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Abstract

In this thesis we derive the Einstein field equations from the Einstein-Hilbert action us-
ing a variational principle. We then look at the weak-field limit of these equations through
a linear approximation. Through a gauge fixing procedure, we find two different polar-
izations of gravitational waves. Next, we derive how gravitational waves affect stationary
objects in different gauges, and see how the choice of gauge is connected to our choice
of coordinate system. We then derive the stress-energy tensor of gravitational waves by
extending our weak-field approximation to second order in the metric. By separating the
background metric from the gravitational waves, we see that the stress-energy tensor of
gravitational waves arises naturally on an averaged form. Briefly, we discuss the possi-
bility of gravity being mediated by spin-2 particles in flat spacetime, and we show how
simple assumptions lead to the full non-linear form of gravity and the principle of general
covariance. Lastly, we derive the formulas for emission of gravitational waves to lowest
order in the velocity of the source, and apply this to a binary system following Newtonian
orbits.
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Preface

This thesis is the concluding work on the master program in Applied physics and
mathematics from NTNU (Norwegian University of Science and Technology). The work
lasted one semester, and was the continuation of a smaller project previous fall. To keep
this thesis self-contained and to avoid extensive cross-referencing, I have reused parts of
the previous assignment, namely chapters 1 through 5 in this thesis, as well as Appendix
A.

The main purpose of this thesis is to develop an understanding of gravitational waves.
A weakness I found in the literature that exists on gravitational waves is that often the
derivations are brief and mathematical, thereby not addressing the physical understanding.
Therefore, as a student of the subject, most of my time on this thesis has been spent
wrestling with concepts and trying to connect the mathematics of gravitational waves to
physical understanding. I have therefore tried to include as much physical intuition in my
derivations as possible, and answer questions that the reader might have, especially when
these answers are not easily found in the literature.

I am very grateful for the help of Prof. Jens Oluf Andersen, who was my supervisor. He
gave me structure and a direction, as well as freedom for me to pursue the ideas that I found
most interesting. He also read my work along the way and challenged my arguments,
which proved to be very valuable. Thank you for taking the time.

Lastly, I want to include a quote sometimes attributed to Enrico Fermi, which sums up
my process of studying gravitational waves

“Before I came here, I was confused about this subject. Having listened
to your lecture, I am still confused – but on a higher level.“
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Chapter 1
Introduction

The special theory of relativity was published by Albert Einstein in 1905. It was a land-
mark development in our understanding of the fabric of our universe. Here Einstein in-
troduced the equivalence principle stating that the laws of physics should be equal in any
inertial frame, and that the speed of light in vacuum is constant. This gave an interpre-
tation of time- and length-dilation that radically changed our perception of the fabric of
reality [1]. Einstein then spent the next ten years developing the general theory of relativ-
ity, which was published in 1915. Here Einstein extended the equivalence principle to the
principle of general covariance, stating that the laws of physics should have the same form
in any coordinate system. Einstein managed to incorporate acceleration into the theory,
and gravity was reinterpreted not as a force, but rather as a result of the geometry of space-
time. Gravitational waves (GW) are one of the important predictions of general relativity.
These waves are ripples in the fabric of spacetime, stretching and contracting lengths in
space as they pass. The effects of these waves are minuscule, and detecting them require
incredible sensitivity. In 2015, one hundred years after the formulation of the general the-
ory of relativity, the first direct observation of gravitational waves were made by the Laser
Interferometer Gravitational-wave Observatory (LIGO) [2].

In 1905 Henri Poincar was the first physicist to suggest the existence of GWs, and
argued that as gravity propagates at the speed of light, there should exist waves in the
gravitational field in analogy to electromagnetic waves. Ten years later Einstein published
his theory of general relativity, where these waves were one of the predictions. For a long
time after this publication and the initial predictions by Einstein, there were confusion
surrounding the interpretation of gravitational waves. This included questions regarding
whether the waves were physical or just a remnant of coordinate choice. The confusion
was cleared up in the 1950s, and physicists also concluded that gravitational waves carry
energy.

The efforts to measure gravitational waves began in the 1960s, with resonant mass an-
tennas, pioneered by Joseph Weber [3]. He constructed large aluminum cylinders, about
153 cm in length, 66 cm in diameter and weighing 3 tons, later dubbed Weber bars. The
idea was that as gravitational waves pass the cylinder, the cylinder is stretched and con-
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Chapter 1. Introduction

tracted. If the wave has a frequency close to the resonant frequency of the cylinder, the
vibration will resonate and hopefully grow to a stable amplitude that is large enough to be
measured and distinguished from noise. Weber claimed in 1969 to have measured gravi-
tational waves using Weber bars. A year later he claimed to have measured several more
GWs emitted from the center of our galaxy. The detection frequency and magnitude of
these results implied that around 1000 solar masses of energy were converted into gravi-
tational waves every year, much higher than the estimated upper limits for our galaxy. It
thus became increasingly clear that Weber’s results were not credible. Other groups of
physicists have developed the concept of resonant mass antennas in later years, but have
not been able to obtain measurements of gravitational waves. Parallel to this development,
there has been another approach to measuring GWs using laser interferometry [4].

The first evidence of gravitational waves did not come in the form of a direct observa-
tion, but rather as an indirect measurement through cosmological observations. Hulse and
Taylor made an important discovery in 1974 [5]. They discovered the first binary pulsar,
a neutron star that radiates electromagnetic radiation (a pulsar) and a neutron star rotating
orbiting a common mass center. They were able to deduce this by measuring the arrival of
the pulses from the pulsar. The pulses had a period of 59 milliseconds, but there seemed to
be small deviations from the expected arrival time with a fixed period of 7.75 hours. They
realized that this was the predicted result if the pulsar was orbiting another stellar object.
Using this information, they could derive the existence of another neutron star, and were
able to estimate their masses, the radii of their orbits, and they could monitor the orbital
periods. Over time the orbits have been shown to gradually contract and the stars slow
down. This is the result of the energy loss due to emission of gravitational waves, which
is predicted by the general theory of relativity. Measurements of this binary system have
been shown to be in good agreement with calculations, and this observation was the first
empirical test of the effects of gravitational waves. Hulse and Taylor received the 1993
Nobel Prize in Physics for this work, their discovery and analysis of this system, ”for the
discovery of a new type of pulsar, a discovery that has opened up new possibilities for the
study of gravitation.”

On September 14, 2015 the first direct observation of gravitational waves was made.
The discovery was made by LIGO, using laser interferometry. The experimental method
builds on the concept of the Michelson interferometer, famously used in the Michelson-
Morley experiment in 1887 to show that the speed of light does not depend on the velocity
of Earth. This result discredited a popular theory that light propagated in a medium called
the aether, which was believed to move independently of Earth [6]. Because the speed of
light in vacuum is constant, the path-time of light will be changed when space is stretched
or contracted. This can be measured using an advanced Michelson interferometer. A
laser beam is split into two different paths by a beam splitter, reflected by mirrors, and
recombined onto a detector. The detector then measures the interference pattern of the two
beams. Waves with opposite phase vanish, and the interference is effectively a measure of
the difference in the two path lengths of the laser beams. In the upper part of Figure 1.1
an interferometer is shown, where the light interferes constructively. When a gravitational
wave passes, the interferometer is stretched and contracted by the GW and the path lengths
are changed. This change in path length can be measured. In the lower part of Figure 1.1
a gravitational wave, shown in yellow, stretches one of the arms of the interferometer such
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that the interference changes. The LIGO experiment uses a setup based on this interferom-
eter, where a laser beam is split into two 4 km long tunnels that are placed perpendicular
to each other, with mirrors reflecting the light. The mirrors are adjusted such that the light
interferes destructively, and any deviation from this can be measured. A gravitational wave
that passes in the direction of one tunnel will stretch and contract the other tunnel, the path
length of the light will change, which will change the phase difference of the light. This
will show up on the detector as small beats of light, which is what they try to detect.

Figure 1.1: This figure shows the
concept of interferometric gravita-
tional sensing, with an interferometer
with and without a gravitational
wave. See full text for explana-
tion. The figure is taken from
https://en.wikipedia.org/wiki/LIGO

The successful detection of a gravitational wave
is a tremendous achievement. There are two main
challenges to overcome to be able to measure grav-
itational waves; one, to achieve high enough sen-
sitivity, and two, to be able to distinguish signal
from noise. Gravitational waves have a very weak
effect. The first gravitational wave detected had a
maximal strain of ∼ 10−21, where strain is the rel-
ative change in lengths caused by the wave. This
means that the lengths of the 4 km long tunnels
were changed by no more than a thousandth of the
width of a proton, approximately two attometres.
The interferometers therefore need to be incredibly
sensitive. The LIGO experiment had to try to max-
imize their sensitivity in every way possible. In the
two tunnels of 4 km, they have mirrors sending the
laser light back and forth about 280 times, effec-
tively increasing the path length of each tunnel to
1120 km. Another important factor of the sensi-
tivity of the interferometer, was the intensity of the
laser beam. The strength of the laser determines the
photon count, and thus the resolution of the inter-
ferometer. The smallest quanta of light is a photon,
and the resolution of the detection is therefore lim-
ited to only integer numbers of photons. By increas-
ing the total photon count by having a stronger laser,
one photon corresponds to a smaller fraction of the
total photon count, and thus smaller deviations can
be detected. LIGO uses a sophisticated set of mirrors to recycle power, and achieves a
laser beam that shines at 750 kilowatts, enough power to supply 1000 households [2].

The second challenge is to distinguish signal from measuring noise. Because the inter-
ferometers have to be extremely sensitive to be able to detect a gravitational wave, it also
means they will pick up any vibration in the ground. This can be caused by events such
as nearby traffic or earthquakes far away. It is therefore important that the interferome-
ter is isolated from the environment, and a combination of active and passive damping.
For the active dampening, LIGO uses sensors to detect ground movements and then uses
active counter motion to keep their mirrors motion free. This counteracts vibrations in
the ground, but does not affect the detection of gravitational waves, as these waves do
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Chapter 1. Introduction

not move the mirrors, but rather changes the length of the whole tunnel. For the passive
dampening, LIGO’s reflective mirrors (often called test masses) together with stabilizing
weights are suspended from four 0.4 mm thick fused-silica (glass) fibres. This helps pre-
vent motion not cancelled out by the noise-cancelling system from affecting the mirrors.
Another source of noise is air or dust in the laser beam. Air refracts light, and can therefore
spread the laser beam as well as influence the optical path length of the light, and dust can
scatter the light if it drifts into the beam or onto the mirrors. It is therefore important to
have as little air as possible where the laser beams are. LIGO has created one of the largest
and purest sustained vacuums in the world, with a pressure of one-trillionth that of atmo-
spheric pressure. As a final effort to reduce the effects of noise, LIGO made two separate
interferometers. One is located in Livingston, Louisiana and the other in Hanford, Wash-
ington. The distance between the two facilities is around 1900 km, or 0.01 light seconds.
As sources of gravitational waves are of cosmological distances from Earth, both facilities
should detect the wave. The GW signal from both detectors should be of the same strength
and shape, and with a maximal separation in time of 10 milliseconds. By comparing the
measurements from both facilities, LIGO can make sure that any GW they measure is
not just caused by local vibrations or instrument noise. Having two spatially separated
detectors can also be used to give some information about the direction of the wave, as
difference in detection time depends on the direction of the wave. When the two facilities
show a match between their signal, the proposed wave is then compared to a library of
wave signals generated by simulations of cosmological events believed to produce gravi-
tational waves. This is both a test to check if the signal is actually a gravitational wave, as
well as it gives information about the source of the wave. Figure 1.2 shows a simplified
version of the interferometers, their positions on the map of the USA, as well as a plot of
the measuring noise. To date there are 11 recorded measurements of gravitational waves,
all made by LIGO [2].

Any mass that accelerates creates gravitational waves, which includes any accelerating
mass here Earth. Only very large masses can create waves large enough to detect, and we
therefore look to space. There are several known sources of gravitational waves. One im-
portant source is what is called a binary system. A binary system consists of two massive
objects, like black holes, neutron stars or white dwarfs, orbiting each other. The objects
will lose energy due to the emission of GWs, caused by the circular motion, and they will
spiral inward and eventually merge. This inspiral will release a GW lasting a short time,
from fractions of seconds for black holes to minutes for neutron stars, of increasing fre-
quency. The first ever detected gravitational wave came from such a system, where two
black holes spiralled and merged. The signal lasted 0.2 seconds with a frequency from
35 to 250 Hz. [7]. So far all directly detected GWs comes from binary systems of either
two black holes or two neutron stars. Another source of gravitational waves are spinning
masses, for example neutron stars. Bumps or imperfections on the surface will create GWs
as the star rotates. These waves will be of continuous amplitude and frequency, and are
expected to be found with frequencies in the milliseconds. Supernovas are also expected
to produce GWs. When the core collapses large amounts of mass (1 - 100 solar masses)
are moved at relativistic speeds. The asymmetry of this collapse will create gravitational
waves. This process is however not well understood, and the magnitude and frequency
is hard to predict [8]. These waves are also expected to have frequencies in the millisec-
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Figure 1.2: a) The locations of the gravitational observatories where the interferometers are placed.
b) A plot showing the instrument noise of the interferometers depending on the frequency of the
gravitational wave. The spikes are the result of resonant frequencies in the components of the in-
terferometers. c) A figure showing a simplified version of the interferometers. Figure is taken from
https://en.wikipedia.org/wiki/LIGO

onds range. The first time after the Big Bang is also expected to have created gravitational
waves. These are called primordial GWs, and come from the rapid expansion in the cos-
mic inflation in the earliest universe. Figure 1.3 shows the expected frequencies of the
above mentioned sources, as well as detection methods that can be used. More about these
detection methods can be found in reference [9].

Astronomy has traditionally relied on electromagnetic radiation. The advances of the
study of gravitational waves can provide complementary information about the events that
we can already study, as well as allow us to observe and study systems that are impossible
to detect with electromagnetic radiation. There is a possibility that we will also find gravi-
tational waves from phenomena or systems that we did not even know about. The detection
of the first gravitational waves is an exciting step in the direction of new knowledge. There
are currently plans for several new gravitational observatories of equal or higher sensitiv-
ity than LIGO, which will allow more frequent observations and the ability to determine
direction and distance to the source, as well as observations at different frequencies.
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Chapter 1. Introduction

Figure 1.3: This figure shows some sources of gravitational waves and their expected frequency, and
some detection methods and what in what range of frequencies they operate. The LISA detection
frequency is highlighted. Figure is taken from [9].
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Chapter 2
Deriving the Einstein field
equations from variational
principles

In this chapter we want to derive the Einstein field equations using variational principles.
In the first section we will use the Einstein-Hilbert action, and vary the action with respect
to the metric. In the second section we will follow the Pallatini approach, and let the action
depend on the metric and the connection coefficients independently.

2.1 Einstein field equations from the Hilbert-Action

We begin by assuming that we can describe spacetime as a pseudo-Riemannian manifold,
with signature (1, 3). See A.4 for a short introduction. In addition we also assume that the
manifold is torsionless, with torsion defined by Eq. (A.9).

We want to investigate the geometry of spacetime, described by the metric gµν . One
important concept from Newtonian physics is the principle of stationary action. For a
mechanical system, the action S is defined as a time integral of the Lagrangian L

S =

∫ t2

t1

Ldt. (2.1)

The principle of stationary action then states that the system follows a trajectory such that
the variation of the action satisfies

δS = 0, (2.2)

meaning a small perturbation of the system does not change the action integral. We assume
that this principle holds for the geometry of spacetime, and using the Lagrange density L,

7



Chapter 2. Deriving the Einstein field equations from variational principles

we can reformulate the action as an integral over a region of spacetime Ω, as

S =

∫
Ω

L d4x. (2.3)

We then can develop the field equations for the geometry of spacetime, by looking at small
variations in the metric gµν , and requiring that the variation of the action vanishes.

To begin to tackle this problem, we first need to find a suitable Lagrangian. Our La-
grangian must depend on the metric, and because the action is a physical quantity, it must
also as give us an action integral that is coordinate invariant. In A.5 we discuss the trans-
formational properties of integrals in spacetime, and show that we can use

√
|g|d4x as the

coordinate invariant measure, where g = det(gµν). This means we can construct invariant
integrals by letting our integrand consist of only coordinate invariant terms. The simplest
such term we can construct, that also depends on the metric tensor, is the Ricci scalar R,
defined by Eq. (A.6). We also choose to add a constant term, Λ, and scale our Lagrangian
by a constant factor κ. We then arrive at the Einstein-Hilbert action, where we have used
the conventional factors in front of the constants, given by

SEH =

∫
1

2κ
(R− 2Λ)

√
−gd4x, (2.4)

where we used that |g| = −g, which holds on a manifold with an odd number of timelike
dimensions.

The Einstein-Hilbert action has no dependence on matter fields, so we add a term LM
containing this dependence. The action then becomes

S =

∫ [
1

2κ
(R− 2Λ) + LM

]√
−gd4x. (2.5)

We next consider a small variation of the inverse metric δgµν , and require that the action
is stationary,

0 = δS

=

∫ [
1

2κ

(
δ(
√
−gR)

δgµν
− 2Λδ

√
−g

δgµν

)
+
δ(
√
−gLM )

δgµν

]
δgµνd4x

=

∫ [
1

2κ

(
R− 2Λ√
−g

δ
√
−g

δgµν
+

δR

δgµν

)
+

1√
−g

δ(
√
−gLM )

δgµν

]
δgµν
√
−gd4x. (2.6)

As the variation gµν is arbitrary, the integrand must vanish everywhere, giving us the
following field equation

R− 2Λ√
−g

δ
√
−g

δgµν
+

δR

δgµν
= κ

−2√
−g

δ(
√
−gLM )

δgµν
. (2.7)

The right-hand side define the Hilbert stress-energy tensor Tµν as in [10, p. 75], in the
following way

Tµν :=
−2√
−g

δ(
√
−gLM )

δgµν
= −2

δLM
δgµν

+ gµνLM , (2.8)
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2.1 Einstein field equations from the Hilbert-Action

where we have used the relation

δ
√
−g = −1

2

√
−ggµνδgµν , (2.9)

which is given in Ref. [11, p. 117]. Now we need to rewrite the term containing the
variation of the Ricci scalar. The variation of the Ricci scalar is given by

δR = Rµνδg
µν + gµνδRµν . (2.10)

Now we need to relate δRµν to the variation δgµν . Using the definition of the Riemann
tensor Rρσµν , given in Eq. (A.4), the variation becomes

δRρσµν = ∂µδΓ
ρ
νσ − ∂νδΓρµσ + δΓρµλΓλνσ + ΓρµλδΓ

λ
νσ − δΓ

ρ
νλΓλµσ − ΓρνλδΓ

λ
µσ. (2.11)

The Christoffel symbols Γρµν are defined in Eq. (A.7). The variation δΓρµν is the differ-
ence between two connections. If we look at the transformation law given in Eq. (A.8),
we see that the second term containing only the coordinate basis cancels, and the varia-
tion of the Christoffel symbols therefore transforms as a tensor. We can then construct the
covariant derivative using Eq. (A.16),

∇µ(δΓρνσ) = ∂µ(δΓρνσ) + ΓρµλδΓ
λ
νσ − ΓλµνδΓ

ρ
λσ − ΓλµσδΓ

ρ
νλ. (2.12)

Using that the Christoffel symbols are symmetric in the lower indices when we have as-
sumed no torsion, we see that we can express the variation of the Riemann tensor as the
difference of two such terms,

δRρσµν = ∇µ(δΓρνσ)−∇ν(δΓρµσ). (2.13)

We may now obtain the variation of the Ricci tensor by contracting two of the indices, and
we get

δRµν = δRγµγν = ∇γ
(
δΓγµν

)
−∇ν

(
δΓγµγ

)
. (2.14)

Using the metric compatibility explained in A.3, given by

∇γgµν = 0, (2.15)

we get
gµνδRµν = ∇γ(gµνδΓγµν − gµγδΓλµλ). (2.16)

This is just a divergence on the form ∇µAµ. Considering again Eq. (2.6), we see that
this term is exactly on the form of the divergence theorem for a Riemannian manifold
given in Eq. (A.15), and will therefore only contribute a boundary term when integrated.
Requiring that the variation of the metric, and its derivatives, vanishes on the boundary,
the contribution vanishes, and we can use

δR = Rµνδg
µν . (2.17)

Inserting Eq. (2.17) into Eq. (2.7), and again using Eq. (2.9), we obtain

Rµν −
1

2
Rgµν + Λgµν = κTµν , (2.18)

9



Chapter 2. Deriving the Einstein field equations from variational principles

which is Einstein’s field equations. The LHS of Eq. (2.18) is often simplified using the
Einstein tensor, Gµν , defined as

Gµν = Rµν −
1

2
Rgµν , (2.19)

giving us
Gµν + Λgµν = κTµν . (2.20)

The value of κ can be determined by considering the Newtonian limit, and is found to be
κ = 8πG, where G is the Newtonian constant of gravitation. Λ is called the cosmological
constant, and describes the vacuum energy density. |Λ|−1/2 is of dimension length, and
on lengths or times small compared to this quantity, the effects of Λ are negligible. Exper-
iments suggest a small positive value: Λ−1/2 ∼ 109 light years. This is of the same order
of magnitude as the observable universe. We can therefore set Λ = 0 when we are not
discussing cosmology, which we will assume unless otherwise stated for the remainder of
this thesis.

2.2 The Palatini Approach
In the derivation of the Einstein field equations in the last section, we put two important
restrictions on the structure of spacetime. Firstly, we assumed that the manifold is torsion-
less, and secondly, that the connection coefficients satisfy the metric compatibility given
by Eq. (2.15) in A.3. We can relax these restrictions slightly, and assume that the metric
compatibility no longer holds. This means that the only constraints on the connection co-
efficients now are that the torsion vanishes. Now the connection coefficients and the metric
are independent fields, which lead to new field equations. We will see that this leads to
the same field equations as in the previous section, and that the resulting connection coef-
ficients satisfy the metric compatibility.

In the previous section we considered the variation of the action from a variation in the
inverse metric gµν , were the connection coefficients depended on the metric by Eq. (A.7).
Now the connection coefficients are given by Eq. (A.4) and are independent of gµν . The
Lagrangian we start with is still the same as in the last section, and we assume that the
matter part of the Lagrangian only depends on the metric. The important distinction in the
variation of the action, is that the variation of the Ricci tensor δRµν is now a function only
of the connection coefficients, as seen from Eq. (A.5). The variation of the action can then
be separated into terms depending on gµν and Rµν in the following way

δS =

∫ [
1

2κ
(R− 2Λ) δ

√
−g +

1

2κ
(
√
−gδR) + LMδ

√
−g
]
d4x

=

∫ [
1

2κ

(
−1

2
Rgµν + Λgµν +Rµν

)
+

1

2
Tµν

]
δgµν
√
−gd4x

+
1

2κ

∫
[gµνδRµν ]

√
−gd4x. (2.21)

As the two variations are independent, both integrals must vanish. The first integral leads
exactly to Einstein’s field equations, as in the previous section. The second integral de-
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2.2 The Palatini Approach

pends on the variation of the Ricci tensor, and we can use Eq. (2.14), which has only
assumed no torsion, to get

δS =
1

2κ

∫ [
∇γ(δΓγµν)−∇ν(δΓγµγ)

]√
−ggµνd4x. (2.22)

Through an integration by parts, we have

δS =
1

2κ

∫
∇ν
[
gµγδΓνµγ − gµνδΓγµγ

]√
−gd4x

− 1

2κ

∫ √
−g
[
∇ν(gµγ)δΓνµγ −∇ν(gµν)δΓγµγ

]
d4x (2.23)

As in the section above, the first integral is by the divergence theorem only a boundary
term, which vanishes when we require the variation to vanish on the boundary. The second
integral can be rearranged as follows,

δS =
1

2κ

∫ √
−g
[
∇ν(gµν)δΓγµγ −∇ν(gµγ)δΓνµγ

]
d4x

=
1

2κ

∫ √
−g
[
∇λ(gµλ)δγν δΓ

ν
µγ −∇ν(gµγ)δΓνµγ

]
d4x

=
1

2κ

∫ √
−g
[
∇λ(gµλ)δγν −∇ν(gµγ)

]
δΓνµγd

4x. (2.24)

δΓνµγ is symmetric in the lower indices, as there is no torsion. ∇ν(gµγ) is also symmetric
in µ and γ. The term ∇λ(gµλ)δγν can be made symmetric in µ and γ by addition of
∇λ(gγλ)δµν , and antisymmetric by subtracting the same term. This means we can split
this term into a symmetric tensor Sµγν , and an antisymmetric tensor Aµγν . Eq. (2.24) then
becomes

δS =
1

2κ

∫ √
−g
[
Sµγν +Aµγν

]
δΓνµγd

4x, (2.25)

where

Sµγν =
1

2

[
∇λ(gµλ)δγν +∇λ(gγλ)δµν

]
−∇ν(gµγ), (2.26)

Aµγν =
1

2

[
∇λ(gµλ)δγν −∇λ(gγλ)δµν

]
. (2.27)

A symmetric tensor times an antisymmetric tensor is antisymmetric, and Aµγν therefore
does not contribute, as we sum over µ and γ. This gives us

δS =
1

2κ

∫ √
−g (Sµγν ) δΓνµγd

4x. (2.28)

Since the variation of the connection coefficients are arbitrary, Sµγν must vanish, or

1

2

[
∇λ(gµλ)δγν +∇λ(gγλ)δµν

]
−∇ν(gµγ) = 0. (2.29)

Setting ν 6= γ and ν 6= µ gives ∇ν(gµγ) = 0, and all terms where the derivative does
not match an index in the metric vanishes. Setting ν = γ 6= µ, gives 1

2∇λg
µλ −∇νgµγ .

11



Chapter 2. Deriving the Einstein field equations from variational principles

By varying ν = γ, we see that all terms where the derivative share an index with them
metric vanishes. Therefore, the covariant derivative of gµν is equal to zero, which also
gives∇γgµν = 0. By Eq. (A.16), we then have

0 = ∇γgµν = ∂γgµν − Γλµγgλν − Γλγνgµλ, (2.30)

and
∂γgµν = Γλµγgλν + Γλγνgµλ. (2.31)

This is the exact equation that leads to the equation for the Christoffel symbols given
in Eq. (A.7), which can be shown by calculating ∂igjk + ∂kgij − ∂jgki and using the
symmetry of the lower indices of the connection coefficient. Thus, we have shown that
the principle of least action for the connection exactly implies the metric compatibility of
the connection. It is worth noting that this is only valid when we assume a torsionless
manifold and Einstein-Hilbert action. For a general action, the Palatini approach does not
necessarily lead to a metric compatible connection.
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Chapter 3
The weak-field limit of the Einstein
equations

The nonlinearity of the Einstein field equations make them generally hard to solve. How-
ever, in some cases we are dealing with weak gravitational fields, and we can then consider
spacetime as almost flat. We let the metric be given by the Minkowski metric of flat space-
time, plus a small perturbation metric hµν , in the following way

gµν = ηµν + hµν (3.1)

with |hµν | � 1. When the perturbation is small, we can as a good approximation only
consider terms up to first order of the perturbation. We call this the weak-field limit.
We note here that the derivatives of hµν in a source free space is equal to hµν times a
frequency, which we will see later, and are therefore also first order in hµν . Our metric
needs to satisfy gµρgρν = δµν , which to first order in hµν gives us

gµν = ηµν − hµν . (3.2)

The inverse perturbation can be calculated,

hµν = gµρgνσhρσ

= ηµρηνσhρσ, (3.3)

where the second line is achieved by only considering first order terms. This demonstrates
that we can raise and lower indices in the weak-field approximation using the unperturbed
Minkowski metric, ηµν . We can now calculate the Christoffel symbols from Eq. (A.7).
The derivatives of the Minkowski metric are always zero, and only terms depending on
hµν remain. We obtain

Γρµν =
1

2
ηρα(hαµ,ν + hαν,µ − hµν,α) =

1

2
(hρµ,ν + hρν,µ − h ,ρ

µν ), (3.4)

13



Chapter 3. The weak-field limit of the Einstein equations

to first order in hµν . The Riemann tensor is defined by Eq. (A.4). In the weak field limit
the last two terms are of second order in hµν , and therefore disregarded. This gives

Rρσµν = ∂µΓρνσ − ∂νΓρµσ

=
1

2
(hρν,µσ + hρσ,µν − h ρ

νσ,µ )− 1

2
(hρµ,νσ + hρσ,νµ − h ρ

µσ,ν )

=
1

2
(hρν,µσ + h ρ

µσ,ν − h ρ
νσ,µ − hρµ,νσ). (3.5)

The Ricci tensor is defined by Eq. (A.5). Using Eq. (3.5), we get

Rµν = Rρµρν

=
1

2
(hρν,ρµ + h ρ

ρµ,ν − h ρ
νµ,ρ − hρρ,νµ)

=
1

2

(
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ −�hµν − ∂µ∂νh

)
, (3.6)

where h = hρρ and � = ∂ρ∂ρ. The Ricci scalar, defined by Eq. (A.6), is then

R = gµνRµν = ηµνRµν = ∂µ∂νh
µν −�h. (3.7)

The Einstein tensor, given in Eq. (2.19), for the weak-field limit then becomes

Gµν =
1

2

(
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ −�hµν − ∂µ∂νh− ηµν

[
∂α∂βh

αβ −�h
])
. (3.8)

Inserting this into Eq. (2.20), gives us

∂µ∂ρh
ρ
ν + ∂ν∂ρh

ρ
µ −�hµν − ∂µ∂νh− ηµν

(
∂α∂βh

αβ −�h
)

= 2κTµν . (3.9)

We can multiply Eq. (3.9) with ηµν , obtaining

2κTµµ = 2∂µ∂ρh
ρµ − 2�h− δµµ

(
∂α∂βh

αβ −�h
)
, (3.10)

from which we can calculate the trace of Tµν ,

T = Tµµ = − 1

κ
(∂α∂βh

αβ −�h). (3.11)

Thus we can rewrite Eq. (3.9) as

∂µ∂ρh
ρ
ν + ∂ν∂ρh

ρ
µ −�hµν − ∂µ∂νh = 2κ

(
Tµν −

1

2
ηµνT

)
= 2κT̄µν (3.12)

where we have defined the bar notation, which we will call ”trace-reversed” as T̄ ρρ =
−T ρρ . We can compare this equation to Eq. (3.6), which immediately gives us the follow-
ing relation,

R(1)
µν = κT̄µν , (3.13)

where the superscript signifies the term of linear order in h. We can also rewrite Eq. (3.9)
in terms of the trace-reversed h̄µν ,

h̄µν = hµν −
1

2
ηµνh, (3.14)

giving us
∂µ∂ρh̄

ρ
ν + ∂ν∂ρh̄

ρ
µ −�h̄µν − ηµν∂α∂βh̄αβ = 2κTµν . (3.15)
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Chapter 4
Gauge freedom in linearized gravity

In this chapter we want to investigate the gauge freedom in Eq. (3.15), and fix a gauge that
will simplify our calculations. We begin with a general discussion of Green’s functions
and how they relates to gauge symmetry. We then use the formulation developed to fix the
gauge for linearized gravity.

4.1 Green’s functions and gauge symmetry

A Green’s function G(x, s) is defined as a function that satisfies

LG(x, s) = δ(s− x), (4.1)

for a linear differential operator L = L(x) in n-dimensions, where x = (x1, . . . , xn) and
s = (s1, . . . , sn). We suppress the vector notation in the following for simplicity. This
property can be used to solve differential equations on the form

Lu(x) = f(x) (4.2)

by setting

u(x) =

∫
G(x, s)f(s)ds. (4.3)

Eq. (4.3) a solution to Eq. (4.2), which is verified by direct insertion, and using that L
commutes with integration,

Lu(x) =

∫
LG(x, s)f(s)ds

=

∫
δ(s− x)f(s)ds

= f(x). (4.4)
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Chapter 4. Gauge freedom in linearized gravity

The Green’s function therefore defines an integral transform TG that maps a function f to
another function TGf , in the following way:

(TGf)(x) =

∫
G(x, s)f(s)ds. (4.5)

This integral transform TG is the right inverse of the differential operator L, as

L(TGf)(x) = f(x), (4.6)

which is already demonstrated in Eq. (4.4). We can define a kernel K of the differential
operator L as the space of all functions k(x) that satisfies

Lk(x) = 0. (4.7)

If the kernel K is nontrivial, meaning K 6= {k(x) = 0}, then the Green’s functions
of L are not unique. This is because when there exists some function k(x) for which
Lk(x) = 0, we can construct two different Green’s functions that both satisfy Eq. (4.2),

u(x) =

∫
G(x, s)f(s)ds,

u′(x) =

∫
G′(x, s)f(s)ds, (4.8)

where
u′(x) = u(x) + k(x), for k(x) ∈ K. (4.9)

This is equivalent to saying that L is not invertible. To make L invertible we need to es-
tablish a one-to-one relation, making sure there exists a unique Green’s function for our
system. We therefore have to deal with the kernel K. The kernel lives in the space of all
differentiable functions. Due to the linearity of the differential operator, we know that K
itself is linear. This means that K is spanned by a (possibly infinite) set of linearly inde-
pendent basis functions. We can separate these into two different types of basis functions;
functions that affect the boundary conditions, which will be called global, and functions
that does not affect boundary conditions, which will be called local. As the basis func-
tions are independent, specifying the boundary conditions of the system will completely
determine the value of all global functions, whereas all local functions are still undefined.
Now we let Eq. (4.2) be the equation of motion for some physical system, where f(x) is
the source of a field u(x). The kernel K is the space of all solutions to Lu(x) = 0. K
may contain both functions that correspond to physical observables and functions corre-
sponding to gauge symmetry. Here we use the word gauge symmetry as any non-physical
symmetry of the system1, e.g. choice of coordinate system, unobservable variables, etc.
From classical physics we know we can uniquely determine the physical observables of
u(x) if we know the source field f(x) and all boundary conditions (both in space and
time). This is just another way to say that classical equations of motion are deterministic.
A classical wave has to have a source, and cannot spontaneously come into existence by

1Some authors only use the word gauge symmetry when there is local gauge symmetry.
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4.2 Fixing the gauge in linearized gravity

itself. We can therefore conclude that all functions in K corresponding to physically ob-
servable phenomena have to affect the boundary conditions, and therefore be described by
purely global functions. Let us consider a system with only global functions in K. Before
we have chosen the boundary conditions, there exists many Green’s functions, as shown in
Eq. (4.8). By letting the boundary conditions be a constraint on the system, only a single
function from the kernel survives, we will call it kf (x), and the solution to the system is
uf (x) = u(x) + kf (x). Now the kernel of L is trivial, because there exists no nontrivial
function k(x) we can add that satisfies Lk(x) = 0 and also does not change the boundary
conditions. These boundary conditions have a corresponding Green’s function Gf (x, s)
that satisfies Eq. (4.1). This Green’s function will also satisfy the additional constraint that
any function transformed by the corresponding integral transformation, Eq. (4.5), satisfies
the boundary conditions.

Now we want to include local functions in K in our discussion. Apart from functions
corresponding to physical observables, there can exist gauge symmetry in our theory. The
functions corresponding to gauge freedom can be both local and global. A global gauge
freedom is dealt with in the same way as global physical freedom; by enforcing bound-
ary conditions. Local gauge freedom, on the other hand, has the unique property that it
makes the propagation of the system non-deterministic. From our discussion above we
saw that, without local gauge symmetry, we could find a unique Green’s function for a
physical system when we defined the boundary condition. This Green’s function works as
a propagator, taking in initial conditions and sources, and creates the field. The local gauge
freedom makes it impossible to define a general propagator, as there are multiple possible
solutions to the propagated system which only differ by local gauge transformations, and
does not affect the boundary conditions. To continue we therefore have to fix the local
gauge freedom, i.e. the value of the local functions in K. To do this we impose some
constraint that selects a function from the set of local functions in K. This will become
clear when we consider examples.

Before we move on, a couple things should be noted. For a physical system, functions
corresponding to physical observables and gauge freedom are always linearly independent.
This follows from the fact that we require that the gauge freedom cannot change any
physical observable. When we start from Eq. (4.2), with no boundary conditions and no
gauge choices, the kernel K of L is spanned by possible global physical functions, global
gauge freedom, and local gauge freedom. Due to linearity of K, the fixing of either one
does not affect the freedom of the others, and we can chose to fix them in any order we
want.

4.2 Fixing the gauge in linearized gravity
We now return to linearized gravity, and the wave equation for h̄µν given in Eq. (3.15).
We will use language developed in the previous section to investigate and fix the gauge
freedom in this theory. The gauge freedom arises from the fact that we can make coordi-
nate transformations, xµ → xµ + ξµ(x), where ξµ(x) satisfies |ξµ,ν | � 1, that leads to
changes in the metric hµν . This freedom has both a local and a global part, which we will
see explicitly. We want to create a general equation for h̄µν , and not impose global bound-
ary conditions, and thus we want to deal with the local gauge freedom first. After that
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Chapter 4. Gauge freedom in linearized gravity

we will use the global gauge freedom to impose constraints on our boundary conditions,
which will put hµν in a particularly nice form.

The gauge freedom is given by the coordinate transformation

xµ → xµ + ξµ(x), |ξµ,ν | � 1. (4.10)

This transformation has a local freedom, because the derivatives ξµ(x), can be chosen
independently at every point in spacetime. This coordinate change is essentially a pertur-
bation of the coordinate system, where every point in our coordinate system is perturbed
by a small vector, given by the function ξµ. To make sure that all lengths and angles in
our system are preserved, the metric has to change according to the new coordinate sys-
tem. Thus, the new metric is a perturbation of the old metric. Under this transformation, a
general metric gµν transforms as

g′µν(x′) =
∂x′µ

∂xρ
∂x′ν

∂xσ
gρσ(x)

= (δµρ + ξµ,ρ)(δνσ + ξν,σ )gρσ(x)

= gµν + ξµ,ν + ξν,µ. (4.11)

In the wield approximation we have gµν = ηµν − hµν , which inserted into the above
transformation gives

ηµν − h′µν = ηµν − hµν + ξµ,ν + ξν,µ

h′µν = hµν − ξµ,ν − ξν,µ. (4.12)

We can lower the indices, obtaining

h′µν = hµν − ξµ,ν − ξν,µ . (4.13)

We know that the entries of h′µν are small, as we have required that all the derivative of
ξµ are small. We see that both our initial and transformed coordinate systems have met-
rics that can be described by Eq. (3.1), satisfying the weak field approximation. These
coordinate systems are therefore equally valid, and we have no physical grounds to chose
one over the other. This freedom is purely a gauge freedom. The two different coordinate
systems describe the same manifold, and we can show explicitly that this is true by calcu-
lating the change in the Riemann tensor. Using Eqs. (3.4), (4.13) and the first order terms
of (A.4), we get that the infinitesimal change in the Riemann tensor is

R′µνρσ −Rµνρσ =
1

2
(∂ρ∂ν∂µξσ + ∂ρ∂ν∂σξµ + ∂σ∂µ∂νξρ + ∂σ∂ν∂µξρ + ∂σ∂µ∂ρξν

− ∂ρ∂ν∂µξσ − ∂ρ∂ν∂σξµ − ∂σ∂µ∂νξρ − ∂σ∂ν∂µξρ − ∂σ∂µ∂ρξν)

= 0,
(4.14)

as expected. The RHS of Eq. (3.15) can be expressed by Eq. (2.18), where we already
have set Λ = 0, which to first order in hµν gives us

2κTµν = 2Rµν −Rηµν . (4.15)
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4.2 Fixing the gauge in linearized gravity

The expressions of Rµν and R are fully determined by the Riemann tensor, and as the
Riemann tensor is invariant under the above mentioned coordinate transformation, κTµν
is also invariant. Thus, we have shown that the transformation given in Eq. (4.13) is a
gauge symmetry. We also note here that this infinitesimal coordinate transformation has
no Newtonian counterpart. Under this transformation the local properties of the coordinate
system are changed, and the only reason this can be done is because this information can
be put into the metric. In Newtonian physics we do not use a metric function, and we
therefore do not have this option.

We can rewrite Eq. (3.15) as

Lαβµν
(
h̄αβ

)
= 2κTµν , (4.16)

where
Lαβµν =

(
δβν ∂µ∂

α + δβµ∂ν∂
α − δαµδβν�− ηµν∂α∂β

)
(4.17)

is our differential operator. We now have our wave equation on the form of Eq. (4.2). The
differential operator in Eq. (4.17) has a nontrivial kernel K, which is spanned by basis
functions corresponding to possible wave solutions and gauge symmetry. For any function
kαβ from the kernel K, we have

Lαβµν (kαβ) = 0. (4.18)

We want to deal with the local gauge freedom, which means fixing the part of K spanned
by local functions. We can use the transformational property of h̄µν , which from Eqs.
(3.14) and (4.11) are

h̄′µν = h̄µν − ξµ,ν − ξν,µ + ηµνξ
,ρ
ρ . (4.19)

This allows us to choose what is called the harmonic gauge, defined by

∂ν h̄µν = 0, (4.20)

or, expressed for the normal perturbative metric,

∂λhαλ =
1

2
∂αh. (4.21)

We can demonstrate that we can always use the harmonic gauge. Suppose our metric is not
in the harmonic gauge. Can we find a ξµ(x) that transforms our system into the harmonic
gauge? For a transformation of coordinate systems, by taking the derivative ∂ν of Eq.
(4.19) we have

∂ν h̄′µν = ∂ν h̄µν − ∂ν∂νξµ − ∂ν∂µξν + ∂µ∂
ρξρ

= ∂ν h̄µν −�ξµ. (4.22)

We can choose a transformation that satisfies

�ξµ = ∂ν h̄µν . (4.23)

This is a wave equation that always has solutions, and we can therefore always choose the
harmonic gauge. These solutions are not unique, which we will see later. What we have
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Chapter 4. Gauge freedom in linearized gravity

done here is that we have chosen the derivatives of ξµ to satisfy a local constraint, given
by the harmonic gauge. With this gauge choice only one term on the LHS of Eq. (3.15)
remains, and our wave equation simplifies to

�h̄µν = −2κTµν . (4.24)

We know that the harmonic gauge is a strong enough constraint to remove all local gauge
freedom, as there are no local functions in the kernel of our new differential operator
L′ = �. Therefore, we have now made a gauge choice that deals with all the local gauge
freedom in our system. This means that Eq. (4.24) can be solved uniquely once the bound-
ary conditions are specified. We will see that there is still a global gauge freedom, but this
freedom affects the boundary conditions. We will return to the global gauge freedom when
we consider gravitational wave solutions in the next chapter.

4.3 Comparison to gauge fixing in electrodynamics
To better understand the gauge choices we have just made, we will briefly compare it to
the gauge fixing scheme in electrodynamics, which is easier to understand. For a gauge
transformation all physical observables are invariant. In linearized gravity the invariant
observable is the Riemann curvature tensor. In electrodynamics the invariant observable is
the stress-energy tensor Fµν , given by

Fµν = ∂µAν − ∂νAµ. (4.25)

The wave equation for Aµ, in a general gauge, is given by(
�δνµ − ∂ν∂µ

)
Aµ = Jµ. (4.26)

Eq. (4.26) is on the form of (4.2), where our linear operator is given byLνµ =
(
�δνµ − ∂ν∂µ

)
.

This linear operator has a nontrivial kernel, which consists in part of gauge symmetry. In
electrodynamics the gauge symmetry is easily seen by observing that that Fµν is invariant
under the transformation Aµ → Aµ + ∂µϕ. We can verify that ∂µϕ is in the kernel of Lνµ
by insertion,

Lνµ(∂µϕ) =
(
�δνµ − ∂ν∂µ

)
∂µϕ = 0. (4.27)

We observe that this is a local gauge symmetry, which by our discussion above means that
the propagation ofAµ is not deterministic. We therefore need to fix the gauge. We observe
that we can choose the Lorentz gauge, defined by

∂αA
α = 0, (4.28)

by choosing a ϕ that satisfies
�ϕ = −∂αAα. (4.29)

This is a wave equation that always have multiple solutions. In this gauge the second
term in the differential operator Lνµ vanishes. We can thus remove this term, and our
differential operator becomes invertible, which means we can solve for Aµ. Still there is a
gauge freedom left in our system. We see that a transformation Aµ → Aµ + ∂µϕ′, where
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4.3 Comparison to gauge fixing in electrodynamics

ϕ′ satisfies �ϕ′ = 0, is still permitted, and does not affect the Lorentz gauge condition.
The possible ϕ′ are on the form

ϕ′ = Re
(
Aeikσx

σ
)
, (4.30)

where A is a constant and kσ a null vector. We see that ϕ′ clearly affects the boundary
conditions, and thus this is a global gauge symmetry.

From this short discussion of gauge freedom in electrodynamics, we can draw very
clear comparisons to the gauge fixing procedure in linearized gravity. Both theories in-
clude a non-invertible linear operator in the equation of motion, due to local gauge sym-
metry. The process of fixing the local gauge is by choosing a transformation that ensures
that all but one of the terms in the linear operator are zero. This gives us a new linear
operator that is invertible. Also in both theories there is a global gauge symmetry still left,
which can be used to put constraints on the boundary conditions (the global gauge sym-
metry in linearized gravity is discussed in the next chapter). The reason why the gauge
fixing procedure in linearized gravity seems more complicated, is because the physical
freedom and the gauge symmetry appear mixed. All the entries of hµν have gauge free-
dom and physical freedom. However, they are linearly independent, as already discussed.
In electrodynamics the separation between gauge freedom and physical freedom is much
more evident, as Aµ has physically observable entries only on the off-diagonal, while the
diagonal entries only correspond to gauge freedom. We can thus conclude that the gauge
freedom in linearized gravity and electrodynamics, and the gauge fixing procedures, are
very similar in nature.
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Chapter 5
Gravitational wave solutions in
vacuum

Now we return to linearized gravity. We still need to fix the global gauge, and to do this
we will consider gravitational wave solutions in vacuum. The gauge we will choose can
only be chosen in vacuum. In vacuum Eq. (4.24) reduces to

�h̄µν = 0. (5.1)

We look for solutions on the form

h̄µν = Re
(
Hµνe

ikρx
ρ
)
, (5.2)

where Hµν is a constant symmetric complex matrix, and kµ is a wave vector. We sup-
press Re in our notation in the following for simplicity. Inserting Eq. (5.2) into our wave
equation, we see this is a solution if

kµk
µ = 0. (5.3)

This implies that kµ is a null vector, which means that the wave propagates at the speed of
light relative to the background Minkowski space. Imposing the harmonic gauge condition
gives

kνHµν = 0, (5.4)

and we see that the wave is transverse. We now consider the gauge freedom that is left in
our formulation. We want to find a coordinate transformation that preserves the harmonic
gauge. If we choose a four-vector ξµ that satisfies

�ξµ = 0, (5.5)

the harmonic gauge condition is still satisfied, as seen by Eq. (4.23). We see that we have
a freedom to choose a coordinate transformation xµ → xµ + ξµ(x), with ξ given by

ξµ(x) = Re
(
iXµe

ikρx
ρ
)
. (5.6)
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Chapter 5. Gravitational wave solutions in vacuum

Here kµ is a null vector, which ensures that Eq. (4.23) is satisfied, and Xµ is a real-valued
constant four-vector. We see that this is a global gauge freedom, as Xµ is constant. Using
Eq. (4.19), we see that our residual gauge freedom is then

H ′µν = Hµν + kµXν + kνXµ − ηµνkρXρ. (5.7)

Eq. (5.7) is a transformation with four degrees of freedom, given by the four components
ofXµ. This gauge choice affects our boundary conditions, as it is global. We can choose 4
constraints on our boundary conditions, which will in turn fix the global gauge. We select
four functions of Hµν that we will use to fix the gauge: 1

2H,H01, H02, and H03. By using
Eq. (5.7) we find that these components transform in following way:
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 , (5.8)

where ω = −k0 = k0. The transformation matrix is invertible, so we can choose
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
′

= 0 (5.9)

as a gauge condition, by setting
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 . (5.10)

Thus, we have fully fixed Xµ, which means that there is no more gauge freedom in our
system. By Eq. (4.20) and (5.4), this gauge choice satisfies

H0µ = 0, (5.11)

and
H = Hρ

ρ = 0. (5.12)

The last conditions shows that the waves are traceless. We already mentioned the waves are
transverse, and we therefore call this the transverse-traceless (TT) gauge. Now our gauge
is completely fixed. The gauge we have chosen has only traceless solutions. h̄µν = hµν
follows, and we can drop the bar notation. We also see that by choosing this gauge, we
have imposed constraints on our possible boundary conditions, given in Eq. (5.9). These
constraints are however only on the global gauge, and not the physical situations it allows.
All physical boundary conditions are still available and can be expressed in the harmonic
gauge 1. Our symmetric constant matrix Hµν originally had 10 independent entries. The

1As long as we are in vacuum. The gauge conditions have to be modified to allow for matter.
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5.1 Polarizations of Gravitational waves

choice of harmonic gauge, Eq. (5.4), gave four constraints, bringing us down to six inde-
pendent entries. The gauge condition of the TT gauge, Eq. (5.9), remove four more, bring-
ing us down to two independent degrees of freedom. We have now exhausted the gauge
freedom in the system, which means that the kernel of L that also satisfies the boundary
constraints, now only consists of functions describing physical waves. This means that
we have established a one-to-one relation between hµν and the boundary conditions, and
we can therefore solve for hµν when these are specified. This concludes our gauge fixing
process.

5.1 Polarizations of Gravitational waves
After fully fixing the gauge, we are left with two degrees of freedom inHµν . This freedom
corresponds to two different polarizations. We can demonstrate this by considering a wave
on the form given by Eq. (5.2), with a wave vector kµ = ω(1, 0, 0, 1). For this wave vector,
the harmonic gauge, Eq. (4.20), together with Eq. (5.11), gives the condition

H3ν = Hν3 = 0, (5.13)

and we see that only H11, H22, H12 and H21 are nonzero. Imposing now that Hµν is
traceless and symmetric, gives

Hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 . (5.14)

Here we clearly see two distinct polarizations, H+ andH×, which, together with the wave
frequency ω, completely characterizes a plane wave traveling in the x3-direction. For a
wave traveling in a general direction n̂, the spatial part of Hµν can be expressed as [12,
Ch. 1.2]

Hij = h+e
+
ij + h×e

×
ij , (5.15)

where the polarization tensors are defined as

e+
ij(n̂) = ûiûj − v̂iv̂j , e×ij(n̂) = ûiv̂j + ûj v̂i, (5.16)

where û and v̂ are unit vectors orthogonal to the propagation vector n̂ and each other.
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Chapter 6
Effects of gravitational waves on
test masses

In this chapter we want to discuss how gravitational waves interact with masses. We will
use the term test mass to describe a freely falling mass which is small compared to the
metric, so that the metric can be considered uniform over the whole mass. In the previous
chapters we have discussed the gauge dependence of GWs. In this chapter we will see that
our choice of gauge corresponds to a choice of coordinate system, which is important in
deriving the equations of motions for a test mass. This chapter is largely based on [12,
Ch.1].

6.1 Equation of geodesic deviation
In Newtonian physics, an object has zero acceleration in the absence of external forces. In
general relativity, the equivalent relation is called the geodesic equation (a derivation can
be found in [13, Ch. 8]), and is given by

d2xµ

dτ2
+ Γµνρ(x)

dxν

dτ

dxρ

dτ
= 0. (6.1)

This equation describes the motion of a test mass in a curved space, in the absence of
non-gravitational forces. The path such a particle follows is called a geodesic.

We now want to look at two nearby test masses, and how their separation vector
changes as we increase the proper time, as a function of the metric. Let the initial sep-
aration vector be given by ξµ, and using Eq. (6.1), we get

d2(xµ + ξµ)

dτ2
+ Γµνρ(x+ ξ)

d(xν + ξν)

dτ

d(xρ + ξρ)

dτ
= 0. (6.2)

We let |ξµ| be small compared to the scale of variation of the metric. We now take the
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Chapter 6. Effects of gravitational waves on test masses

difference between Eqs. (6.1) and (6.2), and expand to the first order in ξ, giving us

0 =
d2ξµ

dτ2
+ Γµνρ(x)

(
dξν

dτ

dxρ

dτ
+
dxρ

dτ

dξν

dτ

)
+ ξσ∂σΓµνρ(x)

dxν

dτ

dxρ

dτ

=
d2ξµ

dτ2
+ 2Γµνρ(x)

dxν

dτ

dξρ

dτ
+ ξσ∂σΓµνρ(x)

dxν

dτ

dxρ

dτ
(6.3)

To write it in a more elegant way, we introduce the covariant derivative along a curve
xµ(σ), in the following way

D

dσ
≡ dxµ

dσ
∇µ. (6.4)

Choosing σ = τ and using Eq. (A.16), the covariant derivative of a vector field V µ(x)
along x(τ) is

DV µ

dτ
=
dV µ

dτ
+ ΓµνρV

ν dx
ρ

dτ
. (6.5)

We can use this to simplify Eq. (6.3) which, after some algebra and by applying Eq. (A.4),
is equal to

D2ξµ

dτ2
= −Rµνρσξρ

dxν

dτ

dxσ

dτ
, (6.6)

which is the equation of geodesic deviation. This equation describes how the separation
vector between two nearby geodesics change as a function of curvature, expressed by the
Riemann tensor. It is important to note that ξµ is a coordinate length, not a proper length,
and therefore depends on the choice of coordinates. The gauge freedom in the theory is
therefore included in ξµ and Rµνρσ , as both the coordinate length as well as the Riemann
tensor depend on the choice of coordinate system.

6.2 Reference frame and the TT-gauge
We have already derived the TT-gauge, and the simple form the gravitational wave so-
lutions have in this gauge. Now we want to connect the TT-gauge to a reference frame,
which we will call the TT-frame. To do this we want to know what it means physically to
be in the TT-gauge. We answer this question by considering the geodesic of a test mass
initially at rest. We use the spatial part of Eq. (6.1), evaluated τ = 0, giving us

d2xi

dτ2

∣∣∣∣
τ=0

= −
[
Γiνσ(x)

dxν

dτ

dxρ

dτ

]
τ=0

= −

[
Γi00(x)

(
dx0

dτ

)2
]
τ=0

. (6.7)

Here i = {1, 2, 3}, and in the second line we have used that the initial velocity, dxi/dτ ,
is zero by assumption. The TT-gauge is valid in the linearized theory, so the Christoffel
symbol is given by Eq. (3.4), giving us

Γi00(x) =
1

2
(2∂0h0i − ∂ih00). (6.8)
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6.3 Proper length in the TT-frame

However, in the TT-gauge we have h0i = h00 = 0, and therefore Eq. (6.8) vanishes. Thus
the RHS of Eq. (6.7) is zero, which means that dxi/dτ remains at zero, from which it
follows that

d2xi

dτ2
= 0 (6.9)

for any τ . We see that in the TT-frame, any test mass initially at rest stays at rest even when
a gravitational wave passes, at least to linear order in hµν . This means that the coordinate
system can be defined by a letting a grid of free falling test masses define the coordinate
points. From this it follows that the coordinate length between two free falling masses,
initially at rest, never changes. We can show this by explicit calculation using Eq. (6.3),
evaluated at τ = 0. As our test masses are initially at rest, we have dxi/dτ = 0, and we
get

d2ξµ

dτ2

∣∣∣∣
τ=0

= −
[
2Γµ0ρ

dξρ

dτ
+ ξσ∂σΓµ00

]
τ=0

. (6.10)

Γ0
0ρ = Γ0

00 = 0 in the TT-gauge. We already showed that Γµ00 = 0 in the TT-gauge, and
we are left with the term depending on Γµ0ρ. In the TT-gauge, we also have Γ0

0ρ = 0.
Together with Γi00 = 0, this means we can exchange both µ and ρ with spatial indices,
j, i ∈ {1, 2, 3}. Now reviewing Eq. (3.4) for the remaining term in Eq. (6.10), we have

d2ξi

dτ2

∣∣∣∣
τ=0

= −
[
∂0hij

dξi

dτ

]
τ=0

. (6.11)

At τ = 0 we have dξi/dτ = 0. This means there is no acceleration, and dξi/dτ remains
at zero. Therefore the separation vector ξµ is a constant, as we have previously argued for.

6.3 Proper length in the TT-frame
Until now we have dealt with the coordinate lengths in the TT-frame, and we have seen
that the coordinate length is constant for stationary, free falling objects. Next we want to
calculate the proper length between our free falling test masses. We consider two masses
separated by an infinitesimal separation vector. We place the first test mass at the origin,
and one placed at (0, dx, dx, 0), giving us the separation vector ξµ = (0, dx, dy, 0). We
let a gravitational wave propagating in the x3-direction pass. The metric in the TT-frame
can be expressed in the following form (see Eqs. (5.2) and (5.14)),

hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 cos(k3x3 − k0t). (6.12)

The differential proper length ds is given by

ds =
√
−gµνdxµdxν . (6.13)

At xµ = 0 we have cos(k3x3 − k0t) = 1, and the infinitesimal proper length is then

ds =
√

(1 +H+)dx2 + (1−H+)dy2 + (2H×)dxdy. (6.14)
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Chapter 6. Effects of gravitational waves on test masses

Inserting for the cases for dy = 0 and dx = 0, gives us

dsx =
√

1 +H+dx (6.15)

dsy =
√

1−H+dy, (6.16)

and we see that the H+-polarization stretches the proper length in the x-direction, and
contracts the proper lengths in the y-direction. Similarly, the H×-polarization stretches
the proper length in the xy-direction, and contracts the proper length in the negative xy-
direction. This is shown in Figures 6.1 and 6.2.

Figure 6.1: Diagram showing the effects of an H+-polarized wave on a ring of particles. Time
evolution is to the right, and the wave propagates in the z-direction. Figure courtesy of Sean Carroll,
[14].

Figure 6.2: Diagram showing the effects of an H×-polarized wave on a ring of particles. Time
evolution is to the right, and the wave propagates in the z-direction. Figure courtesy of Sean Carroll,
[14].

Before we proceed on, it is appropriate that we discuss the results we have obtained so
far. We have seen that the TT-gauge corresponds to a coordinate system defined by free
falling masses. A freely falling object will therefore not change its coordinate position due
to a passing gravitational wave. This is counter-intuitive from a Newtonian perspective.
From Newtonian physics we are used to gravity as an accelerating force, and we would
therefore expect the test masses to be accelerated. We will see that this does indeed happen
if we use a different frame of reference, although the nature of the acceleration will be
different from that of a particle in a stationary gravitation fields. In the discussion above
we let our reference frame be decided by the TT-gauge choices, which means the reference
frame is perturbed to account for the change in proper length between the free falling
masses. Another reference point we can chose is a rigid ruler. Do we have something
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6.4 Defining the detector frame

that approximates a rigid ruler? Yes. The physical laws that determine atomic spacing in
normal materials, the Coulomb force and the nuclear forces, depend on the proper length,
and are orders of magnitude stronger than the gravitational force. Thus the length of a
physical object will be dominated by non-gravitational forces, and the proper length will
stay fixed. Therefore the next frame we will investigate is the detector frame, which is
spanned by idealized rigid rulers. This is essentially the coordinate system spanned by
markers in a lab, and is therefore more intuitive to work in. In this frame we expect
particles that are free to move to be accelerated by gravitational waves.

6.4 Defining the detector frame
To construct the detector frame we will evoke some results from differential geometry. It
is always possible to perform a change of coordinates so that all the Christoffel symbols
vanish at the origin. We then let the spatial origin of our coordinate system follow the
geodesic of a fictitious test mass placed in the origin; this is called a free falling coordi-
nate system. We then use three spatial orthogonal basis vectors, with a coordinate length
defined as the proper length along the vector, and let the coordinate time be defined by the
proper time of the geodesic, i.e. t = τ . Lastly, we attach gyroscopes to the basis vectors,
which ensures the coordinate system rotates with a free falling system. This guarantees
that our coordinate system is a Local Lorentz frame at any time, where the Christoffel
symbols vanish at the spatial origin at any time [12, Ch.1].

We now restrict our coordinate system to a sufficiently small region of space, and we
can calculate the metric in orders of the spatial component xi. To first order the metric
is just the Minkowski metric of flat spacetime, which follows from the fact that we have
chosen a coordinate system where all the Christoffel symbols vanish at the spatial the
origin. The line element ds2(xi) in this coordinate system can be found, and is given in
[12, Eq. 1.87] to second order in xi, as

ds2 = −dt2
[
1 +R0i0jx

ixj
]
− 2dtdxi

(
2

3
R0jikx

jxk
)

+dxidxj
[
δij −

1

3
Rikjlx

kxl
]

+O
[
(xi)

3
]
, (6.17)

with the Riemann tensor evaluated at xµ = (τ, 0). In this frame we can investigate what
happens with a free falling test mass, initially at rest at (0, xi), where xi small, under the
influence of a gravitational wave. We again use Eq. (6.3). The Christoffel symbols are
zero in the vicinity of (t, 0), so we immediately get

d2xµ

dτ2
= −xσ∂σΓµνρ(0)

dxν

dτ

dxρ

dτ
. (6.18)

We know that the time derivatives of the Christoffel symbols in the vicinity of the spatial
origin are zero, as we have Γρµν(t, 0) = 0 for any t. We also haveRi0j0 = ∂jΓ

i
00−∂0Γij0 =

∂jΓ
i
00. Inserting this into (6.18) gives us

d2xi

dτ2
= −Ri0j0xj

(
dx0

dτ

)2

. (6.19)
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Chapter 6. Effects of gravitational waves on test masses

The proper time τ relates to the coordinate time as dτ2 = dt2 +O(h2). This follows from
a linear dependence on h of the velocity introduced by a gravitational wave. If we restrict
ourselves to linear order in h, Eq. (6.19) becomes

ẍi = −Ri0j0xj . (6.20)

We now want to evaluate the Riemann tensor. In the linearized theory of gravity the
Riemann tensor is invariant, as seen by Eq. (4.14). This means that no components of
the Riemann tensor changes under a gauge transformation, and we are thus permitted to
calculate the Riemann tensor in any gauge we like. For simplicity, we chose the TT-gauge.
From Eq. (A.4), and using that only the purely spatial part of hµν is non-zero in the
TT-gauge, Eq. (6.20) simplifies to

ẍi =
1

2
ḧTTij x

j . (6.21)

From this equation we see that in the detector frame, the gravitational wave can be ob-
served as a Newtonian acceleration, or equivalently as a force through ~F = m~a, where the
acceleration depends on the spatial separation vector xj . The form of the equation mirrors
Newtonian gravity, but at the same time shows how different the effects of gravitational
waves are from a static gravitational field. The acceleration from a GW has no intrinsic
direction, and is uniform in space, on lengths small compared to the wavelength. The di-
rection and magnitude depends on the separation from where you are measuring, i.e. the
spatial origin of the coordinate system. The gravitational force from the GW is intrinsic in
space, whereas .

To fully understand what this means, and also shed some light on the detector frame,
we want to do a thought experiment. We consider two free falling objects, A and B,
separated by a rigid object of length L. We assume that object L is stationary in the
coordinate system. In panel 1 of Figure 6.3 we have shown the initial situation. We now let
a gravitational wave pass our system, with a propagation vector normal to the paper plane,
and consider a time where the axis along our system is stretched. We place the origin of
our detector frame in point A. Here the Christoffel symbols vanish, and A therefore stays
in the center during free fall. We want to consider what happens to the coordinates of the
free falling mass B. From Eq. (6.21), we see that mass B has accelerated out compared to
the rigid ruler of length L. This is shown in panel 2. The distance d is proportional to the
length L and the strain (defined as ∆L/L) of the gravitational wave. In panel 3 we have
set the same requirements, just assuming we place mass B in the center of our detector
frame instead. We see that panel 2 and panel 3 show physically different scenarios, and can
therefore not describe the same physical situation. Therefore it seems our argumentation
is flawed. The reason for this error is that the rigid ruler is not in free fall in point A and
B, which we used as an assumption. When the GW passes, the Coulomb forces in the
ruler act against the forces from the GW, preventing a change in the length of the ruler.
The center of the ruler is in free fall, as the Coulomb forces from the two arms cancel, but
as you go out to either side, this is no longer the case. At the ends of the ruler, i.e. point
A and B, the Coulomb forces only act to one side, pulling the ends of the ruler towards to
center. Therefore, point A and point B are not in free fall. We have to place the origin of
our free falling coordinate system in the center of mass of L, and we get panel 4, which
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6.4 Defining the detector frame

shows the correct state of the system when a GW passes. Thus we see that a rigid objects
break the translational symmetry of Eq. (6.21), which follows from the requirement of
having the origin of the coordinate system follow a geodesic.

Figure 6.3: This figure highlights the restriction of placing the origin, in constructing the detector
frame, see main text for details.

The above discussion of the detector frame is relevant for detection of gravitational
waves on earth. However there are some challenges that we need to discuss. We derived
Eq. (6.21) for a freely falling, non-rotating coordinate system. A Lab on the Earth, how-
ever, is not in free fall, and also rotates relative to a local gyroscope, as demonstrated by
Foucault pendulum. Furthermore, there are time varying changes in the static gravitational
field due to distance to other stellar objects, such as the Sun and the Moon. Also, a Lab on
the Earth is connected to the Earth, which is a large object, which to some degree is rigid.
We will deal with these challenges in two steps. First, we will consider how Eq. (6.21)
changes when the center of the coordinate system to a rigid object, i.e. having a lab placed
in point A in the situation shown in Figure 6.3. Second, we will briefly describe how we
can select the contribution from GWs from a myriad of other sources.

We want to consider what happens when we shift the spatial origin of the lab frame. In
the lab frame, the spatial center is placed in the center of mass, which means calculations
will follow Eq. (6.21). We now make a coordinate transformation by shifting the spatial
center, transforming our coordinates by x′µ = xµ + ξµ, where ξ = (0, ξi) is a constant
spatial vector. The constancy of ξi shows that the center of the transformed coordinate
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system is connected to the center of the old coordinate system by a rigid ruler. The shift of
the spatial origin does not change under the effect of GWs. We see that we can modify Eq.
(6.21) to be used in the transformed coordinate system, and by simple insertion we have

ẍ′i =
1

2
ḧTTij (x′j + ξj). (6.22)

We see that there is a contribution from the deviation from the center of mass. However, if
we consider a relative acceleration of two free falling masses in the shifted coordinate sys-
tem, the contribution from 1

2 ḧ
TT
ij ξ

j cancels, and we can use Eq. (6.21) in this case. Thus
for an Earth based lab, this issue is dealt with by having two test masses, and measuring
the relative distance between them.

The second challenge we have for an Earth based detector are all the (gravitational
and inertial acceleration) contributions from other sources than GWs. We already know
that gravitational waves are very weak, and we expect the effect of the other sources to
be much stronger than that of gravitational waves. The solution is quite simple. We start
by suspending the free test masses in pendulums. This restricts the radial motion of the
test masses, thus cancelling the effects of the stationary gravitational field. It also allows
the test masses to move freely, for low deviations, in the plane parallel to the Earth. Now,
all the different contributions, i.e. Coriolis force, centrifugal acceleration, positions of the
Moon, etc., as well as the GWs, will affect the position of the test masses. Luckily, other
than GWs, all these contributions vary slowly in time, with a frequency lower than a few
Hz, while the typical frequency of detectable GWs are in the order of 100 Hz. We can
therefore consider the position of the test masses due to all other sources as a the base
position, and look for high-frequency variation from this position. This is achieved by
looking only at the high-frequency components of the Fourier transformed signal.

From this discussion we see how the ground-based interferometer from the introduc-
tion, shown in Fig. 1.2, can successfully detect gravitational waves, by hanging its mirrors
in pendulums and Fourier transforming the signal. We have also successfully connected
the gauge choice of the gravitational wave, with a coordinate choice used for detection,
where we can calculate their expected effects.
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Chapter 7
The stress-energy tensor of
gravitational waves

An aspect of gravitational wave theory that has been the subject of much debate, is the en-
ergy carried by gravitational waves. This is due to the difficulty of separating the effects of
the choice of coordinate system from physical effects, as well as the problem of localizing
the energy. In the following discussion we will see how we can derive the energy of GWs,
and overcome the challenges mentioned here.

7.1 Second-order expansion of the metric around flat space-
time

As previously noted, the Einstein field equations are non-linear. Thus far we have used a
linear approximation in h, and we want to see what happens if we include second order
terms. This means that we will allow our metric to be expanded as

gµν = ηµν + hµν + h(2)
µν , (7.1)

where the components of h(2)
µν are of order h2. We want to find the Einstein tensor of this

metric, up to second order in h. We can write the Einstein tensor into terms of different
powers of h. The second order term will consist of a term quadratic in h and a term linear
in h(2). Thus we have

Gµν = G(1)
µν [h] +G(2)

µν [h] +G(1)
µν [h(2)] +O(h3), (7.2)

where the superscript denotes linear or quadratic dependence on the argument. The first
order term of the Einstein tensor is just what we calculated in the weak-field approxima-
tion, given in Eq. (3.8). The calculation ofG(1)

µν [h(2)] is exactly the same as that ofG(1)
µν [h]

with a different argument, and we can simply make the substitution h→ h(2) in Eq. (3.8).
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To calculateG(2)
µν [h], we start by expandingR andRµν in the same way as we did forGµν ,

obtaining
Rµν = R(1)

µν [h] +R(2)
µν [h] +R(1)

µν [h(2)] +O(h3), (7.3)

and
R = R(1)[h] +R(2)[h] +R(1)[h(2)] +O(h3). (7.4)

We can now calculate G(2)
µν [h] by inserting Eqs. (7.3) and (7.4) into Eq. (2.19), and

collecting the terms quadratic in h, giving us

G(2)
µν [h] = R(2)

µν [h]− 1

2
R(1)[h]hµν −

1

2
R(2)[h]ηµν . (7.5)

From the definition of the Ricci scalar, Eq. (A.6), we get

R(2)[h] = ηµνR(2)
µν [h]− hµνR(1)

µν [h], (7.6)

where the minus sign comes from the inverse form of the metric.
We now consider the vacuum. hµν satisfies the linear Einstein field equations in the

vacuum, which means G(1)[h] = 0. Requiring that the Einstein tensor vanish therefore
means that the terms quadratic in h have to cancel against the terms linear in h(2), in the
following way,

G(2)
µν [h] +G(1)

µν [h(2)] = 0. (7.7)

In the vacuum we have R(1)
µν = 0, which can be seen by Eq. (3.6). Thus, by using this and

Eqs. (7.5) and (7.6), we obtain

G(2)
µν [h] = R(2)

µν [h]− 1

2
ηρσR(2)

ρσ [h]ηµν . (7.8)

Now, Eq. (7.7) can be rewritten as

G(1)
µν [h(2)] = −

(
R(2)
µν [h]− 1

2
ηρσR(2)

ρσ [h]

)
. (7.9)

This effectively is an equation of motion for h(2)
µν that depends on the linear term hµν .

Thus, this equation shows that h(2)
µν is a non-linear correction term to the linear Einstein

field equations. Furthermore, by comparison to Eq. (2.18), we see that the RHS of Eq.
(7.9) acts as a matter field for h(2)

µν . It is therefore natural to define tµν as

tµν = − 1

κ
G(2)
µν [h]

=
1

κ

(
R(2)
µν [h]− 1

2
ηρσR(2)

ρσ [h]

)
. (7.10)

With h′µν = hµν + h
(2)
µν , we have

G(1)
µν [h′] = κ (Tµν + tµν) (7.11)

to first order in h′µν , which means tµν affects the metric like an stress-energy tensor.
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We next consider the contracted Bianchi identity on the form given in Eq. (B.2),

gµρ∇ρGµν = 0. (7.12)

We can expand this in orders of h, using

gµρ = ηµρ − hµρ +O(h2), (7.13)

∇ρ = ∂ρ + Γ[h] +O(h2), (7.14)

where Γ[h] denotes some dependence on the Christoffel symbols of order h, as well as our
expansion of Gµν given in Eq. (7.2). To first order in h, Eq. (7.12) is

∂µG(1)
µν [h] = 0. (7.15)

The Bianchi identity holds for an arbitrary metric that is metric compatible, and we have
not yet imposed any restrictions on h. Therefore, Eq. (7.15) holds to first order for an
arbitrary metric perturbation, i.e. we can choose h = h(2). The second order-term of Eq.
(7.12) is

∂µ
(
G(1)
µν [h(2)] +G(2)

µν [h]
)

+ Γ[h]G(1)[h] = 0. (7.16)

Here the last term has dependence on the Christoffel symbols and the first-order Einstein
tensor. Now we impose the requirement that hµν satisfy the linear Einstein equations,
which means that the last term vanishes. Furthermore, the term G

(1)
µν [h(2)] is also zero,

which follows from Eq. (7.15). Thus, (7.16) reduces to

∂µG(2)
µν [h] = ∂µtµν = 0. (7.17)

We now know that tµν is symmetric, quadratic in the metric perturbation hµν , and con-
served when hµν satisfies the linear Einstein equations in vacuum. In addition, it serves as
a source for the second order corrections to the metric, and is therefore a natural candidate
for the stress-energy tensor of the linearized gravitational field. However, we will see that
this statement requires more consideration.

7.2 Gauge dependence of tµν
To understand whether tµν can be a suitable candidate for the stress-energy tensor for
GWs, we need to consider its gauge dependence. We start by discussing what we mean
by gauge dependence. The principle of general covariance states that the form of the laws
of physics should be invariant under general diffeomorphisms, i.e. coordinate transfor-
mations. Einstein’s field equations equates the stress-energy tensor Tµν with the Einstein
tensor Gµν , constructed entirely from the metric gµν and its derivatives. Under a coordi-
nate change xµ → x′µ the tensors Gµν and Tµν transform covariantly, i.e. as

T ′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
Tρσ. (7.18)

Because Tµν and Gµν transform in the same way, Einstein’s field equations hold in all
coordinate systems. We have already seen how, in linearized gravity, hµν follows a differ-
ent transformation law (see Eq. (4.13)). We call this a gauge dependence because we can
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Chapter 7. The stress-energy tensor of gravitational waves

change the form of hµν through a coordinate transformation, i.e. to satisfy ∂µhµν = 0.
However, the quantities corresponding to physical observables, such as the stress-energy
tensor Tµν and the Ricci tensor Rµν , always transform as in Eq. (7.18). This is a re-
quirement that follows from the principle of general covariance, to keep the form of the
physical laws the same in all coordinate systems. Thus, for tµν to be a valid stress-energy
tensor, we need it to transform according to Eq. (7.18). From Eq. (7.10), we see that tµν
depends on the quadratic part of the Ricci tensor. Eq. (A.5) gives the expression for the
Ricci tensor, and by only keeping terms that are quadratic in h, we get the expression for
R

(2)
µν [h]. The terms with derivatives of the Christoffel symbols are quadratic in h, so they

do not contribute. We obtain

R(2)
µν [h] = Γγγλ[h]Γλµν [h]− Γγνλ[h]Γλγµ[h]. (7.19)

Now we use the equation for the Christoffel symbols in the linear theory, given in Eq.
(3.4), giving us

R(2)
µν [h] =

1

2
hρσhρσ,µν +

1

4
hρσ,µh

ρσ
,ν + hρ ,σ

ν hµ[ρ,σ] − hρσhσ(ν,µ)ρ

+
1

2
∂σ(hρσhµν,ρ)−

1

4
hµν,ρh

,ρ − (hρσ,σ −
1

2
h,ρ)hρ(ν,µ), (7.20)

where we have introduced the following notation,

A(ν,µ) =
1

2
(Aν,µ +Aµ,ν), (7.21)

A[ν,µ] =
1

2
(Aν,µ −Aµ,ν). (7.22)

We know that we can always make a coordinate transformation that sets the Christoffel
symbols to zero at a point, i.e. using Riemann normal coordinates. By looking at Eqs.
(7.10) and (7.19), this means that for any point in spacetime, we can make a gauge trans-
formation that sets tµν = 0 at that point. The same thing can not be said of a tensor
that transforms as (7.18). Therefore we know that tµν does not transform as a covariant
tensor, and we say that tµν is gauge dependent. This disqualifies tµν as a stress-energy
tensor. We can make this point clearer by considering Eq. (7.11) again. Here we see that
hµν + h

(2)
µν satisfies the linearized Einstein field equations for a stress-energy tensor given

by Tµν + tµν . However, the LHS of Eq. (7.11) is gauge invariant, while the RHS is not
gauge invariant due to tµν . Thus, promoting tµν to the stress-energy tensor of GWs in
linearized theory leads to breaking the principle of general covariance. However, we have
already shown that tµν fulfills many of the requirements of an stress-energy tensor, and we
will therefore pursue the idea further.

7.3 Gravitational waves in curved spacetime
In a pursuit to understand the full meaning of Eq. (7.10) it is necessary to take a more
sophisticated approach. In the above section we looked at small perturbations of the metric
about flat spacetime. As a first approximation, this is a very useful approach. However,
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7.3 Gravitational waves in curved spacetime

by allowing gravitational waves to carry energy, we are allowing the waves to curve the
background on which they are propagating. Above, this extra curvature was expressed by
h

(2)
µν . By allowing the background metric to be perturbed by the GWs we will gain new

insight into the problem.
In this section I will discuss some of the important ramifications of allowing a gen-

eral background metric, without going into detail of the mathematical derivations. A full
discussion can be found in [12, Ch. 1].

We define our metric as
gµν = gBµν + hµν , (7.23)

where gBµν is a slowly changing background metric, and hµν is our familiar perturbation.
Here we meet one of the important distinctions we have to make. There is in general no
unambiguous way to make the separation of Eq. (7.23). When we looked at perturbations
about flat spacetime, the separation was automatic, whereas here we need to define which
part of the metric is background and which part is the GW. To be able to distinguish the
perturbations from the background, we need that gBµν varies slowly compared to hµν , either
spatially or temporally. To express this condition, we can use LB as the scale on which
gBµν changes and fB as the maximal frequency of its Fourier decomposition, and λ as the
typical scale where hµν changes and f as its typical frequency. The separation can be
made if either one of the following two conditions are met,

λ� LB , (7.24)
f � fB . (7.25)

It is most common to discuss the case where Eq. (7.24) is met, and we will assume that this
condition is met here, although both cases are equivalent for the purpose of this discussion.
We choose a coordinate system where the the components of gBµν are of order 1, which can
always be done for a region of space, and require that the components of hµν are small
compared to those of gBµν . We will see that this latter condition follows from Eq. (7.24).

To find the equations of motion for hµν we follow a similar strategy to the discussion
above, and expand the Ricci tensor in orders of h, as

Rµν = RBµν +R(1)
µν +R(2)

µν +O(h3). (7.26)

Here RBµν depends only on gBµν , R(1)
µν is linear in h, and R(2)

µν is quadratic in h. We note

that we have no term corresponding to R(1)
µν [h(2)] in Eq. (7.3), as h(2)

µν is in this formu-
lation incorporated into gBµν . Furthermore, we recast the Einstein’s field equations in the
following form,

Rµν = κ

(
Tµν −

1

2
gµνT

)
, (7.27)

which is obtained by calculating the trace of Tµν , and eliminating the term depending on
the Ricci scalar from the LHS of Eq. (2.18). Now we look at the terms in Eq. (7.26),
from the perspective of our separation condition Eq. (7.24). We want to separate the
terms in accordance with the scale at which they vary. RBµν varies slowly as it depends

only on a slowly varying background metric. R(1)
µν depends linearly on hµν , and therefore
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varies quickly. R(2)
µν depends quadratically on hµν , and therefore has both high- and low-

frequency modes, where the low-frequency modes can be formed as ∼ hµνhσρ, with k1 '
−k2. Thus, we combine Eqs. (7.26) and (7.27) into the following two equations,

RBµν = −
[
R(2)
µν

]Low
+ κ
(
Tµν −

1

2
gµνT

)Low
, (7.28)

and

R(1)
µν = −

[
R(2)
µν

]High
+ κ
(
Tµν −

1

2
gµνT

)High
. (7.29)

For the case where Tµν = 0, we see that in Eqs. (7.28) and (7.29) we have equated terms
of different order in h. This is fine as we have an auxiliary small expansion parameter,
namely the ratio λ/LB (or fB/f in the case of Eq. (7.25)), which can compensate for the
smallness of h. Furthermore, this means that the relative strength of these parameters are
decided by the Einstein field equations. We can find this relation, by comparing orders of
magnitude.

The expressions for R(1)
µν and R(2)

µν are given in [12, Sect. 1.4], as

R(1)
µν =

1

2

(
∇Bα∇Bµ hνα +∇Bα∇Bν hµα −∇Bα∇Bαhµν −∇Bµ∇Bν h

)
, (7.30)

R(2)
µν =

1

2
gBρσgBαβ

[
1

2
∇Bµ hρα∇Bν hσβ + (∇Bρ hν)(∇Bσ hµβ −∇Bβ hµσ)

+ hρα(∇Bν ∇Bµ hσβ +∇Bβ∇Bσ hµν −∇Bβ∇Bν hµσ −∇Bβ∇Bµ hνσ)

+ (
1

2
∇Bαhρσ −∇Bρ hασ)(∇Bν hµβ +∇Bµ hνβ −∇Bβ hµν)

]
, (7.31)

where∇B denotes the covariant derivative with respect to the background metric gBµν . The
exact form of these equations is not relevant for this discussion, but we are interested in
the form of the terms. We see that R(2)

µν contains both terms of order (∂h)2 and h∂2h, and
we assume that the projection onto low-frequency modes will be of order (∂h)2. In orders
of magnitude Eq. (7.30) then reads

RBµν ∼ (∂h)2. (7.32)

This expressed that the background curvature RBµν depends quadratically on h. As a quick
note, we can compare this to our expansion in flat spacetime, where we found Eq. (7.9)
as an equation of motion for h(2)

µν , which also depends quadratically on h. This implies
that h(2)

µν does indeed contain information on how the background metric is curved by the
metric perturbation hµν , which we already expected. What has happened to h(2)

µν in this
section is that its low-frequency modes have been included in gBµν , and its high-frequency
modes are now a included in hµν .

Continuing our analysis of the orders of magnitude, we know that gBµν changes on the
length scale LB , and thus we have

∂gBµν ∼
1

LB
, (7.33)
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while hµν changes over the length λ which gives

∂hµν ∼
h

λ
. (7.34)

RBµν is contracted with gBµν , and from Eq. (A.4) we therefore have

RBµν ∼ ∂2gBµν ∼
1

L2
B

. (7.35)

Combining now Eqs. (7.32), (7.34) and (7.35), we obtain

1

L2
B

∼
(
h

λ

)2

, (7.36)

or,

h ∼ λ

LB
. (curvature determined by GWs). (7.37)

This holds for Tµν = 0. If we allow matter sources, these contributions will be much larger
than those of the GWs, and we will have 1/L2

B ∼ (matter contrib.)� h2/λ2, which gives

h� λ

LB
. (curvature determined by matter). (7.38)

From this we see that the condition that the order of h is much smaller then that of gB

follows naturally from the requirement that λ/LB � 1, which is needed to separate out
the GW from the background. We also see that in the linearized theory, where we set 1/LB
to zero, we can not satisfy h . λ/LB . Strictly speaking, this expansion is therefore not
valid, as the background can not be flat if there is a gravitational wave present there. It is
however, still a useful calculation that can help us gain some understanding of the system.

7.4 Obtaining the correct stress-energy tensor of gravita-
tional waves

We now return to the expansion about flat spacetime from section 7.1, with the new-found
knowledge from our discussion above. Most importantly we have seen that only the low-
frequency modes of R(2)

µν contribute to the curvature of the background metric in the full
theory. As the stress-energy tensor is the source of curvature in general relativity, we can
assign the low-frequency modes of R(2)

µν as the stress-energy tensor of GWs. Considering
again the flat spacetime approach, only the low-frequency modes of Eq. (7.9) should
contribute to background curvature, and thus be a part of the stress-energy tensor. We
therefore expect to obtain a correct stress-energy tensor of the GWs if we project Eq. (7.10)
onto the low-frequency modes. This can be done by averaging over several wavelengths,
as the low-frequency modes will be practically constant, and the high-frequency modes
will average out to zero. We therefore state the correct form of tµν as,

tµν =
1

κ

〈
R(2)
µν [h]− 1

2
ηρσR(2)

ρσ [h]

〉
, (7.39)
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where 〈. . .〉 signify an average over several wavelengths. We will not show it here, but this
can indeed be shown to be gauge invariant.

Above we saw that if we do not average tµν it is not gauge invariant, which theoreti-
cally brings up several questions. The gauge dependence arises locally from the require-
ment of a length scale. To make an unambiguous separation of a wave from a background
metric, we need to define a length scale on which the wave varies, and we need to look
at a section of spacetime where this length scale is defined. Locally, this can not be done,
and the GW and the background metric is mixed under a gauge transformation. However,
when we move to a macroscopic description, where the separation between the GWs and
background metric is clear, this gauge dependence disappears. It is important to note that
the averaged form of tµν was not something we imposed to deal with the gauge depen-
dence, but rather it came out naturally in section 7.3, as a result of the short wave condition
given in Eq. (7.24).

Another important interpretation of the averaged form of Eq. (7.39), is the inability to
localize the energy of a GW. It is not possible to state exactly where in the wave the energy
is carried, but rather we can state the total energy in a region of some wavelengths. This
also follows because locally we cannot separate a gravitational wave from the background
metric.

7.5 Energy of a GW in the TT-gauge.
Now we want to calculate tµν , as defined in Eq. (7.39), in the TT-gauge. In Eq. (7.20) we
gave the expression for R(2)

µν [h] in a general gauge. From [15, Ch. 7.6] we see that, in the
TT-gauge, this reduces to

RTT (2)
µν [h] =

1

2
hρσTT∂µ∂νh

TT
ρσ +

1

4
(∂µh

TT
ρσ )∂νh

ρσ
TT +

1

2
ηρλ(∂σhTTρν )∂σh

TT
λµ

− 1

2
(∂σhTTρν )∂ρhTTσµ − h

ρσ
TT∂ρ∂(µh

TT
ν)σ +

1

2
hρσTT∂σ∂ρh

TT
µν . (7.40)

Under the averaging operator 〈. . .〉, a total derivative gives zero, as a boundary term. This
follows because the metric varies . This gives the following relation,

〈A(∂µB)〉+ 〈(∂µA)B〉 = 〈∂µ(AB)〉 = 0,

〈A(∂µB)〉 = −〈(∂µA)B〉 . (7.41)

The by applying Eq. (7.41) on the last three terms of Eq. (7.40), we get terms on the form
∂σhσα∂h. In the TT-gauge we have that ∂µhTTµν = 0, and therefore the last three terms of
Eq. (7.40) vanish. This leaves us with〈

RTT (2)
µν

〉
= −1

4

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT ) + 2ηρλ(�hTTρν )hTTλµ

〉
. (7.42)

We also know that hTTµν satisfies the wave equation in the TT-gauge, given in Eq. (4.24).
Setting Tµν = 0 in vacuum leads to �hTTµν = 0, and we obtain〈

RTT (2)
µν

〉
= −1

4

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT )

〉
. (7.43)
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Now we can take the trace of this expression to find the Ricci scalar,〈
ηµνRTT (2)

µν

〉
= −1

4

〈
ηµν(∂µh

TT
ρσ )(∂νh

ρσ
TT )

〉
=

1

4

〈
(�hTTρσ )hρσTT

〉
= 0, (7.44)

where we have used the relation in Eq. (7.41) in the second line. Returning now to our
expression for tµν , Eq. (7.39) can be expressed in the TT-gauge as,

tµν =
1

4κ

〈
(∂µh

TT
ρσ )(∂νh

ρσ
TT )

〉
. (7.45)

For a single wave, with a perturbation metric given by Hµν cos(kρx
ρ) (see Eq. (5.2)), the

stress-energy tensor is given as

tµν =
1

4κ
kµkνHρσH

ρσ
〈
sin2(kρx

ρ)
〉
. (7.46)

The sine term averages to 1/2. With the same wave vector as we have previously used,
kµ = ω(−1, 0, 0, 1), and using Eq. (5.14) as the polarization matrix Hµν , we get

HρσH
ρσ = 2(H2

+ +H2
×). (7.47)

The final expression for the tµν becomes

tµν =
2ω2

4κ
(H2

+ +H2
×)


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

 . (7.48)
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Chapter 8
Gravity as a field theory

Up until now we have treated gravity as a geometrical theory, starting from Einstein’s
postulate that space and time exist as a Riemannian manifold curved by mass and energy.
This theory has enjoyed enormous success and its predictions, such as the existence of
gravitational waves, have been confirmed by experiments. The important fact that moti-
vated Einstein to recast gravity as a geometric theory, was that the inertial mass involved
with acceleration was exactly equal to the gravitational mass involved with the gravita-
tional force. Einstein took this equality seriously, and postulated that gravitational force
and acceleration were two sides of the same coin, where gravitational force is the result of
acceleration associated with curvature. In his theory gravitational mass is simply inertial
mass, and the equality is explained.

In the century since Einstein, other branches of physics have emerged, and notable
among them is quantum field theory (QFT). This framework have provided striking accu-
racy in experiments regarding particles, and is our best attempt at describing the world on
the smallest scales. It is therefore natural to try to unify gravity with QFT. As it stands,
general relativity is fundamentally different from a quantum field theory, as it treats space-
time itself as a dynamical field, whereas QFTs treat spacetime strictly as a background
over which the field propagates. A natural question is therefore if it is possible to formu-
late gravity using the same framework - as a field theory living in flat spacetime. We then
require that the geometric interpretation should fall out as a result of the theory. Thus, we
forget that gravity has a geometric interpretation, which means that the curved Riemann-
manifold of general relativity no longer exist, and instead we formulate gravity as the result
of a quantum field living in Minkowski space. We will see that we are able to retrieve the
full non-linear structure of gravity from only simple assumptions, and also that the geom-
etry of gravity emerges naturally. One of the earliest physicists to follow this approach
was Richard Feynman. He held a lecture series on this subject at Caltech in the academic
year of 1962/63, which later turned into a book, [16]. In this chapter I will partly follow
Feynman’s derivation, but also loan arguments from chapter 2 of [12].
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8.1 Gravity mediated by a massless spin-2 boson
We want to postulate a new fundamental quantum field which can give rise to the gravita-
tional force. We know from Newtonian physics, that in the non-relativistic limit gravity is
an attractive force coupling to the mass. We want our field to couple to a local quantity,
and we can easily make a guess as to what this is - the stress-energy tensor Tµν . Its 00-
component is the energy density, whose spatial integral in the non-relativistic limit gives
the mass. It also satisfies the Lorentz transformation properties of special relativity. Thus,
Tµν seems like a good choice.

In quantum field theories interactions are mediated by bosons of integer spin. We know
that odd spin leads to a theory where likes repel, and even spin gives an attractive theory.
We must therefore consider spins 0, 2, 4, etc [16, Ch. 3.1]. A spin-0 field can only consis-
tently couple to Tµν by the trace Tµµ , because we require rotational invariance. However,
this would mean that photons, which have an anti-symmetric stress-energy tensor Fµν ,
does not couple to gravity. We know that this is not true from experiments of light rays be-
ing deflected by gravity. We can therefore exclude spin-0, and instead focus our attention
on spin-2, and hope that we do not have to consider more complicated theories.

To formulate a theory with a spin-2 field, we need a spin-2 representation of the
Lorentz group. The smallest tensor that contains a spin-2 representation is a traceless
symmetric tensor Sµν , which under rotations decompose as,

Sµν ∈ 0⊗ 1⊗ 2, (8.1)

where⊗ denotes the direct sum, and 0, 1 and 2 are representations of a given spin, i.e. 1 is
a vector representation. The trace of a tensor transforms as a scalar, so a general symmetric
tensor hµν decomposes as hµν ∈ 0⊗ (0⊗ 1⊗ 2). We will use hµν as a starting point. We
know that a massive spin-s particle has 2s + 1 degrees of freedom, meaning a symmetric
tensor hµν has five degrees of freedom corresponding to the spin-2 representation, three
for the spin-1 and the remaining two degrees of freedom for the two scalars. This means
a gravitational field should have at most five degrees of freedom. However, this number
can be reduced. We know that gravity is a long range force, and we still have not found
a bound on the range of the interaction. Therefore it is natural to assume that gravity is
mediated by a massless particle, as the mass of the boson gives a factor e−αmr in the
interaction, where α is a constant. A massless particle always has two helicity states, ±s.
This means that only two of the degrees of freedom in hµν are physical.

8.2 Constructing a Lagrangian
Now we want to construct a Lagrangian using the above field hµν . We immediately note
that we need to have a gauge freedom in the Lagrangian which eliminates the eight extra
degrees of freedom in hµν . We could have guessed at the gauge symmetry, and used that
symmetry as a constraint in determining the Lagrangian, but instead we will impose the
following constraint. We will assume that energy conservation holds, which is expressed
as

∂µT
µν = 0, (8.2)
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where Tµν is the stress-energy tensor. We have not yet assigned an energy to the field hµν .
This means that Tµν does not include the energy carried by the hµν-field itself, but rather
is the stress-energy tensor from all other fields. Therefore, as long as Tµν is independent of
hµν , requiring that the total energy is conserved, we need to also include a term depending
on hµν . If we assume that the energy in the hµν-field is at least of second order in the field,
we have

∂µT
µν = O(h2), (8.3)

where the form of the correction is not yet found. This correction will become important
later, when we derive the full non-linear form of gravity. However, our first goal is only
to find the terms in the Lagrangian of lowest order in hµν . We will therefore disregard the
correction terms for now, and reintroduce them later.

To construct a Lagrangian for the free field we write down all the terms quadratic in
hµν with two derivatives, which are

∂ρhµν∂
ρhµν , ∂ρhµν∂

νhµρ , ∂νh
µν∂ρhµρ , ∂νh

µν∂νh , ∂µh∂µh. (8.4)

The terms above are related to those on the form h∂∂h by a single integration by parts, so
we can disregard these as surface terms. We also see that the second and third terms are
related by partial integration, by swapping two derivatives. We choose to only keep the
second term. The general free field action can therefore be written on the form

Sfree =

∫
d4x [a1∂ρhµν∂

ρhµν + a2∂ρhµν∂
νhµρ + a3∂νh

µν∂νh+ a4∂
µh∂µh] . (8.5)

Our job is to specify the constants a1, a2, a3, a4, and we want to make use of energy
conservation from Eq. (8.2). The next step is therefore to add an interaction term to our
action. We already decided we wanted to couple our field to Tµν , so the most natural
guess for an interaction term is −κhµνTµν , where κ is a coupling constant. This looks
very familiar to the electromagnetic analogue −Aµjµ where jµ also satisfies ∂µjµ = 0.
Note that we have disregarded a self-coupling term here. Tµν does not contain the energy
of the hµν-field, and we should also add an interaction term of some higher order of hµν ,
but again we choose to disregard higher order corrections for now. The action is given by
the following integral,

S =

∫
d4x [a1∂ρhµν∂

ρhµν + a2∂ρhµν∂
νhµρ + a3∂νh

µν∂νh+ a4∂
µh∂µh− κhµνTµν ] .

(8.6)
Now we vary the action as defined in Eq. (8.6) with respect to hαβ , and require that the
variation vanishes. Because hαβ is symmetric, we can only require that the variation of
Eq. (8.6) vanish with respect to the symmetric part of δhαβ . The symmetric part is given
by δh′αβ = 1/2(δhαβ + δhβα), which we will use in calculations. This gives

a1

(
∂ρhµν

δ∂ρhµν
δh′αβ

+ ∂ρhµν
δ∂ρhµν

δh′αβ

)
+ a2

(
∂ρhµν

δ∂νhµρ

δh′αβ
+ ∂νhµρ

δ∂ρhµν
δh′αβ

)
+

a3

(
∂νh

µν δ∂νh

δh′αβ
+ ∂νh

δ∂νh
µν

δh′αβ

)
+ a4

(
∂µh

δ∂µh

δh′αβ
+ ∂µh

δ∂µh

δh′αβ

)
−

κTµν
δhµν
δh′αβ

= 0. (8.7)
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The operators δ and ∂ commute, which means we can flip the order and then use partial
integration to move the partial derivatives, which introduces a minus sign. We obtain

2a1�hαβ+a2(h ρ
αρ,β +h ρ

βρ,α )+a3(hρρ,αβ+ηαβh
µν
,µν)+2a4ηαβ�h = −κTαβ . (8.8)

Now we can differentiate Eq. (8.8) by ∂β , and use the law of energy conservation as
expressed in Eq. (8.2), giving us

2a1�h
αβ
,β + a2�h

αρ
,ρ + a2h

βρ,α
ρβ + a3�h

,α + a3h
µν,α

µν + 2a4�h
,α = 0. (8.9)

This equation should hold for a general hµν . And as the terms are linearly independent
in general, we can collect terms of equal hµν-dependence, and set the coefficients to zero.
This gives us the following relations

2a1 + a2 = 0

a2 + a3 = 0

a3 + 2a4 = 0. (8.10)

We can choose normalization and set a1 = 1
2 , which fixes the rest of the coefficients as

a1 =
1

2
a2 = −1 a3 = 1 a4 = −1

2
. (8.11)

Thus, requiring our field to satisfy energy conservation to the first order in hµν uniquely
fixes the Lagrangian, apart from a normalizing factor. The Lagrangian for the free field is
given by

Sfree =
1

2

∫
d4x [∂ρhµν∂

ρhµν − 2∂ρhµν∂
νhµρ + 2∂νh

µν∂νh− ∂µh∂µh] . (8.12)

The derivation above was done by disregarding correction terms corresponding to the
energy in the hµν-field and therefore also self-interactions. It is possible to follow the same
derivation while including higher-order terms. However, due to linear independence, you
end up still having to cancel out the same linear terms, and therefore end up with the same
coefficients.

We noted above that our Lagrangian must have a gauge symmetry to remove spurious
degrees of freedom. Now that we have constructed a Lagrangian, this is a good check to
see if our Lagrangian can be correct. We find the following transformation,

h′µν = hµν − ξµ,ν − ξν,µ, (8.13)

which leaves the Lagrangian unchanged. From chapter 5 we already know that this gauge
symmetry removes eight degrees of freedom (together with boundary conditions). This
means that we have two physical degrees of freedom in hµν , which is what we want for a
massless particle with helicities ±2.

To give a unique solution to the variation of the action integral, we add a gauge fixing
term to break the gauge symmetry. We choose −(∂νhµν − 1

2∂µh)2, giving

Sgf =

∫
d4x−

(
∂νhµν∂ρh

µρ − 1

2
∂µh∂ρh

µρ − 1

2
∂νhµν∂

µh+
1

4
∂µh∂

µh

)
=

∫
d4x

(
∂ρhµν∂

νhµρ − ∂νhµν∂µh+
1

4
∂µh∂µh

)
, (8.14)
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where we have swapped the derivatives using partial integration in the second line. The
action becomes

S =Sfree + Sgf + Sint

=

∫
d4x

[
1

2
∂ρhµν∂

ρhµν − 1

4
∂µh∂µh− κhµνTµν

]
. (8.15)

This action gives, from the variational principles, the equations of motion [12, Ch. 2]

�h̄µν = −κTµν , (8.16)

which we recognize as the wave equation of the weak-field approximation in the harmonic
gauge, as seen in Eq. (4.24).

8.3 Deriving full gravity
We now want to review the simplifications we made in the section above, namely disre-
garding self-interactions. We will see that the inclusion of self-interaction leads to a series
of extra terms in the Lagrangian, that if summed properly gives us the correct non-linear
form of gravity.

We start by showing the need for including self-interactions in our theory. Eq. (8.2)
can be written on the form,

d

dt

∫
V

d3x T 00 = −
∫
V

d3x ∂iT
0i, (8.17)

expressing that the change of energy in a volume is due only to the flow of the matter
field in or out of the volume. This can not hold for a theory where the hµν-field interacts
dynamically with matter. If the hµν-field carry energy then that would violate Eq. (8.17).
Therefore we suspect that Eq. (8.2) is not exact, which we already stated above. To remedy
the situation, we assign a second order energy contribution from the hµν-field, and call it
t
(2)
µν . We expect the energy carried by the hµν-field to act as a source for hµν in the same

way as Tµν , and thus we make the replacement

Tµν → Tµν + t(2)
µν , (8.18)

in the wave Eq. (8.16). This gives us the new equation of motion,

�h̄µν = −κ(Tµν + t(2)
µν ). (8.19)

Here t(2)
µν is a tensor constructed by terms quadratic in hµν . Choosing the harmonic gauge,

∂µhµν = 0, together with Eq. (8.19) implies the relation

∂µ(Tµν + t(2)
µν ) = 0. (8.20)

This is now the new energy conservation, and we see that t(2)
µν is the leading order correc-

tion term in Eq. (8.3). We now want to alter our action integral so that Eq. (8.19) is the
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Chapter 8. Gravity as a field theory

solution achieved by variation. We have an extra term on the symbolic form∼ κ∂h∂h, and
thus we need to add a term ∼ κh∂h∂h to the action to obtain it by variation. Explicitly,
we can write the addition to the action as

S3 = κ

∫
d4x hµνA

µνρσαβγδ∂ρhαβ∂σhγδ, (8.21)

where Aµνρσαβγδ is constructed from flat metric factors.
If we now check our Lagrangian for gauge symmetry, we will see that the term

L3 = −κhµνt(2)µν (8.22)

from S3 is not gauge invariant. Under a gauge transformation as given in Eq. (8.13), L3

gives an extra term, as
L′3 = L3 + κ∂(µξν)t

(2)µν . (8.23)

We know that the gauge symmetry is essential to remove non-physical degrees of freedom
from hµν . Luckily we can change the gauge transformation to

hµν → hµν − ξµ,ν − ξν,µ + κO(h∂ξ). (8.24)

Here the symbolic term κO(h∂ξ) is defined to cancel the extra term in Eq. (8.23) to order
O(k), thus reintroducing the gauge symmetry.

However, the we are not done yet. Once we add the term S3 to the action, Noether’s
theorem produces another contribution to the energy of the hµν-field, now cubic in hµν
and linear in κ, as ∼ κt(3)

µν . We make the exchange

Tµν + t(2)
µν → Tµν + t(2)

µν + κt(3)
µν , (8.25)

and get a new equation of motion,

�h̄µν = −κ(Tµν + t(2)
µν + κt(3)

µν ). (8.26)

Thus, we have to alter the action again, adding a term on the form S4 ∼ κ2h2∂h∂h,
and the gauge transformation changes to cancel the κ2 term. The S4 term in turn creates
another contribution the stress-energy tensor through Noether’s current, and the iteration
procedure continues indefinitely. We therefore obtain

�h̄µν = −κ(Tµν + t(2)
µν + κt(3)

µν + κ2t(4)
µν + . . .), (8.27)

and the gauge symmetry

hµν → hµν − ξµ,ν − ξν,µ + κO(h∂ξ) + κ2O(h2∂ξ) + . . . . (8.28)

It is possible to calculate the exact result of this iterative procedure, and this is done i.e.
by Deser [17]. The result is that we obtain the full non-linear Einstein-Hilbert action, with
the gauge symmetry as the class of general coordinate transformations.
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8.4 Geometry from a field theory

8.4 Geometry from a field theory
In this chapter we have derived gravity as a field theory in flat spacetime, mediated by
a massless spin-2 particle. With only assuming energy conservation, this has led us to
a full non-linear theory of gravity. As we know, gravity can also be approached from a
geometric viewpoint, and it is a natural next step to try to unify the two approaches. Our
next goal is therefore to find how the geometric interpretation emerges from a field theory
in flat spacetime.

The path of a particle is described by minimizing the proper length of the particle in
flat spacetime,

−
∫ √

(ds)2 = −
∫ √

dxµdxµ = −
∫
dα

√
dxµ
dα

dxµ

dα
. (8.29)

In geometric gravity, the effect of gravity is included through the metric gµν , but we are
working in a strictly flat spacetime, where the metric is the Minkowski metric. We there-
fore need to include the effects of gravity in a different way. In electrodynamics we can
obtain the equations of motion for a charged particle by varying the following integral,

− m

2

∫
dα

(
dxµ
dα

)(
dxµ

dα

)
− e

∫
dα Aµ

(
dxµ

dα

)
. (8.30)

After some calculation, this gives the equation of motion,

m
d2xµ
dα2

= eFµν

(
dxν

dα

)
, (8.31)

where Fµν is the curl of Aµ [16, Ch. 4.6]. As in electrodynamics the field is included by
coupling Aµν to a four-velocity dxµ/dα. We guess that the tensor Tµν is simply two such
vectors, and set

Tµν = m0

(
dxµ

dα

)(
dxν

dα

)
. (8.32)

Here we also included the normalization constant m0, so that the 00-component correctly
gives the energy density. The Lagrangian action integral now becomes,

m0

[
−1

2

∫
dα

(
dxµ
dα

)(
dxµ

dα

)
− λ

∫
dα hµν

(
dxµ

dα

)(
dxν

dα

)]
. (8.33)

We can introduce a new tensor to simplify the expression,

gµν = ηµν + 2λhµν , (8.34)

and our Lagrangian integral becomes

− m0

2

∫
dα gµν

(
dxµ

dα

)(
dxν

dα

)
. (8.35)

We recognize that this is the same Lagrangian that we know from geometric gravity, where
gµν is the metric, and the solution is

d

dα

(
gσν

dxν

dα

)
− 1

2

∂gµν
dxσ

dxµ

dα

dxν

dα
= 0, (8.36)
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or equivalently,

gσν
d2xν

dα2
= −Γσµν

dxµ

dα

dxν

dα
. (8.37)

If we now interpret gµν as a metric, and not simply a tensor created from ηµν and hµν , we
obtain the geometric interpretation of gravity.

Thus, we see that the geometry of gravity emerges naturally from a theory of a massless
spin-2 field that couples uniformly to the stress-energy tensor. The flat spacetime described
by ηµν is no longer observable, because all matter now moves in an effective Riemann
manifold described by gµν . This in turn gives us the principle of general covariance. We
have therefore showed that a spin-2 theory seems like a promising candidate for explaining
gravity.
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Chapter 9
Gravitational wave generation in
linearized theory

In this section we will derive the equations describing the generation of gravitational waves
in the linearized theory. For the sources we consider, we assume that the relative speeds
of the internal masses are small compared to the speed of light. Furthermore, we let the
distance to the source be much larger than the radius of the source. We begin with the
linearized Einstein equation in the harmonic gauge (see Eq. (4.24)),

�h̄µν = −2κTµν . (9.1)

This equation can be solved using Green’s functions, as described in section 4.1. We let
G(t, x; t′, x′) be the Green’s function of �, satisfying∫

dt′dx′�G(t, x; t′, x′) = δ(t− t′)δ(|x− x′|). (9.2)

This means we can solve Eq. (9.1) by setting

h̄µν = −2κ

∫
dt′dx′G(t, x; t′, x′)Tµν(t′, x′). (9.3)

This integral is a summation of contributions from the stress-energy tensor Tµν from dif-
ferent points in spacetime, with a correlation function given by G(t, x; t′, x′). In principle
the integral is over all of spacetime, however we want to calculate the contribution from
the source, so the spatial integral only need to cover the extent of the source (we assume
Tµν = 0 outside of the source). Furthermore, causality require that t′ ≤ t for the Green’s
function to be non-zero. The Green’s function of � is well known, and can be expressed
as

G(t, x; t′, x′) = −δ(t
′ − [t− |x− x′|])

4π|x− x′|
. (9.4)
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Figure 9.1: A graphical illustration of the integral in Eq. (9.6). See text for details.

We see that the delta function restricts contributions to coordinate points satisfying t −
t′ = |x − x′|, showing that the gravitational interaction propagate at the speed of light.
Performing the integral over t′ in Eq. (9.3), we obtain

h̄µν =
κ

2π

∫
dx′

Tµν(t− |x− x′|, x′)
|x− x′|

. (9.5)

The radiative degrees of freedom are contained in the spatial part of the metric. This
follows from the fact that we can always choose a gauge where all the nonzero components
of hµν are contained in hij . Thus we only need to find the spatial part of the metric. We
can write

h̄ij =
κ

2π

∫
dx′

T ij(t− |x− x′|, x′)
|x− x′|

, (9.6)

where we also have raised the spatial indices. We define r as the average distance to
source from x. In Fig 9.1 we have illustrated the situation. The source is contained in
the circular region of radius d, and we are calculating the field far away at a point x. The
integral region in Eq. (9.6) is over the source of radius d. Because we have that the source
is small compared to the distance r, we have |x− x′| ' r for the whole source, which we
can use in the denominator of Eq. (9.6). This allows us to move the factor 1/r out side the
integral. For the time argument of T ij we can also make the same approximation, giving
us

T ij(t− |x− x′|, x′) ' T ij(t− r, x′). (9.7)

The error we introduce in the time argument by this approximation is maximally |x′|/c.
We have required that the speeds in the source are small compared to the speed of light,
and thus T ij does not change significantly on this time scale. Eq. (9.6) can then be written
as

h̄ij =
κ

2πr

∫
dx′T ij(t− r, x′). (9.8)
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Next we need to derive some relations for the stress-energy tensor. We start from energy
conservation, which is expressed as ∂µT νµ = 0. This can be split into

∂0T
00 = −∂iT 0i, (9.9)

∂0T
i0 = −∂jT ij . (9.10)

Using these relations, we have

∂2
0T

00 = ∂0(−∂iT 0i)

= ∂i(−∂0T
0i)

= ∂i∂jT
ij . (9.11)

Now we multiply both sides of Eq. (9.11) by xixj . The LHS becomes

∂2
0T

00xixj = ∂2
0(T 00xixj). (9.12)

To rewrite the RHS, we observe that

∂k∂l(T
klxixj) = ∂k

(
∂lT

klxixj + T kixj + T kjxi
)

= ∂k∂lT
klxixj + ∂lT

lixj + ∂lT
ljxi + ∂kT

kixj + ∂kT
kjxi + 2T ij

= ∂k∂lT
klxixj + 2∂k

(
T kixj + T kjxi

)
− 2T ij , (9.13)

giving us

∂k∂lT
klxixj = ∂k∂l(T

klxixj)− 2∂k
(
T kixj + T kjxi

)
+ 2T ij . (9.14)

Combining the LHS and RHS, we have

∂2
0(T 00xixj) = ∂k∂l(T

klxixj)− 2∂k
(
T kixj + T kjxi

)
+ 2T ij . (9.15)

We can now isolate the last term T ij and perform a spatial integral over some source in
the following way,∫

dx′T ij =

∫
dx′
[

1

2
∂2

0(T 00x′ix′j)− 1

2
∂k∂l(T

klx′ix′j) + 2∂k
(
T kix′j + T kjx′i

)]
=

∫
dx′

1

2
∂2

0(T 00x′ix′j)

=
1

2
∂2

0

∫
dx′T 00x′ix′j

=
1

2
∂2

0

∫
dx′ρx′ix′j , (9.16)

where, in going from the first to the second line, we have dropped the last two terms as
divergence terms. We also define the second moment Iij for the mass distribution, as

Iij(t) =

∫
dx′ρ(t, x)x′ix′j . (9.17)
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Inserting Eqs. (9.16) and (9.17) into Eq. (9.8), we obtain

h̄ij =
κ

4πr
∂2

0Iij(t− r). (9.18)

We now want to obtain hij in the transverse-traceless gauge, and one way to achieve this
is by a projection operator. Following the derivation in [12, Ch. 1.2], we start by defining
the tensor

Pij(n̂) = δij − ninj . (9.19)

This tensor is symmetric, it satisfies niPij = 0, so it is transverse, and it is a projector,
satisfying PikP kj = Pij . Thus, we can create a transverse projector as PikPjl. However,
to obtain a transverse-traceless projector, we must also subtract the trace. The trace of
PikPjlIjk is PklIkl, and thus we can subtract 1

2PijPkl from our projector, making sure
the projection is traceless. The factor 1

2 comes from the trace of Pij which is 2. Thus, we
construct the tensor

Λijkl(n̂) = PikPjl −
1

2
PijPkl, (9.20)

which is traceless in the (i, j) and the (k, l) indices,

Λ i
i kl = Λ k

ijk = 0. (9.21)

This tensor also satisfies ΛijklΛ
kl
mn = Λijmn and is transverse in all indices, and is

therefore our traceless-transverse projector. With this tensor we can project out the TT -
part of hij along a direction n̂ in the following way

hTTij = Λ kl
ij (n̂)hkl. (9.22)

We now define the quadrupole moment tensor Iij as the traceless part of Iij ,

Iij = Iij −
1

3
δijI. (9.23)

Returning to Eq. (9.18), and inserting our TT -projector and the quadrupole moment, we
arrive at

hTTij =
κΛ kl

ij

4πr
Ïkl(t− r), (9.24)

where we have used that we can interchange Iij with Iij , as they only differ by a trace
which is zero under the Λijkl projector. Thus we have derived, to leading order in 1/r, how
the generation of gravitational waves depend on the mass quadrupole momentum. We also
see that the generation of GWs in a given direction depends solely on the mass quadrupole
moment projected into the transverse plane. Longitudinal motion does not contribute at
first order in 1/r. In addition, the generation depends on the second time derivative of Iij ,
which means that non-accelerating masses do not contribute to the generation of GWs to
first order in 1/r.
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Chapter 10
Binary system as a source for
gravitational waves

Next we want to apply our formalism from last chapter on a physical system. We will
calculate the gravitational waves generated by a simple binary system. The binary we
consider will consist of two equal masses in circular orbits around a shared center of mass,
and assume weak gravitation so that Newtonian orbits are a good approximation. We
let the radii of the masses be small compared to the orbit, and we can consider them as
point masses in this calculation. The position of the masses in the xy-plane is given by
(x, y) = ±(R cosωt,R sinωt). A graphic illustration is given in Fig 10.1. To find the
emission of GWs, we know from Eq. (9.24) that we need to find the quadrupole moment
Iij of the binary at the retarded time (t − r). For simplicity we let t denote the retarded
time tret = (t− r) . Eq. (9.17) gives us,

Ixx = 2mR2 cos2 (ωt), (10.1)

Iyy = 2mR2 sin2 (ωt), (10.2)

Ixy = 2mR2 cos (ωt) sin (ωt), (10.3)
Izi = 0, (10.4)

where ω is the orbital frequency. We can rewrite Eqs. (10.1-10.3) to depend on 2ωt by
using the following trigonometric relations:

cos (2θ) = 2 cos (θ)− 1, (10.5)
sin(2θ) = 2 sin(θ) cos(θ), (10.6)

sin2(θ) = 1− cos2(θ). (10.7)
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Chapter 10. Binary system as a source for gravitational waves

Figure 10.1: A graphic illustration of the binary. The masses orbit in the xy-plane. The angles θ
and φ are the angles of n̂ projected into the zx- and xy-planes

We obtain

Ixx = mR2 cos (2ωt) +mR2 (10.8)

Iyy = −mR2 cos (2ωt) +mR2 (10.9)

Ixy = mR2 sin (2ωt). (10.10)

Only the time-dependent terms contribute. From last chapter we have Eq. (9.24), which
states

hTTij =
κΛijkl
4πr

Ïkl(t). (10.11)

We can use Let use the traceless Iij and Iij interchangeably, as the time-independent part
of Iij is traceless. Let us first calculate the gravitational waves generated in the direction
perpendicular to the orbital plane. In Fig. 10.1, this corresponds to θ = φ = 0. Here Ïij
is already both traceless and transverse, and thus ΛijklÏkl = Ïij . Inserting this into Eq.
(9.24), we get

hTTij =
κ

4πr
Ïij(t). (10.12)

By performing the time derivatives, we easily obtain the polarizations (see Eq. (5.14)),

h+ = −κmR
2ω2

πr
cos(2ωt), h× =

κmR2ω2

πr
sin(2ωt). (10.13)

We see that the two polarizations have the same amplitude, with a phase difference of π/2.
This corresponds to a circular polarization.

58



10.1 Energy loss due to GW emission

We can find the GW along a direction n̂ = (sin θ, 0, cos θ), with φ = 0. The calcula-
tion is done in Appendix B.2. The result is

h+ =
κmR2ω2

πr
(
1

2
sin2 θ − 1) cos(2ωt), h× =

κmR2ω2

πr
cos θ sin(2ωt). (10.14)

Thus we see that along the x-axis (for θ = π/2 and φ = 0) we have only +-polarization,
and the amplitude is half of each of the polarizations for the wave perpendicular to the
plane. As energy flux scales as amplitude squared, the energy flux in the orbital plane is
1/8 of that in the perpendicular direction, and the GWs are linearly polarized. To find the
GWs in a general direction, we can use Eq. (10.14) and then rotate by an angle φ in the
xy-plane, using the rotational properties of GWs given in [12, p.12],

h+ → h+ cos(2φ)− h× sin(2φ), (10.15)
h× → h+ sin(2φ) + h× cos(2φ). (10.16)

We want to understand the logic behind Eq. (10.14). The first thing we note is that the
generation of GWs depends on twice the orbital frequency. This is an expected result, as
a gravitational wave is invariant under a rotation of π around the axis of propagation (as
seen in Eqs. (10.15-10.16)). Thus the phase of the GW has to complete two periods while
the masses orbit once.

To understand the polarizations, we must consider the equation of the quadrupole mo-
ment Eq. (9.17). We already saw in the previous chapter that the wave generation depends
on the mass projected into the plane transverse to the propagation. We can investigate
this further. Ixx can be found by projecting the mass onto the x-axis, and then calculat-
ing
∫
m|x|2dx. Similarly, Iyy is found by a projection of the mass to the y-axis, and Ixy

and Iyx are found by projections onto the (y = x)− and (y = −x)-axes. Time deriva-
tives of Ixx and Iyy make up the +-polarization, while time derivatives of Ixy and Iyx
make up the ×-polarization. We see that the axes of the +- and ×-polarizations are ro-
tated π/4 compared to each other, and we thus expect a phase difference of ∆ω = π/4
between them. Combining this with the dependence of the GW on twice the orbital fre-
quency, we see that the polarizations have a phase difference of π/2, which we see in
Eq. (10.14). Let us now consider the factors of ( 1

2 sin2 θ − 1) for the +-polarization and
cos θ for the ×-polarization. The +-polarization is made up by two contributions. The
component projected onto the y-axis, the Iyy, is unchanged when θ change, while the
component along the x-axis changes as Ixx(θ) ∝ cos2 θ. Thus for the +-polarization we
have h+ ∝ ( 1

2 + 1
2 cos2(θ)) = −( 1

2 sin2 θ−1), which we wanted to explain. Next up is the
factor cos(θ) for the ×-polarization. Here both components Ixy = Iyx scale as ∝ cos θ.
Here the cosine is not squared, as the length l projected onto the (x = y)-axis scales as
∝
√

cos θ, and squaring this as ∝ m|l|2 gives us h× ∝ cos θ.

10.1 Energy loss due to GW emission
We now want to calculate the total energy of the emitted gravitational waves. The energy-
stress tensor of a GW is given by Eq. (7.45), as

tµν =
1

4κ

〈
(∂µh

TT
ij )(∂νh

ij
TT )

〉
. (10.17)
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To find the total energy flux, we first need the energy flux in a given direction, which is
contained in the 0i-components of tµν . If we let nµ = (−1,n) be a four-vector parallel to
the wave vector kµ. We have the following relation,

nµtµν = 0, (10.18)

which follows from the factor nµkµ = 0, where the kµ comes out from the derivative
applied in ∂µhTTij (see tµν on the form given in (7.46)). Thus, the energy of GWs in a
direction n is given by,

niti0 = −t00, (10.19)

which is simply a splitting of the temporal and spatial components of Eq. (10.18). We can
calculate t00 explicitly by using Eq. (9.24),

t00 =
1

4κ

〈
ḣTTij ḣ

ij
TT

〉
=

κ

64π2r2

〈
ΛijlkΛijuv

...
I lk

...
Iuv

〉
. (10.20)

Writing out the projection, and integrating over the full unit sphere, gives the total energy
emitted per unit time, which is the GW-luminosity, LGW, of the binary system. The pro-
jector is given by Eq. (9.19). Using that PijIij = −ninjIij , from it being traceless, and
P j
i Pjk = Pik, we obtain

LGW =
κ

32π2

∫
S2

〈
1

2

...
I ij

...
I ij − nink

...
I ij

...
I kj +

1

2
ninjnknl

...
I ij

...
I kl
〉
dΩ. (10.21)

We now use the following relations, given in [12, p.105],

1

4π

∫
S2

dΩ = 1, (10.22)

1

4π

∫
S2

ninj dΩ =
1

3
δij (10.23)

1

4π

∫
S2

ninjnknl dΩ =
1

15
(δijδkl + δilδkj + δikδlj). (10.24)

The full luminosity follows,

LGW =
κ

40π

〈...
I ij

...
I ij
〉
. (10.25)

Calculating
〈...
I ij

...
I ij
〉

explicitly from Eqs. (10.8-10.10) gives

LGW =
κ

40π

(
(
...
I xx)2 + (

...
I yy)2 + (

...
I xy)2 + (

...
I yx)2

)
=

16κ

5π
m2R4ω6. (10.26)

Wee see that the luminosity depends strongly on the angular frequency, as ∝ ω6. Because
ω ∝ v/R, with v being the speed of the masses, we also have LGW ∝ v6/R2. If we now
were to consider elliptical orbits, we would expect an eccentric orbit be more luminous, as
the maximum velocity is higher, and the luminosity scales so depends so strongly on the
speed.
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10.2 The change in the orbit due to GWs
We will now show how the orbit of a binary system changes over time, and we will follow
the derivation given in [18]. From the luminosity relation given in Eq. (10.26) we can de-
rive the change in the orbit using relations from Newtonian mechanics, as we are working
in the low-gravity limit. We the following relation for Newtonian orbits,

R3 =
m

4ω2
, (10.27)

which allows us to eliminate R. If we also rewriting in terms of the GW frequency, ωgw =
2ω, Eq (10.26) becomes

LGW =
κ

20π
(mωgw)10/3. (10.28)

The energy radiated from the binary system has to come from the orbital energy, given for
a binary as

Eorb = −mω2R2. (10.29)

Energy conservation imposes Ė = −LGW, which gives us, after again using Eq. (10.27),

ω̇gw =
κ

10π
m5/3ω11/3

gw . (10.30)

We see that the change in the frequency of the gravitational wave only depends on the
frequency of the signal and the masses in the binary. Thus, using only the signal measured
of a gravitational wave, we can infer the distance to the binary. From the signal we measure
the chirp rate ω̇gw and the frequency ωgw directly. By Eq. (10.30) we can then infer the
mass m, and from this the intrinsic luminosity from Eq. (10.28). Comparing then the
intrinsic luminosity of the binary with the amplitude of the signal, we can find the distance
r the signal has travelled. Even if the masses are not equal, this still holds, but we have to
exchange the mass m with the chirp massM = µ5/3M2/5, where µ is the reduced mass,
µ = m1m2

m1+m2
, and M is the total mass, M = m1 +m2 [18].
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Chapter 11
Conclusion and outlook

In this thesis we have developed the basic machinery for treating gravitational waves of
low magnitude. We started by deriving the Einstein field equations using variational prin-
ciples, assuming the Einstein-Hilbert action. By allowing the metric connection to be a
field independent of the metric, we showed that the Levi-Civita connection follows from
the Einstein-Hilbert action. The Einstein field equations were then linearized by expand-
ing the metric to first order around flat spacetime. In the linear theory, the perturbation
metric initially has ten independent degrees of freedom. To remove nonphysical degrees
of freedom, a gauge fixing scheme was introduced where we separated local and global
freedoms. We found that only two of the degrees of freedom in the perturbation metric
corresponds to physical freedoms. Of the remaining eight degrees of freedom, four corre-
spond to global coordinate choices and affect the boundary conditions, and the remaining
four depend on a local gauge choice. We compared this gauge fixing scheme with the
gauge fixing scheme of electrodynamics, and concluded that they are similar in structure.
The gravitational wave solutions in the linear theory were then found for the vacuum, and
its two polarizations.

Next, we investigated how GWs interact with test particles in different frames of ref-
erence, connecting the gauge choices with coordinate systems. We considered the free
falling frame, where the coordinate value of free falling masses are unchanged, and the lab
frame, where the coordinates are spanned by rigid rulers. The forces of GWs to first order
in these frames were found, and the relevant forces of a GW on an interferometric detector
on the Earth were discussed.

To find the energy carried by gravitational waves, the metric was expanded to second
order around a slowly varying background curvature. We found that the first order metric
perturbation acts as a source for the second order perturbation. Splitting the second order
perturbation into a high- and a low-frequency part, we found that the source of the high-
frequency part is gauge dependant, while the source of the low-frequency part corresponds
to the lowest order stress-energy tensor of GWs. The stress-energy tensor of gravitational
waves thus emerged naturally as an average over several wavelengths.

We briefly investigated the possibility that gravity is the result of a field theory in
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flat spacetime. We started with a massless spin-2 particle, which satisfies the basic re-
quirements of gravity, being a long-range and attractive force. By only assuming energy
conservation we found its free Lagrangian. This field was then coupled to the full stress-
energy tensor, which lead to an infinite series of higher order self-interaction terms. This
series is possible to sum analytically. The result gave us the full non-linear structure of
gravity and the principle of general covariance. This essentially showed that a massless
spin-2 theory in flat spacetime is a viable candidate for describing relativistic gravity.

Lastly, the equation for the emission of gravitational waves for slowly moving sources
was derived. We saw that only the motion transverse to the wave vector contributes, and
that to first order in the velocity the emission depends on the change in the quadrupole
moment of the mass. The magnitude and polarization of the GWs emitted by a binary
system following Newtonian orbits were found in all directions. We also found the rate of
energy loss of the binary, and the evolution of its orbital frequency.

Throughout this thesis we have considered situations where various approximations
have been valid, namely we have used linearized gravity in the weak-field limit and con-
sidered only slowly moving sources. However for many real-life physical systems we
would need more advanced methods of calculation, especially for sources of strong GWs.
A natural extension of this thesis is therefore to develop machinery for more general GW
sources, considering terms of higher order in the velocity, relativistic corrections and ef-
fects from strong gravitational fields. Another topic that would be interesting to pursue is
the propagation of GWs. Due to the self-interaction of GWs, the wave-form changes as
they propagate, depending on the magnitude of the wave and the background curvature.
This also means that for strong gravitational waves we can not use the wave solutions from
the linearized theory. This is interesting to study, as it would give a better understanding
of the non-linearity of GWs, and give insight into how GWs propagate on larger scales.
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Appendix A
A.1 Notation and Conventions
The following notation conventions are used in this work.
Units This thesis uses natural units, with c = 1; ~ = 1; µ0 = 1.
Differentiation Partial derivatives are written in the following ways

∂

∂xa
= ∂a = ,a (A.1)

Indices Greek letters (µ, ν, ρ, . . .) are used for indices that can take values from {0, 1, 2, 3},
while Latin letters (i, j, k, . . .) are used for indices that take values from {1, 2, 3}.
Einstein summation Einstein summation convention is assumed unless otherwise stated,
which means repeated lower and upper indices are summed over, i.e.:

xixi =
∑
i

xixi (A.2)

Metric signature We use the metric signature where the Minkowski metric of flat space-
time takes the following form:

ηµν = diag(−1, 1, 1, 1) (A.3)

Abbreviations LHS and RHS are used as abbreviations for left-hand side and right-hand
side.

A.2 Tensor Definitions
The Riemann curvature tensor is defined as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (A.4)

The Ricci tensor is a contraction of the Riemann tensor, given by

Rµν = Rγµγν = ∂γΓγνµ − ∂νΓγγµ + ΓγγλΓλµν − ΓγνλΓλγµ, (A.5)
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where the terms Γγµν are defined below. The Ricci scalar, in turn, is a contraction of the
Ricci tensor with the metric, in the following way

R = gµνRµν . (A.6)

The Christoffel symbols Γρµν describe the unique connection that is both metric compati-
ble, as described in A.3, and torsionless, defined by Eq. (A.9), and is given by

Γρµν =
1

2
gρα(gαµ,ν + gαν,µ − gµν,α). (A.7)

This connection is called the Levi-Civita connection. It is important to note that the
Christoffel symbols are not tensors, as their transformation law include an extra term.
Under a coordinate change, the Christoffel symbols transform as

Γ̃ρµν =
∂x̃ρ

∂xλ
∂xγ

∂x̃µ
∂xσ

∂x̃ν
Γλγσ +

∂2xλ

∂x̃µ∂x̃ν
∂x̃ρ

∂xλ
. (A.8)

The torsion tensor T ρµν describes the twist along a curve in a manifold, and is given by
the following equation, where Γρµν are the connection coefficients,

T ρµν = Γρµν − Γρνµ. (A.9)

A.3 Metric Compatibility
A requirement on the metric connection is that it is metric compatible. This requirement
says the metric has to be covariantly constant, given by the equation

∇cgab = ∇cgab = 0. (A.10)

A connection satisfying Eq. (A.10) ensures lengths and angles are invariant under parallel
transport. It also ensures we can introduce in all of spacetime local coordinate systems
where the laws of special relativity are valid, and consistently connect these by parallel
transports [10, p. 42].

A.4 Characteristics of a pseudo-Riemannian manifold
In general relativity spacetime is represented by a pseudo-Riemannian manifold, which
is a generalization of a Riemannian manifold where the metric tensor gµν does not need
to be positive definite. Here we will only briefly discuss a few of its characteristics. The
signature of a pseudo-Riemannian manifold is given as (n,m), where n andm denotes the
number of negative and positive eigenvalues in the metric tensor. Alternatively we say that
we have n timelike and m spacelike dimensions. The signature of a manifold is invariant
of coordinate system. A Riemannian manifold is also equipped with a connection, given
by the connection coefficients Γρµν . The torsion on a Riemannian manifold is defined
by Eq. (A.9), which means that the connection coefficients of a torsionless manifold are
symmetric in the lower indices. Riemannian manifolds also have the important property
that we can define a covariant derivative, as given by Eq. (A.16), that satisfies the Leibniz
rule and transforms as a tensor. A complete definition of a pseudo-Riemannian manifold
can be found in any book on differential or Riemannian geometry.
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A.5 Integrals in spacetime
To be able to use integration in spacetime for physically meaningful quantities, we need to
look at the transformational properties of integrals in an n-dimensional pseudo-Riemannian
manifold. We first consider dnx, which transforms as

dnx̃ =

∣∣∣∣det
(
∂x̃

∂x

)∣∣∣∣ dnx. (A.11)

We want to find a measure on our manifold that is coordinate invariant. To accomplish
this, we consider the transformation law of

√
|g|, where g is the determinant of the metric

tensor. We have the following transformation law

√
|g̃| =

√
|det(g̃µν)| =

√∣∣∣∣det
(
∂xρ

∂x̃µ
gρσ

∂xσ

∂x̃ν

)∣∣∣∣ =

∣∣∣∣det
(
∂x

∂x̃

)∣∣∣∣√|g|. (A.12)

If we combine this with dnx, the determinants cancel, and we get a coordinate invariant
measure

√
|g|dnx, that satisfies √

|g̃|dnx̃ =
√
|g|dnx. (A.13)

This implies that the integral of a tensor with respect to this measure, has the same trans-
formation law as the original tensor, and the integral itself is therefore a tensor. For a
tensor T i...ni...m, the following holds

Ãi...ni...m =

∫
Ṽ

T̃ i...ni...m

√
|g̃|dnx̃

=

(
∂x̃i

∂xi′
. . .

∂x̃n

∂xn′

)(
∂xj

′

∂x̃j
. . .

∂xm
′

∂x̃m

)∫
V

T i
′...n′

i′...m′

√
|g|dnx. (A.14)

This measure can also be used to generalize the divergence theorem to pseudo-Riemannian
manifolds. The derivation is involved and beyond the scope of this text, but can be found
in [11], which on page 113 gives the following equation, assuming the Levi-Civita con-
nection, ∫

M

∇aXa
√
|g|dnx =

∫
∂M

naX
a
√
|h|dn−1x, (A.15)

where Xa is a vector field on M ,∇ is the covariant derivative, h denotes the metric on the
boundary ∂M , and n is the outward pointing normal on ∂M . The important thing to note
from this equation is that ∇aXa is the curved manifold equivalent of a divergence, and
that the RHS is just a boundary term. We also readily see that these integrals are invariant,
as the LHS transforms as∇aXa, which is a scalar.

A.6 Generalized Derivatives
We define the covariant derivative∇c of a tensor T a...b... as

∇cT a...b... = ∂cT
a...
b... + ΓadcT

d...
b... + . . .− ΓdbcT

a...
d... − . . . (A.16)

The covariant derivative of a tensor transforms as a regular tensor.
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Appendix B
B.1 Bianchi Identities
The Bianchi identity is given by

∇λRµνρσ +∇σRµνλρ +∇ρRµνσλ = 0. (B.1)

The contracted Bianchi identity is given as

∇µRµν −∇νR = 0. (B.2)

From Eq. (B.2), the following relation for the Einstein tensor can be derived,

gµρ∇ρGµν = 0. (B.3)

B.2 Generation of GWs in a general direction
Lets calculate the GWs in the direction along

n̂ = (sin θ, 0, cos θ). (B.4)

Here θ is the angle between n̂ and the normal vector of the orbital plane, and for θ = 0,
n̂ points along the x-axis. We want to calculate Iij(n̂), which is the traceless-transverse
projection of Ikl along n̂. We have

Iij(n̂) = ΛijklIkl

= PikPjlIkl −
1

2
PijPklIkl

= (PIP )ij −
1

2
Pij Tr (PI) , (B.5)

where we in the last line have used that Pij is symmetric. Pij(n̂) is given in Eq. (9.19),
giving us

Pij(n̂) =

 cos2 θ 0 − cos θ sin θ
0 1 0

− cos θ sin θ 0 sin2 θ


ij

. (B.6)
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By using that Iyy = −Ixx and Ixy = Iyx, we find by careful calculation

(PIP )ij =

 Ixx cos4 θ Ixy cos2 θ −Ixx cos3 θ sin θ
Ixy cos2 θ −Ixx −Ixy cos θ sin θ

−Ixx cos3 θ sin θ −Ixy cos θ sin θ Ixx cos2 θ sin2 θ


ij

, (B.7)

1

2
Pij Tr (PI) =

1

2

(
− sin2 θ

) 1− sin2 θ 0 − cos θ sin θ
0 1 0

− cos θ sin θ 0 1− cos2 θ


ij

. (B.8)

Calcucenterg Eq. (B.5) explicitly gives

Iij(n̂) = −Ixx cos2 θ(− cos2 θ + 1
2 sin2 θ) Ixy cos2 θ Ixx cos θ sin θ(− cos2 θ + 1

2 sin2 θ)
Ixy cos2 θ Ixx(−1 + 1

2 sin θ) −Ixy cos θ sin θ
Ixx cos θ sin θ(− cos2 θ + 1

2 sin2 θ) −Ixy cos θ sin θ −Ixx sin2 θ(− cos2 θ − 1
2 sin2 θ)


ij

(B.9)

We can now split this matrix by Splitting it by the two polarization matrices for the wave
vector n̂. We chose the two orthonormal vectors in the transverse plane as

û = (0, 1, 0) and v̂ = (cos θ, 0, sin θ). (B.10)

Using Eq. (5.16), we find

e+
ij(n̂) =

 − cos2 θ 0 cos θ sin θ
0 Ixx 0

cos θ sin θ 0 − sin2 θ


ij

, (B.11)

e×ij(n̂) =

 0 cos θ 0
cos θ 0 − sin θ

0 − sin θ 0


ij

, (B.12)

and we readily see that we have

Iij(n̂) = Ixx

(
−1 +

1

2
sin2 θ

)
e+
ij(n̂) + Ixy cos e×ij(n̂). (B.13)

Here we clearly see the prefactors depending on θ, which is (−1 + 1
2 sin2 θ) for the +-

polarization, and cos θ for the ×-polarization.

74



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 N
at

ur
al

 S
ci

en
ce

s
D

ep
ar

tm
en

t o
f P

hy
si

cs

M
as

te
r’

s 
th

es
is

Erlend Hindar

Introduction to gravitational waves

Master’s thesis in Applied Physics
Supervisor: Jens Oluf Andersen

June 2019


	Summary
	Preface
	Table of Contents
	Introduction
	Deriving the Einstein field equations from variational principles
	Einstein field equations from the Hilbert-Action
	The Palatini Approach

	The weak-field limit of the Einstein equations
	Gauge freedom in linearized gravity
	Green's functions and gauge symmetry
	Fixing the gauge in linearized gravity
	Comparison to gauge fixing in electrodynamics

	Gravitational wave solutions in vacuum
	Polarizations of Gravitational waves

	Effects of gravitational waves on test masses
	Equation of geodesic deviation
	Reference frame and the TT-gauge
	Proper length in the TT-frame
	Defining the detector frame

	The stress-energy tensor of gravitational waves
	Second-order expansion of the metric around flat spacetime
	Gauge dependence of t
	Gravitational waves in curved spacetime
	Obtaining the correct stress-energy tensor of gravitational waves
	Energy of a GW in the TT-gauge.

	Gravity as a field theory
	Gravity mediated by a massless spin-2 boson
	Constructing a Lagrangian
	Deriving full gravity
	Geometry from a field theory

	Gravitational wave generation in linearized theory
	Binary system as a source for gravitational waves
	Energy loss due to GW emission
	The change in the orbit due to GWs

	Conclusion and outlook
	Bibliography
	Appendices
	
	Notation and Conventions
	Tensor Definitions
	Metric Compatibility
	Characteristics of a pseudo-Riemannian manifold
	Integrals in spacetime
	Generalized Derivatives

	
	Bianchi Identities
	Generation of GWs in a general direction


