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Abstract

Acoustic event classification (AEC) is a collective term for algorithms
able to differentiate between different sound events. AEC allows for ma-
chines to learn to recognize acoustic events, and then report or respond
to these events. However, having AEC running on a single device gives
limited area coverage as sound diminishes as the distances increases. A
better solution is to have a distributed network of sensors, each listening
for events. Having regular computers act as the sensors require infras-
tructures such as power and internet connectivity. IoT sensors are much
more suitable for this task. These sensors are small and easily displayable
and do not require much infrastructure as they often run on batteries or
solar power and communicate via WI-FI or Bluetooth.

A problem arises when trying to deploy AEC on IoT devices, however.
AEC is very computationally demanding and requires much information
in order to perform well. IoT devices on the other hand often have limited
computational capabilities and need to manage its resources well in order
to save as much energy as possible so that it can live as long as possible
without needing a change. This project will look at how these areas can
be combined efficiently with a balance between AEC accuracy and device
energy efficiency.

The optimization process will consist of testing many combinations
of three different parameters, namely sampling rate, window size, and
window stride. Each set of these parameters will be a design that will
achieve an accuracy score and energy consumption score. The reason for
testing many different parameters is that one design will most likely not
better all the others. The designs will have trade-offs that in terms of
accuracy and energy consumption, which means that they will only be
optimal given a set of requirements.

In order to compare the different designs, they have to be tested
and measured with some metrics. The designs are tested on a simulated
use-case of our choosing, in an area were AEC could prove to be beneficial.
This use-case will provide a controlled setting and a complete dataset
used to train the classification models. The selected use-case is to monitor
a home environment, and report what kinds of activities are going on.
This information is intended to be used to control the temperature in
the room, e.g.. Other uses can be a home monitoring system for elderly
or sick people, that allows nurses or caretakers to monitor the person



without too much intrusion into the person’s privacy as opposed to using
cameras.

The results show that by choosing the elbow point in the final Pareto
front, the system can decrease its energy consumption by 72x while only
decreasing its accuracy by 0.04. This improvement shows the possible
benefits from sacrificing some accuracy to increase the longevity of the
device by a magnitude of almost a hundred. If the system requires a
higher accuracy score, it will have to compensate by using much more
energy. So, the most beneficial designs for this problem have a sampling
rate of 1 KHz, a 10s window size, and a static window stride between
10s-200s.



Sammendrag

Akustisk hendelse klassifisering (AEC) er en kollektiv samlingsbeteg-
nelse for algoritmer som er i stand til å skille mellom ulike lydhendelser.
AEC gjør at maskiner kan lære å gjenkjenne akustiske hendelser, og
deretter rapportere eller svare på disse hendelsene. Å ha AEC som kjører
på en enkelt enhet gir imidlertid begrenset arealdekning ettersom lyd
minker etter hvert som avstandene øker. En bedre løsning er å ha et
distribuert nettverk av sensorer som enhver lytter etter hendelser. Å ha
vanlige datamaskiner fungerende som sensorer krever infrastrukturer som
strøm og internettforbindelse. IoT-sensorer er mye mer egnet for denne
oppgaven. Disse sensorene er små, lette å sette ut og krever ikke mye
infrastruktur, da de ofte bruker batterier eller solenergi og kommuniserer
via WI-FI eller Bluetooth.

Et problem oppstår når man prøver å distribuere AEC på IoT-enheter.
AEC er svært datakraft krevende og krever mye informasjon for å kunne
fungere bra. IoT-enheter har derimot ofte begrenset beregningsevne og
trenger å håndtere sine ressurser godt for å spare så mye energi som mulig
slik at den kan leve så lenge som mulig uten å måtte skiftes ut. Dette
prosjektet vil se på hvordan disse områdene kan kombineres effektivt med
en balanse mellom AEC-nøyaktighet og enhetens energieffektivitet.

Optimaliseringsprosessen består av å teste mange kombinasjoner av
tre forskjellige parametere, nemlig samplingsfrekvens, vindusstørrelse og
mellomrom mellom vinduer. Hvert sett av disse parameterne vil være
et design som vil oppnå en nøyaktighets poengsum og energiforbruk
poengsum. Årsaken til å teste mange forskjellige parametere er at et
design vil mest sannsynlig ikke være bedre alle de andre. Designene vil
ha en viss balanse mellom nøyaktighet og energiforbruk, noe som betyr
at de bare vil være optimale gitt et visst krav.

For å kunne sammenligne de forskjellige designene må de testes og
måles med noen måleenheter. Designene er testet på en simulasjon av
et mulig område der AEC vil være nyttig. Denne simulasjonen gir et
kontrollert forsøk og et komplett datasett som brukes til å trene klassifi-
kasjonsmodellene. Det valgte brukstilfellet er å overvåke et hjemmemiljø,
og rapportere hva slags aktiviteter som skjer. Denne informasjonen skal
brukes til å kontrollere temperaturen i rommet, for eksempel. Andre
anvendelser kan være et hjemovervåkningssystem for eldre eller syke
mennesker, som gjør at sykepleiere eller omsorgspersoner kan overvåke



personen uten for mye inntrenging i personens privatliv i motsetning til å
bruke kameraer.

Resultatene viser at ved å velge et albuepunkt i den endelige Pareto-
fronten, kan systemet redusere sitt energiforbruk med 72x, mens bare
reduserer nøyaktigheten med 0,04. Denne forbedringen viser de mulige
fordelene ved å ofre noe nøyaktighet for å øke levetiden til enheten med
en størrelsesorden på nesten hundre ganger. Hvis systemet krever en
høyere nøyaktighetspoengsum, må den kompensere ved å bruke mye mer
energi. Så, den mest fordelaktige designen for dette problemet har en
samplingsfrekvens på 1 KHz, en 10 s vindus størrelse, og et statisk vindus
skred mellom 10s-200s.
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Chapter1Introduction

Humans interpret the reality using five senses, where hearing is one of them. Hearing
allows humans to capture information about events and recognize these events, and
then identify the correct response. Computer vision has been an area of extensive
research for many years, and have in that time shown impressive results. Recent
breakthroughs in deep neural networks have increased the usability of machine
learning models on unstructured data such as audio and images. These breakthroughs
have increased the accuracy too, and in some cases beyond, human level pattern
recognition ability — these same breakthroughs are applicable to machine hearing.
By having machines interpret the world, many possible applications arise. Many
tasks can be automated, which will result in reduced cost of operation and increased
usability. More on these applications are discussed in Section 1.3.

Acoustic event classification (AEC) is a collective term for algorithms able to
differentiate between different sound events. AEC allows for machines to learn to
recognize acoustic events, and then report or respond to these events. However,
having AEC running on a single device gives limited area coverage as sound diminishes
as the distances increases. A better solution is to have a distributed network of
sensors, each listening for events. Having regular computers act as the sensors
require infrastructures such as power and internet connectivity. IoT sensors are much
more suitable for this task. These sensors are small and easily displayable and do
not require much infrastructure as they often run on batteries or solar power and
communicate via WI-FI or Bluetooth.

A problem arises when trying to deploy AEC on IoT devices, however. AEC is
very computationally demanding and requires much information in order to perform
well. IoT devices on the other hand often have limited computational capabilities
and need to manage its resources well in order to save as much energy as possible so
that it can live as long as possible without needing a change. This project will look
at how these areas can be combined efficiently with a balance between AEC accuracy
and device energy efficiency. The results show that the energy consumption of the
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device can be decreased by 98.5%, with only 4% decrease in accuracy. However, first
is AEC, IoT devices and possible applications, explained more closely in detail.

1.1 Acoustic Event Classification

Acoustic Event Classification is the science of connecting a given sound event to its
correct label. There are many different ways to approach this problem, but the most
successful approaches use some form of machine learning. By connecting sounds
to labels, machines can sense their surroundings and become more context-aware.
When classifying sounds, a device first records a time frame of a certain length. The
recording is then prepossessed using specific filters, which will be explained later, to
enhance the distinguishing features of the sound spectrum. After prepossessing the
machine-learning model is applied to the recording to get the corresponding label.
The process of AEC is quite limited when it comes to flexibility. Models can only
solve a very specific or limited problem set and require a lot of labeled sound events
for training. If the modeled problem is to complex, or that the training data are
limited, the model will fail to predict correctly quite often.

1.2 IoT context

So, with AEC, devices can become more context-aware. The next step then is then to
make it easy to use AEC in practice, and this is where IoT fits perfectly. IoT devices
are a broad definition which covers many different use cases and device sizes. When
talking about IoT devices in this project, the device will have limited computational
power, powered by a battery, and use Wi-Fi/Bluetooth for communication. This IoT
device will stand for the recording of the sound, that is later to be classified. The IoT
device will then send the recording to a central hub for classification, or classify the
recording itself if it is capable. The use of IoT sensors for an AEC system allows for
easy system deployment as sensors can be placed at any place within the coverage of
the central hub. Because the IoT device is limited in terms of computational power,
and battery life, it means that it should do as little as possible so that it can live
longer. The longevity of the device will be the core of the thesis, as this theses will
look at how to optimize a set of parameters to achieve this.

1.3 Applications

The application areas for a system where IoT devices record sounds that are later
classified are many. A firm called ShotSpotter already implements a system for
gunshot listening. In this system, sensors cover an area and listen for sounds. When
a gun fires, the sensors detect the shot and reports the incident to the authorities.
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Another application could be an urban sound pollution monitoring system, that
measures sound levels and identifies the source of the sound. With IoT sensors, the
distribution of sensors would be easy as they require no power connection or wired
connection. Home monitoring systems could also benefit from the use of IoT devices
as sensors. Amazons Echo and Google Home systems now consist of just one sensor
with limited listening range. Using multiple such sensors for better coverage in large
rooms or multiple rooms are expensive. Combining such systems with small IoT
sensors placed at strategic places at low cost, then using the Echo and Home device
as a central hub for classifications could increase these systems usability.

An AEC system will give devices the ability to become context-aware and sense
and adapt to the surroundings. Together with low-cost IoT sensors, this technology
can be implemented to make houses and cities smarter, by giving developers the
ability to make systems that senses and adapt to the environment around the devices.

1.4 Problem description

The problem when combining AEC and IoT as mentioned earlier is that AEC
benefits from as much information as possible, while the IoT devices that gather this
information needs to be very energy efficient in order to live as long as possible. The
theory in this thesis is that by providing less information to the classifying model, the
prediction accuracy will be lower but not with a substantial amount. By providing less
information, the result will be sort of like a feature selection process, as the aim is to
capture as little useless information as possible. However, providing less information
has its trade-off, as it most certainly will affect the overall system accuracy negatively.
The optimization process will consist of testing many combinations of three different
parameters, namely sampling rate, window size, and window stride. Each set of these
parameters will be an artifact design that will achieve an accuracy score and energy
consumption score. The reason for testing many different parameters is that one
design will most likely not better all the others. The designs will have trade-offs that
in terms of accuracy and energy consumption, which means that they will only be
optimal given a set of requirements. So, the design question to be answered is:

How can we given a set of system requirements, maximize the energy
efficiency and prediction accuracy of an acoustic event detection sys-
tem?

1.5 Use case

In order to compare the different artifact designs, they have to be tested and measured
with some metrics. To simplify testing a use-case is selected. This use-case provides
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a controlled setting and a known context in which testing the artifacts is simple.
The selected use-case is to monitor a home environment, and report what kinds
of activities are going on. This information is intended to be used to control the
temperature in the room based on the current activity, e.g., another use-case can be a
home monitoring system for elderly or sick people, that allows nurses or caretakers to
monitor the person without too much intrusion into the person’s privacy as opposed
to using cameras. The reason for choosing this use-case is that there exists a validated
and labeled sound activity dataset that fits this problem.

The information gained from AEC/IoT system can be also be merged with other
sensor data to get a broader perspective of performed activities and decrease the
error rates. Such data sources could be accelerometers or cameras. The use of a
use-case instead of making the project generalize to all cases is done to simplify the
testing.

1.6 This project

So, in this project, several artifacts are designed. Each artifact will consist of a unique
set of parameters. These parameters are the sampling rate, window size, and window
stride. Table 1.1 explains the difference between the parameters. By adjusting
these parameters, the results will show the correlation between the parameters and
the metrics described in Section 3.8.1. As displayed in Figure 1.1. The goal is to
decrease the sampling rate, decrease the window size, and increase the stride. Figure
1.1 illustrates this parameter optimization. This optimization will, by consequence,
decrease the devices energy consumption. By optimizing these parameters, the
recording device will be able to sleep more and thus live longer. Section 3.5 covers
how to validate the designs, and which metrics are used to compare the designs. In
each window, the captured sound is classified. When talking about accuracy in this
project, it can have two meanings. Either the accuracy of the classification model
or accuracy of the system. The difference between them is that the accuracy of the
classifier contributes to the accuracy of the system, as the system accuracy measures
in terms of windows predicted correctly.

In the end, there will be no single artifact design that outperforms all the other
designs on all the metrics. The optimal designs will only be optimal for a set of
requirements. What those requirements are, depends on the purpose of the system,
but could, for example, be an accuracy above 85% or an energy consumption less
than 2 ∗ 109. Later in this thesis, the requirements are denoted as λ, which is the
balance factor between accuracy and energy consumption. A simulation will test each
artifact on a timeline with activities generated from a real-life modeled statistical
distribution. The results from this simulation will give a Pareto front, which will
show the optimal artifact designs for a set of requirements. The simulation will
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take into account all the parameters, and measure different metrics that will help to
validate the different designs, how the simulation works are explained in Section 6.2.

Parameter Explanation
Sampling rate How often the device should sample the surrounding sounds.
Window size How long each recorded sound window should be.
Window stride How long the device should wait between two consecutive windows.

Table 1.1: Explanation of the parameters that are in focus in this project.

Window 1 Window 2

10 sec

Window 1 Window 3

5 sec

Window 2

2.5 sec

Time

Time

Sampling rate

Window size

Window stride

Figure 1.1: Two examples of different recording designs. The first with 16 KHz
sampling rate, 10 sec window size and 0 window stride. The second with 8 KHz
sampling rate, 5 sec window size and 2.5 sec window stride.

The execution of this project is only theoretical. A complete physical system will
not be implemented or tested in a real environment. Instead, this project is a proof
of concept project, where the results here may not apply to all data sources and may
not generalize to all contexts. The project will instead show that it is possible to
increase the efficiency of a system with only a small sacrifice in accuracy, and the
process to achieve this.

1.7 Results preview

Figure 1.2 shows some of the final results for this project. The accuracy metric is
calculated by measuring the average percentage of the activity time the system is
correct for each label, then taking the average over all labels. This metric is the
accuracy3 metric from Section 3.8.1. By choosing the elbow point, which is Design1,
over Design2, the system can decrease its energy consumption by 72x while only
decreasing its accuracy by 0.04. This improvement shows the possible benefits from
sacrificing some accuracy to increase the longevity of the device by a magnitude of
almost a hundred. If the system requires a higher accuracy score, it will have to
compensate by using much more energy. So, the most beneficial designs for this
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problem are the ones along the elbow in Figure 1.2. Those designs have a sampling
rate of 1 KHz, a 10s window size, and a static window stride between 10s-200s.

Figure 1.2: The results from the simulations of the different designs. Each dot
represents a unique design. The example designs are highlighted in different colors.
SR = Sampling rate, WSize = Window size and WStride = Window stride.



Chapter2Background

For the background of this project, there have been done much research on both
AEC and resource optimization in IoT separately, but not much on the two areas
combined. Some studies have looked at the effect of changing the sampling rate have
on prediction accuracy, but the related works search found none that also looks at
window size and window stride.

2.1 Related Work

This section will contain a literary study done on research papers that will be relevant
for the project. As none of the found papers attempts the same as this thesis does,
the papers will mostly be a source of inspiration and ideas. Each sub-section in this
section will contain a single relevant paper or article.

2.1.1 Acoustic Event Classification

Ambient Assisted Living (AAL)

The paper [NVVAPH18] is a research paper that has a very similar aim as this
project. The paper describes a scenario where IoT sensors help monitor elderly
and disabled people so that they can live by themselves, or at least with a bare
minimum of caring services. The purpose of the paper is to present the development
of a distributed infrastructure to conduct acoustic event recognition accurately in
residential environments in order to support independent aging.

So unlike this project, the paper [NVVAPH18] focuses more on the architecture of
the system, and not on the optimization of energy usage of the IoT sensors. However,
the paper will still be an excellent source of inspiration, as it uses much of the same
techniques as will be used in this project. What can be said from looking at this
project is that an AEC system that monitors seniors is very usable, as they managed
to achieve a 94.8% accuracy score on their event classification. The classification
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model used in this paper was an artificial neural network. This accuracy score
may not generalize to this thesis as a different dataset will be used, but shows the
possibilities in terms of possible accuracy.

Acoustic Scene Analysis Using Partially Connected Microphones Based
on Graph Cepstrum

The paper [Imo18] propose an effective and robust method for acoustic scene analysis
based on spatial information extracted from partially synchronized and closely located
distributed microphones. The results of this paper show that the proposed method
more robustly classifies acoustic scenes than conventional spatial features when
the observed sounds have a significant synchronization mismatch between partially
synchronized microphone groups.

Although this project will not test synchronization between microphone arrays, it
could be a possible research area based on this project. This project will look at how
to increase the energy efficiency for individual microphone arrays. As a next step
making the arrays talk to each other can increase the overall system accuracy.

Plug-and-Play Acoustic Activity Recognition

The paper [LAGH18] describes a system that uses regular microphones in consumer
electronics to record sounds, and then classify those sounds. The goal of the paper
is to help devices utilize the rich source of information that is sound, and thus
making them more context aware. To achieve this goal of smarter devices, this paper
proposes a pipeline that describes a process from the actual sound recording to the
classification of the sounds. The data used in the paper was gathered using several
devices such as an iPhone (Smartphone), LG W100 (Smartwatch), and MacBook
Pro (Laptop). The results for the tests were ranging in from 88% to 94% accuracy,
and the classification model used was a CNN.

What is more interesting in this project is that they also made actual people try to
classify the same sounds. The results of this experiment were that the performance of
the machine was very similar to that of a human, and sometimes even better. These
results show that the use of AEC systems can be as good as having an actual human
presence when listening for events. Achieving human level accuracy on unstructured
data such as a sound recording is quite good. In computer vision using CNN’s the
accuracy has come to surpass the human accuracy. This breakthrough can also
happen with AEC algorithms, as shown in this paper.
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Efficient Convolutional Neural Network For Audio Event Detection

The paper [MCT17] describes the use of applying structural optimizations to a
convolutional neural network for audio event detection. The results present an
acoustic event detection algorithm that exploits the advantages of CNN’s while being
implementable on low-power microcontrollers. This CNN was able to supersede state
of the art event detection algorithms and shows a reduction of memory requirement
by a factor of 515 and number of operations by a factor of 2.1. The proposed
CNN also outperformed a similar network with fully-connected layers by 9.2%. The
structured approach of the CNN consisting mainly of convolutional layers makes
it easily portable to new convolutional hardware accelerators, which can further
increase the energy efficiency.

This paper shows the benefits of using convolutional layers instead of fully
connected layers. Having the classification run on the IoT device instead of having
to transfer the data would be highly preferable. This way, implementing adaptive
sensing would be much easier, as much less information has to be sent back and forth
to the central hub. Although this is a promising approach, which provides much
inspiration, it is not the main inspiration for the classification part of this project.

DCASE

Detection and Classification of Acoustic Scenes and Events (DCASE) is a competition
with five separate tasks, that aims to get researchers to submit prediction models on
predefined datasets. The goal is to bring together researchers from many different
universities and companies with an interest in the topic and provide the opportunity
for scientific exchange of ideas and opinions. The competition is a yearly event, with
the newest one being the 2018 version. The models published in this competition is
to be considered as state of the art and will be an excellent source of inspiration for
this thesis. Task 5 [DKV] is very important for this thesis, as it provides the dataset
used for the model training and the state of the art model used for classification.

Domestic Activities Classification Based On CNN Using Shuffling And
Mixing Data Augmentation

The winning model in DCASE 2018 challenge 5, Monitoring of domestic activities
based on multi-channel acoustics, was this model [IVW+18]. This model uses a
convolutions neural network for the classification. It also uses some data-augmentation
techniques to increase the number of samples from classes that have low representation
in the dataset and converts the data into MFCC representation as part of the pre-
processing. The accuracy achieved on the test dataset by this model was 89.9% using
the metric F1 score.
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This model will be explored more in Section 2.3.3 as it is the baseline classification
model for this project. This thesis does not use the data-augmentation used in this
paper, so the accuracy scores in this thesis are most likely going to be a bit lower
than the score for the paper.

2.1.2 IoT energy optimization

Automatic Environmental Sound Recognition: Performance Versus
Computational Cost

This paper [SSKP16] seeks to find out which Automatic Environmental Sound Recog-
nition algorithm that can make the most of a limited amount of computing power by
comparing the sound classification performance as a function of its computational cost.
Results suggest that Deep Neural Networks yield the best ratio of sound classification
accuracy across a range of computational costs, while Gaussian Mixture Models offer
a reasonable accuracy at a consistently small cost, and Support Vector Machines
stand between both in terms of compromise between accuracy and computational
cost.

Since this thesis aims to lover the computational costs for classification on IoT
devices, the most promising approach described by this paper is by using deep neural
networks. This project will use deep neural networks as the classification algorithm.

Adaptive Rule Engine Based IoT Enabled Remote Health Care Data
Acquisition and Smart Transmission System

In the remote health care monitoring applications, the collected medical data from bio-
medical sensors should be transmitted to the nearest gateway for further processing.
Transmission of data contributes to a significant amount of power consumption by
the transmitter and increase in the network traffic. This paper [SKRBA14] proposes
a low complex rule engine based health care data acquisition and smart transmission
system architecture, which uses IEEE 802.15.4 standard for transferring data to the
gateway. The power consumed and the network traffic generated by the device can be
reduced by event-based transmission rather than the continuous transmission of data.
The paper describes two different rule engines: static rule engine and adaptive rule
engine, which decides whether to transmit the collected data based on the important
features extracted from the data, thereby achieving power saving.

This paper is a vital source of inspiration for the energy optimization part of this
project. As this thesis will look at how a window stride can be applied efficiently, the
rule-based data acquisition engines are an excellent source for inspiration in achieving
this.
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AdaM: an Adaptive Monitoring Framework for Sampling and Filtering
on IoT Devices

This paper [TPD15] introduce AdaM, a lightweight, adaptive monitoring framework
for smart battery-powered IoT devices with limited processing capabilities. AdaM,
inexpensively, and in place dynamically adapts the monitoring intensity and the
amount of data disseminated through the network based on the current evolution
and variability of the metric stream. Results of real-world testbeds show that AdaM
achieves a balance between efficiency and accuracy. Specifically, AdaM is capable of
reducing data volume by 74%, energy consumption by at least 71%, while preserving
a greater than 89% accuracy.

This paper shows that the adaptive strategies for sensing is very promising, and
can achieve better results than the use of static strategies. Both static and adaptive
strategies are tested in this project, but only for the window stride parameter.

Rate-adaptive compressive sensing for IoT applications

Internet of Things (IoT) interconnects resource-constrained devices for providing
smart applications to citizens. These devices used in an IoT setting have to be able
to ensure both a minimum Quality of Service (QoS) and a minimum level of security
when gathering and transmitting data. Compressive Sensing (CS) is a relatively new
theory that performs simultaneous lightweight compression and encryption and can
be used to prolong the battery life of devices.

This paper [CFT15], stress the fact that on the contrary with most previous
approaches, the sparsity of the signals can change significantly due to their time-
varying nature. The paper proposes a rate-adaptive scheme for maintaining a
maximum level of reconstruction error at the receiver and ensure the QoS requirements.
This scheme uses a change point detection method, detecting the change in the
sparsity, and estimating the maximum compression rate for maintaining a minimum
reconstruction error. Performance is evaluated using real experimental data. This
paper also shows the possible benefits of an adaptive approach, as the results show
an increase in energy efficiency.

Learning Datum-Wise Sampling Frequency for Energy-Efficient Human
Activity Recognition

Continuous Human Activity Recognition (HAR) is an important application of smart
mobile/wearable systems for providing practical assistance to users. However, HAR in
real-time requires continuous sampling of data using built-in sensors (e.g., accelerom-
eter), which significantly increases the energy cost and shortens the operating span.
Reducing the sampling rate can save energy but causes low recognition accuracy.
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Therefore, choosing adaptive sampling frequency that balances accuracy and energy
efficiency becomes a critical problem in HAR.

This paper [CEZK18] have much of the same aim as this thesis does, although a
little less complex approach by only looking at the sampling rate parameter. As with
earlier papers described in this chapter, this paper explores some static and adaptive
sampling rate changes. The results of this paper show that adaptive schemes are
very promising and outperform static schemes in many cases.

2.2 Dataset

The dataset used in this project is a derivative of the SINS dataset [DLT+17]. It
contains a continuous recording of one person living in a vacation home over one week.
It was collected using a network of 13 microphone arrays distributed over the entire
home. The microphone array consists of 4 linearly arranged microphones, which
makes the data multichannel. DCASE 2018 challenge 5, Monitoring of domestic
activities based on multi-channel acoustics uses this data in its competition. For
this challenge, the data from 7 of the 13 microphone arrays in the combined living
room and kitchen area where used. Figure 2.1 shows the floorplan of the recorded
environment, along with the position of the used sensor nodes. The distribution of
sound segments can be viewed in Table 2.1, and is graphically displayed in Figure
2.2. Figure 2.2 shows that the distribution of labels is quite uneven, as the label
"absence" has almost 19 times more sound segments than the label "vacuum_cleaning".
Neural networks are prune to uneven datasets, as shown in [JS02]. This discovery
means that the classifications of the neural network may become biased towards the
most represented. So choosing the correct metrics, and techniques to combat this is
important.

Figure 2.1: The floorplan of the recorded environment along with the position of the
used sensor nodes. This figure is fetched from the task description in the DCASE
website [DCA].
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During the filtering and preprocessing of the competition data, the continuous
recordings were split into multiple sessions. Each session contains only data from
one activity and represents the entire activity performed by the test person. Then
the sessions were split into audio segments of 10s. Segments containing more than
one active class (e.g., a transition of two activities) were left out. By filtering out
segments with transitions, each segment now only represents one activity. Each audio
segment contains four channels (e.g., the four microphone channels from a particular
node). For simplicity reasons, this project will use only one of the channels in the
data. A possibility in a possible next project, building on this one, could be to utilize
the multichannel data in a better way, to increase the accuracy of the system.

Activity # 10s segments # sessions

Absence (nobody present in the room) 18860 42
Cooking 5124 13
Dishwashing 1424 10
Eating 2308 13
Other (present but not doing any relevant activity) 2060 118
Social activity (visit, phone call) 4944 21
Vacuum cleaning 972 9
Watching TV 18648 9
Working (typing, mouse click, ...) 18644 33

Table 2.1: The distribution of segments and sessions in the SINS development dataset.

2.2.1 Recording procedure

The sensor node configuration used in this setup is a control board together with a
linear microphone array. The control board contains an EFM32 ARM Cortex M4
microcontroller from Silicon Labs (EFM32WG980) used for sampling the analog
audio. The microphone array contains four Sonion N8AC03 MEMS low-power
(±17µW) microphones with an inter-microphone distance of 5 cm. The sampling
for each audio channel is done sequentially at a rate of 16 kHz with a bit depth of
12. The annotation was performed in two phases. First, during the data collection,
a smartphone application was used to let the monitored person(s) annotate the
activities while being recorded. The person could only select a fixed set of activities.
Secondly, the start and stop timestamps of each activity were refined by using
DCASEs own annotation software. Postprocessing and sharing the database involves
privacy-related aspects. Besides the person(s) living there, multiple people visited
the home.
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Figure 2.2: The distribution of labels in the SINS development dataset.

Moreover, during a phone call, one can partially hear the person on the other
end. Written informed consent was obtained from all participants. This information
is taken directly from the DCASE website [DCA].

2.3 Classification

For the classification part of this thesis, the classification algorithm is chosen to be
a convolutional neural network. The reason for choosing this algorithm is that it
is considered state-of-the-art, as shown in Section 2.1. The network architecture is
based on the winning model in the DCASE 2018 task 5 competition. Before the
sound data is usable in a CNN network, it needs to be pre-processed to enhance the
important sound features needed for reliable classification. So, the CNN takes as an
input a post-processed sound segment, as the one shown in Figure 2.6, and gives
a prediction on what activity the segment contains. This section will explain how
CNN’s work and why they fit this problem. Then the pre-processing is explained
more in detail before describing the model architecture more closely.

2.3.1 Convolutional Neural Networks

CNN’s, like neural networks, are made up of neurons with learnable weights and
biases. Each neuron receives several inputs, takes a weighted sum over them, pass it
through an activation function, and responds with an output. The whole network has
a loss function, which is used to improve the classifications. In convolutional neural
networks, every network layer act as a detection filter for the presence of specific
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features or patterns present in the original data. The first layers in a CNN model
detect simple features that can be recognized and interpreted relatively easy. Later
layers detect increasingly more complex features that are more abstract (and are
usually present in many of the more significant features detected by previous layers).
The last layer of the CNN can make an ultra-specific classification by combining
all the specific features detected by the previous layers in the input data. Since
the post-processed segment data used in this project are in the time and frequency
domain, a CNN model will be able to learn to recognize transitions in frequencies
across the bins that represents time. The classification model can then be trained to
differentiate between the different sound classes, by the spatial information that is in
the data.

2.3.2 Pre-processing

The dataset consists of 72 984 segments of 10 seconds. The segments sample rate
is 16 KHz, which means that each segment will consist of 160 000 samples. The
total number of samples in a segment is window_size∗sampling_rate. An example
segment is displayed in Figure 2.3. To make the segments easier to understand for the
classification model pre-processing is performed. The segments are each transformed
into a representation known as Mel-frequency cepstral coefficients. Mel-frequency
cepstrum is a representation of the short-term power spectrum of a sound, based on a
linear cosine transform of a log power spectrum on a nonlinear Mel scale of frequency.
Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make
up an MFC. They derive from a type of cepstral representation of the audio clip
which is a nonlinear "spectrum-of-a-spectrum". The difference between the cepstrum
and the Mel-frequency cepstrum is that in the MFC, the frequency bands on the Mel
scale are equally spaced, which approximates the human auditory system’s response
more closely than the linearly-spaced frequency bands used in the normal cepstrum.
This frequency warping can allow for better representation of sound, for example, in
audio recognition. Figure 2.4 shows the process of transforming the sound segment
into Mel-frequency cepstral coefficients.
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Figure 2.3: The captured sound from a "eating" event. The segments has the following
parameter values: 10s window size and 16 KHz sampling rate.

Figure 2.4: The process of transforming a sound event into MFCC representation.
The image is taken form the article [SD15].

In simpler words. An audio signal is constantly changing, so to simplify things,
it can be assumed that on short time scales the audio signal does not change much
statistically. This assumption is why the signal is framed into 20-80ms frames for
easier feature recognition. If the frame is much shorter, not enough samples are
present to reliable get a spectral estimate, and if the frame longer the signal changes
too much throughout the frame.

The next step is to calculate the power spectrum of each frame. This calculation
is motivated by the human cochlea (an organ in the ear) which vibrates at different
spots depending on the frequency of the incoming sounds. Depending on what
location in the cochlea that vibrates, different nerves fire informing the brain that
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specific frequencies are present. The periodogram estimate performs a similar job,
identifying which frequencies are present in the frame. This process uses Fast Fourier
transform to calculate the power spectrum.

The periodogram spectral estimate still contains much information not required
for Acoustic Event Classification (AEC). In particular, the cochlea cannot discern
the difference between two closely spaced frequencies. This effect becomes more
pronounced as the frequencies increase. For this reason, the clumps of periodogram
bins are summed up to get an idea of how much energy exists in various frequency
regions. The Mel filterbank performs this: the first filter is very narrow and gives
an indication of how much energy exists near 0 Hertz. As the frequencies increase,
the filters widen because the variations in frequency become less critical. The only
thing interesting is roughly how much energy occurs at each spot. The Mel scale
tells how to space the filterbanks and how wide to make them. An example of how
the filterbanks are spaced out on the frequency band is displayed in Figure 2.5.

Figure 2.5: An example of how the filterbanks are spread out on the frequency band.
The image are taken from the website [Fay].

Once the calculation of filterbank energies is complete, the logarithm operation is
applied to each filterbank. This operation is also motivated by human hearing, as
humans do not hear loudness on a linear scale. Generally, to double the perceived
volume of a sound, the required amount is eight times as much energy as the original
sound contains. This exponential increase means that significant variations in energy
may not sound all that different if the sound is loud. This compression operation
makes the features match more closely to what humans hear. Taking the logarithm
also allows the use of cepstral mean subtraction, which is a channel normalization
technique.

The final step is to compute the discrete cosine transform (DCT) of the log
filterbank energies. Because the filterbanks are all overlapping, the filterbank energies
are quite correlated. The DCT decorrelates the energies, which means that the
diagonal covariance matrices can be used to model the features in, e.g., an HMM
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classifier. The resulting representation is displayed in Figure 2.6.

Figure 2.6: The sound event in Figure 2.3 transformed into MFCC representation.
The sound event is now like an image that can be interpreted by the neural network
in a better way.

So now the audio segments have been transformed from a regular representation
where the time is on one axis and amplitude is on the other, to a new representation
where the time is on the first axis, and the frequencies in the second axis and power
on the third axis. On a regular 10 sec segment with 10 KHz sampling rate, the
representation matrix shape is [160000 x 1]. In the new representation the matrix
shape is [40 x 501 x 1]. So, the input size has gone from 160 000 to 20 040 values. This
reduction is a feature enhancement process that will greatly enhance the classification
model’s ability to learn the uniqueness of each activity as it will be able to look for
spatial relations in both time, frequencies and strength.

2.3.3 Baseline model

The winning model from the DCASE 2018 domestic activities challenge, mentioned
in Section 2.1.1, scored an accuracy of 89% on an unknown evaluation dataset with
72972 samples. This model is selected as the baseline model for this project as it is
proven to be state of the art — the model’s input shape updates with the parameters
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for each design. Changing the sampling rate does not change the input shape as it
does not affect the pre-processing process, as it is a function of time and not samples.
However, changing the window size changes the input parameters as the number of
bins decreases when the window size decreases. The model is displayed in Figure 2.7

The model is made up of 3 convolutional layers that act as the feature recognizers.
Batch normalization and dropout layers are also used to improve generalization.
Polling layers are used to reduce the feature dimensions by keeping the most activated
neurons. The output layer is a dense layer with a SoftMax activation function. The
total number of parameters are close to 350 000, which can be considered to be on the
low end for a CNN. The ResNet-152 model architecture that has won several image
classification competitions have, in contrast, over 60 million parameters [HZRS15].

Figure 2.7: The different layers representing our baseline model. The number of
parameters is the number of trainable weights that have to be tuned during training,
for the model to be able to learn to recognize our data.

2.4 Used tools

2.4.1 DCASE utils

DCASE [NVVAPH18] provides a python framework for working with Wav files
and manipulating audio data. The framework contains methods for doing audio
preprocessing on the data and manipulating the data length and sampling rate. This
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framework is used the preprocessing of the audio data, and reading and writing the
audio data to disk.

2.4.2 Tensorflow GPU

The framework TensorflowGPU is used to train different classification models. This
framework helps in developing and training high scale neural networks. The framework
utilizes the GPU to parallelize the training across the many cores in the GPU, and
thus speed up the process greatly.

2.4.3 Seaborn

Seaborn will be the data visualization framework. It is a simple python framework
that has an API for making figures related to data science.

2.5 Privacy

This section is partly from the EU GDPR website [24]. Data privacy has become an
important topic in the last years and is expected to increase in importance as IoT
devices become an essential part of daily life. The European Union constituted in
2018 the General Data Protection Regulation (GDPR), which is a regulation in EU
law on data protection and privacy for all individuals within the European Union (EU)
and the European Economic Area (EEA). The GDPR aims primarily to give control
to individuals over their personal data and to simplify the regulatory environment for
international business by unifying the regulation within the EU. The GDPR refers to
pseudonymization as a process that is required when data is stored (as an alternative
to the other option of complete data anonymization) to transform personal data in
such a way that the resulting data cannot be attributed to a specific data subject
without the use of additional information. Another example of pseudonymization
is tokenization, which is a non-mathematical approach to protecting data at rest
that replaces sensitive data with non-sensitive substitutes, referred to as tokens. The
tokens have no extrinsic or exploitable meaning or value. Tokenisation does not alter
the type or length of data, which means it can be processed by legacy systems such
as databases that may be sensitive to data length and type.

Although privacy is not a primary concern in this project, it can be useful to
note the benefits that will follow from using the data reduction techniques described
in this paper. By reducing the sampling rate, the data will be unrecognizable for the
human ear. By also having the classification done on the IoT device, the resulting
data transfer will only contain the predicted label and no other data. So the sound
recording will never leave the IoT device.
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2.6 Summary

In this chapter, several research papers in relevant areas have been studied. The
research papers conclude that a deep neural network is the most promising option
regarding the classification algorithm. This algorithm is also the approach chosen
for this thesis. Regarding the energy optimization of the IoT device, it can seem as
adaptive options for sensing and sleeping is the most promising options. This thesis
will test both static and adaptive versions of the window stride, to see if the adaptive
version is best also best for this problem. The dataset has also been selected to
be the SIEM dataset, which is used in DCASE 2018 task 5. The use of a finished,
labeled dataset saves much time that instead can be used to test different designs.





Chapter3Methodology

This project is a single-case mechanism experiment. A single-case mechanism experi-
ment is a test of a mechanism in a single object of study with a known architecture.
This type of experiment investigates the effect of a difference of an independent
variable X (e.g., sampling rate) on a dependent variable Y (e.g., accuracy). So, this
thesis will explore the effects that changing the independent variables sampling rate,
window size, and windows stride, have on the dependent variables accuracy and
energy consumption. The single-case mechanism experiment is part of the design
science approach to study information technology related areas. This chapter is based
on inspiration taken from the book "Design science methodology for information
systems and software engineering" [Wie14].

3.1 Design Science

Design science is the design and investigation of artifacts in context. Design science
iterates over solving design problems and answering knowledge questions [Wie14].
Design science research motivates by its desire to improve the environment by the
introduction of new and innovative artifacts and the processes for building these
artifacts. Figure 3.1 describes the process of design science in terms of three cycles.

The relevance cycle initiates design science research with an application context
that provides the requirements for the research as inputs and defines acceptance
criteria for the final evaluation of the research results.

The rigor cycle provides prior knowledge to the research project to ensure its
innovation. It is contingent on the researchers to thoroughly research and reference
the knowledge base in order to guarantee that the designs produced are research
contributions and not routine designs based upon the application of well-known
processes.

The internal design cycle is the heart of the design science research project. This

23
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cycle of research activities iterates more rapidly between the construction of an
artifact, its evaluation, and subsequent feedback to refine the design further. In
this cycle, alternative designs are generated, and the designs are evaluated against
requirements until a satisfactory design is achieved.

Figure 3.1: A three cyclical view of the design science approach. The figure is taken
from [Hev07].

This project will not complete several cycles of the entire design science process,
as no field test is performed. However, the idea is that during the development of
a system, the work is done in increasingly realistic conditions, and on increasingly
better designs. So the internal design cycle is repeated to create increasingly beneficial
designs, that perform better in the simulation.

3.2 Context

The context chosen for the simulation in this thesis is a simple house environment,
and the use-case is to monitor the activities happening. The information about the
activities can then be used to regulate temperature or monitor disabled persons for
irregularities. The simulation used to test the artifacts is made to be as realistic as
possible, to make the simulation result most realistic. When changing the architecture
of the artifact, the changes will impact the energy consumption of the artifact and
the accuracy of the artifact.

The goal of this thesis is to explore how the energy consumption and accuracy
that comes from applying an artifact to the simulator changes when the artifact
architecture changes. State of the art research often performs uni-variate analysis of
artifact parameters. These analyses are often how to select the best sampling rate
for the highest accuracy, or how to choose the best window stride to decrease the
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amount of data recorded. This project differs by its intent to perform a multivariate
analysis of all three parameters together. The results can then be used to give an
optimal recommendation based on the system requirements.

3.2.1 Problem Investigation

Problem investigation is the investigation of the real-world problem as a preparation
for the design of a treatment for the problem. The research goal in a problem
investigation is to investigate the improvement problem before designing the artifacts,
and before identifying the artifact requirements. The research goal is to improve a
problematic situation, and the first task is to identify, describe, explain, and evaluate
the problem to be treated [DCA].

There are many ways to investigate implementations and problems, such as
reading scientific, professional, and technical literature, and interviewing experts
[DCA]. The method chosen in this project was to conduct a systematic literature
review. It was chosen to gain sufficient knowledge about the problem of an AEC-IoT
system what is considered state of the art.

3.2.2 Systematic Literary Review

Systematic literature reviews are a means to identify, evaluate, and interpret research
that is deemed relevant for a specific topic, according to Kitchenham [Kit04]. The
main reason for conducting a systematic literature review is that it is more thorough
and fair, and thus of higher scientific value, compared to a regular literature review.
In order to be systematic, it is essential that the author identifies and reports research
that does not support their hypothesis as well as identifying and reporting research
that does so. The main stages of a systematic literature review consist of defining
a question, searching for relevant data, extracting the relevant data, assessing the
quality of the data, and analyzing and combining the data .

Google Scholar was the starting point for gathering relevant information in this
project. Google Scholar is a web search engine that indexes text and metadata of
scholarly literature. During the project, most of the papers found during the research
phase through this search engine were taken from one of the following platforms:

– Academia

– Academic Journals Database

– IEEE Xplore

– ResearchGate
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– Semantic Scholar

– SpringerLink

3.3 Research Problem

The main design problem for this thesis is the following:

How can we given a set of system requirements, maximize the energy
efficiency and prediction accuracy of an acoustic event detection sys-
tem?

To be able to answer this reliable and to make sure that the results are valid,
some knowledge questions need answers. The knowledge questions relate to each
parameter individually and are listed below:

1. What happens to the accuracy if the sampling rate is decreased?

2. What happens to the accuracy if the window size is decreased?

3. What happens to the accuracy if the window stride is increased?

By answering each of these knowledge questions, the results obtained in terms
of accuracy is more easily explainable, since the behavior of the metrics when the
parameters change is known.

3.4 Object of Study

The object of study in this thesis is an artifact that comprises of a unique combination
of the optimization parameters sampling rate, window size, and window stride, placed
in a simulated environment. The reason for choosing a simulation instead of using
real data relates to the data available. Since the dataset described in Section 2.2 is
used to train the classifiers, it cannot be used for testing in a more realistic scenario
with real data, since it would give wrong results since the classifiers overfit to the
training data. So, by instead using the classification accuracies found in Chapter
4 and 5 in a simulation it can be made to be quite realistic and thus be a better
option in terms of simplicity and reliability. Since the thesis will try to optimize
three parameters, it will be a multivariate study. The parameters sampling rate
and window size are discrete deterministic values, as they do not change during
the simulation. The window stride is discrete and can be both deterministic and
stochastic determined based on the window stride scheme used. The different window
stride schemes are explained more in Chapter 6.
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3.5 Validation Model

To be able to validate the object of study, a validation model is needed. For a model
to be valid, it must support a descriptive, abductive, or analogic inference [Wie14].
This project uses an abductive inference scheme, for its logical results inference. The
abductive inference is a form of logical inference which starts with an observation or
set of observations then seeks to find the simplest and most likely explanation for
the observations. Each parameter in an artifact is an observable property. Having
observable properties makes it easy to make a causal inference, and thus abductive
inference, on the artifacts, as it will be easy to make a conclusion on an effect based
on the conditions of the occurrence. The conditions of the occurrence is a change in
parameter value since all other sources that could be a causing effect are randomized
away in the data generation. By abductive inference, the change in the result is then
happening because of the change in parameter values.

The artifacts are used to conduct a trade-off analysis, where the artifacts are
tested with different architectures to see the effects of changing the parameters. The
simulation used to test the different artifacts depends on other sources of data other
than the artifact. These data sources are the test data generator that generated
the activity data for the simulation, and the classification models. The use of an
independent data-generator is a good thing as it will help test the robustness of
each artifact. This increased robustness is because the simulation is repeated a
hundred times for each artifact with statistically generated data, and thus, the effect
of various disturbing influences in the data is mitigated. The classification models
is another data source for the simulation. The simulation uses the accuracies from
the classification models to predict the activities in the simulation scenario. The
construction of the different artifacts is reproducible as all the parameter values for
the different artifact are listed in the thesis.

3.6 Sampling

Representative sampling is used to sample the artifacts. A representative sample is a
subset of a population that seeks to reflect the characteristics of the larger group
accurately. The population is all possible combinations of sampling rate, window
size, and window stride. As all these are continuous variables, the population size is
infinite.

To simplify the sample generation procedure, it was decided that all the artifact
parameter values are integer values from discrete ranges. Each parameter was defined
to have a realistic range, based on the testing data. So, the sampling rate can have a
value from 0 KHz to 16 KHz. A sampling rate above 16 KHz is not possible with the
dataset used in this thesis as the sound data sampling rate is 16 KHz. A sampling
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rate above 16 KHz would most likely not be necessary, as the goal is to make the
artifact more energy efficient. The possible window size range is from 0s to 10s. This
range is also because of the dataset, as each segment in the dataset is 10s. Making
the window size larger would require labeled data with larger segment size. The
window stride can be both stochastic and deterministic, as this project tests both
adaptive and static window stride schemes. This ambiguity means that that sampling
for the window stride is done a bit differently for the different schemes. For the
static window stride, the range is from 0s to 500s. The upper limit is chosen based
on some testing, and larger values pride little benefit in terms of energy efficiency vs.
accuracy. The adaptive window stride ranges tested are explained more in Section 7.
Within each parameter range, the tested values are selected more frequently at lower
values in the ranges. This selection is because changing the lower values have larger
consequences than changing the higher values, as is shown in the following chapters.

3.7 Treatment Design

The term treatment means for an artifact interacting with a problem context to treat
a real-world problem. The treatments applied to each artifact is a simulation of the
use-case context. This simulation takes as input an artifact. Before the simulation,
some activity data are generated to represent a scenario. The activity generation
is explained more closely in detail in Chapter 6, but the generation uses real-life
statistical distributions obtained from the DCASE dataset. The data generator is
then a treatment instrument. The validity of this instrument is shown when creating
the activity frequency and duration distributions in Chapter 6. When the simulation
starts, a window is applied sequentially on to the activity data, and classification
happens in each window. In order to simulate the classification process, the simulator
needs the statistical properties of the predictions for each artifact. In other words,
the prediction properties are how likely the system is to predict an activity correctly
when using a specific artifact. The classification algorithm is then another treatment
instrument.

3.7.1 Treatment Control

The simulation is made to be quite realistic, but still misses some key elements like
random noise and recording noise from the microphone. The reason for excluding
these factors is that increased control over extraneous factors improves support for
causal inference (internal validity). However, the increased control over extraneous
factors decreases support for analogic inference to field conditions (external validity)
because it makes the simulation less realistic. So there is a clear trade-off when
constructing the simulation.
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Repeatability is essential in these kinds of experiments. The simulation itself
is stochastic, as probabilities and randomness are used to guess the activities. So
repeating a single simulation will not give the same results. However, the effects of
this are mitigated to some degree by running the simulation multiple times and then
taking the average. So, in a repeated experiment, the results may not be entirely the
same, but the differences should be so small that they are negligible.

3.7.2 Treatment Validity

Suppose in a randomly sampled artifact it is observed different values of Y for every
different value of X. So there is some correlation between X and Y in the sample.
If the different values of X were to be viewed as "treatments" of Y, then it can be
concluded that differences in Y are the effects of differences in X. However, the
correlated differences in X and Y might be the effect of differences in an underlying,
unobserved variable U. So this causal inference is not warranted by these observations.
Suppose that the X is set to a different value, and no difference in Y is observed.
Then it would have become apparent that differences in X do not cause differences
in Y. However, as all underlying effects U are randomized away in the treatment
by running the simulation multiple times on different scenarios, it can be concluded
with a high probability that the change in X causes a change in Y.

Since each parameter first is tested separate from the others, the effects the
change have on the results is inferrable by causality. Then when different parameters
are combined in a new artifact, the resulting accuracy, and the energy consumption is
valid, since the individual parameter changes are valid and what causes the resulting
measurement changes is known.

3.7.3 Treatment Instrument Validity

The simulator uses two different instruments. First, the data generator generates
activity data for the simulation. This generator uses statistical distributions obtained
later in this thesis to generate this data. These distributions are made from metadata
about the DCASE dataset, which in turn stems from a real-life scenario. The process
of creating the distributions is described in Section 6.4.

Secondly, the label accuracies from the classification models are used to predict
the labels for each activity in the simulation. The validity of the classification model
is ensured by the use of state-of-the-art machine learning methods and training
frameworks, and the use of cross-validation for improved generalization.
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3.8 Measurement Design

The single most important factor in choosing a simulation instead of a real-life
implementation for testing of the artifacts is the control over external influence
factors. This choice also ensures that the measurements in the simulation are correct
as no factors other than computer errors is a source of errors.

3.8.1 Metrics

To validate the proposed artifact, a set of metrics is needed to measure the performance
of the system using the artifact. The projects research question states that the goal
is to look at how the system accuracy changes when the classification model is feed
with less information. So, one of the metrics to be optimized is the overall accuracy
of the system. The reason for feeding the model with less information is to lessen the
burden on the recording device, so that it may save energy since it runs on batteries.
To do as little as possible means that the device should sleep as much as possible,
and do as little computational calculations and measurements as possible. So, the
second metric to optimize is the devices energy consumption. These two metrics are
the main metrics that the goal is to optimize. The simulation also measures some
complementary metrics for additional information about each design, that can help
explain the results.

Accuracy

For the accuracy of the system, the simulation measures three different metrics. Each
of these metrics measures different properties that are important for a system in a
real-life scenario.

The first metric is calculated using the formula in Equation 3.1. The formula
takes the time fraction of each activity where the system is correct and takes the
mean over all the activities. In other words, it is the expected percentage of time the
system is correct for a random activity in the simulation. Each activity is equal in
this metric independent of duration or label. This metric is important for systems
where some activities appear more frequently than others, but all activities are
considered equally important. An analogy to this metric is the f1 score metric with
micro averaging.

Accuracy1 = 1
n

n∑
i=1

Ci

Di
(3.1)

where:
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n = Number of activities in the simulation
Ci = The duration of activity i where the prediction of the system are correct
Di = The total duration of activity i

The second accuracy metric tested is displayed in Equation 3.2. This metric
sums up the duration where the system is correct for each activity and divides it
by the total duration of the simulation. This metric is the same as finding out
how large percentage of the total duration is the system predicting correctly. The
difference between this metric and the first one is that this metric does not care for
the individual activities, and how much that are predicted correctly. It only looks at
the complete simulation and the fraction of the total time that the system has the
correct belief. This metric is important if the goal of the system is to be correct as
much of the time as possible.

Accuracy2 = 1
D

n∑
i=1

Ci (3.2)

where:

n = Number of activities in the simulation
Ci = The duration of activity i where the prediction of our system are correct
D = The total duration of the simulation

The last metric displayed in Equation 3.3, measures the percentage of time the
system is expected to be correct for an activity with a given label. This metric takes
into consideration that the activity label frequencies are unevenly distributed, and
averages all activities for a label before averaging all labels. The first metric does
not take this into account as it measures on an activity level, and not label level first.
This metric is a middle-ground between the two other accuracy metrics, in terms of
a balance between activity frequencies and total simulation time. An analogy to this
metric is the f1 score metric with macro averaging.

Accuracy3 = 1
num_labels

∑
l∈labels

P̄l (3.3)

where:

P̄l = The average percentage of the time the system is correct for an activity of label l



32 3. METHODOLOGY

Energy Consumption

Energy consumption will be the hardest metric to measure since there are many
factors to consider when measuring the energy consumption of a device. It can, for
example, be measured in two ways. The first way is to test the model on an actual
device and then use another measurement device to measure how much power the
recording device draws. This measuring process is very time-consuming and prone
to external errors, as many factors contribute to the energy consumption of a device.
The second way is to approximate the devices energy consumption with a formula
that takes into account how much data the device records over some time. The
second option is chosen in this project because of its simplicity and that it easily
integrates into the simulation.

The approximation formula for the energy consumption is displayed in Equation
3.4. This formula is based on the simulation and takes into account the sampling
rate and window size for the tested design, and the number of windows required
to complete the simulation with the designs window stride. The optimal energy
consumption is zero and would mean that one of the parameters is also zero. This
energy consumption would also give an accuracy of zero as there would be no data
gathered by the device, and such no predictions made. The value from the energy
consumption equation is the same as the total number of samples required to complete
simulation. So, if the sampling rate halves, the amount of samples measured in a
window is halved and thus the energy consumption if also halved.

EC = sampling_rate ∗ window_size ∗ num_window (3.4)

where:

sampling_rate = Sampling rate [KHz], 0 < x ≤ 16
window_size = Window size [s], 0 < y ≤ 10
num_windows = Number of windows required to complete the simulation, 0 < z < +∞

3.8.2 Measurement Validity

To make sure that the measurements are valid as a source of information some
requirements need to be fulfilled. The first is that the measurements need to have
a valid construct, which means that they need a precise definition, unambiguous
application, avoidance of mono-operation, and mono-method bias. The second is
that the measurement instrument that collects the information needs to be valid.
The third is about measured value ranges needs to be representative of the entire
population [Wie14].
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For the measurement metrics chosen for the simulation, they all have a clear
definition as they have a mathematical formulation, and an unambiguous application
as their goal is to measure a single system property. The accuracy metrics all measure
some form of system accuracy, but all take a different approach in doing it.

Mono-operation bias pertains to the independent variable, cause, program, or
treatment in the study. If a single version of a program in a single place at a single
point in time is used, the full breadth of the concept of the program may not be
captured [Wie14]. So, as the simulation is run multiple times with different data,
the possibility of mono-operation bias is mitigated.

Mono-method bias refers to the measures or observations, and not to the treatment.
With only a single version of, e.g., accuracy measure, it cannot provide much evidence
that accuracy is measured [Wie14]. So, by having multiple metrics that try to measure
the same thing using different approaches, mono-method bias is avoided. If the metrics
then show the same result, the results can be considered valid. Some complementary
metrics are also measured in the simulation to further avoid mono-method bias. The
metrics are described in Chapter 6.

For the second, the use of a controlled simulation ensures the integrity of the
measurement instrument. For the third requirement, the value ranges have been
selected to be representative of the entire population.

3.9 Finding Optimal Artifact Designs

In order to compare the different artifacts to find the optimal designs, Pareto
optimality is used.

3.9.1 Pareto Optimality

Pareto optimality will be used to find the optimal designs for a set of requirements.
The definition of Pareto optimality is as the state of allocation of resources from
which it is impossible to reallocate to make any one individual or preference criterion
better off without making at least one individual or preference criterion worse off.
An example of a Pareto front is displayed in Figure 3.2. The optimal designs will lie
on the Pareto front, which is the line between the Pareto points.
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Figure 3.2: Example of how a Pareto front will look. Optimal points will lie on the
Pareto front. These points are best, given a set of requirements.

3.10 Proof of Concept

This thesis is a proof of concept. A proof of concept is a realization of a particular
method or idea in order to demonstrate its feasibility. When finished, the project
will show a step-by-step process of finding optimal designs for an acoustic event
classification system given some requirements in terms of energy consumption and
accuracy.

3.11 Other Possible Problems

3.11.1 Overfitting

A possible problem that may be encounter in this project is overfitting. Overfitting
is a problem where the classification model has adapted to the training data in such
a way that it generalizes poorly on unseen data. So even if the classification model
achieves a high accuracy score on the validation data, it may not achieve the same
score in a real environment. Steps like cross-validation are applied, to mitigate this,
but it is impossible to be entirely sure that the classification model is not overfitted
to the training data.
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3.11.2 Non-reproducibility of Classification Results

Another problem that might be encounter is the ability to reproduce the results.
Since the classification models train on a GPU, the process will not be deterministic,
so another process cannot reproduce the results precisely [Sig]. Even though the
exact classification results cannot be reproduced, doing the process over again would
produce very similar results. Since this project is a proof of concept and since the
machine-learning part is only a small part of this project, the ability to reproduce the
classification result exactly is not all that important, but should still be addressed.

3.12 Summary

In this chapter, the methods and treatments used in this thesis to achieve the results
have been explained. First, the next chapters will explore the effects of changing the
sampling rate and window size with the help of the classification model described
in Section 2.3.3. The segments in the dataset will be downsampled and reduced in
window size to test the effect of each parameter. The results from this classification
part are so used in the simulation part where the goal is to test the complete set of
parameters, which includes the window stride. The simulation will use the prediction
accuracies to make statistical guesses for each activity and measure the metrics based
on the guesses. The different metrics measured in the simulation is explained in
Section 3.8.1, and are mainly three different versions of accuracy and one energy
consumption metrics. In the end, the result will be a 2D-plot where the accuracy
is on the y-axis, and the energy consumption is on the x-axis. The optimal points
from the plot will lie on the Pareto front and will be optimal for a given set of
requirements.





Chapter4Exploring the Sampling Rate
Parameter

In this chapter, the effect the sampling rate has on the accuracy are studied. As seen
in Figure 4.1, the sampling rate is a measure of the amount of information captured of
a signal. A lower sampling rate means less information captured, and less information
for the classification model to use to classify the sound events. However, a lower
sampling rate also means that the recording device does less by capturing fewer
samples, and thus saves energy. This chapter will find a answer to the knowledge
question "What happens to the accuracy if the sampling rate is decreased?".

Figure 4.1: The connection between the input signal, sampling rate and the output
signal. The image is taken from the website [22]

4.1 Classification

To be able to predict the activities in the simulation most realistically, the statistical
properties of the predictions for each design has to be known. If not, the simulation
has to classify actual sound data to be able to measure the metrics, and this would
be extremely time-consuming as it would require labeled sound data over a long
time-period. Each design will have a different confusion matrix, unique to its set of
parameters. The confusion matrices contain the statistical properties of each design
as they tell how likely it is to miss-predict each label. A design consists of a sampling
rate and window size and window stride. Only the sampling rate and window size

37
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are the only relevant parameters for the classification part, as it is only the recorded
window that is classified.

4.1.1 Model training and validation

The baseline model, as described in Section 2.3.3 will be used to test the effect
of changing the sampling rate and window size. The SINS dataset comes with
four predefined folds utilized to improve generalization and decrease overfitting by
applying cross-validation. Each model trains for 30 epochs on the training data and
then validated by the validation data. The distribution of training and validation
data is 70/30.

For the sampling rate part of this project, 16 different models are trained — four
for each set of parameters. These 16 models are only for the first part of the project,
and several models have to be trained in the other parts also. Thus the choice of
not using the multichannel data is entirely because of the complexity it would add
to include it. Since each model trains only on 20 epochs, it may be possible to
achieve higher accuracy scores than the scores achieved in this project. However,
since the goal of this project is to compare the different models to find the optimal
one for a set of requirement, achieving the highest possible accuracy scores are not
that important as long as all models are trained equally. The choice of 30 epochs
was because the improvements had started to flatten out when reaching epoch 30,
and that the training is done on commodity hardware with limited computational
capacity. In the paper that the model 2.3.3 was based on, the number of epochs
used to train the model was 500. So a larger number of epochs would most certainly
improve the accuracy some, but not by a significant amount. Having a low epoch
number is beneficial because of the high number of classifiers trained in this project.
If each classifier trained on 500 epoch, it would have become a too time-consuming
process.

4.1.2 Cross-Validation

Cross-validation is a model validation technique for assessing how the results of a
statistical analysis will generalize to an independent data set. During cross-validation,
the data is divided into two separate parts — one for training and one for validation.
This process is done several times so that the model is trained and tested on different
data for each split. The DCASE dataset comes with four predefined folds with
a 70/30 training/evaluation distribution of the data. These folds will be used to
cross-validate the models and create four independently trained models. The results
of these models will be averaged to find the standard deviation of the metrics. The
standard deviation can be used to see if some design generalizes better on unknown
data than others and if so they are preferable.



4.2. METRICS 39

4.2 Metrics

The accuracy of the classification models is measured with the F1 score, raw prediction
accuracy, and the confusion matrix.

Accuracy

Equation 4.1 displays the formula for raw prediction accuracy. As with the F1 score,
the optimal value for the raw accuracy is 1 and would mean that all segments were
labeled correctly.

A = TP + TN

TP + TN + FP + FN
(4.1)

where:

TP = True positive
FP = False positive
TN = True negative
FN = False negative

F1 score

F1 score is an alternative measure of the accuracy of a classifier and considers both
the precision and the recall of the test to compute the score. Precision is the number
of correct positive results divided by the number of all positive results returned by the
classifier, and recall is the number of correct positive results divided by the number
of all relevant samples. The F1 score will be computed using macro averaging over
all label. This averaging means that all labels are equally important, independent
of how the label distribution. So, a miss-prediction of the label "absence" is equal
in weight to a miss-prediction of the label "vacuum_cleaner". This is important
because of the class imbalance in the dataset. The formula for the F1 score is shown
in Equation 4.2. A score of 1 would mean that the classifier has predicted all labels
correctly.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.2)
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Confusion matrix

The confusion matrix is the visualization of the classifiers errors and shows which
labels are easily confused. Each row of the matrix represents the instances of the
actual classes, while each column represents the instances of the predicted classes.

4.3 Assumption

When lowering the sampling rate, the amount of information that the classification
model can use in its predictions decreases. Sometimes less information for the
classification model is a good thing, as it helps against overfitting []. This relation
will most likely not be the case here as the loss of information may make some labels
very similar in terms of features. So, the assumption in this chapter is that as the
sampling rate decreases, the prediction accuracy will also decrease. This relationship
is the same as saying that most likely, there will be a positive correlation between
the sampling rate and the prediction accuracy.

To figure out the correlation between the sampling rate and the prediction
accuracy for the system. The model described in Section 2.3.3 is used to predict the
data segments where the segments are downsampled and tested sequentially. The
sampling rates to be tested are 16 KHz, 8 KHz, 4 KHz, 2 KHz, 1 KHz, 500 Hz, and
250 Hz. The amount of information stored in a segment sampled at 250 Hz is 64
times less than the information stored in a segment sampled at 16 KHz.

4.4 Sampling Rate Tests

4.4.1 Baseline Model (16 KHz)

This sample rate corresponds to the data’s original sample rate and the sampling
rate chosen for the baseline model. As seen in Figure 4.2, the model is quite good at
classifying the different classes except for "dishwashing" and "other". "dishwashing" is
mostly confused with cooking. This confusion is understandable as plates are chiming
in both classes, and there are no very distinguishing features that can distinguish
them effectively. The other label that is hard to predict is "other". The difficulty
predicting the "other" label is also very understandable as this is the category where
the person is present but doing other irrelevant activities. The confusion matrix
also shows that the "other" label is most easily confused with "absence" or "working"
labels, but that this relation does not go the other way. Both of these activities have
an almost 0% chance of being classified as "other". This anti-symmetric relationship
shows the difficulty of the "other" label. Since it is a collection label for all other
activities not modeled in the dataset, the sounds segments for this label expected
to be quite diverse, and thus very hard to classify. The models following will be
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expected to be even worse at predicting "other" correctly as they operate with less
information. Compared to the winning model in the DCASE competition that the
model architecture is based on, this model performs notably worse as the F1 score is
0.83 compared to 0.89. The optimal choice would be to increase the number of epochs
to train the models more, but as the computational power of the hardware used for
training is limited, the training would take to long. The use of data-augmentation
could also be beneficial, but this would again add another possible error source.

F1 = 0.83± 0.030 (4.3)
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Figure 4.2: Confusion matrix of the model’s predictions on the 16 KHz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.2 8 KHz

As with the baseline model, the 8 KHz model struggles with the label’s "dishwashing"
and "other". The F1 score of this model is also slightly lower than that of the
baseline model, as shown in Equation 4.4. The standard deviation is also a bit larger.
This increase means that the F1 score of each fold individually are more dispersed,
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compared to the baseline model. The information loss resulting from halving the
sampling rate has not made a significant effect on the accuracy, but can be seen on
the prediction accuracy for each fold individually as it seems that the model depends
more on the data used for training. The "other" label has almost the same accuracy
score as with the baseline model, so the effect of less information has not affected
the prediction of this label yet.

F1 = 0.82± 0.045 (4.4)
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Figure 4.3: Confusion matrix of the model’s predictions on the 8 KHz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.3 4 KHz

After halving the sampling rate again, the confusion matrix in Figure 4.4 shows
almost no change in accuracy for the different label. The F1 score is again slightly
lower, as shown in Equation 4.5, and the standard deviation is is a bit higher but
not high enough to have a significant meaning. The amount of information captured
is now 25% of the original amount, and not much has changed in terms of prediction
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accuracy yet. The increase of the standard deviation shows that compared to 8 KHz
model and the baseline, as the sampling rate decreases, the model’s performance
is more and more dependant on the training and validation data. This increase in
standard deviation is not a very good sign, as it shows that the models generalize
worse to unknown data.

F1 = 0.81± 0.050 (4.5)
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Figure 4.4: Confusion matrix of the model’s predictions on the 4 KHz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.4 2 KHz

With a 2 KHz sampling rate, the information used by the classification model is only
12.5 % of the original data’s information which the baseline model uses. The F1
score decreases slightly again, and the standard deviation is pretty much the same
as for the 4 KHz model. From the confusion matrix in Figure 4.5, it can be seen
that the label "other" has shown the most performance degradation compared to all
other used labels. It has gone from 0.32 in the model in Section 4.4.3, to 0.26. At
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the same time, some of the other labels have had a performance increase. So overall,
the sampling rate is still quite sufficient to reliably predict the different labels.

F1 = 0.80± 0.046 (4.6)
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Figure 4.5: Confusion matrix of the model’s predictions on the 2 KHz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.5 1 KHz

The sampling rate is now 1 KHz, after halving the sampling rate from the previous 2
KHz. This halving means that the model is using only 6.25 % of the original data
information. The F1 score is equal to the F1 score of the previous model, which was
trained on data with 2 KHz sampling rate. The standard deviation has decreased
by almost 10% compared to the standard deviation of the F1 score for the previous
model. Why that is, is hard to figure. It may be just a coincidence, or by removing
some of the information, the different cross-validation models are finding more of the
same distinguishing feature relations in the training data. This observation will not
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be critical to this project but can be useful to note if a system only is considering
the sampling rate parameter.

F1 = 0.80± 0.039 (4.7)
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Figure 4.6: Confusion matrix of the model’s predictions on the 1 KHz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.6 500 Hz

After halving the sampling rate again, this time to 500 Hz, the effects of the
information loss can be seen on the confusion matrix in Figure 4.7. The F1 score has
decreased to 0.73, and the standard deviation is 51% higher compared to the 1 KHz
model. Compared to the original 16 KHz baseline model, the 500 KHz model uses
only 3.1% of the original data for its classifications. Most of the labels are now harder
to predict correctly by the model, as shown in the confusion matrix. So, somewhere
between 1 KHz and 500 Hz, there is a point where decreasing the sampling rate more
will have a significant effect on the accuracy, and where there should be no point in
decreasing further from since the effects on the accuracy would be too big. However,
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for the sake of exploring the effects of halving the sampling rate once again will also
be studied.

F1 = 0.73± 0.059 (4.8)

ab
sen

ce

coo
kin

g

dis
hw

ash
ing

ea
tin

g
oth

er

soc
ial_

act
ivit

y

va
cuu

m_cl
ea

ne
r

watc
hin

g_t
v

work
ing

Predicted label

absence

cooking

dishwashing

eating

other

social_activity

vacuum_cleaner

watching_tv

working

Tr
ue

 la
be

l

0.82 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.15

0.01 0.94 0.04 0.01 0.00 0.00 0.01 0.00 0.00

0.05 0.24 0.59 0.08 0.00 0.01 0.00 0.00 0.03

0.11 0.05 0.04 0.71 0.00 0.01 0.00 0.01 0.08

0.33 0.06 0.07 0.11 0.20 0.02 0.00 0.01 0.19

0.04 0.07 0.01 0.02 0.00 0.80 0.01 0.01 0.05

0.00 0.01 0.00 0.00 0.00 0.00 0.99 0.00 0.00

0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.85 0.05

0.24 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.72

0.0

0.2

0.4

0.6

0.8

Figure 4.7: Confusion matrix of the model’s predictions on the 500 Hz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.4.7 250 Hz

The final halving of the sampling rate brings the sampling rate down to 250 Hz. The
data now contains 1.5% of the original data’s information. This decrease displays
in the confusion matrix in Figure 4.8 as the model now has substantial problems
classifying most of the labels correctly, with the exception being "vacuum_cleaner"
and "cooking". The F1 score is now 0.52, and the model can be considered useless in
most real-life scenarios. It still performs significantly better than a random classifier,
but in a real-life use case would require that predictions are somewhat reliable and a
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system using this model as the classifier would predict each label wrong on average
1:2 times.

F1 = 0.52± 0.050 (4.9)
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Figure 4.8: Confusion matrix of the model’s predictions on the 250 Hz validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

4.5 Conclusion

To sum up this chapter. Seven different sampling rates have been tested, ranging from
16 KHz to 250 Hz. For each of the tested sampling rates, the data were down-sampled
and used to train a neural network. The models thus train on the same data, only
with different amounts of information. The result of this chapter is seven independent
designs that each have a unique set of parameters.

It is now time to compare the different designs and address the initial assumption
about the correlation between sampling rate and prediction accuracy. Table 4.1
show the different F1 scores and the pure accuracy of the different models. As
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described in the previous sections, the F1 score changed by 0.03 when the sampling
rate decrease from 16 KHz to 1000 KHz. This decrease is a 3% decrease in accuracy
that corresponds to a 94 % decrease in sampling rate. However, as the sampling rate
gets lower than 1000 Hz, the models start to struggle more. As shown in Figure 4.9,
the mean curve has a notable change in angle at 1000 Hz. This change in gradient
could mean that this is around the point where the information loss is so severe that
fewer distinguishing features captured in the recordings. The curve in Figure 4.2,
is a logarithmic curve that seems to reach its threshold at a value around 0.85. So,
increasing the sampling rate could also be an option if the system requires it, but
the performance gain by doing so would be minimal. Back to the assumption about
the correlation between sampling rate and prediction accuracy. From the plot in
Figure 4.9, it can be seen that the initial assumption holds and that by decreasing
the sampling rate the energy consumption of a device can be decreased without much
impact on the prediction accuracy. This decrease in accuracy is not significant until
the sampling rate decrease to 1 KHz. So, the benefit from decreasing the sampling
rate can be up to 16x when only decreasing the sampling rate from 16 KHz to 1 KHz.

Sampling Rate F1 Mean F1 Std Accuracy Mean Accuracy Std

250 0.52 ±0.050 0.53 ±0.062
500 0.73 ±0.059 0.79 ±0.063
1000 0.80 ±0.039 0.86 ±0.054
2000 0.80 ±0.046 0.87 ±0.058
4000 0.81 ±0.050 0.87 ±0.052
8000 0.82 ±0.045 0.88 ±0.033
16000 0.83 ±0.030 0.89 ±0.028

Table 4.1: Comparison table of the different sampling rates, with F1 score and raw
accuracy as metrics. The scores are averages of the 4-folds.
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Figure 4.9: Plot of sampling rate vs. F1 score. The folds are highlighted in different
colors. The line is the mean curve of the four folds, and the shaded area is the
confidence interval. Note that the sampling rate is plotted on a logarithmic scale.
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Figure 4.10: Plot of sampling rate vs. raw accuracy. The folds are highlighted in
different colors. The line is the mean curve of the four folds, and the shaded area is
the confidence interval. Note that the sampling rate is plotted on a logarithmic scale.





Chapter5Exploring the Window Size
Parameter

In this chapter, the effects that changing the window has on the prediction accuracy
is studied. Changing the window size will by itself not allow the device to save energy,
but by combining the decreased window size with a window stride could significantly
decrease the energy consumption of the device. The decreased window stride will
probably only be beneficial if the decrease in prediction accuracy by having fewer
features, is not too severe. By reducing the window size, the system will also be
more responsive, as it will be able to detect changes in activities faster. This chapter
will find a answer to the knowledge question "What happens to the accuracy if the
window size is decreased?".

5.1 Data Preparation

Initially, the dataset only consists of 10s segments. Only having 10s segments is a
problem since transforming a 10s segment into, e.g., a 5s segment is not an easy
process. Since the data are labeled, taking a random 5s part of the original 10s
segment can lead to the new segment not containing the sound that corresponds
to the given label. The new dataset would then be full of false data, that would
mislead the classification model. This would be an even bigger case as the window
size decreases further, as the chance of capturing the relevant part of the segment
decreases with the window size.

The solution used in this project for this is displayed in Figure 5.1. First, the
original segment is split into overlapping sub-segments. So, when transforming the
10s segment into a 5s segment, this process will create three new sub-segments. How
the sub-segments overlap is also displayed in Figure 5.1. The potential sub-segments
is then padded back into 10s segments. The padding will consist of adding random
noise corresponding to "absence" data to the sub-segments. This padding is because
"absence" is the label that should be predicted when there are no sounds present. The
three sub-segments are now 10s long again. Now the baseline classification model

51
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from Section 4.4.1 that trained on the original 10s data are used to predict the label
on the padded sub-segments. The padded sub-segment that achieves the highest
score on the correct label will contain the most features that corresponds to the label
and will be selected to be the new and smaller segment. This process will ensure
that all the new segments with a lower window size will contain relevant data to
their label.

Figure 5.1: The process of transforming a 10 second segment into a 5 sec segment.
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5.2 Metrics

The metrics used in this chapter will be the same as those used in the previous
chapter - namely f1-score, raw accuracy, and the confusion matrix.

5.3 Assumption

The assumption regarding the window stride is that by changing the window size, the
prediction accuracy will also be affected, and most likely in a negative way. Several
window sizes are tested, namely 10s, 5s, 2s, and 1s. The 10s window size will be
the baseline model for comparisons and will be the same as the 16 KHz model used
in Section 4.4.1. All designs in this chapter have a 16 KHz sampling rate. Worth
noting here is that by reducing the window size, the corresponding MFCC matrix
will also decrease in size. So reducing the window size will reduce the amount of
information that needs to be processed by the classifier algorithm.

5.4 Window Size Tests

5.4.1 Baseline Model (10 sec)

This is the model described in Section 4.4.1. As mentioned before it struggles to
predict the labels "dishwashing" and "other". It achieves an F1 score of 0.83 and will
be the base comparison model.

F1 = 0.83± 0.030 (5.1)
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Figure 5.2: Confusion matrix of the models predictions on the 10 sec segment valida-
tion data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

5.4.2 5 sec

Halving the window size to 5s gives a notable degradation to the performance and
lowers it by 0.04. This degradation from halving the window size is notably more
than the degradation in performance in going from 16 KHz sampling rate to 1 KHz
sampling rate in Chapter 4. The labels that are most affected by this decrease in
window size is "eating" and "working", where "eating" has gone from 0.84 to 0.73 and
"working" has gone from 0.81 to 0.73. This result is quite a significant performance
fall and indicates that some of the classes clearly benefits from the larger window
size. This observation may not be all that surprising given that with a 10s window
can capture twice as much as a 5s window. Thinking of a window as the number
of samples in the window, then a 10s window contains 160000 samples, while a
5s window contains 80000 samples. The same relation in the number of samples
happens if the sampling rate decreases from 16 KHz to 8 KHz, which was tested in
the previous chapter. Going from 160000 samples to 80000 in the previous chapter,
only gave a performance degradation of 0.01, while it here gave a degradation of 0.04.
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This degradation shows that capturing an equal amount of samples in a smaller time
frame is far less important than spreading those samples across a larger time frame.

F1 = 0.79± 0.047 (5.2)
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Figure 5.3: Confusion matrix of the models predictions on the 5 sec segment validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

5.4.3 2 sec

Further decreasing the window size to 2 sec, decreases the F1 score of the model by
another 0.6. The F1 score is now quite low, and it can be seen in the confusion matrix
in Figure 5.4 that most classes except "cooking", "vacuum_cleaner" and "watching_tv"
have taken a notable degradation in performance. The window size is now 20% of
the original window size, and thus only containing 20% of the original information.
This continuous performance degradation further confirms the observation about
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that a lower sampling rate over a larger window is better than a higher sampling
rate over a smaller window.

F1 = 0.73± 0.033 (5.3)
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Figure 5.4: Confusion matrix of the models predictions on the 2 sec segment validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

5.4.4 1 sec

Decreasing the window size again to 1 sec, further decrease the F1 score from 0.73 to
0.70. The window size is now 10% of the original window size, and thus only contains
16000 samples. Compared to changing the sampling rate, the closest design tested in
terms of samples was the 2000 Hz design. This design managed an F1 score of 0.80,
which is 0.1 better than the design with 1s window size.

F1 = 0.70± 0.027 (5.4)
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Figure 5.5: Confusion matrix of the models predictions on the 1 sec segment validation
data. The matrix is normalized along the x-axis so the display is independent of
class imbalance.

5.5 Conclusion

So, now that the different window sizes have been tested, it is time to conclude this
chapter. From the table in Table 5.1 and Figure 5.6, it can be seen that the window
size affects the accuracy in a very high degree. The models clearly benefit from the
larger window sizes. This observation is understandable as when the window gets
longer, more features related to the activity are captured over more time, and thus,
it gets easier to classify. Compared to Chapter 4 where the sampling rate could
decrease quite much without a notable decrease in accuracy, there is no such relation
here. Here with the window size, the accuracy is much more affected with each
decrease in window size.

So, back to the initial assumption made in Section 5.3. It was assumed that
changing the window size would also affect the accuracy, and most likely in a negative
way. From Figure 5.6 we can see that we where right. Decreasing the window size
parameter affects the prediction accuracy negatively. The curve in Figure 5.6 when
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not plotted on a logarithmic scale, is an exponential curve. So it can be assumed
that decreasing the window size further down from 1s will only lower the prediction
accuracy more and thus not be a wanted design, as the energy savings for going from
a 1s window size to 0.5s window size is negligible. Increasing the window size from
10 sec to maybe 20s would most likely increase the accuracy as the curve has not yet
flattened out yet. However, 20s windows would severely decrease the responsiveness
and increase the energy consumption of the system, which would not be preferable
in a real-life scenario.

Window size F1 Mean F1 Std Accuracy Mean Accuracy Std

1 0.70 ±0.027 0.77 ±0.028
2 0.73 ±0.033 0.80 ±0.036
5 0.79 ±0.047 0.85 ±0.047
10 0.83 ±0.030 0.89 ±0.028

Table 5.1: Comparison table of the different window sizes, with F1 score and raw
accuracy as metrics. The scores are averages of the 4-folds.
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Figure 5.6: Plot of window size vs. F1 score. The folds are highlighted in different
colors. The line is the mean curve of the four folds, and the shaded area is the
confidence interval. Note that the window size is plotted on a log2 scale.



5.5. CONCLUSION 59

1 2 5 10
Window size, log2[n]

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

fold
1
2
3
4

Figure 5.7: Plot of window size vs. raw accuracy. The folds are highlighted in
different colors. The line is the mean curve of the four folds, and the shaded area is
the confidence interval. Note that the window size is plotted on a log2 scale.





Chapter6Exploring the Window Stride
Parameter

Figure 6.1: An example of how the how the window stride will look. The stride is
applied between two consecutive window frames to decrease the energy consumption.

Compared to the two previous parameters, sampling rate, and window size, the
window stride will be the most important parameter to optimize - as it will be the one
that provides the most benefit to the system. The window stride is a measure of how
much time passes between two consecutive recordings. Optimizing this parameter
will allow the device to sleep between the recordings, so a larger window stride
is preferable as it will increase the time the device is idle and saving power. So,
this chapter will find an answer to the knowledge question, "What happens to the
accuracy if the window stride is increased?". A system that requires fast feedback
from the system would need a smaller window stride than a system that does not
have this requirement. A lower window stride allows the system to detect changes in
activities faster, as shown later in this chapter.

There are several strategies to use when applying a window stride. This project
looks at two different approached. Those are:

1. Static window stride.

2. Adaptive window stride.

The static window stride is a simple window stride that happens between two
consecutive recordings and is the same after all predictions. This window stride is a
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static value that does not change over time unless the system is updated. The static
window stride will often be shorter than the adaptive window stride since it does
not take into account any "expert information", so it has to generalize to all possible
activities.

The adaptive stride is, unlike the regular window stride, meant to adapt to the
modeled activities. Some activities regularly last longer than others, and this can be
used to the system’s benefit by creating an adaptive window stride scheme where
the stride adapts to the current activity. This means that the applied window stride
is a function of the predicted label. The adaptive window stride is studied more in
the next chapter.

6.1 Thought experiment

A thought experiment can clarify the difference between the two schemes more clearly.
Imagine that there is an old and noisy cafe maker placed in a room, and we have
gotten the job of counting the number of times the cafe maker is in use. We decide
that we will use a small IoT sensor with a microphone that is going to record the
sound in the room and use the sound to figure out if the cafe maker is making cafe
or not. After recording the sound, it will be classified with a pre-trained model, that
are trained to recognize the difference between brewing and not brewing. Since our
IoT sensor is battery driven, we want it to record as little as possible so that we
do not have to change it during the project. We know that it takes 5 minutes for
the cafe to be ready, from the time it starts to brew. So, we can use a 20s window
stride and still be quite confident that we can detect each cafe-making session. This
window stride is the static window stride. It does not take into account the system’s
predictions and uses a 20s window stride between all the window frames. However,
since we know that it takes 5 minutes for the cafe to be ready from when it starts,
there is no point in recording any more for the next 5 minutes when we first detect
that the cafe maker is on. So, the device can then wait those 5 minutes, before
recording again. This window stride is the adaptive window stride, as it adapts to
the current activity.

6.2 Simulation Design

The simulation used in this project to test different designs uses randomly generated
list of activities, each with a generated duration, as its simulation data. The simulation
takes as input, a design with a sampling rate, window size, and window stride. A
window of a certain size is placed on top of the data as pictured in Figure 6.2. The
first window is placed on top of the activity "eating". The chance of predicting this
activity correctly is taken from the confusion matrices in Chapter 4 and Chapter 5.
For the baseline-model, the chance of predicting the "eating" activity correct is 84%.
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The simulator uses an entire row of the confusion matrix so that for an activity, all
labels can be predicted. What kind of activity is in the window decides what row
to use. So, if the actual activity is "absence", the predicted label for the activity is
drawn with the probabilities in the actual "absence" row of the confusion matrix.
This process is selected to mimic the real predictions for the classifiers. After the
prediction, the window is moved x seconds forward, which corresponds to the window
stride. For each window, a prediction is made, and used to calculate the different
metrics described in Section 3.8.1.

"eating"

Window 2 Window 3Window 1

"other" "eating"

Figure 6.2: The list of activities used in the simulation and the window being
sequentially applied to the list.

If it happens so that the window overlaps two activities as pictured for window 2
in Figure 6.3 the chance of predicting the different activities depends on how large of
a fraction of the window the activity contains. So, if 60% of the window is in the
"eating" activity and 40% is in the "other" activity, the row in the confusion matrix
that corresponds to "eating" is multiplied with 0.6 and the row that corresponds
to "other" is multiplied with 0.4. The result of this is added together and then
normalized so that the sum of the probabilities is 1. So if an activity is hardly present
in the window is has a low probability of being correctly predicted.

"eating" "other"

Window 2 Window 3Window 1

Figure 6.3: The list of activities used in the simulation and the window being
sequentially applied to the list. Some windows may contain two different activities.

After the simulation completes the list of predictions is updated so that in the
time between windows, the system predicts the same as in the previous window.
This is described in Figure 6.4. The prediction list is then compared to the actual
list of activities, and the different metrics calculated. For example, in Figure 6.4,
the "watching_tv" activity is predicted 100% correctly, while the "other" activity
is predicted 0% correctly and missed by the system. The accuracy1 score for the
system in the scenario in Figure 6.4 is 75%, as one of the activities is completely
missed, and the others are predicted correctly their entire duration.
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"eating" "sosial_activity" "other" "watching_tv"

"eating"
Window 2

"social_activity"
Window 3Window 1 Window 4

"watching_tv""watching_tv"

"eating" "social_activity" "watching_tv"

Figure 6.4: The figure shows the list of activities used in the simulation and the
windows applied. Under each window, the predicted label is displayed. After the
simulation, the prediction list is updated to be the prediction timeline for the system.
This timeline can then be compared to the actual activity list, which contains the
truth.

The simulation consists of 200 randomly generated activities. For each design,
the simulation is run 100 times, each on different activity data. The results for
each design is the average of all those 100 simulations. The simulation program was
created solely for this project and went through tests to ensure the reliability of the
results.

6.3 Data Exploration

To be able to generate data for the simulation, the distribution for the sessions and
the sessions duration’s is needed. Since each segment that was previously used to
train the classification models belong to a session, the segments can be grouped to
form the initial sessions. Figure 6.5 shows the distribution of session in the data. To
gain a more accurate distribution of the session meta-data from the training and
testing dataset in the DCASE competition have been merged to increase the amount
of data. The figure shows that the "other" activity happens most frequently, by
a large margin. This distribution shows how, often on average, each label should
appear in the generated data. The sessions in the dataset have no sequential order,
so there is no way to get the transition probabilities between the different labels. The
activity transitions would have been preferable for generating more realistic data but
is not necessary for this proof of concept project.
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Figure 6.5: The frequency of the different activities in the datasets. The data is
collected from the training and test dataset in the DCASE task 5 competition.

The next thing to figure out is how long each activity usually lasts. Table 6.1
shows some metadata about the sessions for each label. As described earlier, the
"other" activity happens most frequently. It is also the activity that has the shortest
mean duration. The table shows that there is quite a large difference between the
min and max duration for the activities. This difference between min and max
may mean that there are some outliers in the session duration’s that will affect the
created statistical model wrongfully. Figure 6.6, shows that this is also the case when
looking at the percentiles of the data. The boxplot shows that several of the session
durations are outliers. These have to be removed before creating the final duration
distributions for the activities.
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Label Mean duration [s] Std Min duration [s] Max duration [s]

absence 6553 14953 40 99190
cooking 4918 3083 120 13440
dishwashing 1938 844 840 3710
eating 2320 1707 140 7560
other 227 338 40 3010
social_activity 2825 3390 40 15840
vacuum_cleaner 1415 789 520 3010
watching_tv 30587 26110 6580 102830
working 7132 9983 200 56980

Table 6.1: Metadata about the duration of each activity.
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Figure 6.6: Boxplot of the duration for each activity. How boxplots work are described
in Appendix A

After removing the outliers, the resulting metadata about the activity duration’s
is displayed in Figure 6.2. The table shows that all activities have been affected by
the outlier removal. The activities have very different mean duration’s compared
to each other, and thinking about it in a real-life context; this is to be considered
perfectly normal. An example is the "watching_tv" category. Watching tv usually is
not a 10-minute activity, and is often more in the magnitude of hours. The mean
duration for the "watching_tv" activity is 24567s, so this person likes to watch tv
for long periods of time in each session. Compared to the "other" category which
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only has a mean duration of 130s, the "watching_tv" activity on average last 188x
longer. This significant difference in duration is important to note for later during
the discussion of the simulation results.

Label Mean duration [s] Std Min duration [s] Max duration [s]

absence 1390 1961 40 7920
cooking 4445 2357 120 7490
dishwashing 1934 844 840 3710
eating 2028 1175 140 4970
other 130 93 40 420
social_activity 1933 1707 40 6300
vacuum_cleaner 1415 789 520 3010
watching_tv 24567 15156 6580 51800
working 4781 4685 200 18620

Table 6.2: Metadata about the duration of each activity after outlier filtering.

The type of distribution chosen for the activity durations is the gamma distribution.
This choice is because a duration cannot be a negative number, and using a Gaussian
distribution to model the duration’s can give negative numbers. Gamma distributions
are also excellent for modeling time between events, as shown in this article [LXGS06].
A python module named Scipy is used to create gamma distributions for activities.
The module fits the distributions to the duration data for each label. The resulting
gamma distributions that model the duration for the different labels are displayed in
Figure 6.7.
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Figure 6.7: The gamma distributions from witch the new activity duration’s are
generated.
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6.4 Data Creation

Now that the activity and activity duration distributions fit the session data, it is
time to generate the data for the actual simulation. This data generation process
first entails, drawing 200 activities randomly from the discrete distribution displayed
in Figure 6.8. The drawing is done sequentially to make sure that a sequence of
activities is not of the same label. After drawing a label from the distribution, the
label is removed from the distribution, and then the distribution is normalized. The
reason for not wanting two activities of the same label after one another is that it
would be the same as having only one longer activity with the same label. This
ambiguity would make it harder for the simulator to recognize which activities are to
be considered missed.

other absence working social_activity cooking eating dishwashing vacuum_cleaner watching_tv
label

0.0

0.1

0.2

0.3

0.4

Figure 6.8: The discrete distribution from which the different activities are drawn.

The next step is to generate the activities durations. The generated list of
activities now contains 200 activities. For each one of these activities, a duration is
drawn from the distributions displayed in Figure 6.7. The result is a sequential list
of activities that each have a duration.

6.5 Metrics

The primary metrics for the simulation was listed in Section 3.8.1. Among those,
some other metrics are also measured in the simulation for more complementary
information about the different artifacts.
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Average Detection Time

This metric measures the average time from an activity started until the model
detects it. If an activity is not detected, it will not be used to calculate this metric.
The reason for this is because of a separate metric that measures this event. For
some applications, it is critical to be able to detect changes in activity quickly for a
quick response in action. These applications need a low average detection time in
order to perform well.

Number of Missed Activities

This metric measures the total number of activities that are not detected by the
system during the simulation. Missing an activity happens either when the window
stride is too large, and so the system will jump over the activity. Alternatively,
by that, the prediction accuracy for that activity is so bad that the activity is
miss-predicted in all the windows captured in the activity time-span.

Number of Windows

The number of windows used by the different designs to complete the simulation is
a metric that is used to determine the energy consumption of the system. As the
number of windows increases, the energy consumption will increase as the system
will be using more energy by recording more often.

6.6 Assumption

In this chapter, the goal is to look at how applying a window stride will affect the
performance of the system. The assumption made here is that there is possible
to increase the window stride without it having a significant impact on the overall
accuracy of the system. As mentioned earlier, this will be tested by using a simulation
on randomly generated data, then using the metrics from Section 3.8.1 to measure
the performance of each design.

6.7 Static Window Stride

As described earlier, this thesis tests two different window stride schemes, namely
adaptive and static window stride. In this chapter, the focus will be on static window
stride. This section shows what the effects of increasing the window stride have on
two different designs — the first design where the classifier is perfect and can predict
all labels correctly after listening for 1s. The second, a design that uses the accuracies
obtained from the baseline model with a 16 KHz sampling rate and 10s window size.
The reason for using a perfect classifier is to look at how the best possible system
accuracy compares to the realistic system accuracy. The normal classifier chosen is
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the baseline model from Chapter 4. It is trained on data with a 16 KHz sampling
rate and a 10s window size and obtained an F1 score of 0.83.

Figure 6.9 shows that the average detection time increases linearly as the window
stride increases for both classifiers. This linearity is as expected as longer window
strides mean that the chance that the window is close to the start of the activity
decreases, and such the average detection time increases. The first thing to note
from Figure 6.9 is that at the start of the x-axis with a window stride of 0s, the
average detection time for the activities is still over 10s. The reason for this lower
limit of 10s is because this classifier uses a 10s window size, and an activity can only
be classified when the entire window is finished recording. The second thing to note
is that the slope of the line for the normal classifier is much steeper. This difference
in slope shows that the normal classifier is affected by increasing the window stride
more than the perfect classifier is.

Figure 6.9: The average detection time for an activity. The window size used is 10s.

Figure 6.10 shows the number of missed activities for both classifier. This figure
shows that the number of missed activities increases exponentially at a slow pace at
first until the window stride reaches 50s, for the perfect classifier. After the windows
stride parameter reaches 50s, the number of missed activities increases linearly. What
is important to note from the figure is that the window stride can be increased
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to around 25s before the system misses on average 1 of the 200 activities. This
observation means that with a perfect classifier, a system can use a window stride of
25s and expect to miss only 1 in every 200 activities, which is very good. With a
window stride of 25s, the energy consumption is also 300% better compared to using
a window stride of 0s.

Another thing to note in Figure 6.10, is the shape of the curve for the normal
classifier compared to the perfect classifier. The curve has entirely different properties.
It is more of a logarithmic curve and shows that the number of missed activities have
a high gradient when the window stride is low. This curve means that in contrast to
the perfect classifier, increasing the window stride have a much more dramatic effect
for the normal classifier in terms of missed activities. So, with the perfect classifier,
the window stride can be increased by some seconds without it having too large of
an effect since all activities are predicted correctly on the first try. However, with a
normal classifier that struggles with predicting some of the activities, the increase
in window stride means that it has fewer attempts to guess the activities with a
small duration correctly. If the classifier, for example, can fit two windows in the
"other" activity, and that it can be guessed correctly 30% of the time. The chance of
detecting this activity is 51%, and that is only the probability of guessing at least
one of the windows correctly.



6.7. STATIC WINDOW STRIDE 73

Figure 6.10: The number of missed activities during the simulation. The window
size used is 10s.

The curve for the number of window frames required to complete the simulation
is exponential and displayed in Figure 6.11. With a 0s window stride, the number of
window frames required is around 55000 for both classifiers. The number of windows
frames required to complete the simulation quickly decreases when applying a small
window stride. This rapid decrease is because the window size used is 10s, and with
a window stride of 10s, the device should sleep twice as much, and record only half
the original amount. So, when using a window stride of 10s, the number of windows
is halved to around 27500. This figure also shows that as the window stride increases
the benefit of increasing it more decreases. The number of window frames required
for the normal classifier is the same as for the perfect classifier and have the same
properties. This similarity is because both designs use the same static window stride
strategy. So, the same applies to both the classifiers - as the window stride increases
from 0s, the number of windows in the simulation drastically decreases.
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Figure 6.11: The number of windows used to complete the simulation. The window
size used is 10s.

Figure 6.12 displays the measurements using the accuracy1 metric and shows
that the perfect classifier achieves an accuracy close to 100% when the window stride
is zero. When the stride increases, all metrics start decreasing, but most notably
the accuracy1 metric. The reason for this is derived from Figure 6.14. This figure
shows that the performance drop in predicting the "other" activity correct is quite
severe. As the mean duration of the "other" activity is 130 seconds, it gets quite
easy to miss large parts of this activity when the window stride increases, and as the
accuracy1 metric measures the average correctness for all activities in the simulation,
it is affected the most since other is the most represented activity in the simulation
statistically. When looking at the accuracy1 metric in Figure 6.12 the contrasts
between the normal and the perfect classifier start to visualize. The perfect classifier
performs with a window stride of 500s performs almost identical to the normal
classifier with a window stride of 0s. The reason for this is explained later when
looking at the accuracy3 metric.
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Figure 6.12: The Accuracy1 score obtained during the simulation. The window size
used is 10s.

Figure 6.13 which displays the accuracy2 metric, shows that a system with a
perfect classifier can expect to be correct over 93% of the total time even when using
a window stride of 500s. This observation highlights a problem with the duration of
the activities. As some activities last much longer than others, the total time that
the system is correct can be quite high even as the system entirely misses several of
the activities during the simulation. This metric shows that it can be quite easy for
the system to be a correct large part of the time and that it is the short activities
that are the hard ones to monitor. The figure also shows that the total time the
system has the correct belief for the normal classifier is also quite high. The difference
between the normal classifier and the perfect classifier is not that large when looking
at this metric. So even when the system is using a window stride of 500s, the normal
classifier manages to be correct around 85% of the time.
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Figure 6.13: The Accuracy2 score obtained during the simulation. The window size
used is 10s.

The last accuracy metric for the perfect classifier is displayed in Figure 6.14, and
shows the average percentage of time the system is correct for each label and all
labels. The figure shows that the "other" activity is mostly to blame for the decrease
in accuracy when the window stride increases. The prediction accuracy for the "other"
activity starts at 95% but quickly decreases as the window stride increases. When
the window stride approaches 100s the accuracy for the "other" label has decreased
to almost 50%. All other labels are also affected negatively by the increasing window
stride but at a much lower rate. So, predicting the "other" activity is a problem
when increasing the window stride. One can argue that the importance of the "other"
activity is limited and exclude it from the metrics. Then the system achieves on
average an 80% accuracy score for a randomly selected activity.
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Figure 6.14: The Accuracy3 score obtained during the simulation for the perfect
classifier. The window size used is 10s. The dotted line "mean of all labels" is the
actual value for the Accuracy3 metric, while the others are for more information
about individual labels.

Looking at the Figure 6.15, which shows the accuracy3 metric measured for
the normal classifier, it can be seen that the "other" label is the one standing out
compared to the others. By removing it from the metric calculation, the system
accuracy using this metric is above 0.7, even when using a window stride of 500.
Almost 1:2 of the activities in the generated data is the activity "other" statistically.
The "other" activity has the shortest mean duration of all our activities with a mean
duration of 130. Coincidentally it is also the activity that is hardest to predict for
the classifiers, with the baseline model achieving a 30 % correct prediction rate.
So, when the window stride increases, the number of windows that can fit in the
"other" activities duration decreases. With a window stride of 120, there will only
be one window that will be able to fit in the "other" activity on average. Having
only one window in the activity means that the classifier will only be able to guess
once, and thus have a 70% chance to miss the activity. So when considering which
window stride to use, it is important to take into consideration the duration of the
activities that are to be classified and the classifiers prediction accuracy for the
different activities. Another possibility is to say that the system does not care for
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the predictions of the "other" activity, and thus ignores it.

Figure 6.15: The Accuracy3 score obtained during the simulation for the normal
classifier. The window size used is 10s. The dotted line "mean of all labels" is the
actual value for the Accuracy3 metric, while the others are for more information
about individual labels.

6.8 Conclusion

This chapter studies the effect of using a window stride with the help on a simulation.
Several different window strides have been tested in the range from 0 to 500, with an
emphasis on lower window strides which are tested at more frequent intervals.

The results show as expected that using a low window stride will achieve the
highest accuracies in the accuracy metrics. Also, the results show that there are
clear benefits in increasing the window stride in terms of energy consumption. If the
window size is 10s, the energy consumption will halve if the window stride increases
from 0s to 10s. However, as the window stride increases from 0s to 10s, all the
accuracy metrics are affected in a bad way. The resulting decrease in accuracy3 for
the normal classifier when increasing the window stride 0s to 10s is 0.02. When
increasing the window stride, it also takes longer for each activity to be detected,
and the number of missed activities is about 10% with a window stride of 10s. This



6.8. CONCLUSION 79

result shows that there are definite trade-offs with using a window stride. The system
will use much less energy but will also perform worse. The initial assumption in this
chapter was that it is possible to apply a window stride, which will result in only a
moderate decrease in accuracy. This assumption is valid as the energy consumption
can be decreased by 50% while the system accuracy is decreased by 2%.





Chapter7Exploring Dynamic Window Stride
Approaches

The previous chapter studied the static window stride approach, and the results show
that it is possible to use a window stride in order to save energy without it having a
large effect on the overall system accuracy. In this chapter, the adaptive function
window stride schemes are tested in the simulation. The adaptive windows stride
scheme is a mapping function that takes a label as an input and gives a stride as
an output. f(label) = stride. The strides will have the possibility of being different
for each label, and such use a form of "expert knowledge" to decrease the number of
required windows by increasing the window stride when it detects an activity that is
known to last for a long time. Ideally, this process can learn the preferences of each
user over time. In this chapter, two different versions of adaptive window stride are
tested. Those are:

1. Naive Adaptive Window Stride.

2. Exponentially Decreasing Adaptive Window Stride.

These are quite simple attempts to create an adaptive window stride scheme. The
naive adaptive window stride takes only into account some statistical information
about each activity, namely the mean duration of each activity. The exponentially
decreasing adaptive window stride is a little more complex as it also takes into
account previous predictions. These approaches are most likely not complex enough
to be fully able to take advantage of adaptive window stride but should show whether
or not a simple adaptive window stride scheme hold any promise for decreasing the
energy consumption. So, this chapter will find a answer to the knowledge question
"What happens to the accuracy if the window stride is increased?", but with a twist
that is "Can the window stride be increased in a smarter way".

81
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7.1 Metrics

The metrics used in this chapter is the same as those described in Section 3.8.1 and
Section 6.5.

7.2 Assumption

In the background chapter several research papers that looked at adaptive schemes
for energy optimization, where studied. Many of those papers, like [CEZK18] and
[TPD15] shows that the results of adaptive approaches are very promising. The
assumption in this chapter is that by using adaptive strategies instead of static
strategies, the device can save more energy by listening more smartly.

7.3 Naive Adaptive Window Stride

The naive adaptive window stride scheme tested uses a fraction of the mean duration
of each activity as the stride for each label. The reasoning behind this is that some
of the activities usually last much longer than others as discovered in Section 6.3. So,
it would be pointless to record a window every, e.g., one second when the activity
is expected to last another 10 minutes. The adaptive strides used are displayed in
Table 7.1. So based on the detected activity, the window stride will change and
adapt. The reason for using mean duration as a basis is that it is simple and that
this metadata is already known.
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Fraction Labels

Ab Co Di Ea Ot So Va Wa Wo

0.001 1 4 1 2 0 1 1 24 4
0.002 2 8 3 4 0 3 2 49 9
0.005 6 22 9 10 0 9 7 122 23
0.008 11 35 15 16 1 15 11 196 38
0.01 13 44 19 20 1 19 14 245 47
0.02 27 88 38 40 2 38 28 491 95
0.05 69 222 96 101 6 96 70 1228 239
0.08 111 355 154 162 10 154 113 1965 382
0.1 139 444 193 202 13 193 141 2456 478
0.2 278 889 386 405 26 386 283 4913 956
0.5 695 2222 967 1014 65 966 707 12283 2390
0.8 1112 3556 1547 1622 104 1546 1132 19653 3824
1 1390 4445 1934 2028 130 1933 1415 24567 4781

Table 7.1: The different strides to be applied after each label are predicted for the
different fractions. The label names are the two first letters of each label.

7.3.1 Perfect Classifier

With the adaptive window stride, the x-axis is going to be on a different scale as it
will be the fraction of mean duration, compared to the static window stride’s window
stride [s] axis. As the axis will be different, and the fractions will be different for
each label, it will be hard to gain any valuable information from the figures on which
fraction to use. So, when comparing these two approaches to apply window stride,
the number of window frames required is the metric which is used to compare the
designs. The Table 7.2 shows comparisons between adaptive windows stride vs static
window stride. With an adaptive stride fraction of 0.001, the number of windows
required to complete the simulation will be around 33 000 and gives a accuracy1
score of 0.98. This number of windows is equivalent to using a static window stride
of 7-8, which gives a accuracy1 score of 0.97. So, with a low adaptive stride, the
two approaches get almost the same results. With an adaptive stride fraction of
0.02, the number of windows required is 6088. The equivalent for the static window
stride approach is a window stride of 80. The resulting accuracy1 scores are 0.86
and 0.82 for the adaptive window stride and the static window stride respectively.
So when the window stride increases the adaptive window stride outperforms the
regular window stride for the perfect classifier. This result is important as it shows
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that the use of an adaptive stride scheme works in conditions where the classifier is
perfect. Whether it is better for all conditions is harder to answer, but will be tested
for the normal classifier in the next section. The numbers in the table comes from
the graphs plotted in Figure 7.1 and Figure 6.4.

Adaptive WS Static WS

Fraction NW Ac1 Ac2 Ac3 Stride NW Ac1 Ac2 Ac3

0.001 33414 0.97 1.00 0.99 7 32293 0.97 1.00 0.98
0.002 25754 0.96 1.00 0.98 11 26142 0.96 1.00 0.98
0.005 16139 0.94 1.00 0.97 25 15685 0.92 1.00 0.96
0.008 11825 0.92 1.00 0.97 35 12200 0.90 0.99 0.95
0.01 10248 0.91 0.99 0.96 45 9982 0.88 0.99 0.94
0.02 6088 0.86 0.99 0.94 80 6100 0.82 0.99 0.91
0.05 2745 0.76 0.98 0.88 190 2745 0.70 0.97 0.84
0.08 1751 0.70 0.96 0.84 300 1771 0.64 0.95 0.80
0.1 1394 0.66 0.95 0.81 380 1408 0.60 0.95 0.77

Table 7.2: Comparisons for Naive adaptive window stride approach vs Static window
stride approach, for the perfect classifier. NW = Number of window frames, Ac1 =
Accuracy1 metric, Ac2 = Accuracy2 metric, Ac3 = Accuracy3 metric. The number
of window frames are used to compare the approaches. Fractions that are not in the
table, does not have a Static window stride counter-part.
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(a) Average detection time (b) Number of missed activities

(c) Number of recorded windows (d) Accuracy1 score

(e) Accuracy2 score (f) Accuracy1 score for each label

Figure 7.1: The results from the Naive adaptive simulation for the perfect classifier.
The x-axis is the fractions of mean duration’s listed in Table 7.1, plotted on an log2
scale.
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7.3.2 Normal Classifier

The normal classifiers from this chapter and the previous will be compared to each
other in the same way as the perfect classifiers. From Table 7.3, it can be seen that
in the case of the normal classifier, the static window stride approach performs better
than the adaptive one. These results are complete opposites compared to the results
with perfect classifiers. The results show that in an ideal case where the classifier
is perfect, the adaptive window stride would outperform the regular window stride.
However, with a normal classifier, it shows that the output from the classifier is not
reliable enough to benefit from the adaptive stride. To be able to fully able to benefit
from the adaptive strategy, the predictions have to be somewhat reliable. Since
the normal classifier struggles with some labels like "other", which it only predicts
correctly 30% of the time, it will end up applying the wrong window stride, a lot of
the time, and may end up missing large parts of other activities, because of this error.
So, although the naive adaptive window stride holds promise, it fails to improve
the system in a real-life scenario. The numbers in the table comes from the graphs
plotted in Figure 7.2.

Adaptive WS Static WS

Fraction NW Ac1 Ac2 Ac3 Stride NW Ac1 Ac2 Ac3

0.001 32937 0.65 0.90 0.79 6 33893 0.67 0.90 0.81
0.002 25155 0.63 0.90 0.78 12 24650 0.67 0.90 0.81
0.005 15242 0.59 0.89 0.75 25 15494 0.66 0.90 0.80
0.008 10919 0.57 0.89 0.74 40 10846 0.65 0.90 0.79
0.010 9350 0.56 0.89 0.73 50 9038 0.64 0.90 0.78
0.020 5299 0.53 0.88 0.70 90 5423 0.61 0.89 0.76
0.050 2304 0.50 0.87 0.66 220 2358 0.55 0.88 0.72
0.080 1458 0.46 0.85 0.63 360 1466 0.51 0.86 0.68
0.100 1170 0.45 0.85 0.61 450 1179 0.49 0.85 0.65

Table 7.3: Comparisons for Naive adaptive window stride approach vs Static window
stride approach, for the normal classifier. NW = Number of window frames, Ac1 =
Accuracy1 metric, Ac2 = Accuracy2 metric, Ac3 = Accuracy3 metric. The number
of window frames are used to compare the approaches. Fractions that are not in the
table, does not have a Static window stride counter-part.
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(a) Average detection time (b) Number of missed activities

(c) Number of recorded windows (d) Accuracy1 score

(e) Accuracy2 score (f) Accuracy1 score for each label

Figure 7.2: The results from the Naive adaptive simulation for the normal classifier.
The x-axis is the fractions of mean duration’s listed in Table 7.1, plotted on an log2
scale.
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7.4 Exponentially Decreasing Adaptive Window Stride

The exponentially decreasing adaptive window stride is similar to the static adaptive
window stride in many ways, as both adapt the window stride to the predicted
activity. The difference is that the exponentially decreasing adaptive window stride
decreases with a factor of 5% for each window that there has been no change in the
predicted activity. The reason for having the window stride decrease over time is
that as time passes the probability that there is a change in activity soon increases.
So, decreasing the window stride as a change in activity is more imminent should
increase the overall accuracy as the system will faster detect the change in activity.
The decreasing factor of 5% is chosen based on some limited tests, so there may be a
better-suited factor for this scenario.

window_stride = wsl ∗ 0.95n (7.1)

where:

wsl = The window stride for label l from Table 7.1
n = The number of windows in a row where the predicted label has not changed

7.4.1 Perfect Classifier

From Table 7.4, it can be seen that the ED adaptive window stride scheme performs
worse than the static window stride. These results are the opposites compared to
the naive adaptive window stride in 7.3, where the naive adaptive window stride
performed best. Although the differences are between the two schemes in the table
are not large, the static window stride performs better or equals the ED adaptive
window stride in all the metrics and fractions. The reason for this can be seen in
Figure 7.3c. This figure shows the number of windows required to complete the
simulation for the different fractions. While the fractions are low, the system uses
too many extra windows without any reasonable increase in accuracy. This increase
in total windows used means that the system wastes too much energy by decreasing
the strides for each consecutive correct prediction. Compared to the naive adaptive
window stride scheme, the ED adaptive window stride uses 80% more windows with
the fraction 0.001 and 800% more windows with the fraction 0.02. So, while the
designs obtain quite a high accuracy, they use much more energy achieving that
accuracy, and such the use of larger static window strides is preferred as they provide
lower energy consumption for the same accuracy.
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ED Adaptive WS Static WS

Fraction NW Ac1 Ac2 Ac3 Stride NW Ac1 Ac2 Ac3

0.001 52695 0.98 1.00 0.99 0 54898 0.98 1.00 0.99
0.002 51681 0.98 1.00 0.99 1 49908 0.98 1.00 0.99
0.005 48640 0.98 1.00 0.99 1 49908 0.98 1.00 0.99
0.008 45561 0.97 1.00 0.99 2 45749 0.97 1.00 0.99
0.010 43708 0.97 1.00 0.99 3 42230 0.97 1.00 0.99
0.020 34894 0.96 1.00 0.98 6 34311 0.97 1.00 0.98
0.050 16808 0.88 0.99 0.95 25 15685 0.92 1.00 0.96
0.080 8520 0.80 0.98 0.90 55 8446 0.86 0.99 0.93
0.100 5685 0.76 0.97 0.87 85 5779 0.81 0.98 0.91
0.200 1289 0.60 0.93 0.75 420 1277 0.59 0.94 0.76

Table 7.4: Comparisons for ED Adaptive window stride approach vs Static window
stride approach, for the perfect classifier. NW = Number of window frames, Ac1 =
Accuracy1 metric, Ac2 = Accuracy2 metric, Ac3 = Accuracy3 metric. The number
of window frames are used to compare the approaches. Fractions that are not in the
table, does not have a Static window stride counter-part that have been tested.
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(a) Average detection time (b) Number of missed activities

(c) Number of recorded windows (d) Accuracy1 score

(e) Accuracy2 score (f) Accuracy3 score

Figure 7.3: The results from the ED adaptive simulation for the perfect classifier.
The x-axis is the fractions of mean duration’s listed in Table 7.1, plotted on an log2
scale.
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7.4.2 Normal Classifier

For the normal classifier, the test results show the same as for the perfect classifier,
which is that the static window stride outperforms the ED adaptive window stride.
Table 7.5 shows that for all the metrics and all the fraction, the static window stride
outperforms the ED adaptive window stride. While the curve in Figure 7.4c looks
better better than the curve for the perfect classifier in Figure 7.3c the accuracy curves
are notably worse. Compared to the naive adaptive window stride, the exponentially
decreasing window stride scheme uses way too much energy to be beneficial.

ED Adaptive WS Static WS

Fraction NW Ac1 Ac2 Ac3 Stride NW Ac1 Ac2 Ac3

0.001 47581 0.65 0.90 0.79 2 45191 0.68 0.90 0.81
0.002 40472 0.63 0.90 0.77 3 41715 0.68 0.90 0.81
0.005 28148 0.59 0.89 0.74 9 28542 0.67 0.90 0.81
0.008 21387 0.57 0.88 0.72 15 21692 0.67 0.90 0.80
0.010 18562 0.56 0.88 0.72 19 18700 0.66 0.90 0.80
0.020 10902 0.53 0.87 0.69 40 10846 0.65 0.90 0.79
0.050 4087 0.50 0.86 0.66 120 4171 0.59 0.89 0.75
0.080 2204 0.47 0.85 0.63 240 2169 0.54 0.88 0.71
0.100 1572 0.46 0.85 0.62 340 1549 0.51 0.87 0.69

Table 7.5: Comparisons for ED Adaptive window stride approach vs Static window
stride approach, for the normal classifier. NW = Number of window frames, Ac1 =
Accuracy1 metric, Ac2 = Accuracy2 metric, Ac3 = Accuracy3 metric. The number
of window frames are used to compare the approaches. Fractions that are not in the
table, does not have a Static window stride counter-part.



92 7. EXPLORING DYNAMIC WINDOW STRIDE APPROACHES

(a) Average detection time (b) Number of missed activities

(c) Number of recorded windows (d) Accuracy1 score

(e) Accuracy2 score (f) Accuracy3 score

Figure 7.4: The results from the Naive adaptive simulation for the perfect classifier.
The x-axis is the fractions of mean duration’s listed in Table 7.1, plotted on an
logarithmic scale.

7.5 Possible Improvements

The tested adaptive schemes are only two of many different ways to implement
adaptive window stride schemes. The reason for choosing these are because of
simplicity. Another scheme that could outperform both the tested schemes is by the
use if reinforcement learning. Reinforcement learning it a machine learning method
that has gained huge traction in the last years, and have shown state of the art
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performance in many areas such as competitive environments [ABB+17]. The way
reinforcement learning works are that an agent performs an action that affects the
environment. The effect is monitored by an interpreter that given the agent a reward
based on a reward function. The process is visualized in Figure 7.5. For this project,
the recording device would act as an agent and select a window stride based on
previous and current knowledge about the environment. The reward function could
be a combination of the energy consumption metric and the accuracy metric. The
agent would get a penalty for using more energy and a bonus for achieving better
accuracy. Some simple trials with this technique were tested in this project, but
the results were proven to be too unreliable. The design of the reward function and
the interpreter is tough tasks that require much testing by trial and error in order
to find functions that represent the problem. Although the initial tests with this
technique were not a success, it still holds much promise, and in a later project, it
could provide a very promising scheme.

Figure 7.5: An description of how reinforcement learning works, and interacts with
the environment. The image is taken from the website [23]

7.6 Conclusion

In this chapter, two different versions of adaptive window stride schemes are studied.
The initial assumption was that the use of adaptive schemes for the window stride
could be used to decrease the energy consumption. The results show that the use
of the naive adaptive scheme could outperform the static window stride, but that
this depends heavily on the classifiers accuracy. As in this case, the performance of
the classifier is not good enough, and so the static window stride scheme performs
best. The use of exponentially decreasing adaptive window stride has proven not to
work quite as good as expected. The exponentially decreasing tests were done with
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limited testing of the decreasing factor, so it may be that there exists a better value
for it. However, since ED adaptive window stride was worse for both the perfect
and the normal classifier, it may be that this strategy is not suited to the problem.
An approach that could increase the performance of the exponentially decreasing
window stride is by using Bayesian probability for the decreasing factor.



Chapter8Finding Pareto Optimal Designs

This project started with the following design question:

How can we given a set of system requirements, maximize the energy
efficiency and prediction accuracy of an acoustic event detection sys-
tem?

It is now time to answer it. During this project, the effect of changing each of
the three optimization parameters have been studied separately. In this chapter,
the different designs are going to be compared to each other and plotted together,
and the Pareto front for each accuracy metric found. This Pareto front will consist
of the optimal designs, given the requirements in terms of accuracy and energy
consumption.

Before making the comparisons, several more combinations of the optimization
parameters sampling rate, window size, and window stride are selected for testing.
The accuracies of the different designs from combinations of the sampling rate and
window size parameters are seen in Table 8.1. These parameters are combined by
modifying the sampling rate and window size of each data segment as done in Chapter
4 according to the new parameters, and 5 then training the classifier from 2.3.3 on
the resulting data. In Chapter 6 a total of 97 different window strides where tested.
The following chapters test 77 different static window strides, 13 naive adaptive
window strides, and 13 ED adaptive window strides. Combining these 28 different
combinations of sampling rate and window size with the 97 different window strides
tested in Chapter 6 and 7 results in a total of 2884 different designs. Each of these
designs has been tested in the simulation and measured using the metrics described
in Section 3.8.1 a hundred times. So the total number of simulation runs in this
project is 288 400. Each dot in the plots will correspond to an artifact design with a
unique set of parameters.
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Design Labels

Ab Co Di Ea Ot So Va Wa Wo

SR=16000, WS=10 0.93 0.97 0.62 0.84 0.30 0.89 0.99 1.00 0.81
SR=8000, WS=10 0.91 0.97 0.59 0.81 0.31 0.86 0.99 1.00 0.81
SR=4000, WS=10 0.88 0.96 0.57 0.76 0.32 0.86 0.98 1.00 0.81
SR=2000, WS=10 0.83 0.96 0.63 0.77 0.26 0.87 1.00 1.00 0.83
SR=1000, WS=10 0.81 0.95 0.70 0.80 0.23 0.84 1.00 0.99 0.85
SR=500, WS=10 0.82 0.94 0.59 0.71 0.20 0.80 0.99 0.85 0.72
SR=250, WS=10 0.58 0.89 0.33 0.12 0.19 0.73 0.97 0.44 0.48

SR=16000, WS=5 0.89 0.97 0.58 0.73 0.28 0.84 0.99 0.99 0.73
SR=8000, WS=5 0.88 0.96 0.55 0.69 0.26 0.82 0.99 0.99 0.72
SR=4000, WS=5 0.84 0.95 0.63 0.68 0.27 0.85 0.99 0.99 0.80
SR=2000, WS=5 0.80 0.95 0.56 0.61 0.22 0.81 1.00 0.99 0.79
SR=1000, WS=5 0.75 0.95 0.44 0.53 0.19 0.76 0.99 0.98 0.82
SR=500, WS=5 0.78 0.95 0.54 0.59 0.20 0.73 0.98 0.80 0.73
SR=250, WS=5 0.56 0.88 0.26 0.07 0.19 0.64 0.97 0.44 0.36

SR=16000, WS=2 0.80 0.96 0.45 0.55 0.21 0.81 1.00 0.98 0.70
SR=8000, WS=2 0.81 0.96 0.50 0.56 0.22 0.78 1.00 0.99 0.68
SR=4000, WS=2 0.78 0.95 0.51 0.47 0.21 0.78 1.00 0.99 0.77
SR=2000, WS=2 0.78 0.95 0.54 0.46 0.20 0.73 1.00 0.98 0.74
SR=1000, WS=2 0.76 0.95 0.33 0.41 0.19 0.67 0.99 0.97 0.77
SR=500, WS=2 0.73 0.93 0.39 0.32 0.19 0.62 0.98 0.69 0.65
SR=250, WS=2 0.54 0.86 0.14 0.02 0.19 0.47 0.96 0.49 0.29

SR=16000, WS=1 0.77 0.96 0.39 0.43 0.22 0.72 1.00 0.97 0.66
SR=8000, WS=1 0.70 0.95 0.37 0.38 0.22 0.71 1.00 0.97 0.66
SR=4000, WS=1 0.76 0.95 0.46 0.34 0.20 0.69 1.00 0.97 0.73
SR=2000, WS=1 0.73 0.96 0.38 0.25 0.19 0.65 1.00 0.97 0.73
SR=1000, WS=1 0.76 0.95 0.33 0.30 0.19 0.61 0.99 0.95 0.73
SR=500, WS=1 0.72 0.94 0.23 0.19 0.19 0.54 0.98 0.59 0.64
SR=250, WS=1 0.49 0.84 0.07 0.00 0.19 0.38 0.97 0.50 0.28

Table 8.1: The prediction accuracies from the different combinations of sampling
rate and window size. SR = Sampling rate, WS = Window size.
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8.1 Results

In Section 3.8.1, three different accuracy metrics were described. Each highlighting
different performance properties of the system. The results for each metric shows
almost the same, as shown in Appendix D, so it is pointless to show all the individual
results. So, this chapter will cover the results for the accuracy3 metric. The plots
with the simulation results will have energy consumption on the x-axis and accuracy
on the y-axis. So, the optimal solutions will be as close to the top left corner as
possible. For the energy consumption metric, the square root of the value is used
in the plot to make the points more evenly distributed along the x-axis. By using
the square root, the difference between two random example points will be the
EC2

2 − EC2
1 . This value will be the actual benefit in choosing design1 over design2

in terms of energy consumption.

The accuray3 metric measures the percentage of time the system is expected to
be correct for an activity with a given label. The exact values for all points on the
Pareto front can be viewed in Appendix C.3

Accuracy3 = 1
num_labels

∑
l∈labels

P̄l (8.1)

where:

P̄l = The average percentage of the time the system is correct for an activity of label l

8.1.1 Sampling Rate

From Figure 8.1, the plot shows as expected that the 16 KHz sampling rate achieves
the highest accuracy. The 16 KHz designs also are worst in terms of energy efficiency,
which is as expected it is the highest tested sampling rate. As the sampling rate
decreases, so do the energy consumption at a fast pace and the accuracy at a slow
pace. This relation happens til the sampling rate reaches 1 KHz. Then the opposite
starts to happen, as the energy consumption starts decreasing at a slower pace, while
the accuracy decreases faster. As discovered in 4, a 1 KHz sampling rate around the
point when the accuracy of the predictions starts to decrease more rapidly. This
point would be the point to look for the most beneficial systems, as it will balance a
high accuracy with low energy consumption. This area is also known as the elbow
area. So a sampling rate of 1 KHz would most likely prove to be most beneficial.
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Figure 8.1: The results from the simulations of the different designs. The different
sampling rates are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.

8.1.2 Window Size

The plot in figure 8.2 highlights the different window sizes in reference to the metrics.
The plot shows that a 10s window size it the most beneficial window size. It allows
for high accuracy, while it also can provide a low energy consumption if combined
with the sampling rate and window stride. For lower energy consumption, the next
best window size to use is 5s. This window size achieves lower energy consumption,
but at the cost of much lower accuracy. As discovered in Chapter 5, the cost of
lowering the window size is high in terms of accuracy. So while lowering the sampling
rate has proven to be quite beneficial, this is not the case with the window size. So a
window size of 10s would most likely be most beneficial to use, as almost all points
on the elbow have this window size.
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Figure 8.2: The results from the simulations of the different designs. The different
window sizes are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.

8.1.3 Window Stride Scheme

As observed in the previous chapter, the use of static window stride scheme out-
performs the adaptive windows stride schemes. Figure 8.3 shows that almost all
the optimal solutions are using a static window stride scheme. So the most optimal
window stride scheme to use would be static. Since the window stride is used to
calculate the energy consumption, a higher energy consumption corresponds to a
lower window stride. The other window stride schemes are only present on the
Pareto front when the energy consumption approaches 0. This is because some of
the adaptive window strides have much larger strides than the static window stride
range tested.
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Figure 8.3: The results from the simulations of the different designs. The different
window stride schemes are highlighted in different colors.The square root of the
energy consumption is plotted on the x-axis.

8.2 Conclusion

This chapter presents the results of the simulations for all the designs. The results
show that a 16 KHz sampling rate is best for high accuracy systems where energy
consumption is not a significant concern. For systems that require lower energy
consumption, the use of a 1 KHz sampling rate is preferable as it provides a small
decrease in accuracy and a large potential decrease in energy consumption. As
discovered in Chapter 4, 1 KHz sampling rate is the turning point where lowering
the sampling rate further have significant consequences for the accuracy.

The window size that the system should use is 10s. This window size provides
the ability to make the system highly accurate and highly energy efficient. Although
a smaller window size would be preferable, for making the system more responsive to
changes, the resulting decrease in classification accuracy impacts the overall accuracy
of the system in such a bad way that it is not beneficial to use. This relationship
between the window size and classification accuracy was observed in Chapter 5.

For the window stride scheme, the static window stride is most beneficial. This
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scheme outperforms the others as the adaptive window stride schemes are not able
to take advantage of their adaptiveness as the classifier cannot predict the different
labels with a high enough accuracy as discovered in Chapter 6. The most beneficial
static window stride values are between 10s-200s, as seen in the Pareto front table in
Appendix C.

By choosing the points along the elbow of the Pareto front, the energy consumption
can decrease to between 1

15 and 1
100 compared to the most energy consuming designs.

This result shows that a significant reduction in energy consumption for a minimal
reduction in accuracy is achievable.





Chapter9Final Conclusion

This project has had as its goal to explore how IoT devices can save energy while
capturing sounds for event classification. Three parameters, namely, sampling rate,
window size, and window stride, were selected as the optimization parameters. Each
of these parameters was first tested individually to see how changing the parameter
would affect accuracy and energy consumption. After the individual study, the
parameters were then tested together in a simulation. The simulation measured the
overall accuracy of the system and the total energy consumption over some time.
The simulation results were used to figure out which designs that are optimal for a
given set of requirements with the help of Pareto optimality.

9.1 Results

As mentioned earlier in the thesis, no single design is best for all possible requirements.
Each design along the Pareto front in the previous chapter, has its benefits and
disadvantages compared to the other designs. To be able to utilize these results, the
requirements of the potential system first needs to be known. Then the process is
simple, as one only needs to select the best design that satisfies these requirements.
Equation 9.1 show a way to calculate how good a parameter value is based on some
requirements. The requirements are expressed with λ and are used to determine
the balance between energy consumption and accuracy. A lambda value of 0 would
mean that only accuracy is important, and a value of 1 would mean that only energy
consumption is important. All metric values for the different designs are normalized
to be between 0-1 before this equation is applied. So, the most energy consuming
design has a 1 in energy consumption, and the most accurate design have a 1 in
accuracy. The parameter value that has the highest value in a column is the best
parameter value given the requirements. The results after using the equation on
the tested designs for some lambda values is seen in Table 9.1, 9.2, 9.3 and 9.4.
These tables show the recommended design based on the required balance between
accuracy and energy consumption, and thus answers the research question about

103



104 9. FINAL CONCLUSION

how to optimize a AEC-IoT system given some requirements.

V alue(Pi|λ) = max
D:Pi∈Dp

(energy_consumption(D)∗λ+accuracy(D)∗(1−λ)) (9.1)

where:

λ = Balance factor, 0 ≤ λ ≤ 1
Pi = Value i in parameter range. e.g. 16 KHz sampling rate
D = Design
Dp = Parameter values in design D

SR λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

16000 1.000 0.957 0.941 0.931 0.927 0.927 0.931 0.940 0.952 0.971 1.0
8000 0.985 0.959 0.947 0.942 0.939 0.940 0.942 0.948 0.959 0.976 1.0
4000 0.971 0.956 0.950 0.947 0.947 0.952 0.956 0.962 0.970 0.980 1.0
2000 0.972 0.965 0.962 0.960 0.961 0.962 0.965 0.969 0.974 0.982 1.0
1000 0.976 0.972 0.971 0.970 0.971 0.972 0.974 0.977 0.981 0.987 1.0
500 0.900 0.907 0.914 0.922 0.931 0.940 0.950 0.960 0.971 0.983 1.0
250 0.644 0.678 0.712 0.747 0.782 0.817 0.852 0.887 0.924 0.960 1.0

Table 9.1: The recommended sampling rate based on the balance between energy
consumption and accuracy. The values in the table are only comparable in each
column. The highlighted param value is the best in the column.

WS λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 1.000 0.972 0.971 0.970 0.971 0.972 0.974 0.977 0.981 0.987 1.0
5 0.956 0.947 0.945 0.946 0.947 0.952 0.956 0.962 0.970 0.981 1.0
2 0.888 0.884 0.892 0.902 0.912 0.924 0.937 0.950 0.965 0.980 1.0
1 0.837 0.844 0.857 0.872 0.889 0.905 0.921 0.939 0.957 0.976 1.0

Table 9.2: The recommended window size based on the balance between energy
consumption and accuracy. The values in the table are only comparable in each
column. The highlighted param value is the best in the column.
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Type λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SWS 1.000 0.972 0.971 0.970 0.971 0.972 0.974 0.977 0.981 0.987 1.0
NAWS 0.974 0.948 0.950 0.952 0.953 0.955 0.957 0.958 0.966 0.978 1.0
EDAWS 0.967 0.937 0.938 0.938 0.939 0.940 0.941 0.948 0.958 0.971 1.0

Table 9.3: The recommended window stride scheme based on the balance between
energy consumption and accuracy. The values in the table are only comparable in
each column. The highlighted param value is the best in the column.

WS λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0-10 1.000 0.972 0.971 0.970 0.970 0.970 0.969 0.969 0.969 0.976 0.999
10-25 0.993 0.970 0.970 0.970 0.971 0.972 0.974 0.976 0.978 0.981 0.999
25-50 0.980 0.961 0.964 0.966 0.969 0.972 0.974 0.977 0.981 0.985 1.000
50-100 0.962 0.951 0.952 0.957 0.962 0.967 0.971 0.976 0.981 0.987 1.000
100-200 0.931 0.930 0.931 0.939 0.947 0.955 0.963 0.971 0.979 0.987 1.000
200-500 0.889 0.896 0.902 0.912 0.924 0.936 0.948 0.961 0.973 0.985 1.000

Table 9.4: The recommended static window stride based on the balance between
energy consumption and accuracy. The values in the table are only comparable in
each column. The highlighted param value is the best in the column.

Table 9.1, 9.2, 9.3 and 9.4 shows that most systems would benefit most from
using a sampling rate of 1 KHz, 10s window size and a static window stride between
5s-200s. This setup will provide the greatest benefits in terms of the trade-off between
accuracy and energy consumption. Even if this setup provides the greatest benefits
in terms of trade-off, it may not be suited for all systems. So, given some metric
requirement, which is the balance factor, the optimal design is highlighted in gray in
the tables.

These exact results are only applicable for this specific context, and may not
generalize as explained earlier. The most important part to take from this project
since it is a proof of concept is that it is possible to achieve a good balance between
accuracy and energy consumption, and how to find the parameter values for this
balance.
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9.2 Example Design Choices

By now, the tables have given much insight into what parameters to choose given
some requirements. To show this new information in use, this section proposes some
example requirements and a set of suitable parameters for the system.

1. The first example is a system that requires that the balance between accuracy
and energy consumption is 0.5. In other words, accuracy and energy consumption
is equally important. From Table 9.1 the best sampling rate is 1 KHz. Table 9.2
shows that the best window size is 10s. The optimal window stride scheme is the
static window stride scheme, as shown in Table 9.3. The optimal values for the static
window stride is between 25-50s.

2. The second example system only cares for accuracy. This requirement means
that the balance factor is 0. Then the optimal parameters, as shown in the tables,
are. 16 KHz sampling rate, 10s window size, and 0s static window stride.

3. The last example system needs the lowest energy consumption possible. This
requirement means that the balance factor is 1, and the optimal parameters are 250
Hz sampling rate, 1s window size, and a static window stride close to 500s.

9.3 Future Improvements

For future improvements, the most promising would undoubtedly be to explore a
more complex adaptive window stride scheme. The adaptive schemes explored in
this project have all been, to some extent naive. To have a system that learns from
its mistakes, and that can learn the best window stride policy on its own, could be a
huge improvement. As discussed in Section 7.5, the use of reinforcement learning
could be a very exciting approach.

Other things that could be improved is the use of the multi-channel data, and
using the input from multiple sensors when predicting the activity label. As this
project only looks at the predictions of one device, a next step can be to look at the
predictions of multiple devices together. By having multiple devices work together,
the system could use some sort of quorum where each device in the same proximity
can vote on the current activity.

Another possibility is the inclusion of the current time of the day. When training
the classifiers, they can be trained with the time at which the activity is happening.
"Watching_tv" can then be made more likely to happen during the evening, and
"absence" is more likely during the day when the person is at work, or at night when
the person is sleeping. This way, the system would learn the routines of the person
and thus improve the accuracy of the system.
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AppendixABoxplot
Figure A.1 shows a graphical explanation of how a boxplot works. The points that are
outside the whiskers are outliers in the dataset. The following are some explanations
of the figure:

median (Q2/50th Percentile): the middle value of the dataset.

first quartile (Q1/25th Percentile): the middle number between the smallest number
(not the “minimum”) and the median of the dataset.

third quartile (Q3/75th Percentile): the middle value between the median and the
highest value (not the “maximum”) of the dataset.

interquartile range (IQR): 25th to the 75th percentile.

whiskers (shown in blue)

outliers (shown as green circles)

“maximum”: Q3 + 1.5*IQR

“minimum”: Q1 -1.5*IQR
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112 A. BOXPLOT

Figure A.1: A graphical explanation on how to interpret a boxplot. The figure is
taken from the website [29].



AppendixBSimulation

Static windows strides tested:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40,
45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180,
190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350,
360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500

Adaptive fractions tested:

Fraction Labels

Ab Co Di Ea Ot So Va Wa Wo

0.001 1 4 1 2 0 1 1 24 4
0.002 2 8 3 4 0 3 2 49 9
0.005 6 22 9 10 0 9 7 122 23
0.01 13 44 19 20 1 19 14 245 47
0.02 27 88 38 40 2 38 28 491 95
0.05 69 222 96 101 6 96 70 1228 239
0.1 139 444 193 202 13 193 141 2456 478
0.2 278 889 386 405 26 386 283 4913 956
0.5 695 2222 967 1014 65 966 707 12283 2390
0.8 1112 3556 1547 1622 104 1546 1132 19653 3824
1 1390 4445 1934 2028 130 1933 1415 24567 4781

Table B.1: The different strides to be applied after each label are predicted for the
different fractions. The label names are the two first letters of each label.
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AppendixCSimulation results

EC Ac1 WS Type Sampling Rate Window Size Stride
14837 0.09 ED Adaptive 250 1 1
15057 0.09 Naive Adaptive 250 1 1
18735 0.09 ED Adaptive 250 1 0
30042 0.10 Naive Adaptive 250 1 0
32082 0.11 ED Adaptive 250 1 0
45249 0.16 Naive Adaptive 500 1 1
46555 0.16 ED Adaptive 500 1 1
58164 0.18 Naive Adaptive 500 1 0
91349 0.18 Naive Adaptive 1000 1 1
94965 0.20 Naive Adaptive 500 1 0
104525 0.20 ED Adaptive 500 1 0
118659 0.21 Naive Adaptive 1000 1 0
129060 0.21 ED Adaptive 1000 1 0
200180 0.24 Naive Adaptive 1000 1 0
242840 0.25 ED Adaptive 1000 1 0
247015 0.25 Naive Adaptive 500 1 0
365172 0.25 Static 250 1 380
396372 0.26 Static 250 1 350
407995 0.26 Static 250 1 340
420315 0.26 Static 250 1 330
447340 0.26 Static 250 1 310
462199 0.26 Static 250 1 300
502005 0.28 Naive Adaptive 500 1 0
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524850 0.29 Naive Adaptive 500 2 0
529980 0.31 Naive Adaptive 1000 1 0
555475 0.35 Static 500 1 500
566784 0.35 Static 500 1 490
578570 0.35 Static 500 1 480
590844 0.35 Static 500 1 470
603615 0.35 Static 500 1 460
631030 0.36 Static 500 1 440
660970 0.36 Static 500 1 420
693960 0.36 Static 500 1 400
711675 0.36 Static 500 1 390
750004 0.36 Static 500 1 370
770770 0.36 Static 500 1 360
792745 0.36 Static 500 1 350
815990 0.37 Static 500 1 340
840630 0.37 Static 500 1 330
866794 0.37 Static 500 1 320
894680 0.37 Static 500 1 310
924399 0.38 Static 500 1 300
990170 0.38 Static 500 1 280
1026699 0.38 Static 500 1 270
1108475 0.38 Static 500 1 250
1110950 0.39 Static 1000 1 500
1133570 0.39 Static 1000 1 490
1157139 0.39 Static 1000 1 480
1181690 0.39 Static 1000 1 470
1234109 0.39 Static 1000 1 450
1262060 0.40 Static 1000 1 440
1321940 0.40 Static 1000 1 420
1387920 0.40 Static 1000 1 400
1423350 0.41 Static 1000 1 390
1460690 0.41 Static 1000 1 380
1500010 0.41 Static 1000 1 370
1585490 0.41 Static 1000 1 350
1631980 0.41 Static 1000 1 340
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1681260 0.41 Static 1000 1 330
1733589 0.42 Static 1000 1 320
1789360 0.42 Static 1000 1 310
1848799 0.42 Static 1000 1 300
1980339 0.42 Static 1000 1 280
2132019 0.43 Static 1000 1 260
2216949 0.43 Static 1000 1 250
2308930 0.43 Static 1000 1 240
2408850 0.43 Static 1000 1 230
2517830 0.44 Static 1000 1 220
2768340 0.44 Static 1000 1 200
2913190 0.44 Static 1000 1 190
3074210 0.45 Static 1000 1 180
3253930 0.45 Static 1000 1 170
3455980 0.45 Static 1000 1 160
3684820 0.45 Static 1000 1 150
3946110 0.46 Static 1000 1 140
4247280 0.46 Static 1000 1 130
4598280 0.46 Static 1000 1 120
5012439 0.47 Static 1000 1 110
5508770 0.47 Static 1000 1 100
5795629 0.48 Static 1000 1 95
6114060 0.48 Static 1000 1 90
6317675 0.48 Static 500 5 210
6868820 0.48 Static 1000 1 80
6965425 0.48 Static 500 5 190
7341875 0.49 Static 500 5 180
7761224 0.49 Static 500 5 170
8231475 0.49 Static 500 5 160
8762775 0.49 Static 500 5 150
9366800 0.49 Static 500 5 140
10060600 0.50 Static 500 5 130
10865425 0.50 Static 500 5 120
11810025 0.51 Static 500 5 110
12934550 0.51 Static 500 5 100
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13581375 0.51 Static 500 5 95
14296175 0.52 Static 500 5 90
15090150 0.52 Static 500 5 85
15977850 0.52 Static 500 5 80
16976500 0.52 Static 500 5 75
18107974 0.53 Static 500 5 70
19401400 0.53 Static 500 5 65
20893649 0.53 Static 500 5 60
22634900 0.53 Static 500 5 55
24692424 0.54 Static 500 5 50
27119500 0.54 Static 1000 10 190
27161450 0.54 Static 500 5 45
30129899 0.54 Static 500 10 80
30132300 0.54 Static 1000 10 170
31901950 0.54 Static 500 10 75
31904599 0.55 Static 1000 10 160
33898000 0.55 Static 1000 10 150
36157500 0.55 Static 1000 10 140
38740100 0.56 Static 1000 10 130
41719799 0.56 Static 1000 10 120
45195000 0.57 Static 1000 10 110
49304100 0.57 Static 1000 10 100
51651500 0.58 Static 1000 10 95
57087800 0.58 Static 1000 10 85
60259799 0.58 Static 1000 10 80
63803899 0.58 Static 1000 10 75
67791000 0.59 Static 1000 10 70
72310399 0.59 Static 1000 10 65
77474799 0.60 Static 1000 10 60
83434399 0.60 Static 1000 10 55
90386500 0.60 Static 1000 10 50
98603300 0.60 Static 1000 10 45
108463200 0.61 Static 1000 10 40
120514200 0.61 Static 1000 10 35
135577600 0.62 Static 1000 10 30
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154944600 0.62 Static 1000 10 25
180768300 0.62 Static 1000 10 20
187001400 0.62 Static 1000 10 19
193679800 0.62 Static 1000 10 18
225958600 0.63 Static 1000 10 14
235783200 0.63 Static 1000 10 13
246500400 0.63 Static 1000 10 12
258238100 0.63 Static 1000 10 11
271150100 0.63 Static 1000 10 10
285420400 0.63 Static 1000 10 9
301277500 0.63 Static 1000 10 8
318999100 0.63 Static 1000 10 7
361532100 0.63 Static 1000 10 5
387354600 0.63 Static 1000 10 4
417150899 0.63 Static 1000 10 3
451913800 0.63 Static 1000 10 2
451917199 0.63 Static 2000 10 14
492995900 0.64 Static 1000 10 1
493000800 0.64 Static 2000 10 12
542300200 0.64 Static 2000 10 10
542310400 0.64 Static 4000 10 30
570840800 0.64 Static 2000 10 9
602555000 0.64 Static 2000 10 8
619778400 0.64 Static 4000 10 25
723064200 0.64 Static 2000 10 5
723073200 0.64 Static 4000 10 20
748005600 0.64 Static 4000 10 19
774719200 0.65 Static 4000 10 18
903834400 0.65 Static 4000 10 14
986001600 0.65 Static 4000 10 12
1084600400 0.65 Static 4000 10 10
1141681600 0.66 Static 4000 10 9
1205110000 0.66 Static 4000 10 8
1446128400 0.66 Static 4000 10 5
1549418400 0.66 Static 4000 10 4
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1668603599 0.66 Static 4000 10 3
1971983600 0.66 Static 4000 10 1
2283363200 0.66 Static 8000 10 9
2410220000 0.66 Static 8000 10 8
2551992800 0.67 Static 8000 10 7
2892256800 0.67 Static 8000 10 5
3098836799 0.67 Static 8000 10 4
3337207199 0.67 Static 8000 10 3
3943967200 0.67 Static 8000 10 1
4338401600 0.67 Static 16000 10 10
4566726400 0.67 Static 16000 10 9
4820440000 0.67 Static 16000 10 8
5784513600 0.67 Static 16000 10 5
6197673600 0.68 Static 16000 10 4
7887934400 0.68 Static 16000 10 1

Table C.1: All points along the Pareto front when using the Accuracy1 metric

EC Ac2 WS Type Sampling Rate Window Size Stride
14837 0.39 ED Adaptive 250 1 1
15057 0.39 Naive Adaptive 250 1 1
18927 0.40 Naive Adaptive 250 1 0
30042 0.42 Naive Adaptive 250 1 0
45249 0.51 Naive Adaptive 500 1 1
58164 0.54 Naive Adaptive 500 1 0
91349 0.57 Naive Adaptive 1000 1 1
94965 0.57 Naive Adaptive 500 1 0
96190 0.59 ED Adaptive 1000 1 1
118659 0.61 Naive Adaptive 1000 1 0
129060 0.62 ED Adaptive 1000 1 0
200180 0.66 Naive Adaptive 1000 1 0
242840 0.67 ED Adaptive 1000 1 0
388819 0.67 Naive Adaptive 1000 2 0
478159 0.67 ED Adaptive 1000 2 0
529980 0.72 Naive Adaptive 1000 1 0
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1025220 0.73 Naive Adaptive 2000 1 0
1026339 0.73 Naive Adaptive 1000 2 0
1089339 0.75 Naive Adaptive 1000 1 0
1110950 0.76 Static 1000 1 500
1133570 0.76 Static 1000 1 490
1157139 0.76 Static 1000 1 480
1181690 0.76 Static 1000 1 470
1262060 0.76 Static 1000 1 440
1321940 0.76 Static 1000 1 420
1460690 0.77 Static 1000 1 380
1585490 0.77 Static 1000 1 350
1631980 0.77 Static 1000 1 340
1789360 0.77 Static 1000 1 310
1848799 0.77 Static 1000 1 300
1912300 0.77 Static 1000 1 290
1980339 0.77 Static 1000 1 280
2200760 0.78 Static 1000 2 500
2245340 0.79 Static 1000 2 490
2291880 0.79 Static 1000 2 480
2443960 0.79 Static 1000 2 450
2499199 0.79 Static 1000 2 440
2557080 0.79 Static 1000 2 430
2617600 0.79 Static 1000 2 420
2681140 0.79 Static 1000 2 410
2747840 0.79 Static 1000 2 400
2817940 0.79 Static 1000 2 390
2891679 0.79 Static 1000 2 380
2969319 0.79 Static 1000 2 370
3051400 0.79 Static 1000 2 360
3138000 0.79 Static 1000 2 350
3327000 0.80 Static 1000 2 330
3430299 0.80 Static 1000 2 320
3540240 0.80 Static 1000 2 310
3657379 0.80 Static 1000 2 300
3782580 0.80 Static 1000 2 290
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4060639 0.80 Static 1000 2 270
4215720 0.80 Static 1000 2 260
4382859 0.80 Static 1000 2 250
4563859 0.80 Static 1000 2 240
4760579 0.80 Static 1000 2 230
5209660 0.81 Static 1000 2 210
5380450 0.81 Static 1000 5 500
5489299 0.81 Static 1000 5 490
5602950 0.81 Static 1000 5 480
5843200 0.81 Static 1000 5 460
6246200 0.81 Static 1000 5 430
6393099 0.81 Static 1000 5 420
6546849 0.81 Static 1000 5 410
6878750 0.81 Static 1000 5 390
7057399 0.82 Static 1000 5 380
7653300 0.82 Static 1000 5 350
7874800 0.82 Static 1000 5 340
8109750 0.82 Static 1000 5 330
8359550 0.82 Static 1000 5 320
9209650 0.82 Static 1000 5 290
9532449 0.82 Static 1000 5 280
9878850 0.82 Static 1000 5 270
10251600 0.83 Static 1000 5 260
10638200 0.85 Static 1000 10 500
10850800 0.85 Static 1000 10 490
11071799 0.85 Static 1000 10 480
11302300 0.85 Static 1000 10 470
11793800 0.85 Static 1000 10 450
12055800 0.85 Static 1000 10 440
12329599 0.85 Static 1000 10 430
13562099 0.86 Static 1000 10 390
13910300 0.86 Static 1000 10 380
14661900 0.86 Static 1000 10 360
15068599 0.86 Static 1000 10 350
16437799 0.86 Static 1000 10 320
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16952000 0.86 Static 1000 10 310
17498000 0.86 Static 1000 10 300
18081500 0.86 Static 1000 10 290
18704800 0.86 Static 1000 10 280
19372299 0.87 Static 1000 10 270
20090400 0.87 Static 1000 10 260
20862000 0.87 Static 1000 10 250
22599699 0.87 Static 1000 10 230
23582899 0.87 Static 1000 10 220
24654800 0.87 Static 1000 10 210
25828200 0.87 Static 1000 10 200
27119500 0.87 Static 1000 10 190
28546500 0.87 Static 1000 10 180
30132300 0.88 Static 1000 10 170
31904599 0.88 Static 1000 10 160
33898000 0.88 Static 1000 10 150
36157500 0.88 Static 1000 10 140
38740100 0.88 Static 1000 10 130
41719799 0.88 Static 1000 10 120
45195000 0.88 Static 1000 10 110
49304100 0.88 Static 1000 10 100
51651500 0.88 Static 1000 10 95
60259799 0.88 Static 1000 10 80
67791000 0.89 Static 1000 10 70
77474799 0.89 Static 1000 10 60
83434399 0.89 Static 1000 10 55
90386500 0.89 Static 1000 10 50
108463200 0.89 Static 1000 10 40
120514200 0.89 Static 1000 10 35
135577600 0.89 Static 1000 10 30
154944600 0.89 Static 1000 10 25
180768300 0.89 Static 1000 10 20
193679800 0.89 Static 1000 10 18
216921000 0.89 Static 1000 10 15
235783200 0.89 Static 1000 10 13
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258238100 0.89 Static 1000 10 11
271150100 0.89 Static 1000 10 10
285420400 0.89 Static 1000 10 9
361532100 0.89 Static 1000 10 5
387354600 0.89 Static 1000 10 4
417150899 0.89 Static 1000 10 3
492995900 0.89 Static 1000 10 1
1084656000 0.89 Static 16000 10 70
1239596799 0.89 Static 16000 10 60
1334950399 0.89 Static 16000 10 55
1446184000 0.90 Static 16000 10 50
1577652800 0.90 Static 16000 10 45
1735411200 0.90 Static 16000 10 40
1928227200 0.90 Static 16000 10 35
2169241600 0.90 Static 16000 10 30
2479113600 0.90 Static 16000 10 25
2892292800 0.90 Static 16000 10 20
3098876800 0.90 Static 16000 10 18
3213652800 0.90 Static 16000 10 17
3470736000 0.90 Static 16000 10 15
3615337600 0.90 Static 16000 10 14
4131809600 0.90 Static 16000 10 11
4338401600 0.90 Static 16000 10 10
4566726400 0.90 Static 16000 10 9
5784513600 0.90 Static 16000 10 5
6197673600 0.90 Static 16000 10 4
6674414399 0.90 Static 16000 10 3
7887934400 0.90 Static 16000 10 1

Table C.2: All points along the Pareto front when using the Accuracy2 metric

EC Ac3 WS Type Sampling Rate Window Size Stride
14837 0.16 ED Adaptive 250 1 1
15057 0.16 Naive Adaptive 250 1 1
18735 0.16 ED Adaptive 250 1 0
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18927 0.16 Naive Adaptive 250 1 0
30042 0.18 Naive Adaptive 250 1 0
32082 0.18 ED Adaptive 250 1 0
45249 0.23 Naive Adaptive 500 1 1
58164 0.25 Naive Adaptive 500 1 0
91349 0.26 Naive Adaptive 1000 1 1
94965 0.29 Naive Adaptive 500 1 0
104525 0.30 ED Adaptive 500 1 0
200180 0.34 Naive Adaptive 1000 1 0
242840 0.35 ED Adaptive 1000 1 0
247015 0.36 Naive Adaptive 500 1 0
502005 0.40 Naive Adaptive 500 1 0
524850 0.41 Naive Adaptive 500 2 0
529980 0.43 Naive Adaptive 1000 1 0
555475 0.45 Static 500 1 500
566784 0.45 Static 500 1 490
590844 0.45 Static 500 1 470
603615 0.46 Static 500 1 460
631030 0.46 Static 500 1 440
660970 0.46 Static 500 1 420
693960 0.47 Static 500 1 400
711675 0.47 Static 500 1 390
730345 0.47 Static 500 1 380
750004 0.47 Static 500 1 370
770770 0.47 Static 500 1 360
792745 0.47 Static 500 1 350
815990 0.47 Static 500 1 340
840630 0.47 Static 500 1 330
866794 0.48 Static 500 1 320
924399 0.48 Static 500 1 300
990170 0.49 Static 500 1 280
1026699 0.49 Static 500 1 270
1100380 0.49 Static 500 2 500
1110950 0.52 Static 1000 1 500
1133570 0.53 Static 1000 1 490
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1157139 0.53 Static 1000 1 480
1181690 0.53 Static 1000 1 470
1207230 0.53 Static 1000 1 460
1234109 0.53 Static 1000 1 450
1262060 0.53 Static 1000 1 440
1321940 0.54 Static 1000 1 420
1387920 0.54 Static 1000 1 400
1460690 0.55 Static 1000 1 380
1500010 0.55 Static 1000 1 370
1585490 0.55 Static 1000 1 350
1631980 0.55 Static 1000 1 340
1681260 0.55 Static 1000 1 330
1733589 0.56 Static 1000 1 320
1789360 0.56 Static 1000 1 310
1848799 0.56 Static 1000 1 300
1980339 0.57 Static 1000 1 280
2132019 0.57 Static 1000 1 260
2216949 0.57 Static 1000 1 250
2308930 0.57 Static 1000 1 240
2408850 0.58 Static 1000 1 230
2517830 0.58 Static 1000 1 220
2768340 0.58 Static 1000 1 200
2913190 0.58 Static 1000 1 190
3074210 0.58 Static 1000 1 180
3253930 0.59 Static 1000 1 170
3455980 0.59 Static 1000 1 160
3528700 0.59 Static 500 5 380
3684820 0.59 Static 1000 1 150
3826650 0.60 Static 500 5 350
4054875 0.60 Static 500 5 330
4179775 0.60 Static 500 5 320
4312325 0.60 Static 500 5 310
4453925 0.60 Static 500 5 300
4604825 0.61 Static 500 5 290
4766225 0.61 Static 500 5 280
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4939425 0.61 Static 500 5 270
5125800 0.61 Static 500 5 260
5544200 0.62 Static 500 5 240
5779999 0.62 Static 500 5 230
6036800 0.62 Static 500 5 220
6317675 0.63 Static 500 5 210
6625525 0.63 Static 500 5 200
6965425 0.63 Static 500 5 190
7341875 0.64 Static 500 5 180
7761224 0.64 Static 500 5 170
8231475 0.64 Static 500 5 160
8762775 0.64 Static 500 5 150
9366800 0.65 Static 500 5 140
10060600 0.65 Static 500 5 130
10865425 0.65 Static 500 5 120
11791450 0.65 Static 500 10 220
11810025 0.65 Static 500 5 110
12327400 0.65 Static 500 10 210
12329599 0.66 Static 1000 10 430
12914100 0.66 Static 500 10 200
12934550 0.66 Static 500 5 100
13231500 0.66 Static 1000 10 400
13562099 0.66 Static 1000 10 390
13910300 0.67 Static 1000 10 380
14661900 0.67 Static 1000 10 360
15068599 0.68 Static 1000 10 350
15499099 0.68 Static 1000 10 340
16437799 0.68 Static 1000 10 320
16952000 0.68 Static 1000 10 310
17498000 0.68 Static 1000 10 300
18081500 0.69 Static 1000 10 290
18704800 0.69 Static 1000 10 280
19372299 0.69 Static 1000 10 270
20090400 0.70 Static 1000 10 260
20862000 0.70 Static 1000 10 250
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21696699 0.70 Static 1000 10 240
22599699 0.70 Static 1000 10 230
23582899 0.71 Static 1000 10 220
24654800 0.71 Static 1000 10 210
25828200 0.71 Static 1000 10 200
27119500 0.72 Static 1000 10 190
28546500 0.72 Static 1000 10 180
30132300 0.72 Static 1000 10 170
31904599 0.72 Static 1000 10 160
33898000 0.73 Static 1000 10 150
36157500 0.73 Static 1000 10 140
38740100 0.73 Static 1000 10 130
41719799 0.74 Static 1000 10 120
45195000 0.74 Static 1000 10 110
49304100 0.75 Static 1000 10 100
51651500 0.75 Static 1000 10 95
54234199 0.75 Static 1000 10 90
57087800 0.75 Static 1000 10 85
60259799 0.75 Static 1000 10 80
63803899 0.76 Static 1000 10 75
67791000 0.76 Static 1000 10 70
72310399 0.76 Static 1000 10 65
77474799 0.76 Static 1000 10 60
83434399 0.76 Static 1000 10 55
90386500 0.77 Static 1000 10 50
98603300 0.77 Static 1000 10 45
108463200 0.77 Static 1000 10 40
120514200 0.77 Static 1000 10 35
135577600 0.78 Static 1000 10 30
154944600 0.78 Static 1000 10 25
180768300 0.78 Static 1000 10 20
187001400 0.78 Static 1000 10 19
193679800 0.78 Static 1000 10 18
216921000 0.78 Static 1000 10 15
235783200 0.78 Static 1000 10 13
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246500400 0.79 Static 1000 10 12
258238100 0.79 Static 1000 10 11
285420400 0.79 Static 1000 10 9
318999100 0.79 Static 1000 10 7
361532100 0.79 Static 1000 10 5
387354600 0.79 Static 1000 10 4
417150899 0.79 Static 1000 10 3
451913800 0.79 Static 1000 10 2
492995900 0.79 Static 1000 10 1
1735367999 0.79 Static 8000 10 15
1807668799 0.79 Static 8000 10 14
1972003200 0.79 Static 8000 10 12
2169241600 0.79 Static 16000 10 30
2410220000 0.80 Static 8000 10 8
2479113600 0.80 Static 16000 10 25
2892292800 0.80 Static 16000 10 20
2992022400 0.80 Static 16000 10 19
3098876800 0.80 Static 16000 10 18
3337251200 0.80 Static 16000 10 16
3470736000 0.80 Static 16000 10 15
3615337600 0.80 Static 16000 10 14
3944006400 0.81 Static 16000 10 12
4338401600 0.81 Static 16000 10 10
4566726400 0.81 Static 16000 10 9
4820440000 0.81 Static 16000 10 8
5422980800 0.81 Static 16000 10 6
5784513600 0.81 Static 16000 10 5
6197673600 0.81 Static 16000 10 4
7887934400 0.81 Static 16000 10 1

Table C.3: All points along the Pareto front when using the Accuracy3 metric





AppendixDResults for the Different Accuracy
Metrics

D.1 Accuracy metric 1

D.1.1 Sampling rate

Figure D.1: The results from the simulations of the different designs. The different
sampling rates are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.
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D.1.2 Window size

Figure D.2: The results from the simulations of the different designs. The different
window sizes are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.

D.1.3 Window stride scheme

Figure D.3: The results from the simulations of the different designs. The different
window stride schemes are highlighted in different colors.The square root of the
energy consumption is plotted on the x-axis.



D.2. ACCURACY METRIC 2 133

D.2 Accuracy metric 2

D.2.1 Sampling rate

Figure D.4: The results from the simulations of the different designs. The different
sampling rates are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.

D.2.2 Window size

Figure D.5: The results from the simulations of the different designs. The different
window sizes are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.
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D.2.3 Window stride

Figure D.6: The results from the simulations of the different designs. The different
window stride schemes are highlighted in different colors. The square root of the
energy consumption is plotted on the x-axis.

D.3 Accuracy metric 3

D.3.1 Sampling rate

Figure D.7: The results from the simulations of the different designs. The different
sampling rates are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.
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D.3.2 Window size

Figure D.8: The results from the simulations of the different designs. The different
window sizes are highlighted in different colors. The square root of the energy
consumption is plotted on the x-axis.

D.3.3 Window stride

Figure D.9: The results from the simulations of the different designs. The different
window stride schemes are highlighted in different colors. The square root of the
energy consumption is plotted on the x-axis.
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