision making and the knowl-
edge about the controls from the standards lies in this verification engine.
Using this intelligence and based on the data received from the data collec-
tion engine, it makes the decision whether the cloud system is compliant or
not.

CloudAudit API: This is the user interface to the client. There can be
many different ways to display or visualize this compliance related infor-
mation. However, we decided to use the CloudAudit API to display this
information as the CloudAudit framework is the IETF draft, designed solely
for this purpose by CSA.

In the next section, we will look at the complete system architecture that we
have developed for the OpenStack cloud computing platform.

CHAPTER 3. SYSTEM ARCHITECTURE 30

3.2 System Architecture

Figure 3.2 depicts the system architecture that we have developed to build an
automated security compliance tool targeting the OpenStack cloud platform.
The main components of the system are listed in the following -

1. Users: Admin or client of the OpenStack cloud system.

2. Dashboard: OpenStack DJango web based dashboard for information
display.

3. Keystone: OpenStack identity service for authentication and autho-
rization.

4. Cloud Audit Framework: This includes cloud audit API server and the
evidence engine. The API server receives the request from the user
and calls the appropriate method in the evidence engine to handle the
request. When this API server receives the response from the evidence
engine, it forwards that response to the user. The CloudAudit evidence
engine combines the functionality of the data collection engine and the
verification engine as depicted in Figure 3.1.

5. CloudAudit and CCM: Defines the CloudAudit API format and the
mapping of the cloud security controls to the industry accepted stan-
dards.

6. Nova API server: The OpenStack cloud computing fabric controller
providing the API services.

7. OpenVAS: A vulnerability assessment tool used to assess the vulnera-
bilities of the OpenStack system.

Having defining the components of the system, we can now take a look at
the system depicted in Figure 3.2. The user first logs in into the OpenStack
dashboard using their credentials. At this stage, Keystone is used as an iden-
tity service. In the dashboard, the user is given a list of available compliance
checks that are allowed to be verified by them. Once the user selects one
of these compliance checks to be verified, the control flow is transferred to
the CloudAudit API server. This eventually calls the method residing in the
CloudAudit evidence engine that is responsible for the particular compliance
check. At this point, the evidence engine method uses one of four different
approaches to gather the necessary information. Depending on the chosen
way, control may be transferred to the Nova API server or to a third party
vulnerability assessment tool or maybe the evidence engine can only search

CHAPTER 3. SYSTEM ARCHITECTURE 31

F
ig

u
re

3.
2:

S
y
st

em
A

rc
h
it

ec
tu

re
fo

r
A

u
to

m
at

ed
S
ec

u
ri

ty
C

om
p
li
an

ce
T

o
ol

in
O

p
en

-
S
ta

ck
C

lo
u
d

P
la

tf
or

m

CHAPTER 3. SYSTEM ARCHITECTURE 32

its database for manual entries. After information retrieval, the evidence en-
gine method processes that information for the particular compliance check
and sends back the results to the CloudAudit API server, which in turn
returns the results to the user.

One thing to be stated here is that the dashboard can directly call the Nova
API, which it normally does. However, in our compliance check architec-
ture we have omitted that since we are not calling the Nova APIs directly;
rather we are calling the newly exposed Nova APIs through the CloudAudit
framework.

The CloudAudit evidence engine in Figure 3.2 corresponds to both the data
collection engine and the verification engine shown in Figure 3.1. There-
fore, all the necessary logic and intelligence required for data collection and
verification is combined into the CloudAudit evidence engine. For the user
interface, the CloudAudit API does the same in both the Figures 3.1 and
3.2.

3.3 Design Patterns

While developing the architecture, we have found four possible ways to collect
data from the cloud to carry out the automatic security compliance check.
Two of these four possible ways are novel and we have implemented these
two ways as a proof-of-concept. The four approaches are described in the
following subsections.

3.3.1 Application Programming Interface (API)

The easiest way to obtain any information from a system is that the system
itself provides this information. This is our first approach to obtain necessary
information from a cloud system when it is required by the CloudAudit
evidence engine to verify against the security standards. In order to do so,
we have used the API mechanism in the cloud system. We propose a new set
of API in the cloud platform whose sole purpose will be providing necessary
information that can be used by the CloudAudit framework.

For OpenStack we have exposed a new REST API in the OSAPI pool. When
the CloudAudit evidence engine calls this API, the Nova API server executes
the code and returns the necessary information to the callee. CloudAudit

CHAPTER 3. SYSTEM ARCHITECTURE 33

framework uses this information to make the decision whether the cloud
system is compliant with the specific control from the standard or not.

One important thing to notice here that the Nova APIs are access restricted.
Therefore, in order for the CloudAudit evidence engine to call a Nova API,
it must have the authorization information. However, since a user is already
logged in to the OpenStack dashboard using his credentials, these user in-
formation can be used to call these APIs, which is the way the dashboard
normally works.

The benefit of this approach is that any sort of information can be easily and
reliably exposed to the automated security compliance tool as the information
gathering is done in the system itself. However, there are two issues with this
approach. The first issue is that the cloud system needs to be modified in
order to expose the information through an API. The second issue is that the
automated security compliance tool has to know which API to call to get this
information. Therefore, tight coupling between the CloudAudit framework
and the OpenStack Nova is required for this approach to work successfully.

3.3.2 Vulnerability Assessment Tool

The second approach that we have introduced for the automated security
compliance check is the use of a vulnerability assessment tool. This vul-
nerability assessment tool gathers information about the system by running
some scripts and generates the reports. This report is then analyzed by the
CloudAudit framework and the verdict is then returned to the user.

For this approach, we have selected an open source vulnerability assessment
tool called OpenVAS. OpenVAS can be used for many different kinds of
vulnerability assessment such as local security checks, firewall checks, port
scanning, backdoors and so on. OpenVAS is flexible enough in the sense that
it can be used from simple tasks such as checking for open ports in a system
to much harder tasks like verifying the company policies.

The main benefit of this approach is that the automated security compliance
tool can work independently without any integration with the cloud system.
It can collect the data externally without any modifications required to the
cloud system. In some cases it can create an SSH tunnel to login into the
cloud system, however, which still does not require any system modifications.
The great benefits of this approach come with the drawback that it is much
harder to collect the information externally. Also, it may take longer time

CHAPTER 3. SYSTEM ARCHITECTURE 34

to run the scanning and then generating the report which may be crucial in
an on-demand system.

3.3.3 Log Analysis

The third approach to gather the necessary information is by analyzing the
logs of a system. In order to do this, the CloudAudit evidence engine has to
login to the system by using SSH credentials. After that, it can analyze the
log files of interest and can extract the required information on compliance.
One important thing here is that the CloudAudit evidence engine must be
given the SSH credentials to log in to the target system if this method is
used.

In this thesis project, we do not use this approach as Piston Cloud Computing
[56] has already developed a few automated control checks for OpenStack
cloud platform using this approach. However, we depict the architecture of
this approach in Figure 3.3.

Figure 3.3: Control Flow for Automated Security Compliance Tool
Using Log Analysis Mechanism in OpenStack Cloud Platform

The benefit of this approach is again that no system modification is required
for the cloud infrastructure. The demerit of this approach is that the log files
in different cloud systems are different and the way of representing the log
information may be different. Therefore, the automated security compliance
tool that uses this approach must be tightly coupled with the cloud system
in order to be able to collect the information successfully.

3.3.4 Manual Entry

The final approach to retrieve compliance related information is by using
manual entries provided by the cloud administrator. This can be done by

CHAPTER 3. SYSTEM ARCHITECTURE 35

providing a user interface in the CloudAudit framework where an adminis-
trator will be given options to input necessary data that is required by the
CloudAudit framework for compliance checks. These data will be kept inside
a database in the CloudAudit framework and will be assessed against the
standards by the framework when it is demanded by a user.

The reason behind introducing this approach is that there is some information
required to verify some of the security controls that cannot be retrieved
automatically from the system. For example, the client may want to verify
that the cloud vendor is backing up the data as per the company policy. To
verify this control the automated security compliance tool first has to know
the policy for data backup and then it can verify from the system whether
the data has been backed up or not as per company policy. The policy can be
written into the automated security compliance tool by using this approach.
There are other ways to provide this manual entry by a cloud vendor such as
by XML files, text files and html files. However, in that case the the policy
files will be cloud vendor specific and the automated security compliance tool
needs to be integrated tightly with the cloud system to understand these files.

The main benefit of this approach is that any type of information, which
might not be possible to generate automatically otherwise, can be provided to
the CloudAudit evidence engine. Again this benefit comes with a drawback
- as the cloud administrator provides the input manually, the trust issue
remains between the client and the cloud vendor.

We have implemented the API and the vulnerability scanning data collection
mechanisms in our prototype. Table 3.1 summarizes the advantages and
disadvantages of each approach presented here.

CHAPTER 3. SYSTEM ARCHITECTURE 36

M
e
ch

a
n
is
m

A
d
v
a
n
ta

g
e

D
is
a
d
v
a
n
ta

g
e

A
P

I
1.

E
a
si

er
to

ex
tr

ac
t

in
fo

rm
at

io
n

fr
om

th
e

sy
st

em
it

se
lf

.
2.

A
cc

es
s

co
n
tr

o
l

fo
r

th
e

in
fo

rm
at

io
n

m
ay

b
e-

co
m

e
ea

si
er

.

1.
S

y
st

em
m

o
d

ifi
ca

ti
on

re
q
u

ir
ed

o
n

th
e

cl
o
u

d
sy

st
em

si
d
e

a
s

n
ew

A
P

Is
n

ee
d

to
b

e
ex

p
o
se

d
.

2.
T

h
e

au
to

m
a
te

d
se

cu
ri

ty
co

m
p

li
an

ce
to

o
l

n
ee

d
to

b
e

ti
gh

tl
y

co
u

p
le

d
w

it
h

th
e

cl
o
u

d
sy

st
em

as
it

m
u

st
k
n

ow
w

h
ic

h
A

P
I

to
ca

ll
.

V
u

ln
er

a
b

il
it

y
S

ca
n

n
in

g
1.

C
a
n

ex
tr

ac
t

th
e

d
at

a
ex

te
rn

al
ly

an
d

h
en

ce
n

o
sy

st
em

m
o
d
ifi

ca
ti

on
is

re
q
u

ir
ed

in
th

e
cl

ou
d

si
d

e.
2.

C
a
n

co
ll

ec
t

d
a
ta

fr
om

an
ou

ts
id

e
at

ta
ck

er
s

p
o
in

t
of

v
ie

w

1.
It

is
d

iffi
cu

lt
to

co
ll

ec
t

d
a
ta

ex
te

rn
a
ll

y.
2.

U
si

n
g

a
3
rd

-p
ar

ty
sc

a
n

n
in

g
to

ol
m

ay
re

q
u

ir
e

m
or

e
ti

m
e

to
co

ll
ec

t
d
at

a
.

L
og

A
n

a
ly

si
s

1.
N

o
sy

st
em

m
o
d

ifi
ca

ti
on

is
re

q
u

ir
ed

on
th

e
cl

ou
d

si
d

e.
1.

L
og

fi
le

s
a
re

d
iff

er
en

t
in

d
iff

er
en

t
sy

st
em

s.
H

en
ce

,
ti

gh
t

co
u

p
li

n
g

b
et

w
ee

n
th

e
au

to
m

a
te

d
se

cu
ri

ty
co

m
p

li
an

ce
to

ol
a
n

d
th

e
cl

o
u

d
sy

st
em

is
re

q
u

ir
ed

.

M
a
n
u

al
E

n
tr

y
1.

A
n
y

ty
p

e
o
f
in

fo
rm

at
io

n
ca

n
b

e
p

ro
v
id

ed
u

si
n

g
th

is
m

ec
h

an
is

m
.

1.
A

n
in

te
rn

a
l

d
a
ta

b
as

e
n

ee
d

to
b

e
m

a
in

ta
in

ed
in

th
e

au
to

m
a
te

d
se

cu
ri

ty
co

m
p

li
an

ce
to

ol
fo

r
th

is
m

ec
h

a
n

is
m

to
w

o
rk

.
2.

T
ru

st
Is

su
e.

T
ab

le
3.

1:
C

om
p
ar

is
on

s
am

on
g

d
iff

er
en

t
d
at

a
co

ll
ec

ti
on

m
ec

h
an

is
m

s

Chapter 4

Implementation

This chapter describes detail information about the implementation of the
prototype based on the architecture depicted in chapter 3. It presents the
methodology that we have used to develop our prototype, the system com-
ponents that we have used and how each module is developed and adapted.

4.1 Methodology

We followed the Evolutionary Prototyping [44] software development method-
ology for our prototype development. Evolutionary prototyping is an incre-
mental software development lifecycle model where new features can be added
at any time and or the software can be modified in response to end-user/ cus-
tomer feedback. The most significant feature of the evolutionary prototyping
model is that the final system concept is developed as the development of
the prototype is moving forward. The prototyping procedure starts by de-
signing the most salient features first. Then the prototyping process moves
on with the more detailed design as the development is going on and with
the feedback from that development.

For our research work, in order to build a prototype automated security
compliance tool, we valued this on-the-go concept-development-feature of
the Evolutionary prototyping much, as it suited our work flow. Also, the in-
cremental software development lifecycle feature has allowed us to gradually
add new features in our prototype system.

37

CHAPTER 4. IMPLEMENTATION 38

4.2 Reused System Components

In order to avoid the reinvention of the wheel, we have used several open
source components and software to build our solution. The list of these
components are in the following -

1. The first in the list is the OpenStack cloud computing platform. We
have modified the OpenStack’s Nova [35] project in order to implement
our solution.

2. The second open source software that we have used is the Open Vul-
nerability Assessment System (OpenVAS) to assess the vulnerability in
the target cloud system.

3. Thirdly, we have used Piston Cloud Computing’s [29] CloudAudit frame-
work [56] as the framework on top of which we developed our solution.

4. Finally, we have used and modified the OpenStack Horizon [18] project
to play the role of the user interface.

4.3 Implemented Security Controls

During our project we have analyzed several standards such as ISO 27001,
ISO 27002, NIST, PCI DSS and Cobit. After comparing these with each
other, we have selected the ISO 27002 v2005 to be the standard that we are
going to use for our automated security compliance tool. The reason behind
selecting this standard is that the controls are described in a more elabo-
rate way compared to other standards. There are also some implementation
guidelines provided for each security control in ISO 27002 v2005, which are
missing in the other standards that we have analyzed. Taking these advan-
tages into consideration, we have selected two controls from ISO 27002 v2005,
which are also present in Cloud Control Matrix (CCM), to be implemented
in our prototype solution. These two security controls are quoted from the
ISO 27002 standard in the following subsections.

One thing to clarify here is that CCM does not directly give the ISO 27002
control number; rather it gives the ISO 27001 control number. However,
ISO 27002 is based on ISO 27001 and we can find the same controls as in
ISO 27001 and 27002. Although CCM does not give us the ISO 27002 con-
trol number for a cloud compliance control ID, the CloudAudit compliance

CHAPTER 4. IMPLEMENTATION 39

pack gives an ISO 27002 control number for a cloud compliance control ID.
Therefore, we are able to map ISO 27002 against CCM control IDs.

4.3.1 Clock Synchronization

This control is defined in ISO 27002 [21] section 10.10.6. The details about
this control are as follows:

Control: The clocks of all relevant information processing systems
within an organization or security domain should be synchronized
with an agreed accurate time source.
Implementation guidance: Where a computer or communica-
tions device has the capability to operate a real-time clock, this clock
should be set to an agreed standard, e.g. Coordinated Universal
Time (UTC) or local standard time. As some clocks are known
to drift with time, there should be a procedure that checks for and
corrects any significant variation. The correct interpretation of the
date/time format is important to ensure that the timestamp reflects
the real date/time. Local specifics (e.g. daylight savings) should be
taken into account.
Other information: The correct setting of computer clocks is im-
portant to ensure the accuracy of audit logs, which may be required
for investigations or as evidence in legal or disciplinary cases. In-
accurate audit logs may hinder such investigations and damage the
credibility of such evidence. A clock linked to a radio time broad-
cast from a national atomic clock can be used as the master clock
for logging systems. A network time protocol can be used to keep
all of the servers in synchronisation with the master clock.

The importance of this security control is already mentioned in the “Other
information” paragraph, stated above. In addition to that, it is also a very
important issue from the perspective of a cloud user. This is due to the
fact that some algorithms may not work reliably if the cloud system is not
synchronized with UTC. Also, if the client of the cloud is a financial company
like banks, then it is very important for them to have a precise timestamp
for all their transactions. Otherwise, there may be severe consequences for
this sort of companies if they fail to maintain a precise timestamp.

This control is mapped to cloud security compliance in the CloudAudit ISO
27002 compliance pack with control ID SA-12. This control ID SA-12 is same

CHAPTER 4. IMPLEMENTATION 40

as the CCM SA-12 and, in fact, these are the same security controls.

To verify this security control, we have used the following procedure -

1. Obtain the system time from a target machine for which we want to
validate this control.

2. Obtain the UTC time from a reliable NTP server at the same time
instant.

3. Decide whether the target system is synchronized with the UTC time
or not.

Here, it is important to obtain the times form the target system and the
Network Time Protocol (NTP) server at the exact same moment of time.
Otherwise, the decision may become erroneous. For example, even if the
target system is synchronized with the UTC time but the measurements
from the two systems are taken at different time moments, then the verdict
will be that the system is not synchronized with the UTC time. It is also
possible that the target system is off by few milliseconds from the UTC time
and the measurements taken from the target machine and the NTP server
are also a few milliseconds apart. In this case, the verdict may result in
saying that the target system is synchronized with the UTC time although
it is not.

4.3.2 Remote Administrative & Diagnostic Port Pro-
tection

This security control is defined in ISO 27002 [21] section 11.4.4. The details
about this control are as follows:

Control: Physical and logical access to diagnostic and configura-
tion ports should be controlled.

CHAPTER 4. IMPLEMENTATION 41

Implementation guidance: Potential controls for the access to
diagnostic and configuration ports include the use of a key lock and
supporting procedures to control physical access to the port. An ex-
ample for such a supporting procedure is to ensure that diagnostic
and configuration ports are only accessible by arrangement between
the manager of the computer service and the hardware/software
support personnel requiring access. Ports, services, and similar fa-
cilities installed on a computer or network facility, which are not
specifically required for business functionality, should be disabled or
removed.

Other information: Many computer systems, network systems,
and communication systems are installed with a remote diagnostic
or configuration facility for use by maintenance engineers. If un-
protected, these diagnostic ports provide a means of unauthorized
access.

Implementation of this control makes sure that no unauthorized access is
possible through the open ports of a system. There are a lot in this control
and not all can be verified for compliance automatically since this control also
has some physical or manual process included in it. However, the line saying
that “all the unnecessary ports not required for business functionality, should
be disabled or removed” can be verified automatically. This is actually what
we have done in our implementation: check for unnecessary open ports in
the system. It is always considered as a security risk if a system has unused
open ports.

This control is mapped to cloud security compliance in CloudAudit ISO
27002 compliance pack with control ID IS-30. This control ID IS-30 is same
as in the CCM IS-30 and, in fact, these are the same controls.

4.4 Exposing New OSAPI

Referring to chapter 3, our first approach of collecting information for com-
pliance check is using APIs. The benefit of this approach is that the API is
running under the control of the system from which the information needs to
be extracted. Therefore, it is easier for the system to produce that informa-
tion reliably as compared to an external system which wants to gather the
same information.

We have chosen this approach to verify the ISO 27002 “Clock synchroniza-

CHAPTER 4. IMPLEMENTATION 42

tion” control. As mentioned in section 4.3.1, we need to obtain the system
time for this control to be verified. We can obtain this information by ex-
posing a new API from the OpenStack which retrieves and sends the system
time. We have chosen this approach to retrieve system time as this API
approach suites better for this sort of system information retrieval and, if
we had to use other approaches mentioned in chapter 3, then the process of
getting the system time reliably would have been a much more difficult task.

In order to expose a new API, we have modified the OpenStack Nova [35]
compute cloud fabric controller in such a way that it supports a new API in its
OSAPI pool. OpenStack Nova is implemented in modular architecture using
Python [30] Paste Deployment [28]. Also, most of the APIs are RESTful [46]
APIs. Therefore, maintaining the Nova API architecture, we also designed
and implemented a RESTful API and exposed it through Nova OSAPI. The
steps that we have taken to expose a new API are given in the followings:

1. The first step is to define a URL for the new API. Since we are interested
in getting the current system time where the Nova server is running,
we defined the URL to be as “http://server name:8774/v1.1/x/current
time”. In this URL, “server name” refers to the name of the server

that hosts the Nova API server. 8774 is the OpenStack port defined for
the Nova APIs. V1.1 is the API version. “x” is the user id and finally
“current time” is the name that invokes the Nova API for getting the
current system time.

2. To map this URL to a controller and an action, OpenStack uses the
Routes [31] package from the Python implementation. After receiving
a URL, control is transferred to the controller class for that URL and
there the URL is mapped to an action method.

3. The action method does the actual work, which is to retrieve the system
time. These action method also takes parameters that were extracted
from the URL. Finally, the action method returns the result in a dic-
tionary data structure.

4. The result dictionary is then serialized to XML or JSON by the Web
Service Gateway Interface (WSGI) [38] Controller and returned to the
client who invoked the API.

In our automated security compliance tool, this API is invoked by the CloudAu-
dit engine by sending an HTTP request to the above mentioned URL. In
response, the CloudAudit evidence engine receives the current system time

CHAPTER 4. IMPLEMENTATION 43

Figure 4.1: Control Flow for Automated Security Compliance Tool Using the
API Mechanism

in XML or JSON format and processes it for further action. The overall
architecture using this API approach is depicted in Figure 4.1.

4.5 Adding NVT in OpenVAS

The second approach to gather information is by using a vulnerability scan-
ner. In our prototype automated security compliance tool we have used the
open-source OpenVAS tool as a vulnerability scanner. Using this approach
we can gather information about a target system externally.

We have used this approach to verify the ISO 27002 “Remote Administrative
and Diagnostic Port Protection” control. As mentioned in section 4.3.2, we
are only going to do a partial verification of this control by only scanning
for open ports. This could have been done in many ways. The first three
approach mentioned in chapter 3 can all be used for this purpose. Since the
API approach and the Log analysis approach gather information from the
system internally, we have decided that it is better to do this port scanning
externally using the Vulnerability Scanner approach. This design decision
was influenced by the fact that most of the attacks we can expect are from
external systems since the control is about remote access.

In order to use the OpenVAS tool for our purpose, we had to add a new NVT
into its scanning engine. The steps that we have taken to make it work in
conjunction with our prototype solution are listed in the following -

1. We have written a new NVT for port scanning using NASL [22] script-
ing language. In the new NVT, we have put the logic for which ports
should not be open for OpenStack. If the NVT finds any ports open

CHAPTER 4. IMPLEMENTATION 44

other than the operational ports required by OpenStack, it generates
a report with the list of unnecessary open ports in the target system.

2. Rebuild the OpenVAS system to incorporate the newly added NVT.

3. The next step is to create a scan configuration for OpenVAS that in-
cludes only this NVT. This scan configuration tells the OpenVAS scan-
ner which NVTs to run when the scanning starts.

4. Using the above scan configuration, we had to create a new task for
OpenVAS. At this step, we also specify the target system against which
the NVTs will run.

5. Finally, we had to write a shell script [37] to start, monitor and generate
a report for the task we have created in OpenVAS.

Figure 4.2: Control Flow for Automated Security Compliance Tool Using
Vulnerability Scanning Mechanism

The shell script is launched by CloudAudit evidence engine when the “Re-
mote Administrative & Diagnostic Port Protection” API is invoked by a user.
When the task is finished, a report is generated in XML format which is then
used by the CloudAudit evidence engine for further processing and to ver-
ify the control. The overall architecture using this OpenVAS vulnerability
scanner approach is depicted in Figure 4.2.

CHAPTER 4. IMPLEMENTATION 45

4.6 Building Cloud Audit API/Evidence En-

gine

Our automated security compliance tool is built around the CloudAudit
framework developed by the Piston Cloud Computing. The Piston Cloud
Computing’s CloudAudit framework only has support for four APIs which
use log based analysis mechanism (Section 3.3.3) for compliance verification.
This framework uses the NIST standard for the compliance check. We have
enhanced the framework by adding our two new approaches: the API mech-
anism and the vulnerability scanner mechanism. Also, we have modified the
code base control hierarchy to support the ISO 27002 standard.

The CloudAudit framework is implemented using Python Paste Deployment
and all the APIs are RESTful. In order to build our solution using CloudAu-
dit framework, we have taken following steps:

1. The first step is to register our APIs with the framework. This also
defines where the control will be transferred upon receiving a request.

2. Next step is to define the controller class that receives and handles
the request. For each control from the standard, one controller class
class is required to handle the request. In order to handle the request,
it eventually makes a call to a method in the CloudAudit evidence
engine.

3. In the CloudAudit evidence engine, we have to define appropriate meth-
ods that gather the actual evidence for compliance, verify it against the
control from the standard and finally return the result. For each dif-
ferent security control, there is one method in this evidence engine
framework.

4. Upon receiving the result from the evidence engine, the controller class
formats the result as HTML and returns the result to the CloudAudit
API server from where it is sent back to the client.

In order to build the CloudAudit evidence engine, we had to take into account
some implementation considerations for decision making. Also, to provide
assurance of that decision to the user, we had to consider what data should
be provided in the user interface. These issues are discussed in the following
sub-sections.

CHAPTER 4. IMPLEMENTATION 46

4.6.1 Implementation Considerations

As mentioned in section 2.1.2, one of the biggest challenges in automating
the security compliance checks is that there is no or minimal level of guid-
ance to implement the controls from the standards. Therefore, to implement
these controls we had to make some decisions on our own. We refer to these
decisions as implementation considerations. For example, for the “Clock Syn-
chronization” control, described in ISO 27002, there is no information about
how much drift from the external NTP server can be allowed to consider
the system to be still synchronized. However, this is important for us, as
we have to make a decision based on the responses received form the cloud
system and from the NTP server. Since we cannot retrieve the responses
from the two systems at the exact same moment, we have to allow some drift
in the time between the two systems. Therefore, for our implementation we
have considered 1000 milliseconds of drift between the two systems to be still
recognized as time synchronized.

4.6.2 Providing Assurance

Providing assurance of the decision made by the automated security com-
pliance tool is another big challenge mentioned in section 2.1.2. As we are
taking into account some implementation considerations on our own to im-
plement the controls, a user of the tool needs to be given enough information
about how the decisions have been made or how much accuracy is there. To
facilitate this assurance for the client, we have designed our output in such
a way that the client gets enough information about the implementation
considerations along with the data that enabled the decision making.

The output from the CloudAudit evidence engine is generated as HTML and
we have provided the following information in this HTML -

1. Compliance Status: Stating whether the system is compliant with
this control or not.

2. Compliance Details: Additional information or data that enabled
the evidence engine to make the decision.

3. Control Description: Provides the description of the control stating
what this control is about.

4. Implementation Considerations: Provides information regarding
the implementation considerations that have been taken in order to

CHAPTER 4. IMPLEMENTATION 47

implement the control.

5. Verification Method: This states which approach (API, vulnerabil-
ity scanner, etc.) have been employed to collect data and how the
collected data is used to implement the security control.

All of the above fields provide information to facilitate the assurance on the
decision made by the automated tool. This information may also provide an
indication of what needs to be corrected if the system is not compliant with
the control. Some sample HTML responses can be found in appendix A.

4.7 OpenStack Dashboard Integration

The final part of the prototype implementation was to build a user interface
for the auditing purpose. The OpenStack Horizon dahsboard project is al-
ready there serving as a graphical user interface (GUI) for OpenStack. Using
this web-based user interface a user can create, launch and stop new virtual
machine instances or monitor the status of the instances and so on. Since
we are implementing the compliance checks for OpenStack, this dashboard
is the most suitable place to display the information so that the user gets
all the necessary information in a single place rather than going to several
places for it.

The Horizon dashboard project is built using the Django [12] web framework.
Django is a high level web framework that facilitates rapid development of
web applications in a clean and modular way. When the user goes to the
Horizon dashboard, they are asked to provide the credentials for logging in
to the system. After being logged in, the user is redirected to a page where
all the managerial links are given depending on the user’s role. We have
modified this managerial page to display links to the available compliance
check APIs that we have developed. Thus, when the user clicks on one of
these links, effectively the CloudAudit APIs gets invoked and the results are
returned after the CloudAudit evidence engine has generated the compliance
check result.

Chapter 5

Evaluation

This chapter discusses the post-implementation evaluation of the developed
framework and the prototype. Since our aim was to develop a proof-of-
concept prototype, our discussion here focuses mostly on the architectural
side rather than evaluating the performance of the tool.

5.1 Security Perspective

Several security aspects are identified while evaluating our solution. This
includes both the advantages and possible risks of the tool in terms of security.
These are discussed in the following subsections.

5.1.1 The CIA Triad

One of the core models of computer security is the CIA triad. The three core
components of the CIA triad are confidentiality, integrity and availability.
Each of these components represent a fundamental security objective that
helps identify problems and weaknesses in the information security. In the
following paragraphs, we use this CIA model to evaluate our solution.

Confidentiality: Data or information confidentiality refers to the ability to
hide information from those who are unauthorised to view it. As mentioned in
section 2.1.2, one of the challenges is to extract and deliver the data securely
to the automated security compliance tool. This is to make sure that no

48

CHAPTER 5. EVALUATION 49

unauthorized user or an outside attacker receives the confidential data. In
order to achieve this data or information confidentiality, we have developed
the framework in such a way that only authorized user of the cloud can access
these data. As shown in Figure 3.2, a user has to login to the OpenStack
dashboard using the user credentials. This will be verified by the OpenStack
identity service Keystone. After successful authentication, an authorized user
will be able to access the compliance-related information. In this way, only
the authorized cloud users can access the confidential information.

This data confidentiality can be taken down into more granular level. Since
the compliance related information is displayed in the OpenStack dashboard,
it is possible to restrict the information display based on the user role. For
example, while an administrator can have all the information regarding the
compliance status, a general user may be allowed to access only partial in-
formation about the compliance.

Integrity: Integrity refers to the ability of protecting data from unautho-
rized modification. In other words, data should not be tampered in any
unauthorized way once it has been submitted or requested by an authorized
user. In our solution, the API mechanism is particularly susceptible to this
security objective. As the API mechanism uses the HTTP to transfer data
between the automated security compliance tool and the CSP, several at-
tacks like man-in-the-middle (MITM) and phishing are possible to violate
the integrity of the data. To ensure the integrity of the data, HTTPS (Se-
cure HTTP) can be used between the automated security compliance tool
and the CSP. Another possible option to protect the integrity of the data is
to install the automated security compliance tool inside the CSPs’ network.
Therefore, all the communication will be using the CSPs’ internal network,
which is generally well protected from the outside world. In this case, no
MITM or phishing attack is possible from outside the CSPs’ network. How-
ever, it is still possible to launch these attacks from the internal network of
the CSP.

Availability: Availability refers to the ability of delivering the information
when it is needed by an authorized user. This security objective refers to the
system being available despite power outage, network breakdown, hardware
failures, etc. One particular type of attack, the denial-of-service (DoS), can
harm the availability of our solution. This is due to that fact that all of the
data collection mechanisms use the network to gather information and also
the compliance status is exposed using the REST API. Therefore, any DoS or

CHAPTER 5. EVALUATION 50

Distributed DoS (DDoS) attack can cause disruption in getting the service.
In order to prevent our automated security compliance tool from such a DoS
or DDoS attack, the tool can be installed inside the CSP network and it can
use the internal network to collect and send data to the CSP. The internal
network of the CSP is well protected using the firewall and other security
measures. Hence, the service of the automated security compliance tool will
be available if there are no other failures like power outage, hardware failure
or upgrade issues.

5.1.2 Possible Risks

Since all the decisions are made automatically based on the collected data,
any flaws or incorrect data may cause the automated security compliance
tool to produce erroneous results. We have identified two possible sources
that can intentionally or unintentionally provide misleading information and
thus produce faulty results. These two possible sources are as follows-

1. Cloud Vendor: This situation may occur when a cloud vendor inten-
tionally provides incorrect data to the automated security compliance tool
in order to get the results they wish. Or it could also be the case where
the provided information was unintentionally incorrect. There are again two
possible situations when an evil cloud vendor can take advantage of this se-
curity flaw. The first situation occurs when the API mechanism is used to
collect data from the cloud. Since the cloud vendor is in charge of devel-
oping and exposing the compliance-related API, the vendor can decide how
and what information to expose through this API. Hence, the vendor can
provide incorrect information using this API mechanism.

The other situation occurs when the automated security compliance tool
asks for the manual entry by the cloud administrator. In this way, the cloud
vendor can again provide misleading information to the tool and thus succeed
to produce faulty results by the automated security compliance tool.

The possible countermeasures to prevent incorrect information to be passed
to the automated security compliance tool is to use a 3rd-party auditor.
However, this requires human intervention and it is a manual process. Al-
though it is possible for the cloud vendors to provide this sort of misleading
or intentionally incorrect information, one strong motivation for them not
to do this is the fear of loosing the trust of the clients. Any such scandal

CHAPTER 5. EVALUATION 51

will bring down the cloud vendor’s reputation which will be harmful for its
business.

2. Third Party Service Provider: The second possible source of in-
correct information is the 3rd party services (if any) used by the automated
security compliance tool. For example, to verify the “Clock Synchronization”
control, we have used an external NTP server to retrieve the current time. In
this case, we have trusted the external 3rd-party NTP server to provide the
correct time information. However, if this external NTP server fails to pro-
vide the correct time, the automated security compliance tool may produce
faulty results.

One possible countermeasure to protect the system from incorrect informa-
tion provided by 3rd-party service providers is not to use any 3rd-party ser-
vice at all. However, this may lead to building all of these 3rd party services
in-house which can be very costly (if there exists no alternate way without
taking this 3rd party service). The other possible option is to verify that the
3rd party services are working perfectly before any decision is made.

5.2 Latest Related Work

During the thesis, we have evaluated two of the related works that aim to pro-
vide security compliance information automatically. We briefly present these
two works in the following sections and also outline the major differences
with our work.

5.2.1 CloudeAssurance

CloudeAssurance [9] is a product of eFortresses company [13], which deliv-
ers products in the area of security and compliance. CloudeAssurance is a
platform where a cloud vendor can assess their security, governance, risks
and compliance. The first version of this product was launched in April,
2012. The product works by presenting a web-based interface to a cloud
vendor where the vendor has to provide a self assessment to a given sets of
questions. These given sets of questions are holistically determined by the
CloudeAssurance based on the risk factors. After the cloud vendor provides
the necessary self assessments to the CloudeAssurance platform, it generates
a score based on the given input and its internal holistically chosen formulas.

CHAPTER 5. EVALUATION 52

The higher the score is, the better the cloud vendor is in terms of secu-
rity, governance, risks and compliance. This score is provisional and remains
valid until 90 days. This score will move from being provisional to a vali-
dated state once this score is verified by a company on the HISPI managed
Cloud Assurance Assessor Program (CAAP). The Holistic Information Secu-
rity Practitioners Institute (HISPI) [19] is an institute that provides security
training and certifications to the IT security professionals.

Based on the above introduction to CloudeAssurance product, we can sum-
marize the following differences with our prototype implementation-

• Data collection is not automated as the cloud vendor itself has to pro-
vide the self assessment manually to the system.

• The assurance score needs to be verified by a company on the HISPI
managed Cloud Assurance Assessor Program (CAAP). This again in-
volves human intervention and the verification is a manual process.

• The assurance score gives an overall idea of the cloud infrastructure
indicating how good it is in terms of security, governance, risks and
compliance. But it does not directly provide the information whether
the cloud system is compliant with some specific control from the stan-
dards or not.

Although the data collection and verification is not automated in the Cloud-
eAssurance platform, the goal or focus area of this product is wider in scope
than our thesis goals. While this product is focusing on security, governance,
risks and compliance, we, on the other hand, focus specifically only on com-
pliance.

5.2.2 Piston CloudAudit Framework

Piston Cloud Computing Inc. [29] provides a version of OpenStack for enter-
prise companies and was founded in the year of 2011. The core product of the
company is the cloud operating system which is called the Piston Enterprise
OS (pentOS) and is built on OpenStack. The pentOS includes the first im-
plementation of the CloudAudit framework for OpenStack. The CloudAudit
framework makes use of the Log Analysis approach that we have mentioned
in section 3.3.3.

During our thesis we have evaluated the Piston CloudAudit framework avail-
able for open use at [56]. In this implementation, the security controls that
are verified are from the NIST standard. All the implemented controls (there

CHAPTER 5. EVALUATION 53

are four in total) are fully automated as the data is collected automatically
using log analysis and the decision is also made by the framework without
any human intervention. Therefore, this work has much similarity with our
work with one major difference: Piston CloudAudit framework only uses the
log analysis mechanism for data collection, whereas we propose four different
approaches for data collection including the log analysis. We also argue that
not every necessary piece of information can be retrieved by the log analysis
mechanism. Hence we introduce the other approaches as well.

Chapter 6

Discussion

Our goal in this thesis project is to explore the feasibility of building an
automated security compliance tool for the cloud. This section discusses the
key points of achieving this goal.

As no such tool existed when we started the project, we had to start from
scratch. First, we had to identify how the system will work and what are the
core components of such a tool. Using this first understanding about the tool,
we built a high level architecture for it. Later, we developed a system-level
architecture for the OpenStack cloud platform, using which we can actually
implement an automated security compliance tool.

There were several challenges that we had to face during the implementa-
tion. The first challenge was to select the standard for which we will verify
the compliance. Although most of the controls defined in one standard are
defined also, sometimes a bit differently, in other standards, most of them
do not provide any guidelines for the implementation. After studying sev-
eral standards, we decided to use the ISO 27002 v2005 for implementing our
proof-of-concept prototype. The advantage that we get from ISO 27002 over
the other standards is that it provides some implementation guidelines for
the controls defined in it. Also, ISO standards are the most widely explored
and used by the enterprises as reported by Symantec in the State of Security
Report, 2010 [61].

While analyzing the standards, we observed that many of the controls de-
fined in the standards require human input and for some of them it may not
be possible to automate at all. For example, the physical security-related
controls are extremely difficult to automate, if not impossible. Another ob-
servation in this respect is that some of the controls may only partially be

54

CHAPTER 6. DISCUSSION 55

automated while the rest part of the control requires human intervention.

One of the goals of our thesis is to explore alternative approaches to automate
the security compliance check. Here, the alternative approaches refer to the
alternative ways of collecting data from the cloud and during this thesis we
have found four possible approaches to accomplish that. One approach we
consider particularly important is the use of a vulnerability scanner. One rea-
son is that a vulnerability scanner is designed to assess computers, computer
systems, networks or applications for weaknesses. To do this assessment,
the vulnerability scanners collects data from the computers, which we intend
to do here also. There are many types of vulnerability scanners as of to-
day and they can do tasks like high-speed discovery, configuration auditing,
asset profiling, sensitive data discovery, patch management integration and
policy verification. A proprietary vulnerability scanning tool called Nessus
[23] by Tenable Network Security is already providing support for the PCI
DSS compliance check for LAMP (Linux, Apache, MySQL and PHP) server.
All of these works are in line with our work to verify the compliance au-
tomatically. Therefore, using these vulnerability scanners we can reuse the
existing knowledge that is already available and enhance this for the cloud
environment where there are more challenges.

One of the major goals of this thesis is to develop a proof-of-concept pro-
totype automated security compliance tool. During the implementation, we
observed that the automated tool needs to be integrated with the target
system very closely. It is mentioned in section 3.3 why this integration is
important for the different approaches. The most important reason behind
the close integration is that any kind of system-level modification may af-
fect the data collection procedure of the automated security compliance tool,
which in turn may affect the tool to work properly. From this, we can expect
that the future automated security compliance tools will be closely coupled
or integrated with the target system.

Chapter 7

Conclusion

The rapid evolution of cloud computing indicates that this will be the driving
force for the the next generation of internet services. Although, as of today,
there are mostly proprietary cloud platforms available, several open source
cloud solutions are gaining attraction day by day. Despite this evolution,
security, especially security compliance, remains as an issue prohibiting large
scale adoption of cloud in the enterprise environment. And this is where an
automated security compliance tool can help to build the trust between the
cloud vendor and the user. At the same time, this tool can help reduce cost
and time for the cloud vendor by automating the compliance check procedure.
Hence, this project is important from both the theoretical point of view, by
analyzing the alternative design approaches to build such a tool and from
practical point of view, by implementing a prototype that shows how it can
be done.

7.1 Summary of the Work

We started this project with an open problem and it was how to build an
automated security compliance tool for the cloud. Initially, we started with
a very high-level abstract architecture identifying what needs to be done in
order to build such a tool. From this abstract architecture, we identified
three core components of such a tool: (i) the data collection engine, (ii)
the verification engine and (iii) the user interface to display the information.
After identifying the core components, we explored the alternative ways to
build the data collection engine as this is the first step towards building such
an automated tool. During this part, we identified four different ways to

56

CHAPTER 7. CONCLUSION 57

collect data from a cloud system. These are (i) an API, (ii) a vulnerability
scanning tool, (iii) log analysis and (iv) manual entry. We also explored the
benefits and demerits of all these four approaches during our work.

Later, we concentrated on the verification engine where all the intelligence of
the tool lies. This verification engine takes the decision, based on the data
received from the data collection engine, whether the system is compliant
with some standard requirement or not. To build such an engine, we had to
pay attention to some implementation considerations as there was a lack of
information on implementing the controls in the standards.

The final part is to display the compliance information to the user. To do
this, we have used the CloudAudit API definition standardized by CSA. The
compliance information sent to the user not only contains the compliance
status of the system, but also contains more detailed information that facil-
itated this decision making. This extra information is provided to the user
to gain assurance about the decision by the automated tool.

Combining these three core components, we have built a framework to work
with OpenStack cloud platform. This framework provides a system-level
architecture to build an automated security compliance tool for the Open-
Stack cloud platform. Using this system architecture, we have implemented a
proof-of-concept prototype for an automated security compliance tool. This
prototype implementation is integrated with the OpenStack dashboard and
Nova server from where a user of the OpenStack can automatically verify the
compliance status of the implemented controls. Although our framework is
primarily developed for the OpenStack cloud platform, the framework can
be used for other cloud platforms as well with only minor modifications.

7.2 Future Work

The research during the thesis work opens up further possibilities to explore.
As we have implemented two of the four approaches for data collection, the
first objective would be to implement the other two approaches to make the
tool more flexible.

The second objective is to evaluate the four approaches in terms of their
performance metrics: required time, cpu, memory etc. Among these per-
formance metrics, time will be one of the most important concerns for such
an on demand information generating system. In order to measure the per-
formance metrics, we can implement one security control using all four ap-

CHAPTER 7. CONCLUSION 58

proaches and take the measurements. This will enable us to decide the most
suitable approach for collecting data from the cloud.

During the thesis project, we have done research about how to automatically
check the compliance status of the cloud platform, not of the virtual machines
running on the platform. It will be a new area of research to verify the
security compliance of the virtual machine instances running on the cloud
with relevant standards.

Bibliography

[1] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.

com/ec2/ [accessed 09.05.2012].

[2] Amazon Web Services. http://aws.amazon.com/ [accessed 09.05.2012].

[3] Cisco Systems, Inc. http://www.cisco.com/ [accessed 30.04.2012].

[4] Cloud Computing, Managed Hosting, Dedicated Server Hosting
by Rackspace. http://www.rackspace.com/cloud/cloud_hosting_

products/servers/ [accessed 09.05.2012].

[5] Cloud Control Matrix (CCM) : Cloud Security Alliance. https://

cloudsecurityalliance.org/research/ccm/ [accessed 18.01.2012].

[6] Cloud Security Alliance. https://cloudsecurityalliance.org/ [ac-
cessed 18.01.2012].

[7] Cloud Server and Virtual Server Hosting by Rackspace. http://www.

rackspace.com/ [accessed 09.05.2012].

[8] CloudAudit. http://cloudaudit.org/CloudAudit/Home.html [accessed
24.04.2012].

[9] CloudeAssurance. https://www.cloudeassurance.com/ [accessed
24.04.2012].

[10] COBIT - IT Governance Framework - Information Assurance Control
— ISACA. http://www.isaca.org/Knowledge-Center/cobit/Pages/

Overview.aspx [accessed 19.01.2012].

[11] CRM - The Enterprise Cloud Computing Company - Salesforce.com.
http://www.salesforce.com/ [accessed 09.05.2012].

59

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://www.cisco.com/
http://www.rackspace.com/cloud/cloud_hosting_products/servers/
http://www.rackspace.com/cloud/cloud_hosting_products/servers/
https://cloudsecurityalliance.org/research/ccm/
https://cloudsecurityalliance.org/research/ccm/
https://cloudsecurityalliance.org/
http://www.rackspace.com/
http://www.rackspace.com/
http://cloudaudit.org/CloudAudit/Home.html
https://www.cloudeassurance.com/
http://www.isaca.org/Knowledge-Center/cobit/Pages/Overview.aspx
http://www.isaca.org/Knowledge-Center/cobit/Pages/Overview.aspx
http://www.salesforce.com/

BIBLIOGRAPHY 60

[12] Django — The Web framework for perfectionists with deadlines. https:
//www.djangoproject.com/ [accessed 24.04.2012].

[13] eFortresses - Security & Compliance Solutions. http://www.

efortresses.com [accessed 24.04.2012].

[14] Email Management, Compliance and Archiving Solutions for Business
from Mimecast. http://www.mimecast.com/ [accessed 23.05.2012].

[15] Google App Engine. https://appengine.google.com [accessed
09.05.2012].

[16] Google Docs. http://www.google.com/google-d-s/documents/ [ac-
cessed 09.05.2012].

[17] Greenbone. http://www.greenbone.net/index.html [accessed
03.05.2012].

[18] Horizon: The OpenStack Dashboard Project - Horizon 2012.2 Docu-
mentation. http://horizon.openstack.org/ [accessed 18.01.2012].

[19] Information Security Training — IT Security Certification — HISPI.
https://www.hispi.org/ [accessed 08.06.2012].

[20] ISO 27001, ISO27001 Information Security Standard. http://www.

itgovernance.co.uk/iso27001.aspx [accessed 19.01.2012].

[21] ISO/IEC 27002 Code of Practice. http://www.iso27001security.com/

html/27002.html [accessed 19.01.2012].

[22] NASL Guide. http://www.dn-systems.org/boss/doc/nasl_

guide-20050103.pdf [accessed 27.04.2012].

[23] Nessus 5 - Tenable Network Security. http://www.tenable.com/

products/nessus [accessed 03.05.2012].

[24] NIST.gov - Computer Security Division - Computer Security re-
source Center. http://csrc.nist.gov/publications/PubsDrafts.html

[accessed 19.01.2012].

[25] Official Source of PCI DSS Data Security Standards. https:

//www.pcisecuritystandards.org/security_standards/index.php [ac-
cessed 18.01.2012].

[26] OpenStack >> Open Source Cloud Computing Software. http://

openstack.org [accessed 18.01.2012].

https://www.djangoproject.com/
https://www.djangoproject.com/
http://www.efortresses.com
http://www.efortresses.com
http://www.mimecast.com/
https://appengine.google.com
http://www.google.com/google-d-s/documents/
http://www.greenbone.net/index.html
http://horizon.openstack.org/
https://www.hispi.org/
http://www.itgovernance.co.uk/iso27001.aspx
http://www.itgovernance.co.uk/iso27001.aspx
http://www.iso27001security.com/html/27002.html
http://www.iso27001security.com/html/27002.html
http://www.dn-systems.org/boss/doc/nasl_guide-20050103.pdf
http://www.dn-systems.org/boss/doc/nasl_guide-20050103.pdf
http://www.tenable.com/products/nessus
http://www.tenable.com/products/nessus
http://csrc.nist.gov/publications/PubsDrafts.html
https://www.pcisecuritystandards.org/security_standards/index.php
https://www.pcisecuritystandards.org/security_standards/index.php
http://openstack.org
http://openstack.org

BIBLIOGRAPHY 61

[27] OpenVAS - About OpenVAS Software. http://www.openvas.org/

software.html [accessed 18.01.2012].

[28] Paste Deployment - Paste Deploy v1.5.0 Documentation. http://

pythonpaste.org/deploy/ [accessed 24.04.2012].

[29] Piston Cloud Computing. http://www.pistoncloud.com/ [accessed
24.04.2012].

[30] Python Programming Language - Official Website. http://www.python.
org/ [accessed 24.04.2012].

[31] Routes Documentation - Routes 1.13 documentatiion. http://routes.

readthedocs.org/en/latest/index.html [accessed 24.04.2012].

[32] Security Guidance for Critical Areas of Focus in Cloud Comput-
ing V2.1. https://cloudsecurityalliance.org/csaguide.pdf [accessed
04.05.2012].

[33] SQLite Home Page. http://www.sqlite.org/ [accessed 12.06.2012].

[34] Understanding Health Information Privacy. http://www.hhs.gov/ocr/

privacy/hipaa/understanding/index.html [accessed 19.01.2012].

[35] Welcome to Nova’s Documentation - 2012.1-dev documentation. http:

//nova.openstack.org/ [accessed 18.01.2012].

[36] Windows Azure - Cloud Computing — Cloud Services — Cloud
Application Development. https://www.windowsazure.com [accessed
09.05.2012].

[37] Writing Shell Scripts. http://linuxcommand.org/writing_shell_

scripts.php [accessed 27.04.2012].

[38] WSGI - WSGI.org. http://wsgi.readthedocs.org/en/latest/index.

html [accessed 24.04.2012].

[39] Bleikertz, S. Automated security analysis of infrastruc-
ture clouds. Master’s thesis, Technical University of Denmark,
Jun 2010. http://nordsecmob.aalto.fi/en/programme/publications/

nordsecmob_thesis_2010/ [Accessed 25.03.2012].

[40] Bleikertz, S., Schunter, M., Probst, C., Pendarakis, D., and
Eriksson, K. Security audits of multi-tier virtual infrastructures in
public infrastructure clouds. In Proceedings of the 2010 ACM workshop
on Cloud computing security workshop (2010), ACM, pp. 93–102.

http://www.openvas.org/software.html
http://www.openvas.org/software.html
http://pythonpaste.org/deploy/
http://pythonpaste.org/deploy/
http://www.pistoncloud.com/
http://www.python.org/
http://www.python.org/
http://routes.readthedocs.org/en/latest/index.html
http://routes.readthedocs.org/en/latest/index.html
https://cloudsecurityalliance.org/csaguide.pdf
http://www.sqlite.org/
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://www.hhs.gov/ocr/privacy/hipaa/understanding/index.html
http://nova.openstack.org/
http://nova.openstack.org/
https://www.windowsazure.com
http://linuxcommand.org/writing_shell_scripts.php
http://linuxcommand.org/writing_shell_scripts.php
http://wsgi.readthedocs.org/en/latest/index.html
http://wsgi.readthedocs.org/en/latest/index.html
http://nordsecmob.aalto.fi/en/programme/publications/nordsecmob_thesis_2010/
http://nordsecmob.aalto.fi/en/programme/publications/nordsecmob_thesis_2010/

BIBLIOGRAPHY 62

[41] Borenstein, N., and Blake, J. Cloud computing standards:
Where’s the beef? Journal of Internet Computing, IEEE 15, 3 (2011),
74–78.

[42] C. Hoff and S. Johnston and G. Reese and B. Sapiro.
CloudAudit 1.0 IETF Draft. http://tools.ietf.org/html/

draft-hoff-cloudaudit-00 [accessed 24.04.2012].

[43] Cochran, M., and Witman, P. Governance and service level agree-
ment issues in a cloud computing environment. Journal of Information
Technology Management 22, 2 (2011), 41–55.

[44] Construx Software Builders Inc. Evolutionary Prototyping
White Paper. http://www.construx.com/File.ashx?cid=814 [accessed
24.04.2012].

[45] De Chaves, S., Uriarte, R., and Westphall, C. Toward an
architecture for monitoring private clouds. Communications Magazine
Journal, IEEE 49, 12 (2011), 130–137.

[46] Fielding, R. Architectural styles and the design of network-based soft-
ware architectures. PhD thesis, University of California, 2000.

[47] Hasselmeyer, P., and d’Heureuse, N. Towards holistic multi-
tenant monitoring for virtual data centers. In Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP
(2010), Ieee, pp. 350–356.

[48] Herrmann, D. Complete guide to security and privacy metrics: mea-
suring regulatory compliance, operational resilience and ROI. CRC
Press, 2007.

[49] Julisch, K. Security compliance: the next frontier in security research.
In Proceedings of the 2008 workshop on New security paradigms (2009),
ACM, pp. 71–74.

[50] Kaliski Jr, B., and Pauley, W. Toward risk assessment as a service
in cloud environments. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing (2010), USENIX Association, pp. 13–13.

[51] Kuppinger, M. KuppingerCole Trend Report - Top Trends
2012-2013, Apr 2012. http://www.kuppingercole.com/report/

trendreporttop2012200412 [accessed 12.06.2012].

http://tools.ietf.org/html/draft-hoff-cloudaudit-00
http://tools.ietf.org/html/draft-hoff-cloudaudit-00
http://www.construx.com/File.ashx?cid=814
http://www.kuppingercole.com/report/trendreporttop2012200412
http://www.kuppingercole.com/report/trendreporttop2012200412

BIBLIOGRAPHY 63

[52] Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P.,
Page, S., Wright, D., Dobson, J., McDermid, J., and Goll-
mann, D. Towards operational measures of computer security. Journal
of Computer Security 2, 2 (1993), 211–229.

[53] Mather, T., Kumaraswamy, S., and Latif, S. Cloud security and
privacy: an enterprise perspective on risks and compliance. O’Reilly
Media, Inc., 2009.

[54] Mell, P., and Grance, T. The NIST Definition of Cloud
Computing. http://csrc.nist.gov/publications/nistpubs/800-145/

SP800-145.pdf [accessed 09.05.2012].

[55] Park, J., Spetka, E., Rasheed, H., Ratazzi, P., and Han, K.
Near-real-time cloud auditing for rapid response. In Advanced Infor-
mation Networking and Applications Workshops (WAINA), 2012 26th
International Conference on (march 2012), IEEE, pp. 1252 –1257.

[56] Piston Cloud Computing. Piston CloudAudit Implementation on
Github. https://github.com/piston/openstack-cloudaudit [accessed
24.04.2012].

[57] Prafullchandra, H., Owens, K., McAndrew, T., Chaubal,
C., Ottenheimer, D., Tran, C., and han Yang. PCI-compliant
cloud reference architecture. White Paper by HyTrust, Savvis, Coalfire
Systems, VMWare and Cisco Systems. 2010.

[58] RASHEED, H. Auditing for standards compliance in the cloud: Chal-
lenges and directions. The International Arab Journal of Information
Technology 1, 0 (2003).

[59] Siponen, M., Pahnila, S., and Mahmood, M. Compliance with
information security policies: An empirical investigation. Journal of
Computer, IEEE 43, 2 (2010), 64–71.

[60] Symantec Corporation. Endpoint, Cloud, Mobile and Virtual Se-
curity Solutions — Symantec. http://www.symantec.com/index.jsp [ac-
cessed 08.06.2012].

[61] Symantec Corporation. State of Enterprise Security Report
2010. http://www.symantec.com/content/en/us/about/presskits/SES_

report_Feb2010.pdf [accessed 08.06.2012].

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
https://github.com/piston/openstack-cloudaudit
http://www.symantec.com/index.jsp
http://www.symantec.com/content/en/us/about/presskits/SES_report_Feb2010.pdf
http://www.symantec.com/content/en/us/about/presskits/SES_report_Feb2010.pdf

BIBLIOGRAPHY 64

[62] Tancock, D., Pearson, S., and Charlesworth, A. A privacy
impact assessment tool for cloud computing. In Cloud Computing Tech-
nology and Science (CloudCom), 2010 IEEE Second International Con-
ference on (2010), IEEE, pp. 667–676.

[63] Verizon. 2012 Data Breach Investigation Report.
http://www.verizonbusiness.com/resources/reports/rp_

data-breach-investigations-report-2012_en_xg.pdf [accessed
08.06.2012].

[64] Verizon. Security Services - Verizon Enterprise Solutions. http://www.
verizonbusiness.com/Products/security/ [accessed 08.06.2012].

[65] Voras, I., Mihaljevic, B., and Orlic, M. Criteria for evaluation
of open source cloud computing solutions. In Information Technology
Interfaces (ITI), Proceedings of the ITI 2011 33rd International Con-
ference on (2011), IEEE, pp. 137–142.

http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf
http://www.verizonbusiness.com/Products/security/
http://www.verizonbusiness.com/Products/security/

Appendix A

HTML Response from CloudAu-
dit

This section represents the output of the automated security compliance
tool. When the user clics the links presented in the OpenStack dashboard for
compliance check verification, the appropriate handler from the CloudAudit
evidence engine collects data and verifies it against the standard. Then it
makes the decision and prepares an HTML response that is delivered to
the CloudAudit API server. This response is sent back to the client by
this CloudAudit API server. Figure A.1 and Figure A.2 shows the sample
output for the ISO 27002 controls “Clock Synchronization” and “Remote
Administrative & Diagnostic Port Protection” respectively.

65

APPENDIX A. HTML RESPONSE FROM CLOUDAUDIT 66

Figure A.1: Sample Output for the Security Control “Clock Synchronization”
from the CloudAudit Evidence Engine

APPENDIX A. HTML RESPONSE FROM CLOUDAUDIT 67

Figure A.2: Sample Output for the Security Control “Remote Administrative
& Diagnostic Port Protection” from the CloudAudit Evidence Engine

	Title Page
	Problem Description
	Abstract
	Acknowledgements
	Abbreviations and Acronyms
	1 Introduction
	1.1 Research Problem
	1.2 Goals of the Thesis
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Background
	2.1 Security Compliance
	2.1.1 Why Security Compliance?
	2.1.2 Challenges in Automating Security Compliance Check

	2.2 Cloud Computing
	2.2.1 Service Models
	2.2.2 Deployment Models

	2.3 OpenStack: The Selected Cloud Computing Platform
	2.3.1 OpenStack Projects
	2.3.2 OpenStack Nova Architecture

	2.4 Information Security Standards
	2.4.1 ISO 27002

	2.5 Cloud Control Matrix
	2.6 CSA CloudAudit Framework
	2.7 OpenVAS
	2.8 Related Research in this Field

	3 System Architecture
	3.1 High Level Architecture
	3.2 System Architecture
	3.3 Design Patterns
	3.3.1 Application Programming Interface (API)
	3.3.2 Vulnerability Assessment Tool
	3.3.3 Log Analysis
	3.3.4 Manual Entry

	4 Implementation
	4.1 Methodology
	4.2 Reused System Components
	4.3 Implemented Security Controls
	4.3.1 Clock Synchronization
	4.3.2 Remote Administrative & Diagnostic Port Protection

	4.4 Exposing New OSAPI
	4.5 Adding NVT in OpenVAS
	4.6 Building Cloud Audit API/Evidence Engine
	4.6.1 Implementation Considerations
	4.6.2 Providing Assurance

	4.7 OpenStack Dashboard Integration

	5 Evaluation
	5.1 Security Perspective
	5.1.1 The CIA Triad
	5.1.2 Possible Risks

	5.2 Latest Related Work
	5.2.1 CloudeAssurance
	5.2.2 Piston CloudAudit Framework

	6 Discussion
	7 Conclusion
	7.1 Summary of the Work
	7.2 Future Work

	Bibliography
	A HTML Response from CloudAudit

