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Problem Description

Name of Students: Anders Emil Salvesen, Christian Askeland, Arne Østvold

Traffic anomaly detection has received a lot of attention over the years.
Various techniques have been proposed in this area and some of them be-
come commercial. They have been mainly designed to flag alarms when
suspicious events are happening in the network, while the root-cause anal-
ysis was left for manual inspection by network operators. In this thesis,
we address this shortcoming while proposing SENATUS, a new framework
for a joint anomaly detection and root cause analysis. This master project
involves several main tasks:

1. Understanding network attacks and their pattern in the flow-based data
collected.
2. Understanding Senatus framework that has been designed by Atef Ab-
delkefi.
3. Designing an automatic root-cause identification algorithm of Senatus
detected anomalies
4. Senatus implementation using C++ programming language.
5. Senatus web-based graphical interface implementation using PHP.
6. Senatus performance evaluation adopting two main approaches:
a. Manual ground-truth construction of set of set of attacks in the collected
traces
b. Comparison with an existing technique for traffic anomaly detection,
called Histogram Based Detection.

Assignment given: January 2012
Supervisor: Atef Abdelkefi
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Abstract

Traffic anomaly detection in backbone networks has received increased at-
tention from the research community over the last years. A variety of
techniques and implementations have been proposed in this area, some of
which have become commercial products. However, studies have revealed
that these techniques have failed to gain widespread adoption, mainly be-
cause of high false-positive rates and the fact that manual inspection of
alarms is a time consuming and error prone task.

Senatus is a new technique for combined anomaly detection and root-cause
analysis, originally proposed by Atef Abdelkefi. In this thesis we further
enhance this approach, e.g. by providing an algorithm for automated root-
cause analysis. We evaluate Senatus’ performance and compare it to a
similar detector by using a three week data set collected from four different
routers in the GÉANT2 network. Our evaluation shows promising results,
where Senatus has the overall best detection and false-positive rates.

Furthermore, we provide a complete high-performance implementation of
the Senatus framework. Our implementation is capable of analyzing a 15-
minute time bin and identify the root-cause of its anomalies in just a few
minutes. The implementation also includes a Dashboard, which is a highly
valuable tool for a network operator to monitor network traffic and events
generated by Senatus. The Dashboard also offers the network administra-
tor a number of tools to visualize network traffic, which can reveal traffic
patterns that indicate anomalous behavior.
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Sammendrag

Trafikkanomalideteksjon i kjerne-nettverk har f̊att økt oppmerksomhet fra
forskningsmiljøene de siste årene. En rekke teknikker og implementasjoner
har blitt foresl̊att p̊a dette omr̊adet, hvorav noen har blitt kommersielle
produkter. Studier har imidlertid avdekket at disse teknikkene ikke har
klart å oppn̊a bred anvendelse, hovedsakelig p̊a grunn av en høy andel falske
alarmer og det faktum at manuell inspeksjon av alarmer er en tidkrevende
oppgave som er s̊arbar for feil.

Senatus er en ny teknikk for kombinert anomalideteksjon og årsaksanalyse,
opprinnelig foresl̊att av Atef Abdelkefi. I denne oppgaven forbedrer vi
denne teknikken ytteligere, f.eks ved å foresl̊a en algoritme for automatis-
ert årsaksanalyse. Vi evaluerer Senatus’ ytelse og sammenligner den med
en lignende detektor ved hjelp av et tre ukers datasett samlet inn fra fire
forskjellige rutere i GEANT nettverket. V̊ar evaluering viser lovende re-
sultater, hvor Senatus har den beste deteksjonsraten kombinert med lavest
antall falske alarmer.

Videre har vi gjennomført en komplett implementering av Senatus ram-
meverket. V̊ar implementasjon er i stand til å analysere en 15-minutters
periode med datatrafikk og identifisere årsaken til angrep i løpet av noen
f̊a minutter. Implementeringen omfatter ogs̊a et web-grensesnitt, som er et
verdifullt verktøy for en nettoperatør for å overv̊ake nettverkstrafikken og
hendelser generert av Senatus. Webgrensesnittet gir ogs̊a nettverksadmin-
istratoren en rekke verktøy for å visualisere nettverkstrafikk, noe som kan
avsløre unormale trafikkmønstre.
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Abbreviations

AS Autonomous System

API Application Programming Interface

BGP Border Gateway Protocol

DoS Denial of Service

DOM Document Object Model

DDoS Distributed Denial of Service

FP False positive

FN False negative

HBD Histogram-based Detection

H1 Senatus H1

H2 Senatus H2

ICMP Internet Control Message Protocol

IP Internet Protocol

IS-IS Intermediate System To Intermediate System

KL Kullback-Leibler

ORM Object-relational mapping

PCA Principal Component Analysis

SNMP Simple Network Management Protocol

TP True positive

TN True negative
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Chapter 1

Introduction

The Internet is continuously growing in number of end-users and traffic
volume. For network operators, it is of utmost importance to maintain net-
work performance and security to be able to provide their customers with
the Quality of Service they require. Network traffic anomalies are common-
place in today’s Internet, and represent a significant challenge that network
operators have to deal with. An anomaly is defined as a significant change
or deviation from what is considered normal [4], and can have implications
for both network operators and end-users. From a network operator’s per-
spective, an anomaly can cause resource exhaustion leading to significant
performance degradation. Other types of anomalies do not necessarily af-
fect network performance, but can have consequences for companies that
are dependent on their online resources to generate revenue.

The foremost challenge is that anomalies can be caused by a myriad of
events, including malicious attacks, worm propagation, network experi-
ments and abrupt changes caused by legitimate network traffic. This di-
versity, combined with the high variability of normal Internet traffic, makes
detecting and identifying network anomalies a challenging task.

1



2 CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Detecting and identifying network anomalies have been widely studied by
the research community in later years. Anomaly detection is the process of
generating an alarm for a detected anomaly, possibly with some evidence
(e.g. IP addresses) related to the anomaly attached to it.

The first techniques for anomaly detection were based on the assumption
that anomalies could be detected by monitoring how different volume-
metrics changed over time. However, since not all anomalies introduce
significant changes in volume metrics, more recent techniques have focused
on studying network traffic behavior. Behavior-based techniques facilitate
a more fine-grained insight to network traffic by studying the specific meta-
data, called features, derived from the packet header of each flow. Com-
monly used features are IP addresses and port numbers, and by monitoring
how traffic to these features changes over time, it is possible to detect low-
intensity anomalies. However, there are some challenges that need to be
addressed. Features are highly dimensional objects, and working with such
dimensions are not computationally feasible, taken into account that it is
critical that further actions can be initiated as fast as possible. Therefore,
dimensionality reduction techniques need to be applied, with the objec-
tive of removing as much as possible of the ”normal” traffic, while keeping
any traffic that is likely to contain anomalies. Volume- and behavior-based
techniques will be further discussed in Chapter 2.

Alarms generated by an anomaly detector need further investigation, ei-
ther manually by a network administrator or by machine techniques. Be-
fore initiating appropriate countermeasures, the reason why an alarm was
raised (e.g. a Denial of Service attack) needs to be addressed. This pro-
cess is known as root-cause analysis. In manual root-cause analysis, the
network administrator goes through the network logs from when the alarm
was generated, and searches for anomalies. This is a time-consuming task,
especially if the anomaly detector does not provide useful meta-data that
can reduce the set of candidate flows. Automated root-cause analysis takes
this burden off the network administrator, by applying techniques that can
identify the reason why the alarm was raised, and output this information to
the network administrator. We introduce existing techniques for automated
root-cause analysis in Section 2.3.

Figure 1.1 gives a high-level illustration of the relationship between anomaly
detection and root-cause analysis. A certain root-cause will result in anoma-
lous flows, which might cause the anomaly detector to raise an alarm. The
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alarm in addition to the flow records is used in the root-cause analysis,
which tries to identify the reason why the alarm was raised.

Figure 1.1: High-level illustration of the relationship between anomaly de-
tection and root-cause analysis

1.2 Contributions

Our contribution to Senatus as a result of this thesis is the following:

• A high-performance implementation of Senatus

• Web Dashboard for Senatus

• Performance evaluation

• Algorithm for automatic root-cause analysis

1.2.1 High-performance Implementation

We have taken Senatus from a ”proof-of-concept” version divided in three
separate parts, to a complete high-performance anomaly detection and root-
cause analysis system. The system will automatically analyze periodical
network traffic data without any intervention from the network administra-
tor. The root-cause of the anomalies will be automatically identified and
stored in a database for presentation in the Senatus Web Dashboard.
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1.2.2 Web Dashboard

The Web Dashboard offers easy access to important events created by the
Senatus back-end, and allows a network administrator to set a number
of configuration settings. For alarms where Senatus is unable to identify
the root-cause, the Dashboard offers a number of different visualizations of
the network traffic, which can reveal patterns that indicate anomalies. In
addition, the Dashboard gives access to raw flow data, which the network
administrator can use to manually label attacks that Senatus is unable to
identify.

1.2.3 Performance Evaluation

To be able to perform a comprehensive performance evaluation of Senatus,
we have constructed a ground truth by manually analyzing a large number
of alarms. These alarms are generated by Senatus and an implementation
of a well-known histogram based anomaly detection technique. Our dataset
consist of flow data from 4 different links in the GEANT network. Over 8000
alarms in 1300 time bins were analyzed. A small portion of this work had
already been done by other students, but since their work did not include
any specific information about each anomaly, we had to redo much of their
work. More specifically, to be able to measure the intensity and flow count
of an anomaly, we needed the specific IP and port numbers involved. In
most cases, the previous work had just marked the time bin with the type,
e.g. DDoS, but not included any specific information. Therefore, we had
to investigate the time bin again to find this information.

1.2.4 Algorithm for Automatic Root-Cause Analysis

Through the work in this thesis and many discussions with our supervisor,
we came up with a number of ideas that have been implemented in Senatus.
One of these include the algorithm for automated root-cause analysis. The
original idea was to make an algorithm that could verify our results from
the manual root-cause analysis, since this process can be prone to human
errors. The results from the first version of the algorithm showed surpris-
ingly similar results when compared to our manual root-cause analysis, thus
we decided to further enhance the algorithm and implement it in Senatus.
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1.3 Methodology

Since the work in this thesis consists of two independent parts, the method-
ology is split in two:

1.3.1 Performance Evaluation

Our way of evaluating the performance of Senatus was to compare the
generated alarms with the alarms from another anomaly detector. We did
this by manually analyzing the alarms from Senatus and a similar approach,
we call it HBD, to construct a ground truth. Based on the ground truth,
we were able to evaluate our anomaly detector while deriving important
metrics for an anomaly detector, e.g. detection and false-positive rates, and
compare the results of the evaluation to HBD. A more detailed description
of the methodology can be found in Section 5.2

1.3.2 Implementation

The high-performance implementation was done in three major parts:

1. The existing implementation was studied to get a deep understanding.

2. An exact copy of the existing implementation in the selected program-
ming language was created.

3. Senatus was changed and enhanced to make the implementation per-
form well in a network administration environment.

The implementation was done in incremental steps with each incrementa-
tion bringing new features, always leaving the program in a working state.

The Dashboard was designed and implemented to fully utilize the features
of Senatus, and was thus changed when necessary to accommodate changes
in Senatus.
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1.4 Structure

The rest of the thesis is structured as follows:

Chapter 2 - Background introduces the anomalies we are interested in,
and provides insight on existing techniques for anomaly detection and root-
cause analysis. It also gives a more detailed explanation of the histogram
based anomaly detection technique we compare to Senatus.

Chapter 3 - Framework gives a detailed explanation of the Senatus
framework.

Chapter 4 - Implementation gives a thorough explanation of the imple-
mentation of Senatus and the corresponding Dashboard.

Chapter 5 - Performance Evaluation consists of a performance evalu-
ation of Senatus and its tuning parameters, and compares the results with
a similar histogram based anomaly detector.

Chapter 6 - Discussion discusses some of the limitations and drawbacks
with Senatus, based on the results of the performance evaluation. We also
introduce a few commercial anomaly detection products, and compare them
to our implementation of Senatus. In addition to this, we discuss open prob-
lems and interesting topics for future work.

Chapter 7 - Conclusion gives a summary of the work in this thesis.



Chapter 2

Background

This chapter introduces the classes of anomalies we are interested in, and
describes existing techniques for anomaly detection and root-cause analysis.

2.1 Anomalies

Network traffic anomalies are commonplace in today’s Internet. In this
section we introduce the two main anomaly classes we are interested in;
Denial of Service attacks and scan attacks. We also introduce an anomaly
class called network experiments.

2.1.1 Denial of Service Attacks

Denial of Service (DoS) attacks are a prominent threat to cyber infras-
tructure. The goal of a DoS attack is to prevent legitimate use of a digital
resource [5]. An attack that uses several sources to obtain this goal is called
a Distributed Denial of Service (DDoS) attack.

Examples of (D)DoS attacks include attempts to [6]:

• flood a network with traffic to prevent legitimate network traffic.

• disrupt connections between two machines, thereby preventing access
to a service

• prevent a particular individual from accessing a service

• disrupt service to a specific system.

7
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Figure 2.1 illustrates the effect of a high-intensity DDoS, seen in our dataset.
The attack, starting around 08.30AM, causes the infrastructure to collapse,
resulting in downtime of approximately one hour.

Figure 2.1: Illustration of the effect a DDoS attack can have on network
infrastructure

Several well-known institutions and companies have been victims of success-
ful denial of service attacks. Examples include the European Parliament
[7], Visa/Mastercard [8] and NASDAQ [9]. DDoS attacks do not neces-
sarily target a single resource; In September 2002 the infrastructure of the
Internet was the target in a DDoS attack against 9 of 13 root servers on
the Internet [10].

Figure 2.2: Visual illustration of a DDoS attack

Based on the degree of automation used to perform an attack, we can
differentiate between manual, semi-automatic and automatic DDoS attacks
[5]. In a manual attack, each of the participating computers is first scanned
for vulnerabilities, which is exploited to install attack code. The attack
code is then manually activated to perform the attack against the victim.
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In a semi-automatic or automatic attack the recruit, exploit and infect
phases are automated, resulting in a zombie-network of computers also
known as a botnet. This process is unwillingly performed by a user e.g.
by opening an attachment in an email or clicking a link on a webpage.
These zombie-networks are controlled by a botnet host. In a semi-automatic
attack, the computers in the zombie-network wait for information about
the time, victim and attack type from a botnet host, and then perform the
attack. In an automatic attack, this information is preprogrammed in the
attack code. Most attacks nowadays are either semi-automatic or automatic
[5].

A particular type of denial of service attack is known as a SYN flood
attack, which exploits the TCP 3-way handshake. In a SYN flood attack,
the attacker(s) attempt to overwhelm the victim with a constant stream of
TCP connection requests (SYN packets). Each of these request is consum-
ing one out of a limited number of available resources, until all the available
resources are occupied [11]. The effect of this is that legitimate users will
be denied access. Figure 2.3 shows a sample DDoS attack, where the host
193.140.255.1 is flooded with TCP SYN packets.

Figure 2.3: Sample DDoS attack, as seen in Flow-tools

A variant of ICMP flooding, called Smurf attack [12], is an amplification
attack where large amounts of ICMP echo messages are sent to one or more
IP broadcast addresses. The ICMP messages are spoofed with the address
of the victim as the source address. In most networks hosts will reply to this
ICMP echo message, with the result that each ICMP message sent from the
attacker(s) to the broadcast address will generate large amounts of traffic to
the victim. In a Smurf attack two entities will suffer; the victim, which will
be overloaded with traffic, and the target network itself, where the large
amount of ICMP traffic may prevent legitimate traffic from propagating.
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UDP flooding attacks exploits the UDP echo and character generator
running on most computers. A forged UDP packet is used by the attacker
to connect the echo service on one computer to the character generator on
another computer. This attack generates large amounts of network traffic,
and may consume all available network bandwidth, preventing legitimate
traffic [13].

2.1.2 Scans

The main objective of scan attacks is to identify running services, and is of-
ten a precursor of other more harmful events, e.g. worm propagation. Scan
attacks can be divided into two categories with slightly different objective.

2.1.2.1 Port Scans

A port scan tries to identify which services that are running on a specific
host, and is performed by sending probes to a range of ports on one or more
hosts [14]. A reply from the target will identify a running service on that
specific port, which may be exploited by an attacker.

2.1.2.2 Network Scans

The goal of a network scan is to identify hosts that are running a spe-
cific service. It is carried out by sending probes to a specific port to a
range of hosts [15]. Network scans are in some cases the result of worm
activity on a infected host, where the worm searches for hosts running a
vulnerable service. Figure 2.4 shows a sample network scan, where the host
219.243.47.162 is sweeping for port 1433, which is often an indication of the
MS SQL worm [16].

2.1.3 Network Experiments

In our dataset, we experienced large amounts of irregular network traffic
passing through certain gateways, which did not match the signature of any
known attacks. By closer examination, we learned that this had its cause
in various network experiments originating from Planetlab [17]. Planetlab
is a research network where industrial research labs and academic institu-
tions contribute with hardware to facilitate testing of new network services
across geographic locations. More specifically, the majority of the irregular
traffic was generated by the CoDeeN network [18], which is a collection of
proxy servers hosted at Planetlab nodes. These proxy servers frequently
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Figure 2.4: Sample network scan, as seen in flow-tools

sent UDP probes to each other to measure network performance. Network
experiments are a type of anomalies that not necessarily have malicious
intents, but for a network provider it may still result in negative effects like
network performance degradation.

2.2 Existing Techniques for Anomaly

Detection

Anomaly detection is the process of identifying unexpected events in net-
work traffic that deviate from what is considered as normal [19]. This
has been an area of extensive research in later years, where several dif-
ferent techniques have been proposed, some have also been implemented
in commercial products. This section will divide existing techniques into
two distinct groups based on their detection metrics, and give examples of
existing approaches.

2.2.1 Volume Based Techniques

Volume based anomaly detection techniques use volume metrics to model
the traffic, e.g. number of bytes, number of packets, number of flows etc.
Volume metrics is used on the intuition that the sudden changes in net-
work traffic caused by anomalies will be detected when monitoring these
metrics over time. A number of techniques can be applied to detect abrupt
variations in traffic time series. Lakhina et al. proposes a general tech-
nique to diagnose volume anomalies in [4]. Their method applies Principal
Component Analysis (PCA) on observed link-based statistics. PCA is a
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(a) Port Scan

(b) Network Scan

Figure 2.5: Illustration of the difference between port scan and network
scan

statistical-analysis technique for detecting network traffic anomalies, and
performs dimensionality-reduction to return a compact representation of a
multidimensional dataset [20]. PCA is used in several anomaly detection
techniques [21, 22], with the purpose of dividing normal traffic and anoma-
lies into separate subspaces. The technique proposed by Lakhina et al.
identifies the anomaly that is closest to representing the deviation from the
normal subspace, and flags traffic in this subspace. Barford et al. presents
another approach using volume metrics where signal processing techniques
is applied to identify anomalies . More specifically, wavelet analysis is used
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to remove the predictable ambient part, and then flag an anomaly if a
disruption is above a fixed threshold value [23].

The drawback with techniques based on volume metrics is that not all
anomalies introduce a significant change in any volume metrics, e.g. low-
intensity port scans and network scans. Another drawback is that volume
metrics do not provide enough information about an anomaly, e.g. IP or
ports, which is needed for root-cause analysis [2].

2.2.2 Behavior Based Techniques

To overcome the shortcomings of volume based techniques, behavior based
detection techniques are designed on the observation that anomalies affect
the distribution of the traffic feature values that represents the anomaly.
Commonly used traffic feature values are extracted from the IP header
fields and includes destination/source AS, destination/source IP addresses,
destination/source port numbers, flow/packet sizes and TCP flags [24]. The
intuition behind using traffic features is that anomalies will affect feature
distributions; During a network scan the feature distribution of source ports
will be concentrated on a specific port and the feature distribution of des-
tination addresses will be dispersed. Similarly, a DDoS attack will induce
a concentration on the victim address in the destination address feature
distribution, and dispersion on the source address feature distribution.

2.2.2.1 Histograms

One way of implementing behavior based detection is by using histograms.
A feature histogram represents the distribution of the amount of traffic (or
the number of flows) over the possible values of the chosen traffic features
[25]. Figure 2.6 gives an example of a histogram representing the distribu-
tion of the destination port feature. Mathematically, a histogram can be
defined as [2]: X = {ni, i = 1, ..., N}, meaning that feature value i occurs
ni number of times.

The main idea behind using histograms in anomaly detection is that:

1. Regular traffic patterns that represents the behavior of a network will
be captured in the histograms

2. An anomaly will distort these traffic patterns, hence be visible in the
histograms
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Figure 2.7 shows the histograms for the destination port feature for July
2nd and July 3rd from 22:15 to 22:30. In the lower plot there is an ongoing
network scan for destination port 22, which is clearly visible by comparing
the bar that represents port 22 in the two histograms.

Figure 2.6: Histogram illustrating the distribution of first 1000 destination
ports during a 15 minute time bin at the Copenhagen gateway the 20th
June 2011

Challenges with histograms

A challenge that all implementations that make use of feature histograms
have to deal with is the curse of dimensionality issue [25]. The problem
is that commonly used features, e.g. IP addresses and ports, will result in
histograms containing a high number of entries. Uhlig et al. shows that
over a 15-minute measurement period, these numbers can be as high as 216

ports and even higher for IP-addresses, which will result in vectors of a size
that is computationally very expensive to deal with [26]. Traffic sampling,
either on packet or flow basis, is commonly deployed in traffic monitoring.
However, sampling does not significantly reduce the number of values in
the histograms [27]. Implementations that makes use of feature histograms
therefore needs to perform dimensionality reduction. The following sec-
tions will introduce commonly used dimensionality reduction techniques,
and explain some of the challenges related to each of them.

2.2.2.2 Entropy

One way of performing dimensionality reduction is by summarizing a feature
distribution in a single entropy value. Lakhina et al. introduces the idea
of using entropy as a tool to capture the distributional changes in traffic
features in [2]. Sample entropy is used as a metric because it can capture
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Figure 2.7: Illustration of how histograms get distorted as a result of anoma-
lies. The two plots show the distribution of the 1000 first destination ports
during the same time bin at two consecutive days. At the lower plot, there
is a ongoing port sweep to destination port 22, which is clearly visible in
the histogram.

both dispersal and concentration of a feature distribution. The sample
entropy formula is defined as:

H(X) = −
N∑
i=1

(
ni

S
) log2

ni

S
(2.1)

X denotes an empirical histogram, where i occurs ni times and

S =
N∑
i=1

ni (2.2)



16 CHAPTER 2. BACKGROUND

Anomaly Description Effected Distribution

Alpha Flows Unusually large volume Source address
point-to-point flow Destination address

(D)DoS Denial of Service Attacks Destination address
Source address

Flash Crowd Unusual burst of traffic Destination address
to single destination, from
a ”typical” distribution of
sources

Destination port

Port Scan Probes to many destination Destination address
ports on a small set of des-
tination addresses

Destination port

Network Scan Probes to many destination Destination address
addresses on a small set of
destination ports

Destination port

Table 2.1: Table showing which feature distributions that is affected by
various anomalies, when using entropy [2]

is the total number of observations in the histogram [2]. Entropy values
range from 0 for a maximally concentrated distribution, to log2N for a
maximally dispersed distribution. A maximally dispersed distribution will
occur if the N distinct values (i.e. IP addresses) in the distribution appear
exactly 1 time, while a maximally concentrated distribution occurs when
all observation is related to the same feature value. This is utilized in
the detection phase, where a sudden change in the time series for entropy
values indicates anomalies. Table 2.1 shows how various anomalies induce
changes in different feature distributions. The observation that anomalies
affect feature distributions in diverse manners can also be used for anomaly
classification, although this approach will not be very precise since different
anomalies can affect the same feature distributions.

A drawback with techniques that uses entropy to capture variations on
feature distributions is that it lacks the ability to output specific feature
values involved in an anomaly, since the entire feature is represented by one
value. Furthermore, [28] indicates that the choice of address and port as
features may not be the best option in entropy based techniques, arguing
that more complementary features, like behavioral distributions (number
of distinct IP addresses that a host communicates with) and the flow size
distributions, may result in increased anomaly detection capabilities.
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2.2.2.3 Relative uncertainty

An extension of sample entropy is proposed by Xu et al., where relative
uncertainty (RU) is used for dimensionality reduction [29]. RU is defined
as:

RU(X) =
H(X)

Hmax(X)
(2.3)

where H(X) is defined in equation 2.1, and the maximum entropyHmax(X) ≡
logmin(N,S). An important property of RU is when RU(X) ≈ 1, which
implies no variations among the non-zero subset of feature values xi. This
is utilized by finding the number of feature values, K, which can approxi-
mately represent the entire feature distribution, thus reducing the dimen-
sionality. To find this K value, the relative uncertainty is repeatedly calcu-
lated for (x′K+1, x

′
K+2..., x

′
n) = R(K), starting from K = 1. This process is

repeated with increasing K until R(K) reaches a threshold value close to 1,
meaning that the tail of the distribution is uniformly distributed. The chal-
lenge with this approach is that the K value will vary significantly between
features as well as successive days, which may lead to a dramatic difference
in approximation error when using the obtained K coefficients to represent
the histograms [30].

2.2.2.4 Hashing / Aggregation

Previous work has adopted various aggregation strategies to decrease the set
of dimensions, e.g. by aggregating flows into Origin-Destination flows [2].
However, aggregation strategies only identifies the aggregated anomalous
flows, not the exact flow(s) responsible for the anomaly.
Hashing in general is done by using a hash function which maps data of
any length into a fixed-length hash value [31]. Hashing can be utilized for
dimensionality reduction by hashing a possibly large set of feature values
into smaller sized bins. Although this can provide loss-less compression of
histograms, it requires a mapping between the original histogram and the
hashing function, which adds a significant processing overhead.

2.2.2.5 Histogram Based Detector (HBD)

The histogram based implementation used to compare against Senatus in
this thesis is a simplified version based on the work of D. Brauckhoff et al.
[32], where they propose an aggregation strategy using hashing for reducing
dimensions of the histograms.
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The main design ideas behind the implementation can be divided into the
following three steps:

1. Histogram cloning

2. Voting

3. Flow pre-filtering

Histogram cloning and Detection
A histogram clone representing a feature consists of m different bins, and
applies a hash function to randomly place each feature value in one of the m
bins. Each feature has K different clones, created by independent hashing
functions. The idea behind this is to obtain additional views of network
traffic.
After the histogram clones is created, the Kullback-Leibler (KL) distance
between the current distribution p and the previous distribution q is com-
puted. The KL distance measures the similarity between two discrete dis-
tributions and is defined as [33]:

D(p||q) =
m∑
i=0

pi log(pi/qi).

Identical distributions will have a KL distance of 0 (since log(X/X) =
0), while deviations will result in higher KL distance values. An alert is
generated if

∆tD(p||q) ≥ 3σ̂

where σ̂ is a robust estimate of the median absolute deviation. When an
alarm is generated, a set of affected histogram bins, Bk, and the correspond-
ing set of feature values, Vk, need to be identified. An iterative algorithm
that simulates removal of suspicious flows is applied to find the histogram
bins that contribute to generating the alarm. The algorithm removes suspi-
cious flows, starting with the bin with the largest absolute distance between
the histogram of the previous and the current interval, until ∆tD(p||q) falls
below the detection threshold 3σ̂. This process is illustrated in Figure 2.8.
The feature values Vk is obtained by keeping a map between the identified
anomalous bins BK and the feature values.



2.2. EXISTING TECHNIQUES FOR ANOMALY DETECTION 19

Figure 2.8: The iterative algorithm removes one bin in each round until the
KL distance is below the detection threshold [32]

Voting and Meta-data Generation
In the voting process, a particular feature value is kept if it is selected by at
least l out of the k clones. The parameter l can be used to manually adjust
the ratio between false-positives and false-negatives. The voting process
creates meta-data Mj, that contains both normal and anomalous traffic.

Flow Pre-filtering
The goal of the pre-filtering process is to remove as much of the benign
traffic as possible, which is necessary to reduce the processing time in the
next steps of the algorithm, and to minimize the false-positive item sets.
Pre-filtering is done by using the union set of meta-data Mj to create a set
of suspicious flows.

Association Rule Mining
An association rule is an expression X ⇒ Y (where X and Y are item sets),
saying that if a transaction T (containing a set of items) contains X, it is
likely to also include Y [34]. Association rule mining can be employed in
a variety of business applications, one example might be that 85% of cus-
tomers that buys product A also buys product B, this information might be
useful to increase profit by placing those two products next to each other
in the store.
Association rule mining can also be used to solve the problem of anomaly
extraction. The reason for this is the observation that anomalies results in
a large number of flows with similar characteristics. For example a port
sweep, where a certain source IP/AS and destination port will appear in a
large portion of the flows. Brauckhoff et al. [32] decomposes the problem of
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discovering all association rules in a dataset into two sub-parts: (i) Given
a user-defined minimum support (minsupport), discover all item-sets that
have a frequency above this value and (ii) based on these item-sets, derive
association rules. The minsupport parameter is the minimum number of
flows that contain all elements in the set X. A transaction in this context
is a flow record and the items ei, consisting of the 7 flow features srcIP, dstIP,
srcPort, distort, protocol, #packets, #bytes. An item set X = {e1, ..., e7},
is a combination of those 7 flow features, and the largest possible set is a
7-item set that contains a value pair for each flow feature. Each flow feature
can be represented maximum one time.
For discovering frequent item-sets, the Apriori algorithm [35] is utilized,
where the minsupport parameter is used as input. The choice of this pa-
rameter affects the false-positive and false-negative rates; a too low value
will produce many item sets containing non-anomalous flows (FP), while a
too high value might result in ignoring item sets that includes anomalies
(FN). Apriori iterates over the dataset at most h times, and for each round
l, where (l = 1, ..., h), the l -item-sets with frequency over minsupport are
selected. The algorithm stops when no l -item-sets are above the given min-
support. To reduce the number of item-sets needed to be analyzed by a
network administrator, Brauckhoff et al. slightly modifies the Apriori algo-
rithm to output only the l-item-sets that are not a subset of a more specific
l+1 -item-set.

Challenges
We experienced that association rule mining was a time-consuming pro-
cess without giving substantially improved results, and was therefore not
included in the implementation used in this thesis. In the rest of this thesis,
we will refer to this implementation as HBD (Histogram Based Detector).

2.3 Existing Techniques for Root-Cause

Analysis

Anomaly detection systems have the ability to generate alarms for events
that might be important for a network administrator. Root-cause analysis
is the process of identifying the reason why an alarm was raised [36]. This
process is usually done by a network administrator, which uses his knowl-
edge to examine the network logs where the alarm was flagged in search for
events that need further action. Anomaly detection systems where a high
percentage of the alarms is false-positives may be deemed as unusable by a
network administrator, given the time needed to identify the root cause of
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an alarm. Therefore there arises a need for techniques that automates the
traffic anomaly root-cause analysis.

2.3.1 Clustering Techniques

The objective of clustering is to divide observations into homogeneous and
distinct groups, based on a measure of similarity [37]. Clustering has a va-
riety of applications, including data mining, automated root-cause analysis,
and pattern classification. The idea behind using clustering in automated
root-cause analysis is that anomalies with similar characteristics will be
clustered into the same group, where each group is labeled with a root-
cause.

Figure 2.9: Example of data clustering. The right plot shows which distinct
group each data element belongs to as a result of applying a clustering
algorithm [38]

Silveira et al. propose a technique called Unsupervised Root Cause Anal-
ysis (URCA) [39], operating in two steps. The first step uses input from
the anomaly detector to iteratively remove flows that exhibit normal traffic
patterns until it ends up with the root-cause traffic. This traffic is used to
model the behavior of the anomaly, which is used to classify the anomaly by
using hierarchical clustering based on manually identified anomalies. Since
the clustering is based on the behavior of manually identified anomalies,
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there is no need for threshold values. However, if a new anomaly has a
behavior that is different from the previously identified anomalies, this ap-
proach will fail to classify the new anomaly.
In general, an advantage with techniques based on clustering is that they do
not require any threshold values, since the clustering is based on existing
anomalies. However, this is also a disadvantage, since previously unseen
anomalies will require a training period before they are correctly clustered.

2.3.2 Signature Based Techniques

Another type of automated root-cause analysis is based on signatures. A
signature can be seen as well known ”pattern” for how a specific anomaly
behaves. Fernandes et al. demonstrate an approach based on the idea of
using the identified anomalous flows to create the meta-data that charac-
terizes the anomaly [3]. Information in the meta-data is used to create
attributes representing the anomaly. Examples of attributes are shown in
Table 2.2.

Attribute Description

#respdest Number of responsible destinations.
#rsrc / #rdst Ratio of responsible sources to responsible destinations.
bpprop Average packet size (only packets of the anomaly).
spprop Ratio of number of syn to number of packets of the

anomaly.
oneportpred If only one destination port dominated.
invprotopred If packets using invalid protocol numbers or types dom-

inated.

Table 2.2: Examples of attributes derived from anomalies, and used to
create signatures [3]

The main idea behind building signatures with attributes is that it offers
the possibility for more fine-grained identification, e.g. identify the various
types of DDoS attacks seen in today’s Internet. The attributes can take
either numerical or boolean values. An anomaly is classified by matching
the attributes that represent an anomaly against the defined signatures.
E.g. a network scan might be identified by a signature consisting of the
attributes #respdest > 200 and samesrcpred, which says that the anomaly
contains over 200 unique destination addresses in that time bin, and that
one source is responsible for most of these flows.
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As with other techniques based on signatures, this technique requires sig-
natures that are always up to date to perform satisfactory. Also, signature-
based approaches might classify anomalies that do not match any of the
defined signatures as false-positives. Thus, new anomalies without a well-
known signature might be classified as false-positives, and pass by unno-
ticed.





Chapter 3

Framework - Senatus

Senatus is a new framework for joint anomaly detection and root cause anal-
ysis, originally proposed by Atef Abdelkefi [40]. The technique is inspired
by a political body called a Senate (Senatus), which is a constellation of
the eldest and wisest members of the society. The Senatus has the decision-
power and decides the matters of the state.

3.1 Overview

Senatus is divided into three main distinct components. These components
are predicated on the extraction of the top traffic feature values namely
senators. The time series of the traffic per feature value are organized in a
subspace called senators subspace and analyzed using sparse and low rank
matrix decomposition (PCP) to detect significant changes. Detected abrupt
variations called votes are thus collected and interpreted in the decision pro-
cess to identify anomalous time bins and the set of responsible anomalous
flows.

Practically, the three components are summarized as follows:

1. Senators election.

2. Senators votes.

3. Decision for a joint anomaly detection and root cause analysis.

A visual representation of Senatus framework can be seen in Figure 3.1.

25
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Figure 3.1: Illustration of the Senatus design

3.2 Election

As described in Chapter 2, traffic histograms have been widely adopted for
traffic anomaly detection. The reason behind this is that traffic anomalies
generally distort the normal pattern of traffic histograms. For example
DDoS attacks may change the pattern of the histogram of traffic per source
AS, while scan attacks may modify the histograms of traffic per destination
ports. However, the main challenge dealing with traffic histograms is the
curse of dimensionality issue described in Section 2.2.2.1.

Figure 3.2 illustrates the distribution of the reordered amount of flows per
source port values over 24 hours for the collected traces. The figure shows
that the histograms of traffic over src and dst port values are highly dimen-
sional: around 216 source and destination port values and tens of source
and destination AS values, at each of the 15 min time bins. Dealing with
a structure of such dimensions weakens the scalability of the analysis sig-
nificantly. However, reducing such a high dimensionality using aggregation
strategies or entropy, described in Section 2.2.2, results in a coarse-grained
summary of the histograms characteristics [24], leading to an inaccurate
analysis.

Our way out of this impasse, is based on the compressibility [30] of traffic
histograms which we will discuss in details in this section.

3.2.1 Senators Election

It has been recently shown that traffic histograms are highly compressible
structures due to the power-law decay when sorted [30]. Figure 3.2 verifies
this observation in our collected data set. It shows that the amount of
traffic per feature values exhibits a linear tendency in the log-log scale
with a rapid decay when sorted. More formally, a compressible signal X
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Figure 3.2: Traffic per feature values distributions over 24 hours

is a signal whose coefficients, when sorted in order of decaying magnitude
X ′ ≡ (x′(1), x

′
(2), ...x

′
(n)), (x′(1) ≥ x′(2) ≥ ...x′(n)), decay according to the

power law:

x′(i) ≤ Ri(
−1
p
); i = 1..n, (3.1)

where R is a normalization constant and 0 < p ≤ 1 is a scaling parameter.
Note that p controls the rate of the decay of the coefficients of x, i.e, smaller
p implies faster decay.

Thanks to the rapid decay of its coefficients, X can be closely approxi-
mated by the few first-K: “top”-K coefficients (x′(i), i ∈ [1..K]) (keeping
the largest K coefficients and setting the remaining to zero), resulting in a
compressed representation called the best K-sparse approximation
XK such that K << N .

Particularly, the best K sparse approximation has an error term [30]:

σK = ||X −XK ||2 ≤ (ps)(−1/2)RK(−s); s =
1

p
− 1

2
. (3.2)



28 CHAPTER 3. FRAMEWORK - SENATUS

As such, accurate approximation of X can be constructed using a few num-
ber of coefficients.

This motivates our approach for senators election. More specifically, sen-
ators election consists on the extraction of the “top”-K feature values in
each of the measurement time bins. The elected set of senators are, thus,
feature values which appear among the “top”-K for at least one time bin
during the observation window.

The extracted top components, which surprisingly achieve a low approxi-
mation error [30], do not only reduce traffic histograms dimension but are
of inherent interest in our approach for anomaly detection and root-cause
analysis. Figure 3.3 introduces the intuition behind adopting the top-K ap-
proach for traffic anomaly detection. It shows that traffic anomalies such as
DoS/DDoS and scans tend to push the feature values carrying anomalous
traffic toward the top feature values of the reordered histogram. This is of
high interest since one can, on one hand, reduce traffic histograms dimen-
sion and on the other hand keep ”most” of the traffic anomalies. However,
since the number of senators increases proportionally to the value of K, it
is crucial to choose an ”small” value of K which minimizes the total num-
ber of senators while achieving a low approximation error. Unfortunately,
choosing a ”small” K value is notably challenging. First because decreas-
ing the value of K increases the probability of missing many encountered
anomalies and second because the compressibility of the traffic histograms
varies over time and over data set [30]. For example the top-91 destination
ports achieves an approximation error in order of 15% in trace D, while
only the top-5 source ports are required to achieve the same approximation
error in trace C [30].

3.2.2 Traffic filtering reduces the K value

Given the ability to approximate the traffic per source port and destination
port histograms from the first few K coefficient, a main question prompts:
does a low value K of ”top” components carry the maximum amount of
anomalies? In this section we tackle this question.

Figure 3.4 shows the rank of a destination port subject to a network scan
(anomalous destination port) in both the histogram of original traffic and
filtered traffic (small size flow traffic having number of packets per flow
≤ 3), per destination port values. Clearly, the rank of the anomalous port
decreases and climbs toward the first ”top”-K components when the traffic
is filtered.
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Figure 3.3: Motivation behind the ”top”-K approach

We refer in our work to population as the filtered traffic which the top-K
components are suspicious to carry the maximum amount of target anoma-
lies. We establish the traffic filtering rules based on a set of heuristics.
These heuristics are revealed following the description of target anomalies
as illustrated in Table 3.1. Ultimately, table 3.1 encompasses the idea that
the target anomalies such as DoS/DDoS or scans might be mostly carried
by the ”top”-K feature values carrying small size flows. Even though, some
DoS attacks implicating large flow size will be missed using our approach,
focusing on small flow size will reduce the risk of false positives. This is
mainly because large flow size transfer frequently involves benign activities
such as bandwidth tests, large transfers, high-volume P2P activity and data
streaming [41].

We simply define small size flows as flows which have small packets or
low byte count. We summarize the two heuristics we used to construct
the ”population” in Table 3.2, while a more detailed investigation of the
threshold values α and β is presented in Chapter 5.
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Figure 3.4: Impact of filtering on the K value

Anomaly Description and Impact on traffic features

DoS Small or large sized flows sent from one source As via
one or multiple source ports to one destination AS on
one or multiple destination ports

DDoS Many small sized flows sent from one or many source
AS via one or multiple source ports to one destination
AS on one or multiple destination ports

Network scan Many small sized flows sent from one source AS via one
source port to one or many destination AS on one des-
tination ports

Port scan Many small sized flows sent from one source AS via one
source port to one or many destination AS on multiple
destination ports

Table 3.1: Anomalies definition
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3.3 Voting

Anomalies tend to distort the underlying traffic per feature values distri-
butions [2]. Some feature values in the tail of the distribution tend to be
among the top-K, as shown in Figure 3.4, while others tend to suddenly
appear during anomalous time bins. Ultimately, our targeted anomalies,
e.g. DoS/DDoS and scans, generally induce positive abrupt variations in
the traffic per feature value time series.

To detect such variations we introduce the low-rank and sparse matrix de-
composition technique PCP and show how it can be involved in the senators
vote process.

Heuristic Definition

H1 Small packet count per flow: packets ≤ α
H2 Small byte count per flow: bytes ≤ β

Table 3.2: Heuristics

3.3.1 Senators Subspace Creation

We introduce senators subspace in order to address the above-mentioned
problem. Abrupt variations in flow count time series are potential indicators
of anomalies in the network [22]. However, since we are additionally focusing
on pinpointing the root-cause of the detected anomalies, we further track
the amount of traffic per feature values over time and pinpoint variations
as potential indicators of anomalies. Due to the high dimensionality of such
a structure, we exclusively focus on the set of elected senators. The voting
process is thus summarized in the change detection of the time series of
flow count per senator feature value over time. For this end we define the
senators subspace X.

Let X denote a three dimension data matrix. X is composed of flow count
time series per senator feature value over time and across the 4-tuple flows:
X(t, i, j) denotes the flow count at time t (t ∈ [1, N ]) for senator feature
i (i ∈ [1, K]) and of the flow-aggregation level j (j ∈ [1, 4]). Along traffic
features dimension four matrices are constructed: X(srcPort), X(dstPort),
X(srcAs) and X(dstAs). They contain the flow count for each senator
feature over time. Figure 3.5 illustrates a graphic representation of senators
subspace.
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Figure 3.5: Illustration of the distribution of traffic for the senators for the
destination port feature distribution over a 24 hour period, and the time
series for the senator port 80

3.3.2 Significant Change Detection

Our goal in this section is to identify significant changes induced by net-
work anomalies in the flow count per senator feature time series within the
senators subspace.

There are a wide range of time series anomaly detection methods in the
literature, ranging from the time series forecasting techniques, i.e, EWMA,
ARIMA, to the frequency and wavelet domain analysis. Structural analysis
such as Principal Component Analysis (PCA) [42, 4] and its extensions e.g,
Kalman-Loeve expansion [43] was shown to be more accurate [19, 32] while
better suited for a parallel decomposition of the set of time series under
analysis [24], which is required due to the scale of our application. Briefly,
PCA constructs the baseline behavior by projecting the time series under
analysis into a normal subspace while flagging the deviation from the base-
line into anomalous behavior. Unfortunately, it was recently shown that
PCA in addition to its extension are vulnerable to the low-rank subspace
poisoning phenomenon due to the outliers induced by some high intensity
anomalies [42, 44]. To address this shortcoming, we propose a more ro-
bust technique called Principal Component Pursuit (PCP) that can detect
changes even when the time series records large outliers. PCP is based for
flow-count time series analysis, on two main assumptions which we explore
in the next sections.
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Figure 3.6: Scree plots (src/dst AS/ports for the four collected traces)

Low-rank senators subspace: In this section we observe the structure
of the senators subspace. Particularly we show that the senators subspace
is low-rank.

A matrix X that is low-rank or having an effective rank r (r � m) is
a matrix that is well approximated with a rank r matrix, Xappr. A well
known technique to find Xappr, is to apply the singular value decomposition
SVD on the matrix X. SVD decomposes the matrix X into three matrices
such that X = UΣV t, where V and U represent respectively the right
and left singular vectors, while Σ represents the singular values of X, then
extract the first r singular values from the diagonal of Σ. In this case, the
remaining singular values beyond the first r are all small, which induces a
suitably small approximation error.

Figure 3.6 illustrates the scree plots applying SVD on the matrices of the
senators subspace (X(srcPort), X(dstPort), X(srcAs) and X(dstAs)) for
the four collected traces. The figure shows that most of the energy (vari-
ability) in the traffic time series within the senators subspace is contributed
by the first singular values while the contribution to the total energy ex-
periences an early sharp knee as the number of singular values increases.
We thus conclude that senators subspace matrices X(t, i) have low intrinsic
dimensionality relative to the original dimensionality, i.e, low-rank.

Sparse anomalies: The low rank structure of senators subspace is seldom
met due to traffic anomalies. Traffic anomalies generally induce abrupt vari-
ations in the amount of traffic for the feature which carries that anomalies.
We observe that these anomalies can be either spikes or a set of pulses. As
they occupy a short duration within the total observation window (a day of
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measurement), we assume that they are temporary localized, thus sparse
in time.

Principal Component Pursuit: Assuming that normal senators sub-
space N is low-rank while anomalies A are sparse in time, we attempt to
find the matrix A such that the matrix N=X(t,i)-A has the lowest possible
rank. More formally we tempt to solve the following problem:

min
N,A
‖A‖0, subject to X(t, i) = N + A, rank (N) ≤ k (3.3)

where rank() denotes the rank of a matrix, ‖ ‖0, denotes the `0-norm : the
cardinality of the non-zero elements.

This optimization problem is NP-hard [45]. However, based on the recent
advances in convex optimization theory, it has been proven that the nu-
clear norm, i.e, the sum of singular values, exactly recovers the low rank
component [45] while the `1 norm, i.e, the sum of absolute values, exactly
recovers the sparse component with a remarkable robustness to the outliers
in comparison to the `2 norm [46]. Accordingly, Equation 3.3 (low-rank
and sparse recovery) can be solved using the Principal Component Pursuit
[45] defined as:

min
N,A
‖N‖∗ + λ‖A‖1, subject to X(t, i) = N + A, (3.4)

where X(t, i) denotes the matrix of flow count per senator time series for
a particular traffic feature X(t, i) ∈ RN×K , ‖ ‖∗ denotes the nuclear norm,
i.e., the sum of the singular values of the normal delay matrix N , ‖N‖∗ =∑min(N,K)

i=1 ηi = trace(
√
NTN), ‖ ‖1 denotes the `1-norm of the anomalous

events matrix A ie ‖A‖1 =
∑N×K

i=1 |Ai| and λ > 0 is a weighting parameter.

To solve such a convex problem, different solvers have been proposed, rang-
ing from the Alternate Direction Method (ADM) [47] to the Singular Value
Thresholding (SVT) and the Dual Method [48]. We opt for the one which
scale for large matrices using the inexact version of the Augmented La-
grange Multiplier (IALM) solver [49].

3.4 Decision

The decision is the last step in our proposed technique. This is fundamental
for two main reasons: it detects anomalous time bins and it identifies the
subset of anomalous flows among the set of candidate anomalous flows
identified by the senators’ votes.
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3.4.1 Anomalous Time Bins Detection

To detect anomalous time bins we proceed with the analysis of the senators’
votes. More formally, we collect in each time bin the set of senators votes
which potentially trigger suspicious events and logically combine (AND,
OR) the collected votes based on a set of predefined decision rules. Various
decision rules might be chosen predicated on the collected senator’s vote to
flag a time bin as anomalous, we propose two which are summarized in Table
3.3. Using R1, an anomaly is flagged when both source AS, destination AS
and at least a source or a destination port are flagged. While this may detect
most of the anomalies including DoS/DDoS targeting or originating random
ports, it generates a high false-positive rate due to the voting algorithm
artifact or due to a normal user behavior inducing a sudden increase in
the amount of flows per feature value. To make the decision process more
robust against this, an anomalous time bin is only flagged when a senator
vote is recorded for the 4-tuple aggregation levels. We adopted in this thesis
the decision rule R2.

Rule Definition

R1 (srcAS ∧ dstAS) ∧ (srcPort ∨ dstPort)
R2 (srcAS ∧ dstAS ∧ srcPort ∧ dstPort)

Table 3.3: Decision rules

3.4.2 Suspicious Flows Identification

Once detected, anomalous time bins will serve to identify the set of anoma-
lous flows responsible for the attack in the network. From each of the
anomalous bins, we select all flows that match the union of source and des-
tination addresses and services flagged by a vote in that particular time
bin, i.e. all possible flows that might be originated from any suspicious
source at any suspicious port and targeting any suspicious destination at
any suspicious port, that are flagged by senators’ votes.

Figure 3.7 illustrates anomalous time bin detection and flows identification
based on senators’ votes. It shows the amount of flow time series per srcAs,
dstAs, srcPort and dstPort senators. These time series were extracted,
organized within the senators subspace and processed during the voting.
As previously discussed, senators votes simply consists on the detection of
abrupt variation in senators time series using PCP. The figure shows that
PCP detects variations at more than one senator time series in each of the
4-tuple aggregation levels at time bin 60. Based on our heuristic, this time
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bin is confirmed to be anomalous. Unlike time bin 60, the previous time
bin is only flagged as anomalous by a srcPort senator (number 58643). In
this case the vote is considered erroneous and the time bin is ignored. Once
anomalous time bins exposed, the flows responsible for the anomaly are
simply identified as the set of flows matching the senators’ votes at that
particular time bin. The figure illustrates two main flows responsible for
the anomaly detected as time bin 60 ( flow 1: {1299,2107,2000,6667} and
flow2: {1299,2107,58643,6668}).
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Figure 3.7: Illustration of the Decision process
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3.4.3 Root-Cause Analysis

After identifying the anomalous flows, we have to infer the event that caused
it. The flagged anomalous flows from Senatus gives us 4 feature values which
makes the anomalies classification and root cause analysis far simpler than
analyzing the entire NetFlow file, since filtering on the feature values will
narrow down the number of candidate flows dramatically. Even though
Senatus makes this task simpler, manual analysis is still time-consuming.
In the next section we discuss a proposed automatic root-cause analysis
algorithm.

3.5 Automatic Root-Cause Analysis

During the manual analysis we developed a script that made the analysis
more automatic. The script looped through the flagged anomalous flows
from Senatus and read NetFlow files with specified filters applied based on
the feature values. We could control which filters that would be applied
to be able to look for different types of attacks. We still had to find the
attack manually, but it saved us a lot of time and we were able to analyze
the results faster. We saw that the script could be developed further and
it became the first draft for our proposed automatic root-cause analysis
algorithm.

One of the challenges with an automatic analysis of the output from Senatus
is that the flagged anomalous flows from Sentus are ”samples” of the set
of flows carried by anomalies, which can be much bigger and might involve
hundreds to thousands of flows. In example, a flagged anomalous flow
which involves the source AS A, the destination AS B, the source port
C and the destination port D may be a sample of a network scan of the
destination port D to multiple IP addresses within the destination AS B.
If the attacker use multiple source ports, we will miss these flows, since
they are filtered out. To overcome this challenge, we propose the following
algorithm. We relax the aggregation level reducing the number of tuples
within each of the anomalous flows to the minimum , i.e. src AS or dst AS,
in the flagged anomalous flows and estimate the number of anomalous flows
resulting from the relaxation procedure. We compute the estimate number
of anomalous flows as the maximum number of flows within the anomalous
time bin involving flow tuples under investigation.

The choice of the flow aggregation level and number of tuples is our al-
gorithm is motivated by traffic anomalies definition and their fingerprints
provided in Table 3.4 (based on anomaly definitions from Chapter 2).
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Anomaly Description Features

DDoS Aattack from multiple sources to one desti-
nation

dstIP

DoS Attack from a single source to a single desti-
nation

srcIP,
dstIP

Network scan Attack from a single source to multiple des-
tinations, but on the same port number

srcIP,
dstPort

Table 3.4: Anomaly characteristics

3.5.1 The Structure of the Algorithm

In Algorithm 1 we see the pseudo code of the algorithm which is mainly
divided into three parts or statements that each detect one type of attack;
DDoS, DoS and network scan. The algorithm is using if/else statements to
prioritize the attacks such that if we find a DDoS, we will return that attack
and not continue looking for other attacks in that specific alarm. Instead
we start analyzing the next alarm, and this is done to decrease runtime and
increase performance.

Part 1 - DDoS Classification DDoS is an attack from multiple sources
to one destination, so to detect this attack we focus on unusual behavior
at the destination. To detect DDoS attacks we count the number of occur-
rences of each destination IP and find the maximum, which will be the IP
with most incoming flows. We then check the value against a predefined
threshold θ1 and if it is above this value we flag the suspicious flows as a
DDoS attack.

Part 2 - DoS Classification DoS is an attack from a single source to
a single destination. To find DoS attacks we pair up the source-IP with
the destination-IP from each flow and find the maximum, which will be
the IP-pair that generates most flows. We then check the value against a
predefined threshold θ2 and if it is above this value we flag the suspicious
flows as a DoS attack.

Part 3 - Network Scan Classification Network scan is an attack from
a single source to multiple destinations, but on the same port number.
To find network scan attacks we filter out all the traffic to the flagged
destination port and then count the source-IP from each flow and find the
maximum, which will be the source IP that sends the most traffic to the
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Algorithm 1 Root-cause(F , θ1, θ2, θ3)
Input: Suspicious flows F = {f1, ..., fi, ..., fn}

threshold θ1, θ2, θ3
Ax set of flows of feature value x

Output: The root cause
1: for fi ∈ F do
2: x← dstIP
3: if (max(Ax)|x ∈ fi(dstAs) > θ1 then
4: return DDOS, dstIPmax

5: else
6: x← {srcIP, dstIP}
7: if (max(Ax)|x ∈ fi({srcAs, dstAs})) > θ2 then
8: // x is the pair of srcIP and dstIP within the srcAs and dstAs

flagged in the anomalous flow fi
9: return DOS, {srcIP, dstIP}max

10: end if
11: else
12: x← {srcIP, dstPort}
13: if (max(Ax)|x ∈ fi({srcAs, dstPort})) > θ3 then
14: return Network Scan, {srcIP, dstPort}max

15: end if
16: else
17: False Positive
18: end if
19: end for

flagged destination port. We then check the value against a predefined
threshold θ3 and if it is above this value we flag the suspicious flows as a
network scan attack.

3.5.2 Setting the Right Threshold

We highlight that the threshold θ is a key parameter for the automatic root
cause analysis. However, the choice of this threshold is notoriously difficult.
The discussion about our approach to set the best threshold θ can be found
in Chapter 5.





Chapter 4

Implementation

This chapter gives a thorough description of the system developed during
this thesis. Figure 4.1 shows the intended architecture of the system as a
whole.

Figure 4.1: A use-case diagram of the intended Senatus system.

The different, separate parts which needs to be implemented are Senatus,
the Senatus Dashboard and the automatic root-cause analysis algorithm:

• An implementation of Senatus as back-end in the system.

• Senatus Dashboard, the user interface to the system used for event
handling, monitoring and configuration of the back-end.

41
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• Script for automatic root-cause analysis.

System Call The term ”system call” in this report is referred to when
a program or web page issues commands to the underlying system, e.g.
Linux, for utilizing tools that are only available on the system, and not to
the source code itself. The ”system call” will normally return the result
of the system call as a string to the program or web page. This will be
equivalent to running a command in the terminal and returning the output
to our program.

4.1 Senatus

4.1.1 Introduction

Figure 4.2: High-level overview of the Senatus design

Senatus is split into four parts; election, voting, decision and root-cause
analysis, as illustrated in Figure 4.2. A quick summary can be given as
this:

1. Election: A set of senators are selected for each of the following fea-
tures: source AS, source port, destination AS and destination port. A
matrix for each feature is constructed with the number of occurrences
of these senators for the last 24 hours.

2. Voting: A PCP-algorithm, described in Section 4.1.2, performs ma-
trix operations on the four matrices to find combinations of senators
and time bins that shows abnormal traffic patterns based on previous
values for the given senator. A list of suspicious flows is constructed
by combining all possible tuples of the four features.

3. Decision: The list of suspicious flows is iterated over. Each flow is
filtered in its specific time bin. If the number of resulting lines from
the filtering is greater than zero, this suspicious flow is marked as an
alarm.
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4. Root-cause analysis: The suspicious flows marked as alarms will be
automatically checked for its root-cause.

The back-end of the Senatus system is the heart of the implementation part
of this thesis. The objective is to develop a stand-alone program in either
Java or C++ that will run continuously and analyze time bins in real-time,
or online.

An existing implementation of Senatus is already developed, we refer to it
as version 0. Version 0, described in Section 4.1.2, consists of several bash-
and MatLab-scripts. The three parts: election, voting and decision are not
linked together and each part needs to be run separately, so we need to
address the best and most efficient solution to link these parts together.

To develop the program, we will learn from the existing implementation,
and as we progress, improve on our own version. The development cycle
was split into the subsequent sub-tasks:

1. Study Senatus version 0 and understand it in detail.

2. Understand which features that are needed for the program, and based
on these features decide on the programming language and develop-
ment environment.

3. Do a direct one-to-one translation of version 0, we call it version 1.
This is to verify that the same input gives the same output in both
versions.

4. Improve version 1 to become a fast-performance, real-time, online
analysis application, version 2.

The automatic root-cause analysis algorithm was not introduced before the
development of version 2, and is thus only present in that implementation.
Also, automatic root-cause analysis is an optional part of version 2.

Online and offline In this context, an offline implementation means that
the system back-end analyzes the data too slow to present it to the user
in real-time. This means that the back-end cannot be used with the Dash-
board (the monitoring user interface). An online implementation, on the
other hand, delivers the data real-time or near real time, and meets these
requirements.
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4.1.2 Version 0 (Offline Implementation)

Version 0 is the first, proof-of-concept, implementation of Senatus, written
by A. Abdelkefi with the purpose of testing Senatus and perform parameter
tuning.

Figure 4.3: Flow diagram of version 0.

Figure 4.3 shows how election, voting and decision is implemented in version
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0. It is worth mentioning that the election consists of both step 1 and 2
and that all passing of data between the different steps are done by saving
and opening text files from the hard drive.

The following list gives a step-by-step description of Figure 4.3:

1. Extract senators reads time bins and creates one file for each feature
consisting of all their senators.

2. Extract values reads the files saved in the previous step, runs flow-
tools-filters for all these senators for the entire timespan=24 hours,
and saves the values per feature and senator as matrices in files for-
matted to be readable by Matlab. An example of such a matrix is
seen in Figure 4.4, where we have two hour time bins, and 7 senators.

3. Voting reads senator values from the previous step, and run these
through the PCP algorithm to get time bin-senator pairs that are
abnormal. All combinations of pairs are combined to get full srcas,
srcport, dstas, dstport-combinations called suspicious flows and saved
as a matrix text file.

4. Decision loads the suspicious flows-matrix from the previous step and
run them through flow-tools or netflow. If the number of flows re-
turned from the filter is bigger than zero, it is marked as an alarm.
All alarms are saved to a file.

Senator 1 Senator 2 Senator 3 Senator 4 Senator 5 Senator 6 Senator 7
0:00 806 3447 221 21 115927 1819 39414
2:00 829 3351 222 34 138396 1855 43592
4:00 1042 3423 212 45 140780 1995 47198
6:00 983 3654 237 26 146784 1972 49053
8:00 947 3773 231 28 157691 1900 51382

10:00 1053 3750 211 47 159139 3871 52975
12:00 1049 3823 224 33 168590 7099 57234
14:00 1093 4029 233 54 174226 6586 57652
16:00 1088 3988 233 40 180195 7053 57988
18:00 1125 3949 245 35 184299 6842 58471
20:00 1159 4058 210 46 188086 6757 62633
22:00 1168 5298 207 29 193152 7289 64552

Figure 4.4: Value matrix for one feature.
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PCP PCP is the method for matrix decomposition used in Senatus. The
method used is called Inexact ALM RPCA, developed by Lin et al., de-
scribed in Section 3.3.2.

4.1.2.1 Limitations of Version 0

Version 0 has some limitations and weaknesses.

• The entire analysis takes approximately 24 hours.

• Configuration and paths needs to be hard coded in the source code.

• Each part must be run separately and started manually after the
previous part finishes.

• It operates on chunks of 24 hours network traffic data only. This
implies a significant delay between the time of an attack and time of
detection.

4.1.3 C++ Implementation Technology

This section focuses on the choice of technology for the high-performance
implementation.

4.1.3.1 Choice of Programming Language and Matrix Library

The two main criteria for the choice of programming language were:

• Expected execution time performance.

• The availability of a well-performing linear mathematics library.

Which programming language to implement Senatus in was a choice be-
tween Java and C++. Both are well-known, supported and solid program-
ming languages, and we believed that both could be used with a satisfactory
performance.

Availability of a linear mathematics library is important, as we needed to
replicate the Matlab parts of version 0. The performance of this library is
also important, as research showed this could vary[50].
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Linear mathematics library Both Java and C++ have libraries for
matrix manipulation. Java has JBLAS[51], Jama[52], Colt[53] and more.

C++ has some old libraries: LAPACK++[54], Atlas[55] and CBlas[56],
which in our opinion had a difficult syntax. It also has got some new
libraries: Armadillo [57, 58], OpenCV[59] and Eigen[60].

The newest libraries seemed to have a simpler interface for us to get used
to. Armadillo uses bindings to Lapack for advanced matrix operations to
profit on Lapack’s performance.

Armadillo because it had a close resemblance to Matlab and seemed to be
the fastest[50].

Execution Time Performance Research indicates that C++ has su-
perior performance compared to Java[61]. There are certain memory man-
agement issues with C++, issues not found in Java because it has built-in
memory management[62]. We believe however that the memory manage-
ment issue is possible to work around, and that it is not grave enough to
disregard the gain in performance from using C++.

Based on the aforementioned requirements, we conclude that C++ is the
best suited programming language, with Armadillo as the Linear Algrebra
library.

4.1.3.2 Dependencies and Tools

After the decision of using C++ and Armadillo was taken, the architecture
of version 1 and 2 could be decided, as well as the dependencies inferred by
the design.

The dependencies and tools are:

• Version 1 and version 2:

– nfdump

– flow-tools

– AWK

– head

– Armadillo

• Only version 2:
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– MySQLCppConn

– SQLite3

Senatus was developed in a Linux-environment, and uses functions specific
to POSIX-based operating systems.

nfdump and flow-tools nfdump[63] and flow-tools[64] are software pack-
ages for collecting and processing NetFlow-data from routers. NetFlow is
a network protocol from Cisco to record network performance data[65].

Senatus is able to process network traffic flow data in both these formats
by running C++ system calls to nfdump and flow-tools on the machine.
Thus, either flow-tools, NetFlow or both needs to be installed on the system
running Senatus, depending on the files that are to be analyzed.

AWK AWK[66] is a powerful text-processing language that operates on
each line of an input. We use it in the system calls to extract the necessary
information from the output of nfdump and flow-tools, and return it in a
uniform way to Senatus.

head head[67] is a tool for displaying only the top n lines of its input.
We use head in the system calls to limit the number of records to return to
Senatus, for example when getting the top k senators.

Armadillo Armadillo is a linear algebra library for C++ which is open
source, and according to the developers ”aiming towards a good balance
between speed and ease of use”[58].

The version of Armadillo used in Senatus is version 2.4.2, also called ”Loco
Lounge Lizard.” This was the latest stable version when implementation of
Senatus begun.

Armadillo depends on LAPACK, Blas and Atlas for matrix decompositions
and Boost[68] for standard tasks.

Armadillo is licensed under the LGPL-license[69], making it possible to
publish a non-derivative work like Senatus under a license different from
LGPL.

Database libraries C++ has no built-in database capabilities, so li-
braries are needed for both SQLite and MySQL.
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SQLite was used in the first part of development, because of its agility and
simplicity. However, as Senatus became more complex, we needed concur-
rent writing[70]) and closer integration with the Dashboard. We therefore
changed to MySQL, which fully replaced SQLite in Senatus version 2.

The library used for SQLite was libsqlite3-dev[71], while the one used for
MySQL was libmysqlcppconn-dev[72] from Oracle.

4.1.3.3 Development Environment

IDE As IDE we used Eclipse CDT[73] configured to use g++ for compil-
ing. Eclipse is an IDE configurable for a variety of programming languages[74],
and CDT is the plugin for programming in C++.

Version Control System Version control is a useful tool for cooperative
system development, and for keeping different revisions of a project. The
use of version control systems in development projects will give complete
control over what changes that have been done, and by whom. Mercurial[75]
was used as a version control system for the implementation of Senatus, and
Bitbucket[76] for hosting of the source code.

4.1.4 Version 1 (Offline Implementation)

Figure 4.5: Flow diagram of version 1.

Senatus is a complex system, thus we need to verify that the output from
our implementation of Senatus is the same as from version 0, given the
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same input. Therefore, before making our enhancements to the program,
we needed to create a replica in C++. We refer to this implementation as
Senatus version 1.

The main difference in design between version 0 and 1, besides from being
written in C++, is that version 1 operates as a whole, and that all files that
version 0 saves now are stored as matrices in-memory, illustrated in Figure
4.5.

Figure 4.5 is described below. This description focuses on the differences
between version 0 and 1.

1. Senators are extracted as in version 0, but are now kept in memory.
The usage of memory is shown by the exclusion of the files that were
present in Figure 4.3.

2. The extracted values are saved as Armadillo-matrices in memory.

3. The translated-to-Armadillo version of the PCP-algorithm is used in
the voting part. The suspicious flows are still kept in memory as an
Armadillo-matrix.

4. The matrix of suspicious flows is iterated over and each object is
filtered. Alarms are written to a file.

The translation introduce some challenges, specifically the PCP-algorithm
is time-consuming to translate because of its complexity.

4.1.5 Version 2 (Online Implementation)

Version 1 of Senatus, as its predecessor, analyzes flow data and detects
anomalies for a 24-hour period. This requires system calls for every senator,
for every feature, for all time bins.

Instead of detecting anomalies for a 24 hour period, Senatus should now
detect anomalies only for the current time bin by comparing traffic for that
time bin with traffic from the previous 24 hours. This will still require
analyzing the same data in election, but voting and decision will operate
differently.

This change makes it possible for Senatus to analyze each time bin with-
out doing system calls to get the feature values for the previous n time
bins. We accomplish this by saving previous senator and feature values
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to a database. As a result, we only need to run flow-tools on the current
time bin and on previous time bins where this senator has not been repre-
sented before. The additional values needed are fetched from the database.
This significantly reduces the number of system calls required, resulting in
a dramatic improvement in terms of performance.

Figure 4.6 shows the flow diagram of version 2, and the now replaced step
2, which has become more complicated because of the database look ups.
Figure 4.7, explained in the list below, describes this in detail.

1. Senators are extracted as in version 1.

2. Value matrices are constructed as in Figure 4.7.

3. The first part of Voting has the same input and output, but only
anomalies from the current time bin are combined to suspicious flows.

4. Only the suspicious flows in the current time bin are iterated over and
filtered, and we only get alarms from these. If the automatic root-
cause analysis algorithm is running, the execution is stopped when a
root-cause is identified.

Figure 4.6: Flow diagram of version 2.
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Figure 4.7: Per-feature operations, the value matrix building in version 2.

4.1.5.1 Enhancements

As described above, there are two major differences between version 1 and
2. The first change is the saving and retrieving senator values from the
database, causing a big improvement on the time of execution.

The other change, in the selection, is that we now only care about anomalies
in the latest time bin, thus providing up-to-date anomalies. However, we
still need the information from senator values from previous time bins to
detect abrupt changes.

Figure 4.8 shows how the entire value matrix for one feature is processed in
the voting part. Both version 1 and 2 have the same first two steps, only
differing in step 3 and step 4.

In step 3, version 1 searches for values greater than zero in the entire matrix,
while version 2 only does this for the last time bin, 22:00, only choosing
1.49 and 445.77 to pass on.

Suspicious flows-objects are then generated according to the decision rules,
and put in a list that is used in the decision part.
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Figure 4.8: Change in selection between v1 and v2.
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4.1.5.2 Parameters

Senatus has a number of parameters that are possible to tune to maximize
the performance. In this case performance is measured in execution time
and detection rate. These parameters are:

λ The weighting parameter for PCP.

K The number of senators for the port-features. The default is 20 senators.

t Timespan, the number of hours of data input to use in the analysis.

Hi Heuristics to be used for senator selection. These heuristics are defined
in Table 3.2.

auto Auto root-cause analysis. Whether to use automatic root-cause anal-
ysis or not. When used, Senatus will stop the execution when an
attack is found and identified. The default option is to stop when a
network scan is found, but it is also possible to ignore network scans
and continue until a DoS or DDoS is found.

Decision rules How to combine the suspicious flows. These two rules are
shown in Table 3.3. R1 requires three features to have flagged values,
while R2 requires all four.

The different performance characteristics of these parameters are shown in
the implementation performance evaluation in Section 5.5.

4.1.5.3 Database structure

Figure 4.9 shows the structure of the Senatus database. Each database
table is described below.

Time bin A time bin’s path is saved for the application. The time bin
belongs to a gateway, and starts at a specific date. The field tbnr is
saved to know which time bin of the day this is. Flow, packet and
byte count is saved for the Dashboard.

Senator For each time bin and feature there are senator and feature values.
Type identifies what filter is used to extract the given senator; H1 or
H2.
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Figure 4.9: ER-model of the Senatus-relevant parts of the database.

Alarm If there is an alarm, its feature values are stored here, referencing
the time bin.

Attack Alarms are checked with the automatic root-cause analysis script,
or manually, and the identified attack type is stored here.

Run All executions are stored in the run table, with all required datetime-
fields and variables for performance analysis.

4.1.5.4 UML Diagrams

This section will provide Class diagrams for the C++-objects defined. This,
together with the sequence diagrams in Appendix A should give a thorough
and detailed description of the online version of Senatus.

Procedure Diagram Figure 4.10 shows the source code files that are
procedure oriented. These are used intertwined with the classes from Figure
4.11. The source code files are described below:
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run This is where the main method is located, and where the initialization
of each execution happens. All command-line arguments are parsed,
setting the global parameters like the value of λ, k, the timespan etc.
The main method controls the entire execution flow.

common This source file contains all functions that should be globally
accessible, for example the exec-function which executes a system call
and returns the result as a string.

extract Extract consists of the system call functions of the election-part.
The senators-function gathers all senators for a feature, valueForSen-
atorTimebin gets the value for a senator in a given time bin.

voting Voting consists of the Armadillo-specific functions, where vote is
the main function calling filterFlows and Inexact ALM RPCA.

auto This is the C++-translation of the Automatic root-cause analysis
script initially developed in Python, shown in 4.3.

filter The filter source is where the decision-part takes place, where it is
decided whether to use the auto script and where alarms are written
to the database.

Class Diagram Figure 4.11 shows entities that are represented as classes
in Senatus. Only the parts of the code where it would give an advantage
were object-oriented. The classes are described below:

Feature The feature-class represents the connection between a list of sen-
ators and their corresponding values. This class is responsible for
collecting existing senator values from the database, and for fetching
the senator values that are not in the database from the time bin on
disk with a system call.

Timebin A time bin is represented in this class, with its path, date and
flow count as the primary parameters.

TimebinCollection A TimebinCollection constructs the list of all Timebin-
instances that are a part of the current Senatus execution. Subse-
quently, existing Timebin-data is retrieved from the database, and
missing data is retrieved by running a system call.
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SuspiciousFlow Every suspicious flow constructed in the Voting-part is
created as a SuspiciousFlow-object, containing important character-
istics such as time bin ID, the source AS, source port, destination AS
and destination port of the flow, as well as the attack-characteristics
if the flow is identified as an attack. The getWeight()-function returns
the probability of an attack in this flow based on the feature rates, so
that the list of SuspiciousFlows can be sorted accordingly.

DbConn DbConn is an abstract virtual class for defining database con-
nections for different database solutions. Subclasses of this, such as
MySQLConn, are the only classes interacting with the database.

DoDbThings DoDbThings is an utility class for other classes and a way
to prevent circular dependencies[77].

LogObject The LogObject-class is a class for saving info about each ex-
ecution, mainly for later analysis. This includes setting the current
date and time.

SenatorValue SenatorValue is a simple class, only containing a combina-
tion of time bin, senator and senator value for use in the feature-class.

4.2 Dashboard

The Dashboard is the network administrators’ primary interface to Senatus,
offering an intuitive and powerful way of controlling day-to-day monitoring
and use of Senatus’ features.

Senatus and the Dashboard are closely coupled, sharing a database, with
both doing system calls, each for their own purposes.

4.2.1 Technology

The choice of technology for the web application is limited to the program-
ming language. The database solution is already locked to MySQL because
of the Senatus back-end.

In addition to programming language and database, different libraries are
used to increase the user friendliness of manual root-cause analysis.
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Figure 4.10: Diagram of procedure oriented part of Senatus.
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Figure 4.11: Class diagram of classes in Senatus.
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4.2.1.1 Programming Language

As programming language for the Dashboard, we decided to limit the op-
tions to languages and web-frameworks that were widely used, and that at
least one person in the group had experience with. We ended up with these
alternatives:

• Django[78], Python-based web-framework.

• Play[79], Java-based web-framework.

• PHP[80], Plain PHP scripted solution

Of these three, Django and Play were excluded because of their Object-
relational mapping (ORM)-solutions making it difficult to comply with a
different database schema such as ours.

This left PHP as the choice of programming language for the Dashboard.

4.2.1.2 Development Environment

Web Server The combination of Apache and PHP for Apache was well
known for the group members, making that solution the preferred one.

IDE Eclipse, being a versatile IDE, also has a plugin for PHP, called
PHP Development Tools[81]. Utilizing Eclipse for both Senatus and the
Dashboard is beneficial in the way that the group members will only need
to accustom themselves to one IDE.

4.2.1.3 Additional Libraries

Four JavaScript[82] libraries and one library used from PHP, IPInfoDB,
was used for data visualization, general UI improvements and IP address
lookup.

jQuery jQuery[83] is an all-purpose JavaScript-library for easy manipula-
tion of the HTML-Document Object Model (DOM)[84]. In the Dashboard,
jQuery is used for a number of things: collapsible tables, setting text in a
separate website-element when another element is clicked and for making
forms prettier.
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Google Maps API The Google Maps API[85] is a JavaScript-Application
Programming Interface (API) for implementing Google Maps-maps in web-
sites. This makes it easy to show the location of events, such as the source
of a port- or network scan, or the target of a (D)DoS-attack.

Google Chart Tools Google Chart Tools[86] is a JavaScript-library for
representing structured data in different charts. It is utilized in the Dash-
board to visualize flow-, packet-, and byte-count for each time bin, sorted
by date, as shown in Figure 4.12.

Figure 4.12: Google Chart Tools used for visualizing time bin info.

D3.js D3.js[87], Data-Driven Documents is, like Google Chart Tools, a
JavaScript-library for representing data in charts, but is more versatile when
it comes to the visualization part than Chart Tools. D3.js is used in the
Dashboard to help with manual root-cause analysis of alarms.

IPInfoDB IPInfoDB[88] is an API for IP address lookup, giving infor-
mation about the country, city, latitude, longitude and host name of the
IP address. The Dashboard used IPInfoDB to provide location info per
identified attack to use in the map.

4.2.1.4 Database Additions

Two extra tables are needed for the Dashboard to function. Figure 4.13
shows the tables profile and log.
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Profile The profile-table controls the gateway currently being analyzed.
It is possible to change between different profiles, and in each profile define
a number of parameters that Senatus should be run with. Section 4.2.2.1
describes this process in detail, and the following list gives a brief description
of each row entry.

• Gateway - the name of the gateway.

• Watchfolder - what directory to monitor.

• Dumpapp - whether to use flow-tools or netflow.

• Timebinsize - The duration in minutes of each time bin.

• Senatuspath - The path to the Senatus executable

• Lambda - What value of lambda to use

• Ksenators - What value of K to use

• Auto - Whether or not to do automatic classification.

• Mode - Whether to use H1 or H2.

• Timespan - How many hours back in time to base PCP on.

• Rule - Which of the different rules for combining suspicious flows
should be used.

• Filename format - How is the date formatted in the filename.

• Path format - How is the folder structure formatted based on date.

• Comment - Write a comment for this series of executions.

• DDoS-, DoS- and SCAN-threshold. What threshold to use for auto-
matic classification.

Log The log-table is for error messages and various other status messages
created by Senatus. Log messages were previously written to a text-file,
but this table is used instead for the administrators’ convenience.
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Figure 4.13: Database additions for the Dashboard.

4.2.2 Design

The Dashboard should offer four main interfaces to the network adminis-
trator:

• Front page for getting the initial overview of the network, the amount
of traffic, and the latest events.

• List of events, identified attacks or unidentified alarms.

• Attack info, all available info on an identified attack, also a link to
the corresponding alarm for further analysis of the time bin.

• Alarm info and tools for manual root-cause analysis of unidentified
alarms.

Figure 4.14 illustrates the cooperation between the different interfaces.
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Figure 4.14: Use-case for the Senatus Dashboard.

4.2.2.1 Directory Monitoring

To improve the analysis performance we monitored the directory containing
the network data and started the analysis when a new time bin was added.

To manage this, we created a daemon in C++ using inotify[89]. Inotify is a
system for notifying when a folder is changed, a file is added to the folder,
etc. The application accessed the profile-table directly to get parameters.

This solution was not working perfectly due to permission problems arising
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when the daemon did a system call to Senatus that required system calls.

An alternative solution was then developed based on a cron job.1 Whenever
the profile is edited, the Dashboard writes a bash-script to disk.

When the cron job runs this bash-script, the given directory is checked for
new time bins. If a new time bin is found, Senatus is run for the time bin
with the parameters stored in the profile.

4.2.3 Examples

4.2.3.1 Front page

A portion of the front page is shown above in Figure 4.12. It will show the
traffic over time, and also the latest anomalies.

4.2.3.2 Event list

Figure 4.15 shows a list of events sorted by date. Identified attacks are on
the top, and alarms are on the bottom. From this particular view the DDoS
against 131.154.130.49 is most notable.

4.2.3.3 Attack Details

Details of an identified attack can be seen in this interface, shown in Figure
4.16. The destination IP is marked on the map, the number of flows to
this IP, and the flow-cat filtered on this destination IP is printed below the
details.

4.2.3.4 Alarm info

This section of the Dashboard provides different tools for manually find-
ing the root cause of an alarm. Figures 4.17 and 4.18 shows a Tension
graph developed with d3js to show relations between the top n IPs of an
alarm. Figure 4.19 shows a heat graph, also from d3js. These graphs give
an intuitive way of identifying attacks by illustrating flows from source to
destination.

4.3 Automatic root-cause classification

The automatic root-cause classification described in Section 3.5 was origi-
nally implemented in Python. The script take a netflow filename and the

1A long running process that executes commands at specific dates and times[90].
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Figure 4.15: The event list.

Figure 4.16: Details of an attack.
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(a) A tension graph showing a DDoS to 139.91.70.48

(b) Filtering on the IP from the DDoS in the tension graph, showing 14815 incoming flows.

Figure 4.17: Alarm info tension graph for DDoS
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(a) A tension graph showing a Network Scan from 195.242.166.16

(b) Filtering on the IP from the Network scan in the tension graph, showing 100219 scans.

Figure 4.18: Alarm info tension graph for network scan
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Figure 4.19: Heat graph showing a Network Scan from 195.242.166.16.
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Figure 4.20: The configuration options for the Dashboard.

4 feature values from an alarm (src AS, dst AS, src port, dst port) as in-
put, analyzes the netflow file from a time bin with flow-tools and try to
determine the root-cause of the attack.

The script is run with the following command
./auto classification.py < pathtonetflowfile >< src AS >< dst AS ><
src port >< dst port >

Python is slower than compiled languages like C and Java, but the time used
to interpret the code is neglectable compared to the time used by flow-tools
which is used for the filtering of the network traffic files. Therefore we have
preferred the advantage of Python code being much easier to write and
change fast. This has been a great advantage for testing and tweaking the
algorithm.

The final design of the algorithm is also implemented in C++ as part of
version 2 of the Senatus back-end.



Chapter 5

Evaluation

In this chapter we are presenting an evaluation of the performance and
tuning of parameters.

The first sections presents the data sets, ground truth and the tuning pa-
rameters used for the performance analysis of anomalies detected by Senatus
version 0.

Section 5.5 focuses mostly on the execution time tuning and a limited de-
tection rate analysis of version 2.

5.1 Data set

The data used in the evaluation is sampled NetFlow data collected from
four different routers in the GÉANT network [91]. The GÉANT network
is a backbone Internet provider with a pan-European communications in-
frastructure connecting Europe’s research and education community. The
network is co-founded by European National Resfearch & Education Net-
works (NRENs) which in turn is responsible for providing Internet access
to research and education communities within each country.

The data was collected on traffic links between GÉANT routers and neigh-
bouring ASes, from June 18th to July 5th 2011, excluding June 22nd 2011.
The measuring links were located in Amsterdam, Copenhagen, Frankfurt
and Vienna. Table 5.1 shows an overview of the links, and it is worth noting
that Vienna and Frankfurt are a lot bigger than Copenhagen and Amster-
dam in terms of the average number of flows captured per time bin. Figure
5.1 gives an overview of the geographical location of the links, which are
marked with green. The traffic was captured in 15 minute time bins and
sampled at a rate of 1:1000.

71
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Trace Location Avg. # of flows

A Vienna 1,699,687
B Frankfurt 1,450,190
C Amsterdam 293,580
D Copenhagen 299,347

Table 5.1: Overview of the measurement links

5.2 Ground-truth construction

Our way to overcome the lack of the ground-truth in our data set is based
on a manual inspection of the set of flagged alarms of Senatus and the
histogram-based detection (HBD) method described in Section 2.2.2.5. We
ran both SENATUS and HBD on the collected traces and manually in-
spected the flagged alarms. If the root-cause of the alarm is successfully
identified in an anomalous bin, the anomaly is added to the ground-truth.

Figure 5.1: The GÉANT2 network [1]

While constructing the ground-truth, we further noticed that SENATUS
can give rise to different set of network anomalies as the heuristics preceding
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senators election, mentioned in Table 3.2, varies. For example, we noticed
that if H1 was deployed for senators election, Senatus tended to detect
more DDoS attacks, whereas if H2 was deployed Senatus detected more
scan activities (see results in Section 5.4.5). Therefore we have chosen our
ground-truth to be the union of Senatus H1, Senatus H2 and HBD, as shown
in equation 5.1.

GroundTruth = SenatusH1 ∪ SenatusH2 ∪HBD (5.1)

5.3 Tuning Parameters

Chapter 3 describes the framework of Senatus and introduces some param-
eters that will affect the anomaly detection performance. To find the best
performance we have used an experimental approach where we have tuned
the parameters and compared the results from Senatus with the ground
truth described in the previous section. In Chapter 3 each parameter is
thoroughly described and some initial values for the parameters are pro-
posed. In this section we analyze them and verify how well they perform.
Table 5.2 lists the parameters that can be tuned, and their constraints.

Parameter Description Constraints

α flow size in packets small
β flow size in bytes small
K number of senator small
λ PCP weighting parameter ≥ 2
j flow aggregation level [1, 4]
θi, i = 1..3 root-cause decision threshold large

Table 5.2: Tuning parameters

5.3.1 Traffic Filtering Heuristics

The parameters α and β are the heuristics from Table 3.2 used in the
construction of the population before the election part of Senatus. From the
discussion in Section 3.2.1, we saw that a previous study [29] had discovered
that most of the encountered anomalies in their data set are carried by
flows having a number of packets ∈ [1, 3], and that another study [92] claim
that most of the detected scans are carried by flows having a number of
packets ≤ 2. Our results support these studies. Figure 5.2 illustrates the
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distribution of the average flow size in term of packets and bytes for the
detected anomalies in our traces. We see that while most of the anomalous
flows have an average size of one packet, anomalous flows involving less
than 3 packets are in the order of 85% of all attacks in our data set. In
Senatus H1 we therefore choose a value α of 3.

The discussion about the value of β in Section 3.2.1 suggested a value
between 40 and 144 bytes, and our inspection of the detected attacks in our
data set shows similar results. Despite a long tail due to variable size of
the different anomalous flows, most frequent DoS/DDoS and scan attacks
in our data set are of a small size (≤ 64 bytes). For example 52% of the
detected DoS attacks and 99% of the detected scans carry flows of size less
than 60 bytes. We choose our threshold β to be 64.
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Figure 5.2: Distribution of the average flow size

5.3.2 The PCP Tuning Parameter λ

The parameter λ is discussed in Section 3.3.2. As PCP aims to minimize
the weighted combination of the nuclear norm, and of the `1-norm, one has
to identify the appropriate value of the weighting parameter λ such that
the matrix A is sparse while capturing the maximum number of anomalies
with the least false-positive rate. The parameter λ is in the form:

λ =
C√

maxN,K
,C ∈ R (5.2)

We base our analysis on the previous observations [44] which propose a
parameter value of C = 2, and we tune the parameter C to find an optimal
detection/false-positive trade-off. The detection- and false-positive rates as
a function of C are illustrated in Figure 5.3. The figure shows that both
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Figure 5.3: Detection and false-positive rates as a function of C

the detection and false-positive rates decrease as the value of C increases.
For example 190 anomalies are detected with 7 false positives for the value
of C = 2, while 47 anomalies are detected with only 2 false positives for
C = 2.5 in trace C, Amsterdam, when the heuristic H2 is chosen. The
figure additionally shows that while the number of false positives when H1
is chosen is higher than those when H2 is set up, it remains relatively low
for all values of C.

5.3.3 Root-Cause Thresholds

In Section 3.5 we describe an algorithm that automatically finds the root-
cause of an attack. Algorithm 2 shows the first version of the design. The
algorithm needs a set of threshold values, θ1, θ2 and θ3, and in this section
we are discussing how to set these values. During the process of tuning the
threshold values we also propose several hypothetically improved versions
of the algorithm. Each version is evaluated by using an experimental ap-
proach where we measure the classification performance by inspecting the
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suspicious flows flagged by Senatus, and compare the results to our ground
truth.

For each version of the algorithm we have presented performance graphs.
The graphs are generated by varying the threshold values in the range [200,
10.000], which covers most of the attack intensities, and calculate the corre-
sponding classification rate based on the constructed ground truth for each
trace. Our goal is to combine all possible threshold values to find the com-
bination leading to the highest anomalies classification rate. We vary all
the thresholds values, but for the versions of algorithm using three thresh-
olds (θ1, θ2, θ3), we have chosen to present the graphs in three dimensions
(θ1, θ2, ClassificationRate) instead of four (θ1, θ2, θ3, ClassificationRate)
for better readability. In all cases this is performed by setting the last di-
mension to the discovered optimal value, θ3 = 200. To further improve
readability, we have marked the combination of thresholds that results in
the best classification performance with dots.

5.3.3.1 Dynamic Threshold

The value of θ might be set up dynamically as the expected number of
flows implicating the flow tuple x during the current anomalous time bin,
θ = Mfx(t) . The expected number of flows might be decided using a
forecast model such as the EWMA algorithm given the apriori knowledge
of the previous number of anomalous flows for the flow tuple x, at time
interval t− 1, Mx(t− 1):

M(t)fx = { αMx(t− 1) + (1− α)Mfx(t− 1) if t > 2
Mx(1) if t = 2

(5.3)

Equation 5.3 illustrates that the prediction procedure requires some knowl-
edge about the behavior of the number of flows for the tuple x in the past,
which adds a non negligible complexity and processing overhead for the
root-cause analysis algorithm. We propose a fixed threshold to bypass this
issue.

5.3.3.2 Version 1.1 (One Threshold)

The first and most intuitive way to configure the algorithm thresholds is
to have the same value for all the three thresholds (θi = θ, i = 1..3). The
choice of the threshold values is summarized as finding the ”optimal” min-
imum support that achieves the highest classification accuracy. Figure 5.4
illustrates the classification accuracy as a function of the minimum support
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Algorithm 2 Root-cause(F , θ1, θ2, θ3)
Input: Suspicious flows F = {f1, ..., fi, ..., fn}

threshold θ1, θ2, θ3
Ax set of flows of feature value x

Output: The root cause
1: for fi ∈ F do
2: x← dstIP
3: if (max(Ax)|x ∈ fi(dstAs) > θ1 then
4: return DDOS, dstIPmax

5: else
6: x← {srcIP, dstIP}
7: if (max(Ax)|x ∈ fi({srcAs, dstAs})) > θ2 then
8: // x is the pair of srcIP and dstIP within the srcAs and dstAs

flagged in the anomalous flow fi
9: return DOS, {srcIP, dstIP}max

10: end if
11: else
12: x← {srcIP, dstPort}
13: if (max(Ax)|x ∈ fi({srcAs, dstPort})) > θ3 then
14: return Network Scan, {srcIP, dstPort}max

15: end if
16: else
17: False Positive
18: end if
19: end for

θ for the anomalies manually inspected in the four collected traces. The fig-
ure shows that while the classification performance varies between traces,
it remains generally low, i.e. does not exceed 75% for the four collected
traces. For example the best classification accuracy is about 50% in trace
C, Amsterdam, for the value of threshold θ = 1200 while it is 74.75% in
trace A, Vienna, for the value of threshold θ = 1800.

5.3.3.3 Version 1.2 (Three Thresholds)

To improve the classification accuracy, we choose to vary all three thresh-
old values. In the following graphs, Figure 5.5, we fix the threshold θ3 to
the value of 200 that achieves the best classification performance for all
traces and expose the classification rate while varying the first two thresh-
olds (θ1 and θ2). The figure shows that while the classification performance
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Figure 5.4: Version 1 classification rates

may vary from 38% to 88%, over 83% of the manually inspected anomalies
are well classified using the ”optimal” threshold values for the four col-
lected traces. For example, 84.85% of the anomalies in trace A, Vienna,
are correctly classified for the set of thresholds (5800,600,200), while 88.6%
are correctly classified in trace D, Copenhagen, for the set of thresholds
(6000,1400,200).

(a) Vienna (b) Frankfurt

(c) Amsterdam (d) Copenhagen

Figure 5.5: Version 1.2 classification rates
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5.3.3.4 Version 2 (Two Thresholds)

The evaluation of the first version showed that we had a problem with high
intensity DOS attacks. These attacks will be classified as DDoS attacks,
since the first version counts the maximum destination IP without taking
the number of sources into account. An example would be a DoS attack
from source A to destination B with an intensity of 14000 flows. If the
threshold θ1 is below 14000, the attack will be marked as a DDoS, even if
it only has one source.

Algorithm 3 Root-cause(F , θ1, θ3)
Input: Suspicious flows F = {f1, ..., fi, ..., fn}

threshold θ1, θ3
Ax set of flows of feature value x

Output: The root cause
1: for fi ∈ F do
2: x← dstIP
3: if (max(Ax)|x ∈ fi(dstAs) > θ1 then
4: // extended first statement
5: if srcCount(dstIPmax)=1 then
6: return DOS, dstIPmax

7: else
8: return DDOS, dstIPmax

9: end if
10: // second statement removed
11: else
12: x← {srcIP, dstPort}
13: if (max(Ax)|x ∈ fi({srcAs, dstPort})) > θ3 then
14: return Network Scan, {srcIP, dstPort}max

15: end if
16: else
17: False Positive
18: end if
19: end for

As a proposed approach to solve this problem we tried to add an additional
statement after measuring the first threshold θ1. This statement checks if
the maximum destination IP has one or multiple sources sending data. If
there is only one source, the attack is classified as a DoS, and if there are
multiple sources the attack is classified as DDOS. This change is illustrated
in Algorithm 3. To prevent adding more complexity to the algorithm, we
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Figure 5.6: Version 2 classification rates

also removed the second statement since the extended first statement would
now be able to classify both DDoS and DoS attacks. Another advantage of
this is that we now only need two thresholds, θ1 and θ3.

The results from version 2 of the algorithm is shown in Figure 5.6. The
correct classification rates spans from 74.12% in trace D, Copenhagen, with
the thresholds θ1 = 3800 and θ3 = 800, to 85.86% in trace A, Vienna,
with the threshold values θ1 = 5800 and θ3 = 200. This is slightly more
misclassified attacks than version 1. The reason for this seemed to be that a
lot of DoS attacks wrongly got classified as DDoS attacks. This was mostly
due to benign flows being sent at the same time as the attack. E.g. if a
source A starts a DoS attack against destination B and at the same time
source C wants to send B a file, our extended check will detect more than
one source IP, hence wrongly mark the attack as a DDoS. This version of
the algorithm worked well for time bins with no benign traffic being sent
to the destination IP during the attack, thus some DoS attacks that was
wrongly marked as DDoS in version 1 was corrected to DOS attacks in
version 2. This increased the performance, but since we operated with only
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one threshold for both DDoS and DoS we also ”lost” a lot of DOS attacks
with lower intensity than θ1, and this decreased the total performance.

5.3.3.5 Version 3 (Three Thresholds)

To also be able to classify DOS attacks with intensity below the threshold
θ1, we reintroduce the second statement in our algorithm, and at the same
time we keep the extended first statement (from version 2). The psudo code
of this version is shown in Algorithm 4. Figure 5.7 shows the performance
graphs. The correct classification rate spans from 83.93% in trace C, Am-
sterdam, with the thresholds θ1 = 5800, θ2 = 1400 and θ3 = 200, to 88.6%
in trace D, Copenhagen, with the threshold values θ1 = 6000, θ2 = 1400
and θ3 = 200. These are almost the same results as in version 1.2 of the
algorithm. The detection rates are the same, but the thresholds are a little
different.
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Figure 5.7: Version 3 classification rates
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Algorithm 4 Root-cause(F , θ1, θ2, θ3)
Input: Suspicious flows F = {f1, ..., fi, ..., fn}

threshold θ1, θ2, θ3
Ax set of flows of feature value x

Output: The root cause
1: for fi ∈ F do
2: x← dstIP
3: if (max(Ax)|x ∈ fi(dstAs) > θ1 then
4: // extended first statement
5: if srcCount(dstIPmax)=1 then
6: return DOS, dstIPmax

7: else
8: return DDOS, dstIPmax

9: end if
10: else
11: x← {srcIP, dstIP}
12: if (max(Ax)|x ∈ fi({srcAs, dstAs})) > θ2 then
13: // x is the pair of srcIP and dstIP within the srcAs and dstAs

flagged in the anomalous flow fi
14: return DOS, {srcIP, dstIP}max

15: end if
16: else
17: x← {srcIP, dstPort}
18: if (max(Ax)|x ∈ fi({srcAs, dstPort})) > θ3 then
19: return Network Scan, {srcIP, dstPort}max

20: end if
21: else
22: False Positive
23: end if
24: end for
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5.3.3.6 Summary

Table 5.3 gives a summary of the classification rates for each version of the
algorithm. The table also includes the rates when the algorithm is applied
to the whole data set at the same time.

Type θ1 θ1 θ1 Correct
Version 1.1 - all 1600 1600 1600 60.13%
Version 1.1 - ams 1200 1200 1200 50.00%
Version 1.1 - cop 3000 3000 3000 67.90%
Version 1.1 - fra 1600 1600 1600 62.40%
Version 1.1 - vie 1000 1000 1000 74.75%
Version 1.2 - all 7400 1400 200 85.64%
Version 1.2 - ams 5600 1400 200 83.93%
Version 1.2 - cop 6000 1400 200 88.60%
Version 1.2 - fra 7800 1400 200 84.30%
Version 1.2 - vie 5800 600 200 87.37%
Version 2 - all 7400 - 200 84.48%
Version 2 - ams 5200 - 200 83.93%
Version 2 - cop 3800 - 800 88.60%
Version 2 - fra 7400 - 200 84.30%
Version 2 - vie 5800 - 200 87.37%
Version 3 - all 7400 1400 200 85.64%
Version 3 - ams 5800 1400 200 83.93%
Version 3 - cop 6000 1400 200 88.60%
Version 3 - fra 7400 1400 200 84.30%
Version 3 - vie 6800 600 200 87.37%

Table 5.3: Automatic Root-cause Analysis Performance
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5.4 Performance Analysis

5.4.1 Methodology

Previous work on performance analysis of anomaly detectors have mainly
used two different approaches:

• Manual analysis by inspecting the root-cause of each alarm [2, 23, 28].

• Injecting synthetic anomalies into normal network traffic [4, 28, 93]

Manual root-cause analysis is an error-prone and time-consuming task, since
each time bin can consist of up to millions of flows. However, a previous
performance analysis of Senatus failed to obtain sufficient results when try-
ing to inject anomalies in normal network traffic [94]. We therefore chose
to manually inspect the root-cause of each alarm.

An alarm raised by Senatus can be classified in 4 different ways, illustrated
in Figure 5.8.

For anomalous traffic:

• True Positive (TP): An alarm will be a TP if the manual root-cause
analysis of this alarm showed that it was raised due to an anomaly.

• False Negative (FN): An alarm will be a FN if the manual root-
cause analysis showed that there was an anomaly in that time bin,
but no alarm was raised.

For benign traffic:

• False Positive (FP): An alarm will be a FP if the manual root-cause
analysis of this alarm did not find any anomaly in the time bin.

• True Negative (TN): A TN means that no alarm was raised for a
time bin, and the time bin did not contain any anomalies.

In this section we discuss the performance of Senatus based on the results
we got from a manual analysis of over 9000 alarms from 1885 time bins,
detected by Senatus and HBD. The reason for the difference between the
number of time bins and number of alarms is that the detectors can raise
several alarms in each time bin. If Senatus has flagged multiple alarms for
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Figure 5.8: Illustration of the detection metrics.

a time bin, we analyze all of them, but we only label the time bin with one
attack. If multiple types of attacks are found, we chose to prioritize them in
the following order: DDoS >DoS >network scan >port scan. That means
if we find both a network scan and a DDoS attack in the same time bin, we
label the time bin with a DDoS attack.

5.4.2 Detected Anomalous Time Bins

Table 5.4 shows all the detected anomalous time bins. The union of Senatus
H1, Senatus H2 and HBD represents the unique number of anomalous time
bins found be all the approaches together. This means that our ground-
truth discussed in section 5.2 consist of 1014 unique anomalous time bins.

The intersection of H1, H2 and HBD is very low, only 72 time bins, which
is only 0.071% of the total amount of anomalous time bins. We also see
that the intersection between H1 and H2 is significantly larger than the
intersection between H1 and HBD, and H2 and HBD.

• H1 detects 53% of H2’s detected anomalies and 28% of HBD’s detected
anomalies.

• H2 detects 56% of H1’s detected anomalies and 33% of HBD’s detected
anomalies.

• HBD detects 16% of H1’s detected anomalies and 18% of H2’s detected
anomalies.
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Amsterdam Copenhagen Frankfurt Vienna Total
Senatus H1 174 101 167 95 537
Senatus H2 190 140 124 113 567
HBD 72 73 66 102 313
H1 ∪ H2 ∪ HBD 321 221 260 212 1014
H1 ∪ H2 275 165 220 142 802
H1 ∪ HBD 226 168 211 174 779
H2 ∪ HBD 241 199 169 186 795
H1 ∩ H2 ∩ HBD 15 20 17 20 72
H1 ∩ H2 89 76 71 66 302
H1 ∩ HBD 20 23 22 23 88
H2 ∩ HBD 21 31 21 29 102

Table 5.4: Detected Anomalous Time Bins

5.4.3 Detection rates

One of the most important measurement tools for a anomaly detection
method is the detection rate. The detection rate tells us how well the
anomaly detection methods perform against the ground truth. The detec-
tion rate is defined as follows:

DetectionRate =
DetectionMethod

GroundTruth
,DetectionMethod ∈ {H1, H2, HDB}

(5.4)

Table 5.5 gives an overview of the detection rates. We see that the detection
rate of Senatus H1 is 71.56% higher than HDB (H1 = 537, HDB = 313)
and Senatus H2 has a 81.15% higher detection rate than HDB (H2 =
567, HDB = 313).

Detection method Detection rate
Senatus H1 52.96%
Senatus H2 55.92%
HBD 30.87%

Table 5.5: Overall Detection Rates

5.4.4 False Positive Rates

The false positive rate is defined in Equation 5.5 for each link.
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FalsePositiveRate =
NumberOfFalsePositives

NumberOfF laggedT imeBins
(5.5)

Figure 5.9 gives an overview of the false positives rates on the all the links for
Senatus H1, Senatus H2 and HBD. Senatus H1 and H2 have the same false
positives rates and that HBD’s false-positive rates are much higher. Senatus
H1 has a FP rate of 10.77% for Amsterdam and 8.18% for Copenhagen,
and Senatus H2 is even better with a FP rate of 3.55% for Amsterdam and
7.28% for Copenhagen. The FP rate for HBD on these links is significantly
higher with a rate of 32.71% for Amsterdam and 37.06% for Copenhagen.
Frankfurt has the highest FP rate for all the detection methods with 24.77%
for Senatus H1, 40.38% for Senatus H2 and 52.86% for HBD. The average
FP rate was 15.97% for Senatus H1, 16.24% for Senatus H2 and 39.92% for
HBD.

HBD

Figure 5.9: Overview of False positive rates for the different links

5.4.5 Detected Attacks

This section gives an overview over the type of attacks detected in the
anomalous time bins. Figure 5.10 shows a summary of the attacks on all
links combined, and Figure 5.11 shows the attacks detected on each link.
Senatus H1 and HBD detects almost the same amount of DDoS/DoS at-
tacks (H1 = 125, HBD = 130), whereas Senatus H2 detects less (H2 = 75).
Senatus H2 detects 50% more scans than Senatus H2 and 80% more than
HBD. HBD only detected 5 occurrences of network experiments (described
in Section 2.1.3). Almost all of the about 175 network experiments de-
tected by Sentus H1 and 150 detected by Senatus H2 were detected on the
Amsterdam link.
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HBD

Figure 5.10: Detected attacks on all links combined

HBD

(a) Vienna

HBD

(b) Frankfurt

HBD

(c) Amsterdam

HBD

(d) Copenhagen

Figure 5.11: Detected attacks on each link

5.5 Implementation Performance

Evaluation

This section mostly focuses on measurements of execution time of version
2 of the implementation of Senatus. However, the execution time can not
be the prerogative criteria, we need to take the detection rate into the
consideration as well.

These benchmarks were first possible to execute after finishing version 2,
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thus leaving limited time for benchmarking. Therefore, the data set in this
performance analysis is limited to 24 hours from one link, Vienna. Vienna
was chosen because it had the highest amount of network traffic.

Because of the limited data set, the detection graphs are only indicative, and
might show false patterns. Chapter 5 offers a more thorough and accurate
detection rate analysis, thus wherever the two differs the results from the
evaluation chapter should be prioritized.

5.5.1 Online versus Offline Version

Figure 5.12 illustrates the gain of using a database for storing senator values.
The initial execution of the online version demands the same amount of time
since the database is empty.

The data shown here is limited to 00:00 to 17:45 because of the high exe-
cution time of the offline version.
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Figure 5.12: Total execution time, offline vs. online version.

5.5.2 Different Links

The default link for these measurements is Vienna, as it has largest average
number of flows per time bin. Figure 5.13 shows how the execution time
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varies when Senatus is run on a link with a much lower average flow count
per time bin.

Table 5.1 shows the average number of flows for the links.
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Figure 5.13: Execution time for Vienna and Copenhagen.

5.5.3 Measurement Parameters

The parameters are as shown in 4.1.5.2:

• λ - PCP tuning parameter

• K - the K number of senators

• t - timespan

• Tuning automatic root-cause analysis and decision rules together

• Heuristics, H1 and H2 with α and β

5.5.3.1 Reference Parameter Values

The reference parameter values are shown in Table 5.6. These values are
the same as the default values used in the evaluation chapter, Chapter 5.
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Parameter Value

λ 2
K 20
t 24 hours

Heuristics H1
Decision rule R2

Table 5.6: Parameter values used for reference.

5.5.3.2 Evaluation Procedure

These benchmarks were undertaken on the same computer, with a relatively
constant load.

The execution time reported is excluding the selection part of Senatus. This
is because of two reasons:

1. For properly measuring the selection time, the database would have
to be cleared between each execution to ensure equality between the
different benchmark conditions. This would make the total execution
time too long to have time to do all the benchmark in the limited
time that was available for testing.

2. The number of missing time bins stays constant, except for when
changing t and K. If tuning t and K showed indications that any pa-
rameter value other than the default was superior, we would do further
benchmarks of these with measurements of selection time included.

Thus the time from the start to the end of the decision part of Senatus is
the part that is benchmarked. This will reflect the number of suspicious
flows coming from voting, and in the case of the auto-script, how fast an
attack is identified as an anomaly.

5.5.4 Tuning λ

Figure 5.14 shows that increasing λ decreases both the execution time and
detection rate. This point is also shown in Section 5.3.2.
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Figure 5.14: Performance as a function of λ

5.5.5 Tuning K

Figure 5.15 shows how when K increases, the execution time also increases.
The number of (D)DoS detected increases, while the number of scans de-
tected decreases.

The decrease in number of scans can be explained easily; with a small K,
there will be a lot of traffic that is barely flagged as anomalous by PCP.
When K increases, a lot of this barely flagged traffic will not be flagged
anymore, so now the non-flagged senator will not be among the candidates
for the decision-part.
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Figure 5.15: Performance as a function of K
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5.5.6 Tuning t

With a decreased t the execution time is greatly decreased, and the detec-
tion rate also decreases.
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Figure 5.16: Performance as a function of t

5.5.7 Tuning Auto and Decision Rules

In Figure 5.17 we see three different combinations of parameters. The first,
labelled R2, uses the default values from Table 5.6, the second adds the
automatic root-cause analysis, while the third changes R2 for R1.

We see that for R2 adding the automatic root-cause analysis slightly de-
creases the execution time, and gives the same detected anomalies. When
using R1, the execution time is increased, while the detection rate is im-
proved.

5.5.8 Tuning Heuristics (H1,H2 and α,β)

Figure 5.18 shows execution time and performance for H1 and H2, with H1
using α <= 1packet and α <= 3packets, and H2 using β <= 64bpp and
β <= 200bpp. α <= 3packets and β <= 64bpp are previously the default
values as described in Section 5.3.1, but different values were tried in this
benchmark.

The figure shows that the default values, 3 packets and 64bpp gives the best
execution times. For the default values we see that H2 detects less (D)DoS,
more sweeps and have a much lower FP-rate than H1.
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Figure 5.17: Performance as a function of auto and decision rules
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Chapter 6

Discussion

This chapter discusses the results from Chapter 5, where we compared
Senatus to a similar anomaly detection technique. We also introduce a
few commercial anomaly detectors on the market, and compare them to
our implementation of Senatus. In addition, we address some of Senatus’
limitations along with proposed solutions.

6.1 Evaluation

6.1.1 Detection Methods Comparison

To compare the detection methods we summarize the evaluation results
from the previous chapter:

Detection Rate Senatus H1 and Senatus H2 detected 52.96% and 55.92%
of the attacks. Even if this is only a little more than half of the attacks in
our ground truth, it is still 70-80% more than the detection rate of HBD
(30.87%).

False Positive Rate The average FP rate of Senatus H1 and Senatus
H2 is the same (16%), which is much lower than HBD that had an average
FP rate of 40%.

Type of Attacks Senatus detected significantly more network scans than
HBD, especially Senatus with heuristics H2 which detected over 100% more
network scans than HBD. On the other hand, HBD tends to detect slightly
more DoS/DDoS attacks than Senatus. Senatus with H1 detects almost
twice as much DoS/DDoS attacks as Senatus with H2.
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The detection rate is probably the most important metric for an anomaly
detection method, but it is important to evaluate it combined with the FP
rate. If we take this into consideration we see that Senatus perform better
than HBD. Which heuristics to use in Senatus depends on the kind of at-
tacks that are most prevalent in a network. In a network where most attacks
are network scans, Senatus H2 should be preferred. If detecting Denial of
Service attacks is more important, Senatus H1 has the best performance.

6.1.2 Automatic Root-Cause Analysis

From the evaluation of the algorithm we see that finding the right design
and threshold values is a very challenging task.

The results show that there is a difference in the intensity of DDoS, DoS
and network scan attacks, hence the threshold should be set individually
for each attack type. While the optimal values for the thresholds θ2 and
θ3 were very consistent, respectively around 1400 and 200, the value for θ1
tended to vary more. The varying values makes it harder for a network
administrator to set the right threshold, but from our results a θ1 value
that is between 3-4 times the value of θ2 seems like a good rule.

Each version of the algorithm has its strength and weaknesses. As men-
tioned above the thresholds should be set individually and version 1 of the
algorithm is using the same value for all thresholds which turned out to be
too generic and simplified, and it had a very bad performance compared
to the other version. Version 2 of the algorithm only need configuration of
two threshold values, but the classification rate was worse than version 1
and 3. Version 1 and 3 had the same classification rates, but version 1 is
less complex since it doesn’t have the extended first statement. Version 1
of the algorithm seemed to be the best choice in our data set.

An improvement to version 3 to make it better in differentiating between
DDoS and DoS, could be to count the number of flows from each source that
sent data to the flagged destination IP. Instead of just counting number of
source IPs to determine if the attack is a DoS, we can now see how many
percent of the traffic that comes from one source. If for example 95% of
the traffic comes from the same source, we can classify the attack as a DoS
even if there is some benign traffic being sent at the same time. This way
we create a buffer that handles ”noise”.

Even if a classification rate of around 85% is more than acceptable, our
algorithm has known weaknesses. The algorithm is not able to detect port
scans, and the reason for this is that a port scan has almost the exact same
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characteristics as a DoS. Port scans will most likely be marked as DoS
attacks by our algorithm.

6.2 Implementation Performance

This section discusses three points from Section 5.5:

• Execution time as a function of the number of average flows.

• Improvement in execution time when introducing databases.

• Choice of default set of parameters for the implementation for the
best trade-off between execution time and detection rate.

6.2.1 Execution Time as Function of Number of
Average Flows

Figure 5.13 implementation performance evaluation shows that for links
with an extra high number of flows, the worst-case execution times may get
worse than expected. This point is further discussed in Section 6.5.2.

6.2.2 Improvement in Execution Time from
Database Storage

Figure 5.12 visualizes clearly that there is a significant improvement in
execution time when senator values are stored in a database.

There are two occasions when there will be a minimal or no improvement.
These are when there are few or no values in the database, for example
when running Senatus for the first time, or when there is a gap in data to
analyze. This can be seen in the first time bin in Figure 5.12.

6.2.3 Choice of Default Parameters

This section discusses each of the parameters tuned in Section 5.5, and
explains the choice of default parameter for the implementation.

6.2.3.1 PCP Tuning Parameter λ

Figure 5.14 shows how the execution time drastically decreases as λ is in-
creased. The figure also shows how detection rate decreases, if only slightly.
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Section 5.3.2 shows that the decrease in detection rate is much more evident
with a larger data set. λ = 2 remains the default value.

6.2.3.2 K

Figure 5.15 shows that as K increases, both execution time and detection
rate increases. The gain in detection rate is not sufficient to compensate for
the drastic increase in execution time. K = 20 remains the default value.

6.2.3.3 t

Figure 5.16 shows that as t decreases, both execution time and detection
rate decreases. The gain in execution time is not sufficient to compensate
for the decrease in detection rate. t = 24 remains the default value.

6.2.3.4 Auto and Decision Rules

Figure 5.17 shows how execution time varies only slightly between the three
cases, whereas both the detection rate and false positive rate increases for
R1. The gain in detection rate for automatic root-cause analysis and R1 is
sufficient to compensate for the worse execution time, so the default option
for the implementation is changed to use these.

6.2.3.5 Heuristics

Figure 5.18 shows the detection rate and execution time of H1 and H2 with
different values for α and β.

Section 5.3.1 also evaluates H1 with α <= 3packets and H2 with β <=
64bpp , and shows different results than in this section. Because of the
limited data set in this section, the detection rate from Section 5.3.1 is used
as reference instead.

The results from H1 with α <= 1packet are interesting, and show an overall
good performance, with a low execution time, and high detection rate.

The results from H2 with β <= 200bpp are also interesting with a good
detection rate, but with the overall worst execution time.

When we see the difference between Section 5.3.1 and this section, it is clear
that more evaluation of H1 with α <= 1packets and H2 with β <= 200bpp
is needed for validation. H1 with α <= 3packets is therefore kept as the
default heuristic.
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6.3 Geographic Distribution of Anomalies

Figure 6.1 shows the geographical distribution of sources of network scans
found in our dataset. China is by far the largest source of the network
scans, with 35% of the attacks, with United States as a clear number two
with 16%. Network scans are often caused by worm activity, spreading to
systems with poorly patched operative systems or lack of updated anti-virus
software.

Figure 6.1: Geographic distribution of the sources of network attacks found
in our dataset.

Figure 6.2 shows the geographical distribution of the targets of DDoS at-
tacks in our dataset. The distribution of DDoS attacks is more evenly
spread, with United States as the most targeted country with 18% of the
attacks, and China as a number two with 12%. It is difficult to say some-
thing about the motives behind each DDoS attack, but popular DDoS tar-
gets like social networks and financial institutions are often headquartered
in USA. A few examples of targets of DDoS attacks in our data set are
Google, Facebook and Bank of America.

Future work
An interesting study would be to look at the geographic distribution of the
sources of the DDoS attacks found in our dataset, since this could possibly
reveal the location of large botnets. We also believe there could be a cor-
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relation between worm activity and botnets, since worm spreading and the
infection phase of a zombie both exploits software vulnerabilities. However,
to perform this kind of study it is needed to extract all the participating
IP addresses in each attack from the NetFlow data. In our dataset, the
largest DDoS attacks had several hundred thousand participants. For each
of the participants, we need to translate the IP to a set of coordinates, and
the provider we use in the Dashboard only accepts a limited number of
requests per hour. Because of time constraints we were not able to perform
this study, and we leave this task as possible future work.

Figure 6.2: Geographic distribution of the targets of DDoS attacks found
in our dataset.

6.4 Existing Commercial Products

Although the goal of this work has not been to commercialize Senatus,
we believe that the provided functionality, combined with individual cus-
tomization possibilities, would make this implementation of Senatus a highly
useful tool for a network operator.

Anomaly detection is an important task for any network operator, but
studies have revealed that many of the current commercial products fail
to achieve satisfying performance in real networks [95, 41]. This is not
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necessarily due to low detection rates, but mostly because of high false-
positive rates, which result in wasting time for a network administrator.

In this section we will introduce a few of the commercial anomaly detection
products on the market. Evaluating such tools is a time-consuming task and
out of the scope for this thesis, we therefore base this section on the work
done by Molina et al. in a recent study on operational experiences with
anomaly detectors in backbone networks [41]. This study is particularly
interesting because the main requirements Molina et al. set when selecting
products in their evaluation is also met by Senatus:

• Sampled NetFlow support : Some commercial products require access
to packet payloads to detect anomalies. For large network operators
with enormous amounts of traffic this would be highly impractical
because of the great volumes needed to be stored. As described in
Chapter 4, Senatus supports the use of sampled NetFlow data.

• Non-intrusive collection of data: Some products require deployment
of additional infrastructure in the network to obtain information needed
in the anomaly detection process. Senatus do not require any addi-
tional installations in the network.

• Accurate detection and classification: The product should have a high
detection rate combined with a low false-positive rate. Also, the time
between the event and the detection should not exceed 30 minutes.
Based on the evaluation of Senatus in Chapter 5, we are confident
that Senatus can meet both these requirements, although the time
between event and detection also depends on the time bin period,
which is chosen by the network operator and not Senatus.

• Collection of evidence related to anomalies. This includes IP addresses
and ports, related to the anomaly. In Senatus, this information is
available in the Dashboard.

• Scalability : The product need to be scalable, and support a variety
of both research traffic and ”normal” traffic. In our evaluation of
Senatus, we used data from the GEANT2 network which includes
these types of traffic, and contains millions of flows per 15 minute
time bin. We therefore claim that Senatus has proved that it is highly
scalable, and can operate in an environment similar to what Molina
et al. requires.



102 CHAPTER 6. DISCUSSION

Based on the aforementioned requirements, Molina et.al. selected the three
applications NetReflex, StealthWatch and Peakflow SP.

6.4.1 NetReflex

NetReflex from Guavus [96] collects traffic and routing information, and
uses this information to perform the following three tasks [41]:

• Automatic topology discovery

• Real-time traffic analysis

• Anomaly detection and classification

Compared to Senatus
Both Senatus and NetReflex give the system administrator access to raw
NetFlow-data, if further investigation of an alarm is required. Furthermore,
NetReflex is able to display real-time network analysis. Senatus relies on
the NetFlow-data to display this information, implying that the delay will
depend on the time bin period. Some main differences between NetReflex
and Senatus are that NetReflex:

• applies entropy and volume metrics along with PCA (described in
section 2.2.1).

• detects anomalies on a fusion of BGP, NetFlow and IS–IS data.

• offer topology analysis

6.4.2 StealthWatch

StealthWatch from Lancope [97] consists of the six parts Management Con-
sole, FlowCollector, FlowSensor, FlowSensor VE, IDentity and FlowRepli-
cator. It supports flow data both in NetFlow, IPFIX and sFlow format.

Compared to Senatus
Both StealthWatch and Senatus allow manual tuning of threshold values to
control the number of false-positives. Another similarity is that both Sen-
atus and StealthWatch detects changes based on the behavior of addresses
and applications (see section 2.2.2), although StealthWatch has more a
fine-grained approach by monitoring IP addresses instead of ASes. This
can result in a more accurate analysis, but it might also cause scalability
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issues [41].
As opposed to Senatus, StealthWatch:

• Requires a learning phase where IP addresses are divided into cate-
gories based on type, e.g. SQL server or end-host

• Requires SNMP and BGP data in addition to flow data

6.4.3 Peakflow SP

Peakflow SP from Arbor Networks [98] is the only of the three tools that, in
addition to detection, can perform protection by applying countermeasures
to block traffic. This is done by internal communication in the network
equipment to block the addresses responsible for the malicious activity.

Compared to Senatus
The main difference between Senatus and Peakflow is that Peakflow detects
anomalies based on variations in volume metrics. Other differences are that
Peakflow:

• Requires SNMP and routing information in addition to flow data

• Gathers information about anomalies from customers to build new
signatures

6.5 Limitations

6.5.1 Limitations in the Senatus Framework

As discussed in Section 3.2.2, Senatus may potentially miss certain types of
anomalies, e.g. large-flow DDoS attacks, because of the choice of filtering
rules. Our performance evaluation indicates this might be the case, where
HBD shows slightly better performance in detecting DDoS attacks.

Furthermore, setting the right threshold values in the automatic root-cause
analysis algorithm requires a ground truth with labeled attacks. The thresh-
old value is also affected by the sampling rate used when capturing the Net-
Flow files, since a lower sampling rate will result in lower threshold values;
Given a DDoS attack consisting of 1000000 flows and a flow sampling rate
of 1/1000, only ∼ 1000 of the flows will be captured.
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6.5.2 Limitations of the Implementation

Some limitations remain in our implementation of Senatus. This section
presents these and suggests solutions.

6.5.2.1 High Maximum Execution Time

The average execution time is good, but if Senatus is given a time bin with
a higher than normal amount of flows, the execution time might get higher
than expected.

Two possible solutions are threading and distributed computing:

Threading Threading, parallel executions in a program flow, has the
potential of significantly improving the run-time performance. The primary
focus on where to apply threading would be for the many system calls that
are done. If these system calls could be run in parallel and exploit a multiple
CPU-core system, this would greatly shorten the execution time.

With boost[68], which is already included as a library, there are capabilities
for threading.

Distributed Computing Distributed computing would take the paral-
lelism from threading to a higher level. Several computers would run dif-
ferent parts of the analysis, and the execution time could be even further
reduced.

Preparing Senatus for use in a distributed computing environment would
mean massive amounts of research and changes to the code.

6.5.2.2 Parameter Checking

Few incoming parameters are checked for validity. This poses security risks
such as the possibility of segmentation faults1.

Segmentation faults leave a vulnerability open for buffer overflow attacks,
where an attacker exploits buffer overflows to inject references to the buffer
for getting access to a certain property of the system [100].

Introducing parameter checking to Senatus is an easy, but timely task. A
list of allowed inputs would have to be created for each parameter. Every
input parameter would then have to be checked against this list, and abort

1When a program attempts to access memory that is not accessible[100]
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the execution if the usage of non-allowed parameters is discovered. This
would prevent the known segmentation faults.

6.5.2.3 Directory Monitoring Tool

An issue with the directory monitoring tool is that it occasionally will report
changes when no changes have been made. This might lead to Senatus being
run for time bins that are already analyzed, thus using unnecessary system
resources.

We have not been able to verify the reason for this issue to happen, but
most likely it is caused by underlying changes in the file system that triggers
the directory monitoring tool.

Another solution would be to further develop the daemon mentioned in
4.2.2.1 to handle this task.





Chapter 7

Conclusion

In this thesis we have completed a number of tasks related to the Sena-
tus framework. First of all, we have enhanced the framework by includ-
ing a root-cause analysis algorithm. Automated root-cause analysis sig-
nificantly increases the usability of such systems, since it eliminates the
time-consuming task of manually inspecting network logs to identify the
root-cause.

One of the shortcomings of current anomaly detection techniques is the high
ratio of false-positives they produce. Our evaluation showed that Senatus
performs significantly better than the similar approach we compared it to
in this regard. The evaluation also showed that Senatus has the overall best
detection rate. Senatus has a superior detection rate for network scans, but
performs slightly worse for detecting Denial of Service attacks.

In addition to the enhancements in the framework and the performance
evaluation, we have implemented a high-performance version of Senatus in
C++, which includes the automatic root-cause analysis algorithm to pro-
vide a complete solution for anomaly detection and root-cause analysis. Our
solution is able to analyze a 15-minute time bin and identify the root-cause
in just a few minutes. Our implementation also includes a Web Dashboard
for Senatus and a corresponding directory monitoring tool, which leverages
all of Senatus’ features to deliver an online solution for automatic network
anomaly detection. The Web Dashboard shows and visualizes information
of a detected attack, in addition to providing a number of tools for manual
root-cause analysis in the case of a lacking automatic analysis. One of the
features of these tools is the possibility to visualize network traffic, which
easily can reveal anomalous patterns.

We have also addressed a few limitations of our work, and identified possible
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solutions open for future work.



Bibliography

[1] Anomaly detection in backbone networks: building a security service
upon an innovative tool. http://tnc2010.terena.org/files/

TNC%20-%20Anomaly%20Detection%20in%20Backbone%20Networks.

Final.ppt. [PowerPoint Presentation; last visited 06-06-2012].

[2] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining
anomalies using traffic feature distributions. In Proceedings of the
2005 conference on Applications, technologies, architectures, and pro-
tocols for computer communications, SIGCOMM ’05, pages 217–228,
New York, NY, USA, 2005. ACM.

[3] Guilherme Fernandes and Philippe Owezarski. Automated classifica-
tion of network traffic anomalies. In Yan Chen, Tassos D. Dimitriou,
Jianying Zhou, Ozgur Akan, Paolo Bellavista, Jiannong Cao, Falko
Dressler, Domenico Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio
Palazzo, Sartaj Sahni, Xuemin (Sherman) Shen, Mircea Stan, Jia Xi-
aohua, Albert Zomaya, and Geoffrey Coulson, editors, Security and
Privacy in Communication Networks, volume 19 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, pages 91–100. Springer Berlin Heidelberg,
2009. 10.1007/978-3-642-05284-2 6.

[4] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing
network-wide traffic anomalies. In Proceedings of the 2004 conference
on Applications, technologies, architectures, and protocols for com-
puter communications, SIGCOMM ’04, pages 219–230, New York,
NY, USA, 2004. ACM.

[5] Jelena Mirkovic and Peter Reiher. A taxonomy of ddos attack
and ddos defense mechanisms. SIGCOMM Comput. Commun. Rev.,
34(2):39–53, April 2004.

109

http://tnc2010.terena.org/files/TNC%20-%20Anomaly%20Detection%20in%20Backbone%20Networks.Final.ppt
http://tnc2010.terena.org/files/TNC%20-%20Anomaly%20Detection%20in%20Backbone%20Networks.Final.ppt
http://tnc2010.terena.org/files/TNC%20-%20Anomaly%20Detection%20in%20Backbone%20Networks.Final.ppt


110 BIBLIOGRAPHY

[6] F. Lau, S.H. Rubin, M.H. Smith, and L. Trajkovic. Distributed denial
of service attacks. In Systems, Man, and Cybernetics, 2000 IEEE
International Conference on, volume 3, pages 2275 –2280 vol.3, 2000.

[7] Jeremy Kirk. European parliament says its website victim of ddos
attack. http://www.computerworld.com/s/article/9223740/

European_Parliament_says_its_website_victim_of_DDOS_

attack, Jan 2012.

[8] IDG News Robert McMillan. ’anonymous’ takes down visa.com
in wikileaks protest. http://www.pcworld.com/businesscenter/

article/213024/anonymous_takes_down_visacom_in_wikileaks_

protest.html, Dec 2010.

[9] Steve Ragan. Nasdaq and bats web sites fall vic-
tim to ddos attacks. http://www.securityweek.com/

nasdaq-and-bats-web-sites-fall-victim-ddos-attacks, Feb
2012.

[10] S.Baranowski. Global information assurance certification - security
essentials practical - how secure are the root dns servers? Technical
report, SANS Institute, 2003.

[11] J. Lemon. Resisting syn flood dos attacks with a syn cache. BSDCon
2002 Paper, 2002.

[12] S. Kumar. Smurf-based distributed denial of service (ddos) attack am-
plification in internet. In Internet Monitoring and Protection, 2007.
ICIMP 2007. Second International Conference on, page 25, july 2007.

[13] CERT Advicory. Ca-1996-01 udp port denial-of-service attack. Tech-
nical report, CERT, 1997.

[14] C. Leckie and R. Kotagiri. A probabilistic approach to detecting
network scans. In Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP, pages 359 – 372, 2002.

[15] E. Silenok CB Lee, C. Roedel. Detection and characterization of port
scan attacks. Technical report, University of California, San Diego.
Department of Computer Science, 2003.

[16] V. Yegneswaran, P. Barford, and J. Ullrich. Internet intrusions:
Global characteristics and prevalence. In ACM SIGMETRICS Per-
formance Evaluation Review, volume 31, pages 138–147. ACM, 2003.

http://www.computerworld.com/s/article/9223740/European_Parliament_says_its_website_victim_of_DDOS_attack
http://www.computerworld.com/s/article/9223740/European_Parliament_says_its_website_victim_of_DDOS_attack
http://www.computerworld.com/s/article/9223740/European_Parliament_says_its_website_victim_of_DDOS_attack
http://www.pcworld.com/businesscenter/article/213024/anonymous_takes_down_visacom_in_wikileaks_protest.html
http://www.pcworld.com/businesscenter/article/213024/anonymous_takes_down_visacom_in_wikileaks_protest.html
http://www.pcworld.com/businesscenter/article/213024/anonymous_takes_down_visacom_in_wikileaks_protest.html
http://www.securityweek.com/nasdaq-and-bats-web-sites-fall-victim-ddos-attacks
http://www.securityweek.com/nasdaq-and-bats-web-sites-fall-victim-ddos-attacks


BIBLIOGRAPHY 111

[17] Planet-Lab. ”http://www.planet-lab.org/”.

[18] Princeton University. Codeen - a content distribution network for
planetlab. http://codeen.cs.princeton.edu.

[19] P. Casas, L. Fillatre, S. Vaton, and I. Nikiforov. Volume anomaly
detection in data networks: An optimal detection algorithm vs. the
pca approach. Traffic Management and Traffic Engineering for the
Future Internet, pages 96–113, 2009.

[20] I.T. Jolliffe and MyiLibrary. Principal component analysis, volume 2.
Wiley Online Library, 2002.

[21] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E.D. Kolaczyk,
and N. Taft. Structural analysis of network traffic flows, volume 32.
ACM, 2004.

[22] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characteriza-
tion of network-wide anomalies in traffic flows. In Proceedings of the
4th ACM SIGCOMM conference on Internet measurement, IMC ’04,
pages 201–206, New York, NY, USA, 2004. ACM.

[23] Paul Barford, Jeffery Kline, David Plonka, and Amos Ron. A signal
analysis of network traffic anomalies. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, IMW ’02, pages 71–
82, New York, NY, USA, 2002. ACM.

[24] A. Kind, M.P. Stoecklin, and X. Dimitropoulos. Histogram-based
traffic anomaly detection. Network and Service Management, IEEE
Transactions on, 6(2):110 –121, june 2009.

[25] A. Abdelkefi and Y. Jiang. Compressible traffic features.

[26] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon. Providing public
intradomain traffic matrices to the research community. ACM SIG-
COMM Computer Communication Review, 36(1):83–86, 2006.

[27] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina.
Impact of packet sampling on anomaly detection metrics. In Proceed-
ings of the 6th ACM SIGCOMM conference on Internet measurement,
pages 159–164. ACM, 2006.

[28] George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, and
Hui Zhang. An empirical evaluation of entropy-based traffic anomaly
detection. In Proceedings of the 8th ACM SIGCOMM conference on

http://www.planet-lab.org/


112 BIBLIOGRAPHY

Internet measurement, IMC ’08, pages 151–156, New York, NY, USA,
2008. ACM.

[29] K. Xu, Z.L. Zhang, and S. Bhattacharyya. Internet traffic behavior
profiling for network security monitoring. Networking, IEEE/ACM
Transactions on, 16(6):1241–1252, 2008.

[30] Abdelkefi A., Jiang Y., and Dimitropoulos X. K sparse approxima-
tion for traffic histograms dimensionality reduction. Technical report,
NTNU, ETH, 2012.

[31] William Stallings. Cryptography and network security - principles and
practice (3. ed.). Prentice Hall, 2003.

[32] Arno Wagner Daniela Brauckhoff, Xenofontas Dimitropoulos and
Kave Salamatian. Anomaly extraction in backbone networks using
association rules. Technical report, IEEE/ACM Transactions on Net-
working, 2009.

[33] S. Kullback. The kullback-leibler distance. The American Statistician,
41(4):340–341, 1987.
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Appendix A

Detailed Description of the
Senatus Flow

The following sequence diagrams should give a thorough description of Sen-
atus version 2: Online. The sequence diagrams are split, for readability
purposes.

1. Figure A.1(a) describes how time bin data is read from the database.
If not in the database, data is fetched with system calls to flow-tools
or nfdump.

2. Figure A.1(b) shows how the senators are pulled from disk.

3. Figure A.2 shows the how the senatorvalues are either fetched from
database, or processed in system calls.

4. Figure A.3(a) shows how the voting uses filterflows and inexact alm rpca
to catch the abnormal values, for then to combine into suspicious flow-
objects.

5. Figure A.3(b) shows the final filtering process to determine whether
or not a suspicious flow is indeed an anomalous flow, and in that case
they are saved to the database.

It also shows how the automatic root-cause algorithm can be used by
choice. If the automatic root-cause algorithm is used, it is applied
to each detected anomalous flow. If the root-cause is discovered, the
Senatus execution is terminated.
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(a) Constructing the TimebinCollection (b) Election: Extracting
Senators

Figure A.1: TimebinCollection and extracting senators
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Figure A.2: Election: Getting senator values from database

(a) The voting filters further to get a list
of suspicious flows

(b) Decides if attack or not

Figure A.3: Voting and Decision
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