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Abstract

The field of medicine is exploring increasingly more automated techniques to aid
professionals in their work. In recent years, a surge of artificial neural networks
has found success in a wide range of fields, performing comparable or even better
than humans. Because of this, neural networks are currently being tested in an
increasing number of domains. Diagnosis of eye conditions such as age-related
macular degeneration (AMD) is one such example. A highly rampant disease
known for being the biggest cause of irreversible visual impairment in high-income
countries. AMD is commonly diagnosed by analysis of medical images such as
optical coherence tomography (OCT). This visual analysis is a task often suitable
for convolutional neural networks (CNNs). Therefore, many experiments using
CNNs have been conducted and they show promising results.

I propose a CNN architecture for OCT scans that perform at a state-of-the-
art level when detecting AMD. The architecture is tested using two kinds of
convolution: Regular 3D convolution and a decomposition of 3D convolutions
known as spatiotemporal convolution. Unlike many approaches in the literature,
the model requires no pre-training, while achieving an AUC of ∼ 99.7% on the
dataset from Duke University, and an AUC of ∼ 99.9% on a new dataset from St.
Olav’s University Hospital. Furthermore, the results are examined using CNN
Fixations, a visualization technique that can reveal what the model focused on
in the OCT scans.
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Sammendrag

Det medisinske fagfeltet utforsker flere og flere automatiske teknikker for å hjelpe
fagpersoner i sitt arbeid. I de siste årene, har kunstige nevrale nettverk funnet
suksess i et stort antall fagfelt med ytelse p̊a likt niv̊a eller bedre enn mennesker.
P̊a grunn av dette, blir nevrale nettverk testet i et økende antall domener. Di-
agnose av øyesykdommer, som for eksempel aldersrelatert makuladegenerasjon
(AMD), er et av disse domenene. En svært utbredt sykdom kjent som den største
årsaken til irreversibel synshemming i høyinntektsland. AMD er vanligvis diag-
nostisert gjennom analyse av medisinske bilder slik som optisk koherens tomografi
(OCT). Denne visuelle analysen er en oppgave som ofte er passende for konvo-
lusjonsbaserte nevrale nettverk (CNN). Mange eksperimenter som bruker CNNs
har blitt gjennomførst p̊a grunn av dette, og de viser lovende resultater.

Jeg foresl̊ar en CNN arkitektur for OCT bilder som yter p̊a det høyeste niv̊a i
verden p̊a gjenkjenning av AMD. Arkitekturen er testet med to forskjellige kon-
volusjonstyper: Vanlig 3D konvolusjon og en dekomposisjon av 3D konvolusjon
kjent som ”spatiotemporal” konvolusjon. Ulikt mange fremgangsm̊ater i littera-
turen, min modell trenger ingen pre-trening, samtidig som den oppn̊ar AUC p̊a
∼ 99.7% p̊a et datasett fra Duke Universitet, og en AUC p̊a ∼ 99.9% p̊a et nytt
dataset fra St. Olavs Universitetssykehus. I tillegg blir resultatene undersøkt med
bruk av CNN Fixations, en visualiseringteknikk som kan avsløre hva modellen
fokuserer p̊a i OCT bildene.
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Preface

This is a practical project in the field of computer science and medicine. It
proposes a new architecture for detection of the illness AMD. The project is
conducted primarily at The University of Tokyo (UTokyo) and in collaboration
with St. Olav’s University Hospital. Preliminary research was conducted at the
Norwegian University of Science and Technology (NTNU) and their computer
cluster IDUN was used throughout the research period. The supervisor from
NTNU was Professor Keith L. Downing and Professor Masashi Sugiyama was
the supervisor at UTokyo. Furthermore, Dr. Tora Sund Morken and Dr. Arnt-
Ole Tvenning from St. Olav’s University Hospital provided the problem setting,
data, and advice related to the medical aspects of the project. Additional credit
goes to fellow student H̊akon Hukkel̊as for providing suggestions on related works
such as Tran et al. [2017] that turned out to be highly relevant to the project. A
final thank you goes to all the authors that gave permission to use their figures
in this project.

Stian Rikstad Hanssen

Tokyo, September 19, 2019
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Glossary

AMD Age-related Macular Degeneration (AMD) is a medical condition that can
affect vision ranging from blurred to no vision in the center of the visual
field.

ANN Artificial Neural Network (ANN) a machine learning method applying
some of the concept inspired by the human brain.

AUC Area Under the Curve (AUC) is a metric that measures the area under
the receiver operating characteristic (ROC) curve.

CNN Convolutional Neural Network (CNN) is a type of artificial neural network
designed for handling image data and other data with similar properties.

Drusen Yellow deposits under the retina consisting of fatty proteins.

Feature Map The output of a convolution.

GPU Graphics Processing Unit (GPU) is a piece of computer hardware designed
to handle computation for graphics and data similar to graphics.

IC Inclusion criteria (IC) is a criteria which a paper must fulfil in order to be
further evaluated in an SLR.

ILSVRC (ImageNet) ImageNet Large Scale Visual Recognition Competition
(ILSVRC) is a competition about creating the best algorithms for handling
various image related tasks.

Kernel A moving grid of values that are applied to an image to perform a
convolution.
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xiv Glossary

OCT Optical Coherence Tomography (OCT) is a type of non-invasive cross-
sectional imaging in biological systems.

Padding Values added around an image to counter the size reduction of a con-
volution.

PED Pigment Epithelial Detachment (PED) is the condition in which a cell
layer just outside the neurosensory retina detach.

Python A programming language.

PyTorch A machine learning framework for Python.

QC Quality criteria (QC) is a criteria to evaluate the quality of a paper in an
SLR.

ROC Receiver Operating Characteristic (AUC) is a curve showing the relation
between true positive rate and false positive rate for some experiment at-
tempting to make predictions.

RPE Retinal Pigment Epithelium (RPE) is a highly reflective band right under
the retina that is often evaluated for signs of age-related macular degener-
ation (AMD).

SLR Structured Literature Review (SLR) is a method to systematically find,
evaluate and filter literature in the field relevant to a set of research ques-
tions.

Stride The distance a kernel is moved for each step in a convolution.

TensorBoard A visualization tool developed by Google for monitoring machine
learning methods.

VGG Visual Geometry Group (VGG) is a well known CNN architecture that
had the best performance on certain tasks in the ImageNet competition
2014.



Chapter 1

Introduction

This is a computer science master thesis about detection of age-related macular
degeneration (AMD). In the project, the words: Detection, classification, and
diagnosis will be used interchangeably. They entail a system being able to tell
whether an image shows a healthy eye or an eye with a variation of the disease
AMD. The project will focus on using artificial neural networks to detect AMD.
In the literature as well as in this project, a neural network called convolutional
neural network (CNN) will be used. The goals of the project and all research
questions will be laid out in this chapter.

1.1 Motivation

AMD is the leading cause of irreversible visual impairment in high-income coun-
tries. It globally accounts for 6% of blindness [Flaxman et al., 2017; Jonas et al.,
2014]. The number of people affected by AMD rise with age [Akuffo et al., 2015].
As the number of elderly rises [Carbonaro et al., 2018], automation will be critical
to handle the increasing number of people in need. This is especially important
in the case of AMD, which affect such a large number of elderly people.

AMD is a severe and prevalent disease that can result in blindness. Automated
tools such as trained neural networks can aid professionals in predicting a prog-
nosis, plan the need for follow-up, and future treatment. An objective system
can provide reassurance and aid patients in self-management of the disease, as
well as provide information to the patient in regards to future prognosis.

1



2 CHAPTER 1. INTRODUCTION

Diagnosis and follow-up of AMD is a field of medicine where examination of
images such as optical coherence tomography (OCT) is essential. These are 3D
scans of the macula and fovea, a specific region on the retina which is located in
the eye. The fovea is crucial for visual resolution. Evaluation is done by doctors
through qualitative assessments such as presence or absence of fluid in the retina.
However, recent machine learning techniques have started to show potential in
the field. Lee et al. [2017] showed how a deep CNN based on the VGG model can
classify a large number of OCT scans with high precision. Apostolopoulos et al.
proposed their own CNN architecture with pre-training that scored well on the
biggest public dataset of AMD patients.

1.2 Goals and Research Questions

In order to have a clear direction in the project, it is important to set goals,
research questions and definitions to tell when a goal is achieved. In this section,
these guidelines will be laid out.

Goal 1 Create a neural network capable of learning symptoms of AMD.

The most essential part of this project is the neural network. This is the funda-
mental system that will try to learn the symptoms of AMD in OCT scans and
classify the disease. To assert whether the network has achieved this goal, an
evaluation measure must be used such as accuracy. To verify that the model
has learned to detect symptoms of AMD, it is expected that the model is able
to perform better than an agent which chooses randomly. If 60 % of cases are
labeled AMD, then the network should obtain accuracies higher than this per-
centage.

Goal 2 Achieve positive results by finding a balance between learning time, GPU
capacity and size of the data.

Diagnosis of AMD is an image classification task. Many of the approaches today
utilize large convolutional neural networks that require high GPU capacity and a
lot of training time. For this project the GPU resources are limited. Therefore, it
will be important to find a fitting architecture that can achieve results with these
constraints in mind. Positive results should be predictions better than chance
and preferably at the same level as works in the literature. Accuracy and area
under the receiver operating characteristic curve (AUC) will be used to compare
relevant works in the domain.

Research question 1 Will a neural network using the depth information have
any advantage over approaches that only evaluate per slice information of
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OCT scans?

OCT scans are like a stack of images going depth-wise through the eye. Many
approaches in the literature choose a method that only evaluate each of these
images individually. By using 3D convolution or some variation of it, one can find
patterns in all dimensions of the scans. To find whether there is any advantage
to considering the depth-wise relations, results between the thesis model and
related works that disregard depth relations will be compared using the AUC
metric.

Research question 2 Is there any advantage to using (2+1)D convolution over
regular 3D convolution in this domain?

(2+1)D convolution is an alternative to 3D convolution that might aid in achiev-
ing research goal 2. Tran et al. had great success with (2+1)D convolution in
classifying actions in video. Certain properties of this kind of convolution might
also give advantages in classification of AMD. To answer this research question
similar networks using both kinds of convolution will be compared on perfor-
mance on several metrics: AUC, Recall, Precision and accuracy. AUC will be
the metric of highest importance.

1.3 Research Method

The research goals in this project is all about creating a neural network archi-
tecture that can handle the criteria specified in section 1.2. The nature of this
research is therefore experimental in that a model will be designed and then
tested through experiments. The design procedure moves forward through ideas
of related works, reflections on concepts in the field and incremental improvement
of models through testing. I choose this type of methodology because it is the
most common in the field. The focus is not on finding a new theoretical concept
or architecture, but rather the performance in a particular domain on specific
datasets. This might inherently lead to new models on the way and at the very
least provide more insight into the field of deep learning on AMD.

1.4 Thesis Structure

The thesis is structured to gradually build up the needed theoretic background
throughout the chapters up until the chapter 4. Whenever a new term comes
up it will be formatted in italic and all acronyms will be shown in parenthesis
the first time the acronymed term occurs. The current chapter, chapter 1, covers



4 CHAPTER 1. INTRODUCTION

why the research is performed, what the aim for the research is as well as how the
thesis is structured. Chapter 2 covers the basic foundation of the thesis such as
information about AMD, the dataset and information about the class of neural
networks relevant to this research. Chapter 3 covers more advanced and specific
theory related to the research goals. Each section in chapter 3 covers a related
work in the field that has similar research goals, show popular concepts in the
field or has concepts that could be useful in detecting AMD. The architecture
developed in this thesis is explained in chapter 4 followed by experimental results
in chapter 5. An evaluation and conclusion of the architecture and results is
found in chapter 6. In chapter 6, I discuss the research questions and reflect
on design decisions, performance compared to related works and potential future
work.



Chapter 2

Background Theory

This chapter will start by covering OCT scans, the data used to detect the illness
AMD. The objective in this thesis is to distinguish scans of AMD from scans of
healthy cases. AMD will be explained in more detail in the subsequent section.
A final part of the chapter will explain theoretical aspects of CNNs, the type of
model the network will be based on. The chapter ends with a brief explanation
for why CNNs are useful in the field of medicine.

2.1 Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a type of non-invasive cross-sectional
imaging in biological systems. OCT use a technique analogous to ultrasonic
pulse-echo imaging. The technique produces two-dimensional images of optical
scattering from internal tissue [Huang et al., 1991]. These scans can be done
multiple times to produce a volumetric image of the tissue. This type of imaging
has become a useful tool in the examination of the eye. It is used in finding signs
of various conditions, one of them being AMD.

The OCT scans can vary greatly depending on the specific scanner and the op-
erator. The operator may choose resolution, depth and to some degree how the
patient is positioned. The patient can affect the scan by blinking and shifting
their position. Also, the scanner can vary in degree of noise and resolution. These
factors makes it challenging for artificial neural networks (ANNs) to generalize
to unseen situations. Training on a dataset only using OCT scans from one scan-
ner can cause problems for a network attempting to handle scans from multiple

5
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sources.

The datasets handled in this project, as well as those in the related work, all
have one channel per OCT ”slice” making up the volume. That is, the images
are gray-scale or more precisely a single channel as opposed to common RGB
(colored) images that have 3 channels.

An OCT scan can be so large that some graphics processing units (GPUs) do
not have the capacity to load a full-sized OCT scan into VRAM (memory) for
training. In many cases, the OCT scan is therefore cropped and downsampled
to a size more acceptable for the GPU. An additional technique, is to store the
OCT scan in a suitable data type and structure. In code, this would be an array
with little overhead that is stored in values of an acceptable size. For instance,
32-bit floats hold enough precision and take half the space of 64-bit floats.

Figure 2.1: A diagram of the human eye seen as a cross section from the side.
Light enters the eye from the left going through the eye and finally hitting the
retina. The retina covers the backside of the eye, not just where the arrow is
pointing. A certain part of the retina is known as the macula indicated by the
curly bracket, while the fovea is the dip seen in the macula. The choroid is
displayed as the red layer in the diagram. Diagram from Fischer [2013] with
altered colors and labels.
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2.1.1 Data Augmentation

A challenge with medical data is the accessibility. Due to strict regulations, it
is often required for the data to be anonymized and in many cases, each patient
must be asked for permission to use their data. Therefore, it takes a considerable
amount of time to create a dataset, and the dataset may be significantly smaller
than common image datasets used in machine learning. A way to combat a
small dataset is data augmentation. Small operations on the scans to make them
different enough to count as a new case, while accurate enough to not mislead
the neural network. For medical data, it is particularly important to be delicate
in this process as certain symptoms can be dependent on properties in the scan.
As this project is about diagnosis of AMD, the augmentation techniques covered
will be specifically tailored to this task.

Horizontal Flipping

OCT scans are taken of both eyes, so the network is forced to learn both orien-
tations either way. The dataset can be doubled by flipping all scans making the
left eye the ”right eye” and vice versa. As the OCT scans are 3D volumes, it
should be clarified that the horizontal flip is done for each individual image in
the volume and that all images in one volume are flipped the same way.

Cropping

While cropping can be used for data augmentation by randomly cropping the
scans, that is not the typical use on OCT scans showing AMD. OCT scans are
quite large and in many cases the area of interest is only in the center of the OCT
scan. Therefore, in order to reduce the size of the OCT scan, one can perform
a center crop. The center crop removes parts of the scan around the edges in
all directions leaving only a cube of data in the middle. Alternatively, it can be
viewed as cutting out a rectangle from the center of each slice in the OCT scan
and finally cut away some of the first and last slices.

Rotation

As noted earlier each OCT scan does not necessarily have the exact same orienta-
tion. When comparing OCT scans one can find a difference in rotation between
them. As this is already a varying factor, one could do more rotations in order to
produce more data. The rotation would normally be done for each slice, where
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the rotation remains the same throughout an OCT scan. It is however important
that this rotation is reasonable as training the network to identify upside down
OCT scans would be useless. Furthermore, rotating an image would leave empty
spaces around the edges. The network could start to use the empty spaces as fea-
tures in their classification. It can be avoided by cropping in on the image to the
point where the empty spaces disappear. Therefore, this technique is preferred
when the scans are already going to be cropped.

2.2 Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is a medical condition that can affect
vision ranging from blurred to no vision in the center of the visual field. Macula
being a part of the retina, the innermost light-sensitive layer of the eye seen in
figure 2.1. The number of people affected by AMD increases by age. According
to Akuffo et al. [2015], 20% are affected above the age of 50 and approximately
47% by age 86 and higher.

2.2.1 Variations

In approximately 10% of patients, neovascularization from the choroid into the
retinal tissue occur [Akuffo et al., 2015; Jonasson et al., 2011]. This is an abnormal
blood vessel growth starting at a layer in the eye known as the choroid marked
with red in figure 2.1. This abnormal growth causes fluid accumulation in the
macula with rapid visual loss. This type of AMD is known as neovascular AMD
or wet AMD.

The majority of patients have dry AMD. This type of AMD is not related to any
leakage of liquids, however loss of vision may still occur. The retina deteriorates
due to the formation of small yellow deposits, known as drusen, under the macula.
Furthermore, drusen leads to drying and thinning of the macula to the point
where it loses its function [Parmet et al., 2006]. In one subtype of AMD known as
pigment epithelial detachment (PED), a cell layer just outside the neurosensory
retina, known as the pigment epithelial layer, detach. For these patients, the
visual acuity is gradually lost as the illness results in geographical atrophy (a more
severe advancement of AMD), scarring or rupture of the PED [Pauleikhoff et al.,
2002]. Patients with PED also have a much higher risk of developing wet AMD.
Cukras et al. found that one in three patients with PED developed wet AMD
during a two-year observational period. There are still many unknown factors
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Figure 2.2: Cross sections of Optical Coherence Tomography (OCT) focused in
on the fovea, a particular spot in the retina. A-D display choroidal neovascu-
larization and pigment epithelial detachment. Images E and F shows dry AMD.
Images A-F are images from Rosenfeld [2016]. G and H show two examples of
healthy macula from Srinivasan et al. [2014].

related to identifying patients at risk for developing a more severe prognosis from
AND and PED.

2.2.2 Symptoms in OCT Scans

Symptoms vary across types of AMD as well as the degree within one type. Fig-
ure 2.2 shows various examples of AMD as well as healthy eyes. These images
are focused on the macula. One can see the location of the macula and other
components in the eye from figure 2.1. The retina is composed of layers that
reflect light to varying degrees based on the composition of the tissue. Retinal
pigment epithelium (RPE) is the bottom-most highly reflective band, which is
best seen in G and H in figure 2.2. Reduction in thickness and increased reflec-
tively (brightness) of the RPE is often one of the signs of AMD. Additionally,
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the RPE may show signs of detachment by the irregular shape, as seen in im-
ages A-D. Some irregularities in the RPE can also be seen in E and F; however,
the steepness of the curves are much smaller. In these images, the fovea is also
swollen to the point of not being visible. The fovea is the dip only seen in G and
H. A-D are examples of wet AMD, where the macula has swollen substantially.
Highly reflective particles under the retina can be a sign of drusen. Having drusen
increases the patient’s risk of having AMD [Crabb et al., 2002]. These particles
may displace the RPE and be a cause for its irregular shape. Drusen can increase
in size and number as the condition progresses, or disappear over time which is
often associated with atrophy of the RPE and overlying retina.

For each variation and development, there are further specific symptoms that
will not be covered here, however, further information can be found in Adhi and
Duker [2013]; De Carlo et al. [2015]; Chiu et al. [2012].

2.3 Convolution

Convolution is the mathematical operation on two functions to produce a third
function that expresses how the shape of one is modified by the other. In the case
for images, an image can be seen as a discrete two-dimensional function. Thus,
convolution on images is a discrete higher dimensional convolution.

2.3.1 Applying Convolution to Images

Figure 2.3 shows the overall concept of convolution on images. The input is
an image that has values for each pixel. This is the first function mentioned
previously. A kernel, sometimes called filter, is the second function we apply to
the image, which also contains values on discrete positions.

The kernel can be viewed as a sliding window. For each position the window is
placed over, each value in the kernel is multiplied to the corresponding values in
the image as seen in figure 2.3. The products are added together to one final
output value which is placed onto the output image. In figure 2.3, the output
value is 6. This can be expressed mathematically as

Y (j, k) = (X ∗ f)(j, k) =

Kh∑
γ=−Kh

Kw∑
δ=−Kf

X(j + γ, k + δ)f(γ, δ) (2.1)
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Figure 2.3: Illustration of two-dimensional convolution.

where Y (j, k) is the value on the output image at position (j, k). X(y, x) is the
value of the input image at position (y, x) and f(h, i) is the value of the kernel
at position (h, i). Finally, Kh and Kw define the size of the kernel, (2 ·Kh + 1)
is the height and (2 ·Kw + 1) is the width. In equation 2.1 it is assumed that all
kernels are of an odd number size, but this doesn’t have to be the case. However,
for the purpose of this project, this equation is sufficient.

Two final parameters sx and sy is defined as the stride. The stride is how far
the kernel is moved each time the kernel is applied, sx and sy for horizontal
and vertical movement respectively. In many cases sx = sy, however, this does
not have to be the case. To do a full convolution the following steps would be
executed:

• Start in the top left corner of X and apply equation 2.1.

• Move kernel horizontally on X by a distance sx at a time and apply equation
2.1 for each step.

• Once the end of the row is reached, move the kernel vertically down by a
distance sy and start over again at the beginning of that row.

• Continue the process until the kernel has reached the bottom right corner.

Output image Y should now have all values filled in and the convolution is com-
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plete.

2.3.2 Padding

Looking at figure 2.3 you may notice that the output value is not placed all the
way in the upper right corner of the output image. In fact, once a convolution
is complete the size of the image will always be reduced by 2 ·Kh in height and
2 ·Kw in width. Sometimes this is not desired, so padding is used to adjust the
output dimensions of the image.

Padding is the concept of adding additional values around the edge of the input
image to counter the reduction in size from the convolution. The most typical
type of padding is zero padding, which means to simply put values of zero around
the edge of the image. If one wish to counter the reduction from convolution with
stride sx = sy = 1, the thickness of the padding would be Kh and Kw.

It should be mentioned that regular convolution is not the only way an image may
be reduced in size. With a stride greater than 1, the output image would only
place a value every stride position of the input image. Therefore, the thickness
of the padding may vary depending on the use.

2.4 Convolutional Neural Networks

It is assumed the reader has a basic understanding of neural networks going into
this section as the focus will be on the specifics of convolutional neural networks
(CNNs) [LeCun et al., 1999]. These networks have come to be extremely useful
in the domain of big data that has spatial relations such as images.

Using a normal fully connected network would result in an impractical amount
of trainable parameters. Just the input layer would require as many neurons as
there are values in the image. If the image had dimensions 512 × 512 and three
(RGB) channels there would be 786 432 neurons just in the first layer! If the
second layer then had 256 neurons there would be 201 326 592 weights between
these two layers. This is not the only problem: Fully connected networks learn
features looking at an image as a whole. If it has been trained to detect a circle
in the left bottom corner, it might fail to recognize a circle in the top right.
The features it learns lack spatial invariance. These problems gave rise to the
convolutional neural network explained in this section.
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Figure 2.4: Example of a convolutional network architecture for classification of
animals. Softmax is not a typical layer, it is an activation function often used on
the last layer of the network for multi-class classification. It converts the output
of the network to a probability distribution.

2.4.1 Dimensionality of Images

Section 2.3 explained the concept of convolution and how it is applied to images.
However, a few important details were left out. A two-dimensional (2D) image
with color is not really 2D for a neural network. Color images have channels,
usually one for red, one for green and one for blue. Therefore, the real dimensions
of such an image are channels × height × width, three dimensions. The kernel
applied will therefore be 3D. Even though the image is 3D, the convolution applied
is called 2D convolution. This is because when depth is considered as channels,
the depth of the kernel is always equal to the depth of the image. In terms
of movement, the kernel only has room to move horizontally and vertically (two
dimensions). Additionally, the output image will be 2D because the kernel output
one value at the center of the kernel. The difference between convolution with
channels and convolution with spatial depth can be seen in figure 2.5.

2.4.2 Convolutional Layer

In CNNs, there are layers based on convolution. Instead of having layers of
neurons, like in fully connected networks, one layer has multiple kernels and
all the values in a kernel are trainable parameters. As seen in figure 2.6, a
forward pass consists of applying convolution with each of the kernels in a layer,
in addition to adding a bias for each kernel. Convolution with one kernel produces
one channel in the output image. This is because the kernel covers all channels
in the input image, but only output one value at a time resulting in one channel,
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(a) Depth-wise convolution. (b) Regular convolution with channels.

Figure 2.5: Depth-wise convolution vs regular convolution with channels. Depth-
wise convolution treats each depth-wise slice independently and therefore outputs
a value for each depth-wise slice seen with each having their own color in the
output. Regular convolution treats the depth as channels and thereby does the
calculation with all channels at once. This will output one value for the 3× 3× 3
kernel seen in the figure b.

as seen in figure 2.5b. The output channels are stacked depth-wise, resulting in a
2D image with a channel for each kernel; assuming the input data is a 2D image
with channels.

The concepts explained here can be applied to any higher dimension. For exam-
ple, medical images can be 3D color images. This means images with dimensions
channels × depth × height × width. In the same way as before the kernel is
now 4D, with the channel dimension equal to the channel dimension of the input
volume. The kernel will move in the three dimensions depth × height × width.
Thus, the output image will be a 4D cube or a 3D image, with the number of
channels equal to the number of kernels applied.

In further detail, how can this be perceived in comparison to a normal fully
connected networks? The nodes are not in a line anymore, but rather arranged in
more dimensions. As figure 2.6 show, the nodes make up the output ”volume” of
a layer. The nodes are still connected with weights to the previous layer, however,
one node in the current layer is not connected to every node in the previous layer.
Additionally, all nodes in one channel share the same set of weights, the set of
weights from the kernel that made that output ”slice” or channel.

This convolutional operation is differentiable, thus when doing backpropagation,
one would need to calculate the derivative of the convolutional operation with
respect to each of the trainable parameters. For a more detailed explanation, one
can read LeCun et al. [1999]; Lecun [1988].
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Figure 2.6: Red volume is the 3 × 64 × 128 (channels × height × width) input
image. 32 different kernels of size 3×5×5 with stride of 1 are applied to the input
image. The output from each kernel becomes a channel ”slice” stacked depth-
wise in the blue volume. The blue volume can be seen as the activations after the
first layer. As no padding was applied, the height and width were reduced. The
green volume shows how these shapes can be viewed as neurons stacked in a 3D
formation. Each neuron in the green volume are only connected to a select group
of the neurons in the blue volume. The kernels are not shown in this figure.

2.4.3 Downsampling

A convolutional neural network does not necessarily only consist of convolutional
layers. Even though using kernels has reduced the number of parameters sub-
stantially, it is often useful to reduce the parameter count even further. Thus
downsampling is used.

Downsampling can be done in many different ways. As mentioned in section 2.3,
one can reduce the output image simply by making the stride bigger than 1. A
natural downsample happens if padding is not utilized and also techniques such
as dilation can reduce the output image. Dilation is a way to spread the kernel
as seen in figure 2.7.

Another technique that has become very common is pooling proposed in Scherer
et al. [2010] for CNNs. It should be mentioned that pooling has been a well-
known concept long before 2010. Scherer et al. proposed the variation called
max pooling. It works similarly to a convolutional layer in that it utilizes the
sliding window method, and applies a function to a local selection of the input
at a time. However, max pooling operates on a per channel basis. Figure 2.8
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Figure 2.7: Illustration of dilation. Blue plane is the input image and red plane
is the output image. Dark blue is the input values used to compute the dark red
output value. Dilation is the concept of spacing the dark blue values apart.

illustrates how the operation is done. Mathematically max pooling on 2D images
for one kernel operation is expressed as:

M(j, k) =
Kh

max
γ=0

Kw
max
δ=0

X(j + γ, k + δ) (2.2)

In this case, M(j, k) is the output max value of the window defined by positions
(j, k) and (j + Kh, k + Kw) on the input slice X. These two points define the
diagonal of the kernel. It can be thought of as doing the exact same thing as a
convolution except one takes the max instead of calculating a sum of products.
This operation also uses strides in the same way as convolution. It is very common
to have the strides be sx = Kw and sy = Kh (notation from section 2.3.1) as
seen in figure 2.8b.

Backpropagation through a max pool layer is done by setting the gradient for all
values that are not local maximums to 0. Then only compute the gradient for
the max values M going from the layer after the max pool to the layer before
the max pool. In a way, computing the gradient as if the max pool layer was not
there on selected connections. If kernels overlap one would need to accumulate
several error signals in one unit [Scherer et al., 2010].

There are several pooling techniques other than max pooling. In general, they
work the same way, each using a different reduction function, for example average.
The goal is to increase spatial invariance by reducing the representation to the
most important features. If the input has been transformed in some way or
been exposed to a lot of noise, this can confuse the CNN. Max pooling attempts
to fix this by reducing the representation enough to keep the most important
spatial relations while removing unnecessary information [Boureau et al., 2010].
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(a) Overview of pooling. (b) Max pool for one channel.

Figure 2.8: Illustration of max pooling. The blue slice in figure (a) and the
many colored grid in (b) both represent a single channel in a volume consisting
of dimensions channels × height × width. The black image in figure (a) is an
image representation of the channel. Figure (b) shows the operations happening
on the ”Downsampling” arrow in figure (a). Each color in figure (b) represents a
max pool kernel position and its output position.

It should be noted, however, that there is no guarantee that max pooling will not
remove data that could be useful for the model.

2.4.4 Batch Normalization

Normalizing the input of convolutional layer improves the total training time
significantly [LeCun et al., 1998]. The normalization is usually done by setting
the mean and variance of the input features to 0 and 1 respectively. Due to the
adjusted distribution of the input, the network only needs to handle numbers in
one range for all input neurons. Batch normalization takes this a step further
and applies this concept also to the hidden layers of the network.

Among the reasons why batch normalization work is that it reduces covariant
shift. One way to imagine what this means for a neural network goes as follows:
You are making a network to say whether there is a dog in an image or not.
The dataset consists of many images of brown dogs and many images of other
random objects that are not dogs. The network needs to train the mapping
X → Y where X is the input images and Y is the yes or no answer to whether
there is a dog in the picture. If X is changed to also include dogs of other colors
there will be a covariant shift. The boundary function the network has learned
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has only seen one part of the problem, brown dogs. It lacks the information to
know how the function should look for dogs of more colors. As the input has
not been normalized, the new images of colored dogs are too far away from the
original distribution and so the network is unable to generalize for the new dog
images.

By normalizing and thus reducing the range of values of the input, the covariant
shift is reduced. As batch normalization can be utilized between hidden layers,
it also reduces the need for the current layer to adjust to the previous one. Each
layer is made slightly more independent, since a hidden layer no longer needs to
handle varying ranges coming from the previous layer. It can be viewed as an
input layer, where the input features are the output of the previous layer. It
would gain the same advantages of normalization as the input layer. This has
shown to speed up learning even further [Ioffe and Szegedy, 2015].

Batch normalization is an algorithm made up of a few definitions where input
values x over a mini-batch B is given as B = {x1...m}. In these equations,
layer index k in x(k) is omitted for clarity. All equations work on an individual
activation. The mean of the mini-batch is defined by:

µB ←
1

m

m∑
i=1

xi (2.3)

The variance of the mini-batch is defined by:

σ2
B ←

1

m

m∑
i=1

(xi − µB)2 (2.4)

Then one can normalize the mini-batch using the obtained mean and variance:

x̂i ←
xi − µB√
σ2
B + ε

(2.5)

Epsilon (ε) is a small contstant for computational stability. The normalized
outputs x̂i are scaled and shifted by trainable parameters γ and β to produce the
final output, yi, of the batch normalization layer:

yi ← γx̂i + β ≡ BNγ,β(xi) (2.6)

The parameters γ and β are necessary to avoid reducing the freedom of the
network. As x̂i will always of have mean of 0 and variance of 1, only outputting
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x̂i restricts the network to always have a mean and variance of exactly 0 and
1, respectively. Therefore, two parameters are introduced to scale and shift the
distribution to have any mean and variance desired. Each layer dictates their
preferred mean and variance for their input. There is a set of γ and β for each
batch normalization layer.

An important detail to notice about batch normalization, is that it does nor-
malization and scaling over a mini batch, a selection of input-target pairs sent
through the network as one to compute an average gradient. When calculating
the mean and variance, it only takes the mini batch into account, not the whole
dataset. This has a slight regularizing effect on the network. The normalization
will be slightly noisy, due to the mean and variance being a little different be-
tween each mini-batch. Bigger mini-batches have mean and variance closer to
the mean and variance of the dataset, thus smaller mini-batches have a greater
regularizing effect.

When the network performs inference, as in testing without learning, it can be
problematic to run batch normalization the same way as in training. The inferred
results depend on the mini-batch size. During inference it is desirable for the
output to only depend on the input in a deterministic fashion.

Algorithm 1: Training of network using batch normalization and setup for in-
ference

Input: Network N with trainable parameter Θ; subset of activations {x(k)}Kk=1

Output: Batch-normalized network for inference, N inf
BN

1 N tr
BN ← N // Training BN network

2 for k = 1...K do
3 Add transformation y(k) = BNγ(k),β(k)(x(k)) to N tr

BN // Equation 2.6

4 Modify each layer in N tr
BN with input x(k) to take y(k) instead

5 Train N tr
BN to optimize the parameters Θ ∪ {γ(k), β(k)}Kk=1

6 N inf
BN ← N tr

BN // Inference BN network with frozen parameters

7 for k = 1...K do

/* For clarity: x ≡ x(k), γ ≡ γ(k), µB ≡ µ(k)
B , etc. */

8 Process multiple training mini-batches B of size m, and average over them:
E[x]← EB [µB ]

V ar[x]← m
m−1EB [σ2

B ]

9 In N inf
BN , replace the transform y = BNγ,β(x) with:

y = γ√
V ar[x]+ε

· x+ (β − γE[x]√
V ar[x]+ε

)

Ioffe and Szegedy suggest algorithm 1 for training and testing a network using
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batch normalization. The first part of the algorithm, line 1 to 4, adds batch
normalization to each layer, such that each layer has the input y(k) instead of
x(k). As mentioned previously, (k) represents the index for a layer in the network
and K is the final layer to implement batch normalization. N tr

BN stands for

network using batch normalization during training, while N inf
BN is the network

using batch normalization during inference. From line 5 starts the training of the
network, which involves optimizing all the original weights and biases as well as
all the new trainable parameters γ(k) and β(k).

From line 7 in algorithm 1, a setup for inference is applied to the batch normalized
network. The inference mean in line 8 is defined as:

EB [µB ] =
1

m

J∑
j=1

µ
(j)
B (2.7)

One batch is indexed by j and there are J batches. The inference variance is
defined as:

EB [σB ] =

(
m

1−m

)
1

m

J∑
j=1

σ2
B
(j)

(2.8)

During inference the means and variances are fixed. They are estimated using the
previously calculated mean and variance of each training batch. Ioffe and Szegedy
proposes moving averages of the mean and variance during training to obtain the

population statistics µ
(j)
B and σ2

B
(j)

, shown in equation 2.7 and 2.8. This way,
the mean and variance is not affected by mini-batch size during inference.

For convolutional neural networks batch normalization works slightly differently.
The normalization will rather be computed with the output of each kernel’s con-
volution, also known as feature maps, across the mini-batch. If a feature map
has dimensions q × p and B is defined as all values in a feature map across the
mini-batch and spatial locations, then m in the previous equations has the new
definition m′ = |B| = m ·pq. This implies that the mean and variance of each fea-
ture map across the mini-batch becomes 0 and 1, respectively. Therefore, there
will be a γ(k), β(k) pair for each feature map. Furthermore, running training
on mini-batches of size 1 leads to m = 1 ⇒ m′ = pq. In other words, batch
normalization can be useful even for m = 1, as this turns batch normalization
into instance normalization [Ulyanov et al., 2016] for convolutional layers.
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2.4.5 Classification Layer

The convolutional layers of a CNN can be viewed as feature extractors. The net-
work learns what parts of the image to focus on and makes its own representation
of the data to pass on to the classifier. A traditional CNN will use one or more
fully connected layers at the end to take in all the refined features and make the
classification decision.

A transition from a convolutional layer to a fully connected layer would be needed.
Looking back to figure 2.6, it was shown that the output volume of a convolutional
layer is a set of neurons arranged in more dimensions. A fully connected layer
has connections from every neuron in the previous layer to every neuron in the
current layer. To make the transition, connect every neuron from the output
volume to every neuron in the next flat layer. Alternatively, one can flatten the
volume into one line of neurons and then make the connections as usual, as seen
in figure 2.4.

2.4.6 Use of Artificial Neural Networks in Medicine

In recent years, ANNs such as CNNs have become popular when attempting
to solve various image related problems. The recent surge of CNNs is likely
attributed to the many advances in the field. In 2012, AlexNet beat all current
methods in the ImageNet competition having a top-5 error 10.8 percentage points
lower than the runner up [Krizhevsky et al., 2012]. After this, a new architecture
of CNN has won the competition every year since. Through countless publica-
tions and competitions, CNNs has been shown to excel at image related tasks,
especially classification. These models are becoming deeper thanks to concepts
such as the ReLU, batch normalization, skip connections and more. More depth
allows for more complex internal representations. Therefore, the advancement of
GPUs has also been important in order to handle the increasing load of training
larger and larger models.

In medicine, tasks such as diagnosis of AMD relies on classification from a health
professional. The work may include manually segmenting parts of the image or
attempting to find specific patterns in the image that indicate symptoms. These
are tasks CNNs have been shown to handle quite well. Unlike many existing
methods including traditional ANNs, CNNs have very few design decisions or
assumptions made by humans. As CNNs are their own feature extractors, one
avoids the need for most human assumptions, which in complex cases might
be the hardest part in designing a model. The model will create its own feature
extractors and classifier based on the dataset. This means it is important to make
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the dataset representative of the domain it should handle. Large datasets with
variation covering the whole domain is ideal. In the medial field, there is often
large amounts of data, image evaluation can be quite complex and objectivity is
desired. These are aspects suited for CNNs. However, it should be noted that
though a large amount of data exist, it can be hard to gain permission to use it.
Chapter 3 will show that even with lower amounts of data, some tasks can still
be handled by CNNs.

2.5 Summary

This chapter has covered the foundation for this thesis. Optical Coherence To-
mography (OCT) is a type of non-invasive cross-sectional imaging in biological
systems. These scans can be viewed as a stack of images that together make
up a 3D image. OCT scans are used by doctors to evaluate illnesses such as
age-related macular degeneration (AMD) through image analysis.

AMD is a medical condition that can affect vision ranging from blurred to no
vision in the center of the visual field. One of the most common symptoms is an
irregular shape of the RPE, a white band seen in the OCT scans.

In order to detect patterns in images such as symptoms in OCT scans, it is
common to use CNNs. Convolution can be viewed as a moving window over the
image. The window is commonly called a kernel and can be described as a grid
of values. A convolutional layer is a set of neurons stacked in more than one
dimension, and each neuron may share weights in the form of a kernel. In other
words, the values in the kernel are the weights for a convolutional layer. The
downsampling technique known as max pooling runs a kernel over a channel only
picking out the biggest value for each stride. This reduces the number of input
values for the next layer.

Batch normalization is a method to reduce internal co-variate shift. In essence,
the technique normalizes the input to a layer by using the batch as the population
to find the mean and variance. The input distribution is set to have mean of 0
and variance of 1. Furthermore, the same distribution is then scaled and shifted
by a set of trainable parameters so that each layer can pick their desired mean
and variance for their input distribution.

CNNs have improved greatly over the last years. This has been shown through
countless publications and competitions such as ImageNet. CNNs are their own
feature extractors and are therefor prone to fewer human assumptions and errors,
something that is ideal for medical use.



Chapter 3

Related Work

In this chapter, we will have a look at recent methods in the field. The first part
of the chapter will cover the procedure used for handling the literature called
a structured literature review (SLR). In the following section, RetiNet [Apos-
tolopoulos et al., 2016] proposes a semi-supervised training approach to tackle
problems with small datasets, and achieves state-of-the-art results. In section
3.3, Lee et al. [2017] found great results classifying AMD with 2D convolution
with a VGG architecture. Tran et al. suggests a new way to do 3D convolution
that outperformed other traditional methods in their domain. Finally, at section
3.5, a visualization technique by Mopuri et al. for CNNs is covered.

In all of these works, interesting aspects that can be of use to the project will be
highlighted. This includes methods, architectural choices, performance studies,
and tools.

3.1 Structured Literature Review Protocol

SLR [Kofod-Petersen, 2012] is a method to systematically find, evaluate and filter
literature that is relevant to a set of research questions. This can in turn ensure a
proper process has been conducted in the development of the research. The SLR
was used to quality check the work already done and find any additional relevant
literature.

The procedure is initialized by making a set of research question that should not
be confused with the research questions of the master thesis. These research ques-

23
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tion are tailored for the search of related works and for guiding the development
of the SLR. The following research questions were used:

RQ1 What existing deep learning methods are used in classification of AMD in
OCT scans?

RQ2 What unique contributions does the methods addressed in RQ1 provide?

RQ3 What is the evidence in support of the methods found addressing RQ1?

3.1.1 Planning

Identification of the Need For a Review

For the master project it is a requirement to have a structured literature review.
The primary goal of the SLR will be to understand the present landscape in the
domain of detecting AMD from OCT scans.

Commissioning a Review

It can be assumed the review is commissioned for this project. No commission
report was produced.

Specification of Research Question

It should be clarified that this is not the same as the research questions in sec-
tion 1.2. These questions are specifically used when searching and evaluating
the literature, as well as to guide the making of the SLR. The questions were
developed incrementally. Initially, there were more questions, but it imposed too
many constraints which lead to a very limited number of papers.

Development of a Review Protocol

The SLR was not in place at the start of the project. This is because there
was no requirement to have the protocol in place during the preliminary studies.
Thus, focus was placed on looking for variations of approaches to the problem
and background theory. Parts of the related work is therefore not found through
the protocol. The protocol is instead a quality check for the existing work as
well as a protocol for later additions in the literature. All work found before the
SLR was also found in the procedure with one exception. This exception was one
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section in the related work from the preliminary study that was removed as it
did not fit the requirements of the SLR.

Evaluation of the Review Protocol

The protocol was mostly evaluated by the author of the thesis and quality checked
by Prof. Downing.

3.1.2 Conducting the Review

Identification of Research

A big focus in the review was finding papers in the domain of detecting AMD
with deep learning methods. Furthermore, in order to compare approaches, the
search also focused on papers using the biggest public dataset on AMD from
Duke University [Farsiu et al., 2014]. Therefore, two search strings were used:
One for relevant works conducted on the Duke Dataset, and one for classifying
healthy versus AMD cases in more general terms.

The search domain was Google Scholar. This is a search engine used for searching
scientific papers from multiple sources. Google Scholar also has features such as
finding papers that have cited a specific paper.

In the preliminary studies, a similar approach was used, though outside of any
formal protocol. In the early stages of the project, the objective was to under-
stand what works when detecting AMD by exploring approaches in the domain.
Google Scholar was used, but also suggestions from fellow students and profes-
sors.

To come up with search strings, two tables containing groups of terms were
assembled. Each group contains words that are synonymous or have a similar
meaning semantically. Table 3.1 lists terms for search of papers that can be
compared to the thesis’ results, while table 3.2 is for general domain search.
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Group 1 Group 2 Group 3 Group 4 Group 5

AMD OCT Detection Dataset Duke
Age-related
Macular
Degeneration

Optical
Coherence
Tomography

Identification

Classification

Table 3.1: Terms for search of papers that can be compared to the model in this
thesis.

Group 1 Group 2 Group 3 Group 4 Group 5

AMD Healthy OCT Detection Deep Learn-
ing

Age-related
Macular
Degeneration

Normal Optical
Coherence
Tomography

Identification Machine
Learning

Classification

Table 3.2: Terms for search of papers that operate in the domain of distinguishing
between AMD and healthy cases in OCT scans using learning methods.

The following search strings were developed:

Search string 1, made from table 3.1:
(“AMD” OR “Age-related Macular Degeneration”) AND (“OCT” OR “Op-
tical Coherence Tomography”) AND (“Detection” OR “Identification” OR
“Classification”) AND ”Dataset” AND ”Duke”

Search string 2, made from table 3.2:
(“AMD” OR “Age-related Macular Degeneration”) AND (”Healthy” OR
”Normal”) AND (“OCT” OR “Optical Coherence Tomography”) AND
(“Detection” OR “Identification” OR “Classification”) AND (”Deep Learn-
ing” OR ”Machine Learning”)

Search string 1 gave a total of 375 results. Initially, it was required to have cited
the study related to the dataset, however, Google Scholar missed some papers in
such a search. Instead the terms “duke” and “dataset” was added in the search
string, which improved the results.

Search string 2 returned 4330 results, which was further reduced to 1960 by only
showing results published in 2015 or later. After looking at 25 pages of results,
it was concluded that no relevant results after page 10 could be found. Thus,
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only the first 10 pages (100 papers) of results went on for further evaluation.
In addition to search results, papers suggested by students and professors were
added as well.

Inclusion Screening

A set of additional constraints were added to further decrease the results. The
following inclusion criteria (IC) was used in the next selection:

IC 1 Study is about detection of AMD.

IC 2 The proposed model takes OCT scans as input.

IC 3 The method is machine learning related.

IC 4 The paper is in English.

IC 5 The study presents empirical results.

IC 6 The study is about classification between AMD and Healthy cases.

*IC 7 The method is tested on the dataset from Duke University [Farsiu et al.,
2014].

IC 1 to 4 were utilized for primary inclusion screening, while IC 5 to 7 were used
for secondary inclusion screening. IC 7 is only applied to papers with the same
problem setting as the thesis, but the method is not related to supervised deep
learning. The primary selection looked at the title as well as the abstract, while
secondary screening looked through the whole text. Two papers were accepted
despite not fitting the criteria. The paper from Tran et al. proposes an inter-
esting architecture that I believed could be used in a the domain of this thesis.
Mopuri et al. [2019] proposes a visualization technique that could supplement the
results of the study. These papers were found through suggestions of students
and professors. Both of these papers are not directly related to the research
questions of the SLR, but could still go through a quality assessment. After both
screenings, 7 papers remained. These papers were put through the final quality
screening.

Quality Screening

The quality screening evaluated the quality of each paper. For each quality crite-
ria (QC) the score 0, 0.5 or 1 is given based on how well the paper fit the criteria.
Each paper will receive a total score based on the evaluation from each of the
QC. A high score indicates good quality. The QCs are given below:
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QC 1 Is there a clear aim in the research?

QC 2 Is the proposed method reproducible?

QC 3 Are design decisions explained and justified?

QC 4 Is the study put in context of other studies?

QC 5 If results are presented, are they compared to other studies?

QC 6 Are the test results thoroughly analyzed?

QC 7 Does the evidence support the conclusion made in the study?

The total QC score as well as extraction of selected data from the papers is found
in table 3.3.

3.1.3 Result

Of the four top scoring papers, only two was deep learning based methods for dis-
tinguishing between AMD and healthy cases from OCT scan. The three bottom-
most papers are still relevant as they have the same task and dataset, which
means their performance can be compared to the method of this thesis. The four
top scoring papers were synthesised and added to the related works.
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3.2 RetiNet

The goal of RetiNet [Apostolopoulos et al., 2016] is to detect AMD in OCT
volumes in order to aid in the time-consuming diagnosis process. It does so in a
semi-supervised fashion using a two-step approach. The model first trains what
they call the feature extractor of the model on 2D slices of the OCT scans, and
then in a second step, train the classification part of the model using the already
learned features on full OCT scans.

Before taking a closer look at the architecture, some of the concepts it uses will
be explained.

3.2.1 Transfer Learning

The way RetiNet is able to train different aspects of the model in two steps is by
using transfer learning. Transfer learning is the concept of training parameters
in a model and then transfer the trained parameters over to a new model. The
transferred parameters can then be frozen, which means these weights will not be
adjusted during training. The amount of parameters that need training is reduced
because the transferred parameters have already been adjusted. Alternatively,
the transferred parameters will not be frozen, a very low learning rate is used
instead to fine-tune the transferred parameters to the new model. Although this
means training more parameters, it is still useful as the model can potentially
converge faster.

3.2.2 Extreme Learning

Extreme Learning [Huang et al., 2006] is another technique which has the goal of
reducing training time. The idea is to initialize the model and then immediately
freeze a subset of the trainable parameters from being changed during training.
RetiNet utilize this technique by performing training only on the convolutional
layers in the model. This part of the model is called the feature extractor, though
it is better described as a section of convolutional layers. As the remaining part
of the model can not change, the feature extractor has to work around the frozen
parameters, such that it can still perform the classification task well. It reduces
training time, because the model avoids adjusting all the parameters in the last
fully connected layers, known as the classification layer.
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3.2.3 Architecture

In essence, RetiNet’s architecture is two regular 2D convolutional models. The
first model, RetiNet B, takes one slice of the 3D volume as input at a time. It is
trained to classify the slice using the label of the volume it belongs to. RetiNet
attempts to classify two classes with the labels: Control and AMD. The paper
calls these labels weak labels as they are meant for the volume and not the slice.
Not all slices in the OCT volume show AMD, thus these labels are ”weak” in
that they can give up to 50% of an OCT volume the wrong label.

Extreme learning is used by freezing the classification layer of RetiNet B. This
is the shaded section at the top seen in figure 3.1. Only training the remaining
part of RetiNet B, the feature extractor, is conducted.

Figure 3.1: RetiNet Architecture from Apostolopoulos et al. [2016] modified with
shaded areas. Sections of the model that has frozen parameters that will not be
adjusted during training are shaded.

In the second stage, transfer learning is used to transfer the feature extractor over
to the new model called RetiNet C. The feature extractor will be frozen and the
remaining part is trained on a transformed version of the OCT volumes. Each
slice in the volume is stacked such that a single 2D image remains with the same
width as one slice, but with the height of all slices stacked on top of each other,
as seen in figure 3.1.

As the feature extractor is frozen, an adaption layer is added to adjust for the
differences between classifying slices and flattened OCT volumes. After the adap-
tion layer comes the classification layer which is not frozen in RetiNet C. This
will finally give the prediction to whether the volume shows signs of AMD or not.
RetiNet C will also use the volume labels.
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The architecture allows more training on a small data set by making each slice in
the model an input for training. It promises fast training through extreme learn-
ing and claims to outperform recent models from the computer vision literature
trained from scratch, at its time. It does, however, have some difficulties with
edge cases where the differences between AMD and control are small.

3.3 2D Convolution by VGG16

Lee et al. [2017] propose a pure 2D convolution approach to diagnosis of AMD.
In this study, they obtained 2.6 million OCT images linked to clinical data points
from the electronic medical records. Out of these, a selection of 52 690 control
(normal) and 48 312 AMD OCT images were selected. OCT images refer to each
2D slice of the 3D volume, where they selected 11 of the central 2D slices from
each OCT volume. Lee et al. utilize parts of an already trained model, VGG16,
to create a new model for classification of control and AMD cases.

The performance was measured by the area under the receiver operating charac-
teristic curve (AUC), accuracy, and an occlusion test. The AUC was measured
on three levels: Image level, macula level (OCT volume) and patient level. The
measure for macula and patient level was done by averaging the probabilities for
all images belonging to the same macula or patient. At the image level, they
achieved an AUC of 92.78% with an accuracy of 87.63%. At the macula level,
they achieved an AUC of 93.83% with an accuracy of 88.98%. At a patient level,
they achieved an AUC of 97.45% with an accuracy of 93.45%. Peak sensitiv-
ity and specificity with optimal cutoffs were 92.64% and 93.69%, respectively.
Lee et al. conclude that the findings have important implications in utilizing
OCT in automated screening and the development of computer-aided diagnosis
tools in the future. It shows that diagnosis on the image level obtains viable
results.

3.3.1 ImageNet Models

Many pre-trained models are available today. Among the most popular ones are
competitors in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[Russakovsky et al., 2015]. VGG [Simonyan and Zisserman, 2014] is one of these,
an image classification CNN invented by Visual Geometry Group (VGG) from
The University of Oxford. ImageNet requires the competitors to classify 1000
different classes from a subset of the whole ImageNet dataset consisting of 14
million hand-annotated images. VGG was the first runner-up in 2014 right behind
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GoogLeNet, however, VGG performed better on the localization task. There are
variations of the network depending on the depth. VGG16 is the VGG variation
using 16 layers, only counting convolutional and fully connected layers.

As explained in subsection 3.2.1, transfer learning can be used to repurpose a
neural network for a different task. A model, such as VGG16, has shown excellent
performance on image classification tasks, which on an abstract level is the same
domain as in Lee et al. [2017]. The idea is that earlier layers in a convolutional
network detect more fundamental features. The first layers may detect simple
shapes such as edges, then the next layers raise the complexity slightly, finding
geometric shapes, and for each layer, more complex features are represented. The
most fundamental features a network finds are similar for most convolutional
networks, therefore one should be able to take the first layers from a well-trained
model and reduce the parameters that require training.

3.3.2 Architecture

It was not clearly stated how the VGG16 was utilized as they only mention using
a ”modified version of the VGG16 convolutional neural network”. For instance,
they fail to tell how many layers from VGG16 were used, or whether these were
frozen from training or trained further. They do mention using Xavier Initializa-
tion [Glorot and Bengio, 2010] implying one or more layers where trained from
scratch. An illustration of the full architecture can be seen in figure 3.2.

The network uses 13 convolutional layers, and 3 fully connected layers. The
classification of AMD in OCT images is quite different from classification in
ImageNet. ImageNet requires classification of everyday objects such as animals,
household items, etc., while OCT images are medical data where the objective is
detecting symptoms of AMD. Therefore it is safe to assume the fully connected
classification layers were trained from scratch and it is highly likely the deeper
convolutional layers were replaced as well.

Similar to RetiNet, this approach is directed towards AMD diagnosis with limited
resources. Transfer learning ensures fewer training parameters as well as a good
starting point for basic feature detection. The depth of the VGG16 network
provides the ability to represent complex features which may be needed in the
domain of AMD diagnosis. A large dataset is ensured by training on image slices
instead of volumes, which is favorable for large deep networks that require a large
amount of data for learning. It should be noted that Lee et al. is unable to use
the VGG16 model to evaluate volumes. This is because VGG16 only consist of
2D convolutions.
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Figure 3.2: Illustration of the modified VGG16 model from Lee et al. [2017]
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3.3.3 Occlusion Test

Figure 3.3 show some results from the occlusion test. These show the focus points
from the network in the input image. Visualizations of how the network performs
give great insight into what exactly the network has learned. The visualization
shows a heat map layered on top of the image. A heat map has a scale in colors
from low interest in black and dark blue to high interest in orange up to almost
white. One can compare the heat maps to the evaluation of professionals and see
which symptoms the network has learned. Lee et al. [2017] do exactly this in their
discussion on the network’s performance. Among other things, they discovered
the network did not utilize certain symptoms in their evaluation. For instance,
it seems the model lacked focus on drusen, sub-retinal fluid, pigment epithelial
detachment, among other things. A second valuable aspect of occlusion testing is
the aid it gives to the user of the system. If a professional were to use this network
for diagnosis and come to disagree with its evaluation, the professional can better
understand why the network made that diagnosis and confidently disregard or
accept the assessment. The occlusion test is based upon the method proposed in
Zeiler and Fergus [2014].

Figure 3.3: Occlusion results from Lee et al. [2017]. A, B, C are input images to
the network, and D, E, F are the corresponding occlusion test resultsing.

3.4 Spatiotemporal Convolutions

The paper A Closer Look at Spatiotemporal convolutions for Action Recognition
[Tran et al., 2017] does not tackle the problem of diagnosing any sort of illness,
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but rather to recognize actions in video. However, these two problems are not
too far apart. A video is merely a 3D volume in which the depth is temporal and
each slice is one frame in the video. A video is analogous to a medical image and
classifying the action would correspond to diagnosing the illness.

The paper dives into several interesting approaches using 2D convolutions, 3D
convolution, and combinations of the two. Through testing the different ap-
proaches a new interesting architecture emerged called (2+1)D convolution. The
comparisons bring useful insight on the many approaches used in handling clas-
sification of 3D volumes. It is important to note that all tests were done using
the ResNet architecture [He et al., 2015].

3.4.1 Convolutional Residual Blocks for Video

This subsection will briefly go into the many spatiotemporal convolution variants
Tran et al. [2017] tested using residual learning. The variants can be seen in
figure 3.4. The residual blocks discussed here are the typical ”vanilla” residual
blocks explained in He et al. [2015].

Figure 3.4: Residual network architectures from Tran et al. [2017]. (a) shows 2D
ResNets (R2D). (b) displays ResNets with mixed convolutions (MCx, in this case
MC3). (c) shows reversed mixed convolutions (rMCx, in this case rMC3). (d)
illustrates 3D ResNets (R3D), while (e) shows ResNets with (2+1)D convolutions
(R(2+1)D). For clairty, residual connections are omitted.

A residual block is defined as follows: Let zi be the computed tensor by the
i-th convolutional block in the residual network. Each block consists of two
convolutional layers with a ReLU activation function after each layer. The output
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of the i-th residual block is given by:

zi = zi−1 + F (zi−1; θi) (3.1)

F (; θi) is the full operation of the block parameterized by weights θi, which con-
sist of two convolutions as well as the ReLU activation functions. It should be
further mentioned that Tran et al. [2017] uses networks where the sequence of
convolutional residual blocks culminates into a top layer performing global av-
erage pooling over the entire spatiotemporal volume and a fully-connected layer
responsible for the final classification prediction.

R2D and f-R2D Architecture:

This architecture does 2D convolution over the entire video ignoring temporal
ordering [Feichtenhofer et al., 2016]. In the case of f-R2D, a series of 2D residual
blocks are applied to each frame independently, with the same filters applied to
all frames. No temporal information is considered in the convolutional layers
and a global spatiotemporal pooling layer collects the information from all the
independent frames to make a classification. Such a mechanism can be viewed
as taking a vote from each frame instead of looking at the relationship between
them. This is in many ways similar the approach used in Apostolopoulos et al.
[2016] where one only learns features based on each slice of a volume.

For R2D the input is reshaped from C×L×H×W to CL×H×W where C is
the number of channels, L is the number of frames in the video or depth, H is
height and W is width. The filters are 3D where the depth (channel dimension)
of the filter cover the whole depth of the clip (CL), thus collapsing the temporal
information into a 2D plane. Therefore, any temporal information cannot be
extracted in the layers after.

Perhaps most interesting is the results this achieved. The network in Feicht-
enhofer et al. [2016] was capable of obtaining accuracies comparable with the
state-of-the-art on action recognition at the time. This pulls relations to RetiNet
[Apostolopoulos et al., 2016] that also managed to achieve superb results despite
the lack of consideration for relations between slices. Tran et al. do not mention
any results for f-R2D.

MCx and rMCx Architecture:

These architectures will only be briefly mentioned as they mostly serve as a
foundation to the R(2+1)D architecture. MCx stands for Mixed Convolutions
where x denotes how many layers will be 2D convolutions while the remaining
are 3D convolutional layers starting from the end of the network. rMCx is simply
the reverse of this. Figure 3.4 may aid in clarifying the concept.
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According to Tran et al. [2017], these networks got results comparable to R3D, but
with the advantage of substantially reducing the number of trainable parameters.
A reduction in parameters is desired as it speeds up learning time considerably,
and can times enable training with smaller datasets.

R3D Architecture:

A network only using 3D convolutions [Karpathy et al., 2014] preserve the full in-
formation of the input through the network. Each filter has a shape ofNi−1×t×d×d
where Ni is the number of filters used in the i-th block, t is the depth of the filter,
and d is the width and height. They are convolved in 3D and thereby outputs
the same dimensionality as the inputs.

Through tests performed by Tran et al. it was found that even R3D performs
better than R2D, indicating that the temporal information does indeed aid in
obtaining higher accuracies. However, R3D is the most costly architecture having
almost three times as many parameters as R2D.

3.4.2 The R(2+1)D Architecture

The R(2+1)D architecture or even the (2+1)D convolutional block is of the
biggest interest due to its favorable properties that may suit AMD diagnosis.
It is for this reason R(2+1)D gets its own subsection, where a more detailed
explanation is given.

The R(2+1)D convolution is a decomposition of 3D convolution. Instead of
moving a 4D kernel in three dimensions, a 2D convolution with a 3D kernel is
applied on each spatial frame and then finally a 1D convolution is done with
a 2D kernel only in the temporal dimension. There are a few advantages in
this approach compared to 3D convolution. The first one being the number of
non-linearities in one convolutional block. A regular 3D layer does only one
convolution with one activation function, while (2+1)D convolution does two
convolutions with an activation function after each, doubling the number of non-
linearities in one block. Secondly, Mi the hyper-parameter determining number
of output channels going from the 2D convolution to 1D convolution can be
adjusted. This allows the freedom to test variations of Mi adjusting how many
parameters are in the block. If there is a need for a model with fewer parameters,
Mi can be reduced so that a (2+1)D convolutional block has fewer parameters
than a normal 3D convolutional layer. In Tran et al. [2017] Mi is set as:

Mi =

⌊
ts2Ni−1Ni
s2Ni−1 + tNi

⌋
(3.2)



3.4. SPATIOTEMPORAL CONVOLUTIONS 39

Figure 3.5: 3D and (2+1)D convolution from Tran et al. [2017] with modified
labels. (a) A single 3D convolution filter with dimensions t×s×s where t is tem-
poral extent (depth) and s is spatial width and height. (b) A single (2+1)D
convolutional block, which is a 2D convolution followed by a 1D depth-wise con-
volution. Mi represents the number of 2D filters, this will affect the number of
trainable parameters in the block.

Where t is the size of the temporal dimension, s represents both the height and
the width as the paper assumes quadratic kernels and Ni is the number of filters
in layer i. This value for Mi makes the number of parameters in the (2+1)D
block approximately equal to the number of parameters in a 3D layer, however
maintaining the advantage of having twice the number of non-linearities, which
allows for more complexity in the network according to Tran et al. [2017].

(2+1)D convolution can be explained as the following steps:

1. Arrange the 3D input so that each frame is considered a case in the mini-
batch. In perspective of the 2D convolutional layer, it is doing a 2D convo-
lution on a large batch of individual video frames.

2. Perform 2D convolution with M kernels.

3. Arrange the output back into 3D volumes.

4. Make each line of pixels depth-wise in the volume be an individual case in
a mini-batch.

5. Perform 1D convolution with the wanted number of kernels.

6. Arrange output back into 3D volumes.

In the end, the size and dimensionality of the output are the same for a 3D convo-
lutional layer and a (2+1)D convolutional block. Tran et al. showed empirically
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that (2+1)D obtained better results than regular 3D convolution, for residual nets
on various datasets such as Sports-1M, Kinetics, UCF101, and HMDB51. It was
additionally shown that the effect is even more prominent in deeper networks,
meaning it is ideal for video classification tasks with today’s trend of making
rather deep networks. Results from one of the tests are seen in table 3.4.

Net # params Clip@1 Video@1 Clip@1 Video@1
Input 8× 112× 112 16× 112× 112
R2D 11.4M 46.7 59.5 47.0 58.9

f-R2D 11.4M 48.1 59.4 50.3 60.5
R3D 33.4M 49.4 61.8 52.5 64.2
MC2 11.4M 50.2 62.5 53.1 64.2
MC3 11.7M 50.7 62.9 53.7 64.7
MC4 12.7M 50.5 62.5 53.7 65.1
MC5 16.9M 50.3 62.5 53.7 65.1
rMC2 33.3M 49.8 62.1 53.1 64.9
rMC3 33.0M 49.8 62.3 53.2 65.0
rMC4 32.0M 49.9 62.3 53.4 65.1
rMC5 27.9M 49.4 61.2 52.1 63.1

R(2+1)D 33.3M 52.8 64.8 56.8 68.0

Table 3.4: Action recognition accuracy for different forms of convolution on the
Kinetics validation set from Tran et al. [2017].

3.5 CNN Fixations

CNN Fixations [Mopuri et al., 2019] is a visualization technique for CNNs. Vi-
sualization of ANNs has the goal of displaying the inner working of the network
in a way that brings insight for humans. ANNs are often viewed as black boxes
that give little ”reasoning” for the output. Therefore, it is often desired to find
ways to visualize what part of the input made the greatest impact for generating
the output. Mopuri et al. [2019] has shown great results, one such example is
seen in figure 3.6. This technique could be a key in displaying the symptoms in
an AMD detection model. Not only does the technique perform well on a wide
range of image-related tasks, CNN Fixations requires no architectural changes,
additional training or gradient computation [Mopuri et al., 2019].
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Figure 3.6: Illustration of CNN Fixations on images from ImageNet validation
set Mopuri et al. [2019]. From left to right: Input images, CNN fixations, heat
map calculated through Gaussian blurring of CNN fixations.

3.5.1 Calculation of CNN Fixations

Mopuri et al. proposes a simple, but robust concept in making their visualization.
The method works iteratively backwards from the output layer of the model to
the input image. For each layer the algorithm determines the set of positively
correlated activations from the previous layer. These positively correlated acti-
vations are called CNN fixations or discriminative locations and can be found for
each layer moving backwards all the way to the input. The method only need a
forward pass in the model to calculate the discriminative locations.

Rather than being one algorithm, CNN Fixations is a set of modular algorithms
that each work on a particular part of the CNN. For instance, one algorithm
works in convolutional layers, while another one handles fully connected layers.
The concept is generic enough that it can be used even for advanced architectures
such as ResNet [He et al., 2015] and GoogLeNet [Szegedy et al., 2015].

Algorithm 2: Discriminative Localization at Fully Connected Layers

Input: Xl, incoming discriminative locations from higher layer:
{Xl[1], ..., Xl[m]}
Wl, weights of higher layer l
Al−1, output activations at current layer l − 1

Output: Xl−1, outgoing discriminative locations from the current layer
1 Xl−1 = ∅
2 for i = 1...m do

3 W
Xl[i]
l ← weights of neuron n

Xl[i]
l

4 C ← Al−1 �WXl[i]
l // Point-wise multiplication

5 Xl−1 ← append ( Xl−1, args(C > 0) )
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Algorithm 2 shows how to compute discriminative locations for fully connected
layers. m is the number of discriminative locations calculated from layer l in the

network. The discriminative locations Xl are indices for neuron locations. W
Xl[i]
l

is the weights from all neurons at layer l − 1 to neuron n
Xl[i]
l at location Xl[i]

in layer l. C is the input activations going into neuron n
Xl[i]
l , while Al−1 is the

output activations coming out of neurons in layer l − 1.

The first set of fixations found in the output layer is usually the prediction of
the model. For instance, if the last layer is a softmax layer, the discriminative
location will be the single output activation with the highest value. As seen in
figure 3.7, the algorithm works by looking at the input activations going into each
of the neurons at discriminative locations. The discriminative locations for layer
l − 1 are the positions of neurons that contributed a positive input activation to
a discriminative location in layer l.

Algorithm 3: Discriminative Localization at Convolution Layers

Input: Xl, incoming discriminative locations from higher layer:
{Xl[1], ..., Xl[m]}
Wl, weights of higher layer l
Al−1, output activations at current layer l − 1

Output: Xl−1, outgoing discriminative locations from the current layer
1 S(.): A function that sums a tensor along xy axes Xl−1 = ∅
2 for i = 1...m do

3 W
Xl[i]
l ← weights of neuron n

Xl[i]
l

4 A
Xl[i]
l−1 ← receptive activations for neuron n

Xl[i]
l

5 C ← S(Al−1 �WXl[i]
l ) // Per channel contribution

6 ch← argmax(C) // Discriminative channel

7 (Px, Py)← argmax(Al−1 �WXl[i]
l (:, :, ch)) // Discriminative location

in channel ’ch’
8 Xl−1 ← append ( Xl−1, ch · k2l−1 + Px · kl−1 + Py )

9 Xl−1 ← unique(Xl−1)

Algorithm 3 describes how one finds discriminative locations for convolutional
layers. In a convolutional layer, all neurons in the current layer is not connected to

the previous layer. Therefore, algorithm 3 uses A
Xl[i]
l−1 which is all the activations

linked by weights to neuron n
Xl[i]
l . Furthermore, C is the input activations going

into n
Xl[i]
l where the values in each channel is summed together, leaving an array

of total input activations from each channel going into neuron n
Xl[i]
l . ch is the

channel index for the channel with the highest total input activation. Once ch is
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found, algorithm 3 finds the coordinates of the highest input activation in channel
ch, as seen in line 7. The higher dimensional discriminative location is flattened
in line 8 and stored as a fixation for layer l − 1, where kl−1 is the kernel size in
layer l − 1. A fixation in layer l − 1 may be linked to more than one fixation in
layer l, which means one fixation can be stored multiple times. It is unnecessary
to compute the next fixations twice, therefore Xl−1 is reduced to only unique
discriminative locations.

Algorithm 3 can be generalized to any n-dimensional convolution with few differ-
ences. Functions S would generalize to a function reducing channels to one total
input activation value, and line 7 may have n-dimensional coordinates. Addition-
ally, line 8 would need to flatten the n-dimensional discriminative location. The
general rule followed by Mopuri et al., is to always find the highest contributor
on a large scale and move smaller and smaller. For instance, when computing
CNN fixations in ResNet, one first determines which path in the residual block
contributes most, and then computes fixations only within that path.

Mopuri et al. also shows how fixations can be computed for other architectures
such as recurrent neural networks, however, such architectures are irrelevant in
this thesis.

Figure 3.7: Illustration of finding discriminative locations in fully connected lay-
ers from Mopuri et al. [2019]. fcN is the Nth fully connected layer, Xl is the

discriminative locations at layer l and Al−1�WXl[1]
l is the input activations going

into neuron Xl[1] in layer l.
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3.5.2 Display of CNN Fixations

Mopuri et al. mostly focus on displaying CNN fixations on the input image, as it is
hard to understand the output images of layers inside a CNN. The discriminative
locations in the input image are distributed on each of the channels of the image.
When displaying these fixations, their channel position is ignored and they are
all displayed on one plane on top of the input image itself, as seen in figure 3.6.
However, before fixations are displayed, a filter is applied to all the fixations
to remove outliers. Mopuri et al. defines an outliers as a fixation that is not
supported by sufficient neighboring fixations. In more detail, a fixation needs to
have more than a certain percentage of total fixations within a given circle around
it to remain. Mopuri et al. selected the circle radius to be 10% of the diagonal
of the image and required 5% of total fixations to be within the circle.

A localization map is computed by taking the Gaussian blur of the fixations. The
result is something resembling a heat map where high concentrations of CNN
fixations is highlighted, as seen in the rightmost images in figure 3.6. The range
goes from low interest with blue to high interest in red. The representation brings
an additional perspective on what the model focuses on. Higher concentration of
fixations is shown as red and indicates higher interest in that region.

3.6 Summary

This chapter has covered the related works to this thesis and the methodology
in finding and selecting related works. The first paper presented was about
RetiNet, a network using two stages of training. First, a pre-training stage where
a network was trained using the slices in the OCT scans as individual cases for
training. Some parts of this network was transferred over to a second network.
This second network flattened the OCT scans by stacking the slices height-wise,
and only trained the fully connected layers. This yielded state-of-the-art results
on classification of AMD.

Lee et al. proposed a pure 2D convolutional approach to classification of AMD
by using parts of the pre-trained network VGG16. They also used a visualization
technique called an occlusion test to evaluate performance of the network.

Spatiotemporal convolution was examined for classification of actions in video.
This type of convolution is a decomposition of 3D convolution where one first
executes 2D convolution for each slice in the 3D volume and then execute 1D
convolution for each string of depth-wise pixels. It was shown that this outper-
formed regular 3D convolution for action recognition obtaining state-of-the-art
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results. This may be useful even in the domain of AMD detection.

CNN Fixations is a visualization technique for CNNs. It works by going back-
wards through the network finding positively correlated activations called CNN
Fixations or discriminative locations.
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Chapter 4

Architecture

Some interesting approaches on classification of medical data has been mentioned
in the previous chapter. These approaches disregard the depth-wise relations in
the input volumes, but still obtaining impressive results. Tran et al. found most
3D models to be superior to 2D, and proposed a (2+1)D convolution, which
achieves state-of-the-art results by reducing the computational complexity while
maintaining performance. I draw a parallel between Tran et al. [2017] and my
own task and argue there might exist a similar advantage in using 3D convo-
lution for AMD diagnosis. In this chapter, the architecture of my model will
be covered. The architecture is implemented using Python with the framework
PyTorch.

Full implementation and datasets are found at:
https://github.com/StianHanssen/OptiNet

A final note: Throughout this chapter, the dimensions of the input is given as
(channels × depth × height × width). Dimensions of kernels will be (depth ×
height× width).

4.1 Base Block

With experimentation and inspiration from Tran et al. [2017] and He et al. [2016],
an architecture was assembled. A base block consisting of multiple layers is used
as the basis for most of the network. Just like in ResNet [He et al., 2016], a
certain pattern of sequential layers occurred that can be made into its own ”super
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layer” called a block. Through experimentation I discovered that a base block
with two convolutions was ideal. Validation accuracy went down when using one
convolution in the base block. Using base blocks with 3 convolutions made the
model so large it was difficult to train with the given resources. An overview of
the block is given in table 4.1.

Layers / Methods Channels In Channels Out

(2+1)D Convolution in channels out channels
Batch Normalization - -
ReLU Activation Function - -
(2+1)D Convolution out channels out channels
Batch Normalization - -
ReLU Activation Function - -
Downsampling - -

Table 4.1: The base block is specified by arguments: in channels, out channels,
down sample and stride, which means number of channels going into the block,
number of channels going out of the block, the downsampling method to use (spec-
ified with its own arguments before added to block) and stride for the (2+1)D
convolutional layer respectively. For batch normalization, ReLU activation, and
downsampling it is assumed they will not change the number of channels. The
methods are always applied to the whole input.

The block consists of 4 components: (2+1)D convolution, batch normalization,
ReLU activation and downsampling. The (2+1)D convolutional layers use a
3× 3× 3 kernel with stride of 1× 1× 1. A padding is also added with thickness 1
in all directions. The ReLU activation function is applied point-wise to the whole
output of the batch normalization layer. The downsampling technique used is 3D
max pooling with varying kernels and strides, as described in table 4.2. All the
convolutional layers use bias initialized to 0. The batch normalization is applied
to all values coming from the convolutional layer. It was used for the properties
explained in section 2.4.4.

4.2 OptiNet

For the sake of simplicity, the model developed in this thesis will be called
OptiNet. The full architecture of OptiNet is seen in table 2.4 as well as in figure
4.1. It follows a pattern of repeated base blocks that contains two convolutions
and a downsample layer. They all use 3D max pooling as their downsampling
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Layers Parameters Activation Output Shape

Input 1× 32× 256× 256
Base Block In: 1, Out: 64, DS1 ReLU 64× 16× 64× 64
Base Block In: 64, Out: 128, DS1 ReLU 128× 8× 16× 16
Base Block In: 128, Out: 256, DS1 ReLU 256× 4× 4× 4
Base Block In: 256, Out: 512, DS2 ReLU 512× 2× 2× 2
(2+1) Convolution In: 512, Out: 512 ReLU 512× 2× 2× 2
3D Max Pool Kernel=Stride: 2× 2× 2 512× 1× 1× 1
Flattening Dimensions 512
Fully Connected Size: 256 ReLU 256
Fully Connected Size: 1 Sigmoid 1

Table 4.2: The full architecture of OptiNet. In and out parameters specify the
number of channels going in and out of a layer. DS1 stands for Down Sampling1
which is 3D max pooling with 2 × 4 × 4 kernel and stride. DS2 stands for
Down Sampling2 which is 3D max pooling with a 2 × 2 × 2 kernel and stride.
Size specifies the number of neurons in the fully connected layers. The (2+1)D
convolutional layer used a 3× 3× 3 kernel with stride 1× 1× 1 and padding of
1 in all directions.

layer with two variations of kernels and strides. The first one called DS1 uses
kernel and stride of dimensions 2 × 4 × 4. The second variation called DS2 use
kernel and stride of dimensions 2 × 2 × 2. The reason for the usage of the two
variations is due to the OCT scans having the shape 1 × 32 × 256 × 256. The
height and width are eight times larger than the depth. It is assumed the earlier
features in the network are noisier and can afford to be reduced by a factor of
four, while the later layers use DS2 because it is assumed their features are higher
level and more important.

After the base blocks, one additional convolution and max pool is added. This
is to add additional complexity to the network while reducing the number of
parameters. The final (2+1)D convolutional layer has the same number of input
and output channels for this reason. The extra max pooling layer allows the
number of neurons to be 512 instead of 512 × 2 × 2 × 2 = 4096. In terms of
parameters between the last convolutional layer and the first fully connected
layer: 512 × 256 = 131 072 parameters instead of 4096 × 256 = 1 048 576,
excluding bias. A substantial reduction in parameters was necessary due to the
limited capacity of the GPU in terms of memory.

The number of fully connected layers was chosen on a similar basis. Having one
layer lead to the network never converging while two layers performed quite well.
As space was already limited, three layers was not tested.
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Figure 4.1: Illustration of OptiNet
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Using four base blocks was a result of needing to reduce the number of neurons
before reaching the fully connected layers. Adding any more base blocks would
once again cause problems for the GPU. The small kernels of 3×3×3 with strides
1×1×1 was chosen for its popularity in modern networks with its roots in VGG
from Simonyan and Zisserman [2014]. ReLU deals with vanishing gradients better
than many other activation functions, in addition to overwhelmingly be the choice
for activation in the literature. As covered in section 2.4.3, max pooling makes
the network more robust against noise and variation in rotation present in the
data.

4.3 Summary

OptiNet’s architecture is based on many popular choices in the field of convo-
lutional neural networks. The use of kernels of size 3 is inspired by the famous
CNN model VGG16. The use of batch normalization is inspired from ResNet as
well as other models that have performed well in the ImageNet competition. The
activation function ReLU and max pooling for downsamipling was used for the
same reasons.

The number of convolutional layers was derived by trial and adjustment as well
as to fit in the restrictions in resources available. A repeating pattern in the
network was abstracted to its own layer called a base block. Reducing a block
to only have one convolution lead to significant decrease in validation accuracy.
Furthermore, there was no capacity for a network much bigger than OptiNet in
the experimental setup.

Each block contained two convolutional layers, which used (2+1)D convolution.
Inspired by Tran et al.’s description of the action recognition field, I saw sim-
ilarities to the field of detecting AMD. (2+1)D convolution seemed to be ideal
for training where high complexity is wanted, but fewer parameters are required
because the dataset is small. The architecture can however easily switch to using
3D convolution, which is explored further in the next chapter. The overview of
the architecture can be seen in figure 4.1.
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Chapter 5

Experiments and Results

This chapter will cover the experimental aspects of the project. It will go into
detail about the handling of the dataset and how training was conducted. The
reasoning for choices such as hyper-parameters will be given, as well as data
augmentation choices and metrics used. At the end of the chapter, the evalu-
ation method and results will explain how the network was tested and how it
performed.

5.1 Experimental Plan

This section covers the experiments planned for the thesis and what these exper-
iments should answer. The following experiments are planned:

• Train multiple models with the same datasets and evaluate them on the
validation set. Do this while testing the OptiNet architecture with (2+1)D
convolution and regular 3D convolution. Find the mean and variance for
the set of collected results. These result allow for a more realistic evaluation
of the networks performance by accounting for random initialization. This
will aid in evaluating whether both research goals are reached and give
metrics needed to answer research question 2.

• Train multiple models of OptiNet using (2+1)D convolution and 3D con-
volution on a shuffled Duke dataset. For each training session of a model,
shuffle the dataset and then split it into the training and validation par-
tition. This experiments tests the models to see how sensitive they are
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to arrangements of training/validation splits, and shed light on research
question 1.

• Run CNN Fixations on q selected model that seem to perform well. CNN
Fixations will highlight what the model focus on, which helps in goal 1.
The visualizations will be evaluated by a health professional to see how the
model performs from a human perspective. The model will be evaluated
on focus points rather than overall classification.

5.2 Experimental Setup

This section will highlight how the datasets are used, how training was done as
well as the evaluation process. The datasets comes from Duke University and St.
Olav’s University Hospital, and was altered to fit the specific task of the project.
The training process includes the hyper-parameters and certain design decisions
made for OptiNet. The evaluation process covers which metrics were used to
evaluate the results of the network and how the evaluation was done.

5.2.1 Dataset from Duke University

In order to compare performance of OptiNet to other works, the the biggest
public dataset on AMD was used. This dataset is from Duke University [Farsiu
et al., 2014] and is referred to as the Duke dataset in this thesis. It contains
OCT scans from 269 AMD cases and 115 healthy cases. Each scan is of shape
1× 100× 512× 1000 (channels× depth× height× width).

The OCT scans were too big for the hardware setup I had available. They were,
therefore, cropped down to shape 1×32×512×512. Center crop was used for all
dimensions except for in height where only the bottom was cropped off. This is
because the area of interest seemed to be mostly located at the top in the height
dimension. Furthermore, the height and width were resized so the final shape of
the OCT scans became 1 × 32 × 256 × 256. Finally, all slices in the scans had
their mean set to 0 and variance to 1. The reasoning for this can be found in
section 2.4.4. The adjusted OCT scans are stored in batches of 24 in the HDF5
format for its compactness and fast loading time.

The dataset was partitioned into a training set and a validation set. The training
set contains 221 AMD scans and 91 healthy scans. This leaves the validation set
to have 48 AMD scans and 24 healthy scans. In terms of percentage of AMD in
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each partition: Training has ∼ 71% and validation has ∼ 67%. Validation was
only used to evaluate the network and was never trained on.

A fairly small amount of data augmentation was used. To ensure as few imple-
mentation flaws as possible only horizontal flipping on each slice was applied.
All slices in a volume were flipped the same way. This doubled the size of the
dataset. The training partition is also shuffled during training.

5.2.2 Dataset from St. Olav’s University Hospital

For simplicity, the dataset from St. Olav’s University Hospital will be called the
St. Olav’s dataset. The dataset consists of data collected through the NorPED
study conducted by Dr. Arnt-Ole Tvenning. The healthy cases are collected from
volunteer students at St. Olav’s University Hospital.

There are 343 cases of AMD and 46 healthy cases in the original dataset. One
OCT scan is stored as a folder of 2D images that each represent a slice of the OCT
scan. The folders containing AMD cases also contain some additional information
such as visual acuity and a 2D photograph of the rear of the eye, however, this
information is never used. Additionally, there is an excel sheet mapping patient
ids to OCT scan ids. Almost all patients in the dataset contributed more than one
OCT scan from different time periods. The scans’ dimensions are not consistent
across the dataset. To make the dataset easier to handle, it was processed in a
similar fashion to the Duke dataset.

The OCT scans were first pruned by only accepting scans with dimensions 1 ×
32 × 384 × 384 or larger. Any OCT scan larger than 1 × 32 × 384 × 384 was
center cropped to fit these dimensions and then resized slice by slice to the final
dimensions 1× 32× 256× 256. The final number of AMD cases is 337 while the
number of healthy cases remained unchanged.

The St. Olav’s dataset was partitioned into a training and a validation partition
where the training partition holds ∼ 70% of the cases. When making the parti-
tions it was enforced that OCT scans from one patient remained in only one of the
partitions. This is to ensure no training case is close to identical to a validation
case. A greedy algorithm was used to distribute the patients into two partitions.
The two partitions are even in number of OCT scans. To achieve a 70/30 split,
a fake patient was initially placed in the validation partition. Once the algo-
rithm finished distributing patients 50/50 (by number of OCT scans), the fake
patient was removed shifting the case ratio to the correct 70/30 split, where the
training partition holds 70% of the cases. The procedure was done separately for
AMD cases and healthy cases so that both partitions would have approximately
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the same distribution of AMD and healthy cases. The training and validation
partition ended up with ∼ 87% and ∼ 89% AMD, respectively.

The final processed dataset was stored in the HDF5 format with a meta file giving
information about the dataset. This meta file gives information such as number
of cases in both partitions, the training/validation ratio, which patients are in
which partition and more.

5.2.3 Training Process

OptiNet was trained on an NVIDIA Tesla V100 PCI-E 16 GB GPU with the
hyper-parameters and design decisions found in table 5.1.

Parameter/Decision Choice

Training Mini-Batch Size 1
Validation Mini-Batch Size 1
Learning Rate 0.00001
Loss function Binary Cross Entropy
Bias Initialization All values set to 0
Weight Initialization Xavier [Glorot and Bengio, 2010]
Optimizer Adam [Kingma and Ba, 2014]

Table 5.1: OptiNet’s hyper-parameters and design decisions for training.

The mini-batch size was limited to the storage capacity of the GPU, and as it
turned out, it gave quite good performance. Therefore, little effort was put into
multi-GPU training which would allow bigger mini-batches. The training process
stored the model parameters every time it found a better validation accuracy.
This method was used instead of early stopping. When training multiple models
sequentially on one GPU, storing models and using time limits was more ideal
because a total time limit on the GPU resource is required by server guidelines.
The training period had a set time of 3 hours per model. The training time
was decided after finding that a model would usually reach peak validation loss
and accuracy during this period. If a new design decision was tested, a much
greater time frame was set and the network was periodically manually monitored.
Training loss was logged every step to aid in the evaluation of how the network
performed.

Validation loss and accuracy was calculated every 10 steps. Both loss and ac-
curacy were calculated for the whole validation set and averaged. A prediction
for accuracy was made by thresholding the network output on 0.5. To monitor
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if OptiNet was stuck only selecting one class, an additional measure called AMD
ratio was added. AMD Ratio is calculated by AMD Preditions

Total Preditions for a validation
set. These metrics could be live monitored using TensorBoard.

One could select between datasets and whether to use (2+1)D convolution or
regular 3D convolution through the training parameters, making it easy to switch
between experiments.

In order to train multiple models with the same setup, one could also select to
run multiple training sessions in sequence where each model get a set time frame
to train in.

5.2.4 Visualization

A general implementation of CNN Fixations [Mopuri et al., 2019] was made for
PyTorch. The CNN Fixation framework followed the algorithms described in sec-
tion 3.5.1 with a few deviations. Rather than storing the discriminative locations
as flattened 1D indices, their dimensionality was preserved and transformed to
the right dimensionality for each layer.

Some algorithms in the framework had to be created based on descriptions in
Mopuri et al. [2019]. Max pooling already finds the highest contributing values,
thus one only need to go back through the max pool layer from a discriminative
location to find the next discriminative location. Batch normalization normalizes
the values, which means the highest contributing values remain the same. In this
case, the discriminative locations got passed on to the next layer.

A new fixation algorithm was made for (2+1)D convolution by working through
the components of (2+1)D convolution backwards. This was done by first trans-
forming the input discriminative locations to the form (batch size × height ×
width, channels, depth), which allows for the computation of fixations in 1D con-
volution. ”×” represents multiplication in this case. The discriminative locations
calculated from 1D convolution is further transformed to be of form (batch size
× depth, channels, height, width) to fit 2D convolution. Once fixations for 2D
convolution is calculated, the fixations are transformed back to the regular form
(batch size, channels, depth, height, width) and passed to the next layer outside
of the (2+1)D convolutional block.

The fixations are visualized by showing 3 pictures side by side, the exact same
way as in figure 3.6 in section 3.5. Scrolling with the mouse-wheel moves the view
depth-wise in the OCT scan. Only one slice is shown for each scroll step.

The localization map was computed as described in section 3.5.2. A 3D Gaussian
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blur was applied over all of the discriminative locations in the OCT scan. The
map was sliced up, set opacity to 0.6 (where 1 is opaque) and layered on top of
the corresponding OCT slices.

To obtain activations and weights from PyTorch, hooks were added to each layer.
The hooks would place data into a global dictionary linking a layer or module
object to activation tensors. All fixation algorithms had access to the dictionary
and could therefore obtain all the necessary data.

The use of visualization was inspired from Lee et al. [2017] in section 3.3. By
having health professionals evaluate the focus points of OptiNet, one can gain
further insight into how the model views AMD and how it may differ from human
evaluation. It can also aid in assessing whether OptiNet is a good model for
detection of AMD.

5.2.5 Evaluation Process

Making a training, validation and testing partition would leave the network with
an unreasonably small amount of cases to train on. Therefore, the validation
set was also used for the final evaluation of OptiNet. Data augmentation was
turned off, so only real data was evaluated. Each OCT scan was run through the
network without training. The following metrics were calculated:

• Average Validation Loss: Calculated using Binary Cross Entropy

• Accuracy: Fraction of correct predictions among all predictions. Making
predictions by thresholding on 0.5.

• Precision: Fraction of true instances among the predicted true instances.

• Recall: Fraction of true instances that have been predicted over all true
instances.

• Receiver Operating Characteristic (ROC) Curve: Relation between
true positive rate and false positive rate. The rate is found by adjusting
the threshold for making a prediction.

• Area under the curve of ROC (AUC): The final measure of correctness
showing how close the network is to ground truth over predictions of all
thresholds.

Accuracy was selected because it was used when storing the ”best” model during
training. Precision and recall was selected for details on how the network evalu-
ates data. Finally, AUC is chosen as the overall performance measure as it works
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similar to accuracy, but goes further to consider the degree of certainty for the
predictions as well.

To find sensitivity to random factors in the model, the same model would be
initialized and trained 10 times. Mean and variance was calculated for AUC,
validation accuracy, precision and recall.

Furthermore for the Duke dataset, 10 models were trained with a randomly ini-
tialized train/validation split in the ratio approximately 70/30. This was done
by collecting all cases into one array, shuffle them, and finally split the array
so that both partitions have the same number of cases as they originally had.
Finally, to ensure the evaluation process would not use any training cases, the
shuffled indices were stored with the model. That way one can make the exact
same shuffle and split again to obtain the validation partition used on a particular
model.

CNN fixations for a performing model was calculated and sent to Dr. Arnt-Ole
Tvenning for evaluation. Dr. Tvenning went through the OCT scans evaluating
how similar the focus points are to what he would focus on, whether there is
anything OptiNet puts more weight on than he would, and whether there are
times OptiNet’s assessment seems questionable.

5.3 Experimental Results

One experiment would usually take about 30 hours, with 3 hours of training per
model. In the early stages of the project, it was more common to train a single
model for 12 hours time, and monitor how the training went live.

5.3.1 Mean performance of OptiNet

OptiNet was trained with the same setup 10 times and evaluated for both datasets
and both convolutions. The architecture is identical with the exception of which
type convolution is used. The results on the Duke dataset can be seen in table
5.2 and the results for the St. Olav’s dataset is seen in table 5.3.

The results reveal that (2+1)D convolution perform better than 3D convolution
on all metrics when trained on the Duke dataset. Of all the metrics measured,
recall makes up the biggest difference with ∼ 0.01 difference in mean recall. This
is reflected in their AUC values, where (2+1)D convolution performs significantly
better.
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Metric OptiNet with (2+1)D Convolution OptiNet with 3D Convolution

Accuracy 0.97917± 0.025039 0.91667± 0.028464
Precision 0.98361± 0.019689 0.98554± 0.024118
Recall 0.98541± 0.026435 0.88958± 0.055941
AUC 0.99765± 0.0036011 0.98993± 0.0063338

Table 5.2: OptiNet’s results on the Duke dataset. Accuracy, precision, recall, and
AUC are shown in fractions. The results are of the format ”mean ± standard
deviation”, over the results of 10 trained models for each convolution type.

Metric OptiNet with (2+1)D Convolution OptiNet with 3D Convolution

Accuracy 0.98860± 0.0078947 0.99561± 0.0058844
Precision 0.99518± 0.0088118 0.99805± 0.0039026
Recall 0.99215± 0.0058824 0.99705± 0.0044927
AUC 0.99910± 0.0010621 0.99984± 0.00049020

Table 5.3: OptiNet’s results on the St. Olav’s dataset. Accuracy, precision,
recall, and AUC are shown in fractions. The results are of the format ”mean ±
standard deviation”, over the results of 10 trained models for each convolution
type.

Results shown in table 5.3 show the opposite of 5.2. In this case, OptiNet with
3D convolutions performs better on all metrics, though the results are very close.
OptiNet with 3D convolutions obtain an AUC close to 1.

5.3.2 OptiNet’s Results on Shuffled Partitions

To ensure the models are not sensitive to change in training and validation par-
titions, 10 additional models were trained with the total dataset shuffled before
splitting into training and validation sets for each of the models. This was only
performed on the Duke dataset because it has no dependencies between OCT
scans. In order to perform such a shuffle on St. Olav’s dataset one would need to
keep the constraint of all OCT scans belonging to one patient remains in only one
partition, while at the same time ensure the training and validation partitions
remain approximately the same size for each model. It was decided that too
many factors could affect the result of such an experiment. Thus, the experiment
was only performed on the Duke dataset.

Table 5.4 shows how the two architecture variations performed on shuffled par-
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Metric OptiNet with (2+1)D Convolution OptiNet with 3D Convolution

Accuracy 0.96528± 0.020833 0.93611± 0.031793
Precision 0.97610± 0.032112 0.95161± 0.049979
Recall 0.97598± 0.023258 0.95782± 0.046925
AUC 0.997009± 0.0034974 0.98477± 0.013458

Table 5.4: OptiNet’s results on the Duke dataset where cases are randomly shuf-
fled between partitions before each of the 10 training session. Accuracy, precision,
recall, and AUC are shown in fractions. The results are of the format ”mean ±
standard deviation”, over the results of 10 trained models for each convolution
type.

(a) ROC curve of a random model of
OptiNet using (2+1)D convolution.

(b) ROC curve of a random model of
OptiNet using 3D convolution.

Figure 5.1: The ROC curve result of an OptiNet model trained on the Duke
dataset with shuffled partitions. AUC is so close to 1 that it gets rounded to 1
when presented with two decimal places.

titions. Just like in table 5.2, (2+1)D convolution outperforms 3D convolution
on every metric. The AUC of 99.7% is of significance because it gives the best
metric for comparison to related works. This is because it accounts for all random
factors and resembles the testing approach of other works the most.

Many of the models both using 3D convolution and (2+1)D convolution obtain
AUCs of 1 or close to 1 on both datasets. Figure 5.1a and figure 5.1b show the
ROC curve of two random models of OptiNet. The models were trained on the
shuffled Duke dataset.
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5.3.3 Visualization

The visualization was focused on the St. Olav’s dataset because the health profes-
sional assessing the visualization created the St. Olav’s dataset. The health pro-
fessional can quickly find differences between his own evaluation and the model’s.
Figure 5.4 shows how the system displays results to the user on an AMD case.
Three images are given, displaying the regular OCT scan, CNN fixations, and a
localization map made from the fixations. A color bar is added to display the
meaning of each color, where a high value, displayed in red, implies high interest
from the model. The range is 0-255 because this is the intensity range of a chan-
nel. Figure 5.2 illustrates visualization of a control case. A few visualizations
gave odd focus points that could not be justified as a sound assessment. One
such example can be seen in figure 5.3.

Figure 5.2: Visualization of focus points made from OptiNet using (2+1)D con-
volution on the St. Olav’s dataset for one slice. The OCT scan displays a control
case.

Figure 5.3: Visualization of focus points made from OptiNet using (2+1)D con-
volution on the St. Olav’s dataset for one slice. The OCT scan displays an
AMD case. The visualization displays questionable assessment according to Dr.
Tvenning.
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Figure 5.4: Visualization of focus points made from OptiNet using (2+1)D con-
volution on the St. Olav’s dataset. Each row displayed a slice of an OCT scan.
The OCT scan displays a case of AMD. In the system, each slice is displayed
sequentially after each other by scrolling the mouse wheel back and forth.
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5.4 Summary

The experimental plan consisted of three experiments: One to train 10 models
using both types of convolutions on both dataset, second one is to do the same,
but with shuffled partitions on the Duke dataset, and the final one was to evaluate
CNN fixations made from running OptiNet on the St. Olav’s dataset.

The two datasets used were pre-processed to make them easier to handle. The St.
Olav’s dataset had a slightly more advanced partitioning to ensure no OCT scans
from one patient ended up in both partitions. Both datasets had an approximate
train/validation split of 70/30 in number of OCT scans.

Models were trained for about 3 hours each, and various metrics were collected for
live monitoring. In the evaluation process, the metrics accuracy, precision, recall
and AUC were of the highest interest. The first experiment found that OptiNet
using (2+1)D convolution performed slightly better on the Duke dataset, a seen
in table 5.2. The opposite was found for the St. Olav’s dataset shown in table
5.3.

The second experiment once again confirm that OptiNet using (2+1)D convo-
lution performed better on the Duke dataset. Notably, it obtained an AUC of
∼ 99.7%. This value would be the most natural to use when comparing OptiNet
to related works. This is because this experiment resembles the experimental
setup of related works the most.

The third experiment found interessting visualization of what OptiNet focused
on in an OCT scan. Figure 5.4 shows a case of AMD, figure 5.2 shows a control
case, while figure 5.3 shows an AMD case where OptiNet predicts correctly, but
the focus points are questionable.



Chapter 6

Evaluation and
Conclusion

In this chapter, the results will be dissected to better understand what they
mean and give answers to the research questions. OptiNet’s performance will
be discussed and its usability will be evaluated. Is (2+1)D convolution superior
to 3D convolution? How well did OptiNet actually perform? These questions
and more will be reflected upon. From the pondering of OptiNet’s performance
comes a final paragraph on the project’s contributions to the field and what can
be done in the future.

6.1 Evaluation

In light of how related works has performed on the Duke dataset, it seems OptiNet
has performed quite well. RetiNet [Apostolopoulos et al., 2016] reported getting
an AUC of 99.7% using the Duke dataset, while Farsiu et al. [2014] obtained
an AUC of 99.17%. Venhuizen et al. [2015] obtained a slightly lower AUC of
98.4%. It would be the most fair to compare OptiNet’s performance on shuffled
partitions on the Duke dataset in table 5.4. OptiNet obtains an AUC of ∼ 99.7%,
identical to RetiNet. It seems OptiNet performs at a state-of-the-art level, though
it should be said that testing procedures are not identical. Furthermore, OptiNet
proves it self to perform even better on the St. Olav’s dataset with a mean
AUC of ∼ 99.9% using (2+1)D convolution and an AUC of ∼ 1.00% using 3D
convolution.

65
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The models are quite stable across random factors with standard deviation of
AUC ranging from 0.05% to 0.3%. It can be concluded that the project has
accomplished both of its goals. The models perform within the range of re-
lated works, far beyond random. Furthermore, it accomplishes this without any
pre-training step and proves it self on two separate datasets, showing that this
architecture is able to complete its task on a small dataset and limited GPU
capacity.

OptiNet does show high level performance, however, the AUC values are not
vastly superior to previous works. In regards to research question 1, the ex-
periments show no evidence that the tested 3D convolutions are superior to 2D
convolution. However, the problem setting is already handled at a very high
level, which leaves little room for improvement. There are also other factors that
can affect the results, such as other architectural choices and hyper-parameters.
Nonetheless, through the exploration of 3D convolutions, a highly capable system
was developed that can indeed handle the problem setting.

The results on (2+1)D convolution versus 3D convolution are divided. Table 5.2
and table 5.4 show that (2+1)D convolution has a clear advantage on the Duke
dataset. On shuffled partitions there is an AUC difference of 0.012, which in
the scope of the literature is quite significant. However, it should also be noted
that 3D convolution performed better on the St. Olav’s dataset as indicated
in table 5.3. The AUC difference is much smaller at 0.00074, but still outside
the range of one standard deviation, which should not be dismissed. No clear
conclusion can be made on which convolutional type is superior. It is likely that
other architectural choices had greater significance for the performance.

Table 5.2 under ”OptiNet with (2+1)D convolution” shows a precision of ∼ 0.98,
which indicates when the network is diagnosing a patient to have AMD, OptiNet
will get it right ∼ 98% of the time. This is of interest because it urges a cau-
tion when using the network. If OptiNet is used blindly it would have a 2%
chance of giving the wrong diagnosis. This can be costly for the hospital because
resources can be spent that does not help the patient. Furthermore, recall in-
dicates that of all the patients with AMD, OptiNet will detect ∼ 98% of them.
With collaboration and critical use of OptiNet, this gap can be further reduced.
The visualization closes the gap between the health professional and the model
by giving an idea of how OptiNet made its decision. A doctor do not need to
blindly accept or disregard the assessment, but rather be convinced by a correct
assessment or disregards an erroneous one.
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6.1.1 Evaluation of Visualization

CNN Fixations were calculated on the predictions made by OptiNet using (2+1)D
convolution evaluating the St. Olav’s dataset. Dr. Arnt-Ole Tvenning, respon-
sible for the creation of the dataset, evaluated all results from the validation
partition.

He found that OptiNet focused predominantly on the RPE as well as the retina.
Figure 5.4 shows an example where the RPE is of interest. A surprising amount
of focus is put on the retina right above the RPE rather than drusen, which
doctors would typically focus on. OptiNet also focused on another less common
area, the inner part of the retina below the RPE. Dr. Tvennig explains that in
later years, studies have found that a secondary thickening in this layer happens
when the upper part of the retina is thinning, which is an indicator of AMD.
Furthermore, the model detects the thickening between the RPE and the top of
the retina. This a sign sub-retinal deposition of drusen, something that has been
focused on in later years. It is often difficult to detect this symptom in early
stages of AMD, which makes the focus on this symptom exciting. OptiNet also
detects fluid build up as a sign for some types of AMD, as well as the thinning
of the RPE.

There was an unusual lack of focus on cysts in the retina and RPE. This might be
because it is not a symptom in all cases of AMD, however, it could also be a lack
of understanding from OptiNet. There was three cases of AMD that OptiNet
got right, but seemingly on the wrong basis. An example of this is shown in
figure 5.3. Though, some reasons can be found in these cases, they were hard to
justify. This is an important insight into the true performance of the system and
how it might perform in practice. Analysis on individual slices in the OCT scan
was somewhat challenging due to the nature of the 3D localization map. The
Gaussian blur is created in 3D and then sliced. Sometimes a warm area would
start showing a few slices before the actual area of interest showed it self.

When it comes to healthy cases, the model mostly looked at the RPE and the
shape of the upper part of the retina, for instance the dip of the fovea. Figure 5.2
shows an example where the shape of the RPE was the most important. It should
be noted, however, the model can not communicate the absence of symptoms
using CNN fixations. These are the existing signs of healthy cases, but there
could also be other signs OptiNet can not show with this visualization.

Overall, the model give the impression that it has the right focus most of the time.
Dr. Tvenning’s assessment supports the achievement of goal 1, the network is
indeed capable for learning symptoms of AMD at a level that could be usable in
practice.
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6.2 Discussion

The accuracy found in table 5.4 under ”OptiNet with (2+1)D Convolution” indi-
cates that OptiNet predicts correctly 97% of the time when the output is thresh-
olded on 0.5. Comparing this to the AUC value, one can argue that if OptiNet
would ever be used in practice, it might be more productive to return the output
probability of AMD. This would provide the additional information of uncer-
tainty. For instance, the case displayed in figure 5.3 has an output probability
of ∼ 80% while most AMD cases have output probabilities closer to 99%. This
gives a good lesson in being sceptical of the results. Even though OptiNet per-
forms well, signs of weakness was revealed through visualization. On the positive
side, the tools used to make this discovery shows the usefulness of visualization
together with deep learning methods. A system displaying the output probabil-
ity as well as visualization can ease the work of health professionals and reduce
uncertainty, making it a more viable tool to use in practice.

Though no clear conclusion was made on research question 2, there are certainly
ways forward to get a more clear answer. Tran et al. claims that (2+1)D con-
volution performs better on deeper networks. With more GPU capacity, one can
try a deeper version of OptiNet in an attempt to improve performance. Further-
more, one can rise the complexity of the problem setting by introducing more
eye-related illnesses. One hypothesis is that the problem setting was too simple
to see the advantages of (2+1)D convolution. Comparing table 5.2 and table
5.3, one can argue that the Duke dataset was more challenging as both archi-
tectural variations performed better on the St. Olav’s dataset. The fact that
(2+1)D convolution performs better on the Duke dataset could be a sign that
(2+1)D convolution is better at higher complexity. On the other hand, figure
5.1 shows how similar most of the ROC curves are for these models. Further
experimentation is needed to come to a conclusion.

Figure 5.3 and a few other cases had visualizations that could not be confidently
justified by Dr. Tvenning. There could be a few possibilities in this scenario:
OptiNet is using an unknown symptom for AMD, the visualization technique is
failing, or OptiNet is making a correct assessment based on the wrong areas of
the scan. Dr. Tvenning and I think the last scenario seem the most likely. Our
reasoning is that visualizations did perform well overall, and the focus points
in these odd cases were placed mostly above the retina. We also noticed that
these images have more noise than usual. It seems the most likely that OptiNet
got confused by the unusual noise in the image. Though, this lessens the con-
fidence in OptiNet, it also displays the robustness of a complete system with
visualization.
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A final consideration for OptiNet is how well it would actually perform when used
in practice. In reality, subjects are not just healthy or have AMD. Patients can
have a wide range of conditions and some may be similar to AMD, for example,
Diabetic Macular Edema. It is likely OptiNet would have a higher number of false
positives when used in a real environment. For this reason, the researchers at St.
Olav’s University Hospital has been advised to also look for similar conditions to
add to their dataset, so that a future approach can be more robust against other
conditions.

6.3 Contributions

The thesis have the following contributions:

• Like many of the related works, OptiNet shows that deep learning is a
viable approach in detection of AMD.

• Testing of (2+1)D convolution on OCT scans with promising results.

• A 3D CNN architecture without any pre-training, trained on one GPU that
can perform at a state-of-the-art level.

• The use of CNN fixations to display symptoms from a medical classification
CNN.

• Implementation and use of CNN fixations for 3D convolution and (2+1)D
convolution.

• The introduction and use of a new dataset from St. Olav’s University
Hospital.

6.4 Future Work

Going forward there are three aspects that will be of the highest interest: Im-
provement of OptiNet, improvement of visualization and improvement of the
data. One way that might improve OptiNet’s performance would be depth. With
more computer resources a deeper network can be tested. As mentioned in the
discussion, (2+1)D convolution might perform better with a deeper network. On
top of this, one can add the skip connections used in Tran et al. [2017] to up-
hold performance once the network gets deeper. With more computer resources,
bigger mini-batches could potentially improve training as well. Introducing some
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pre-processing such as noise reduction might aid in the cases where OptiNet
makes the right prediction, but based on strange focus points. A final suggestion
from Prof. Masashi Sugiyama is to go forward with a semi-supervised method
where only a small part of the dataset needs labeling. This method allows for
more training without the need of doctors manually labeling new cases in the
dataset.

As mentioned in section 6.1.1, CNN fixations can point at existing signs, but not
at the absence of symptoms. It is not clear to me how this can be done, however,
a technique capable of doing so would bring valuable insight for the reasoning
of a model. One part of CNN fixations that can potentially be improved is the
localization map. One could attempt to further adjust the sigma parameter in
the 3D Gaussian blur. This parameter affects how far the ”blobs” of interest
stretch over the map. One could also attempt to perform 2D Gaussian blur for
each slice, or another technique to display the density of points.

A bigger dataset with more variation can better prepare OptiNet for real-life
use. One of the best ways to improve a deep learning method is to give it more
data. The dataset developed at St. Olav’s University Hospital could eventu-
ally become a new benchmark in the field. The dataset can grow significantly
larger once permissions are granted. Benchmarking allows for better compar-
ison between approaches which is advantageous for the field as a whole. Dr.
Tvenning has also discussed testing against human professionals. Comparison
to human performance is among the best indicators on how well an automated
system could do in practice. A dataset with human performance statistics and
specific guidelines could be a great benchmark for the field going forward.

Of the three aspects highlighted I find improvement of OptiNet and the improve-
ment of data the most interesting. I suggest to expand the problem setting by
introducing more illnesses to the dataset and further build on the OptiNet archi-
tecture to handle the new problem setting. By doing this, one moves closer to a
highly capable system that can be used in practice.

6.5 Summary

OptiNet performed well with an AUC of ∼ 99.7% on the shuffled Duke dataset.
RetiNet [Apostolopoulos et al., 2016] reported getting an AUC of 99.7% using
the Duke dataset, while Farsiu et al. [2014] obtained an AUC of 99.17%. Ven-
huizen et al. [2015] obtained a slightly lower AUC of 98.4%. This indicates that
OptiNet performs at a state-of-the-art level, but it is important to note that the
experimental setup is not identical.
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It is concluded that goal 1 and 2 is achieved based on the following reasoning:
The models achieve results at the level of related works, far beyond random.
Furthermore, OptiNet proved it self on two separate datasets with no pre-training
and limited GPU resources.

In regards to research question 1, the results indicate that there is no advantage to
using the tested variations of 3D convolution over 2D convolution. This is because
OptiNet did no outperform models such as RetiNet. It should be mentioned,
however, that many factors could affect this result, such as other architectural
choices and hyper-parameters.

Research question 2 was harder to answer. As table 5.2 and table 5.3 show
opposing results, it can not be clearly concluded which type of convolution is
superior. It is thought that perhaps a deeper variation of OptiNet would give
(2+1)D convolution the advantage, but that remains to be tested.

Dr. Tvenning found that OptiNet used many relevant symptoms when detection
AMD, through evaluation of localization maps. However, he also found a few
cases where OptiNet predicted correctly, but the focus points of the model could
not be justified. It was assumed the model got confused by additional noise.
Overall, the model gave the impression that it had the right focus most of the
time.

The thesis made several contributions, some of the most notable was: Indication
that deep learning is a viable approach for detection of AMD, the making of
a 3D CNN architecture that perform at a state-of-the-art level on one GPU
without pre-training, the use of CNN fixations to display symptoms of a medical
classification CNN, and the introduction and use of a new dataset from St. Olav’s
University Hospital.

Going forward, there are three aspects that will be of the highest importance:
Improvement of OptiNet, improvement of visualization and improvement of data.
Of these three aspects I find improvement of OptiNet and improvement of data
the most interesting. I suggest to expand the dataset to have more eye-related
diseases and further build on the OptiNet architecture to handle the new problem
setting.
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