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Abstract

Zero Emission Buildings (ZEBs) are energy efficient buildings that produce on-site renewable energy, in order to com-
pensate for their consumption. The ZEB-concept is based on the 2010 report by EU’s Energy Performance of Buildings
Directive (EPBD), which suggests that all buildings constructed after 2020 should reach ”near zero energy level” [1]. In
previous research on energy systems in ZEBs, deterministic linear optimization techniques, in conjunction with a wide
array of input data, such as load data, temperatures and technology prices has been used to determine the cost-optimal
design of technology investments in low energy buildings. Usually, the heat demand of the buildings considered has been
treated as an aggregated load.

The main purpose of this thesis is further development of a Mixed Integer Linear Program (MILP), implemented in the
open-source general purpose programming language Python, using the modelling extension library Pyomo. The starting
point of the work was the two-stage stochastic model developed in [2], transitioning back to a deterministic framework. At
first, the separation of the heat demand into two separate loads is carried out, one for space heating and one for domestic
hot water. Then, a model based on point-source technologies is synthesized. The first of two main objectives is to analyze
and compare the operation and investment of the point-source model and the already existing waterborne model, both
with and without the ZEB-constraint. The emission constraints are defined in such a way as to consider the emissions in
the operational phase of the building, an ambition level known as ”ZEB-O EQ” [3]. The input data used for the optimiza-
tion is based on simulated load data of the heat and electricity demand, developed in [4], [5] and [6]. Data from 2012,
considered to be an average climatic year [4], is used. Since the separation of the heat demand into two different loads
causes a drastic increase in the number of variables, a simple reduction technique, selecting the week with the highest
space heating load from each season, is used to construct a reduced scenario.

The second main objective of the thesis is to investigate the load flexibility of the ZEB, using the thermal mass of the
building as a short-term thermal energy storage. A two-node model representing the thermal mass of the building is
implemented, in both the point-source and the waterborne model. Then, the impact of adding this storage is analyzed
and compared for the respective systems. Since there is some uncertainty associated with the parameters of the two-node
model, a sensitivity analysis is performed, in order to determine both the suitability of the two-node representation in a
MILP-framework, and also to find a range of values for the cost reduction that can be expected when using the building
thermal mass as an energy storage.

The results show that the waterborne system is the cost-optimal choice for the energy system in a passive house, both
with and without emission constraints. A significant part of its advantage lies in the greater efficiency of the waterborne
heat pumps, in addition the flexibility inherent in the waterborne system, since the technologies can operate on both the
SH- and DHW-load. Furthermore, the grid impact of the waterborne system is more favorable, as the duration curve for
total electricity import is significantly flatter than for the point-source system. When adding the building thermal mass
as a storage technology, a reduction in peak load capacity can be seen for both systems, which suggests that the thermal
mass can be used as a substitute for the peak load technologies, e.g. the electric boiler, in passive house energy systems.
Furthermore, significant decreases in the net present value of both the total system cost and operational cost can be seen.
The most promising cases were found when both systems were forced to obey the ZEB-constraint with the thermal mass
as a storage technology, showing reductions in operational costs of 8.60 % and 7.79 % (compared to no thermal mass/no-
BITES) for the point-source and waterborne systems, respectively. Additionally, a similar reduction in total electricity
import was seen in these two cases, suggesting that the the on-site production from the photo-voltaic panels are used to
pre-heat building for the evening, when spot prices generally are higher. The sensitivity analysis shows that the thermal
mass representation used exhibits a relatively small sensitivity to its parameters. The values considered, which in the most
extreme case varied by five orders of magnitude, yielded a range for the total cost reduction of between ca. 1300 e and
2500 e through the lifetime of the building.
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Sammendrag

Zero Emission Buildings (ZEB) er energieffektive bygninger som produserer fornybar energi ”on-site”, for å kompensere
for forbruk. ZEB-konseptet er basert på rapporten fra EUs direktiv om energieffektivitet av bygninger (EPBD) utgitt
i 2010, som foreslår at alle bygninger bygget etter 2020 skal nå ”near zero energy level” [1]. I tidligere forskning på
energisystemer i ZEBs har deterministiske lineære optimaliseringsteknikker, sammen med et bredt spekter av data, som
lastdata, temperaturer og teknologipriser blitt brukt til å bestemme den kostnadsoptimale utformingen av energissystemer
i lavenergibygninger. Vanligvis har varmelasten i bygningene blitt behandlet som en aggregert last.

Hovedformålet med denne oppgaven er videreutviklingen av et Mixed Integer Linear Program (MILP), implementert
i det generelle programmeringsspråket Python, ved hjelp av modellbyggingsbiblioteket Pyomo. Utgangspunktet for ar-
beidet var den to-trinns stokastiske modellen utviklet i [2], transformert tilbake til et deterministisk rammeverk. Først ble
separasjonen av varmelasten i to separate komponenter utført, en for romoppvarming og en for varmtvann. Deretter synte-
tiseres en modell basert på punktvarmekilder. Det første av to hovedmål er å analysere og sammenligne drift og investering
av punktkildemodellen og den allerede eksisterende vannbårne modellen, både med og uten ZEB-begrensningen. Emis-
sionsbegrensningene er definert på en måte som kun tar hensyn til utslippene i driftsfasen av bygningen, et ambisjonsnivå
kjent som ”ZEB-O EQ” [3]. Dataene som brukes for optimaliseringen er basert på simulerte lastdata for varme- og
strømforbruket, utviklet i [4], [5] og [6]. Data fra 2012, regnet som et gjennomsnittlig klimaår [4], brukes. Siden sepa-
rasjonen av varmetilførselen i to forskjellige komponenter for hver teknologi fører til en drastisk økning i antall variabler,
brukes en enkel reduksjonsteknikk, som velger uken som inneholder tidssteget med det høyeste romoppvarmingsbehovet
fra hver sesong til å konstruere et redusert scenario.

Det andre hovedformålet med oppgaven er å undersøke lastfleksibilitet i ZEBs ved å bruke bygningens termiske masse
som et kortsiktig energilager. En to-node modell som representerer bygningens termiske masse er implementert, både i
punktvarmekildesystemet og i det vannbårne systemet. Så blir virkningen av å legge til dette lageret analysert og sam-
menlignet for de respektive systemene. Siden det er noe usikkerhet knyttet til parametrene til i to-node modellen, utføres
en sensitivitetsanalyse for å undersøke både to-node modellens egnethet i et MILP-rammeverk, og å finne et spekter av
verdier for kostnadsreduksjonen som kan forventes ved bruk av bygningens termiske masse som energilager.

Resultatene viser at det vannbaserte systemet er det kostnadsoptimale valget for energisystemet i et lavenergihus, både
med og uten utslippskrav. En betydelig del av denne fordelen ligger i de vannbårne varmepumpenes effektivitet, i tillegg
til fleksibiliteten i det vannbårne systemet, siden teknologiene kan operere på både romoppvarmings- og varmtvannslas-
ten. Videre er påvirkningen på kraftnettet av det vannbårne systemet mer gunstig, da varighetskurven for total import av
elektrisitet er betydelig flatere enn for punktvarmesystemet. Når man legger til bygningens termiske masse som energi-
lager, kan man se en reduksjon i topplastkapasiteten for begge systemer, noe som tyder på at termisk masse kan brukes
som erstatning for topplastteknologier i lavenergibygg, f.eks. den elektriske kjelen. Videre kan betydelige reduksjoner i
netto nåverdi av både total systemkostnad og driftskostnad ses. De mest lovende casene ble funnet da begge systemene
ble tvunget til å adlyde ZEB-begrensningen med termisk masse som lager, som viste reduksjoner i driftskostnader på
8,60% og 7,79% (sammenlignet med ingen termisk masse / noBITES) for punktkilde og vannbårne systemer. I tillegg
ble det observert en tilsvarende reduksjon i totalimport av elektrisitet i disse to tilfellene, noe som tyder på at ”on-site”
produksjonen fra solcellepaneler brukes til å forvarme bygningen før kveldstid, da både spotprisene og romoppvarmings-
behovet generelt er høyere. Sensitivitetsanalysen viser at den anvendte representasjonen for bygningens termiske masse
utviser en forholdsvis liten følsomhet for sine parametere. De vurderte verdiene, som i det ekstreme tilfellet varierte med
fem størrelsesordener, ga en rekkevidde for den totale kostnadsreduksjonen på mellom ca. 1300 e og 2500 e gjennom
byggets levetid.
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Chapter 1

Introduction

1.1 Motivation
Perhaps the greatest challenges facing mankind in the 21st century is to reduce the impact of global warming. The Euro-
pean Union is committed the goal of the United Nations Framework Convention on Climate Change (UNFCCC), which
is to limit the temperature rise to 2 °C [7]. In order to fulfill this goal, strong reductions in greenhouse gases have to be
achieved. One Representative Concentration Pathway (RCP) scenario, RCP2.6, actually predicts that negligible, or even
slightly negative emissions has to be become the norm by 2100 [7]. Buildings take up a large share of the total energy con-
sumption, both in the EU and in Norway. According to [8], they account for approximately 36 % of the total greenhouse
gas emissions in Europe, and have a large potential for mitigation. In [1], a revision of the EU’s Energy Performance of
Buildings Directive, it is stated that all buildings constructed in the EU after 2020 shall be able to reach nearly zero energy
level. The energy performance of nearly zero energy buildings (nZEBs) is high, both because of low energy demands,
a result of constructing the house in accordance with passive house principles, and that these demands can be covered
by on-site renewable generation. From 2009 to 2017, the Norwegian Research Center on Zero Emission Buildings (ZEB
Center) was a leader in the joint European efforts to investigate the possibilities and challenges associated with ZEBs.
Currently, the ZEB project is transitioning into Zero Emission Neighborhoods in Smart Cities (ZEN), in cooperation with
the center for Environment-friendly Energy Research [9].

ZEBs has a different impact on the energy system than nonZEBs, since that they have lower energy demands. Addi-
tionally, some of the electricity produced by the on-site renewable technologies, such as PV-panels, will be fed back to
grid, especially if no batteries are present to store the electricity. This presents a challenge for the grid operators, since
the power system is not designed for bi-directional power flow [10]. Thus, it is of great interest to examine the duration
curves for the import and export of electricity. Emissions caused by the operation of the building energy system are
represented by a weighing factor, e.g. a CO2 equivalent, which defines the amount of CO2 (usually in kg) associated
with importing 1 kWh of electricity. The value of the CO2-factor for electricity is hard to determine precisely, and is
hotly debated topic [need source]. Naturally, it depends on the resources used in the generation of electricity (the energy
mix), which in Europe to a large extent is non-renewable. Norway, on the other hand, has an energy mix which almost
exclusively consists of hydro power, which leads to a relatively low CO2-factor [11]. In some ways, this can said be to
have had a detrimental effect on the heating systems present in the Norwegian building stock, since low electricity prices
has lead to few incentives to invest in high efficiency heating technologies such as heat pumps. Instead, Norway is one
of the countries in the world with the most widespread use of direct electrical (ohmic) heating [12]. However, with the
emergence of ever more HVDC-connections to continental Europe and Britain, and subsequently more energy trade, it is
increasingly difficult to determine the origin of the electricity that is actually supplied to the end-user. Hence, one should
not consider these CO2-factors to be values set in stone, but rather as an approximation, meant to reflect the aggregated
energy mix in a given scenario.

The authors of [8] claim that upgrading energy systems can lead to a reduction in operational costs of up to 80 %.
Therefore, finding cost-optimal design of the energy systems in ZEBs is of vital importance, since Photo-voltaic panels
currently are expensive investments [13]. This thesis builds on an optimization model developed in [2], which in turn
is based on the work in [4]. The idea is to use a Mixed Integer Linear Program (MILP) to find the optimal investments
in technologies and the optimal operational pattern of these technologies, given a certain input. In the above-mentioned
works, the heat demand was considered as an aggregated load, whereas it is decoupled into two separate loads in this the-
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sis. Furthermore, the thermal mass of the building is added as a storage technology, to investigate the flexibility potential
that can be achieved by pre-heating the building in peak-load situations.

1.2 Approach and Limitations
The optimization model studied in this thesis is a deterministic mixed integer linear program (MILP), separating the heat
demand into two separate loads; space heating and domestic hot water. The objective of the model is to minimize the net
present value (NPV) of both the investment costs and the operational costs (the sum of these two is henceforth called the
total discounted system cost, or simply total cost). The operation is optimized on an hourly basis, that is, for the heat or
power production of each selected technology, the optimal output is found for each hour of the year. The lifetime of the
building is set to 60 years, and the investments take place in the beginning of year 1, and reinvestments, which arise out
of the fact that the technologies’ lifetime is shorter than the lifetime of the building, are discounted back to year 1. The
load data is based on a multiple linear regression approach, outlined in [4], [5], [6].

One consequence of decoupling the heat demand is that number of variables increases drastically, especially for the
waterborne model, since the heating technologies in this configuration can operate on both the SH- and DHW-load. This
causes convergence issues for the branch and bound algorithm, as the tree that has to be traversed in order to find a valid
integer solution from the LP-relaxation becomes significantly larger. Thus, a reduced dataset is used. The method used to
reduce is rather crude, but its use is justified in the sense that the results of the different cases can be compared directly.

As far as the zero emission aspect goes, the main limitation of this thesis is that it only considers the emissions in
the operational phase. For a full accounting of the emissions caused by the building, other phases need to be taken into
consideration, such as the production of the construction materials, the construction of the building itself and the pro-
duction of the technology equipment. The balancing level used in this thesis is called ”ZEB-O EQ”, which means that
only emissions associated with the operation of the building energy system, excluding the production of the technology
equipment, is compensated for by on-site electricity generation [3].

1.3 Structure
The thesis is structured in the following manner:

• Chapter 2: Gives an overview of the most essential theoretical concepts to the modelling framework. Among these
are the ZEB-concept itself, the basic principles of linear programming (including a short description of the branch
and bound algorithm), demand side management (DSM), a basic outline of the technologies included in the model,
the basics of heat storage (first law of thermodynamics) and the two-node representation of the building thermal
mass. Additionally, an alternative representation of the building thermal mass is developed, using a circuit analogy.

• Chapter 3: Contains a description of the MILP optimization model. First, the variables and parameters of the model
are tabulated. Then, the objective function and model constraints are described. Lastly, a clear distinction is made
between the point-source and waterborne model, with figures to illustrate the different systems in clear manner.

• Chapter 4: presents the input data used for the optimization.

• Chapter 5: Gives a thorough treatment of the main cases studied, with a discussion of the results at the end of each
section. Then, the sensitivity analysis with respect to the parameters of the two-node representation is performed.

• Chapter 6: Delivers the final conclusion and suggestions for further work.

• Appendices includes the Python/Pyomo code used for the optimization. Appendix A contains the code for the
waterborne system, and Appendix B the code for the point-source system.
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Chapter 2

Theory

In this chapter, some essential concepts for the thesis is presented. The intention is not to give exhaustive theoretical
descriptions, but rather a background on which the modelling framework can be built. First, the Zero Emission Building
Concept is presented, along with a short description of the Mixed Integer Linear Programming and the technologies
included in both the point-source and waterborne models. Then, the concept of demand side management is explained,
with a subsequent focus on thermal energy storage and modelling of the thermal mass.

2.1 Zero Emission Building-concept
The concept of Zero Energy/Emission Buildings was introduced by the EU’s Energy Performance of Buildings Directive
(EBPD) in 2010 [2]. In [1], it is stated that all buildings built in the EU after 2020 are to be nearly zero energy buildings.
The definition of such a building is that it has very high energy performance. First of all, the energy demand of the building
should be low, additionally, this demand should be covered to a significant degree by energy from renewable sources, on-
site or from sources in close proximity to the building [1]. The research center on Zero Emission Buildings provides a
definition leaning more towards the emission perspective: ”A zero emission building produces enough renewable energy
to compensate for the building’s total greenhouse gas emissions throughout its lifetime” [3]. In this context, the concept
of weighing factors must be introduced. The fundamental idea is to assign a crediting factor fi to each energy carrier,
such that an accumulated balance of the environmental impact of each can be conducted for a given time period t. Either
the primary energy factor (PEF) or CO2-factor can be used as crediting factor, with the former implying a Zero Energy
Building, and the latter implying a balance more in line the emission perspective; Zero Emission or Zero Carbon Building
[14] [3]. Then, the ZEB-balance can be introduced:∑

i

import · fi −
∑

exporti · fi = G ∀i ∈ I [4] (2.1.1)

where I is the set of all available energy carriers, and the period over which the accounting is done usually is set to a year.
In other words, a ZEB is a building that can compensate for the accumulated emissions throughout the phases of its study
[3].

Figure 2.1.1: ZEB-phases. Adopted from [3].
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For a complete accounting of the building’s lifetime, all phases of have to be considered, including emissions associated
with production of construction materials, the construction of the building itself, emissions caused by production of the
energy technologies, emissions caused by the operation of the energy system and end-of-life emissions. In figure 2.1.1,
this is presented visually. The ambition level in this thesis is ZEB-0 EQ, i.e. emissions in the operational phase, excluding
equipment.

Figure 2.1.2: ZEB-balance. Adopted from [3].

Figure 2.1.2 shows the close relation between ZEBs and building houses in accordance with passive house principles.
When the energy demand of the building is low, it is easier to reach the net ZEB-balance. In this thesis, the CO2-factor is
used as the weighing metric. Furthermore, the balance equation is rewritten as:

PZEB ·
∑

i

import · fCO2 ≤
∑

i

export · fCO2 ∀i ∈ I (2.1.2)

for the time period t and all technologies i in I of the building energy system, where PZEB = 0 corresponds to G = Gre f ,
the total emissions with no ZEB-constraint, and PZEB = 1 corresponds to G = 0.

2.2 Mixed-Integer Linear Programming
The energy programming problem in this thesis is formulated as a Mixed-Integer Linear Program problem. That is to say,
it is on the form:

minimize cT x
subject to Ax = b

l ≤ x ≤ u

where some or all of the elements x j of the solution vector x take integer values. It is necessary to restrict some variables
to integer values due to the non-continuous nature of some decisions [15]. The constraints can be classified into three main
groups: Technology constraints, balance constraints (for space heating, domestic hot water and electricity) and emission
constraints. The objective is to minimize the total costs, given the set of restrictions. The linear model is implemented in
Python, using the Gurobi solver and the modelling extension library Pyomo.

2.2.1 Branch and Bound
Problems of this type are most often solved using the branch-and-bound algorithm. It can be described as state-space
search, where each state is a more restricted version of the original problem. First, the LP-relaxation of the original
problem is solved. Then, if this solution does not hold up to the integer constraints, a variable that has an integer restriction
in the original problem, but is fractional in the LP-solution, is branched on, which creates two sub-MIPS. This process
can be repeated for each of these new nodes (states). The process is visualized in the figure below:
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Figure 2.2.1: Illustration of the branch-and-bound process. Adopted from [15].

During the search, the best state at any given time is called the incumbent. Nodes which have yet to be branched upon are
called leaves. When a node is fathomed; that is to say that the LP-relaxation is found to be infeasible, or its objective value
is found to be less optimal than the incumbent, it and all of its possible branches are discarded, since no further branching
will yield the optimal solution. If the gap between the incumbent value (upper bound) and the best (lower) bound is zero,
optimality is demonstrated, and the search can be terminated. In practical applications, this is not always possible, and a
gap must be tolerated in some cases [15] [16].

2.3 Technology Description
In this chapter, a brief description of the technologies represented in the optimization model will be given. In a MILP-
optimization framework, the technologies have to be modelled on a highly generalized level, but it is still preferable for
the technologies to retain some of their differentiating characteristics. For instance, the COP for the Heat Pumps is fed
into the model as time-series, where the source and sink temperature for each timestep is considered. Here, the difference
in performance between a ground-source heat pump and an air-source heat pump will manifest itself, as the ambient air-
temperature will fluctuate through the year, while the groundwater assumed as the source for the GSHP will stay relatively
constant.

2.3.1 Solar Panels
A PV-cell works by allowing photons to knock electrons free atoms from a semiconductor, typically made of silicon. In
order for electricity to flow, an electric field needs to be established. This is done by so-called doping of the silicon in
the cell, using phosphorous in the top layer, yielding a negative charge, and boron in the top layer, resulting in a positive
charge. A PV-panel is made up of many such cells, while a PV-module in turn consists of several panels [17].

Figure 2.3.1: Principal sketch of grid-connected PV-module. Adopted from [18]
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To enable to electricity flowing from the PV-module to be consumed by the load or exported to the grid, an inverter is
needed, which converts the direct current (DC) of the panels to alternating current (AC). A simplified sketch of a typical
configuration for a module is shown in figure 2.3.2. PV-panels is an essential part of a building energy system aspiring to
maintain the zero emission operation, as a significant amount of electricity has to be exported in order to compensate for
the power consumed by heat pumps, electric boilers and electronic appliances in winter.

Figure 2.3.2: Principal drawing of PV-cell. Adopted from [19]

Usually, the calculation of the potential power output from a PV-panel is done using computer software, since it involves
many variables, such as panel temperature, orientation of the panel in relation to the sun among others [20]. In [21], a
simplified approach is suggested, which is the one used in this work:

Ppv(kW) = Pstc ·
It

Istc
· ηrel (2.3.1)

where Ppv is the power generated, Pstc is the output at standard conditions, It(W/m2) is the irradiation at time t and Istc is
the irradiation at standard conditions: 25 °C and 1000 W/m2. The efficiency is calculated for each time step according to
the following equation:

ηrel = 1 + k1ln(I′) + k2ln(I′) + T ′t (k3 + k4ln(I′) + k5ln2(I′)) + k6T 2
t (2.3.2)

where I′ = It/Istc, T ′ = Tamb +c · it−Tstc, where the coefficient c °C [W−1m2] denotes to which degree the module is heated
by the solar irradiation. The output of 2.3.1 gives the potential production per kW installed (kWh/kW p). The orientation
angle for the module is assumed to be the optimal one for a module installed in Oslo, namely 40 °C [22].

2.3.2 Heat pumps
Another technology that is important from an emission reduction perspective is the heat pump. A heat pump works
by moving thermal energy in the opposite direction of spontaneous heat transfer, moving heat a lower temperature to
a region with higher temperature (heating mode), or heat at a higher temperature to a region with lower temperature
(cooling mode), using a relatively small amount of high-grade energy (typically electricity) for the process. The most
common design for a heat pump involves four principal components: a condenser, an expansion valve, an evaporator and
a compressor. The medium used for the heat transfer is called a refrigerant [23].
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Figure 2.3.3: Simplified sketch of heat pump and its main components. Adopted from [23]

In figure 2.3.3, the main working principles of a heat pump is illustrated. The refrigerant is circulated through the system
in its gaseous state by a compressor (4). When the heat is discharged in the condenser (1), the high-temperature and high-
pressure vapor is cooled to a high-pressure, moderate temperature liquid. Then, the condensed working fluid is passed
through a pressure-lowering device, most commonly an expansion valve (2). The low-pressure refrigerant subsequently
enters the evaporator (3), another heat exchanger, where the it absorbs heat and boils. The refrigerant, now at high
temperature and low pressure, enters the compressor, and the cycle is repeated [23]. The upper limit for the efficiency
of a heat pump operating in heating mode is given by considering the reverse Carnot cycle, which yields the following
expression [24]:

COP =
TH

TH − TL
=

1

1 − TL
TL

(2.3.3)

where TH is the temperature of the sink, TL the temperature of the source and COP is the ratio of delivered heat to work.
An expression for the actual COP can be written as [24]:

COP =
Qh

Win
(2.3.4)

where QH is the delivered heat, and Win the work required to transfer this heat from source to sink.

Heat pumps are separated into two main categories based on the location of the external heat exchanger. Either heat
is drawn from the ambient air, or from below ground. Air-source heat pumps (ASHP) are the most common, using a small
ground or wall-mounted outdoor unit. An advantage of this heat pump type is that they are easy to retrofit into existing
houses, and that they require relatively little space [23]. Two main varieties of the ASHP exist: air-to-air (henceforth
denoted A2A) and air-to-water (henceforth denoted ASHP). The first of these heats the air of a room directly, using a
wall-mounted indoor unit. Multi-split systems allows for multiple rooms to heated, by connecting a single compressor to
several indoor units. In this thesis, however, the A2A will be limited to provide heating for one room through a modelling
restriction, which states that only 40 % of the space heating demand can be covered by the heat pump at any given time.
A2A heat pumps can provide additional services, such as dehumidification and air purification (removal of odours, smoke,
bacteria etc.) [23].

Air-to-water heat pumps, on the other hand, are integrated into a waterborne central heating system (where heat con-
vection is achieved either through the use of radiators or underfloor heating), providing heating for the whole building, in
addition to water heating (domestic hot water). Besides the outdoor compressor unit, the ASHP requires a compact heat
exhanger and control unit in close proximity to the the hot-water cylinder to transfer heat from the heat pump’s refrigerant
[23]. Some systems integrate these units with the compressor, which yields a somewhat larger outdoor unit.

The second main category of heat pumps is called ground source heat pumps (henceforth denoted GSHP). They use
copper or plastic tubes buried below ground-level as the external heat exchanger. This allows them access to higher qual-
ity heat, at the cost of more expensive and disruptive installation. The system loop can be either open-loop or closed-loop.
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With and open-loop system, water is extracted from and rejected directly back into rivers or groundwater sources. These
sources provide a stable source of heat, usually about 5 to 10 °C, however, environmental regulations and activity (acidity,
corrosion etc.) can create challenges for this type of system. Therefore, closed-loop systems are more common. In these
systems, a sealed loop is used to retrieve heat from the surrounding soil or rock. Direct expansion systems circulate the
refrigerant directly from the compressor trough copper tubes. Indirect systems, on the other hand, have a two-stage circuit,
with water and antifreeze circulating in plastic tubes absorbing the heat from the source, subsequently transferring heat
to the refrigerant circuit via a secondary heat exchanger. The additional stage means that direct expansion systems are
slightly more efficient, but as more refrigerant is required and regulations on leakage have tightened, the indirect systems
are currently the more popular choice [23].

The performance of the heat pump is the key factor in determining the savings it can offer, both in terms of economics and
environmental impact. As already shown, this performance is highly dependant on the temperature difference between
the external heat collector (source) and the output to the building (sink), also known as the ”lift” [23]. In practice, the
COP drops by between 0.6 and 1.0 for every 10 °C temperature decrease, yielding 0.6-1.0 kW less heat output per kW
of electricity. To optimize the performance, the ”lift” must be made as small as possible. Thus, a relatively cool heating
loop and warm external loop are desirable [23]. The first condition can be met by increasing the heating surface, using
either fan-assisted radiators or underfloor heating. Heating the air directly with air-to-air heaters can improve upon this
further, by lowering the output temperature even more. Modern heat pumps are also able to provide high temperature
when required, e.g. for domestic hot water purposes. State-of-the-art hydronic heat pumps can supply hot water at above
65 °C, which means that they can function as a standalone unit, without any auxiliary heating. However, it must be kept
in mind that this is done at the expense of performance, as the COP inevitably will be lower when water at such a high
temperature is supplied.

The second condition, namely the desire for a relatively warm external loop, is where the GSHP has a notable advan-
tage over the ASHP and A2A in terms of performance. Naturally, the greatest heat demand takes place in winter, when
the air temperatures are at their lowest. The ground temperature, on the other hand, quickly converges to the annual mean
as the depth is increased. Therefore, the GSHP offer a higher average COP through the year. Even at nominal conditions,
they tend to offer a higher COP. Since the specific heat capacity of air is so much lower than that of soil or water, the heat
extraction process using air is the source is more energy intensive, because more air has to be passed through the heat
exchanger. Thus, for the ASHP and A2A heat pump, more electricity per kW of heat has to fed to the compressor. In
this thesis, polynomials are used to calculate the COP for a given sink temperature. [25] and [23] suggest the following
relationship for calculating the COP:

COP = k0 − k1 · ∆T − k2(∆T )2 (2.3.5)

where the k-values are based on polynomial regression, where the data points are heat output and input electricity at certain
temperatures (retrieved from manufacturers data), and ∆T is the difference between source and supply temperature, given
by the following equation:

∆T = Tsupply − Tsource (2.3.6)

To calculate the supply temperature, the equation below is used [4]:

Tsup = AT 2
amb + BTamb + C (2.3.7)

where the coefficients A, B and C are given by the building standard.

2.3.3 Direct Electrical Heating
Electrical Boiler

An electrical boiler is a device that uses electricity to directly heat water. For space-heating purposes, it is typically used
in peak-load situations. In the modelling framework developed in this work, it can be used for both space-heating and
domestic hot water purposes in the waterborne configuration, and for domestic hot water use only in the point-source
configuration. Typically, it has an efficiency of close to 100 %. The main advantage of the electric boiler is that is a
simple device, and thus easy to install. This is reflected in the lack of a fixed cost in the model (no installation costs). The
downside is that it tends to be expensive to operate [26].
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Simple Resistance Heating

An electrical resistance heater works in a similar manner as the electrical boiler, heating the surrounding air instead of
the water. The heat developed in the resistor is given by the ohmic losses, P = I2R. For the heater to work properly,
materials with high resistivity and small variation of resistivity with temperature are used [27]. It is a cheap alternative to
heat pumps as a peak-load technology, and is the most ubiquitous heating technology in the Norwegian household [12].
In this work, the resistance heater is an option only in the point-source configuration.

2.3.4 Fireplace
The fireplace is another well-established technology for space heating in the Norwegian building stock [12]. It is intro-
duced as a peak-load alternative to resistance heating for situations in which the electricity price is high. One aspect worth
mentioning when modelling this device is that it requires manual refilling of wood for a sustained power output. This can
be put in as a time restriction, for instance by only allowing the fireplace to operate on the load between 16:00 and 24:00.

2.3.5 Biomass Boiler
The biomass boiler used in the model is a pellet-fired, fully automatic biomass heater. For the model configuration
with hydronic heating, it is allowed to operate on both space heating and domestic hot water loads. According to [28],
using biomass in boilers has been found to offer many economical and environmental benefits, such as financial savings,
conservation of fossil fuel resources and CO2- and NOx- emissions reduction. In addition, it is estimated in [29] that the
thermal energy potential from biomass regeneration in Norway is 140 TWh each year.

2.4 Demand Side Management
To make it easier for a building to reach the goal of a strict ZEB-balance over a year, it is reasonable to assume that it will
be necessary to invest in some energy storage technologies. Due to the intermittent nature of the energy production from
renewable sources such as wind and solar, the capacity of these technologies has to be dimensioned in such a way that
enough electricity is exported when the conditions are right (i.e., the sun is shining and the wind is blowing). This would
preferably done in combination with an investment in energy storage technologies, to introduce the possibility of load
shifting [4]. The potential for flexible load shifting is greater when investing in batteries, since the battery can operate
on both the thermal electric demand and specific electric demand, whereas a thermal storage can only operate on the
thermal electric demand [4]. However, the focus here will be on thermal storage, as research with regard to the viability
of batteries in a ZEN/ZEB-context already has been done in [14] and [2].

Figure 2.4.1: Conceptual plots showing potential for load shifting for battery and heat storage. Adopted from [4].

Figure 2.4.1 shows this concept for PV-production with a battery and a heat storage. The power production takes place
in the middle of day, with the intensity given by a bell-like curve. In the plot on the left, the battery is charged by the
superfluous PV-production during the day, and distributed to the load in the evening. Thus, the electric load is reduced [4].
In the plot on the right, the superfluous electricity from the PV-production is used to power a heat-producing technology,
for instance a heat pump, which in turn charges the heat storage. This heat can then be used in the evening, when the heat
load is higher and the PV does not produce power, avoiding having to import power from the grid. Notice that the area
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on which the battery can operate is larger than the area for the heat storage, since the total electric load is the sum of the
electric specific load and the thermal electric load [16].

2.5 Thermal Energy Storage
In the following subsection, the basic principles of thermal energy storage (TES) will be treated. The modelling of TES
in work will be constrained to obeying only the first law of thermodynamics, i.e. changes in entropy are not considered.
The energy storage capacity of a storage medium at uniform temperature with an associated temperature difference is:

Qs = (mCp)∆Ts (2.5.1)

where Qs is the total heat capacity when operating over the entire energy difference, Cp the specific heat capacity of the
medium and m the storage mass. An energy balance for the system in figure 2.5.1 can be derived:

(mCp)s
dTs

dt
= Q̇in − Q̇out − (σs)(Ts − Ta) (2.5.2)

where Q̇in and ˙Qout is the rate of addition and removal of energy to and from the storage, and Ta is the ambient temperature
for the tank surroundings. σs represents the thermal conductivity of the tank walls. To find the tank temperature at time
t = i + 1, a simple forward Euler first-order approximation can be performed, where the term dTs

dt is rewritten to T i+1
s −T i

s
∆t

[30]:

T i+1
s = T i

s +
∆t

(mCp)s
[Qin − Qout − σs(T i

s − Ta)] (2.5.3)

where ∆t usually is set to be an hour, the rates Qin and Qout are assumed constant through the hour.

Heat storage,
T = Ts

Qin

Qloss

(to Ta)

Qout

Figure 2.5.1: Flow of energy in simple heat storage with fully mixed storage medium. Inspired by figure 8.3.2 in [30].

2.5.1 Hot Water Tank
From the simple general model outlined above, a specific model for a hot water tank can be derived. The hot water tank
is by far the most ubiquitous form of energy storage in the existing building stock. Fixing the timestep to one hour, and
rewriting the terms Qin and Qout to Qch. and Qdisch. (which better describes the tank as a sort of battery analogy), the
temperature of the tank can be written as [31]:

THWT (t) = THWT (t−1) +

( QHWT
ch. · ηch.

V ·Cpwater · ρwater

)
−

( QHWT
disch./ηdisch.

V ·Cpwater · ρwater

)
(2.5.4)

THWT (t) = THWT (t−1) +
1

V ·Cpwater · ρwater

(
QHWT

ch. · ηch. −
QHWT

disch.

ηdisch.
− σs(THWT (t−1) − Ta(t))

)
(2.5.5)

where the mass m is substituted for the volume V and the density ρwater of the water. Charging and discharging efficiencies
ηch. and ηdisch. are also included. These terms account for the losses that occur when the hot water at the top of the tank
and the cold water at the bottom is mixed during the charging and discharging of the tank [31]. This causes some of
the heat stored in the tank to be irretrievable. To avoid nonlinearities in the tank model (it will be implemented in a
linear framework, after all), these efficiencies are assumed to be constant, although they will depend on the (non-constant)
temperature difference between the tank and the ambient. Further, it should be pointed out that this model of the tank
assumes a uniform water temperature (that is, no stratification). Instead of treating the tank in terms of its temperature,
we can write the balance with respect to energy stored [31]:
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QHWT
stored(t) = QHWT

stored(t−1) + QHWT
ch. · ηch. −

QHWT
disch.

ηdisch.
− QHWT

loss(t) (2.5.6)

where QHWT
stored(t) and QHWT

stored(t−1) is the energy stored in the tank in timesteps t and t − 1, respectively. The term QHWT
loss(t) can

be written as [31]:

T HWT
loss(t) = (THWT (t) − Ta) · U · AHWT (2.5.7)

where U [kW/m2] is the heat transmission coefficient of the tank, AHWT is the surface area of the tank (minus the bottom
area, which is not in contact with the air), and the term U · AHWT corresponds to the term σ in the equations 2.5.3 and
2.5.5.

2.5.2 Building Internal Energy, Thermal Mass
Another possible form of energy storage is to use the thermal mass of the building. This is done in the context of a larger
district heating system in [31]. In this work, the two-node model from that paper that is implemented. The two-node
model is based a number of thermal response tests done in [32] and the modelling in [33]. The two nodes represent a
”shallow” component, which is assumed to consist of the building space heating system, the indoor air, and the parts of
the building that easily transfer heat to the indoor air (i.e. furniture and the outer layers of the walls). The amount of
heat in the shallow storage is assumed to be directly proportional to the indoor air temperature. The ”deep” component
represents the structural elements of the building [31]. The following difference equations describe the dynamics of the
two-node model:

Qshallow
stored(t) = Qshallow

stored(t−1) + Qshallow
ch(t) − Qshallow

disch.(t) − Flowt − Qshallow
loss(t) (2.5.8)

Qdeep
stored(t) = Qdeep

stored(t−1) + Flowt − Qdeep
loss(t) (2.5.9)

where Flow(t) denotes the energy exchange between the deep and shallow components of the two-node model in a given
timestep t. It is calculated in the following manner:

Flow(t) =

(Qshallow
stored(t)

Qshallow
cap

−
Qdeep

stored(t)

Qdeep
cap

)
· K (2.5.10)

Qdeep
stored(t)Qshallow

stored(t) Flow(t)

Qshallow
ch(t)

Qshallow
ch(t)

Qdeep
loss(t)

Q
shallo

w

loss(
t)

Figure 2.5.2: Two-node model for building internal energy. Inspired by figure 2 in [31]

where Qshallow
cap and Qdeep

cap are the maximum storage capacities of the shallow storage and the deep storage, and K is the
heat transfer coefficient, which in the work of Carlsson [33] is defined as the heat transfer between the two nodes when
one storage is fully charged and the other is fully discharged. As can be seen from the equations, heat will tend to flow
from the shallow storage to the deep storage when the shallow storage is charged to a higher relative level than the deep
storage and vice versa.

Because the building heating system is part of the shallow storage, this is the only component that can be directly charged
or discharged. It is also the only component that can operate on the building space heating load. The losses from the
shallow and deep storage components are defined through the following equations:
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Qshallow
loss(t) = Qshallow

stored(t−1) · (1 − K shallow
loss ) (2.5.11)

Qdeep
loss(t) = Qdeep

stored(t−1) · (1 − Kdeep
loss ) (2.5.12)

where K shallow
loss and K shallow

loss are the heat loss coefficients of the shallow and deep components. Transmission losses due to
heat convection in the structural elements of the building are represented by Qdeep

loss(t). The losses from the shallow storage
are assumed to be caused by the ventilation only, as other losses, such as radiation through windows, air leakage etc. are
small in comparison. The losses from the shallow component can be found with the following equation:

Qshallow
loss(t) = V̇ · Abuilding · ρair ·Cpair · ∆T (2.5.13)

where V̇ is the ventilation flow rate, Abuilding is the area of the building used as thermal energy storage, ρair and Cpair are
the density and specific heat of air, and ∆T is the change in temperature. Another way to find the heat loss coefficients,
which also makes it possible to find the coefficient for the deep component, is by using the following relation [34]:

Kloss = e−
1
τ (2.5.14)

where τ is the time constant of the component in question. According to [31], this parameter will vary between 100-350
hours, depending on how ”heavy” the building is. For the modelling done in this paper, the values from that work will be
used. The following table summarizes the parameters that will be used in the model:

Table 2.5.1: Parameters of shallow and deep components of BITES. Taken from [31].

Parameter Shallow storage Deep storage
Storage capacity: Qcap [kWh] 12.5 90
Heat loss coefficient: Kloss 0.9913 0.9963
Max total loss [Wh/h] 394
Heat transfer constant: K [Wh/h] 7881
Ventilation flow rate: V̇[m3/m2s] 0.00035
Abuilding[m2] 250

Using the values for Kloss from the above table yields time constants τshallow and τdeep of 115h and 267h, respectively.
The usefulness of the building internal energy as a thermal energy storage will depend on how the building is constructed
(materials etc.) and the degree to which the building temperature is allowed to fluctuate from the set-point temperature,
∆T , which in [31] is set to 1 K. In this thesis, only overheating is considered, so a deviation ∆T of 2 K from the set-point
is tolerated. With the area-adjusted values from [31], this yields an extensive heat capacity of 6.25 kWh/K for the shallow
storage, which is in the range found in [34], where buildings built in the seventies were found to have a storage capacity
of about 8 kWh/K, and buildings from the eighties about 5 kWh/K. For the deep storage, the same reasoning yields an
extensive heat capacity of 45 kWh/K.

2.5.3 Electrical analogy
In the previous section, a two-node model for BITES from [31] was presented. In this section, the similarity between this
two-node model and a thermal network with three resistors and two capacitors will be shown. The comparison is based
on an analogy between the flow of heat and the charge flow in electric circuits.
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Table 2.5.2: Thermal-electric analogy. Adopted from [35].

Type Thermal Electric
Quantity Heat Q [J] Charge q [C]
Potential Temperature T [K] Voltage V [V]
Flux Heat transfer rate Q̇ [J/s] Current i [C/s = A]
Flux density Heat flux q̇ [W/m2] Current density I [A/m2]
Resistance Thermal resistance R [K/W] Electrical resistance R [Ω]
Conductivity Thermal conductivity [W/(mK)] Electrical conductivity σ [1/(Ωm)]
Lumped linear model Newton’s law of cooling ∆T = Q̇R Ohm’s law ∆V = IR
Charge-preserving element Extensive heat capacity C [kJ/K] Electrical capacitance C [C/V = F]

Table 2.5.2 shows the different types of properties of heat flow and their electric counterpart. Consider as an example
the potentials; just as a voltage difference across a resistor will give rise to an electrical current, a temperature difference
across a heat-conducting element gives rise to a flow of heat. It is important to keep in mind that this analogy has limited
practical use for detailed modelling of heat flow [36]. In particular, to model heat flow in a lumped-capacitance network,
the temperature of each element has to be assumed constant. For this approximation to hold within a 5 % error margin,
the Biot number, the ratio between convective at the surface of a body to the conduction within the body, has to be less
than 0.1 [37].

In this work, the analogy is used as a justification for the use of time constants, which have a clear definition in a resistor-
capacitor circuit. Furthermore, the analogy is used to evaluate the meaningfulness of certain BITES-parameters (K f low,
and can be used to constrain the ranges of these in a sensitivity analysis. It can also be used to find appropriate values for
resistances to ambient, such that the BITES-model includes a loss element that depends on the outside temperature.

Figure 2.5.3: Circuit for wall thermal network. Adopted from [38]

In figure 2.5.3, a thermal network analogy for a wall with three layers is presented. The capacitance Cin is the heat ca-
pacity of the inside air and furniture, similar to the shallow storage in the previous section, with the exception that the
shallow/outer walls are not included. C4 is the capacitance between the shallow walls and the structural elements of the
wall, and C2 is the capacitance between the structural layers and the part of the wall facing the outside. The resistances
are the reciprocal values of the heat conductivity, indicating resistance to heat flow. Note also the temperatures at the
junctions, T1, T2, and Tin, representing the thermal potential.

Taking this abstraction further, we assume that we can represent all of the walls of the building as one single wall.
Defining the the capacitance Css to be the aggregated capacitance of the outer wall layers, the inside air and the furniture
(shallow storage), and the capacitance Cds to be the capacitance of the deeper wall layers, we may draw the circuit:
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QinTinTds
Css

R f low

Cds

Rds

Tamb

Rss

Figure 2.5.4: Thermal circuit for two-node BITES-model.

where the current source Qin represents the heat added to the shallow storage, Rss the thermal resistance between the
shallow storage to ambient, Rds the thermal resistance between the deep storage and ambient, and R f low the thermal
resistance between the shallow storage and deep storage. Keeping in mind that the current through a capacitor can be
written as i = C dv

dt [39], we can write out expressions for the heat flows (currents) based on the node-voltage method. For
the heat added to the shallow storage:

Q̇in = Css
dTin

dt
+

Tin − Tds

R f low
+

Tin − Tamb

Rss
(2.5.15)

For the heat flowing into the deep storage:

Tin − Tds

R f low
= Cds

dTds

dt
+

Tds − Tamb

Rds
(2.5.16)

Discretizing these equations at the time step t (turning the differential dT
dt into the difference ∆T = T [t] − T [t − 1])

and assuming constant temperatures at this timestep, the first-order differential equations become first-order difference
equations:

Css(Tin[t] − Tin[t − 1]) = Q̇in[t] · ∆t −
Tin[t] − Tds[t]

R f low
· ∆t −

Tin[t] − Tamb[t]
Rss

· ∆t (2.5.17)

Cds(Tds[t] − Tds[t − 1]) =
Tin[t] − Tds[t]

R f low
· ∆t −

Tds[t] − Tamb[t]
Rds

· ∆t (2.5.18)

which resemble equations 2.5.8 and 2.5.9 closely. Noting that Q̇ · ∆t = Q and that C · T = Q, we may write:

Qss[t] = Qss[t − 1] + Qin[t] − Q f low[t] − Qloss
ss [t] (2.5.19)

Qds[t] = Qds[t − 1] + Q f low[t] − Qloss
ds [t] (2.5.20)

where the difference from equations 2.5.8 and 2.5.9 resides in how Q f low and the losses are defined. In the above equations,
Q f low is calculated directly as the temperature (energy content) difference divided by the resistance R f low, whereas in 2.5.8
and 2.5.9, the flow is given by the difference in relative (to max capacity) energy content. In 2.5.8 and 2.5.9, the losses are
calculated directly from the time constants via equation 2.5.14, that is, they are independent of the outside temperature
Tamb. In the circuit analogy, they are calculated directly as the temperature difference divided by the relevant thermal
resistances. The time constants can be defined as [39]:

τss = Req,ssCss (2.5.21)

τds = Req,dsCds (2.5.22)
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2.5.4 Building Materials/Time constants of buildings
It is possible to expand the definition of the time constant from the previous section. Specifically, the definition of the
thermal resistance can be broadened. In the first-order model, the thermal resistance was considered as a single parameter
for the different storages. If we separate out the conductance from transmission (conduction) in the building materials and
the conductance from ventilation (convection), the thermal resistance can be written as [34]:

R =
1

Gtr + Gv
(2.5.23)

where Gtr [W/K] is the thermal conductance from transmission, and Gv [W/K] the thermal conductance from ventilation.
The time constant can then be expressed as [34]:

τ =

∑
(m · cp)

Gtr + Gv
(2.5.24)

where
∑

(m ·cp) is the heat storing capacity of all masses in the storage. We see that the time constant can be influenced by
the building mass, the transmission losses and the ventilation losses. Thus, the time constant of the house can be increased
not only by increasing the building mass and selecting materials with high heat capacity, but also by reducing the losses
[34].

Table 2.5.3: Heat conduction and capacity values for different materials. Adopted from [34].

Material Specific heat conductivity [W/(mK)] Specific heat capacity
Brick 0.45 1.49
Concrete 2.7 1.83
Concrete, lightweight 0.13 0.4
Gypsum board 0.1 0.88
Wood (oak) 0.19 1.7
Wood (pine) 0.14 1.5
Glass-wool 0.045 0.062
Insulation (styrofoam) 0.035 0.01
Cork floor 0.1 0.36
Air, 0 °C 0.024 0.0013

The heat flow through a wall segment is given by:

q =
k · A

x
(
Tin − Tout

)
(2.5.25)

where k is the specific heat conductivity, A is the area of the wall section, x the thickness of the wall, and Tin, Tout are the
indoor and outdoor temperatures. Considering table 2.5.3, it is clear that the heat flow through a wall segment will vary to
a large degree on the materials being used for insulation/conduction. The difference in conductivity, as mentioned in the
previous section, is three orders of magnitude. Naturally, a material with low thermal conduction is useful for conduction.
For thermal storage, a material with high heat capacity is preferred. As can be seen from table 2.5.3, no material satisfies
both of these demands, so a wall is usually made of several materials, for instance wood for structural qualities, styrofoam
for insulation, and brick on the outside for the sake of aesthetics [34].
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Chapter 3

Model Description

3.1 Introduction
The model used is based on the work in [2]. It is a mixed-integer linear program implemented in Python, using the
modelling library Pyomo. In [2], a stochastic formulation of the problem was investigated. In this work, however, the
model is kept in a deterministic framework. The main work done in this thesis is decoupling the heat balance into two
equations, one for space heating and another for domestic hot water. Hence, different options for building heating systems
can be investigated, and using the thermal mass of the building as an energy storage can also be explored. (it would not
make sense to let this storage operate on an aggregated heat load).

Table 3.1.1: Key information for the building studied.

Area 250 m2

Location Oslo, Norway
Type Single family home
Standard Passive house

The template building used for the case study is the same as the one used in [2]. Important information about the building
is presented in table 3.1.1.

3.2 Nomenclature
In this section, an exhaustive description of the sets, parameters and variables of the model will be given. Parameters and
variables for both model configurations are listed together, the different configurations are treated later in the chapter.

Table 3.2.1: Sets and indices for the model.

Set Index Description
Idhw i DHW-technology i
Ish i SH-technology i
I i Technology i (Idhw ∪ Ish = I)
Iz i Storage technology i
ε e Import energy carrier e
T t Hourly time step t
Υ yr Yearly time step of modelling period
S s Scenario s
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Table 3.2.2: Declaration of parameters for the model.

Strategic Parameters
C f xd

i Fixed investment cost for technology i e
C spe

i Specific investment cost for technology i e/kW (kWh)
Crun

i Yearly running cost for technology i % of C spe
i

C f xd
ep Monthly fixed grid tariff for ep (incl. VAT) e

C f xd
ps Monthly fixed grid charge for ps pricing (incl. VAT) e/kW

C spe
ep Monthly specific grid tariff for ep (incl. VAT) e/kWh

C spe
ps Monthly specific grid tariff for ps pricing (incl. VAT) e/kWh

Cpty Penalty charge for ps pricing (incl. VAT) i e/kWh
Y sub Power subscription for ps pricing (incl. VAT) kW
Cb f Price of bio fuel (pellets) e/kWh
Cwo Price of wood fuel (pellets) e/kWh
R Discount rate -
ηi Efficiency of technology i -
βi Charging/discharging rate of technology of storage technology i -
Li Expected lifetime of technology i Years
Xi Upper capacity bound for technology i kW(kWh)
Xi Upper capacity bound for technology i kW(kWh)
Operational Parameters
C spot

t Spot price of electricity at time step t e/kWh
COPsh

t,ashp Coefficient of performance for ASHP for SH at time step t -
COPdhw

t,ashp Coefficient of performance for ASHP for DHW at time step t -
COPsh

t,gshp Coefficient of performance for GSHP for SH at time step t -
COPdhw

t,gshp Coefficient of performance for GSHP for DHW at time step t -
COPsh

t,a2a Coefficient of performance for A2A for SH at time step t -
Del

t Building electricity demand at time step t kWh/h
Dsh

t Space heating demand at time step t kWh/h
Ddhw

t Domestic hot water demand at time step t kWh/h
Tt Outdoor temperature at time step t °C
Y pv

t Specific production of PV at time step t kW/kWh
Control Parameters
X

imp
Maximum grid import capacity kW

Xexp Maximum grid export capacity kW
Ge CO2-factor for energy carrier e gCO2eq/kWh
Gre f Yearly emissions reference (consider cutting) gCO2eq/yr
PEe PE-factor for energy carrier e kWhPE/kWh
PEre f Reference emissions (consider cutting) kWhPE/yr
γ Relaxation coefficient for ZEB-restriction ∈ (0, 1)
Λep Activation of energy pricing 0/1
Λps Activation of power subscription pricing 0/1
Λi Pre-activation of technology i 0/1
Λimp Activation of import 0/1
Λexp Activation of export 0/1
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Table 3.2.3: Variables for the model.

Strategic Decision Variables
xi Installed capacity for technology i kW(kWh)
δi =1 if technology i is installed 1/0
Operational Decision Variables
qsh

t,ashp Heat generated by the ASHP for SH at time step t kWh/h
qdhw

t,ashp Heat generated by the ASHP for DHW at time step t kWh/h
qsh

t,gshp Heat generated by the GSHP for SH at time step t kWh/h
qdhw

t,gshp Heat generated by the GSHP for DHW at time step t kWh/h
qsh

t,bb Heat generated by the BB for SH at time step t kWh/h
qdhw

t,bb Heat generated by the BB for DHW at time step t kWh/h
qsh

t,eb Heat generated by the EB for SH at time step t kWh/h
qdhw

t,eb Heat generated by the EB for DHW at time step t kWh/h
qsh

t,a2a Heat generated by the A2A for SH at time step t kWh/h
qsh

t, f p Heat generated by the FP for SH at time step t kWh/h
qsh

t,po Heat generated by the PO for SH at time step t kWh/h
qhwt

t Net heat to hot water tank (HWT) at time step t kWh/h
qhs

t Net heat to heat storage/accumulator (HS) at time step t kWh/h
qss

t Net heat to shallow storage (SS) at time step t kWh/h
ypv

t Electricity generated by PV at time step t kWh/h
ysh

t,ashp Electricity consumed by the ASHP for SH at time step t kWh/h
ydhw

t,ashp Electricity consumed by the ASHP for DHW at time step t kWh/h
ysh

t,gshp Electricity consumed by the GSHP for SH at time step t kWh/h
ydhw

t,gshp Electricity consumed by the GSHP for DHW at time step t kWh/h
ysh

t,a2a Electricity consumed by the A2A for SH at time step t kWh/h
ysh

t,eb Electricity consumed by the EB for SH at time step t kWh/h
ydhw

t,eb Electricity consumed by the EB for DHW at time step t kWh/h
f sh
t,bb Fuel consumed by bio boiler (BB) for SH at time step t kWh/h

f dhw
t,bb Fuel consumed by bio boiler (BB) for DHW at time step t kWh/h

f sh
t′, f p Fuel consumed by fireplace (FP) for SH at time step t′ kWh/h

ych
t Electricity charged from the battery at time step t kWh/h

ydch
t Electricity discharged from the battery at time step t kWh/h

yimp
t Electricity imported from the grid at time step t kWh/h

yexp
t Electricity exported to the grid at time step t kWh/h

ypty
t Electricity exceeding subscription at time step t kWh/h

zhwt
t Energy content of hot water tank (HWT) at time step t kWh/h

zhs
t Energy content of heat storage/accumulator (HS) at time step t kWh/h

zss
t Energy content of BITES shallow storage (SS) at time step t kWh/h

zds
t Energy content of BITES deep storage (DS) at time step t kWh/h

zba
t Energy content of battery (BA) at time step t kWh/h
δch

t =1 if battery is charging at time step t 1/0
δdch

t =1 if battery is discharging at time step t 1/0
Functions
cinv(s) Discounted investment costs of scenario s e
crun(s) Discounted operational costs of scenario s e
Objective function
Ctot Total system cost e
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3.3 Objective Function
For the MILP problem, the objective function is given by:

Ctot = min
(
cinv(s) + crun(s)

)
(3.3.1)

where cinv(s) is the investment cost function and crun(s) the operational cost function, given the scenario s. The investment
cost function can be written as:

cinv(s) =
∑
i∈I

(C spe
i xi + C f xd

i δi · αi(R, Li, γn) (3.3.2)

where the final discounting factor, αi, takes into forced reinvestments and the remaining lifetime of each technology into
account:

αi(R, Li, γn) =
1 − (1 + R)−(Yn−LiK)

1 − (1 + R)−Li
·

1
(1 + R)−Li

+

K−1∑
k=0

1
(1 + R)kLi

(3.3.3)

The operational costs, crun, is the sum of the cost of operation and the maintenance costs, fuel costs, electricity costs and
the grid charge. Activation of either of the options for the grid charge are given by the binary variables Λps and Λep. In
this work, power subscription is chosen the electricity pricing mechanism. The power subscription model is based the
work in [40] and [41]. The expression is written as:

crun(s) =

(∑
i∈I

(Crun
i C spe

i xi) +
∑
t∈T

yimp
t C spot

t (s) · 1.25 − yexp
t C spot

t (s) + f imp
t C f · 1.25

+ (12 ·C f xd
ep +

∑
t∈T

yimp
t )Λep + (12 ·C f xd

ps ·

(
1 + Ysub

)
+ Cpty

ps

∑
t∈T

(ypty
t ) + C spe

ps

∑
t∈T

(yimp
t ))Λps

)
· λ(Υn,R)

(3.3.4)

where λ is the total capitalization factor, which is used to obtain the present value of all yearly running costs for all years
Υn in the modelling period. Run costs are summed to the end of each year, which is shown by the second fraction in
equation 3.3.3:

λ(Υ,R) =
1 − (1 + R)−Υ

R
·

1
(1 + R)1 (3.3.5)

3.4 Constraints

3.4.1 Capacity Constraints
The installed capacity of each technology i is zero if it is not a part of the solution. M is a large number, often called ”big
M”, and δi is the binary activation value:

xi ≤ δiM ∀i ∈ I (3.4.1)

A two-sided constraint is imposed on the model to ensure that the installed capacity for each technology is between
pre-defined lower and upper bounds:

Xiδi ≤ xi ≤ XiΛi (3.4.2)

3.4.2 ZEB-constraint
In order to ensure zero emission operation of the building energy system, the ZEB-constraint must be enforced. As
mentioned in the theory section [reference], either CO2-factors or PE-factors can be used. In this work, the CO2-factor
will be used:

PZEB

∑
t∈T

(
yimp

t Gel + f imp
t G f

)
≤

∑
t∈T

yexp
t Gel (3.4.3)
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where PZEB is percentage ZEB, with a value 0 giving noZEB, and a value of 1 signifying ZEB. On the left side of the
inequality, the emissions caused by production of imported electricity and the burning of fuel is summed over the operating
year. On the right side, the same is done with the emissions displaced by the export of self-generated electricity.

3.4.3 Technology Constraints
The energy produced by on-site technologies is limited by their capacities. For the heat producing technologies, the
following must hold:

qsh
t,i + qdhw

t,i ≤ xi ∀t ∈ T , i ∈ I (3.4.4)

where qsh
i,t and qdhw

i,t is the heat produced by technology i at timestep t for space heating and domestic hot water, respectively.
For the electricity produced by the PV-panels, the following constraint must be satisfied:

ypv
t = xpvY pv

t Λpv ∀t ∈ T (3.4.5)

where Y pv
t [kWh/kWp] is the specific PV-production, xpv [kW] the invested capacity, given by the solar irradiation and the

equations for PV-panels ,2.3.1 and 2.3.2.

For the heat pumps, the COP must be taken into account. Since the heating loads are separated, one constraint for
each purpose is needed for the waterborne heat pumps:

qsh
t,ashp = ysh

t,ashpCOPsh
t,ashpΛashp ∀t ∈ T (3.4.6)

qdhw
t,ashp = ydhw

t,ashpCOPdhw
t,ashpΛashp ∀t ∈ T (3.4.7)

qsh
t,gshp = ysh

t,gshpCOPsh
t,gshpΛgshp ∀t ∈ T (3.4.8)

qdhw
t,gshp = ydhw

t,gshpCOPdhw
t,gshpΛgshp ∀t ∈ T (3.4.9)

where COPsh
t,i , COPdhw

t,i is the COP for space and water heating of heat pump i at time step t, respectively. Similarly, ysh
t,i

and ydhw
t,i is the feed-in electricity of heat pump i at timestep t for these same purposes. Because the air-to-air heat pump

can only operate on the SH-load, one constraint suffices for this technology:

qsh
t,a2a = ysh

t,a2aCOPt,a2aΛa2a ∀t ∈ T (3.4.10)

where COPt,a2a is and yt,a2a is the COP and the feed-in electricity of the heat pump at timestep t, respectively. In addition,
an extra restriction is put on the air-to-air heat pump, as it is assumed to have only one indoor unit, with a limited ability
to transport heat to other rooms:

qsh
t,a2a ≤ 0.4 · Dsh

t ∀t ∈ T (3.4.11)

where Dsh is the space heating load. Similarly, the production of heat from the electric boiler depends directly on the
electricity consumption:

qsh
t,eb = ysh

t,ebηebΛeb ∀t ∈ T (3.4.12)

qdhw
t,eb = ydhw

t,eb ηebΛeb ∀t ∈ T (3.4.13)

For the point-source system, the electric boiler can only operate on the DHW-load. The electric radiator is introduced as
peak load technology for the point-source system:

qsh
t,po = ysh

t,poηpoΛpo ∀t ∈ T (3.4.14)

For the fuel-driven technologies, heat production depends on the amount of fuel imported. For the bio boiler:

qsh
t,bb = f sh

t,bbηbbΛbb ∀t ∈ T (3.4.15)
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qdhw
t,bb = f dhw

t,bb ηbbΛbb ∀t ∈ T (3.4.16)

For the fireplace:

qsh
t′, f p = f sh

t′, f pη f pΛ f p ∀t′ ∈ T ′ (3.4.17)

qsh
t′, f p = 0 ∀t′ < T ′ (3.4.18)

where t′ = t − f loor( t
24 ) · 24 and T ′ = {16, 17, ..., 24}, ensuring that it can only operate between 16:00 and 24:00.

3.4.4 Storage Constraints
Heat Storage

Energy content in the storage technologies BA, HWT, SS and DS must be less than or eqaul to the invested storage
capacities:

zi
t ≤ xiΛi ∀i ∈ Iz ∀t ∈ T (3.4.19)

For the hot water tank (HWT), a charging variable is defined, ensuring that the first law of thermodynamics is obeyed.
This variable corresponds corresponds to both the charging and discharging variables in equation 2.5.6. The ambient loss
factor from 2.5.6 is left out:

qhwt
t = zhwt

t−1 − zhwt
t ∀t ∈ T (3.4.20)

where qwt ≤ 0 denotes charging of the storage. The charging rate is limited by the following constraint:∣∣∣qhwt
t

∣∣∣ ≤ xhwtβhwt ∀t ∈ T (3.4.21)

where βhs is the charging rate of the storage. The constraints for the accumulator tank (HS) are defined in exactly the same
manner. From a physical standpoint, the temperature difference in this tank is much smaller, as the supply temperature
for the space heating usually is around 30 °C. Thus, for the same energy content, the volume of the tank has to be bigger.
However, this is outside the scope of this work.

For the Building Internal Thermal Energy Storage, or BITES, the modelling is done in more detail (see 2.5.2). This
thermal storage is modelled as a two-node network, a shallow part (abbreviation SS); representing the heating system,
indoor air and surface layer of the walls, and a deep part (abbreviation DS), corresponding to the structural elements of
the building [31]. The charging and discharging variables from the equations in 2.5.2 are merged into qss, with negative
values representing charging, and positive values charging. First, the balance for the shallow storage:

zss
t = zss

t−1 + qss
t − Flow − qss

loss ∀t ∈ T (3.4.22)

where zss
t is the state at time step t, zss

t−1 the state at time step t − 1, qss
t the above-mentioned charging variable, Flow the

cross-node flow (positive flow means that heat flows to DS), and qss
loss the loss factor. The cross-node flow is defined in

the following manner:

Flow =

( zss
t

xss −
zds

t

xds

)
· K f low ∀t ∈ T (3.4.23)

where xss and xds have to be given as parameters of the model, in order to preserve the linearity of the model. The
parameter K f low is the heat transfer coefficient, given in kWh/h. The loss factor qss

loss is given by the following equation:

qss
loss = zss

t · (1 − K ss
loss) ∀t ∈ T (3.4.24)

where K ss
loss is the loss factor, given by the time constant τss of the SS:

K ss
loss = e−

1
τss (3.4.25)
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The equations for the deep storage are analogous, with the exception that there is no direct charging term, so all the heat
entering this storage comes via the cross-node flow:

zds
t = zds

t−1 + Flow − qds
loss ∀t ∈ T (3.4.26)

qds
loss = zds

t · (1 − Kds
loss) ∀t ∈ T (3.4.27)

Kds
loss = e−

1
τds (3.4.28)

The charging of the SS is not constrained. The reasoning behind this is that the heating system is incentivized to be as
small as possible. For both the waterborne and point-source system, the total size will not go above 7 kW (see table 5.3.1).
In addition, the SH- and DHW-load have to be covered at every time step, which puts a natural constraint on the charging.

Battery

For the battery, the following constraint must hold:

zba
t = zba

t−1 + ych
t η

ch − ydch
t

1
ηdch ∀t ∈ T (3.4.29)

where the charging and discharging efficiencies ηch and ηdch take the charging losses into account. The charging and
discharging are also constrained:

ych
t ≤ (xba − zba

t−1)
1
ηch Λba ∀t ∈ T (3.4.30)

ydch
t ≤ zba

t−1η
dchΛba ∀t ∈ T (3.4.31)

In order to ensure the mutual exclusivity of charging and discharging within one timestep, the following logical constraints
are introduced:

ych
t ≤ δ

chM ∀t ∈ T (3.4.32)

ydch
t ≤ δdchM ∀t ∈ T (3.4.33)

δch
t + δdch

t ≤ 1 ∀t ∈ T (3.4.34)

The charging rates are restricted through the following equations:

ych
t ≤ xbaβba ∀t ∈ T (3.4.35)

ydch
t ≤ xbaβba ∀t ∈ T (3.4.36)

3.4.5 Grid Interaction Constraints
The maximum import of electricity from the grid in timestep t is bounded:

yimp
t ≤ X

imp
δ

imp
t ∀t ∈ T (3.4.37)

In the same manner, the maximum export to the grid is restricted:

yexp
t ≤ X

exp
δ

exp
t ∀t ∈ T (3.4.38)

The mutual exclusivity of import and export is enforced through the associated price difference. Thus, no constraint is
required.

22



Power Subscription Pricing

Activation of the power subscription tariff model activates the following constraints:

yimp
t − Y sub ≤ yimp

t ∀t ∈ T (3.4.39)

ypty
t ≥ 0 ∀t ∈ T (3.4.40)

The parameter Ysub is set to 5 kW for all cases in the main results.

3.4.6 Load Constraints
In order to ensure that the electricity and heat demand of the building is met, load constraints needs to be defined. On a
general level, the electricity balance can be defined in the following manner:

Del
t = yimp

t + ypv
t + ydch

t − ych
t −

∑
i∈Idhw

yi
t −

∑
i∈Ish

yi
t ∀t ∈ T (3.4.41)

Here, the electricity consumption of the heat producing technologies are split into two sets, Idhw and Ish, to facilitate
separate balances for these two loads. For the model configuration with a hydronic heating system, these two sets will
be identical, as all available energy technologies are based on pressurized water as the energy carrier. For the model
configuration with point-source heating, however, these sets will be disjoint, since the technologies available for space
heating heat the air directly. For the domestic hot water demand, the following balance can be defined:

Ddhw
t = zhs

t−1 − zhs
t +

∑
i∈Idhw

qi
t ∀t ∈ T (3.4.42)

where the discharging of the heat storage is considered, as well as the sum of contributions from the hot water technologies.
For the space heating demand, the following expression is defined:

Dsh
t = zss

t−1 − zss
t +

∑
i∈Ish

qi
t ∀t ∈ T (3.4.43)

3.5 Model Permutations
In the previous section, the constraints of both the point-source and waterborne model were presented. Here, the different
system configurations, i.e. point-source and waterborne, will be presented separately, with and without BITES. The load
constraints will be written out explicitly for each configuration. The model with waterborne heating and no BITES for
the SH-load corresponds to the model in [2], with the exception that the the HWT can operate only on the DHW-load.
However, there is a possibility to invest in an accumulator tank (HS), which serves as a buffer for the SH-load.

3.5.1 Waterborne heating system, without BITES
This is the model with waterborne heating system without Shallow storage. Balance equations can be written based on
the figure and the load equations in 3.4.6. First, the electricity balance (The battery is ignored for simplicity):

Del
t = yimp

t + ypv
t − ydhw

t,eb − ysh
t,eb − ydhw

t,gshp − ysh
t,gshp − ydhw

t,ashp − ysh
t,ashp ∀t ∈ T (3.5.1)

With the exception of the battery being ignored, this is just the sums in equation 3.4.41 written out explicitly with the
relevant technologies. The balance for the space heating demand:

Dsh
t = qsh

t,eb + qsh
t,gshp + qsh

t,ashp + zhs
t−1 − zhs

t ∀t ∈ T (3.5.2)

The balance for the hot water demand:

Ddhw
t = qdhw

t,eb + qdhw
t,gshp + qdhw

t,ashp + zhwt
t−1 − zhwt

t ∀t ∈ T (3.5.3)

Now, it is possible to see how much a certain technology contributes to each of these loads. Since the space heating system
is waterborne, all the technologies are assumed to be able to operate on both loads, although the heat pumps will do so at
different COPs (see section 2.3.2).
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3.5.2 Waterborne heating system, with BITES
This is the model with waterborne heating and the added possibility of storing energy in the thermal mass of the building.
As was mentioned in 2.5.2, this stored energy can only operate on the SH-load, since there is no way to transfer the
energy back into the heating system. The balance equations for Ddhw and Del are the same as in 3.5.1. The balance for
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Figure 3.5.1: Waterborne system energy flow.

Dsh, however, now has a new element, the heat discharged or charged from the shallow storage. The red line surrounding
the shallow storage node denotes the inclusion of this element in the model. Adding this element, a new balance can be
written for the space heating:

Dsh
t = qsh

t,eb + qsh
t,gshp + qsh

t,ashp + zhs
t−1 − zhs

t + qss
t ∀t ∈ T (3.5.4)

where qss
t is the energy released or absorbed by the building shallow storage. Now the system has the possibility to preheat

the building several timesteps ahead of the actual energy use, i.e. at night or in the middle of the day, when the spot price
is favorable.

3.5.3 Point-based heating system, without BITES
This is the model with a heating system based on point-heat sources, that is a heating system based on sources such as
electric radiators (PO), air-to-air (A2A) heat pumps and traditional fireplaces (FP). Since these technologies transfer heat
out into the air (airborne), they cannot operate on the DHW-load. Conversely, the boiler technologies, the electric boiler
(EB) and the bio boiler (BB) cannot operate on the SH-load. The energy balances can be written out in a similar manner
to what is done in sections 3.5.1 and 3.5.2. The electricity balance:

Del
t = yimp

t + ypv
t − ydhw

t,eb − ysh
t,a2a − ysh

t,po ∀t ∈ T (3.5.5)

The balance for the space heating demand:

Dsh
t = qsh

t,p,po + qsh
t,a2a + qsh

t, f p ∀t ∈ T (3.5.6)

The balance for the hot water demand:

Ddhw
t = qdhw

t,eb + zhwt
t−1 − zhwt

t ∀t ∈ T (3.5.7)
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3.5.4 Point-based heating system, with BITES
This is the model with a point-heat heating system and BITES added as an available storage technology. Again, the red
line surrounding the shallow storage denotes the inclusion of this element to the model:
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Figure 3.5.2: Point-source system energy flow.

The balance equations for Ddhw and Del are the same as in 3.5.1. The balance for Dsh takes on an additional element in the
same manner as in 3.5.2, to denote the energy which can be released or absorbed by the building thermal mass. Adding
the term qss

t , the balance becomes:

Dsh
t = qsh

t,po + qsh
t,a2a + qsh

t, f p + qss
t ∀t ∈ T (3.5.8)
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Chapter 4

Input Data

4.1 Introduction
In this chapter, the input data used in the optimization model will be presented and described. The time series data is
generated based on a statistical approach described in [5] and [6], whereas the technology data is based on the reasearch
in [2] and various publicly available reports.

Table 4.1.1 below gives an overview of the origin of the data.

Table 4.1.1: List of data and origin.

Parameter Origin

1.) Electricity data Based on [6], [4]

2.) Heat load data Based on [5], [4]

3.) Temperature [°C] Measurement data, given in [4] [2]

4.) Spot price (e/kWh) NO1 spot price from Nordpoolspot.no [42]

5.) Exchange rate (NOK/e) Assumed to be 10 for simplicity

6.) Solar irradiation [kW/m2] Irradiation from [43]

7.) PV generation (kWh/kW p) Given by equations 2.3.1 and 2.3.2 and 6.)

8.) COP heat pumps Given by equations 2.3.5 and 2.3.6 and 3.)

9.) BITES parameters Given by [31], [34]

10.) Technology data Based on regression analysis in [2]

4.2 Technology Data
In this section, the technology data will be presented and discussed. The data is mainly obtained from the Norwegian
manufacturers. The prices for the PV, ASHP, GSHP, EB, BB, BA and HS is based on regression analysis using data points
from several manufacturers, which yields a linear cost function for each technology. The first component is a fixed cost
(given in e, independent of installed capacity), and represents costs such as monitoring equipment, mounting, installation
etc. The second component is a specific cost (e/kW), which is dependant upon the installed size of the technology. For a
more detailed review of the process, see appendix C in [2]. The third component is the run cost of each technology, given
as a percentage of the specific investment cost. In the case of the FP and PO, these assumptions are simply based upon
the run costs of the other technologies.
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Table 4.2.1: Technology costs.

i (Technologies from [2]) Fixed cost [e] Specific cost [e/kW] Run costs[%] Comment
PV 255 1870 0.01 Fixed costs: Mounting and installation
ASHP 6740 428 0.02 Fixed costs: Mounting and installation
GSHP 11955 961 0.02 Fixed costs: Mounting, installation, well
EB 0 134 0.02 Assumed w/ integrated (HWT)
BB 2221 229 0.03 Fixed costs: pellets storage and feeder
BA 0 707 0.0 Price in e/kWh
HS/HWT 0 83 0.0 Price in e/kWh
i (Technologies added)
BITES 0 0 0 Assumed free-of-charge
PO 0 100 0 Based on [44]
FP 250 131 0.01 Based on [45]
A2A 570 317.5 0.01 Based on price of Mitsubishi Kaiteki [46]

The technology efficiency is also based on manufacturers’ data, and is retrieved from [2]. Lifetimes are estimated from
expected lifetimes of the respective technologies and the warranties, given in [39]. Note that the COPs of the heat pumps
and the efficiency of the PV are denoted as time-series, COPi

t and ηPV
t . In addition, the COP time-series are split into

DHW- and SH-components, as the COP will be different depending on whether the heat pump is used for space heating
or domestic hot water purposes.

Table 4.2.2: Technology performance data.

i (Technologies from [2]) Li [years] Efficiency Lower-upper bound Comment
PV 25 ηt 1-100 kWp Prices in e/kWp
ASHP 20 COPdhw

ashp,t, COPsh
ashp,t 1.5-100 kW Efficiency depends on temperature

GSHP 20 COPdhw
gshp,t, COPsh

gshp,t 1.5-100 kW Efficiency depends on temperature
EB 20 0.98 0.5-100 kW
BB 15 0.91 1.5-100 kW
BA 10 rt = 0.95, β = 0.433 1-100 kWh β is charging/discharging rate
HS/HWT 20 η = 0.99, β = 0.667 1-100 kWh β is charging/discharging rate
i (Technologies added)
BITES 60 Given by equations in 2.5.2 DS=90, SS=12.5 Based on findings in [31], [34]
PO 10 1.00 0-100 kWh All energy goes towards heating
FP 60 0.84 0-7 kW Based on [47]
A2A 20 COPsh

a2a,t 1-100 kW Only operates on SH-load
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Table 4.2.3 below presents the values of the rest of the parameters.

Table 4.2.3: Strategic/control parameters.

Parameter Value Comment
C f xd

ps 8.61 e/kW Fixed monthly charge, per kW of subscription [2]
C spe

ps 0.05 e/kWh Variable charge, per kWh of import [2]
Cpty 0.1 e/kWh Penalty charge, per kWh of import exceeding subscription level [2]
Y sub 5 kW Subscription level [2]
Cb f 0.05 Price in e/kWh, from [2]
Cwo 0.088 Price in e/kWh, from [48], assuming material humidity of 10%
R 0.06 Discount rate
Gel 17 g/kWh CO2-factor of electricity, Norwegian energy mix, from [11]
Gb f 14 g/kWh CO2-factor of biofuel, from [49]
Gwo 15.63 g/kWh CO2-factor of wood logs, from [50]
Λimp 1 Import activated for all cases
Λexp 1 Export activated for all cases
Λep 0 Energy pricing deactivated for all cases
Λps 1 Power subscription activated for all cases
Λi 1 ∀i ∈ I Except the noBITES-cases, where Λss

i = 0 and Λds
i = 0

Some comments to table 4.2.2 and 4.2.3 are warranted, as they reflect important modelling assumptions:

• The charging/discharging rate β for the HS was modified, since the original value was considered to be too low.
The modified value takes into account that the almost all of the thermal energy in the HS can be discharged within
an hour [2]. Furthermore, the heat storage is modelled as a fully mixed, uniform (that is, no stratification) storage
medium, with no losses to ambient.

• The PV and heat pump efficiencies are time-series, and will be plotted below.

• The battery efficiency is the round-trip efficiency (see equation 2.5 in [2]).

• The lower and upper bounds for the heating technologies is based on the fact that some of them are intended to
cover the base load (ASHP, GSHP, BB), and others the peak load (EB).

• The lifetime of all available technologies is fixed; this parameter will in real life depend to on how much it is
utilized. For instance, the battery lifetime will depend heavily on number of charging cycles, in addition to the
Depth-of-Discharge of each cycle.

• The capacities for BITES is based on assumptions in 2.5.2, and are defined as single-value constrained variables in
the model. In addition, the capacities have to be fed in as parameters to the model. In short, it is assumed that the
thermal mass of the building can be sufficiently represented by a two-node model, with one node representing the
heating system, indoor air, furniture and outer wall layers, and another representing the deeper wall layers.

• The price of biopellets and wood logs is assumed to be constant for the whole modelling period.

4.3 Time Series
Data for five different years are available, based on the work in [4] [5] [6]. However, only data from one year (2012) will
be used, as this year represents an average climatic year [4]. The decoupling of the heat load into space heating (SH)
and domestic hot water (DHW) components leads to a large number of variables, which causes the branch-and-bound
algorithm to converge slowly in many cases (especially with waterborne heating and ZEB, BITES). Thus, a reduced
dataset will be used. The data reduction process used is very simple, we simply find the timestep where the highest space
heating load occurs, and set this timestep as the midway point of the week selected. If this timestep is near the beginning
or end of the year, we let the starting point and/or end point of the winter/fall season be the first/last timestep of the
year, respectively. This will overestimate the need for PV-capacity, as the time steps with the most irradiation most likely
(mainly during spring and summer) will be removed. As a result, the investment costs, and so the total cost, will be higher.
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However, the optimization results can be still be compared across cases, and the most interesting results with regard to
operation will in any case stem from peak load situations. The table below shows the results of the simple selection
process:

Table 4.3.1: Selected start and stop hours for reduced scenario.

Start hour Stop hour Dates
Winter 742 910 Jan 31. - Feb. 7
Spring 2129 2297 Mar. 29 - Apr. 5
Summer 4313 4481 Jun. 28 - Jul. 5
Fall 8010 8178 Nov. 29 - Dec. 6

Figure 4.3.1: Electric load for the reduced year (2012).

As can be seen from figure 4.3.1, the electrical load remains fluctuates in a similar manner through the reduced year.
This is to be expected, since the electrical load is decoupled from the heating loads. Hence, the load profile shown is the
electricity required to supply loads such as kitchen appliances, electronics, lighting etc. However, there is also a clear
seasonal trend, which could be ascribed to a decreased need for lighting as the days get brighter. The total electricity
demand for the reduced year is 471 kWh, and the peak value is 1.22 kW.
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Figure 4.3.2: Space heating load for the reduced year (2012).

Figure 4.3.2 shows the space heating load through the reduced year, its duration curve and the outside temperature. We
see that this parameter fluctuates to a much greater degree than the specific electric load, and that it exhibits an inverse
relation to the outside temperature. Note that this relation non-linear, as outside temperatures above 15 °C generally leads
to a space heating demand of zero [6]. From the duration curve Dsh

duration, we see that the number of hours with no space
heating demand is at about 100 (104), which matches well with the number of hours with a temperature above 15 °C
(115). Sudden changes in temperature and load mark the seasonal changes. The two winter weeks have similar profiles,
while the spring and summer weeks differ more from these and each other. The peak value for Dsh is at about 2 kW for
the spring week, 1 kW for the summer week, and 4.82 kW for the whole scenario (occurring in the fall week). The total
space heating demand is 973.95 kWh.

Figure 4.3.3: Domestic hot water load for the reduced year (2012).

In figure 4.3.3, the domestic hot water load is plotted, along with its duration curve. Immediately, we notice this curve
is nearly identical for all seasons. The underlying assumption is that the amount of energy used for warm showers in the
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residence stay the same regardless of the outside temperature. This assumption may not hold in reality, as there may be a
tendency to take more frequent and warmer showers when it is cold outside. Another possible deficiency with regard to
the accuracy of the curve is the peak load value for the curve, which is at 2.07 kW. Assuming a regular shower-head with
a flow rate of 16 l/s, a temperature difference of 30 °C, and heat capacity of water Cp = 4.184 kJ

kgK , a 10 minute shower
requires 5.58 kWh of energy. If we assume water-saving shower-head, the flow rate, and hence the energy demand, is
reduced by 50 %, which is closer to the mark [51].

Another deficiency of the curve is the low number of hours in which Ddhw
t is at its minimum, which should correspond to

the energy required to keep the hot water tank temperature at its nominal value when energy is drawn from the tank (that
is, the energy required to counteract the losses to the ambient air). For a single-home building, one would expect most
nighttime hours to contain this value, but this is not the case. Yet another point worth mentioning is the tendency to take
showers in the morning or at night, which is not reflected in the curve. In any case, the curve for Ddhw is left as is, and can
be regarded as the distributed domestic hot water load. The total domestic hot water demand is 767.87 kWh.

Figure 4.3.4: Potential PV-production for the reduced year (2012).

The PV-production per kW installed is shown in figure 4.3.4. The calculation of these values is based on the equations
2.3.1 and 2.3.2, as well as the following table of coefficients, suggested in [21]:

Table 4.3.2: Coefficient values for calculating potential PV-production.

k1 k2 k3 k4 k5 k6 c
-0.017162 -0.040289 -0.004681 0.000148 0.000169 0.000005 0.05

From the plot, we see that the PV-production is biggest in the spring and summer weeks, with low potential power output
in the winter and fall weeks. Additionally, there is a clear daily trend, with intervals of only some hours per day in which
the PVs are able to produce power. These intervals increase in length in summer. It is clear that majority of the grid export
(yimp) will take place in spring and summer.
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Figure 4.3.5: COPs for the reduced scenario (2012).

Figure 4.3.5 show the time series for the COPs of the heat pumps. The equations 2.3.5 and 2.3.6 are used to calculate the
COPs for each timestep and load, in accordance with standard 8 from [4], since the building in question is a passive house
(with low supply temperature). With values for A, B and C of -0.0051, -0.5633 and 32.844 respectively, the required
supply temperature Tsup (for space heating, hydronic system) can be calculated from equation 2.3.7. With this and the
following k-values for the waterborne heat pumps, taken from [52]:

Table 4.3.3: Coefficient values for calculating COPs.

k0 k1 k2

ASHP 7.1299 0.1239 0.0007
GSHP 10.181 0.1839 0.0008
A2A 5.50 0.13 0.0009

the COPs can be calculated. The polynomial for the air-to-air heat pump is based on the table of COPs for different source
temperatures in [53], assuming a constant supply temperature of 30 °C. As can be seen from the plot, the COPs for space
heating, COPt

ashp,t and COPt
gshp,t, fluctuate the most through the reduced year. They both show a strong dependency on

outside temperature Tamb, which is to be expected. The large difference COP at low outside temperatures stem from the
assumption that the ground water used for the GSHP is at a constant 10 °C throughout the year, yielding relatively stable
curve, with a minimum of 5.26 and a maximum of 9.15. A COP of 9.15 is unrealistic, but this will be alleviated by the
fact that the space heating demand is low when COPsh

gshp,t is high. For the ASHP, the seasonal difference is more pro-
nounced, with a minimum of 2.31 and a maximum of 8.31 for COPsh

ashp,t. The COPs for domestic hot water use (DHW)
is constant for the GSHP, since a constant temperature for the HWT is assumed (65 °C), yielding a constant ∆T of 55 °C.
For the ASHP, ∆T is the difference between the required hot water tank temperature and Tamb, which gives some variation
through the year, but less than for the space heating COP. The COP for the A2A, COPsh

t,a2a, is at a level below the ASHP
and GSHP. The maximum can be seen in summer, at just above 4. This is quite a bit lower than the reported rating for the
Mitsubishi Kaiteki 6300, which is claimed by the manufacturer to operate at a COP of 5.52 at nominal conditions (+7 °C)
[46]. However, a conservative approach is preferred here.

In order to make the modelling tractable, some assumptions with regard to the time series are necessary:

• The electricity price (that is, the spot price time series) is assumed to be the same for the whole modelling period.
These prices will vary a lot from year to year, depending mostly on the amount of rainfall and the outside temper-
ature (assuming electricity is used for heating, which is mostly the case in Norway). Additionally, inflation is not
accounted for.
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• Related to this is the assumption that the electrical and heat load for the neighborhood is identical every year. In
other words, the year chosen (2012) is considered to be an average/representative climatic year. With the way
these loads are split up, the heat loads are subject to the most significant variations. The loads remaining for
the electricity to supply are household appliances, lighting, electronics etc, so for the specific electrical load, this
assumption should be accurate.
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Chapter 5

Results and Discussion

5.1 Introduction
In this chapter, the results of the optimization will be presented and discussed. The optimization will be run on eight
different system configurations, with the data from the 2012 chosen as the basis for the optimization runs, since this year
represents an average climatic year [4]. In addition, because of convergence issues with the branch and bound algorithm,
a reduced dataset is used. First, the optimization will be carried out on the system with point-source heating without the
ZEB-restriction and without the possibility to use the building’s thermal mass as an energy storage. This is referred to as
the PH noZEB-case. Now, the ZEB-restriction is added, to see how the system changes when it is forced to maintain net
zero emission operation. It is expected that adding the ZEB-restriction will force significant investments in PV-panels, as
this is the only on-site production technology included in the model. This case is denoted as PH ZEB. The same is done
for the waterborne system, with the cases denoted as WB noZEB and WB ZEB. At the end of that section, the operation
and cost of the systems are compared.

Then, the building internal thermal energy storage is added as an available storage technology, at no cost. The same
process is repeated, with the point-source system being treated first (cases PH noZEB-B and PH ZEB-B), and the water-
borne system thereafter (WB noZEB-B and WB ZEB-B).

Finally, a sensitivity analysis with respect to the BITES-parameters is carried out. Only one case will be selected for
sensitivity analysis, as it is unfeasible (and most likely unnecessary) to carry it out on all cases. The most obvious param-
eter to select for such an analysis is the size of the shallow storage (SS), or the degree to which the building is allowed
to overheat. For instance, what happens to the cost reduction increase as this parameter is allowed to increase? And how
does it affect the dimensioning of the heating system? Furthermore, we have the deep storage (DS), or more intuitively,
the ”heaviness” of the building construction. Another parameter that lends itself to analysis is K f low, or the tendency of
the heat to flow from the shallow storage to the deep storage.

There are eight different cases, four for each system. The cases are demarcated in the table below.

Table 5.1.1: List of abbreviations for the different cases.

noBITES BITES

noZEB ZEB noZEB ZEB

Point-source PH noZEB PH ZEB PH noZEB-b PH ZEB-b

Waterborne WB noZEB WB ZEB WB noZEB-b WB ZEB-b
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5.2 Abbreviations
A list of essential abbreviations for the technologies is presented below.

ASHP Air-source heat pump

A2A Air-to-air heat pump

BA Battery

BITES Building Internal Thermal Energy Storage

COP Coefficient of performance

DHW Domestic Hot Water

DS Deep storage of BITES

EB Electric Boiler

GSHP Ground-source heat pump

HS Heat storage (Accumulator tank, SH)

HWT Hot Water Tank (DHW)

PV Photo-voltaic panels

SH Space Heating

SS Shallow storage of BITES

ZEB ZEB-constraint activated

noZEB ZEB-constraint deactivated
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5.3 Main Results
Table 5.3.1 shows the invested capacities and costs for all cases. This table will serve as a point of reference when going
through the operation of each case, as well as when comparing relevant cases. The heating technologies for the waterborne
system are found in the category SH&DHW, since these technologies can operate on both DHW- and SH-loads. For the
point-source system, the heating technologies are split into two categories, SH and DHW. The entries that do not apply
to a certain case are marked n.a. (not applicable).

Table 5.3.1: Invested capacities and costs for all cases.

noBITES BITES
Point-source Waterborne Point-source Waterborne

Constraint noZEB ZEB noZEB ZEB noZEB ZEB noZEB ZEB
Case name PH noZEB PH ZEB WB noZEB WB ZEB PH noZEB-b PH ZEB-b WB noZEB-b WB ZEB-b
Electricity

PV [kW] 0 31.35 0 14.67 0 31.59 0 14.54
Import [kWh] 1947.54 1357.02 1178.86 630.06 1972.14 1234.97 1166.59 576.45

Peak imp. [kW] 6.50 6.01 4.23 2.79 5.00 5.00 3.28 2.73
SH&DHW
ASHP [kW] n.a. n.a. 4.66 0 n.a. n.a. 4.49 0
GSHP [kW] n.a. n.a. 0 4.71 n.a. n.a. 0 4.26

BB [kW] n.a. n.a. 0 0 n.a. n.a. 0 0
EB [kW] n.a. n.a. 1.31 1.27 n.a. n.a. 0 0

SH
A2A [kW] 1.30 1.44 n.a. n.a. 1.17 1.37 n.a. n.a.

PO [kW] 3.52 3.38 n.a. n.a. 2.52 2.65 n.a. n.a.
FP [kW] 1.58 1.38 n.a. n.a. 1.24 0 n.a. n.a.

DHW
EB [kW] 2.07 2.07 n.a. n.a. 1.88 2.40 n.a. n.a.
Storage

HWT [kWh] 0 0 0 0 5.22 9.60 2.42 5.66
BAT [kWh] 0 0 0 0 0 0 0 0

SS [kWh] n.a. n.a. n.a. n.a. 12.5 12.5 12.5 12.5
HS [kWh] n.a. n.a. 0 0 n.a. n.a. 1.00 1.00

Total cost [e] 56,386 119,937 39,666 75,808 54,651 117,201 38,559 74,080
Inv. cost [e] 3778 78,538 12,555 79,350 3923 79,350 12,607 58,803
Op. cost [e] 52,590 41,399 27,111 17,349 50,728 37,851 25,952 15,997

5.3.1 Point-source system, without Building Internal Thermal Energy Storage (BITES)
First, the operation of the system with point-source heating will be investigated. The operation of the SH-, DHW-, and
electric loads will plotted and examined. The hours selected for plotting are hours 8 through 80 of the reduced scenario,
i.e. 06:00 February 1st to 06:00 February 4th.

without ZEB-restriction (PH noZEB)

As can be seen from 5.3.2, the only technology selected technology for the servicing of the DHW-load is the electric
boiler, which is not very surprising, since it is the only technology in the input that can operate on the DHW-load. What
is more surprising, however, is the fact that no heat storage is selected. This means that the cost of the heat storage is not
covered by the savings that could be made by importing electricity to heat up the water in the tank when the electricity
price is low. Clearly, this is an unrealistic situation, as it is necessary to have some kind of storage for the water to be used
for hot water purposes. It reflects a modelling error that arises because of the hourly timestep and the optionality of the
heat storage. On the other hand, it may be assumed that the EB is delivered with an integrated hot water tank (HWT) (see
table 4.2.1 in section 4.2). With this assumption, the size of the HWT will be the installed capacity of the hot water tank
above the peak DHW-load.
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Figure 5.3.1: DHW-balance (PH noZEB). Figure 5.3.2: SH-balance (PH noZEB).

For the SH-load, all available technologies are selected. The air-to-air heat pump is limited to covering 40 percent of
the load at all timesteps 3.4.11, leading to a considerable investment in electric radiators, a cheap but (compared to heat
pumps) energy inefficient technology. The invested capacities are 3.52 and 1.30 kW, respectively. In addition, the deci-
sion is made to invest in a fireplace with a capacity of 1.58 kW. There is an inherent problem in modelling the cost of
this technology as linear, since the fireplace used as basis for the cost structure in this work has a capacity in the range of
2-7 kW [47], with the real power output depending on the amount of wood burning, which is hard to control manually.
Thus, an FP capacity of 1.58 kW is in reality an unrealistic size. Perhaps it would make more sense to model it as a binary
decision. At least, a lower bound of 2-4 kW should be used in the future. Another challenging aspect of the fireplace
modelling is the price of wood, as this is a fuel many people can acquire for free/at a very low cost.

In figure 5.3.2, three days of the SH-balance is shown. It can be readily seen that the air-to-air heat pump functions
as the base load, while the electric radiators are used to a varying degree to cover the peak load, alternating between being
completely shut off and operating at close to their max capacity of 3.5 kW. The fireplace is only active between the hours
of 16:00 and 24:00 each day; this is a modelling restriction put in to reflect the fact that it needs manual refilling of wood
in order to maintain the power output. In these hours, the radiators are shut off, indicating that the electricity price in these
hours is high compared to the price of wood logs.

Figure 5.3.3: Total electric balance (PH noZEB). Figure 5.3.4: Total electric balance (PH ZEB).

Figure shows the operation of the electric load. The lowermost area of the graph is the specific electric load, Del, which
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is the electricity required to power lights, kitchen appliances, electronics etc. With a point-source heating system, we see
that this is a relatively small part of the total electric load. The sum of the green, orange and yellow areas constitute the
thermal electric load (mentioned in 2.4), which is the electricity required to for heating purposes (SH and DHW). The
sum of this thermal electric load and the specific electric load is the total electric load. The electricity needed to power
the A2A heat pump, ysh

a2a, is also a relatively minor part of the total load, since it is inversely proportional to the COP
at any given time step. When the PO is needed for load coverage, which primarily happens when the FP is inactive, the
total electric load rises significantly. The electricity needed for the EB to heat up water, ydhw

eb , follows the plot in figure
5.3.1 closely, since the EB has an efficiency of 0.98. Since there is no incentive to reduce net CO2-emissions (through the
ZEB-restriction), no PV-panels are invested in, and all of the electricity is imported.

With ZEB-restriction (PH ZEB)

When the ZEB-restriction is added (that is, when the system is forced to compensate for its electricity import and fuel
combustion), the operation and dimensioning of the heating system does not change much compared to the previous
section (see table 5.3.1). Hence, the plots for the operation of the SH- and DHW-loads are not shown. The most significant
difference overall is the investment in PV-panels, which becomes necessary for the system to maintain the ZEB-restriction.
Figure 5.3.4 shows the total electric load for three winter days. During these three days, there are three intervals in which
the import of electricity, yimp, either decreases markedly or goes all the way down to zero. In these intervals, the PV-panels
are producing power. When the production is at a certain level, the system ceases to import electricity entirely, and exports
instead. The gray area in the plot represents this export. Because the plot shows the operation in three winter days, the
PV-panels are not close to producing at their rated capacity of 31 kW. The thermal electric load is slightly smaller than in
the previous case (PH noZEB), since the 0.14 kW is added to the A2A capacity, and 0.14 kW is subtracted from the POs.
(However, this does not represent any meaningful change in size). Adding the ZEB-restriction nearly doubles the total
discounted system cost, most of which comes from the PV-investment (see table 5.3.1). This can be viewed as the price
of ZEB-operation. On the other hand, the operational costs go down from 52,950e to 41,399e, which is caused by the
self-reliance and export mentioned previously. This also causes the total import of electricity and peak load to decrease,
which is positive for the grid impact. Note that neither the HWT nor the battery is invested in.

5.3.2 Waterborne system, without Building Internal Thermal Energy Storage (BITES)
Now, the dimensioning and operation of the waterborne system will be investigated. A key assumption when comparing
these two cases later is that the in-house distribution system (i.e. pipes and radiators/underfloor heating) come at no cost.
This important to keep in mind when the cost of the two main configurations are compared later.

no ZEB-restriction (WB noZEB)

Figure 5.3.5 shows the operation of the DHW-load for the same three winter days as in the previous section. The base
load is covered by the ASHP, which has a capacity of 4.66 kW (see table 5.3.1). Again, it is assumed that the base load
technology comes with an integrated HWT large enough to cover the peak DHW-load (2.07 kWh). In certain intervals,
the EB kicks in for peak load support. These intervals coincide with the hours in which the SH-load is high, leading to a
reduced capacity for the ASHP to contribute towards water heating. In figure 5.3.6, the operation of the SH-load can be
seen. The ASHP covers the entire SH-load for the three days shown, and this is the case in general as well. This is because
the COP for space heating is higher than for water heating, since there difference between supply and source temperature
is smaller. Thus, it will be more optimal to prioritize using the ASHP for space heating, as the relative difference between
the performance of the ASHP and the EB is smaller for water heating.

The electric load is shown in figure 5.3.7. Immediately, we notice that the thermal electric load is significantly smaller
than for the previous cases, PH noZEB and PH ZEB. During the three days of operation shown in the plot, the total elec-
tric load only goes above 3 kWh/h on a couple of occasions on the last day, where a high DHW-load coincides with a peak
in the SH-load. The peak total electric load is 4.23 kWh/h, compared to 6.01 kWh/h and 6.50 kWh/h for PH noZEB and
PH ZEB, respectively (see table 5.3.1). The reason for this discrepancy is the large difference in COP/efficiency between
the waterborne heat pumps and the heating technologies for the airborne system, in addition to the modelling assumption
stating that the A2A heat pump can only cover 40 % of the SH-load at any given time (heat pump in one room, no air
ducts for heat transportation, one indoor unit). If this assumption/constraint were to be relaxed, the discrepancy would be
smaller, but would still persist, as the A2A heat pump cannot operate on the DHW-load.
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Figure 5.3.5: DHW-balance (WB noZEB). Figure 5.3.6: SH-balance (WB noZEB).

Figure 5.3.7: Total electric balance (WB noZEB). Figure 5.3.8: Total electric balance (WB ZEB).

with ZEB-restriction (WB ZEB)

Again, when the ZEB-restriction is added, the PV-panels are invested in. This ensures a net emission of zero during the
building’s lifetime with the selected CO2-factor for electricity, with export of electricity when the PV-panels are producing
compensating for the import. In addition, the base load technology changes from the ASHP to the GSHP. This occurs
because a premium is put on keeping the electricity import low, and since the GSHP operates with a higher COP, it is the
preferred choice, despite higher investment costs. The difference in COP between the two is most pronounced for space
heating, and especially during cold winter days , as the GSHP is assumed to operate with a constant source temperature of
10 °C, while the heat source of the ASHP is the ambient air. The difference can easily be seen when comparing the green
areas of figures 5.3.7 and 5.3.8. The peak total electric load during the three days shown drops by close to 1 kWh/h, which
is positive in terms of grid impact. The EB remains at about the same size, and again, none of the energy storages are
invested in. The bio boiler is not selected in any of the two cases. This could be because of the relatively small CO2-factor
used (Norwegian el-mix, 17 g/kWh). If it were changed to the suggested EU-value (134 g/kWh), this might change.
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Discussion

Again, the total discounted system cost almost doubles when adding the ZEB-restriction, from 39,666e to 75,808e. The
cost structure, however, is different from the point-source cases. For PH noZEB, the investment costs are 3778e, while
they are 12,555e for the WB noZEB. This is made up for in full by the greatly reduced electricity demand, as the op-
erational costs are almost cut in half for WB noZEB, 27,111e vs. 52,590e for PH noZEB. The effects of this reduced
electricity demand are carried over to the ZEB-cases, where it can be seen that the required size of the PV-panels in
order to remain carbon-neutral is more than halved, from 31.35 kW to 14.67 kW. The decrease in required PV-size is
compounded by the switch from the ASHP to the GSHP; as already mentioned, this technology generally operates with
a higher COP than the ASHP. This leads to the investment costs for WB ZEB actually becoming 20,000e less than for
PH ZEB. Additionally, the operational costs for WB ZEB are less than half of the costs for PH ZEB, at 17,349e vs.
41,399e.

As for the grid impact, some remarks have already been made when going through the plots for the operation of the
electric load. Here, a summary of this aspect will be attempted. The total grid import is by far highest for PH noZEB,
at 1947.54 kWh. When the ZEB-restriction is added, the import is reduced to 1357.02 kWh. while the peak load goes
down from 6.50 kW to 6.01 kW, mainly because of the self-generated electricity; a consequence of the PV investment.
For the waterborne cases, the total import goes down from 1178.86 kWh to 630.06 kWh, i.e. a reduction by almost 50
%. The peak import is reduced from 4.23 kW to 2.79 kW; which is result of both PV-investment and switching the base
load technology from ASHP to GSHP. The grid impact of the respective systems differ vastly, not only because of the
above-mentioned figures, but also because the export to the grid also is reduced. This means that the grid burden is re-
duced; freeing more of the transmission line capacity, so that other systems (possibly point-source) can maintain zero net
emission operation.

Taking all of the above into consideration, it is evident that the waterborne system is preferred over the point-source
system for both noZEB and ZEB operation. However, it is important to keep in mind that the (economical) magnitude of
this superiority hinges on a few key assumptions. Firstly, it is assumed that the in-house hydronic distribution system for
the waterborne system comes at no cost. Including the investment and maintenance cost of these components would push
the balance more in favor of the point-source system, at least somewhat. Furthermore, it is assumed that the A2A heat
pump can only cover up to 40% of the SH-load at any given timestep. This restriction is put in to reflect the fact that COP
of the A2A has a steep temperature gradient as the outside temperature goes below -15 °C, with the COP assumed to be
0.9 at -35 °C. At such a temperature, the efficiency of the A2A is actually lower than that of the PO (electric radiator).
Such as the model is, if this restriction were not in place, the heat production of an A2A with a rated capacity of 3 kW at
nominal conditions (+7 °C) would still be able to remain at 3 kW at this temperature, even though the required electricity
would be above 3 kW ( 3

0.9 ). This modelling problem could be solved in another way, with gradual temperature restrictions
(e.g. for every 10 °C decrease) limiting the amount of heat production from the A2A. Additionally, the restriction can be
seen as a way to represent the A2A being located in one (presumably large) room, with no air ducts to transport the heat
to other rooms.

5.3.3 Point-source system, with Building Internal Thermal Energy Storage (BITES)
Now, the operation and dimensioning of the energy system when the thermal mass of the building (BITES) is added as a
storage technology. The key question is: How does adding BITES alter the systems (i.e. waterborne and point-source),
both with respect to investment and operation? The hours selected for plotting are 0 to 72 of the reduced scenario, i.e. Jan
31st 22:00 - Feb 3rd 22:00.

without ZEB-restriction (PH noZEB-b)

Again, the point-source case will be examined first. Figure 5.3.9 shows the DHW-balance for three winter days. As can
be seen from the plot, a heat storage of approximately 5.5 kW is invested in for this model configuration. In the plot, the
charging of the heat storage takes place when the area representing the storage heat flow, qhs, is above the line representing
the DHW-load, and the discharging takes place when this same area is below the line. The load is covered by the electric
boiler and the heat storage operating in tandem, with the electric boiler being shut off intermittently and the charged heat
storage delivering hot water to the load. We can assume that the model has found the timesteps in which the spot price is
unfavorable, typically in the afternoon, and has allowed the heat storage to charge up fully or partially to cover the load in
these hours.
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Figure 5.3.9: DHW-balance (PH noZEB-b).

In figure 5.3.10, we see the operation of the technologies covering the SH-load. Just like in the PH noZEB and PH ZEB-
cases, all available technologies are selected. The most significant difference with regard to dimensioning from the
previous case is that the capacity of the electric radiators is at a capacity of 2.52 kW, compared to about 3.52 and 3.38
from PH noZEB and PH ZEB, respectively. The air-to-air heat pump and the fireplace are reduced to 1.17 and 1.24 kW,
respectively. This means that the total space heating capacity of the system is reduced by over 1 kW. The reason for this
being possible lies in the utilization of the building thermal mass. Assuming a heat capacity of 6.25 kWh

K for the ”shallow”
storage 2.5.2, that is the outer parts of the walls and the air, furniture etc., and allowing a positive temperature deviation
of 2 K (that is, overheating the building), we get a shallow storage of 12.5 kWh. As we can see from the plot, this storage
is used to some degree in the servicing of the load. Starting at about the second hour, the building is overheated with the
radiators and the air-to-air heat pump, reaching a state of just below 8 kWh at hour 8. Then, the storage is discharged
until about hour 16, where the FP and A2A take cover the relatively modest load, with intermittent support from the PO.
Since the SH-load is modest, a small charging of the SS takes place, followed by an immediate discharging. From hour
19, the A2A heat pump is shut off for an hour, since the heat from the SS discharging and the FP is sufficient to cover the
load. From hour 22, the charging of the SS starts again, reaching a slightly higher energy content than the previous day.
Thereafter, the same process repeats itself, with some minor deviations. On the last day shown, the SS does only reaches
about 6 kWh, since more of the space heating system is required to cover the instantaneous SH-load, which is higher than
in the previous two days. This higher load is brought on by lower outside temperatures.
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Figure 5.3.10: SH-balance (PH noZEB-b).

Figure 5.3.11: Total electric balance (PH noZEB-b).

Figure 5.3.11 shows the total electric load. Comparing this plot to figure 5.3.3, we see that a different pattern emerges.
First of all, the relatively curves with a sustained peak of 5 kW can be noticed. These curves correspond to the charging
of the SS and HWT at nighttime, with contributions mostly coming from the A2A and PO. Then, after the SS is charged
to 8 kWh, the import yimp is effectively throttled to just above 1 kWh/h, since the SH- and DHW-loads are covered by the
discharging of the SS and HWT, respectively. Then, since the HWT tank is charged again, the total electric load rises,
to about 4.5 kWh/h, followed by a small dip to 3 kWh/h, and then another short peak of 5 kWh/h. This pattern of two
sharp declines of the total electric load per day repeats itself the next two days, with the duration naturally being shorter
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when the load is higher. By considering figures 5.3.9 and 5.3.10, we see that these dips again correspond perfectly to the
intervals in which the SS and HWT cover the loads.

with ZEB-restriction (PH ZEB-b)

Now, the ZEB-constraint is added. Just like when adding the ZEB-restriction in the noBITES-cases, this necessitates an
investment in PV-panels. In figure 5.3.12, the DHW-balance is shown. We see that the operational pattern is similar to
the case in 5.3.9, with a combination of production from the EB and discharge from the HS covering the load. The major
difference between the two cases is the size of the HS, 5.6 kWh to 9.6 kWh for the noZEB and ZEB cases respectively,
and hence the charging/discharging patterns. In this case, the duration of the charging cycle is longer, since the HS is
bigger, which means that the EB has to produce at full capacity for a longer time interval in order to fully charge the
HS. To accommodate this, the size of the EB is increased as well, from 1.88 kW to 2.40 kW. Here, a trade-off between
leveraging spot price differences and the added cost of a bigger HS is at play, and it is apparent that the model has found it
optimal to invest in a larger buffer against higher spot prices. In addition, since the electricity pricing model used is power
subscription (instead of energy pricing), there is a strong incentive to keep the import yimp below 5 kW, as import above
this limit will incur extra charges.

Figure 5.3.12: DHW-balance (PH ZEB-b).

The SH-load is plotted in figure 5.3.14. Compared to the PH noZEB-B-case, plotted in 5.3.10, the SS appears to be
utilized less in these three days. The reason for this is that the FP has dropped out of the solution, which is a result of
it having similar CO2-factor (15.63 for wood logs vs 17 for electricity) and lower efficiency, in addition to the extra cost
(fixed and specific) for the FP investment. Thus, in order to remain below the 5 kW limit PS limit, less heat is available
for the SS, especially since the HWT is charged at a higher rate than in the previous case (EB at 2.40 kW). However,
this does not mean that BITES is used less through the reduced year. In fact, as can be seen in figure 5.3.13, where the
utilization of BITES is plotted for PH noZEB-B and PH ZEB-B, the utilization is more frequent for the ZEB-case in the
first half of the year, although the energy content rarely goes above 4 kWh.
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Figure 5.3.13: BITES utilization through the reduced scenario for PH noZEB-B and PH ZEB-B.

Figure 5.3.14: SH-balance (PH ZEB-b).

Figure 5.3.11 shows the total electric load. It is similar to the situation in 5.3.11, with one notable exception: when the
storages are discharged, at about hour 10 (08:00 Feb 1st), the total electric load does not drop further than just below 2
kWh. Again, this is because the FP has dropped out of the solution, and the A2A and PO still has to supply space heating
most of the time. On the other hand, since the HWT is larger, there is a longer interval in which the EB is inactive, so the
total electric load stays below 5 kWh/h longer. In addition the PV-production enforced by the ZEB-constraint enables the
import yimp to drop down partially or fully down to zero just after the storages (HWT and SS) are discharged.

By looking at table 5.3.1, we can see that the total import goes down from 1972.14 kWh to 1234.97 when adding the
ZEB-constraint for the BITES-cases (from PH noZEB-b to PH ZEB-b). If we compare the figure for PH ZEB-b to
PH ZEB, we see that the total import decreases by more than 100 kWh. This is in part because the PO is used less in
peak load situations, as BITES functions as a peak load technology. As for the total system cost, it goes down when
adding BITES in both the noZEB- and ZEB-cases. In the noZEB-cases, the reduction is 1735e, which equals 3.1 %. For
the ZEB-cases, the reduction is 2736e, or 2.3 %. In both situations, the cost reduction achieved through a significant
decrease in operational costs, as the investment costs are somewhat higher for both BITES-cases. This is because the
reductions in the sizes of the space heating systems when adding BITES is offset by relatively large investments in HWTs.
In conclusion, it can be said that adding BITES has a positive effect on the point-source system, as it functions as ”peak
load shaver”, reducing the need for PO production when the SH-load is high.
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Figure 5.3.15: Total electric balance (PH ZEB-b).

5.3.4 Waterborne system, with Building Internal Thermal Energy Storage (BITES)
Now, the waterborne system when adding BITES will be investigated. The same procedure as in the previous cases will
be followed; first, the operation without the ZEB-constraint will be considered. Thereafter, the ZEB-constraint is added,
and eventual changes will be commented and discussed. It is to be expected that adding BITES as an available technology
should have a similar effect as with the point-source system. One point of interest is the economical value (that is, how
large the cost reduction is) of BITES for the waterborne system. Since a system with heat pumps using water as an energy
bearer will be less sensitive to spot prices (through the COP), we can already suspect that this cost reduction will be less
than for the point-source cases.

without ZEB-constraint (WB noZEB-b)

Figure 5.3.16 shows the DHW-load for WB noZEB-B. Again, we see that the HWT is invested in when BITES is added.
Thus, the EB drops out of the solution, and the DHW-load is covered by a combination of ASHP production and discharg-
ing of the HWT. However, the capacity of the HWT is smaller than for PH noZEB-B and PH ZEB-B, at 2.42 kWh. While
it resembles the operation in 5.3.9 and 5.3.12, it has one notable distinction that separates it from the point-source cases.
In these cases, the charging of the HWT is usually followed by an immediate discharging, or at least almost immediate
(maximum latency of 2-3 hours). In this case, we see on three occasions that the HWT is fully charged, followed by a
latency period of some 10 hours. In this latency period, which coincides with a low DHW-load, the SS is charged (see
5.3.17, which then gives way to a simultaneous discharge of both storages. One could say that HWT control has to ”look
ahead” to a greater degree than for the point-source cases. The reason for this behaviour is that the ASHP, the selected
base load technology, operates on both the SH- and DHW-loads. Since the model is incentivized to keep this capacity as
low as possible (through the objective function), this pattern emerges, where the ASHP takes turns charging the SS and the
HWT. This, in contrary to the point-source cases, is not a result of a need to limit the import to 5 kW or below (since the
high efficiency/COP makes this possible in any case), but rather because the ASHP is limited to producing 4.49 kW at any
given time, which is about 1 kW below the total peak heat load (the maximum of the sum of SH and DHW). Hence, the SS
and HWT can seen as a direct replacement of the EB, reducing both the operational cost and the total import of electricity,
since all of the heat is generated by the ASHP, which has a significantly higher efficiency than the EB. Additionally, a
small contribution from the HS (Accumulator tank) can be seen in figure 5.3.17, which is a low-temperature storage tank
for space heating purposes. It is dimensioned at 1 kWh, the lower bound set for the water tanks in all cases. From the
plot, it can be seen that the HS is at 1 kWh most of time, with a quick discharging followed by an immediate charging
when it is needed for peak load support.
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Figure 5.3.16: DHW-balance (WB noZEB-b).

Figure 5.3.17: SH-balance (WB noZEB-b).
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Figure 5.3.18: Total electric balance (WB noZEB-b).

Figure 5.3.7 shows the total electric load. It differs noticeably from the WB noZEB-case, plotted in 5.3.7, with the peaks
being significantly reduced, since the EB is not present. In addition, the total load drops down to a lower level than
in 5.3.7. For instance, it is as low as 1 kWh/h at hour 11, which coincides with the discharging of the HWT and SS.
In general, the curve is much ”sharper”; a result of the charging and discharging of these storages. Since there are no
PV-panels, all of the electricity has to be imported.

with ZEB-constraint (WB ZEB-b)

Now, the ZEB-restriction is added again. Figure 5.3.19 shows the DHW-load for this case. Just like in the case of
WB ZEB, the base load technology is switched from ASHP to GSHP. In addition, the HWT is bigger; at 5.66 kWh,
compared to 2.42 kWh for the previous case. This means that a longer charging period is needed in order to fully charge
the storage, so in these intervals, less GSHP capacity is available for charging the SS. Wee see this from hour 0 to 10 in
figure 5.3.20; where the SS in the previous case reached a state of 8 kWh, it now stalls at just above 5 kWh in this period.
On the other hand, the energy content of the SS rarely goes below 2 kWh in the three days plotted, whereas this happens
five times in the WB noZEB-case (figure 5.3.17). Furthermore, we see a more incomplete discharging of the SS after
hour 10, with the storage actually reaching a content of above 10 kWh on one occasion, at approximately hour 45. In the
plots shown, it appears that a new pattern emerges, where the SS has abrupt and incomplete charging cycles, while the
full charging and discharging of the HWT takes precedence.

By considering figure 5.3.21, where the HWT- and BITES-utilization is plotted for the winter and spring weeks, we
see that this holds on a bigger scale as well. In the winter days, the charging of the HWT is shifted to the left somewhat,
since the SH-load is higher; thus requiring more free GSHP capacity for space heating. During the spring week, or more
generally periods with a lower SH-load, the charging of the storages can take place simultaneously, as can be seen from
the clear patterns from ca. hour 200 to 372. Here, we also see the longer latency period for HWT in the noZEB-case. In
addition, in the tendency of the WB noZEB-B case is two HWT cycles for every SS cycle, while the HWT follows the SS
closely in WB ZEB-B. The BITES-utilization seems to be somewhat higher for the ZEB-case, in part due to the extended
usage in the first 72 hours.
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Figure 5.3.19: DHW-balance (WB ZEB-b).

Figure 5.3.20: SH-balance (WB ZEB-b).
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Figure 5.3.21: BITES- and HWT-utilization for winter and spring weeks.

In figure 5.3.22, the total electric load is plotted. In terms of grid impact, this case has the most optimal electric load
profile. This is due to both the switch of base load technology from ASHP to GSHP and the addition of BITES. For the
three days shown, the import yimp hovers around 2 kWh/h most of the time, going above 2 kWh/h on two occasions. The
peak import is is 2.73 kW, a reduction of 0.55 kW from WB noZEB-B, or 16.8 %. Compared with the WB ZEB-case,
the reduction is 0.06 kW. This reduction is marginal. The total import, however, goes down from 630.06 kWh (WB ZEB)
to 576.45 kWh (WB ZEB-B) when adding BITES, which is a more significant reduction. A possible explanation for the
total import decreasing significantly more than the peak import could be that the EB use in the WB ZEB-case usually
coincides with the time when the PV-producing, thus enabling the EB to run on self-generated electricity, effectively
keeping the import low.

Figure 5.3.22: Total electric balance (WB ZEB-b).

Discussion

In conclusion, it is apparent that the addition of BITES has a measurable positive effect on the waterborne system as well.
In both the noZEB- and ZEB-cases, the total discounted system cost is reduced. For the noZEB-case (WB noZEB to
WB noZEB-B), the reduction is from 39,666e to 38,559e, or 1107 e (2.8 %). For the ZEB-case (WB ZEB to WB ZEB-
B), it is 75,808e to 74,080e, or 1728e (2.28 %). In both cases, just like in the point-source cases, the reduction is brought
about by a reduction in the operational costs. This reduction more than compensates for the increase in investment costs,
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which comes as a result of the investment in the storage technologies.

Another positive aspect of BITES utilization mentioned earlier that should be stressed again is the impact on the grid.
By eliminating the need for a peak load production technology in the form of EB, the electricity is used more efficiently,
since all of the heat is generated by the heat pumps. As already mentioned, this causes the peak and total import to de-
crease in both the WB noZEB-B- and WB ZEB-B-cases. When applied to a larger scale, the utilization of BITES could
have a measurable impact on the grid burden of renewables, with the electricity produced from these technologies being
used to operate heat pumps that pre-heat buildings in accordance with control strategies based on the principles mentioned
in the previous section. This would lead to a trimming of the duration curves for imported and exported electricity, an
advantageous situation for the grid operators, as the use of the grid would be more evenly distributed throughout the day.

Figure 5.3.23: Duration curves PH-cases. Figure 5.3.24: Duration curves WB-cases.

Figures 5.3.23 and 5.3.24 show the duration curves for electricity for the point-source cases and the waterborne cases,
respectively. As for reducing the grid impact for ZEB-operation, it seems that adding BITES has a larger effect on the
point-source cases, although a visible reduction can be seen as BITES is added for both WB noZEB and WB ZEB. When
it comes to the flattening of the duration curves, it appears that the most important step towards this end is to select the
waterborne heating system, seeing as how their duration curves are much less steep than the curves for the point-source
cases. The most ideal case in terms of grid impact is WB ZEB-b, with a peak total electric load of 2.73 kW, and almost
200 hours of self-sufficiency (no electricity import) through the reduced scenario.

Table 5.3.2: Summary of BITES-value. All costs in euro [e].

0b b % decrease

PH noZEB
tot. 56,386
op. 52,590

tot. 54,651
op. 50,728

3.08 %
3.54 %

PH ZEB
tot. 119,937
op. 41,399

tot. 117,201
op. 37,851

2.28 %
8.6 %

WB noZEB
tot. 39,666
op. 27,111

tot. 38,559
op. 25,952

2.79 %
4.28 %

WB ZEB
tot. 75,808
op. 17,349

tot. 74,080
op. 15,997

2.28 %
7.79 %

In table 5.3.2, a summary of the cost reduction when adding BITES is presented. As was suspected in the start of this
section, the total cost reduction when BITES is added is higher for the point-source system across the board. This makes
sense, since the heating technologies for this system are more sensitive to spot prices, due to their lower efficiences. The
total cost reduction in percent, however, is in the same range for all cases when adding BITES, 2.3-3.1 %. The largest
percentage-wise decreases can be found in the operational costs for the ZEB-cases. For PH ZEB-B and WB ZEB-B, this
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decrease is at 8.6 % and 7.79 %, respectively. This could point to the combination of self-generation from the PV-panels
being a particularly favorable combination. Consider the following: the PV-panels are producing for some 4-5 hours in
the middle of the day. The production, even in winter, is significantly higher than the total electric load. Either all of this
surplus electricity can be exported at the current spot price (generally lower in the middle of the day, when the PVs are
producing), or some of it can be used to power the heating technologies, pre-heating the building thermal mass (and the
HWT, as has been shown), curbing some of the import yimp needed for heating purposes later in the evening, when the spot
price is higher. Clearly, in such an idealized scenario, the latter is optimal, but a clear tendency towards this operational
strategy can be seen in the plots in this section. The SS is generally charged in the middle of the day or at night. Naturally,
there is no PV-production at night, but the spot price is generally lower at this time of the day as well, since the demand
is low.

5.4 Sensitivity Analysis of two-node BITES model
In this section, a sensitivity analysis of the parameters for the two-node BITES-model will be undertaken. Since there is
some uncertainty with regard to choice of parameters, it is advantageous to investigate how the size of these parameters
influence the total cost of the system, in addition to the utilization of the storage. Below is a table showing the list of the
relevant parameters and a brief description of each. To simplify the procedure, only one case (WB ZEB-b) is selected for
this sensitivity analysis.

Table 5.4.1: Key BITES-parameters for sensitivity analysis.

Parameter Comment Value in main cases
xss ”Installed” shallow storage size 12.5 kWh
xds ”Installed” deep storage size 90 kWh
τss Time constant for SS 115 h
τds Time constant for DS 267 h
K f low Flow factor (from SS to DS) 1.0 kWh/h

A physical interpretation is provided in [31] and 2.5.2. A natural starting point in the sensitivity analysis is to look at the
cost reduction when the size of xss is increased, that is, the degree to which the house is allowed to overheat. Since it
has already been shown that it is possible to reduce the total system cost by allowing the house to overheat, it would be
reasonable to expect that raising this limit even further allows for greater reductions. However, it is to be expected that this
”curbing” effect will drop off at some point. Besides, the question of comfort for the residents arises in such a situation.
When it comes to the size of xds, it will be investigated whether it has anything more than an indirect effect on the utiliza-
tion and system cost. In [54], which admittedly has a different scope than this work, it is suggested that the thermal mass
of the building has a secondary influence on the flexibility potential of low-energy buildings (which ultimately is the topic
in this work), with the heat losses being the primary driver for flexibility. In the two-node model used here, the heat losses
are defined through the time constants, which yield the loss factors through equation 3.4.25. A possible deficiency of the
model that arises out of defining the losses in this way is that the storage losses are independent of the ambient temperature.

The flow factor is the parameter that has the least intuitive interpretation of those in question. To put it simply, one
could say that it is the tendency of the thermal energy to flow from the shallow storage to the deep storage. Using [31] and
doing a simple area-adjusted calculation, we arrive at a preliminary value of 7.88 kWh/h. However, this value leads to a
sparse utilization of the SS, as the majority of the thermal energy will flow to the DS before it can used for load covering.
Setting this value to be too small, on the other hand, leads to the an almost constant DS, so in that case, one might just
as well have used a simpler (one-node) model. In the main cases, a value of 1 kWh/h has been used. In the sensitivity
analysis, the effect of K f low on the cost reduction and BITES-utilization will be examined.

5.4.1 Effect of xss and xds on cost function
First, the effect of the sizes of DS and SS on the total objective cost is investigated. The purpose is to see to what degree
overheating the house reduces the cost (for different sizes of DS, the ”heaviness” of the building structure). The rest of
the model parameters are set to their standard value.

The cost reduction for different sizes of SS and DS is plotted in figure 5.4.1. It is important to make a distinction be-
tween the nature of the variation in these parameters. For the SS, the extensive heat capacity is assumed to be fixed at
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6.25 kWh/K, so the increase in xss is simply due to a larger degree of overheating allowed. For the DS, we assume the
”size” of the building construction to the same, but the extensive heat capacity to fluctuate. Hence, xds = 45 kWh implies
an extensive heat capacity of 22.5 kWh/h, and 90 kWh twice that and so forth. Thus, keeping the time constant tds at the
same value makes more sense. The difference in cost reduction is largest at xss = 3.125, at approximately 200 e, with the
configuration having the smallest DS showing the highest cost reduction. An explanation for this could be that a larger
DS absorbs more of the heat added the SS. Taking equation 2.5.10 into consideration, this seems likely, since a lower xds

will decrease the flow from SS to DS, which enables the SS to retain more of the heat added to it. The cost reduction
increases monotonically when xss is increased. For xss = 31.25, equivalent to a temperature increase of 5 K, the difference
is at about 150 e. This shows that as the allowed temperature deviation is increased, the importance of the ”heaviness” of
the building structure decreases.

Figure 5.4.1: Effect of xss xds on total system cost.

When taking the magnitude of the changes made to the SS and DS into account, the model seems surprisingly insensitive
to the parameters. In fact, it seems that the size of the DS has a greater effect on the cost reduction than the size of SS,
since the difference between the DS at 45 kWh and 180 kWh is at least as big as the difference between any of the end
points for a given size of DS, even though the change in magnitude for SS is greater (31.25 vs 3.125, 1000 %, 180 vs.
45, 400 %). According to the model, increasing the temperature/overheating the house by more than 0.5 °C (SS of 3.125
kWh) does not yield any significant reductions in total system cost; at most, for xss = 31.25, just below 400e compared to
xss = 3.125. This is an advantageous for the comfort-level of the inhabitants of the building, but it would be illuminating
to venture an explanation for why this is the case. If there are significant differences in the utilization, we can conclude
that there are a few key events (with high spot prices) that enable most of the cost reduction.

As can be seen from figure 5.4.2, BITES is used primarily in three time intervals through the reduced scenario: from
hour 0 to hour 50, ca. hour 200 to 300, and from 450 to 500. In all of these intervals, it reaches the maximum overheating
(3.125 kWh / 0.5 °C) at least once. The energy content in DS increases more when the peaks in SS last longer (functioning
as an integrator of the heat added to SS), and decreases gradually in accordance with the time constant τds = 267 h. It
never gets close to its max capacity of 90 kWh. This case has a total cost of 74,317 e, and the GHSP is dimensioned at
4.36 kW.
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Figure 5.4.2: BITES-utilization, xss = 3.125. Figure 5.4.3: BITES-utilization, xss = 6.25.

Looking at figure 5.4.3, we see that the BITES-utilization increases when the building is allowed to overheat by 1 °C.
Between hour 100 and 200, and towards to end of the scenario, a couple of additional incomplete charging cycles emerge,
where the SS is charged to approximately 3 kWh. In addition, the charging cycles already present in the previous case
increase in magnitude, with the SS reaching a state of at least 5 kWh in most of these. This case has a total cost of
74,207 e, and the GSHP is dimensioned at 4.32 kW. Figure 5.4.4 shows the BITES-utilization for the case of SS=12.5
and DS=90, the values used for the optimization in the main cases. As we can see, the utilization increases yet again, with
the spikes becoming higher and more frequent. However, no new charging intervals appear, rather, the intervals already
present are somewhat extended. With the exception of hour 50, and the interval between 420 and 500, the SS energy
content does not exceed 6.25 kWh, which indicates that the economical value of BITES has reached a sort of saturation
point at this stage. The total cost for this case is 74,081 e, and the GSHP is at 4.26 kW.

Figure 5.4.4: BITES-utilization, xss = 12.5. Figure 5.4.5: BITES-utilization, xss = 31.25.

The case with SS=31.25 is plotted in figure 5.4.5. This is the most extreme case, as SS at 31.25 kWh corresponds to
overheating by 5 °C. The SS reaches this state on two occasions, around hour 500. Otherwise, the energy content stays
below 20 kWh (ca. 3 °C). (The total cost of this case is 73,942 e, and the GSHP is at 4.24 kW.)
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Table 5.4.2: Key values for sensitivity analysis of parameter xss.

xss [kWh] GSHP [kW] Avg. temp [°C] Total cost [e]
0 4.71 20.00 75,808
3.125 4.36 20.05 74,317
6.25 4.32 20.16 74,207
12.5 4.26 20.36 74,081
31.25 4.24 20.59 73,942

Table 5.4.2 shows the key values for the scenarios plotted above. The average temperature is calculated by defining the
set-point temperature to be 20 °C, and integrating the curves for zss, with the assumption stating that 6.25 kWh is equal to
1 °C being essential. As can be seen from the table, the ability to underdimension the GSHP compared with the 0B-case
does not increase significantly beyond xss, as the difference is only 0.12 kW between xss = 3.125 and xss = 31.25. In
addition, most of the cost decrease comes when increasing xss from 0 to 3.125, with difference in total cost between xss =

3.125 and xss = 31.25 only being 375 e. Thus, we can conclude that the main driver for the cost reduction the ability of
the model to overheat the building slightly (i.e. 0.5-2 °C) with heat generated by a heat pump (in contrast to the 0b-case,
where the EB is used) in peak load situations. The savings resulting from a reduction in the GSHP capacity are offset by
investment in hot water tanks (see table 5.3.1). Another reason to limit the overheating is the average temperature, as it
sees a significant increase as xss is increased. From the set point temperature of 20 °C in the 0B-case, it rises to 20.59 °C
for xss. This in and of itself may not seem that deterrent to the comfort-level of the inhabitants, but if one considers that
there are sizable intervals in which BITES is not utilized, it is far from optimal. For instance, between hour 450 and 520,
i.e. close to three days, the average temperature is above 23 °C. Further research must done in order to determine whether
this is acceptable for the building residents.

5.4.2 Effect of K f low

In this section, the sensitivity of the results with respect to K f low will be examined. First, the impact of this parameter on
the total objective cost will be considered.

Figure 5.4.6: Effect of K f low on cost reduction for different sizes of xss.

In figure 5.4.6, the cost reduction is plotted with increasing values of K f low, for different values of xss. It can be seen that
for each 1 °C of overheating (6.25 kWh) added to xss, the cost decrease drops in value. This is in line with the findings
from 5.4.1. Furthermore, the cost decrease is at its highest value for K f low = 0.001, and decreases monotonically as K f low

approaches 1. This makes sense, since a low K f low-value implies that most of the thermal energy (except for the losses,
given by the loss factor K shallow

loss ) stored in the SS will remain there (see equation 2.5.14), and can be used directly for load
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coverage. When K f low increases from 1 to 100, however, the cost reduction increases again, and becomes larger than for
K f low ≤ 1 The reason for this is presumably that since more energy enters the DS, this storage reaches a higher relative
value than in for K f low ≤ 1. Since this storage has a high time constant (267 hours), some of this energy will flow back to
the SS, and can then be used for load coverage.

Figure 5.4.7: BITES-utilization, K f low = 0.001. Figure 5.4.8: BITES-utilization for K f low = 100.

Figure 5.4.7 shows the most extreme case. The building temperature, indirectly represented by xss, fluctuates to a large
degree, and is at its set-point value of 20 only on a few occasions through the reduced year. Again, this might present a
comfort issue for the inhabitants of the building. (In addition, the behaviour is unrealistic from a modelling point-of-view,
as it takes a long time for the temperature to decrease after an initial increase). The DS is constant, so in this scenario, the
two-node BITES model collapses to a one-node model (only SS). This case has a total cost of 73,752 e.

In figure 5.4.8, K f low is increased to 100. We see that this has a large effect on how the BITES is utilized. Firstly, it
can be seen that the energy content of the SS rarely goes above 5 kWh. As was mentioned above, this is because a large
part of the energy added to the SS tends to flow to the DS, as a result of the large K f low. In a sense, this means that the
SS/BITES is not fully utilized (with respect to overheating), considering that the SS only goes above 5 kWh once during
the whole scenario. On the other hand, we see that the curve for zss is ”flatter” than what is the case in figure 5.4.7. This
implies that some of the energy in the DS flows back to the SS, since there is only two ways for this energy to flow,
either to the ambient (implicit via the loss factor), or back to the SS (via flow, see equation 2.5.10). From ca. hour 420
to 580, there is a large interval (almost a week) in which the SS is charged to some degree for the duration. The average
temperature in this sequence is 22.21 °C. This case has a total cost of 73,301 e, which is a 450 e decrease from the
previous case.

Table 5.4.3: Key values for sensitivity analysis of parameter K f low.

xss [kWh] K f low GSHP [kW] ASHP [kW] Avg. temp [°C] Cost reduction [e]
31.25 0.001 4.14 0 20.60 2056
31.25 1.0 4.24 0 20.59 1867
31.25 100 0 4.40 20.66 2507
6.25 0.001 4.37 0 20.19 1718
6.25 1.0 4.32 0 20.16 1602
6.25 100 0 4.34 20.17 2126

Some key values for the sensitivity analysis with respect to K f low are tabulated in table 5.4.3. For K f low = 100, the optimal
heating technology switches from the GSHP to the ASHP. This, along to the return flow from the DS to the SS, will also
contribute to the cost reduction.

55



5.4.3 Effect of time constants τss and τds

In this section, the effect of the time constants τss and τds on the cost reduction will be investigated. For the main results,
values of 115 h and 267 h were used, respectively. These values were taken directly from [31], where an analysis of the
cost reduction potential of BITES and HWTs in the Göteborg-area district heating system was undertaken. Thus, these
time constants are meant to reflect the first-order response of several thousand houses operating in conjunction, and the
time constants might be unsuitable for use in building-level framework.

Figure 5.4.9 shows the cost increase as the size of xss is increased, for six different values of τss. The step size for
xss is 6.25 kWh. Again, a clear trend can be seen, where the most significant change in cost reduction comes when xss

goes from zero to the second smallest size, in this case 6.25 kWh. For xss = 6.25 kWh, the difference in cost reduction
between the smallest time constant, 20 h, and the biggest time constant, 120 h, is about 250 e. This is a natural conse-
quence of the way the losses are defined in the two-node BITES-model; since the time constant tss is smaller, more heat
is lost relative to the current state (i.e. lower loss factor). For τss = 120 h, 5 h higher than in the standard case, the cost
reduction shows the same tendency as we have seen in the previous analyses, with a slight increase as xss is increased.
As we downwards, however, we see that this slight increase flattens out, until it almost appears to vanish completely. For
τss = 20, it seems that the cost reduction is completely independent of the degree of overheating allowed. This warrants
further investigation.

Figure 5.4.9: Effect of τss on cost reduction.

Figure 5.4.10 shows the BITES-utilization for τss = 20 h and xss = 6.25 kWh. We see that the utilization is sparse, with the
SS reaching 6.25 kWh only twice during the reduced scenario, around hour 500. Otherwise, it barely gets up to 3 kWh.
For xss = 31.25 kWh, a similar pattern emerges, with the two peaks of 6.25 kWh are replaced by one of approximately 16
kWh, and the energy content of the SS otherwise rarely exceeding 5 kWh. In other words, with a time constant τss of 20
h, the heat escapes the SS so quickly that there are few situations in which it is optimal to charge it fully. Since the cost
reduction is almost exactly the same for xss = 6.25 and xss = 31.25, we can say that the intervals in which BITES is utilized
in the former case constitute the key events mentioned earlier, which contribute the most towards the cost reduction.

Another conspicuous feature can be noticed in figure 5.4.11, namely that the energy content of the DS significantly
lower than in all previous cases. This is a result of the small time constant τss and the way the cross-node flow is defined.
Since it is expressed in relative terms, and the energy content of SS rarely exceeds 5 kWh, the flow from SS to DS will be
quite small during the whole scenario. This is an obvious error in the model, arising from the non-physical nature of the
parameter K f low. It should be clear that the energy content in this case should be at least as high as the case with τss = 20
h and xss = 6.25 kWh.
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Figure 5.4.10: BITES-util, τss = 20 h, xss = 6.25 kWh. Figure 5.4.11: BITES-util, τss = 20 h, xss = 31.25 kWh.

Figure 5.4.12 shows the effect of the deep storage time constant, τds, on the cost reduction. The value of this parameter in
the main section is 267 hours. Here, values from 50 h to 300 h are considered, with a step size of 50 h. The same trend as
for τss can be observed, with the cost reduction increasing as the time constant τds is increased. However, the increase in
cost reduction as xss is increased persists for all time constants considered, in contrast to what was the case for τss. This
can be seen by noting the difference in cost reduction for xss = 6.25 kWh and xss = 31.25 kWh. However, the difference
in cost reduction when xss is 6.25 kWh for the smallest and biggest time constant is similar, around 250 e.

Figure 5.4.12: Effect of τds on cost reduction.
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5.4.4 Discussion
The sensitivity analysis shows that the implemented two-node BITES model exhibits some sensitivity to changes in its
parameters. Increasing the degree to which the building is allowed to overheat (xss) from 0.5 °C to 5 °C gives an increase
in cost reduction of 500e at the most (xds = 90). This relatively small decrease seems to stem from a combination of
removing the EB, the selected peak load heating technology for most of the cases, and reduced operational costs, i.e.
overheating when the spot price is low.

For the parameter K f low, the tendency of the thermal energy added to SS to flow to DS, another picture emerges. For
K f low < 1, the difference in cost reduction is at most ca. 400 e, but as can be seen in figure 5.4.7, this represents a
scenario in which the energy content in DS is almost constant, which means that practically no energy flows from the SS
to the DS (one-node case). For K f low = 1, the value used in the main cases, the difference in cost reduction is at minimum;
ca. 300 e. For K f low ≥ 1, the difference in cost reduction rises again, until it reaches 400 e again for K f low = 100. For this
value of K f low, the cost reduction is at a maximum for all sizes of xss. This suggests that poor insulation between the SS
and DS gives the highest value for BITES. However, due to the abstracted nature of the two-node model, it is not strictly
correct to interpret K f low as a physical parameter (unit is kWh/h).

The question then becomes: does the implemented two-node BITES model capture the essential elements of the building’s
thermal mass? For instance, it seems unlikely that the value of BITES as a thermal energy storage is large independent of
the thermal properties of the building 2.5.4. Consider the values for K f low. This parameter, although it has the unit kWh/h,
can in a sense be interpreted as the inverse of the thermal resistance. According to [36], the difference between a thermal
insulator and a thermal conductor is about three orders of magnitude. The values considered for K f low in the previous
section is five orders of magnitude. Hence, according to the model, the choice of material for thermal insulation has little
effect on the usefulness of BITES, which clearly is an unrealistic situation. In addition, situations emerge where heat flows
from the deep storage to the shallow storage, despite the ambient temperature being lower than the inside air temperature.
On the other hand, we might consider all of the material data to be reflected in the time constants, which yield the losses
to the ambient. In that case, the flaw of the model is more in its lack of an intuitive interpretation, rather than a strict
modelling error. This may be explained by its original use, techno-economical analysis of a larger DH network.

The sensitivity analyses with respect to the time constants τss and τds show that the value of BITES increases with
higher time constants. If the time constant for SS, τss, is decreased enough, increasing the size of xss beyond 6.25 kWh
does not yield any further cost reduction. For lower values of τds, the cost reduction increases at about the same rate as
for higher values when xss is increased. The time constants used in the main results may be too high for a single building,
which leads to an overestimation of the economical value of BITES. With this in mind, some remarks about the time
constants can be made. As mentioned above, the time constants can be considered to reflect the material properties of
the building. This is evident when one considers equation 2.5.24, where the conductance is divided into two elements,
one for conduction (materials) and one for convection (ventilation). These elements correspond almost perfectly to the
deep/shallow-separation in the two-node model. According to this equation, it is possible to increase the time constant not
only by increasing the building thermal mass, but also by decreasing the thermal losses (that is, increasing the thermal re-
sistance). Thus, the shallow storage time constant τss can be increased simply by decreasing the ventilation rate, although
this may have detrimental effects in other aspects. The deep storage time constant τds, on the other hand, is fixed by the
construction of the building. With reference to 2.5.4, we can say that materials with high thermal resistivity and high heat
capacity are favorable for BITES use.

To find out whether the lack of sensitivity in the two-node BITES model resides in the two-node model itself, or if it
is due to the lack of technical detail in the optimization framework, the 3R2C model from 2.5.3 can be implemented.
Then, a similar sensitivity analysis can be performed, to see if the conclusions from the initial analysis hold. This is
left for further work. However, as long as the hourly time step is kept, it is questionable whether any thermal mass
representation can improve upon the accuracy of the two-node BITES model.
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Chapter 6

Conclusion and Further Work

6.1 Conclusion
A deterministic MILP optimization model, formulated in Python using the modelling extension library Pyomo, has been
studied. The model is used to find optimal operation strategies and technology investments for a passive house building,
based on a wide array of input data, in order to reduce the operational net emissions of the building during its lifetime, in
accordance with the ZEB-constraint. Using the work in [2] as a starting point, a new framework was developed, with the
Space Heating and Domestic Hot Water Loads separated. Furthermore, two versions of the model were synthesized, one
with a point-source heating system, and another with waterborne heating.

Several cases were investigated, with and without the ZEB-constraint. This was done for both the point-source and
waterborne models. With the given input data, it was shown that the waterborne heating system was the most optimal for
a low-energy house, as it had a lower total cost both with and without the ZEB-constraint. Additionally, owing to the to
higher efficiences (COPs) of the technologies available for the waterborne system, the grid impact/burden was also more
favorable for this system, since less import is required in order to supply to necessary heat, which in turn leads a reduced
need to export electricity as the ZEB-restriction is added.

To investigate the flexibility potential of low-energy buildings, the two-node representation of the building internal thermal
energy storage (BITES) developed in [31] was implemented in both versions of the model. The addition of BITES as an
available storage technology had a favorable impact on both systems. It was found that the BITES could replace the parts
of the heating systems that were intended for peak load use, essentially functioning as a short-term buffer for the space
heating load. For both system configurations, this was done in combination with significant investments in Hot Water
Tanks (HWT) (above the peak DHW-load), which served as a buffer for the domestic hot water (DHW) load. The most
promising BITES-cases, compared to their noBITES counterparts, were PH ZEB-b and WB ZEB-b; showing decreases
in the operational costs of 8.60 % and 7.79 %, respectively.

Finally, a sensitivity analysis of the two-node BITES model was undertaken, in order to find a range of values for the
cost reduction when BITES is added, in addition to the suitability of this thermal mass representation in a MILP optimiza-
tion framework with an hourly time step. It was found that the economical value of BITES was at least as dependant on
the ”heaviness” of the building structure as the degree to which the building was allowed to overheat. The effect of the
time constants on the solution was also examined, which suggested that larger time constants yield higher cost reductions.
Furthermore, the suitability in using the non-physical parameter K f low on a building-level was called into question, with an
alternative model found in literature, based on a circuit analogy, suggested as an alternative representation of the building
thermal mass.

59



6.2 Further Work
Extension of scope to neighborhood

In this work, the topic is the optimization of an energy system for a single building of passive house standard, with a
focus on load flexibility by using the building thermal mass as a short-term energy storage. Using a more object-oriented
approach in the programming of the model, the scope of the model can be extended to e.g. neighborhood level. Then,
several buildings operating in conjunction can be studied. This has already been done in [55], for the ZEN-pilot project
in Evenstad, Norway. A point of interest in this context is to see the effect of BITES on a larger scale. For instance, will
the load-shifting effect of BITES persist when the scope is increased, or will the peak loads become too high when the
buildings charge the thermal mass and hot water tanks at the same time?

Alternative representation of building thermal mass

As was shown by the sensitivity analysis, there are some problems with the two-node representation of the building
thermal mass used. For instance, there is the non-physical nature of the parameter K f low. In addition, the losses are
defined through the time constants, which makes them independent of the outside temperature. A way to remedy this is to
implement a thermal network model based on a circuit analogy. Then, the losses will depend on the outside temperature,
and the cross-flow resistance/conductance will be defined in terms of K/W. The problem now becomes to find reasonable
values for these parameters. A first approximation could be to use the time constants and the assumed heat capacities for
the SS and DS from [31] to calculate the thermal resistances, using basic circuit theory. This will yield a certain range
of values that can be considered. It is important to keep in mind that although the units of the thermal resistance suggest
that the parameters have physical meaning, they must be considered to be equivalent or aggregated parameters. That is,
they do not represent a certain wall or part of the roof, but rather a mathematical abstraction of the building as a thermal
energy storage.

Control

In order to actualize the savings potential of BITES, clever control is required. In the optimization model used in this
work, perfect foresight is assumed with respect to loads, weather data and spot prices. In a real-world application, this
lack of determinism could be alleviated by using time-series prediction techniques and Model Predictive Control [56].
Using weather forecasts and historical data as input to the prediction (spot price and heat load, most importantly), these
can be used to determine the optimal action in the current time step. For a more detailed model of BITES, a 3R2C model
such as the one studied in [57] could be implemented. Another alternative approach is to build a model from measurement
data, an approach known as inverse modelling [58]. The downside here is the access to measurement data.

Improved modelling of COP of heat pumps

In figure 4.3.5, the COPs of the different heat pumps for space heating and domestic hot water purposes is plotted. It is
obvious that a COP of close to 10, seen in the summer week for the GSHP for space heating, is an unrealistic number. An
effort should be made to improve the way the COP is modelled. However, some alleviating remarks can be made here.
First of all, as was mentioned in the chapter on input data, the space heating load is usually very low in the intervals where
the COP is this high. As a result, the amount of heat produced with this COP is actually quite low. Secondly, according to
[23], a review paper on domestic heat pumps, the interval in which the polynomials used to calculate the COPs are valid
is for ∆T between 20 and 60 °C. Hence, for a low ∆T , that is, a low difference between the source and sink temperatures,
the polynomials are invalid, and a new method must be found to approximate the COPs.
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Appendix A

This appendix contains the code for the waterborne model. The following python script, MODEL wb SH.py, defines the
waterborne model:

1 #!/usr/bin/env python3

2 # -*- coding: utf-8 -*-

3 """

4 Created on Tue Mar 12 20:17:29 2019

5

6 @author: marius

7 """

8 import pyomo.environ as pyo
9

10

11 class ZEBModel():
12

13 def __init__(self, M_const = 1000):
14 """Create Abstract Pyomo model for ZEB

15 """

16 # Determenistic two-stage model

17 self.abstractmodel = self.createTWOSTAGEMODEL()

18

19 self.M_const = M_const

20

21 def disco(self, n, r):
22 '''Discounting factor'''
23 return 1/((1+r)**n)
24

25 def annui(self, n, r):
26 '''Annuity factor'''
27 return r/(1-(1+r)**(-n))
28

29 def capit(self, n, r): # Capitalization factor
30 '''Capitalization factor'''
31 return (1-(1+r)**(-n))/r
32

33 def cost(self, Yn, cost, l, r):
34 '''For the two-stage model: calculating forced reinvestment costs'''
35 Kn = pyo.floor(Yn/(l*1))

36 n = Yn-l*Kn

37 Tn = Yn-n

38 return cost*(self.annui(l,r)*self.capit(n,r)*self.disco(Tn, r) \
39 + sum(self.disco(k*l,r) for k in range(0,Kn)))
40

41

42 def npv_cost_Investments(self, m, st):
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43 '''Investment function for two-stage/deterministic, including o&m costs'''
44 investments = 0

45 if st==1:
46 for i in m.I:
47 investments += (m.C_spe[i]*m.x[i]+ m.C_fxd[i]*m.a_i[i])

48 '''Operations and maintenance costs included in investment costs:'''
49 #investments += (m.C_run[i]*m.C_spe_0[i]*m.x[i])*self.capit(m.YRN,

m.R)*self.disco(1, m.R)↪→

50 else:
51 investments = 0

52 return investments
53

54 def npv_cost_Operations(self, m, st):
55 '''Operational costs for two-stage/deterministic

56 Summation of yearly costs for all years in YRN'''
57 techrun = 0

58 runcosts = 0

59 gridtariff = 0

60 operations = 0

61 if m.lastT == 4367:
62 f = 2

63 elif m.lastT == 23:
64 f = 8736/24

65 elif m.lastT == 287:
66 f = 8736/288

67 elif m.lastT == 671:
68 '''multiplicationfactor will be 13 if reduced model'''
69 f = 13

70 elif m.lastT == 727:
71 f = 12

72 elif m.lastT == 8735:
73 f = 1

74

75 if st == 2:
76 for i in m.I:
77 techrun += m.C_run[i]*m.C_spe_0[i]*m.x[i]

78 if m.A_ep: #Grid tariff model (includes VAT): Energy pricing
79 ''' Nettleie: fastledd=8.61 EUR/mnd, energiledd = 0.05 EUR/kWh (inkluderer

enova-avgift samt moms)'''↪→

80 gridtariff = 12*m.C_fxd_ep + m.C_spe_ep*sum(f*m.y_imp[t] for t in m.T)
81 elif m.A_ps == 1: #Grid tariff model(includes VAT): Power subscription
82

83 gridtariff = 12*(m.C_fxd_ps*(1+m.Y_max)) + m.C_pty_ps*sum(f*m.y_pty[t] for
t in m.T) + m.C_spe_ps*sum(f*m.y_imp[t] for t in m.T)↪→

84

85

86

87 VAT = 1.25

88 runcosts = sum(VAT*m.y_imp[t]*m.P_spot[t] + (m.bf_sh[t] + m.bf_dhw[t])*m.C_bf -

m.y_exp[t]*m.P_spot[t]*m.A_exp for t in m.T)↪→

89 operations = (f*runcosts + gridtariff + techrun)*self.capit(m.YRN,

m.R)*self.disco(1, m.R)↪→

90 else:
91 operations = 0

92 return operations
93
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94

95 def createTWOSTAGEMODEL(self):
96 m = pyo.AbstractModel()

97 m.name = 'ZEB stochastic two-stage model'
98

99 # SETS ##########################################################

100 m.T = pyo.Set(doc = 'Set of all hours, full model: 8736, reduced model: 672')
101 m.M = pyo.Set(doc = 'Set of all months')
102 m.I = pyo.Set(doc = 'Set of all technologies')
103 m.ST = pyo.Set(initialize = [1, 2], doc='STAGE')
104

105 # PARAMETERS ##########################################################

106

107 m.lastT = pyo.Param(within=m.T, doc="Last time step")

108

109 #---Technology costs

110 m.C_fxd_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default = 0, doc='Fixed
investment cost for all techs, EUR in year t = 0')↪→

111

112 m.C_spe_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default = 0,doc='Investment
costs dependent on installed capacity, EUR/kW (EUR/kWh) in t= 0')↪→

113 m.C_run = pyo.Param(m.I,within=pyo.NonNegativeReals,default = 0,doc='Yearly running
cost of each tech, given from investment costs EUR/kW installed')↪→

114

115 #---Grid Tariff pricing

116 #Energy pricing

117 m.A_ep = pyo.Param(within=pyo.Binary,default = 0,doc = 'Activation of energy
pricing')↪→

118 m.C_fxd_ep = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Fixed charge
part of grid tariff for ep')↪→

119 m.C_spe_ep = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Specific energy
charge part of grid tariff for ep')↪→

120

121 #Power Subscription pricing

122 m.A_ps = pyo.Param(within = pyo.Binary, default = 0,doc = 'Activation of power
subscription pricing')↪→

123 m.C_fxd_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0, doc='Subscriptopn
charge for pp')↪→

124 m.C_pty_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Penalty charge
for pp')↪→

125 m.C_spe_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Energy charge
charge for pp')↪→

126 m.Y_max = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc = 'Subscription
limit')↪→

127

128 #Peak Power Pricing

129 m.A_pp = pyo.Param(within=pyo.Binary)

130 m.C_pp = pyo.Param(within=pyo.NonNegativeReals)

131 m.C_fxd_pp = pyo.Param(within=pyo.NonNegativeReals)

132 m.C_spe_pp = pyo.Param(within=pyo.NonNegativeReals)

133

134 #---#Reference System

135

136 #CO2-Factors

137 m.A_co2 = pyo.Param(within=pyo.Binary,doc = 'Activation of co2 crediting system')
138 m.G_ref = pyo.Param(within=pyo.NonNegativeReals,doc='CO2 reference emissions')
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139 m.G_el = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh
imported/exported')↪→

140 m.G_bf = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh for technology
i, i.e BB')↪→

141

142 #Primary Energy Factors

143 m.A_pe = pyo.Param(within=pyo.Binary,doc = 'Activation of primary energy crediting
system')↪→

144 m.PE_ref = pyo.Param(within=pyo.NonNegativeReals,doc='CO2 reference emissions')
145 m.PE_imp = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh imported

electricity')↪→

146 m.PE_exp = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh exported
electricity')↪→

147 m.PE_bf = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh for technology i,
i.e BB')↪→

148

149 #---Technologies

150 m.A_i = pyo.Param(m.I, within=pyo.Binary,doc='Pre-activation of each tech')
151

152 m.Eff = pyo.Param(m.I,within=pyo.NonNegativeReals, doc='Technology efficiency')
153 m.Eff_ba_ch = pyo.Param(within=pyo.NonNegativeReals,doc='Battery charging

efficiency')↪→

154 m.Eff_ba_dch = pyo.Param(initialize = 1, doc='Battery discharge efficiency')
155 m.Beta_ba = pyo.Param(within=pyo.NonNegativeReals,doc='Charging/discharging rate')
156 m.Beta_hs = pyo.Param(within=pyo.NonNegativeReals, doc='identical charging rate for

heat storage')↪→

157

158 m.L = pyo.Param(m.I, within=pyo.NonNegativeIntegers, doc='Lifetime of technology
i')↪→

159 m.X_min = pyo.Param(m.I, within=pyo.NonNegativeReals, doc='Max possible installed
capacity of technology ')↪→

160 m.X_max = pyo.Param(m.I, within=pyo.NonNegativeReals, doc='Min possible installed
capacity of technology ')↪→

161

162 m.Temp = pyo.Param(m.T, within=pyo.Reals, doc='Ambient temperature of certain hour')
163 m.Y_pv = pyo.Param(m.T, within=pyo.NonNegativeReals,doc='Possible PV output at time

t')↪→

164 m.COP_ashp_dhw = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Heat pump
performance at time t w/r DHW')↪→

165 m.COP_gshp_dhw = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Heat pump
performance at time t w/r DHW')↪→

166 m.COP_ashp_sh = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Heat pump
performance at time t w/r SH')↪→

167 m.COP_gshp_sh = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Heat pump
performance at time t w/r SH')↪→

168

169 #BITES-params

170 m.SS_cap = pyo.Param(within=pyo.NonNegativeReals, doc='Shallow storage capacity of
house, fully determined by area, thus a parameter instead of a variable')↪→

171 m.DS_cap = pyo.Param(within=pyo.NonNegativeReals, doc='Deep storage capacity of
house, ---=---')↪→

172 m.K_shallow = pyo.Param(doc='loss factor for BITES, shallow part')
173 m.K_deep = pyo.Param(doc='loss factor for BITES, deep part')
174 m.K_flow = pyo.Param(doc='flow factor for BITES, cross-node flow')
175

176 #---Energy Demand
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177 m.D_el = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building
electricity demand')↪→

178 m.D_sh = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building space
heating demand')↪→

179 m.D_dhw = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building domestic
hot water demand')↪→

180

181 #---Grid

182 m.P_spot = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly price of
imported electricity EUR/kWh including certificates')↪→

183 m.X_max_imp = pyo.Param(within=pyo.NonNegativeReals, doc='Maximum grid import')
184 m.X_max_exp = pyo.Param( within=pyo.NonNegativeReals,doc='Maximum grid export')
185 m.A_imp = pyo.Param( within=pyo.Binary, doc='Binary: Import is activated, 1/0')
186 m.A_exp = pyo.Param( within=pyo.Binary,doc='Binary: Export is activated, 1/0')
187 m.C_bf = pyo.Param(within=pyo.NonNegativeReals, doc='Constant price of biofuel')
188

189 #---Control

190 m.gamma = pyo.Param( within=pyo.NonNegativeReals, doc='=0 for strictly ZEB')
191 m.R = pyo.Param(within=pyo.NonNegativeReals, doc='Chosen discount Rate')
192 m.YRN = pyo.Param( within=pyo.NonNegativeIntegers, doc='Total years in modelling

period')↪→

193

194 def npv_inv_spe(m, i):
195 return self.cost(m.YRN, m.C_spe_0[i], m.L[i], m.R)
196 m.C_spe = pyo.Param(m.I, rule = npv_inv_spe)

197

198 def npv_inv_fxd(m, i):
199 return self.cost(m.YRN, m.C_fxd_0[i], m.L[i], m.R)
200 m.C_fxd = pyo.Param(m.I, rule = npv_inv_fxd)

201

202 #VARIABLES ##########################################################

203

204 # 1 STAGE : STRATEGIC VARIABLES

205 m.x = pyo.Var(m.I,within = pyo.NonNegativeReals,

doc='Optimal installed capacity (storage size), semi-continous, kW (kWh)')↪→

206 m.a_i = pyo.Var(m.I, within = pyo.Binary,

doc='Activation binary decition for technology i, 1/0')↪→

207

208

209 #2 STAGE : OPERATIONAL VARIABLES

210 m.q_hs = pyo.Var(m.T, domain = pyo.Reals,

doc='Keeping track of HS discharge')↪→

211 m.q_eb_sh = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (SH) electric boiler at time t, kWh/h')↪→

212 m.q_eb_dhw = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (DHW) electric boiler at time t, kWh/h')↪→

213 m.q_bb_sh = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (SH) bio boiler at time t, kWh/h')↪→

214 m.q_bb_dhw = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (DHW) bio boiler at time t, kWh/h')↪→

215 m.bf_sh = pyo.Var(m.T, domain= pyo.NonNegativeReals,

doc='Biofuel input to bio boiler at time t for SH kWh/h')↪→

216 m.bf_dhw = pyo.Var(m.T, domain= pyo.NonNegativeReals,

doc='Biofuel input to bio boiler at time t for DHW kWh/h')↪→

217 m.q_ashp_sh = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc='Net heat supplied from air source heat pump (SH) at time t, kWh/h')↪→
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218 m.q_gshp_sh = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc='Net heat supplied from ground source heat pump (SH) at time t, kWh/h')↪→

219 m.q_ashp_dhw = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc='Net heat supplied from air source heat pump (DHW) at time t, kWh/h')↪→

220 m.q_gshp_dhw = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc='Net heat supplied from ground source heat pump (DHW) at time t, kWh/h')↪→

221

222 m.z_hs = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in heat storage (HS) at the end of time t, kWh')↪→

223 m.z_hwt = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in hot water tank (HWT) at the end of time t, kWh')↪→

224 m.z_ss = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in shallow BITES at the end of time t, kWh')↪→

225 m.z_ds = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in deep BITES at the end of time t, kWh')↪→

226 m.z_ba = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content of battery at the end of time t, kWh')↪→

227 m.Flow = pyo.Var(m.T, domain = pyo.Reals,

doc='Cross-node flow of two-node BITES model at time t, kWh')↪→

228

229

230 #charging variables for BITES, shallow part

231 #m.z_ss_ch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Maximum charging rate, shallow BITES at the end of time t, kWh')↪→

232 #m.z_ss_dch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Maximum discharging rate, shallow BITES at the end of time t, kWh')↪→

233 m.q_ss = pyo.Var(m.T, domain = pyo.Reals, doc='Energy released
from shallow BITES at the end of time t, kWh')↪→

234 m.q_hwt = pyo.Var(m.T, domain = pyo.Reals, doc='Energy
released from HWT at the end of time t, kWh')↪→

235

236

237 m.y_imp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity imported from grid at time t, kWh')↪→

238 m.y_exp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity exported to grid at time t, kWh')↪→

239 m.y_pv = pyo.Var(m.T, domain = pyo.NonNegativeReals, doc='PV
production at time t, kWh/h')↪→

240 m.y_eb_sh = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity drawn from (SH) electric boiler at time t, kWh/h')↪→

241 m.y_eb_dhw = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity drawn from (DHW) electric boiler at time t, kWh/h')↪→

242 m.y_ashp_sh = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Total electricity consumed by the AS heat pump (SH) at time t, kWh/h')↪→

243 m.y_gshp_sh = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Total electricity consumed by the GS heat pump (SH) at time t, kWh/h')↪→

244 m.y_ashp_dhw = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Total electricity consumed by the AS heat pump (DHW) at time t, kWh/h')↪→

245 m.y_gshp_dhw = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Total electricity consumed by the GS heat pump (DHW) at time t, kWh/h')↪→

246 m.y_ch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Amount of electricity to battery (charging) at time t, kWh/h')↪→

247 m.y_dch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Amount of electricity discharge from battery at time t, kWh/h')↪→

248 m.y_pty = pyo.Var(m.T, domain = pyo.Reals, doc =

'Penalty volume')↪→
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249

250

251 m.y_max = pyo.Var(m.M, domain = pyo.NonNegativeReals, doc='max
power for every month')↪→

252

253 #m.a_imp = pyo.Var(m.T, domain = pyo.Binary, doc

='Import activation inward time t, 1= activated')↪→

254 #m.a_exp = pyo.Var(m.T, domain= pyo.Binary, doc

='Export actication inward time t, 1= activated')↪→

255

256 m.a_ch = pyo.Var(m.T, domain = pyo.Binary, doc

='Charging activation inward time t, 1 = activated')↪→

257 m.a_dch = pyo.Var(m.T, domain= pyo.Binary, doc

='Discharging activation inward time t, 1=activated')↪→

258

259

260 # CONSTRAINTS ##########################################################

261

262 # 1 STAGE : INVESTMENTS

263

264 #---Activation and boundary constraints

265 def Tech_active(m, i, st):
266 return m.x[i] <= m.a_i[i]*self.M_const
267 m.Tech_active = pyo.Constraint(m.I, m.ST, rule = Tech_active)

268

269 def Tech_Min(m, i, st):
270 return m.X_min[i]*m.a_i[i] <= m.x[i]
271 m.Tech_Min = pyo.Constraint(m.I, m.ST, rule= Tech_Min)

272

273 def Tech_Max(m, i, st):
274 return m.x[i] <= m.X_max[i]*m.A_i[i]
275 m.Tech_Max = pyo.Constraint(m.I, m.ST, rule= Tech_Max)

276

277 #2 STAGE : OPERATIONS

278

279 #---Balacing constraints

280

281 def El_Balance(m, t, st):
282 return m.D_el[t] == m.y_imp[t] + m.y_pv[t] - m.y_exp[t] + m.y_dch[t] - m.y_ch[t]

- m.y_ashp_sh[t] - m.y_gshp_sh[t] - m.y_ashp_dhw[t] - m.y_gshp_dhw[t] -

m.y_eb_sh[t] - m.y_eb_dhw[t]

↪→

↪→

283 m.El_Balance = pyo.Constraint(m.T, m.ST, rule = El_Balance)

284

285 def SH_balance(m, t, st):
286 if t == 0:
287 return m.D_sh[t] + m.z_hs[t] == m.z_hs[m.lastT]*m.Eff['HS'] + m.q_ss[t] +

m.q_ashp_sh[t] + m.q_gshp_sh[t] + m.q_eb_sh[t] + m.q_bb_sh[t]↪→

288 else:
289 return m.D_sh[t] + m.z_hs[t] == m.z_hs[t-1]*m.Eff['HS'] + m.q_ss[t] +

m.q_ashp_sh[t] + m.q_gshp_sh[t] + m.q_eb_sh[t] + m.q_bb_sh[t]↪→

290 m.SH_balance = pyo.Constraint(m.T, m.ST, rule = SH_balance)

291

292 def DHW_balance(m, t, st):
293 if t == 0:
294 return m.D_dhw[t] + m.z_hwt[t] == m.z_hwt[m.lastT]*m.Eff['HWT'] +

m.q_ashp_dhw[t] + m.q_gshp_dhw[t] + m.q_eb_dhw[t] + m.q_bb_dhw[t]↪→

71



295 else:
296 return m.D_dhw[t] + m.z_hwt[t] == m.z_hwt[t-1]*m.Eff['HWT'] +

m.q_ashp_dhw[t] + m.q_gshp_dhw[t] + m.q_eb_dhw[t] + m.q_bb_dhw[t]↪→

297 m.DHW_balance = pyo.Constraint(m.T, m.ST, rule = DHW_balance)

298

299 #---Capacity

300 #split heat pumps in two here as well

301 #new rule, the sum of heat produced for SH and DHW must be less than/equal to

capacity↪→

302

303 def ASHP_Restriction(m,t, st):
304 return m.q_ashp_sh[t] + m.q_ashp_dhw[t] <= m.x['ASHP']
305 m.ASHP_Restriction = pyo.Constraint(m.T, m.ST, rule = ASHP_Restriction)

306

307 def GSHP_Restriction(m,t, st):
308 return m.q_gshp_sh[t] + m.q_gshp_dhw[t] <= m.x['GSHP']
309 m.GSHP_Restriction = pyo.Constraint(m.T, m.ST, rule = GSHP_Restriction)

310

311 def EB_Restriction(m,t, st):
312 return m.q_eb_sh[t] + m.q_eb_dhw[t] <= m.x['EB']
313 m.EB_Restriction = pyo.Constraint(m.T, m.ST, rule = EB_Restriction)

314

315 def BB_Restriction(m,t, st):
316 return m.q_bb_sh[t] + m.q_bb_dhw[t] <= m.x['BB']
317 m.BB_Restriction = pyo.Constraint(m.T, m.ST, rule = BB_Restriction)

318

319

320 #---Grid equations

321

322 def Grid_Import(m,t, st):
323 return m.y_imp[t] <= m.X_max_imp
324 m.Grid_Import = pyo.Constraint(m.T, m.ST, rule=Grid_Import)

325

326 def Grid_Export(m,t, st):
327 return m.y_exp[t] <= m.X_max_exp
328 m.Grid_Export = pyo.Constraint(m.T, m.ST, rule=Grid_Export)

329 '''
330 def Prosumer_Balance(m,t, st):

331 return m.a_imp[t] + m.a_exp[t] <= 1

332 m.Prosumer_Balance = pyo.Constraint(m.T, m.ST, rule=Prosumer_Balance)

333 '''
334

335 #---Storage equations

336

337 def HS_Restriction(m, t, st):
338 return m.z_hs[t] <= m.x['HS']
339 m.HS_Restriction = pyo.Constraint(m.T, m.ST, rule=HS_Restriction)

340

341 def HWT_Restriction(m, t, st):
342 return m.z_hwt[t] <= m.x['HWT']
343 m.HWT_Restriction = pyo.Constraint(m.T, m.ST, rule=HWT_Restriction)

344

345 def SS_Restriction(m, t, st):
346 return m.z_ss[t] <= m.x['SS']*m.A_i['SS']
347 m.SS_Restriction = pyo.Constraint(m.T, m.ST, rule=SS_Restriction)

348
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349 def DS_Restriction(m, t, st):
350 return m.z_ds[t] <= m.x['DS']*m.A_i['DS']
351 m.DS_Restriction = pyo.Constraint(m.T, m.ST, rule=DS_Restriction)

352

353 def SS_charge_active(m,t, st):
354 return m.q_ss[t] <= m.z_ss[t]
355 m.SS_charge_active = pyo.Constraint(m.T, m.ST, rule=SS_charge_active)

356

357 def SS_discharge_active(m,t, st):
358 return - m.z_ss[t] <= m.q_ss[t]
359 m.SS_discharge_active = pyo.Constraint(m.T, m.ST, rule=SS_discharge_active)

360

361 def HS_charge_active(m,t, st):
362 return m.q_hs[t] <= m.z_hs[t]
363 m.HS_charge_active = pyo.Constraint(m.T, m.ST, rule=HS_charge_active)

364

365 def HS_discharge_active(m,t, st):
366 return - m.z_hs[t] <= m.q_hs[t]
367 m.HS_discharge_active = pyo.Constraint(m.T, m.ST, rule=HS_discharge_active)

368

369 def HWT_charge_active(m,t, st):
370 return m.q_hwt[t] <= m.z_hwt[t]
371 m.HWT_charge_active = pyo.Constraint(m.T, m.ST, rule=HWT_charge_active)

372

373 def HWT_discharge_active(m,t, st):
374 return - m.z_hwt[t] <= m.q_hwt[t]
375 m.HWT_discharge_active = pyo.Constraint(m.T, m.ST, rule=HWT_discharge_active)

376

377 '''
378 def SS_charge_active(m, t, st):

379 if m.Temp[t] >= 15:

380 return m.q_ss[t] >= -m.x['SS']
381 elif m.Temp[t] < 15 and m.Temp[t] > -15:

382 return m.q_ss[t] <= m.x['SS'] * (1 - (15 - m.Temp[t])/30)
383 else:

384 return m.q_ss[t] >= 0

385 m.SS_charge_active = pyo.Constraint(m.T, m.ST, rule = SS_charge_active)

386

387 def SS_discharge_active(m, t, st):

388 if m.Temp[t] >= 15:

389 return m.q_ss[t] <= 0

390 elif m.Temp[t] < 15 and m.Temp[t] > -15:

391 return m.q_ss[t] >= -(m.x['SS'] * ((15 - m.Temp[t])/30))
392 else:

393 return m.q_ss[t] <= m.x['SS']
394 m.SS_discharge_active = pyo.Constraint(m.T, m.ST, rule = SS_charge_active)

395 '''
396

397 def HS_Balance_ch(m,t,st):
398 if t == 0:
399 return m.q_hs[t] == m.z_hs[m.lastT] - m.z_hs[t]
400 else:
401 return m.q_hs[t] == m.z_hs[t-1] - m.z_hs[t]
402 m.HS_Balance_ch = pyo.Constraint(m.T, m.ST, rule = HS_Balance_ch)

403

404 def HWT_Balance_ch(m,t,st):
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405 if t == 0:
406 return m.q_hwt[t] == m.z_hwt[m.lastT] - m.z_hwt[t]
407 else:
408 return m.q_hwt[t] == m.z_hwt[t-1] - m.z_hwt[t]
409 m.HWT_Balance_ch = pyo.Constraint(m.T, m.ST, rule = HWT_Balance_ch)

410

411 def Flow_Constraint(m,t,st):
412 return m.Flow[t] == m.K_flow*((m.z_ss[t]/m.SS_cap) - (m.z_ds[t]/m.DS_cap))
413 m.Flow_Constraint = pyo.Constraint(m.T, m.ST, rule = Flow_Constraint)

414

415 def SS_balance_ch(m, t, st):
416 if t == 0:
417 return m.q_ss[t] == m.z_ss[m.lastT] - m.z_ss[t] - m.Flow[t] - m.z_ss[t]*(1 -

m.K_shallow)↪→

418 else:
419 return m.q_ss[t] == m.z_ss[t-1] - m.z_ss[t] - m.Flow[t] - m.z_ss[t]*(1 -

m.K_shallow)↪→

420 m.SS_balance_ch = pyo.Constraint(m.T, m.ST, rule = SS_balance_ch)

421

422 def DS_balance_ch(m, t, st):
423 if t == 0:
424 return m.z_ds[t] == m.z_ds[m.lastT] + m.Flow[t] - m.z_ds[t]*(1 - m.K_deep)
425 else:
426 return m.z_ds[t] == m.z_ds[t-1] + m.Flow[t] - m.z_ds[t]*(1 - m.K_deep)
427 m.DS_balance_ch = pyo.Constraint(m.T, m.ST, rule = DS_balance_ch)

428

429 def HS_discharge_rate_min(m,t, st):
430 return -m.x['HS']*m.Beta_hs <= m.q_hs[t]
431 m.HS_discharge_rate_min = pyo.Constraint(m.T, m.ST, rule=HS_discharge_rate_min)

432

433 def HS_discharge_rate_max(m,t, s):
434 return m.q_hs[t] <= m.x['HS']*m.Beta_hs
435 m.HS_discharge_rate_max = pyo.Constraint(m.T, m.ST, rule=HS_discharge_rate_max)

436

437 def HWT_discharge_rate_min(m,t, st):
438 return -m.x['HWT']*m.Beta_hs <= m.q_hwt[t]
439 m.HWT_discharge_rate_min = pyo.Constraint(m.T, m.ST, rule=HWT_discharge_rate_min)

440

441 def HWT_discharge_rate_max(m,t, s):
442 return m.q_hwt[t] <= m.x['HWT']*m.Beta_hs
443 m.HWT_discharge_rate_max = pyo.Constraint(m.T, m.ST, rule=HWT_discharge_rate_max)

444

445 def BA_Restriction(m,t, st):
446 return m.z_ba[t] <= m.x['BA']
447 m.BA_restriction = pyo.Constraint(m.T, m.ST, rule=BA_Restriction)

448

449 def BA_Balance(m,t, st):
450 if t == 0:
451 return m.z_ba[t] == m.z_ba[m.lastT] - m.y_dch[t]*(1/m.Eff_ba_dch) +

m.y_ch[t]*m.Eff_ba_ch↪→

452 else:
453 return m.z_ba[t] == m.z_ba[t-1] - m.y_dch[t]*(1/m.Eff_ba_dch) +

m.y_ch[t]*m.Eff_ba_ch↪→

454 m.BA_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Balance)

455

456 def BA_Charge_Balance(m, t, st):
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457 if t == 0:
458 return m.y_ch[t] <= (m.x['BA'] -

m.z_ba[m.lastT])*m.A_i['BA']*(1/m.Eff_ba_ch)↪→

459 else:
460 return m.y_ch[t] <= (m.x['BA'] - m.z_ba[t-1])*m.A_i['BA']*(1/m.Eff_ba_ch)
461 m.BA_Charge_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Charge_Balance)

462

463 def BA_Discharge_Balance(m,t, st):
464 if t == 0:
465 return m.y_dch[t] <= m.z_ba[m.lastT]*m.A_i['BA']*m.Eff_ba_dch
466 else:
467 return m.y_dch[t] <= m.z_ba[t-1]*m.A_i['BA']*m.Eff_ba_dch
468 m.BA_Discharge_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Discharge_Balance)

469

470 def BA_charge_active(m,t, st):
471 return m.y_ch[t] <= m.X_max_imp*m.a_ch[t]
472 m.BA_charge_active = pyo.Constraint(m.T, m.ST, rule=BA_charge_active)

473

474 def BA_discharge_active(m,t, st):
475 return m.y_dch[t] <= m.X_max_imp*m.a_dch[t]
476 m.BA_discharge_active = pyo.Constraint(m.T, m.ST, rule=BA_discharge_active)

477

478 def Battery_Balance(m,t, st):
479 return m.a_ch[t] + m.a_dch[t] <= 1
480 m.Battery_Balance = pyo.Constraint(m.T, m.ST, rule=Battery_Balance)

481

482 def BA_charge_rate(m,t, st):
483 return m.y_ch[t] <= m.x['BA']*m.Beta_ba
484 m.BA_charge_rate = pyo.Constraint(m.T, m.ST, rule=BA_charge_rate)

485

486 def BA_discharge_rate(m,t, st):
487 return m.y_dch[t] <= m.x['BA']*m.Beta_ba
488 m.BA_discharge_rate = pyo.Constraint(m.T, m.ST, rule=BA_discharge_rate)

489

490 #---Production constraints for generating technologies

491

492 def PV_Balance(m,t, st):
493 return m.y_pv[t] == m.x['PV']*m.Y_pv[t]
494 m.PV_Balance = pyo.Constraint(m.T, m.ST, rule=PV_Balance)

495

496 def ASHP_SH_Balance(m,t, st):
497 return m.q_ashp_sh[t] == m.y_ashp_sh[t]*m.COP_ashp_sh[t]
498 m.ASHP_SH_Balance = pyo.Constraint(m.T, m.ST, rule = ASHP_SH_Balance)

499

500 def ASHP_DHW_Balance(m,t, st):
501 return m.q_ashp_dhw[t] == m.y_ashp_dhw[t]*m.COP_ashp_dhw[t]
502 m.ASHP_DHW_Balance = pyo.Constraint(m.T, m.ST, rule = ASHP_DHW_Balance)

503

504 def GSHP_SH_Balance(m,t, st):
505 return m.q_gshp_sh[t] == m.y_gshp_sh[t]*m.COP_gshp_sh[t]
506 m.GSHP_SH_Balance = pyo.Constraint(m.T, m.ST, rule = GSHP_SH_Balance)

507

508 def GSHP_DHW_Balance(m,t, st):
509 return m.q_gshp_dhw[t] == m.y_gshp_dhw[t]*m.COP_gshp_dhw[t]
510 m.GSHP_DHW_Balance = pyo.Constraint(m.T, m.ST, rule = GSHP_DHW_Balance)

511
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512 def EB_SH_Balance(m,t, st):
513 return m.q_eb_sh[t] == m.y_eb_sh[t]*m.Eff['EB']
514 m.EB_SH_Balance = pyo.Constraint(m.T, m.ST, rule = EB_SH_Balance)

515

516 def EB_DHW_Balance(m,t, st):
517 return m.q_eb_dhw[t] == m.y_eb_dhw[t]*m.Eff['EB']
518 m.EB_DHW_Balance = pyo.Constraint(m.T, m.ST, rule = EB_DHW_Balance)

519

520 def BB_SH_Balance(m,t, st):
521 return m.q_bb_sh[t] == m.bf_sh[t]*m.A_i['BB']*m.Eff['BB']
522 m.BB_SH_Balance = pyo.Constraint(m.T, m.ST, rule=BB_SH_Balance)

523

524 def BB_DHW_Balance(m,t, st):
525 return m.q_bb_dhw[t] == m.bf_dhw[t]*m.A_i['BB']*m.Eff['BB']
526 m.BB_DHW_Balance = pyo.Constraint(m.T, m.ST, rule=BB_DHW_Balance)

527

528

529 #---Zero emission/energy constraints

530 def ZE_Balance(m):
531 if m.A_co2==1:
532 print('ACTIVE ZEB-carbon RESTRICTION')
533 if m.lastT == 8735:
534 return sum(m.y_imp[t]*m.G_el + m.bf_sh[t]*m.G_bf + m.bf_dhw[t]*m.G_bf

for t in m.T) <= sum(m.y_exp[t]*m.G_el for t in m.T) #what about

CO2-factors for DH-import? Diverse mix, assuming spillover heat from

industry with factor 0 here.

↪→

↪→

↪→

535 ''' quarterly balancing
536 if m.lastT == 8735:

537 for i in range(4):

538 sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el for t in

range(i*2184,(i+1)*2184)) <= m.G_ref*m.gamma↪→

539 '''
540

541 if m.lastT == 4367:
542 return 2*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el + m.bf[t]*m.G_bf for

t in m.T) <= m.G_ref*m.gamma↪→

543 elif m.lastT == 727:
544 return 12*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el + m.bf[t]*m.G_bf for

t in m.T) <= m.G_ref*m.gamma↪→

545 elif m.lastT == 671:
546 return sum(m.y_imp[t]*m.G_el + m.bf_sh[t]*m.G_bf + m.bf_dhw[t]*m.G_bf

for t in m.T) <= sum(m.y_exp[t]*m.G_el for t in m.T)↪→

547 elif m.lastT == 287:
548 return (8736/288)*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma↪→

549 elif m.lastT == 23:
550 return (8736/24)*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma↪→

551 elif m.A_pe == 1:
552 print('ACTIVE ZEB-pef RESTRICTION')
553 if m.lastT == 8735:
554 return sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp + m.bf[t]*m.PE_bf

for t in m.T) <= m.PE_ref*m.gamma↪→

555 elif m.lastT == 671:
556 return 13*sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp +

m.bf[t]*m.PE_bf for t in m.T) <= m.PE_ref*m.gamma↪→
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557 else:
558 print('NO ZEB RESTRICTION')
559 return pyo.Constraint.Skip
560 m.ZE_Balance = pyo.Constraint(rule=ZE_Balance)

561

562

563 #Subscription power pricing Constraint

564 def pty_volume(m, t): #counting all power within one hour exceeding max limit
565 if m.A_ps == 1:
566 return m.y_imp[t] - m.Y_max <= m.y_pty[t]
567 else:
568 return m.y_pty[t] ==0
569 m.pty_volume = pyo.Constraint(m.T, rule = pty_volume)

570

571 def pty_volume2(m, t):
572 return 0 <= m.y_pty[t]
573 m.pty_volume2 = pyo.Constraint(m.T, rule = pty_volume2)

574

575 # OBJECTIVE FUNCTION #################################################

576

577 def cost_Investments_rule(m, st):
578 expr = self.npv_cost_Investments(m, st)

579 return expr
580 m.cost_Investments = pyo.Expression(m.ST, rule = cost_Investments_rule)

581

582 def cost_Operation_rule(m, st):
583 expr = self.npv_cost_Operations(m, st)

584 return expr
585 m.cost_Operations= pyo.Expression(m.ST, rule = cost_Operation_rule)

586

587 def objective_TotalCost(m):
588 expr = pyo.summation(m.cost_Investments) + pyo.summation(m.cost_Operations)

589 return expr
590 m.objective_TotalCost = pyo.Objective(rule = objective_TotalCost, sense =

pyo.minimize)↪→

591

592 return m
593

594 def createConcreteModeltwoStage(self, data):
595 '''Function creating instance from input data'''
596 #data = self.writeStochasticProblem(data)

597 concretemodel = self.abstractmodel.create_instance(data = {'mymodel':data},
namespace = 'mymodel')↪→

598 return concretemodel
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The following code, Loading Data.py, contains functions for the waterborne model loading the relevant data from an excel
spreadsheet and writing the results to another spreadsheet.

1 import xlrd
2 import pandas as pd
3 import time
4 from selection import selection
5

6 def createModelData(path_in, year):
7 #Creates all input data for reduced model

8 wb = xlrd.open_workbook(path_in)

9 ws1 = wb.sheet_by_name('Input_Tech')
10 ws2 = wb.sheet_by_name('Input_Parameters')
11

12 di = {}

13 #Sets:

14 di['T'] = {None: list(range(0, int(ws2.cell(16, 2).value) + 1))}
15 di['lastT'] = {None: (ws2.cell(16, 2).value)}
16 di['ST'] = {None:[1, 2]}
17

18 for row in (15, 16, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, \
19 33, 34, 35, 36, 37, 39, 40, 41, 42, 45, 46, 47, 52, 53, \

20 54, 57, 59, 60, 61):

21 if row in [15, 16, 21, 22, 26, 30, 33, 39]:
22 di[ws2.cell(row,1).value] = {None: int(ws2.cell(row,2).value)}

23

24 else:
25 di[ws2.cell(row,1).value] = {None: ws2.cell(row,2).value}

26

27 #important parameters:

28 I = []

29 for row in range(11):
30 I.append(ws1.cell(4+row,1).value)

31 di['I'] = {None:I}
32

33 for col in (2, 3, 4, 5, 6, 7, 8, 9):
34 data = {}

35 for row in range(11):
36 if col in [2,6]:
37 data[I[row]] = int(ws1.cell(4+row,col).value)

38 else:
39 data[I[row]] = ws1.cell(4+row,col).value

40 di[ws1.cell(2, col).value] = data

41

42 if ws2.cell(16, 2).value == 8735:
43 df = pd.read_excel('Scenario_data.xlsx', str(year), usecols =

[3,4,5,6,7,8,18,19,20,21]) #Now with separated COPs for DHW and SH↪→

44 df = df.drop([0])

45 df = df.drop(range(8737,8761))

46 new_df = pd.DataFrame(data=df.values, columns =

['D_el','D_sh','D_dhw','P_spot','Temp','Y_pv','COP_ashp_sh',
'COP_ashp_wh','COP_gshp_sh', 'COP_gshp_wh'], index = range(8736))

↪→

↪→

47 data = new_df.to_dict()

48

49 di['D_el'] = data['D_el']
50 di['D_sh'] = data['D_sh']
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51 di['D_dhw'] = data['D_dhw']
52 di['P_spot'] = data['P_spot']
53 di['Temp'] = data['Temp']
54 di['Y_pv'] = data['Y_pv']
55 di['COP_ashp_sh'] = data['COP_ashp_sh']
56 di['COP_ashp_dhw'] = data['COP_ashp_wh']
57 di['COP_gshp_sh'] = data['COP_gshp_sh']
58 di['COP_gshp_dhw'] = data['COP_gshp_wh']
59

60 return di
61

62 elif ws2.cell(16, 2).value == 671:
63 #select 4 weeks for each season surrounding the highest space heating load, week

size is 168 hours↪→

64 df = pd.read_excel('Scenario_data.xlsx', str(year), usecols =
[3,4,5,6,7,8,18,19,20,21]) #Now with separated COPs for DHW and SH↪→

65 df = df.drop([0])

66 df = df.drop(range(8737,8761))

67 select_dict = selection(str(year), 'Scenario_data.xlsx')
68 df = df.drop(range(1,select_dict['winter_start']))
69 df = df.drop(range(select_dict['winter_start'] + 168 ,select_dict['spring_start']))
70 df = df.drop(range(select_dict['spring_start'] + 168 ,select_dict['summer_start']))
71 df = df.drop(range(select_dict['summer_start'] + 168 ,select_dict['fall_start']))
72 df = df.drop(range(select_dict['fall_start'] + 168 , 8737))
73

74 new_df = pd.DataFrame(data=df.values, columns =

['D_el','D_sh','D_dhw','P_spot','Temp','Y_pv','COP_ashp_sh',
'COP_ashp_wh','COP_gshp_sh', 'COP_gshp_wh'], index = range(672))

↪→

↪→

75 data = new_df.to_dict()

76

77 di['D_el'] = data['D_el']
78 di['D_sh'] = data['D_sh']
79 di['D_dhw'] = data['D_dhw']
80 di['P_spot'] = data['P_spot']
81 di['Temp'] = data['Temp']
82 di['Y_pv'] = data['Y_pv']
83 di['COP_ashp_sh'] = data['COP_ashp_sh']
84 di['COP_ashp_dhw'] = data['COP_ashp_wh']
85 di['COP_gshp_sh'] = data['COP_gshp_sh']
86 di['COP_gshp_dhw'] = data['COP_gshp_wh']
87

88 return di
89

90 def saveDeterministicResults(m, result_file):
91

92 from openpyxl import load_workbook
93

94 wb = load_workbook(result_file)

95 ser = wb['Series']
96 val = wb['Values']
97 if m.lastT == 23:
98 f = 8736/24

99 elif m.lastT == 287:
100 f = 8736/288

101 elif m.lastT == 8735:
102 f = 1
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103 elif m.lastT==671:
104 f = 13

105

106 for t in m.T:
107 for i, elem in enumerate(['D_el', 'y_imp', 'y_exp', 'y_pty', 'y_ch', 'y_dch', \
108 'z_ba', 'y_pv', 'y_ashp_sh', 'y_ashp_dhw', 'y_gshp_sh',\
109 'y_gshp_dhw', 'y_eb_sh','y_eb_dhw', 'D_sh', 'D_dhw', \
110 'q_hs', 'q_ashp_sh','q_ashp_dhw',

'q_gshp_sh','q_gshp_dhw',\↪→

111 'q_eb_sh', 'q_eb_dhw', 'z_hs', 'q_ss', 'z_ss','z_ds',
'z_hwt', 'q_hwt', 'q_bb_sh', 'q_bb_dhw', 'Flow']):↪→

112 ser.cell(row = 1, column = i + 1, value = elem)

113

114 ser.cell(row= t+2, column=1, value=m.D_el[t])

115 ser.cell(row= t+2, column=2, value=m.y_imp[t].value)

116 ser.cell(row= t+2, column=3, value=m.y_exp[t].value)

117 ser.cell(row= t+2, column=4, value=m.y_pty[t].value)

118

119 ser.cell(row= t+2, column=5, value=m.y_ch[t].value)

120 ser.cell(row= t+2, column=6, value=m.y_dch[t].value)

121 ser.cell(row= t+2, column=7, value=m.z_ba[t].value)

122

123

124 ser.cell(row= t+2, column=8, value=m.y_pv[t].value)

125 ser.cell(row= t+2, column=9, value=m.y_ashp_sh[t].value)

126 ser.cell(row= t+2, column=10, value=m.y_ashp_dhw[t].value)

127 ser.cell(row= t+2, column=11, value=m.y_gshp_sh[t].value)

128 ser.cell(row= t+2, column=12, value=m.y_gshp_dhw[t].value)

129 ser.cell(row= t+2, column=13, value=m.y_eb_sh[t].value)

130 ser.cell(row= t+2, column=14, value=m.y_eb_dhw[t].value)

131 ser.cell(row= t+2, column=15, value=m.D_sh[t])

132 ser.cell(row= t+2, column=16, value=m.D_dhw[t])

133 ser.cell(row= t+2, column=17, value=m.q_hs[t].value) #HS output

134 ser.cell(row= t+2, column=18, value=m.q_ashp_sh[t].value)

135 ser.cell(row= t+2, column=19, value=m.q_ashp_dhw[t].value)

136 ser.cell(row= t+2, column=20, value=m.q_gshp_sh[t].value)

137 ser.cell(row= t+2, column=21, value=m.q_gshp_dhw[t].value)

138 ser.cell(row= t+2, column=22, value=m.q_eb_sh[t].value)

139 ser.cell(row= t+2, column=23, value=m.q_eb_dhw[t].value)

140 ser.cell(row= t+2, column=24, value=m.z_hs[t].value)

141 ser.cell(row= t+2, column=25, value=m.q_ss[t].value)

142 ser.cell(row= t+2, column=26, value=m.z_ss[t].value)

143 ser.cell(row= t+2, column=27, value=m.z_ds[t].value)

144 ser.cell(row= t+2, column=28, value=m.z_hwt[t].value)

145 ser.cell(row= t+2, column=29, value=m.q_hwt[t].value)

146 ser.cell(row= t+2, column=30, value=m.q_bb_sh[t].value)

147 ser.cell(row= t+2, column=31, value=m.q_bb_dhw[t].value)

148 ser.cell(row= t+2, column=32, value=m.Flow[t].value)

149

150 #Invested capacities

151 val['A1'] = 'Time'
152 val['B1'] = time.ctime() #Time and date
153 #val['C4'] = time.time() - start_time #Code run time
154 val['A2'] = 'Scenario name'
155 val['B2'] = 'NOR'
156 val['A3'] = 'gamma'
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157 val['B3'] = m.gamma.value
158 val['A4'] = 'A_co2'
159 val['B4'] = m.A_co2.value
160 val['A5'] = 'A_pe'
161 val['B5'] = m.A_pe.value
162

163 val['B6'] = m.x['PV'].value
164 val['B7'] = m.x['BA'].value
165 val['B8'] = m.x['DH'].value
166 val['B9'] = m.x['EB'].value
167 val['B10'] = m.x['BB'].value
168 val['B11'] = m.x['GSHP'].value
169 val['B12'] = m.x['ASHP'].value
170 val['B13'] = m.x['HS'].value
171 val['B14'] = m.SS_cap.value
172 val['B15'] = m.DS_cap.value
173 val['B16'] = m.x['HWT'].value
174 #val['B15'] = m.x['SS'].value
175

176 val['A6'] = 'pv'
177 val['A7'] = 'ba'
178 val['A8'] = 'dh'
179 val['A9'] = 'eb'
180 val['A10'] = 'bb'
181 val['A11'] = 'gshp'
182 val['A12'] = 'ashp'
183 val['A13'] = 'hs'
184 val['A14'] = 'ss'
185 val['A15'] = 'ds'
186 val['A16'] = 'hwt'
187 #val['A15'] = 'ss'
188

189 val['C5'] = 'Tech inv cost'
190 val['C6'] = (m.C_spe['PV']*m.x['PV'].value+ m.C_fxd['PV']*m.a_i['PV'].value)
191 val['C7'] = (m.C_spe['BA']*m.x['BA'].value+ m.C_fxd['BA']*m.a_i['BA'].value)
192 val['C8'] = (m.C_spe['DH']*m.x['DH'].value+ m.C_fxd['DH']*m.a_i['DH'].value)
193 val['C9'] = (m.C_spe['EB']*m.x['EB'].value+ m.C_fxd['EB']*m.a_i['EB'].value)
194 val['C10'] = (m.C_spe['BB']*m.x['BB'].value+ m.C_fxd['BB']*m.a_i['BB'].value)
195 val['C11'] = (m.C_spe['GSHP']*m.x['GSHP'].value+ m.C_fxd['GSHP']*m.a_i['GSHP'].value)
196 val['C12'] = (m.C_spe['ASHP']*m.x['ASHP'].value+ m.C_fxd['ASHP']*m.a_i['ASHP'].value)
197 val['C13'] = (m.C_spe['HS']*m.x['HS'].value+ m.C_fxd['HS']*m.a_i['HS'].value)
198 val['C14'] = 0
199 val['C15'] = 0
200 val['C16'] = (m.C_spe['HWT']*m.x['HWT'].value+ m.C_fxd['HWT']*m.a_i['HWT'].value)
201

202 val['D1'] = m.objective_TotalCost()
203 val['D2'] = m.cost_Investments[1]()
204 val['D3'] = m.cost_Operations[2]()
205

206 val['C1'] = 'tot_cost'
207 val['C2'] = 'inv_cost'
208 val['C3'] = 'op_cost'
209

210 y_imp_tot = 0

211 y_exp_tot = 0

212 bf_tot = 0
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213 for t in m.T:
214 y_imp_tot += m.y_imp[t].value

215 y_exp_tot += m.y_exp[t].value

216 bf_tot += m.bf_sh[t].value + m.bf_dhw[t].value

217

218 G_tot = m.G_bf*bf_tot + m.G_el*y_imp_tot

219

220 val['F1'] = 'y_imp_tot'
221 val['F2'] = 'y_exp_tot'
222 val['F3'] = 'bf_tot'
223 val['F4'] = 'G_tot'
224

225 val['G1'] = y_imp_tot
226 val['G2'] = y_exp_tot
227 val['G3'] = bf_tot
228 val['G4'] = G_tot
229

230 val['F8'] = 'BITES-params'
231 val['F9'] = 'K_flow'
232 val['F10'] = 'K_shallow'
233 val['F11'] = 'K_deep'
234

235 val['G9'] = m.K_flow.value
236 val['G10'] = m.K_shallow.value
237 val['G11'] = m.K_deep.value
238

239 y_imp_max = 0

240 for t in m.T:
241 if m.y_imp[t].value > y_imp_max:
242 y_imp_max = m.y_imp[t].value

243

244 val['F13'] = 'peak load el'
245 val['G13'] = y_imp_max
246

247 wb.save(result_file)

248 print('Deterministic result file successfully created')
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The following code is script running the optimization for the waterborne model, which loads the two previous code
fragments as modules:

1 #!/usr/bin/env python3

2 # -*- coding: utf-8 -*-

3 """

4 Created on Tue Mar 12 20:17:29 2019

5

6 @author: marius

7 """

8

9 import MODEL_wb_SH as model
10 import Loading_Data as ld
11 import pyomo.environ as pyo
12 import xlrd
13 import time
14 from pyomo.environ import SolverFactory
15

16 year = 2012

17 path_in = 'allData.xlsx'
18 path_out = 'results/results_' + str(year) + '.xlsx'
19

20 abstract = model.ZEBModel()

21 data = ld.createModelData(path_in, year)

22 data['SS_cap'] = {None: 12.5}
23 data['DS_cap'] = {None: 90}
24

25 instance = abstract.abstractmodel.create_instance(data={'mymodel':data},namespace='mymodel')
26 opt = pyo.SolverFactory('gurobi')
27 #opt.options['TimeLimit'] = 3600
28 #opt.options['BestObjStop'] = 65000
29 results = opt.solve(instance, tee=True, #to stream the solver output

30 keepfiles=True, #print the LP file for

examination↪→

31 symbolic_solver_labels=False) # use human readable names

32 ld.saveDeterministicResults(instance, path_out)

33 print('Objective value', instance.objective_TotalCost())
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Appendix B

This appendix contains the code for the point-source model. The following python script, MODEL ph SH.py, defines the
point-source model:

1 #!/usr/bin/env python3

2 # -*- coding: utf-8 -*-

3 """

4 Created on Tue Mar 12 20:17:29 2019

5

6 @author: marius

7 """

8

9 import pyomo.environ as pyo
10 from math import floor
11

12 class ZEBModel():
13

14 def __init__(self, M_const = 1000):
15 """Create Abstract Pyomo model for ZEB

16 """

17 # Deterministic two-stage model

18 self.abstractmodel = self.createTWOSTAGEMODEL()

19

20 self.M_const = M_const

21

22 def disco(self, n, r):
23 '''Discounting factor'''
24 return 1/((1+r)**n)
25

26 def annui(self, n, r):
27 '''Annuity factor'''
28 return r/(1-(1+r)**(-n))
29

30 def capit(self, n, r): # Capitalization factor
31 '''Capitalization factor'''
32 return (1-(1+r)**(-n))/r
33

34 def cost(self, Yn, cost, l, r):
35 '''For the two-stage model: calculating forced reinvestment costs'''
36 Kn = pyo.floor(Yn/(l*1))

37 n = Yn-l*Kn

38 Tn = Yn-n

39 return cost*(self.annui(l,r)*self.capit(n,r)*self.disco(Tn, r) \
40 + sum(self.disco(k*l,r) for k in range(0,Kn)))
41

42
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43 def npv_cost_Investments(self, m, st):
44 '''Investment function for two-stage/deterministic, including o&m costs'''
45 investments = 0

46 if st==1:
47 for i in m.I:
48 investments += (m.C_spe[i]*m.x[i]+ m.C_fxd[i]*m.a_i[i])

49 '''Operations and maintenance costs included in investment costs:'''
50 #investments += (m.C_run[i]*m.C_spe_0[i]*m.x[i])*self.capit(m.YRN,

m.R)*self.disco(1, m.R)↪→

51 else:
52 investments = 0

53 return investments
54

55 def npv_cost_Operations(self, m, st):
56 '''Operational costs for two-stage/deterministic

57 Summation of yearly costs for all years in YRN'''
58 techrun = 0

59 runcosts = 0

60 gridtariff = 0

61 operations = 0

62 if m.lastT == 4367:
63 f = 2

64 elif m.lastT == 23:
65 f = 8736/24

66 elif m.lastT == 287:
67 f = 8736/288

68 elif m.lastT == 671:
69 '''multiplication factor will be 13 if reduced model'''
70 f = 13

71 elif m.lastT == 727:
72 f = 12

73 elif m.lastT == 8735:
74 f = 1

75

76 if st == 2:
77 for i in m.I:
78 techrun += m.C_run[i]*m.C_spe_0[i]*m.x[i]

79 if m.A_ep: #Grid tariff model (includes VAT): Energy pricing
80 ''' Nettleie: fastledd=8.61 EUR/mnd, energiledd = 0.05 EUR/kWh (inkluderer

enova-avgift samnt moms)'''↪→

81 gridtariff = 12*m.C_fxd_ep + m.C_spe_ep*sum(f*m.y_imp[t] for t in m.T)
82 elif m.A_ps == 1: #Grid tariff model(includes VAT): Power subscription
83

84 gridtariff = 12*(m.C_fxd_ps*(1+m.Y_max)) + m.C_pty_ps*sum(f*m.y_pty[t] for
t in m.T) + m.C_spe_ps*sum(f*m.y_imp[t] for t in m.T)↪→

85

86 VAT = 1.25

87 runcosts = sum(m.f_fp[t]*m.C_wo + VAT*m.y_imp[t]*m.P_spot[t] -

m.y_exp[t]*m.P_spot[t]*m.A_exp for t in m.T)↪→

88 operations = (f*runcosts + gridtariff + techrun)*self.capit(m.YRN,

m.R)*self.disco(1, m.R)↪→

89 else:
90 operations = 0

91 return operations
92

93
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94 def createTWOSTAGEMODEL(self):
95 m = pyo.AbstractModel()

96 m.name = 'ZEB stochastic two-stage model'
97

98 # SETS ##########################################################

99 m.T = pyo.Set(doc = 'Set of all hours, full model: 8736, reduced model: 672')
100 m.M = pyo.Set(doc = 'Set of all months')
101 m.I = pyo.Set(doc = 'Set of all technologies')
102 m.ST = pyo.Set(initialize = [1, 2], doc='STAGE')
103

104 # PARAMETERS ##########################################################

105

106 m.lastT = pyo.Param(within=m.T, doc="Last time step")

107

108 #---Technology costs

109 m.C_fxd_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default = 0, doc='Fixed
investment cost for all techs, EUR in year t = 0')↪→

110

111 m.C_spe_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default = 0,doc='Investment
costs dependent on installed capacity, EUR/kW (EUR/kWh) in t= 0')↪→

112 m.C_run = pyo.Param(m.I,within=pyo.NonNegativeReals,default = 0,doc='Yearly running
cost of each tech, given from investment costs EUR/kW installed')↪→

113

114 #---Grid Tariff pricing

115 #Energy pricing

116 m.A_ep = pyo.Param(within=pyo.Binary,default = 0,doc = 'Activation of energy
pricing')↪→

117 m.C_fxd_ep = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Fixed charge
part of grid tariff for ep')↪→

118 m.C_spe_ep = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Specific energy
charge part of grid tariff for ep')↪→

119

120 #Power Subscription pricing

121 m.A_ps = pyo.Param(within = pyo.Binary, default = 0,doc = 'Activation of power
subscription pricing')↪→

122 m.C_fxd_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0, doc='Subscriptopn
charge for pp')↪→

123 m.C_pty_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Penalty charge
for pp')↪→

124 m.C_spe_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc='Energy charge
charge for pp')↪→

125 m.Y_max = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc = 'Subscription
limit')↪→

126

127 #Peak Power Pricing

128 m.A_pp = pyo.Param(within=pyo.Binary)

129 m.C_pp = pyo.Param(within=pyo.NonNegativeReals)

130 m.C_fxd_pp = pyo.Param(within=pyo.NonNegativeReals)

131 m.C_spe_pp = pyo.Param(within=pyo.NonNegativeReals)

132

133 #---#Reference System

134

135 #CO2-Factors

136 m.A_co2 = pyo.Param(within=pyo.Binary,doc = 'Activation of co2 crediting system')
137 m.G_ref = pyo.Param(within=pyo.NonNegativeReals,doc='CO2 reference emissions')
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138 m.G_el_imp = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh
imported/exported')↪→

139 m.G_el_exp = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh
imported/exported')↪→

140 m.G_bf = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh for technology
i, i.e BB')↪→

141 m.G_wo = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 eq. per kWh for wood
technology')↪→

142 m.G_tot = pyo.Param(within=pyo.NonNegativeReals,doc='gCO2 total for noZEB')
143

144 #Primary Energy Factors

145 m.A_pe = pyo.Param(within=pyo.Binary,doc = 'Activation of primary energy crediting
system')↪→

146 m.PE_ref = pyo.Param(within=pyo.NonNegativeReals,doc='CO2 reference emissions')
147 m.PE_imp = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh imported

electricity')↪→

148 m.PE_exp = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh exported
electricity')↪→

149 m.PE_bf = pyo.Param(within=pyo.NonNegativeReals,doc='PE per kWh for technology i,
i.e BB')↪→

150

151 #---Technologies

152 m.A_i = pyo.Param(m.I, within=pyo.Binary,doc='Pre-activation of each tech')
153

154 m.Eff = pyo.Param(m.I,within=pyo.NonNegativeReals, doc='Technology efficiency')
155 m.Eff_ba_ch = pyo.Param(within=pyo.NonNegativeReals,doc='Battery charging

efficiency')↪→

156 m.Eff_ba_dch = pyo.Param(initialize = 1, doc='Battery discharge efficiency')
157 m.Beta_ba = pyo.Param(within=pyo.NonNegativeReals,doc='Charging/discharging rate')
158 m.Beta_hs = pyo.Param(within=pyo.NonNegativeReals, doc='identical charging rate for

heat storage')↪→

159

160 m.L = pyo.Param(m.I, within=pyo.NonNegativeIntegers, doc='Lifetime of technology
i')↪→

161 m.X_min = pyo.Param(m.I, within=pyo.NonNegativeReals, doc='Max possible installed
capacity of technology ')↪→

162 m.X_max = pyo.Param(m.I, within=pyo.NonNegativeReals, doc='Min possible installed
capacity of technology ')↪→

163

164 m.Temp = pyo.Param(m.T, within=pyo.Reals, doc='Ambient temperature of certain hour')
165 m.Y_pv = pyo.Param(m.T, within=pyo.NonNegativeReals,doc='Possible PV output at time

t')↪→

166 m.COP_a2a = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Air-to-air heat pump
performance at time t w/r SH')↪→

167

168

169 #BITES-params

170 m.SS_cap = pyo.Param(within=pyo.NonNegativeReals, doc='Shallow storage capacity of
house, fully determined by area, thus a parameter instead of a variable')↪→

171 m.DS_cap = pyo.Param(within=pyo.NonNegativeReals, doc='Deep storage capacity of
house, ---=---')↪→

172 m.K_shallow = pyo.Param(doc='loss factor for BITES, shallow part')
173 m.K_deep = pyo.Param(doc='loss factor for BITES, deep part')
174 m.K_flow = pyo.Param(doc='flow factor for BITES, cross-node flow')
175

176 #---Energy Demand
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177 m.D_el = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building
electricity demand')↪→

178 m.D_sh = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building space
heating demand')↪→

179 m.D_dhw = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly building domestic
hot water demand')↪→

180

181 #---Grid

182 m.P_spot = pyo.Param(m.T, within=pyo.NonNegativeReals, doc='Hourly price of
imported electricity EUR/kWh including certificates')↪→

183 m.X_max_imp = pyo.Param(within=pyo.NonNegativeReals, doc='Maximum grid import')
184 m.X_max_exp = pyo.Param( within=pyo.NonNegativeReals,doc='Maximum grid export')
185 m.A_imp = pyo.Param( within=pyo.Binary, doc='Binary: Import is activated, 1/0')
186 m.A_exp = pyo.Param( within=pyo.Binary,doc='Binary: Export is activated, 1/0')
187 m.C_bf = pyo.Param(within=pyo.NonNegativeReals, doc='Constant price of biofuel')
188 m.C_wo = pyo.Param(within=pyo.NonNegativeReals, doc='Constant price of wood')
189

190 #---Control

191 m.gamma = pyo.Param( within=pyo.NonNegativeReals, doc='=0 for strictly ZEB')
192 m.R = pyo.Param(within=pyo.NonNegativeReals, doc='Chosen discount Rate')
193 m.YRN = pyo.Param( within=pyo.NonNegativeIntegers, doc='Total years in modelling

period')↪→

194

195 def npv_inv_spe(m, i):
196 return self.cost(m.YRN, m.C_spe_0[i], m.L[i], m.R)
197 m.C_spe = pyo.Param(m.I, rule = npv_inv_spe)

198

199 def npv_inv_fxd(m, i):
200 return self.cost(m.YRN, m.C_fxd_0[i], m.L[i], m.R)
201 m.C_fxd = pyo.Param(m.I, rule = npv_inv_fxd)

202

203 #VARIABLES ##########################################################

204

205 # 1 STAGE : STRATEGIC VARIABLES

206 m.x = pyo.Var(m.I,within = pyo.NonNegativeReals,

doc='Optimal installed capacity (storage size), semi-continous, kW (kWh)')↪→

207 m.a_i = pyo.Var(m.I, within = pyo.Binary,

doc='Activation binary decision for technology i, 1/0')↪→

208

209

210 #2 STAGE : OPERATIONAL VARIABLES

211 m.q_hs = pyo.Var(m.T, domain = pyo.Reals,

doc='Keeping track of HS discharge')↪→

212 m.q_eb_dhw = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (DHW) electric boiler at time t, kWh/h')↪→

213 m.q_po_sh = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc='Net heat supplied from (SH) paneloven at time t, kWh/h')↪→

214 m.q_a2a_sh = pyo.Var(m.T, domain= pyo.NonNegativeReals,

doc='Net heat supplied from air-to-air heat pump at time t, kWh/h')↪→

215 m.q_fp_sh = pyo.Var(m.T, domain=pyo.NonNegativeReals,

doc='Net heat supplied from bio boiler at time t, kWh/h')↪→

216 m.f_fp = pyo.Var(m.T, domain= pyo.NonNegativeReals,

doc='Wood input to the fireplace at time t kWh/h')↪→

217

218 m.z_hs = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in heat storage at the end of time t, kWh')↪→
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219 m.z_ss = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in shallow BITES at the end of time t, kWh')↪→

220 m.z_ds = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content in deep BITES at the end of time t, kWh')↪→

221 m.z_ba = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Content of battery at the end of time t, kWh')↪→

222

223 #charging variables for BITES, shallow part

224 #m.z_ss_ch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Maximum charging rate, shallow BITES at the end of time t, kWh')↪→

225 #m.z_ss_dch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Maximum discharging rate, shallow BITES at the end of time t, kWh')↪→

226 m.q_ss = pyo.Var(m.T, domain = pyo.Reals, doc='Energy released
from shallow BITES at the end of time t, kWh')↪→

227 m.Flow = pyo.Var(m.T, domain = pyo.Reals,

doc='Cross-node flow of two-node BITES model at time t, kWh')↪→

228

229

230 m.y_imp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity imported from grid at time t, kWh')↪→

231 m.y_exp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity exported to grid at time t, kWh')↪→

232 m.y_pv = pyo.Var(m.T, domain = pyo.NonNegativeReals, doc='PV
production at time t, kWh/h')↪→

233 m.y_eb_dhw = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity drawn from (DHW) electric boiler at time t, kWh/h')↪→

234 m.y_po_sh = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Electricity drawn for (SH) paneloven at time t, kWh/h')↪→

235 m.y_a2a_sh = pyo.Var(m.T, domain=pyo.NonNegativeReals,

doc='Electricity drawn for air-to-air heat pump at time t, kWh/h')↪→

236 m.y_ch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Amount of electricity to battery (charging) at time t, kWh/h')↪→

237 m.y_dch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc='Amount of electricity discharge from battery at time t, kWh/h')↪→

238 m.y_pty = pyo.Var(m.T, domain = pyo.Reals, doc =

'Penalty volume')↪→

239

240

241 m.y_max = pyo.Var(m.M, domain = pyo.NonNegativeReals, doc='max
power for every month')↪→

242

243 m.a_ch = pyo.Var(m.T, domain = pyo.Binary, doc

='Charging activation inward time t, 1 = activated')↪→

244 m.a_dch = pyo.Var(m.T, domain= pyo.Binary, doc

='Discharging activation inward time t, 1=activated')↪→

245

246

247 # CONSTRAINTS ##########################################################

248

249 # 1 STAGE : INVESTMENTS

250

251 #---Activation and boundary constraints

252 def Tech_active(m, i, st):
253 return m.x[i] <= m.a_i[i]*self.M_const
254 m.Tech_active = pyo.Constraint(m.I, m.ST, rule = Tech_active)

255
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256 def Tech_Min(m, i, st):
257 return m.X_min[i]*m.a_i[i] <= m.x[i]
258 m.Tech_Min = pyo.Constraint(m.I, m.ST, rule= Tech_Min)

259

260 def Tech_Max(m, i, st):
261 return m.x[i] <= m.X_max[i]*m.A_i[i]
262 m.Tech_Max = pyo.Constraint(m.I, m.ST, rule= Tech_Max)

263

264 #2 STAGE : OPERATIONS

265

266 #---Balacing constraints

267

268 def El_Balance(m, t, st):
269 return m.D_el[t] == m.y_imp[t] + m.y_pv[t] - m.y_exp[t] + m.y_dch[t] - m.y_ch[t]

- m.y_a2a_sh[t] - m.y_po_sh[t] - m.y_eb_dhw[t]↪→

270 m.El_Balance = pyo.Constraint(m.T, m.ST, rule = El_Balance)

271

272

273 def SH_balance(m, t, st):
274 return m.D_sh[t] == m.q_ss[t] + m.q_po_sh[t] + m.q_a2a_sh[t] + m.q_fp_sh[t]
275 m.SH_balance = pyo.Constraint(m.T, m.ST, rule = SH_balance)

276

277 def DHW_balance(m, t, st):
278 if t == 0:
279 return m.D_dhw[t] + m.z_hs[t] == m.z_hs[m.lastT]*m.Eff['HS'] + m.q_eb_dhw[t]
280 else:
281 return m.D_dhw[t] + m.z_hs[t] == m.z_hs[t-1]*m.Eff['HS'] + m.q_eb_dhw[t]
282 m.DHW_balance = pyo.Constraint(m.T, m.ST, rule = DHW_balance)

283

284 #---Capacity

285 #split heat pumps in two here as well

286 #point heat, no heat pumps

287 def PO_SH_Restriction(m,t, st):
288 return m.q_po_sh[t] <= m.x['PO_SH']
289 m.PO_SH_Restriction = pyo.Constraint(m.T, m.ST, rule = PO_SH_Restriction)

290

291 def FP_SH_Restriction(m,t, st):
292 i = t - floor(t/24)*24

293 if i >= 16 and i <= 24:
294 return m.q_fp_sh[t] <= m.x['FP_SH']
295 else:
296 return m.q_fp_sh[t] == 0
297 m.FP_SH_Restriction = pyo.Constraint(m.T, m.ST, rule = FP_SH_Restriction)

298

299 def A2A_SH_Restriction(m,t, st):
300 return m.q_a2a_sh[t] <= m.x['A2A_SH']
301 m.A2A_SH_Restriction = pyo.Constraint(m.T, m.ST, rule = A2A_SH_Restriction)

302

303 def A2A_SH_Restriction_1(m,t, st):
304 return m.q_a2a_sh[t] <= 0.4*m.D_sh[t]
305 m.A2A_SH_Restriction_1 = pyo.Constraint(m.T, m.ST, rule = A2A_SH_Restriction_1)

306

307 def EB_DHW_Restriction(m,t, st):
308 return m.q_eb_dhw[t] <= m.x['EB_DHW']
309 m.EB_DHW_Restriction = pyo.Constraint(m.T, m.ST, rule = EB_DHW_Restriction)

310
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311 #---Grid equations

312 def Grid_Import(m,t, st):
313 return m.y_imp[t] <= m.X_max_imp
314 m.Grid_Import = pyo.Constraint(m.T, m.ST, rule=Grid_Import)

315

316 def Grid_Export(m,t, st):
317 return m.y_exp[t] <= m.X_max_exp
318 m.Grid_Export = pyo.Constraint(m.T, m.ST, rule=Grid_Export)

319

320 #---Storage equations

321

322 def HS_Restriction(m, t, st):
323 return m.z_hs[t] <= m.x['HS']
324 m.HS_Restriction = pyo.Constraint(m.T, m.ST, rule=HS_Restriction)

325

326 def SS_Restriction(m, t, st):
327 return m.z_ss[t] <= m.x['SS']*m.A_i['SS']
328 m.SS_Restriction = pyo.Constraint(m.T, m.ST, rule=SS_Restriction)

329

330 def DS_Restriction(m, t, st):
331 return m.z_ss[t] <= m.x['DS']*m.A_i['DS']
332 m.DS_Restriction = pyo.Constraint(m.T, m.ST, rule=DS_Restriction)

333

334 def SS_charge_active(m,t, st):
335 return m.q_ss[t] <= m.z_ss[t]
336 m.SS_charge_active = pyo.Constraint(m.T, m.ST, rule=SS_charge_active)

337

338 def SS_discharge_active(m,t, st):
339 return - m.z_ss[t] <= m.q_ss[t]
340 m.SS_discharge_active = pyo.Constraint(m.T, m.ST, rule=SS_discharge_active)

341

342 def HS_charge_active(m,t, st):
343 return m.q_hs[t] <= m.z_hs[t]
344 m.HS_charge_active = pyo.Constraint(m.T, m.ST, rule=HS_charge_active)

345

346 def HS_discharge_active(m,t, st):
347 return - m.z_hs[t] <= m.q_hs[t]
348 m.HS_discharge_active = pyo.Constraint(m.T, m.ST, rule=HS_discharge_active)

349 '''
350 def SS_charge_rate_max(m, t, st):

351 if m.Temp[t] >= 15:

352 return m.q_ss[t] >= -m.x['SS']
353 elif m.Temp[t] < 15 and m.Temp[t] > -15:

354 return m.q_ss[t] <= m.x['SS'] * (1 - (15 - m.Temp[t])/30)
355 else:

356 return m.q_ss[t] >= 0

357 m.SS_charge_rate_max = pyo.Constraint(m.T, m.ST, rule = SS_charge_rate_max)

358

359 def SS_discharge_rate_min(m, t, st):

360 if m.Temp[t] >= 15:

361 return m.q_ss[t] <= 0

362 elif m.Temp[t] < 15 and m.Temp[t] > -15:

363 return m.q_ss[t] >= -(m.x['SS'] * ((15 - m.Temp[t])/30))
364 else:

365 return m.q_ss[t] <= m.x['SS']
366 m.SS_discharge_rate_min = pyo.Constraint(m.T, m.ST, rule = SS_discharge_rate_min)
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367 '''
368

369 def HS_Balance_ch(m,t,st):
370 if t == 0:
371 return m.q_hs[t] == m.z_hs[m.lastT] - m.z_hs[t]
372 else:
373 return m.q_hs[t] == m.z_hs[t-1] - m.z_hs[t]
374 m.HS_Balance_ch = pyo.Constraint(m.T, m.ST, rule = HS_Balance_ch)

375

376 '''
377 def SS_balance_ch(m, t, st):

378 if t == 0:

379 return m.q_ss[t] == m.z_ss[m.lastT] - m.z_ss[t]

380 else:

381 return m.q_ss[t] == m.z_ss[t-1] - m.z_ss[t]

382 m.SS_balance_ch = pyo.Constraint(m.T, m.ST, rule = SS_balance_ch)

383 '''
384 def Flow_Constraint(m,t,st):
385 return m.Flow[t] == m.K_flow*((m.z_ss[t]/m.SS_cap) - (m.z_ds[t]/m.DS_cap))
386 m.Flow_Constraint = pyo.Constraint(m.T, m.ST, rule = Flow_Constraint)

387

388 def SS_balance_ch(m, t, st):
389 if t == 0:
390 return m.q_ss[t] == m.z_ss[m.lastT] - m.z_ss[t] - m.Flow[t] - m.z_ss[t]*(1 -

m.K_shallow)↪→

391 else:
392 return m.q_ss[t] == m.z_ss[t-1] - m.z_ss[t] - m.Flow[t] - m.z_ss[t]*(1 -

m.K_shallow)↪→

393 m.SS_balance_ch = pyo.Constraint(m.T, m.ST, rule = SS_balance_ch)

394

395 def DS_balance_ch(m, t, st):
396 if t == 0:
397 return m.z_ds[t] == m.z_ds[m.lastT] + m.Flow[t] - m.z_ds[t]*(1 - m.K_deep)
398 else:
399 return m.z_ds[t] == m.z_ds[t-1] + m.Flow[t] - m.z_ds[t]*(1 - m.K_deep)
400 m.DS_balance_ch = pyo.Constraint(m.T, m.ST, rule = DS_balance_ch)

401 '''
402 def SS_discharge_rate_min(m,t, st):

403 return -m.x['SS'] <= m.q_ss[t]
404 m.SS_discharge_rate_min = pyo.Constraint(m.T, m.ST, rule=SS_discharge_rate_min)

405

406 def SS_discharge_rate_max(m,t, s):

407 return m.q_ss[t] <= m.x['SS']
408 m.SS_discharge_rate_max = pyo.Constraint(m.T, m.ST, rule=SS_discharge_rate_max)

409 '''
410

411 def HS_discharge_rate_min(m,t, st):
412 return -m.x['HS']*m.Beta_hs <= m.q_hs[t]
413 m.HS_discharge_rate_min = pyo.Constraint(m.T, m.ST, rule=HS_discharge_rate_min)

414

415 def HS_discharge_rate_max(m,t, s):
416 return m.q_hs[t] <= m.x['HS']*m.Beta_hs
417 m.HS_discharge_rate_max = pyo.Constraint(m.T, m.ST, rule=HS_discharge_rate_max)

418

419 def BA_Restriction(m,t, st):
420 return m.z_ba[t] <= m.x['BA']
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421 m.BA_restriction = pyo.Constraint(m.T, m.ST, rule=BA_Restriction)

422

423 def BA_Balance(m,t, st):
424 if t == 0:
425 return m.z_ba[t] == m.z_ba[m.lastT] - m.y_dch[t]*(1/m.Eff_ba_dch) +

m.y_ch[t]*m.Eff_ba_ch↪→

426 else:
427 return m.z_ba[t] == m.z_ba[t-1] - m.y_dch[t]*(1/m.Eff_ba_dch) +

m.y_ch[t]*m.Eff_ba_ch↪→

428 m.BA_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Balance)

429

430 def BA_Charge_Balance(m, t, st):
431 if t == 0:
432 return m.y_ch[t] <= (m.x['BA'] -

m.z_ba[m.lastT])*m.A_i['BA']*(1/m.Eff_ba_ch)↪→

433 else:
434 return m.y_ch[t] <= (m.x['BA'] - m.z_ba[t-1])*m.A_i['BA']*(1/m.Eff_ba_ch)
435 m.BA_Charge_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Charge_Balance)

436

437 def BA_Discharge_Balance(m,t, st):
438 if t == 0:
439 return m.y_dch[t] <= m.z_ba[m.lastT]*m.A_i['BA']*m.Eff_ba_dch
440 else:
441 return m.y_dch[t] <= m.z_ba[t-1]*m.A_i['BA']*m.Eff_ba_dch
442 m.BA_Discharge_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Discharge_Balance)

443

444 def BA_charge_active(m,t, st):
445 return m.y_ch[t] <= m.X_max_imp*m.a_ch[t]
446 m.BA_charge_active = pyo.Constraint(m.T, m.ST, rule=BA_charge_active)

447

448 def BA_discharge_active(m,t, st):
449 return m.y_dch[t] <= m.X_max_imp*m.a_dch[t]
450 m.BA_discharge_active = pyo.Constraint(m.T, m.ST, rule=BA_discharge_active)

451

452 def Battery_Balance(m,t, st):
453 return m.a_ch[t] + m.a_dch[t] <= 1
454 m.Battery_Balance = pyo.Constraint(m.T, m.ST, rule=Battery_Balance)

455

456 def BA_charge_rate(m,t, st):
457 return m.y_ch[t] <= m.x['BA']*m.Beta_ba
458 m.BA_charge_rate = pyo.Constraint(m.T, m.ST, rule=BA_charge_rate)

459

460 def BA_discharge_rate(m,t, st):
461 return m.y_dch[t] <= m.x['BA']*m.Beta_ba
462 m.BA_discharge_rate = pyo.Constraint(m.T, m.ST, rule=BA_discharge_rate)

463

464 #---Production constraints for generating technologies

465

466 def PV_Balance(m,t, st):
467 return m.y_pv[t] == m.x['PV']*m.Y_pv[t]
468 m.PV_Balance = pyo.Constraint(m.T, m.ST, rule=PV_Balance)

469

470 def A2A_SH_Balance(m,t, st):
471 return m.q_a2a_sh[t] == m.y_a2a_sh[t]*m.COP_a2a[t]
472 m.A2A_SH_Balance = pyo.Constraint(m.T, m.ST, rule = A2A_SH_Balance)

473
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474 def PO_SH_Balance(m,t, st):
475 return m.q_po_sh[t] == m.y_po_sh[t]*m.Eff['PO_SH']
476 m.PO_SH_Balance = pyo.Constraint(m.T, m.ST, rule = PO_SH_Balance)

477

478 def FP_SH_Balance(m,t, st):
479 return m.q_fp_sh[t] == m.f_fp[t]*m.Eff['FP_SH']*m.A_i['FP_SH']
480 m.FP_SH_Balance = pyo.Constraint(m.T, m.ST, rule = FP_SH_Balance)

481

482 def EB_DHW_Balance(m,t, st):
483 return m.q_eb_dhw[t] == m.y_eb_dhw[t]*m.Eff['EB_DHW']
484 m.EB_DHW_Balance = pyo.Constraint(m.T, m.ST, rule = EB_DHW_Balance)

485

486

487 #---Zero emission/energy constraints

488 def ZE_Balance(m):
489 if m.A_co2==1:
490 print('ACTIVE ZEB-carbon RESTRICTION')
491 if m.lastT == 8735:
492 return sum(m.y_imp[t]*m.G_el_imp + m.f_fp[t]*m.G_wo for t in m.T) <=

sum(m.y_exp[t]*m.G_el_exp for t in m.T)↪→

493 if m.lastT == 4367:
494 return 2*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el + m.bf[t]*m.G_bf for

t in m.T) <= m.G_ref*m.gamma↪→

495 elif m.lastT == 727:
496 return 12*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el + m.bf[t]*m.G_bf for

t in m.T) <= m.G_ref*m.gamma↪→

497 elif m.lastT == 671:
498 return sum(m.y_imp[t]*m.G_el_imp + m.f_fp[t]*m.G_wo for t in m.T) <=

sum(m.y_exp[t]*m.G_el_exp for t in m.T)↪→

499 elif m.lastT == 287:
500 return (8736/288)*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma↪→

501 elif m.lastT == 23:
502 return (8736/24)*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma↪→

503 elif m.A_pe == 1:
504 print('ACTIVE ZEB-pef RESTRICTION')
505 if m.lastT == 8735:
506 return sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp + m.bf[t]*m.PE_bf

for t in m.T) <= m.PE_ref*m.gamma↪→

507 elif m.lastT == 671:
508 return 13*sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp +

m.bf[t]*m.PE_bf for t in m.T) <= m.PE_ref*m.gamma↪→

509 else:
510 print('NO ZEB RESTRICTION')
511 return pyo.Constraint.Skip
512 m.ZE_Balance = pyo.Constraint(rule=ZE_Balance)

513

514 #Subscription power pricing Constraint

515 def pty_volume(m, t): #counting all power within one hour exceeding max limit
516 if m.A_ps == 1:
517 return m.y_imp[t] - m.Y_max <= m.y_pty[t]
518 else:
519 return m.y_pty[t] == 0
520 m.pty_volume = pyo.Constraint(m.T, rule = pty_volume)

521
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522 def pty_volume2(m, t):
523 return 0 <= m.y_pty[t]
524 m.pty_volume2 = pyo.Constraint(m.T, rule = pty_volume2)

525

526 # OBJECTIVE FUNCTION #################################################

527

528 def cost_Investments_rule(m, st):
529 expr = self.npv_cost_Investments(m, st)

530 return expr
531 m.cost_Investments = pyo.Expression(m.ST, rule = cost_Investments_rule)

532

533 def cost_Operation_rule(m, st):
534 expr = self.npv_cost_Operations(m, st)

535 return expr
536 m.cost_Operations= pyo.Expression(m.ST, rule = cost_Operation_rule)

537

538

539 def objective_TotalCost(m):
540 expr = pyo.summation(m.cost_Investments) + pyo.summation(m.cost_Operations)

541 return expr
542 m.objective_TotalCost = pyo.Objective(rule = objective_TotalCost, sense =

pyo.minimize)↪→

543

544 return m
545

546 def createConcreteModeltwoStage(self, data):
547 '''Function creating instance from input data'''
548 #data = self.writeStochasticProblem(data)

549 concretemodel = self.abstractmodel.create_instance(data = {'mymodel':data},
namespace = 'mymodel')↪→

550 return concretemodel
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The following code, Loading Data.py, contains two functions for the point-source model, one loading the relevant data
from an excel spreadsheet, and another writing the results to a spreadsheet.

1 import xlrd
2 import pandas as pd
3 import time
4 from openpyxl import load_workbook
5 from selection import selection
6

7 def createModelData(path_in, year):
8 #Creates all input data for reduced model.

9 wb = xlrd.open_workbook(path_in)

10 ws1 = wb.sheet_by_name('Input_Tech')
11 ws2 = wb.sheet_by_name('Input_Parameters')
12

13 di = {}

14 #Sets:

15 di['T'] = {None: list(range(0, int(ws2.cell(16, 2).value) + 1))}
16 di['lastT'] = {None: (ws2.cell(16, 2).value)}
17 di['ST'] = {None:[1, 2]}
18

19 for row in (15, 16, 17, 18, 19, 20, 21, 22, 26, 27, 28, 29, 30, 31, 32, \
20 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 52, 53, \

21 54, 57, 59, 60, 61):

22 if row in [15, 16, 21, 22, 26, 30, 33, 39]:
23 try:
24 di[ws2.cell(row,1).value] = {None: int(ws2.cell(row,2).value)}

25 except ValueError:
26 print(row)
27 else:
28 di[ws2.cell(row,1).value] = {None: ws2.cell(row,2).value}

29

30 # important parameters imported from here:

31 I = []

32 for row in range(9):
33 I.append(ws1.cell(4+row,1).value)

34 di['I'] = {None:I}
35

36 for col in (2, 3, 4, 5, 6, 7, 8, 9):
37 data = {}

38 for row in range(9):
39 if col in [2,6]:
40 data[I[row]] = int(ws1.cell(4+row,col).value)

41 else:
42 data[I[row]] = ws1.cell(4+row,col).value

43 di[ws1.cell(2, col).value] = data

44

45

46

47 #elif (ws2.cell(16, 2).value) == 8735:

48 df = pd.read_excel('Scenario_data.xlsx', str(year), usecols = [3,4,5,6,7,8,22]) #Now

with separated COPs for DHW and SH↪→

49 df = df.drop([0])

50 df = df.drop(range(8737,8761))

51

52 if ws2.cell(16, 2).value == 8735:
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53 new_df = pd.DataFrame(data=df.values, columns =

['D_el','D_sh','D_dhw','P_spot','Temp','Y_pv','COP_a2a'], index = range(8736))↪→

54 data = new_df.to_dict()

55

56 di['D_el'] = data['D_el']
57 di['D_sh'] = data['D_sh']
58 di['D_dhw'] = data['D_dhw']
59 di['P_spot'] = data['P_spot']
60 di['Temp'] = data['Temp']
61 di['Y_pv'] = data['Y_pv']
62 di['COP_a2a'] = data['COP_a2a']
63

64 return di
65

66 elif ws2.cell(16, 2).value == 671:
67 #select 4 weeks for each season surrounding the highest space heating load, week

size is 168 hours↪→

68 select_dict = selection(str(year), 'Scenario_data.xlsx')
69 df = df.drop(range(1,select_dict['winter_start']))
70 df = df.drop(range(select_dict['winter_start'] + 168 ,select_dict['spring_start']))
71 df = df.drop(range(select_dict['spring_start'] + 168 ,select_dict['summer_start']))
72 df = df.drop(range(select_dict['summer_start'] + 168 ,select_dict['fall_start']))
73 df = df.drop(range(select_dict['fall_start'] + 168 , 8737))
74

75 new_df = pd.DataFrame(data=df.values, columns =

['D_el','D_sh','D_dhw','P_spot','Temp','Y_pv','COP_a2a'], index = range(672))↪→

76 data = new_df.to_dict()

77 di['D_el'] = data['D_el']
78 di['D_sh'] = data['D_sh']
79 di['D_dhw'] = data['D_dhw']
80 di['P_spot'] = data['P_spot']
81 di['Temp'] = data['Temp']
82 di['Y_pv'] = data['Y_pv']
83 di['COP_a2a'] = data['COP_a2a']
84

85 return di
86

87

88 def saveDeterministicResults(m, result_file):
89

90 wb = load_workbook(result_file)

91 ser = wb['Series']
92 val = wb['Values']
93 if m.lastT == 23:
94 f = 8736/24

95 elif m.lastT == 287:
96 f = 8736/288

97 elif m.lastT == 8735:
98 f = 1

99 elif m.lastT==671:
100 f = 13

101

102 for i, elem in enumerate(['D_el', 'y_imp', 'y_exp', 'y_pty', 'y_ch', 'y_dch', \
103 'z_ba', 'y_pv', 'y_a2a_sh', 'D_dhw', 'q_eb_dhw', 'z_hs',

'q_hs', 'D_sh',\↪→

104 'q_a2a_sh','q_fp_sh',\
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105 'q_po_sh', 'z_ss', 'z_ds', 'q_ss', 't_amb', 'P_spot',
'y_po_sh', 'y_eb_dhw']):↪→

106 ser.cell(row = 1, column = i + 1, value = elem)

107 for t in m.T:
108 ser.cell(row= t+2, column=1, value=m.D_el[t])

109 ser.cell(row= t+2, column=2, value=m.y_imp[t].value)

110 ser.cell(row= t+2, column=3, value=m.y_exp[t].value)

111 ser.cell(row= t+2, column=4, value=m.y_pty[t].value)

112 ser.cell(row= t+2, column=5, value=m.y_ch[t].value)

113 ser.cell(row= t+2, column=6, value=m.y_dch[t].value)

114 ser.cell(row= t+2, column=7, value=m.z_ba[t].value)

115 ser.cell(row= t+2, column=8, value=m.y_pv[t].value)

116 ser.cell(row= t+2, column=9, value=m.y_a2a_sh[t].value)

117 ser.cell(row= t+2, column=10, value=m.D_dhw[t])

118 ser.cell(row= t+2, column=11, value=m.q_eb_dhw[t].value)

119 ser.cell(row= t+2, column=12, value=m.z_hs[t].value)

120 ser.cell(row= t+2, column=13, value=m.q_hs[t].value)

121 ser.cell(row= t+2, column=14, value=m.D_sh[t])

122 ser.cell(row= t+2, column=15, value=m.q_a2a_sh[t].value)

123 ser.cell(row= t+2, column=16, value=m.q_fp_sh[t].value)

124 ser.cell(row= t+2, column=17, value=m.q_po_sh[t].value)

125 ser.cell(row= t+2, column=18, value=m.z_ss[t].value)

126 ser.cell(row= t+2, column=19, value=m.z_ds[t].value)

127 ser.cell(row= t+2, column=20, value=m.q_ss[t].value)

128 ser.cell(row= t+2, column=21, value=m.Temp[t])

129 ser.cell(row= t+2, column=22, value=m.P_spot[t])

130 ser.cell(row= t+2, column=23, value=m.y_po_sh[t].value)

131 ser.cell(row= t+2, column=24, value=m.y_eb_dhw[t].value)

132

133 #print('test output:', m.q_ashp[0].value, m.q_ashp[110].value )
134 #Invested capacities

135 val['A1'] = 'Time'
136 val['B1'] = time.ctime() #Time and date
137 #val['C4'] = time.time() - start_time #Code run time
138 val['A2'] = 'Scenario name'
139 val['B2'] = 'NOR'
140 val['A3'] = 'gamma'
141 val['B3'] = m.gamma.value
142 val['A4'] = 'A_co2'
143 val['B4'] = m.A_co2.value
144 val['A5'] = 'A_pe'
145 val['B5'] = m.A_pe.value
146

147 val['B6'] = m.x['PV'].value
148 val['B7'] = m.x['BA'].value
149 val['B8'] = m.x['EB_DHW'].value
150 val['B9'] = m.x['A2A_SH'].value
151 val['B10'] = m.x['FP_SH'].value
152 val['B11'] = m.x['PO_SH'].value
153 val['B12'] = m.x['HS'].value
154 val['B13'] = m.x['SS'].value
155

156 val['A6'] = 'pv'
157 val['A7'] = 'ba'
158 val['A8'] = 'eb_dhw'
159 val['A9'] = 'a2a_sh'
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160 val['A10'] = 'fp_sh'
161 val['A11'] = 'po_sh'
162 val['A12'] = 'hs'
163 val['A13'] = 'ss'
164

165 y_imp_tot = 0

166 y_exp_tot = 0

167 wo_tot = 0

168 for t in m.T:
169 y_imp_tot += m.y_imp[t].value

170 y_exp_tot += m.y_exp[t].value

171 wo_tot += m.f_fp[t].value

172

173 G_tot = m.G_bf*wo_tot + m.G_el_imp*y_imp_tot

174

175 val['F1'] = 'y_imp_tot'
176 val['F2'] = 'y_exp_tot'
177 val['F3'] = 'wo_tot'
178 val['F4'] = 'G_tot'
179

180 val['G1'] = y_imp_tot
181 val['G2'] = y_exp_tot
182 val['G3'] = wo_tot
183 val['G4'] = G_tot
184

185 val['F8'] = 'BITES-params'
186 val['F9'] = 'K_flow'
187 val['F10'] = 'K_shallow'
188 val['F11'] = 'K_deep'
189

190 val['G9'] = m.K_flow.value
191 val['G10'] = m.K_shallow.value
192 val['G11'] = m.K_deep.value
193

194 y_imp_max = 0

195 for t in m.T:
196 if m.y_imp[t].value > y_imp_max:
197 y_imp_max = m.y_imp[t].value

198

199 val['F13'] = 'peak load el'
200 val['G13'] = y_imp_max
201

202 val['C5'] = 'Tech inv cost'
203 val['C6'] = (m.C_spe['PV']*m.x['PV'].value+ m.C_fxd['PV']*m.a_i['PV'].value)
204 val['C7'] = (m.C_spe['BA']*m.x['BA'].value+ m.C_fxd['BA']*m.a_i['BA'].value)
205 val['C8'] = (m.C_spe['EB_DHW']*m.x['EB_DHW'].value+

m.C_fxd['EB_DHW']*m.a_i['EB_DHW'].value)↪→

206 val['C9'] = (m.C_spe['A2A_SH']*m.x['A2A_SH'].value+
m.C_fxd['A2A_SH']*m.a_i['A2A_SH'].value)↪→

207 val['C10'] = (m.C_spe['FP_SH']*m.x['FP_SH'].value+
m.C_fxd['FP_SH']*m.a_i['FP_SH'].value)↪→

208 val['C11'] = (m.C_spe['PO_SH']*m.x['PO_SH'].value+
m.C_fxd['PO_SH']*m.a_i['PO_SH'].value)↪→

209 val['C12'] = (m.C_spe['HS']*m.x['HS'].value+ m.C_fxd['HS']*m.a_i['HS'].value)
210 val['C13'] = 0
211
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212 val['D1'] = m.objective_TotalCost()
213 val['D2'] = m.cost_Investments[1]()
214 val['D3'] = m.cost_Operations[2]()
215

216 val['C1'] = 'tot_cost'
217 val['C2'] = 'inv_cost'
218 val['C3'] = 'op_cost'
219

220 wb.save(result_file)

221 print('Deterministic result file successfully created')
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The following code is script running the optimization for the point-source model, which loads the two previous code
fragments as modules:

1 #!/usr/bin/env python3

2 # -*- coding: utf-8 -*-

3 """

4 Created on Tue Mar 12 20:17:29 2019

5

6 @author: marius

7 """

8

9

10 import MODEL_ph_SH as model
11 import Loading_Data_ph as ld
12 import pyomo.environ as pyo
13 #import pandas as pd

14 #import numpy as np

15 #import pickle

16 #import xlrd

17 #import time

18 #from pyomo.environ import SolverFactory

19

20 year = 2012

21 path_in = 'allData.xlsx'
22 path_out = 'results/results_' + str(year) + '.xlsx'
23

24 abstract = model.ZEBModel()

25 data = ld.createModelData(path_in, year)

26 data['SS_cap'] = {None: 12.5}
27 data['DS_cap'] = {None: 90}
28

29 instance = abstract.abstractmodel.create_instance(data={'mymodel':data},namespace='mymodel')
30 opt = pyo.SolverFactory('gurobi')
31 #opt.options['TimeLimit'] = 1800
32 results = opt.solve(instance, tee=True, #to stream the solver output

33 keepfiles=True, #print the LP file for

examination↪→

34 symbolic_solver_labels=False) # use human readable names

35 ld.saveDeterministicResults(instance, path_out)

36 print('Objective value', instance.objective_TotalCost())
37

38

39
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