
Web applications - New mobile service
paradigm

Phuc Huy Ngu

Master in Security and Mobile Computing

Supervisor: Van Thanh Do, ITEM
Co-supervisor: Antti Ylä-Jääski, AALTO university

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

i

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INFORMATION TECHNOLOGY, MATHEMATICS AND ELECTRICAL

ENGINEERING

MASTER THESIS

Student’s name: Ngu Phuc Huy

Course: TTM4905

Project title: Web applications - New mobile service paradigm

Project description: Recently, smartphones with iPhone in the lead experience a

huge popularity and the number of smartphones in the

market has increased considerably. The reason behind this

popularity is the plurality of useful and fancy applications,

also called Apps. Although apps may have the same

functionality there are many ways of implementing them

such Javascript, HTML5, applets, widgets, etc and the

situation is rather confusing. This Master thesis work

focuses on the development of mobile applications and

aims at shedding light on the different mobile applications:

paradigms such as native apps, mobile Web, widget and

HTML5. The main task of the work is to analyze and

evaluate the feasibility of these mobile application

paradigms. To verify the evaluation an application will be

implemented using the two best mobile application

paradigms and comparisons will be carried out. The main

tasks of the Master Thesis work are as follows:

 Analysis and evaluation of the mobile application

paradigms on the mobile phone according to the

applicability and feasibility of the paradigms.

 Selection and implementation of an application

using the two best mobile applications

The thesis will contains both theoretical and practical work.

Department: Department of Telematics

Responsible professors: Do Van Thanh

 Antti Ylä-Jääski

Submission date: 2012-06-22

ii

Abstract

The explosion of mobile applications both in number and variety raises the need of

shedding light on their architecture, composition and quality. Indeed, it is crucial to

understand which mobile application paradigm fits better to what type of application and

usage. Such understanding has direct consequences on the user experience, the

development cost and sale revenues of mobile apps. In this thesis, we identify four main

mobile application paradigms and evaluate them from the viewpoints of developers, users

and service providers. To ensure objectivity and accuracy we start by defining high level

criteria and then breaking down into finer-grained criteria. After a theoretical evaluation

an implementation was carried out as a practical verification to ensure that the method

adopted in analysis and evaluation is trusted and applicable. The selected application is

object recognition app, which is both exciting and challenging to develop.

iii

Preface

Thinking of writing a thesis and starting to write it are absolutely different things. This

thesis is impossible without the support of many people. I cannot find words to express

my gratitude to Professor Do Van Thanh for all his guidance, assistant and invaluable

feedbacks. Professor Do Van Thanh helps me initiate the structure of the thesis, gives me

advice on scientific writing and shares some of his limited time with me during my time

as a student at NTNU. I would also like to thank Professor Antti Ylä-Jääski for all of his

instant feedbacks with compliment and encouragement, regardless of the geographical

distance.

I want to gratitude NordSecMob consortium for letting me join in the programme and

obtain a very generous Erasmus Mundus scholarship. Two years studying in Nordic

countries give me the so many valuable things that I cannot find anywhere else. I also

want to especially thank Misela Väisänen and Mona Nordaune for their seamless support

in the programme.

Last but not least, I would like to thank my beloved families and my friends, who stood

by me through the duration of my study.

Trondheim, May 2012

Ngu Phuc Huy

iv

List of abbreviations and terms

HTML Hypertext Mark-up Language

CSS Cascading Style Sheets, the language used to describe the

 presentation of structured documents in the Web.

SMS Short Message Service

WAP Wireless Application Protocol

MMS Multimedia Messaging Service

GPS Global Position System

J2ME Java 2 Micro Edition

Mbs Megabytes per Second

XML Extensible Mark-up Language

Nokia WRT WRT S60 Web Runtime, a runtime platform for S60 used

to execute.

AJAX Asynchronous JavaScript and XML

http Hypertext Transfer Protocol

DOM Document Object Model, an API and a data model for

representing (X)HTML and XML documents.

API Application Programming Interface, a convention for

accessing functionality of a computer program.

IDE Integrated Development Environment

SDK Software Development Kit

JDT Java Development Tool

ADT Android Development Tool

LLVM Low Level Virtual Machine, the next-generation compiler

technology powering Xcode 4, which compiles code twice

as quickly as GCC and produces the application that also

runs faster. The compiler was built from the ground up as a

set of highly optimized libraries that are easy to extend,

optimize, and designed for modern chip architectures.

GCC GNU Compiler Connection

UI User Interface

MSDN Microsoft Developer Network

PC Personal Computer

v

SVG Scalable Vector Graphics, an XML-based markup language

 for defining vector graphics.

PIM Personal Information Manager, a portable appliance.

SSL Secure Socket Layer, cryptographic protocols that provide

communication security over the Internet.

URI Uniform Resource Identifier, a compact character string

identifying or naming a resource.

W3C World Wide Web Consortium, the main international

standards organization for the World Wide Web.

USB Universal Serial Bus

OEM Original Equipment Manufacturers, the companies that

originally manufactured the product.

ASP Active Server Page, a web-scripting interface by Microsoft.

PHP A General-purpose server-side scripting language

originally designed for Web development to produce

dynamic Web pages.

JSP Java Server Page, a technology that helps software

developers create dynamically generated web pages based

on HTML, XML, or other document types. Released in

1999 by Sun Microsystems.

HVS Human Visual System

JSON JavaScript Object Notation, a lightweight format for

interchanging data.

JavaScript A scripting language often used for client-side web

development, a dialect of the ECMAScript.

vi

Table of content
Abstract ... ii

Preface.. iii

List of abbreviations and terms .. iv

Table of content ... vi

List of Figures .. viii

List of Tables ... ix
Chapter 1: Introduction ... 1

1.1. Background .. 1
1.2. Problem statement .. 2

1.3. Structure of the thesis... 2
Chapter 2: Application paradigms on mobile phones ... 3

2.1. Native applications... 3
2.2. Mobile Widgets .. 4

2.3. Mobile Web applications ... 6
2.4. HTML5 mobile applications .. 6

Chapter 3: Object recognition ... 9

3.1. Computer vision ... 9
3.2. Object recognition .. 10

3.3. Object recognition approaches ... 12
3.3.1. Geometry-based approaches ... 12
3.3.2. Appearance-based algorithms ... 12

3.4. Application of object recognition .. 13
Chapter 4: Analysis and evaluation .. 14

4.1. Native application .. 14
4.1.1. Developer viewpoint ... 14

4.1.2. User viewpoint .. 24
4.1.3. Service/ content provider .. 26

4.2. Mobile Web apps ... 28

4.2.1. Developer viewpoint ... 28
4.2.2. User viewpoint .. 32

4.2.3. Service/ content provider viewpoint ... 34
4.3. Mobile widgets... 36

4.3.1. Developer viewpoint ... 36

4.3.2. User viewpoint .. 41
4.3.3. Service/ content provider viewpoint ... 43

4.4. HTML5 mobile app ... 45
4.4.1. Developer viewpoint ... 45

4.4.2. User viewpoint .. 49
4.4.3. Service provider viewpoint ... 51

Chapter 5: Practical verification ... 54
5.1. Native app .. 55

5.1.1. Native app architecture ... 55
5.1.2. Analysis and evaluation .. 57

vii

5.2. HTML5 mobile app ... 68
5.2.1. HTML5 mobile app architecture .. 68
5.2.2. Analysis and evaluation .. 69

5.3. PhoneGap application .. 83

5.3.1. Phonegap app architecture .. 84
5.3.2. Analysis and evaluation .. 84

Chapter 6: Conclusion .. 97
6.1. Discussion .. 97
6.2. Key finding and recommendation .. 98

6.3. Summary and conclusion ... 98
Reference .. 100

viii

List of Figures

Figure 1: Mobile app landscape .. 1
Figure 2: Native app distribution .. 3
Figure 3: Widget structure .. 4
Figure 4: Mobile Web app architecture .. 5
Figure 5: Geolocation example ... 5

Figure 6: HTML5 capabilities on mobile platform... 6
Figure 7: Object recognition model. ... 9
Figure 8: Geometry-based approach sample... 10
Figure 9: Appearance-based approach sample .. 12

Figure 10: Deploying application on Android devices. .. 16
Figure 11: Xcode 4 user interface ... 18

Figure 12: Visual studio 2010 Express ... 20
Figure 13: Using User Agent Switcher to debug mobile Web apps with any user agent . 29

Figure 14: Coding mobile widgets by using Eclipse and Samsung TouchWiz SDK. 36
Figure 15: Debugging mobile widget by using Opera Dragonfly 37
Figure 16: Opera emulator .. 38

Figure 17: Technology architecture implementation .. 54
Figure 18: Class structure of the native app.. 55

Figure 19: Sequence diagram of the native app .. 56
Figure 20: Home interface of the native app .. 57
Figure 21: Using the native object recognition app. ... 58

Figure 22: Using the native object recognition app. ... 58
Figure 23: Camera preview is sideways on Android 2.1 or lower. 59

Figure 24: The home user interface of the native app in portrait and landscape modes. .. 60
Figure 25: Debugging the image capture event .. 62

Figure 26: An unknown error happens when debugging the image capture code 63
Figure 27: Deploying the object recognition app onto Android device. 64
Figure 28: HTML5 mobile app architecture ... 69

Figure 29: Home interface of the HTML5 app in portrait and landscape modes. 71
Figure 30: Page in page feature of jQuery Mobile ... 72

Figure 31: Camera rotation ... 73
Figure 32: Configuring the debugging tools ... 76
Figure 33: Configuring the phone for debugging purpose. .. 77

Figure 34: Debugging the app by using Opera Dragonfly. ... 77
Figures 35: Capturing an image by using the HTML5 app. ... 80
Figures 36: Interacting with phone’s storage .. 81
Figure 37: Object recognition capability of the HTML5 mobile app 81

Figure 38: PhoneGap app architecture .. 83
Figure 39: Home user interface of the PhoneGap app in portrait and landscape modes .. 84
Figure 40: Capturing a picture by using PhoneGap app ... 86
Figure 41: Selecting an image from photo gallery .. 86
Figure 42: The time to use the different object recognition apps in comparison.. 92
Figure 43: Object recognition capability of the PhoneGap app .. 94

ix

List of Tables

Table 1: Summary of evaluation on native app paradigm from developer viewpoint 24
Table 2: Summary of evaluation on native app paradigm from user viewpoint 26
Table 3: Summary of evaluation on native app paradigm from service/content provider

viewpoint... 28
Table 4: Summary of evaluation on native app paradigm .. 28

Table 5: Summary of evaluation on mobile Web app paradigm from developer viewpoint

... 32
Table 6: Summary of evaluation on mobile Web app paradigm from user viewpoint 34
Table 7: Summary of evaluation on mobile Web app paradigm from service/content

provider viewpoint .. 35
Table 8: Summary of evaluation on mobile Web app paradigm 36

Table 9: Summary of evaluation on mobile widget paradigm from developer viewpoint 41
Table 10: Summary of evaluation on mobile widget paradigm from user viewpoint 43

Table 11: Summary of evaluation on mobile widget paradigm from service/content

provider viewpoint .. 44
Table 12: Summary of evaluation on mobile widget paradigm .. 45

Table 13: Summary of evaluation on HTML5 mobile app paradigm from developer

viewpoint... 49

Table 14: Summary of evaluation on HTML5 mobile app paradigm from user viewpoint

... 51
Table 15: Summary of evaluation on HTML5 mobile app paradigm from service/content

provider viewpoint .. 53
Table 16: Summary of evaluation on HTML5 mobile app paradigm 53

Table 17: Summary of evaluation on four mobile app paradigms.................................... 53
Table 18: Summary of the evaluation on the native app from developer viewpoint 66

Table 19: Summary of the evaluation on the native app from user viewpoint 68
Table 20: Summary of the evaluation on the HTML5 mobile app from developer

viewpoint... 80

Table 21: Summary of the evaluation on the HTML5 mobile app from user viewpoint . 83
Table 22: Summary of the evaluation on the PhoneGap app from developer viewpoint . 93

Table 23: Summary of the evaluation on the PhoneGap app from user viewpoint 95
Table 24: Summary of the evaluation on the HTML5 mobile app paradigm 95
Table 25: Summary of the evaluation on the native app and HTML5 mobile app

paradigms .. 96

1

Chapter 1: Introduction

1.1. Background

In the recent years, we have seen an enormous growth in the popularity and visibility of

smartphones. Smartphone sales to end users reach 115 million units in the third quarter of

2011, up to 42% from the third quarter of 2010. Smartphone changes the way people

interacts with mobile phone and now become a vital part of human being. The

smartphones that people use in their daily lives can run advance applications and come

equipped with very powerful hardware features. In addition to calling and messaging,

users can enjoy a countless number of native apps installed on their mobile phones [1],

such as weather forecast, dictionary, Google Map, movies player, social networking,

currency converter, calculator and game. At the same time, application distribution has

increased remarkably because of the proliferation of app stores [67]. In June 2010, there

are around 80 would-be application stores available worldwide according to market

research firm Foresters [66]. Android market has 70,000 apps, BlackBerry store has

7,200 apps, and the number of apps at Apple app store reaches 225,000. Furthermore, a

great number of mobile Web apps hosted on Web servers deliver Web content to mobile

phones and serve mobile users in a different way with native apps.

Figure 1: Mobile app landscape [35]

When we face with thousands of apps across a dozen of different platforms [2], the need

of shedding light on their architecture, composition and quality is crucial. Indeed, it is

very important to understand which mobile application paradigm fits better to what type

of application and usage. Such understanding has direct effects on user experience,

development cost, and sale revenue of mobile apps. A few years ago, people have to

consider between the functionality and the portability when they deal with a mobile app

as shown in Figure 1. The higher functional the apps are the lower portability they

expose. However, HTML5, which is introduced by W3C in 2009, currently changes the

mobile phone app landscape. It makes mobile Web app more robust but still keep the

portability, creating seamless user experience.

CHAPTER 1: INTRODUCTION

2

1.2. Problem statement

The target of the master’s thesis is to identify, analyse and evaluate different mobile

application paradigms to show how Web app changes into a very competitive and

promising mobile paradigm. In our thesis project, we identify four mobile app paradigms,

including native apps, mobile widgets, mobile Web apps and HTML5 mobile apps.

From the viewpoints of developers, users and service/content providers, we subsequently

carry out the analysis and evaluation on the paradigms based on different criteria. The

outcome is the decision on which paradigm a user, a developer or a service/content

provider should choose in a specific development and usage circumstance. We also

perform the practical verification by building an app for the two most promising

paradigms, then analyse and evaluate the app to verify that the method adopted is trusted,

feasible and applicable.

1.3. Structure of the thesis

The rest of the report is structured as follows

 Chapter 2 reviews the literature on different mobile app paradigms, including

native apps, mobile widgets, mobile Web apps and HTML5 apps.

 Chapter 3 reviews the literature on object recognition.

 Chapter 4 performs the analysis and evaluation from the viewpoint of

developers, users, service/content providers.

 Chapter 5 performs the practical verification on the paradigms.

 Chapter 6 concludes the report and make some suggestion for the future work

3

Chapter 2: Application paradigms on mobile phones

In this chapter, we will identify the application paradigms for mobile devices, such as

native application, widget, Web application and HTML5. We then briefly discuss the

advantages and disadvantages of using each paradigm in the development and usage of

mobile apps.

2.1. Native applications

A mobile native application or native app is an application program specifically

developed to execute on a specific device platform [69] and machine firmware, and

cannot be used for other device platform without modifications. For example, apps

developed for the iPhone run only on Apple devices. Android apps are more portable in

this case because they can run on different hardware such as Archos, Samsung and LG

[58, 70]. To use native apps users must download them from app store and install them

manually on their phones as shown in Figure 2.

Figure 2: Native app distribution

Native apps can take full advantage of device’s capability (e.g. gyroscopes, cameras,

microphones, speakers and GPS) [50] and native APIs. Such advantage makes native

apps more robust and functional than any other mobile app paradigms. Moreover, native

app allows mobile users to store their data locally and load the data instantly for offline

use, reducing the time and cost to transfer data via Internet. It also supports multitasking

(e.g. in iOS 4) and creates many business opportunities for app vendors (e.g Apple app

store and Android marketplace)

However, native app exposes many drawbacks. Platform diversity or platform

fragmentation is the biggest problem of creating and deploying native apps on mobile

phones [64]. Platform diversity means the differences in platform/OS (e.g. Symbian, iOS,

Windows Phone, BlackBerry and Android) and APIs. It creates many challenges for

developers, users and service providers. For example, in order to deploy a service to end

users, service providers have to build three app versions for the same service to deploy on

three different platforms such as Android, iOS and Windows Phone. The second issue is

that uses must pay to download and install native apps on their mobile phones. The cost

CHAPTER 2: APPLICATION PARADIGMS ON MOBILE PHONES

4

associated with building a new app is obviously another important concern. Native apps

demand large investment since they require a specific set of tools and expertise to

develop.

2.2. Mobile Widgets

Mobile widgets represent lightweight, task-specific apps that leverage Web content [3].

Mobile widgets exploit web technologies, including HTML, CSS, JavaScript and XML.

Normally, they do a particular task in an efficient and user-friendly way, for example

currency converter and weather forecast. Widgets will be executed within a runtime

environment known as widget engine. Widget engine does not have the browser UI

elements and other functionalities, such as back button, URI input field and history.

Different types of widgets need different widgets engines to execute [59] (e.g. Opera [8],

Nokia WRT [9], Samsung TouchWiz and Yahoo!Blueprint). The W3C widget’s family

of specifications contains many specifications to achieve a standard for widgets and to

remove the lack of interoperability among widgets engine [4, 68]. The relevant

specification documents are Client-Side Web Applications (Widgets) Requirement [5],

Widgets 1.0 Requirements [6, 7].

Figure 3: Widget structure [10].

Normally, a widget is a packaged file that contains many HTML, CSS, ECMAScript

(JavaScript, Jscript and ActionScript), image, sound files, and a manifest file to

describe the metadata of the widget as shown in the Figure 3. Widget is created with the

standard packager, for example ZIP. Depending on the widget vendor, the extension of

single widget file will be renamed in order to be recognized by the widget engine. The

packaged widget file can then be ported and installed on mobile phones. A media type

(also referred to as a content type) helps to distinguish the widgets of different vendors. If

the appropriate widget engine is installed on the phones and the media type is identified

then the browser will automatically associate the resource with the widget engine.

Furthermore, as AJAX grows fast, many widget engines currently support DOM, XML,

XHTML and XMLHttpRequest objects to asynchronously exchange data with server

over HTTP [13]. Some widget engines need to be downloaded and installed manually by

users on mobile phones but some are provided by device’s vendors on the phone.

Widget can access the resources of mobile phones. Mobile widgets also enable personal

customization of data and creation of applications with high usability, and present a

richer content experience. They drive a new approach to interact with a Web service on

mobile phone, which is much more efficient than mobile Web app does. An example of

such powerful ability is loading stock information from a financial service Website to

CHAPTER 2: APPLICATION PARADIGMS ON MOBILE PHONES

5

mobile phones. Users can sign up for the widget that delivers the stock information to the

phones. In that way, only the data content is retrieved from a Web server very

conveniently during runtime.

From the business perspective, mobile widgets can potentially deliver big profit to device

vendors and service providers. By adopting the widget approach mobile apps can be

developed quickly, deployed widely and hence very profitable [14]. This benefits many

devices vendors (e.g. Apple, Samsung, Sony Ericsson and Motorola) in the way that the

apps enable the vendors to enhance their device’s quality and improve the revenue from

device sales. Service providers now can deliver their content to mobile users and earn

revenue in many ways. They build their own APIs and allow third party developers to

create mobile widgets using the APIs to access their service. Service providers may also

build their widgets and deliver the widgets to mobile users via app store or their own

Website.

However, the incompatibility across widget engines is the biggest challenge in deploying

widgets on the mobile phones [11, 63]. The main incompatibility issues are:

 Manifest document: Metadata fields and the manifest’s filename differ

between vendors.

 Packaging: It includes the packaging format (e.g. ZIP), file extension and

internal package structure.

 Platform: Widget engines support different platform features and furthermore

the API for accessing those features is not standardized.

Unless the efforts of W3C and many device vendors to standardize mobile widgets,

interoperability across widget engines makes widgets less usable and attractive [12].

Moreover, widgets must be downloaded and installed on mobile devices. It means that

mobile devices should have operating system (or mobile platform) and an equivalent

widget engine to run the mobile widget.

Figure 4: Mobile Web app architecture

Figure 5: Geolocation example

CHAPTER 2: APPLICATION PARADIGMS ON MOBILE PHONES

6

Figure 6: HTML5 capabilities on mobile platform [19]

2.3. Mobile Web applications

Mobile Web app is a good paradigm to deliver information and service to mobile phones.

It enables information processing functions to be initiated remotely on Web servers. The

three-tiered architecture [47] is the most popular Web app architecture, which consists of

thin client layer (mobile devices), application layer (Web server) and database layer

storing the data accessed by Web app. Figure 4 describes how mobile Web app works.

With the architecture, a single mobile Web app targets wide variety of mobile phones that

have JavaScript and CSS enable browser. Client side includes a mobile browser to send

HTTP request or XML/HTTP request to Web server. Web server will process the request,

collect the data from database server and reply the mobile client with HTTP or XML

response. Browser will display the result on the screen of the device.

Mobile Web app reduces the workload at client’s side very effectively, solving many

issues of a mobile phone, for example battery and computing resource limitation [65].

Additionally, users do not have to install any software application and pay any fee for

downloading and deploying the apps. Instead, they can simply access mobile Web apps

by using mobile browser. However, one of the main problems of mobile Web app is the

presentation at device’s side because the screen size is very small and limited [51, 62].

Another problem of using mobile Web apps is the low performance and unattractive user

interface of the apps.

2.4. HTML5 mobile applications

An HTML5 mobile app is also a mobile Web app in which HTML5, JQuery Mobile and

CSS3 work as client’s presentation technologies, instead of HTML4, JavaScript and CSS.

HTML5 changes the way mobile Web apps work. It is designed by W3C to create a

standard with a set of features that can handle all the tasks that the current technologies

(e.g. Adobe System Flash, Apple Quick Time and Java Oracle FX) can do in a mobile

CHAPTER 2: APPLICATION PARADIGMS ON MOBILE PHONES

7

Web app. Additionally, HTML5 supports newer mobile technologies, such as

Geolocation [15], Location Base Services, Scalable Vector Format and SVG. Therefore,

mobile developers are able to develop mobile Web apps without the necessity of

mastering multiple proprietary technologies at the same time. The question is what

HTML5 offers mobile developers. Figure 6 summarizes the capabilities of HTML5 that

benefits the mobile Web app.

 Canvas [49]: Canvas enables mobile developers to create and incorporate graphic,

video and animation on Webpage, normally via JavaScript. The Canvas element

supports 2D graphic. Graphic and animation will be rendered on mobile client

instead of Web server. This helps avoid the bottleneck at server side and the

restriction on network bandwidth, and make the graphic-heavy page render faster.

 Video tags [48]: HTML 5’s codec neutral video tags provide a way to include

non-proprietary video formats (e.g. Ogg Theora and H.264) in a page. The tag and

underlying code tell the browser that the associated information is to be handled

as an HTML 5-compatible video stream. They would also let users view video

embedded on a Webpage without a specific video player.

 Location-based services [20, 21]: A location API offers support for location-

based-service applications by enabling effective interaction with hardware related

features of mobile devices, for example GPS [16]. Figure 5 depicts a sample

application of Geolocation which tries to get the events from user’s Facebook by

using graph API, indicate current location by adopting the GPS of the mobile

device and find out a route from the current point to the place of the event on

Google Map.

 Working offline: HTML5 includes explicit support for offline execution of mobile

Web application. The key features are the application cache and cache manifest.

The manifest file is the list of items which server needs to send to application

cache so that the application can be launched using the cache content instead of

contacting the Web server. HTML 5 has several features that support building

mobile Web applications that work offline [54]. These include support for a

client-side SQLlite database and for offline application and data caching. The

application cache benefits the mobile application in two ways. The first is the

reduction in number of time transferring and fetching data from the server to

mobile devices [17], enabling Web applications to work as native applications,

even without an Internet connection. Furthermore, using application cache,

mobile developer can address the concerns about network bandwidth and cost of

transferring data via mobile devices.

 Web workers: They provide a standard way for mobile browser to run JavaScript

in the background. The script will not be interrupted by other scripts or user

interaction [18]. In order to simplify the challenge of writing such multithreaded

application on mobile platform, Web workers elements communicate by sharing

messages not by sharing state. The purpose of Web worker is to make the mobile

Web application more responsive, thereby improving user’s experience [52]. The

background script can do either simple or complicated tasks, such as

CHAPTER 2: APPLICATION PARADIGMS ON MOBILE PHONES

8

mathematical calculations, network requests and cache accesses while the Web

page still responds the scrolling, clicking or typing of the mobile users.

However, mobile developers face some challenges when developing HTML5 mobile

apps. The biggest concern that HTML5 exposes is the limited access of HTML5 to

hardware and native APIs. Moreover, HTML5 data storage on mobile device is not as

powerful as it is in desktop computer. The security of HTML5 local database is also a

problem [53]. If an attacker can manipulate the JavaScript code, they can easily intrude

the database. Additionally, if mobile Web app can work offline then the synchronization

between mobile cache and database on Web server is a big issue, requiring a good

version management and intelligent synchronization mechanism.

9

Chapter 3: Object recognition

In this chapter, we will discuss about computer vision and object recognition. We

introduce the two most popular approaches for object recognition, thereby providing a

background for the practical verification in chapter 5.

3.1. Computer vision

Computer vision is the science that develops the theoretical and algorithmic basis by

which useful information about the world can be automatically extracted and analyzed

from observed image, a collection of images (e.g. stereo vision) or an image sequence

(motion analysis) [55]. Computer vision involves the processes which extract,

characterize and interpret information from images of the real world. The goal of

computer vision is to build computer based vision system which provides the same

functionality with the human eyes.

A typical vision system consists of the following modules:

 Sensing: The process that produces a visual image

 Preprocessing: Dealing with techniques such as noise reduction and enhancement

of details

 Segmentation: The process that partitions an image into regions of interest

 Description: Dealing with the computation of features (size, shape, etc) suitable

for distinguish one object from the others.

 Recognition: The process that identify the objects.

Figure 7: Object recognition model. In the figure, we assume that the scene has the same

representation as the model in the database.

CHAPTER 3: OBJECT RECOGNITION

10

3.2. Object recognition

In computer vision, object recognition is concerned with determining the identity of an

unknown object being observed in the image from a collection of known labels. The aim

of object recognition is to detect the generic objects in images taken under different

imaging conditions (e.g. viewpoint, illumination and occlusion) [56]. Several single

objects have been detected successfully, including handwriting digits, fingerprints, faces

and road signs. Additionally, significant progress towards object categorization from

images has been made in the recent years. Therefore, object recognition has been studied

extensively in psychology, computational neuroscience and cognitive science.

However, artificial object recognition faces many challenges [57]:

 The details of human visual and perceptual processes are both myriad and

incompletely understood, creating many difficulties to provide a mathematical

description for these processes.

 Extensive research activities in psychology are performed to find out how the

brain functions but this is not an easy task due to the complexity of the brain

which has more than 10 billion neural cells with very complex interconnection.

 The expectation is that the artificial vision system, which try to collect 3D

information about the real world mostly from 2D image, is capable of achieving

similar result of a human being. Unfortunately, this is impossible because humans

are equipped with two eyes which make the human visual system (HVS) for

perfect stereo vision and consequent estimation of depth. Another advantage of

human being is that the human eyes are mounted inside a socket and are allowed

to rotate and thereby, control the field and direction of view.

 Invariance of the HVS to rotation, size and position of the object under

consideration is another problem that recognition system attempt to model.

Figure 8a: Target model (training data)

CHAPTER 3: OBJECT RECOGNITION

11

Figure 8b: Aerial images as input images

Figure 8c: Extracted line segments

Figure 8d: Matching results after recognition process

The basic model based recognition system starts with the formation process that reduces

dimensions of the object via an orthographic or perspective projection. For example, the

3D scene is reduced to 2D image array. After preliminary processing which deals with

the sensor noise and spurious data, the pixels are grouped in a manner that reflects the

CHAPTER 3: OBJECT RECOGNITION

12

objects in the scene with their spatial interrelationships. The top left corner of the figure

presents the offline portion of the process, where the image of the objects that may be

present in the scene are manipulated and the database of representations is constructed.

Once the scene data is collected, the same techniques are applied online to obtain a

representation of the objects that may be present in the scene as in the lower right corner

of the figure. The lower right corner of the figure is the recognition portion of the system,

including a spatial transformation which computes the pose of the object in the scene and

the verification that indicate if the match between the scene and the model is correct.

3.3. Object recognition approaches

3.3.1. Geometry-based approaches

Geometric models of objects are adopted to deal with the appearance variation due to the

viewpoint and illumination change. The geometric description of a 3D object allows the

projected shape to be presented in a 2D image under projective projection, thereby

facilitating recognition process using edge or boundary information which is invariant to

certain illumination change. Additionally, much attention is made to extract geometric

primitives such as line, circle and rectangle, which are invariant to viewpoint change.

However, the research in [36] shows that such primitives can only be reliably extracted

under limited conditions, for example lighting and occlusion.

Figure 8 depicts the experiment of Bong Seop Song, Kyoung Mu Lee and Sang Uk Lee

on recognizing aerial images by using geometry based approaches [39]. The target model

is provided with the characterized line features in Figure 8a. Four input test images with

different viewpoints are given in Figure 8b. The line segments extracted from each input

image and the matching results are shown in Figures 8c and 8d, respectively.

3.3.2. Appearance-based algorithms

Appearance-based techniques which are the most recent effort have advanced feature

descriptors and pattern recognition algorithms. The eigenface method attracts much

attention once it is one of the first face recognitions that are computationally efficient and

relatively accurate. The eigenface approach has been adopted in recognizing generic

objects across different viewpoints [37] and modeling illumination variation [38]. As the

goal of object recognition is to distinguish one object from the others, discriminative

classifiers can help exploit specific class information. Classifiers such as k nearest

neighbor, neural networks with radial basis function (RBF), support vector machines

(SVM), sparse network of Winnows (SNoW), and boosting algorithms have been applied

to detect and label objects in real world from 2D images.

Figure 9: Object recognition and pose estimation using appearance-based approach and information

sampling method.

CHAPTER 3: OBJECT RECOGNITION

13

While appearance-based methods present promising results in object recognition under

viewpoint and illumination variations, they are less efficient in dealing with occlusion.

Additionally, a large set of exemplars needs to be segmented from images for generative

or discriminative methods to learn the appearance characteristics.

Niall Winters and Jos´e Santos-Victor perform an experiment on appearance based object

recognition on a collection of 720 unknown objects and conclude that the correct

recognition rate of the method is 95.3% and the correct pose estimation is 73.8% [40].

Figure 9 depicts the results obtained from using appearance based approach with

information sampling method. Figures 9a and 9d depict the matching windows extracted

from the unknown objects which are shown in figure 9b and 9e. Figures 9c and 9f show

the closest match at the correct pose in training data.

3.4. Application of object recognition

Biometric recognition and handwriting document recognition are the most widely used

applications. Face recognition has been studied extensively for decades and proved very

applicable in crime investigation. Similarly, biometric recognition system based on iris or

fingerprint has become feasible and reliable technology. Other object recognition

applications such as content-based image retrieval, human computer interaction and

industrial inspection are also popular today.

14

Chapter 4: Analysis and evaluation

In this chapter, we will analyse the strengths and weaknesses of the mobile

application paradigms according to the viewpoint of a developers, mobile user and a

service/content provider. Points from 1 to 5 are given for each criterion in which 1 is the

lowest and 5 the highest. The points are given based on the information collected on the

Internet, especially the different user and developer social communities. To ensure the

objectivity of the evaluation a quite thorough investigation has been carried out.

4.1. Native application

4.1.1. Developer viewpoint

The biggest challenge for native mobile application developers is the platform

fragmentation. We will perform the analysis and evaluation of native app paradigm on

different mobile platforms (Android, iOS and Windows Mobile 7) from developer

viewpoint.

 Android

Ease of developing

- Programming language

Android allows development of managed code using Java-like language. The

language follows the Java syntax but utilizes the libraries and the APIs provided by

Google instead of the Java standard libraries and APIs. The language is as powerful

as Java and reduces the workload to develop an Android app. Therefore, developers

who have experience with Java or any other object oriented programming languages

can easily create a native app on Android.

- Software Development Kit (SDK)

The SDK is very usable, and easy to download and install. Android developers can

find open source Android SDK free on Android Website and a series of

understandable tutorials to install it. The SDK provides the developers with a

selection of variety of Android platforms from Android 1.5 version and a set of core

elements to build any type of applications from beginning: edit text, text view, image

view, Web view and other complicated elements. Furthermore, the SDK comes with

the functionality to debug and test applications that are currently under development,

and includes an emulator to allow testing on your personal computer before installing

the new application on the phone itself. With the support of multiple processes and

component reuse, Android SDK provides support for intents and activities, which

create a better user experience.

- Support from community

Android has the benefit of being open source and Android Java is a simple

programming language to learn. Therefore, there are large amounts of Android

developers in mobile industry and Android developers can receive full support

CHAPTER 4: ANALYSIS AND EVALUATION

15

from a worldwide community. Moreover, Android itself offers many valuable

tutorials, code samples and instructions that are helpful for creating and deploying

an app on Android.

Ease of developing Points

- Programming language 5

- Software Development Kit (SDK) 5

- Support from community 5

Average points 5

Ease of coding

We can use other IDEs such as NetBean and JBuilder but Eclipse is always the best

selection for developing Android apps.

Eclipse is a powerful IDE for coding and debugging an application on Android. Android

has excellent Java development tools (JDT) which are standard with every installation of

Eclipse. The best feature of JDT is the incremental compiler, which gives immediate

feedback with errors and warning on the code. Furthermore, developers can also

manage the application files very efficiently and speed up the process of coding and

maintaining the code. For instances, files for graphical user interface are mainly stored in

res folder, coded Java files in src folder and generated Java files in gen folder. It is also

possible to organize imports in Java source files by simply pressing Ctrl-Shift-o, deal

with bugs by adopting the quick fix feature of Eclipse, use open type feature by

pressing Ctrl-Shift-T and learn the unfamiliar API by employing content assistant.

However, we found Android UI Builder inefficient to use. There are no instantly

viewable and drag-and-drop capabilities provided by the UI builder. The layout files in

the SDK cannot compensate for that. We have to create the UIs by coding on the

layout.XML and value.XML files. Moreover, the code to access the device’s hardware is

longer and more complicated than HTML5’s code.

Ease of coding Points

Average points 3

Ease of debugging

Debugging tool in Eclipse works quite efficiently. It is easy to manage the breakpoints in

the Java files and debug the code at runtime. The logcat is useful for finding the

exceptions and bugs that make application crash. The debugging tool maybe complicated

at first but with some experience, the tool is very useful to find and fix bugs. However,

the tool runs slow and the complicated debug screen make it difficult to trace the value of

Java objects.

Ease of debugging Points

Average points 3

CHAPTER 4: ANALYSIS AND EVALUATION

16

Figure 10: Deploying application on Android devices.

Ease of testing

- Test project

Android offers a powerful but easy-to-use testing framework to create test cases, add

unit tests and run the tests [24]. The result of the test includes the time for the test

runs, the number of test runs, errors, failures and test method summary.

- Emulator

The biggest drawback of the testing with Android SDK stays the emulator. We

mainly use emulator for testing purpose but it is the heaviest component of Android

SDK. Android emulator starts in more than 2 minutes, and run slowly on laptop with

Intel core 2 duo 2.4 GHz and 2 Gigabyte RAM. Moreover, the default size of the

emulator is too big and its size is unchangeable at runtime. Another problem related

to the testing on both emulator and real device is that if a bug occurs, the application

will stop immediately without giving any information. We can find out the exceptions

on the logcat as discussed in Ease of debugging section.

- Real devices

In addition to using the emulator, we can connect the device to the personal computer

via the USB drive and try the application on the device flexibly.

Ease of testing Points

- Test project 5

- Emulator 2

- Real devices 5

Average points 4

Ease of deploying and updating

Deploying an app onto Android phones cannot be easier. We can simply copy the .apk

file onto our mobile phone and install it. The Android system requires that all deployed

applications to be digitally signed with a certificate whose private key is kept by the

developer. ADT plugin for Eclipse offers two signing modes: debug mode and release

mode. In debugging mode, the signing process runs automatically under the compilation.

CHAPTER 4: ANALYSIS AND EVALUATION

17

In release mode, we can use ADT Export Wizard to compile the app, generate private key

and sign the apk.

In order to upgrade application to a new version seamlessly, developers have to sign the

new version of the app with the same key and consider the validity period of the key.

Android system treats the applications that are signed with the same key as a single

application, allowing the developers to deploy and update their application in modules.

Ease of deploying and updating Points

Average points 5

Ease of distributing

- Without app store

One very attractive feature of Android platform is that it allows developers skip

Android market completely and distribute application directly to the end users. This is

very convenient in many situations, for example, a corporate IT department wants to

distribute a private app to employees or a developer wants to test it before uploading

to Android market. The developer just simply delivers the signed .apk file to target

phones. In order to install the app on mobile phone, the end users should allow

installation of non-Market applications by navigating to Settings then Applications

and enabling the Unknown Sources as shown in Figure 10.

- With app store

A traditional way to distribute an Android app is to publish it onto Android market. It

is not difficult to publish the application and update on Android market. Developers

must create a Google account and pay the registration fee with $25. The app

published must meet the requirement enforced by market servers [25]. However, in

order to use the license service to enforce licensing policies for paid apps on Android

market, developers must follow many complicated steps as described in [26].

Ease of distributing Points

- Without app store 5

- With app store 4

Average points 4.5

 iOS

Ease of developing

- Programming language

The language for developing an application on iOS is objective C [60]. Objective C is

not an easy programming language since it has many complicated and cumbersome

rules relating to pointers, patterns and declarations. Therefore, the developer should

have many experiences with C or C++ to know how to manage Objective C. Android

developers are not necessarily professional in Java but iOS developers should have

great programming skills in Objective C to work with iOS. However, many iOS

developers consider objective C very appealing and impressive to motivate their

programming.

CHAPTER 4: ANALYSIS AND EVALUATION

18

Figure 11: Xcode 4 user interface

- Software Development Kit (SDK)

Developers can download iOS SDK from Apple sites. It costs developers $99

annually for the license of the SDK to publish their applications onto Apple app store

and get revenue from selling the apps. iOS SDK is a powerful toolset to create great

applications for Mac, iPhone and iPAD, including the Xcode IDE, iOS simulator,

instrument analysis tool, Quartz Composer and the libraries for building an attractive

and robust app [27].

- Support from community

Like Android, iOS developers can receive a great benefit from a worldwide

community of iOS developers and from Apple sites. They can access many videos,

sample codes and tutorials provided by Apple, learning how to make a powerful app

to create a seamless user experience.

Ease of developing Points

- Programming language 3

- Software Development Kit (SDK) 5

- Support from community 5

Average points 4.33

Ease of coding

Xcode 4 (Figure 11) is a robust tool for coding. It has a set of powerful tools such as the

UI builder, Apple LLVM compiler, and other supporting developer tools. Xcode 4

supports developers as much as Eclipse does. Xcode 4 is more effective than Eclipse in

the way that it support drag-and-drop and instantly watchable capabilities. The advance

features of Xcode 4 include the Live Issues, LLVM (low level virtual machine), IDE

Assistant and Version Editor. Similar to Android, the code on iOS 4 to access hardware

features (e.g. camera) is also verbose and complicated.

Ease of coding Points

Average points 4

Ease of debugging

CHAPTER 4: ANALYSIS AND EVALUATION

19

The debugging tool in iOS SDK is superior to that of Android, making it very easy to

debug an iPhone app. Xcode 4 introduces LLDB, a brand new debugging engine

contributed by Apple to the LLVM.org open source project [28]. The new debugging

engine is built from the ground up to consume much less computing resources and

become a rocket when it performs. It is also easy to create breakpoints, view the object’s

value by hovering the pointer over them, continue execution up to a particular code line,

and step into, out of or over function or method call. Developer can also simply view the

console log to analyse the code and track the bugs.

Ease of debugging Points

Average points 5

Ease of testing

- Test project

The instrument is one of the most appealing features of Xcode 4 to create a robust test

for iPhone app. New data collection instruments are also available, including

OpenGL ES (OpenGL ES for embedded system) for tracking iPhone graphics

performance, new memory allocation monitoring that can find unintended memory

growth, Time Profiler for collecting samples with very low overhead, and complete

System Trace to find out how all system processes interact.

- Emulator

iOS emulator is an advanced feature as compared to Android emulator. It is very

quick to launch and performs as a real device does, enabling a perfect test bed to

ensure that the user interface will work in the way we expect.

- Physical device

In order to test the apps on a real device, developers must obtain an iPhone

Development Certificate from the iPhone Developer Program Portal. They must

follow many complicated steps to get the certificate and sign the apps before running

the apps on the physical devices. The steps include signing up Apple developer

account, paying $99 for membership, login to the provisional portal and installing

WWDR intermediate certificate, creating development certificate, creating an app ID,

finding and adding device unique identifier, creating and downloading and installing

provisioning profile, and configuring build settings [34]. After these steps, developers

can deploy, update and distribute the apps as discussed below.

Ease of testing Points

- Test project 5

- Emulator 5

- Physical device 2

Average points 4

Ease of deploying and updating

After all steps described in Physical device section, iOS SDK enables developers to

deploy their application to the iOS devices in some simple steps [32]: go to ActiveSDK

and select version of iOS running on their device, and choose build and run on opened

CHAPTER 4: ANALYSIS AND EVALUATION

20

project to run the app. Another way to deploy the application is to create .ipa file by

clicking Build under Xcode menu and subsequently install the app via iTunes. Without

the steps in Physical device section, the app will not run, hence iOS receives many

complaints from the iOS developers for such difficulties.

Ease of deploying and updating Points

Average points 3

Ease of distributing

- With app store

Developers can distribute their apps via Apple app store and it is a very solid way for

distribution. Developers can pick the price, get 70% of sale revenue and receive the

sale payment monthly. Apple app store will validate the apps and check if it is

eligible to publish the software on Apple store. The developers must pay $99 for the

membership in App Store and download the iOS Software Develop Kit. After

submitting the app, they must wait for the approval from the App store. While the

apps are published on app store, Apple will manage the apps very effectively and end

users can purchase the apps and download the update very simply. The app store will

notify users when the update is available.

Figure 12: Visual studio 2010 Express

- Without app store

Mobile developers can distribute their own applications using adhoc without going

through the app store, but the developers will be limited to a maximum of 100

devices. The advantage of the method is that developers can distribute their apps from

a Website, an email and so on. However, they still have to register and pay $99 a year

for the registration fee.

Mobile developers can also develop an app for internal distribution within a

company, organization, government or educational institution. However, they have to

pay $299 a year for registration.

CHAPTER 4: ANALYSIS AND EVALUATION

21

Ease of distributing Points

- With app store 4

- Without app store 3

Average points 3.5

 Windows Phone 7

Ease of developing

- Programming language

The language for developing Windows Phone 7 is C#. Like Java, C# is very easy to

learn, use and master. If the developers are familiar with Object Oriented

Programming language (e.g. C++ and VB.NET) they do not face any difficulty in

programming with C#.

- Software Development Kit (SDK)

Windows Phone 7(WP7) SDK provides all the features Android SDK and iOS SDK

support, or even more. The IDE for creating WP7 application is Visual Studio (VS)

2010 Express (Figure 12). VS 2010 includes features such as Windows Phone-based

design surface, a code editor, Windows Phone project templates, and a Toolbox that

contains Windows Phone controls. The other components of the SDK are Windows

Phone Emulator, XNA Game Studio, Expression Blend, samples and

documentation. The WP7 emulator is as excellent as the emulator of the iOS SDK,

and much better than Android emulator. XNA framework provides the game

developers with seamless support. Expression blend enables developers to simply

create many rich Internet applications and XAML-based interfaces. However, one of

the problems of WP7 SDK stays on the amount of money developers have to pay

when they want to work with the SDK, which is much more expensive than iOS

SDK. Another problem is the system requirements the developer must deal with when

installing the WP7 SDK in their PC [29]. Such the problems limit the number of

developers in WP7.

- Support from community

Documentation, How-to Guides, sample code, and sample applications are

provided to aid developers ramping up on Windows Phone development. Forums,

blogs, and Websites are available for developers to ask questions and share

information with the greater WP7 community. The new Visual Studio Help system

will allow developers to continuously update their documentation sets. WP7

developers cannot get supported from mobile app community as what Android

and iOS get because WP7 is quite new and only shares a small part of the market as

compared to the two platforms.

Ease of developing Points

- Programming language 5

- Software Development Kit (SDK) 4

- Support from community 4

Average points 4.33

CHAPTER 4: ANALYSIS AND EVALUATION

22

Ease of coding

As discuss above, C# language syntax is very simple to handle with and the IDE’s UI is

simpler and more intuitive than eclipse and Xcode 4. It supports full features that the two

IDEs have, for example coding aids and instant error feedback. The features help

developers create, maintain and update the code effectively. MSDN is also helpful for

coding because it offers developers the information about package, class, interface and

method which help developers code faster and more appropriate. In addition, the UI

designer is very powerful in the way it enables developers create a friendly and attractive

user interface by simply dragging and dropping UI components from the Toolbox. WP7

SDK provides developers with many useful APIs (e.g camera and photo album APIs)

thereby, enhancing the access to device’s hardware. The code to interact with hardware

on WP7 is less verbose and complicated than on Android and iOS.

Ease of coding Points

Average points 5

Ease of debugging

It cannot be easier to debug the code with the IDE [30]. Developers can create a debug

build while they are developing their application and a release build for testing purposes

before deploying it to the physical device. The debugging process happens inside the

code editor and the emulator can be launched and run during the debugging.

Ease of debugging Points

Average points 5

Ease of testing

- Test project

Developers can create WP7 test projects on Visual Studio Express to start unit testing.

When developers create the test project they should use Silver Light Unit Test

Framework for WP7 and WP7 essential testing.

- Emulator

Testing on emulator is also easy because the emulator works perfect. The only thing

the developers have to do is to select the release build in the debug tool.

- Physical device

Unlike testing on emulator, testing Windows mobile app on physical device requires

the developers to unlock the device which takes many complicated steps as in [31].

Ease of testing Points

- Test project 5

- Emulator 5

- Physical device 2

Average points 4

Ease of deploying and updating

CHAPTER 4: ANALYSIS AND EVALUATION

23

Deploying apps on Windows Phone is also described in [31], which is very complicated

for mobile developers. However, after finish all steps described in physical device

section, it is simple to deploy and update the apps on real devices.

Ease of deploying and updating Points

Average points 2

Ease of distributing

- With app store

The unlock process as discussed above creates a lot of difficulties for the distribution

of mobile application on Microsoft marketplace. Similar to Android and iOS apps,

WP7 apps must be approved by the marketplace but the difference is that the

marketplace is the only place where developers can publish their apps and the end

users can get the apps.

- Without app store

Currently, it is impossible to distribute WP7 apps to end users without app store.

Ease of distributing Points

- With app store 3

- Without app store 1

Average points 2

Application types

- Application using device capabilities

In addition to the generous SDKs and the well-formed libraries available, the most

exciting feature for developers in Android, iOS and WP7 is that we now have access

to anything the operating system has access to, creating new and robust native apps.

For example, if we want to create an application that dials the phone, we have access

to the phone’s dialer or if we want to create an app to utilize the phone’s internal

GPS, we are allowed to access it.

- Application using server capabilities

Native apps take advantage of processing capability of server and/or storage of

server. In the former case, native apps will send requests and wait for response from

the server. Server processes the requests and replies the native apps with the result.

An example of the capability is using the native apps which employ Google translate

service in mobile platform. In the latter case, users keep their data on a server and pull

it once necessary. For example, mobile cloud computing enables users to store data

on the cloud and access it when they connect to the Internet.

- Application employing real time communication (e.g. gaming, banking, weather

forecast and stock market):

Native app is an excellent selection for gaming because it runs locally on device and

access to all device capabilities (e.g. keypad, touch screen), providing mobile users

with attractive image, sound and animations.

CHAPTER 4: ANALYSIS AND EVALUATION

24

Native app can also enable mobile users to access banking, weather forecast and stock

market service. Normally, service providers will build native apps to access their

services and distribute the apps to end users. For example, Nordea bank creates a

native app that runs on Android and iOS to serve customers with their banking

services.

Application types Points

- Application using device capabilities 5

- Application using server capabilities 5

- Application employing real time communication 5

Average points 5

Powerful APIs and libraries

Mobile platform SDKs (e.g Android SDK, iOS SDK and .NET Framework) provide

developers with powerful APIs and libraries, which reduce the workload to build a native

app.

Powerful APIs and libraries Points

Average points 5

Payment possibilities

Developers can only publish their apps on app store and get revenue for the sale of the

apps. For example, developers get 70% of sale revenue. It is most solid and efficient way

to deliver native apps to end users.

Powerful APIs and libraries Points

Average points 3

In the table below, we summarize the evaluation of native application paradigm on

Android, iOS and Windows phone from the developer viewpoint.

Table 1: Summary of evaluation on native app paradigm from developer viewpoint

 Android iOS
Windows

Phone

Average

points

Ease of developing 5 4.5 4.5 4.67

Ease of coding 3 4 5 4

Ease of debugging 3 5 5 4.33

Ease of testing 4 4 4 4

Ease of deploying and updating 5 3 2 3

Ease of distributing 4.5 3.5 2 3.33

Application types 5

Powerful libraries and APIs 5

Payment possibilities 3

Average points 4.04

4.1.2. User viewpoint

Native mobile apps share a big proportion of mobile app market. Zokem [22] shows that

although Web apps are very popular on mobile platform, native apps are increasing their

CHAPTER 4: ANALYSIS AND EVALUATION

25

share of face time relative to the Web application. The main reason for this, according to

Dr. Hannu Verkasalo, founder of Zokem, is that mobile users learn to require more

functionality on their own devices when mobile consumption gets richer and native apps

can provide the best user experience. Flurry [23], a mobile analytic firm, presents in their

report the fact that native applications are commanding more attention on mobile

platform than Web applications.

In this section, we will analyse and evaluate mobile native app paradigm from user

viewpoint. The criteria for the evaluation are the ease of use, functionality, installation

and update.

Ease of use

- Performance

The strongest points of native apps are the excellent performance and the

responsiveness. Native apps run very smoothly on mobile devices and create very

good user experience. Currently, mobile Web apps, widgets and HTML5 apps cannot

compete with native apps in the race of performance and responsiveness.

- User interface

Native apps have very attractive and intuitive user interface, including button, text

view, label, list view and animation. It is the most advantageous feature of native

apps to defeat the other mobile app types.

- Operation

Usability is one of the strengths of native apps as compared to other mobile

paradigms. Users can launch the apps by easily clicking the app’s icon on home

screen, close the apps and restart it without any effort. Additionally, a native app

dedicated to a particular Web service provides one click to access the desired content.

Mobile native apps can pull the data provided by remote server automatically and

display the information on mobile screen. The feature makes social networking

applications more usable and attractive.

Ease of use Points

- Performance 5

- User interface 5

- Operation 5

Average points 5

Functionality

- Working offline

All of native apps can work offline and save their data in local storage (external

memory card or internal memory). For some applications using Web service (e.g.

Google Map and IQEngine), native apps still need network access to make API

request.

- Accessing device’s hardware

CHAPTER 4: ANALYSIS AND EVALUATION

26

As discussed in the previous section, native apps are very functional thanks to the

capabilities of using rich and interesting devices features such as GPS, PIM

contact, calendar information, camera and all of the new features that devices provide

for the apps. Therefore, users can reach wide range of native apps, including the

applications available on the devices and the apps installed manually by the users

such as game, Geolocation, currency converter, photo maker and PDF reader.

- Using real-time communication

Native apps are excellent choices for real-time gaming and other real-time mobile

apps (e.g. banking, weather forecast and stock market information display).

Functionality Points

- Working offline 3

- Access device’s hardware 5

- Using real time communication 5

Average points 4.33

Installation and update

- Compatibility

Device and platform compatibility is the biggest issues of native apps. For example,

the app that runs on Android cannot run on iOS.

- Downloading and installing

Users must download and install native apps on their devices manually. It requires

the users to access the Internet and find out the sufficient installation package for the

platform they are using. Fortunately, app stores will compensate for this shortcoming.

Mobile users can search and download the apps directly from the app store of the

platform providers (e.g. Apple, Android and Microsoft). Users will also receive the

notification of new update from the app store when the update packages available.

Install and update Points

- Compatibility 1

- Downloading and installing 3

Average points 2

The table below summarizes the evaluation for the native apps from the user viewpoint

Table 2: Summary of evaluation on native app paradigm from user viewpoint

Ease of use 5

Functionality 4.33

Installation and update 2

Average points 3.78

4.1.3. Service/ content provider

This section focuses on analysing and evaluating the effect of mobile native app on

service/ content providers.

Content management

CHAPTER 4: ANALYSIS AND EVALUATION

27

- Content presentation

Native apps work independently with mobile browser. This can decrease the

workload of content providers in presenting the content on mobile devices. They only

have to format the data to make it fit the app’s interface.

- Content delivering

The advantage of delivering content to native app over mobile Web app is that service

providers deliver only data to mobile devices rather than deliver both user interface

and data. It will help decreasing the network overhead and saving many data delivery

cost. It will help decreasing the network overhead and saving many data delivery

cost.

Content management Points

- Content presentation 4

- Content delivering 4

Average points 4

Administration

- Security

Service providers are responsible for securing communication between mobile user

and Web server. Because native apps are independent with mobile browser, service

providers can implement some security schemes on native apps deployed on devices

(e.g. encryption and authentication by a pass code) and therefore reduce their

workload of server to perform the confidentiality and integrity on the data transferred

over the Internet.

- Maintenance

Service providers are responsible for the administration on the content delivered to

native apps. They must guarantee that mobile users adopt the same version of one

native app (e.g. the same functionalities and user interface) to access their service.

Service providers must also make sure that the content they offer display intuitively

on native apps.

Administration Points

- Security 4

- Maintenance 3

Average points 3.5

Distribution

The biggest problem for service providers is the platform fragmentation of native apps.

They should build and deploy different mobile apps running the same service on different

platforms. For example, Nordea bank must provide their customers with the native apps

running on both iPhone and Android. Another challenge is that the apps and update

package must be downloaded and installed on mobile devices, and the service providers

must notify every customer when the update is available. Therefore, the service providers

CHAPTER 4: ANALYSIS AND EVALUATION

28

publish their apps on app stores to distribute the apps to their customers, which require a

lot of overhead to do.

Distribution Points

Average points 2

The table below summarizes the evaluation for the native apps from the service/content

provider viewpoint

Table 3: Summary of evaluation on native app paradigm from service/content provider viewpoint

Content management 4

Administration 3.5

Distribution 2

Average points 3.17

The table below summarizes the evaluation for the native apps from the developer, user

and service provider viewpoint

Table 4: Summary of evaluation on native app paradigm

Developer User Service/content provider

4.04 3.78 3.17

4.2. Mobile Web apps

4.2.1. Developer viewpoint

In mobile Web app paradigm, developers will have to focus on the server tasks, such as

building the apps, deploy and updating the apps on Web server, and distributing the apps

to end users.

Ease of developing

- Programming language

To create a mobile Web app, developers should have experience and programming

skill at both client-side (HTML, CSS, JavaScript, XML and SVG) and server-side

(e.g. ASP.NET, JSP, Python, Ruby and PHP). Learning and mastering the

technologies to create a mobile Web app requires many efforts of developers.

- Software Development Kits (SDK)

Similar to Web app, there are many SDKs, APIs and libraries to build a mobile Web

app, such as .NET framework, Dreamweaver and Java EE. Developer can choose the

most suitable SDK to develop mobile Web app.

- Support from community

Mobile Web app no longer get attention of mobile developers. In fact, developers still

receive the support from community but the support is not as strong as the support

that native app developers obtain from their community.

Ease of developing Points

- Programming language 3

CHAPTER 4: ANALYSIS AND EVALUATION

29

- SDK 5

- Support from community 3

Average points 3.67

Ease of coding

Developers can use PHP, JSP and ASP.NET for server side code, and HTML, JavaScript

and CSS for client side presentation. The IDE for coding include Dreamweaver, Visual

Studio .NET, JetBrain and NetBean. The ease of coding depends on the Web

programming language and the IDE that the developers select. For example, Visual

Studio .NET, Dreamweaver and Aptana Studio are the most efficient IDE for mobile

Web application development with many supports for developers. The biggest

disadvantage of the paradigm is that mobile Web app cannot make mobile Web app hook

into device’s hardware. It is absolutely a minus point for the paradigms. Moreover,

mobile Web app is cross platform but browsers on different platforms may support

different components of a Web page. Therefore, in order for mobile users to view the

whole page, developers should have a significant amount of information about the device

and mobile browser in use. Otherwise, they should design a mobile Web page as simple

as possible so that all mobile browsers can display on screen.

Ease of coding Points

Average points 2

Figure 13: Using User Agent Switcher to debug mobile Web apps with any user agent

Ease of debugging

Debugging mobile Web app is complicated as compared to native app debugging. It

includes many steps such as server side debugging, markup debugging and client side

debugging, which requires the capability to view the source code, debug JavaScript or

execute JavaScript command from a console in each step.

 Mobile developers can adopt HTTP tools such as User Agent Switcher to change

the user-agent string that Firefox uses for making HTTP requests to the server

(Figure 13). They can then browse to any Website and see how the server

manages the user agent and which content it serves.

 Developers can also adopt W3C mobile checker and ready.mobi for markup

debugging.

 Debugging JavaScript is the most difficult activity in mobile Web

development because sometime script that works on a device does not work on

CHAPTER 4: ANALYSIS AND EVALUATION

30

the other devices. Typically, developers must check their JavaScript on desktop

platform before debugging on mobile platform. However, the code that works on

desktop platform may not work on mobile browser. Developers should hence

employ the console logging feature on mobile platform such as Safari Debug

Console and Android Debug Bridge of Android SDK. Furthermore, developers

can employ many debugging tools such as SocketBug, Opera Dragonfly,

jsConsole and Weirne. Using the IDEs as discussed in the previous criterion

(Aptana, Visual Studio and DreamWeaver) for debugging purpose is also a good

choice because the IDEs always have debugging tool.

Ease of debugging Points

Average points 3

Ease of testing

- Test project

Most of the current IDEs do not offer the ability to create test project.

- Test on emulators

Device emulator is obviously valuable for viewing how our Website can render on

the real device. If mobile Web app works appropriately on emulator, it cannot be sure

that the app will work on a real device. Moreover, several platforms that do not offer

emulator for testing mobile Web apps limit the opportunity to test the new apps.

- Test on the real device

The testing on physical device should be mandatory because there are many problems

with the test solution on emulator. However, mobile device diversity creates many

difficulties in testing a mobile Web app. There are many differences (e.g. screen size,

color, resolution) between real devices and hundreds of unexpected bugs may happen

on the devices. For example, when we encounter a JavaScript error, many devices do

not show any notification, making it difficult to detect the problem. Another example

is that mobile Web apps may display properly on this device but do not work on the

other devices. These make complicated to perform the test on mobile Web app and

require the developers to test their apps on as many real devices as possible.

Ease of testing Points

- Test project 1

- Test on emulator 2

- Test on real device 2

Average points 1.67

Ease of deploying and updating

Like any Web app, developers deploy their own mobile Web app on a server and the app

can be accessed from everywhere. Developers gain two benefits from mobile Web app

paradigm. Firstly, they do not have to publish the apps on any app store and wait for the

app store’s approval. Secondly, developers earn most of revenue from selling the apps

and only pad for the hosting fee. Developers will simply update their apps on Web server

instead of pushing the update packages to all mobile devices as native app developers do.

CHAPTER 4: ANALYSIS AND EVALUATION

31

However, developers must be responsible for all steps in driving the apps to the end

users, for example searching for the hosting service, publishing the apps on the Web

server, maintaining the apps and authorizing the access to the apps.

Ease of deploying and updating Points

Average points 3

Ease of distributing

As soon as developers publish their mobile Web apps on a server, end users can access

the apps from everywhere by typing the app’s URI on browser. Therefore, the developer

can distribute their applications easily without any cost beyond the server fee.

Additionally, the platform fragmentation does not cause any problem when delivering the

app to mobile devices.

Ease of distributing Points

Average points 5

Application types

- Application using device capabilities

Mobile Web apps are unable to access device’s hardware. Therefore, mobile Web app

paradigm is not an intelligent selection when developers want the apps to take

advantage of the device capabilities.

- Application using server capabilities

All mobile Web apps use network content, processing capability and storage of Web

server.

- Application employing real time communication (e.g. gaming, banking, weather

forecast and stock market)

Mobile Web app is not suitable for gaming because gaming requires heavy graphic

renders and instant reactions, but mobile Web app is low responsive and device

capabilities are limited. However, mobile Web app can provide the end user with

banking, weather forecast and stock market service. Normally, a bank will create a

mobile version of the service beyond the full version of the service. For example,

Nordea bank have mobile version for their Web app with a simpler user interface.

Users will get the newest data as soon as they access the app.

Application types Points

- Application using device capabilities 1

- Application using server capabilities 5

- Application employing real time communication 3

Average points 3

Powerful APIs and libraries

Many powerful APIs and libraries ease the development of mobile Web apps as

discussed above. However, developers cannot find any API and library that help mobile

Web apps hook into device features (Camera, GPS and accelerator).

CHAPTER 4: ANALYSIS AND EVALUATION

32

Powerful APIs and libraries Points

Average points 3

Payment possibilities

Developers can earn revenue from publishing their apps on Facebook as in [33]. They

can also distribute their apps to the app store and earn money per subscription of the

apps. Another way to earn revenue from selling the app is to adopt pay wall model by

blocking the access to the apps by a form requiring payment before using them.

Payment possibilities Points

Average points 5

The table below summarizes the evaluation for the mobile Web apps from the

developer viewpoint

Table 5: Summary of evaluation on mobile Web app paradigm from developer viewpoint

Ease of developing 3.67

Ease of coding 2

Ease of debugging 3

Ease of testing 1.67

Ease of deploying and updating 3

Ease of distributing 5

Application types 3

Powerful APIs and libraries 3

Payment possibilities 5

Average points 3.26

4.2.2. User viewpoint

In this section, we will analyse and evaluate mobile Web app paradigm on mobile device

from user viewpoint. The criteria using for the analysis and evaluation are ease of use,

functionality, and installation and update.

Ease of use

- Performance

Time for loading is the biggest problem of mobile Web apps due to the limited

network bandwidth and processing capabilities of the devices (e.g. rendering heavy

image). Mobile Web apps hence always lag and have very low performance.

- User interface

One of the drawbacks of a mobile Web app is that its user interface is completely

dependent on the mobile browsers. Scrolling, animation, transition, form and other

native app specific features are not possible or are not as attractive and seamless for

users. Furthermore, user interface will be loaded each time the devices access the app,

increasing the network overhead and making it less responsive.

- Operation

CHAPTER 4: ANALYSIS AND EVALUATION

33

Mobile users have to open mobile browser and input URI to access mobile Web apps.

Moreover, it is very difficult to enter the URI because of the small screen size and

the unusable keypad of the devices. Moreover, moving back and forward between

pages is also very difficult and slow.

Ease of use Points

- Performance 2

- User interface 1

- Operation 1

Average points 1.33

Functionality

- Working offline

Mobile Web apps cannot work offline

- Accessing device’s hardware

Mobile Web apps cannot access device’s capabilities. This reduces the applicability

and attractiveness of mobile Web apps.

- Using real-time communication

Mobile Web app is a bad choice for real-time gaming and other games that require

responsiveness and animation. Furthermore, by using mobile browser, device cannot

automatically pull new data from a Web server without accessing the app on the

server. It makes the mobile Web app associated with social networking less efficient

and usable for mobile users. However, mobile Web app can work well with banking,

weather forecast and stock market information display.

Functionality Points

- Working offline 1

- Access device’s hardware 1

- Using real time communication 3

Average points 1.67

Installation and update

- Compatibility

Some components of a Web app cannot work on every mobile platform. For example,

flash component works on Android but on iOS. However, generally, mobile Web

apps are compatible for most of mobile devices. They can run on different platforms

on different devices.

- Downloading and installing

Users do not have to download and install mobile Web apps on their devices but they

can always approach the newest version of the apps and the newest content provided

by the apps. Service provider will deploy the apps on Web server and distribute their

apps to mobile users via Web browser.

Installation and update Points

CHAPTER 4: ANALYSIS AND EVALUATION

34

- Compatibility 4

- Downloading and installing 5

Average points 4.5

The table below summarizes the evaluation for the mobile Web apps from the user

viewpoint

Table 6: Summary of evaluation on mobile Web app paradigm from user viewpoint

Ease of use 1.33

Functionality 1.67

Installation and update 4.5

Average points 2.5

4.2.3. Service/ content provider viewpoint

Content management

- Content presentation

Accessing Web apps on mobile device often results in poor or unusable experience

due to the limitations of the devices, such as small size display screen, network

bandwidth, keypad, battery and processing capability. It hence creates many

problems for service providers to drive their Web apps to the end users. The

requirement for the service provider hence is much harder than that for normal Web

app providers. These include capability exploit, navigation and link, page layout

and content, page definition and user input.

Service providers try to exploit the capabilities of mobile device because the more

capabilities the apps exploit the better user experience the apps create. Unfortunately,

it is impossible to build a mobile Web app with the aims to access device hardware.

Because of the limitations in device screen and input mechanism [65], the URI to the

app should be as short as possible. Keeping the URI short will reduce the possibility

to enter it wrong, providing more satisfactory user experience. The navigation on the

page should be solid and simple, making easy to navigate forth and back on the pages

of the Web app.

They should also eliminate all the images in the page content or resize the image on

the server as much as possible to reduce the amount of data transferred and the

amount of processing the device has to perform to render the image. Moreover,

service providers must ensure that the page will fit the device’s screen or limit the

scrolling into one direction (usually vertical direction).

Service providers must provide a short descriptive title to allow easy identification

but keep the title short to reduce the page’s size. They should not use table, frame and

other components that can make the page more complicated. The text on the page

should be readable for the end users.

Because the input on mobile device is difficult, the Web apps must avoid the free text

input. Content providers ensure that the interface must be as far as possible minimize

the user input. Where possible, the page should use selection list, radio button and

other controls that do not require typing.

CHAPTER 4: ANALYSIS AND EVALUATION

35

- Content delivering

Mobile users always look for specific pieces of information rather than browsing all

of them. Therefore, service providers must limit the content to what user has

requested to decrease network overhead. Moreover, content providers must deliver

the whole pages, including presentation (user interface) and data to mobile users

when they first time access the mobile Web apps.

Content management Points

- Content presentation 2

- Content delivering 3

Average points 2.5

Administration

- Security

Service providers are responsible for authenticating the users who want to access

mobile Web apps on server. In several sophisticated system that require extremely

high security (e.g. banking system or e-commerce), service providers must protect the

integrity of sensitive data exchanged between mobile users and Web server by using

SSL (Secure Socket Layer) and other security approaches.

- Maintenance

Service providers must host, update and manage the versions of mobile Web apps. An

advantage of maintaining mobile Web apps is that service providers only update their

apps on server. Mobile user will reach the new app version automatically when they

access to the app.

Administration Points

- Security 3

- Maintenance 4

Average points 3.5

Distribution

Service provider will deploy their Web application on a server and update the app

manually at server side. Customer can subsequently access the newest version of Web

app via mobile browser from everywhere. It is hence superior to native app paradigms

whereas the service providers must build different apps to serve the same service on

different platforms and send the update to every mobile device.

Distribution Points

Average points 5

The table below summarizes the evaluation for the mobile Web app from the service/

content provider viewpoint.

Table 7: Summary of evaluation on mobile Web app paradigm from service/content provider viewpoint

Content management 2.5

Administration 3.5

Distribution 5

CHAPTER 4: ANALYSIS AND EVALUATION

36

Average points 3.67

The table below summarizes the evaluation for the mobile Web app from the

developer, user and service provider viewpoint

Table 8: Summary of evaluation on mobile Web app paradigm

Developer User Service/content provider

3.37 2.5 3.67

4.3. Mobile widgets

4.3.1. Developer viewpoint

Ease of developing

- Programming language

As discussed in chapter 3, developers create mobile widgets by using Web

technologies, such as HTML, JavaScript, CSS, XML, SVG and Ajax. These are well-

known standards amongst a large Web developer community. The technologies are

simple to learn and use, and hence mobile widgets are much easier and faster to

develop than native applications.

JavaScript.

Figure 14: Coding mobile widgets by using Eclipse and Samsung TouchWiz SDK.

- Software Development Kit (SDK)

There are many SDKs available for creating mobile widgets: Samsung TouchWiz,

Opera mobile widget and LG mobile widget SDKs. Developers can download the

SDKs free and subsequently install them on their development machine. Developers

then integrate the SDKs into third party IDEs. For example, Samsung TouchWiz

SDK implementations will be integrated into Eclipse as a series of Eclipse plugin.

CHAPTER 4: ANALYSIS AND EVALUATION

37

The SDKs include several tools such as DOM inspector, JavaScript debugger,

network inspector, resource inspector and other utilities to build attractive and cross

device mobile widgets. The SDKs are lightweight, applicable and easy to use for

most of mobile widget developers. Developers can learn how to use the

functionalities of the SDK from several documents accompanied with the SDKs. The

SDKs can also provide developers with the emulator, which is very valuable for

debugging and testing Support from community

Mobile widgets developers receive many supports from a wide community of

programmers. In addition, the developers can download several tutorials from the

many Websites for developers such as Opera, programming 4us, W3C and so on.

Ease of developing Points

- Programming language 5

- SDK 5

- Support from community 5

Average points 5

Ease of coding

The Web technologies (e.g. CSS, HTML and JavaScript) do not require any complicated

IDEs. However, in order to obtain the full support and speed up the coding process,

developers can select one of many powerful IDEs available for building mobile widgets,

such as Eclipse, Aptana Studio, OpenKomodo, UltraEdit and Emacs. All of the IDEs,

which have intuitive user interface, support mobile widget developers seamlessly by

providing the code assist, context menu, auto complete, integrated debugger, error

feedback and other IDE specific supports. The IDEs can ease the development of mobile

widgets by offering developers with the seamless capabilities such as creating and

configuring the new project, managing the files (CSS, HTML, JavaScript files and other

resources) precisely, selecting the available templates for the project and import existing

widgets. Figure 14 depicts using Eclipse for coding mobile widgets.

Figure 15: Debugging mobile widget by using Opera Dragonfly

However, the fragmentation in mobile platforms and devices still create many challenges

for mobile widget developers. Different devices have different display capabilities (e.g.

screen size and resolution) and widget engines. In order to create a cross device mobile

widget, developers should make the app’s user interface adapt to different circumstances

by using media queries and media rules in CSS. The media queries will enable the app to

CHAPTER 4: ANALYSIS AND EVALUATION

38

detect the screen capabilities of the device and create the media rules accordingly. The

media rules include the screen size (width and height), resolution property and the

availability of colours. Furthermore, to adapt mobile widgets to different devices more

easily, developers should separate the apps into several small parts using MVC pattern to

make data separate from view. In addition, they should ensure the responsiveness of

widgets to improve user experience by optimizing the code as much as possible. The

APIs provided by OEMs allow mobile widgets to access device’s hardware but when we

use the APIs, the widget is no longer cross-platform.

Ease of coding Points

Average points 3

Ease of debugging

Debugging is one of the most difficult steps in the development of mobile widgets due to

the interoperability issues of JavaScript handling. Developers can select among good

debugging tools when they develop their mobile widgets. The IDEs (Visual Studio .NET,

Eclipse, Aptana Studio and OpenKomodo) discussed above should themselves have

debugging tools which ease the debugging steps. Additionally, developers can simply

launch the plugins in browser for debugging purposes (e.g. browsing the DOM,

examining source code and creating breakpoint). The plugins include firebug in Mozilla’s

Firefox browser, Opera Dragonfly and Safari Web inspector. Furthermore, Dragonfly

enables widget developers to perform the remote debugging, which is useful in case the

developers are debugging the widgets installed a mobile device from a computer. Figure

15 presents how to use Dragonfly to debug a mobile widget.

Ease of debugging Points

Average points 5

Ease of testing

- Testing project

There are very few IDEs or debugging plugins having the capability to create a test

project for testing Widget.

Figure 16: Opera emulator

- Test on emulators

Instead of copying the widgets onto the device each time they have a change, many

SDKs have emulator for testing purpose. For example, Opera widget SDK provides

developers with Opera Widget Mobile Emulator. The debugging tool and the widget

CHAPTER 4: ANALYSIS AND EVALUATION

39

emulator in the SDKs combined give developer extreme flexibility in developing

applications for various devices. The debugging tool (e.g. Opera Dragon fly) will

provide drop down menu options for the widget emulator and developers can select

one of them for testing. The widget emulator works effectively and developers can

run the debugging tools and the emulator simultaneously to trace the activities of the

widget on emulator. Figure 16 presents the display of a widget on Opera emulator.

- Test on physical device

Beyond testing on the emulator, developers can easily make the final test to ensure

that the widgets work appropriately on the real device. Developers can deliver the

packaged widgets to their device easily and test the widgets from device. Due to the

fragmentation on device and platform, mobile widgets should be tested on as many

devices as possible to guarantee that they work on the real mobile devices.

Ease of testing Points

- Test project 1

- Test on emulator 5

- Test on real device 3

Average points 3

Ease of deploying and updating

By using many IDEs, developers can easily deploy mobile widget onto mobile devices.

The steps to deploy the widget are as follows. Firstly, developers create the standard

package .zip file including Web pages, icon graphics files, style sheets, JavaScript files,

and other resources. Then, they copy the package file to the devices and install/run it on

the device.

It cannot be expected that a mobile widget, once created can run on different widget

engines without any modification. Most probably, the widget engines also employ

different means to wrap the widget application in a deployable package. For example,

Samsung Touch Wiz and Windows Mobile will create different file extensions of the zip

package. However, it is .widget on Samsung TouchWiz but .wgt on Windows Mobile.

The ways the widgets installed on different mobile platform are also different because the

widget engines distinguish between different platforms.

Ease of deploying and updating Points

Average points 3

Ease of distributing

- With app store

One of the benefits that mobile widgets offer their developers is the low time to

market. Carriers, original equipment manufacturers (OEMs) or independent widget

vendors host the app stores or marketplaces. For example, developers can distribute

their mobile widgets to mobile users via Android marketplace, Samsung app store,

Apple dashboard and Opera widgets repository. The distribution and monetization

infrastructure in mobile widget platform provides a mean for developers to get their

widgets to market and provides an opportunity for user to discover new widgets and

content. An example of the efficient distribution is publishing the widgets onto Opera

CHAPTER 4: ANALYSIS AND EVALUATION

40

widget repository. Each widget published will be reviewed by Opera Software to

check if it works on different devices. Opera will filter the list of available widgets

based on the mobile devices viewing the page, thereby enabling users to access the

widgets that are executable on their type of device.

- Without app store

Developers can publish their mobile widgets on their own Website and users can

access the Website to download and run the widgets on mobile devices. However, the

developers must by themselves take into account all of the fragmentation problems of

the mobile widgets and test the widgets on as many devices as possible to guarantee

that the widgets will run on different devices.

Ease of distributing Points

- Without app store 5

- With app store 3

Average points 4

Application types

- Application using device capabilities

Mobile widgets can access device hardware (e.g. phone book, camera and GPS) by

using the APIs and libraries provided by carriers, device OEMs and third party

vendors. This makes mobile widgets much better than any mobile Web app because

there is no mobile Web app can do such things.

- Application using server capabilities

Mobile widgets can access mobile Internet and network services. They adopt the

processing capabilities and storage on server in an indirect way via Web API

provided by the service provider. For example, mobile widgets for Google translate

makes use the processing capabilities of Google to run the translation on Google

server and obtain the result after the translation is comspleted.

- Application employs real time communication (Gaming, banking, weather forecast

and stock market)

Developers can only create the simple and casual game on mobile widgets, such as

Sudoku, snake and Tic-Tac-Toe. Mobile widget is not a good choice for 2D and 3D

gaming associated with real time communication because the games do require a

complicated infrastructure and processing, but the widget’s architecture is simple and

the performance of widgets on mobile device is limited (e.g. video and animation).

Mobile widgets normally provide a narrow range of functionality for a single context.

They are hence not suitable for driving banking services to mobile user, which

requires a robust and functional application on mobile agents.

Mobile widgets work efficiently to display the weather forecast and stock market

information on the real time because mobile can connect to the Internet, adopt Web

services and communicate with service providers via Ajax.

Application types Points

CHAPTER 4: ANALYSIS AND EVALUATION

41

- Application using device capabilities 4

- Application using server capabilities 4

- Application employing real time communication 3

Average points 3.67

Powerful APIs and libraries

Carriers, device OEMs and third party vendors provide mobile developers with mobile

widget platform that includes very powerful APIs, integration tools and libraries. Some

mobile widget platforms are Samsung TouchWiz, Blackberry, OperaWidget, PhoneGap,

Windows Mobile, Yahoo! Blueprint and NokiaWRT.

Powerful APIs and libraries Points

Average points 5

Payment possibility

Developers can publish their mobile widgets on marketplaces or app stores, and earn the

revenue for each download from the mobile user. It is the only way to get revenue from

selling mobile widget.

Payment possibility Points

Average points 3

The table below summarizes the evaluation for the mobile widgets from developer

viewpoint

Table 9: Summary of evaluation on mobile widget paradigm from developer viewpoint

Ease of developing 5

Ease of coding 3

Ease of debugging 5

Ease of testing 3

Ease of deploying and updating 3

Ease of distributing 4.5

Application types 3.67

Powerful APIs and libraries 5

Payment possibility 3

Average points 3.91

4.3.2. User viewpoint

Ease of use

- Performance

Mobile widgets require less time for loading than Web apps because widgets are pre-

installed on mobile devices. Therefore, mobile widgets run faster than mobile Web

app but cannot perform as good as native apps and HTML5 mobile apps.

Moreover, widget is only simple and single functional app that provides mobile users

a single purpose service, such as showing the latest news, the current weather, the

time and a dictionary.

CHAPTER 4: ANALYSIS AND EVALUATION

42

- User interface

Mobile widgets have very simple user interface. They are also less responsive than

native apps and do not have much animation, video and audio handling. However,

users are capable of customizing widgets when they install the widgets on their

devices.

- Operation

Unlike mobile Web app, users can directly launch widgets on the home screen,

gaining immediate access to Web content without having to open a browser and enter

URI. Furthermore, mobile widgets improve the Web experience by providing Web

data through the widgets. Mobile users can access the content of a site very easily via

widget because the widget needs very little data transmissions to get live data from

the Web.

Ease of use Points

- Performance 3

- User interface 3

- Operation 5

Average points 3.67

Functionality

- Working offline

Many mobile widgets (e.g. clock, calculator, currency converter and dictionary) can

work offline and have local storage to save data temporarily for offline use. However,

the widgets that serve the newest data (e.g. weather forecast and stock market

display) need Internet access to work appropriately.

- Accessing device’s hardware

Mobile widgets can access a device’s hardware and platform-level APIs, and are

more valuable to the mobile users than mobile Web apps. For example, a widget can

be used for capturing a picture and storing it to flickr account. The widget starts the

camera, take the picture, add location tags automatically by using the GPS and

asynchronously upload the picture to flickr.

- Using real-time communication

Mobile widget is a portable and simple app providing low range of functionalities. It

is hence not suitable for driving the services that have complicated capabilities

(gaming and banking). However, mobile widgets can work well to show weather

forecast and stock market information on real-time.

Functionality Points

- Working offline 3

- Access device’s hardware 5

- Using real time communication 2

Average points 3.33

Installation and update

CHAPTER 4: ANALYSIS AND EVALUATION

43

- Compatibility

The incompatibility of mobile widgets exists in different levels: widget engine (or

browser), platform and device. The widget that runs on a widget engine cannot run on

the other engines. For example, calculator widget working on Yahoo! Widgets cannot

work on Opera widget engine. In addition to widget engine incompatibility, the

incompatibility on platform and device is still a big concern even though Opera,

Samsung, LG and Yahoo! have several solutions based on W3C standards to create a

widget that runs on multi platforms and devices.

- Downloading and installing

Mobile widgets must be downloaded and installed on mobile devices. Users must

firstly install the mobile widget runtime before installing the widget. Some widget

engines are cross platforms and devices (e.g. Opera widget engine and SurfKitchen)

but some are fragmented (e.g. Myriad and Nokia WRT). For instances, Opera runtime

integrated in Opera mini browser should be installed before any Opera widget is

installed on mobile devices. On some mobile devices, widget engine is pre-installed

and users do not have to download and install it again. After mobile widget engine is

available on devices, users can find and download their favourite mobile widgets

from app stores. The app stores will filter and display the widgets based on the mobile

devices connecting to the app store. It also notify the users when update for the

widgets is available, making it easy and convenient to download and update the

widget onto the devices.

Install and update Points

- Compatibility 3

- Downloading and installing 3

Average points 3

The table below summarizes the evaluation for the mobile widgets from user viewpoint

Table 10: Summary of evaluation on mobile widget paradigm from user viewpoint

Ease of use 3.33

Functionality 3.33

Installation and update 3

Average points 3.22

4.3.3. Service/ content provider viewpoint

Content management

- Content presentation

The presentation of content is pre-defined by mobile widgets on the devices. Content

providers only have to format the data transferred to the devices so that its display can

fit the layout of mobile widgets.

- Content delivering

Currently, implementing the mobile versions of many Web services is difficult. The

support for Web standard based widgets is a huge step forward to reach the Web

CHAPTER 4: ANALYSIS AND EVALUATION

44

services successfully on mobile devices. When mobile widgets access the service,

content providers deliver only data instead of sending both user interface and data to

mobile device. It will help release the content provider’s workload and decrease

network traffic overhead.

Content management Points

- Content presentation 4

- Content delivering 4

Average points 4

Administration

- Security

Since mobile widgets are single and simple purpose applications, they do not require

much security in communication between server and mobile users. In very few sensitive

cases, the responsibility of authenticating user still stays on Web server because mobile

widget does not support security schemes.

- Maintenance

Service providers are responsible for maintaining content on server, ensuring that mobile

users will receive the most updated content on their devices. Moreover, they must

guarantee those mobile users who access their content have the same version of mobile

widgets and the content delivered to the users must fit the layout of the widgets.

Administration Points

- Security 4

- Maintenance 3

Average points 3.5

- Distribution

Service providers can set up their own APIs to make their Web services accessible for the

mobile widgets built by a third party developer (e.g. Yahoo! Weather). They may also

develop their own mobile widgets and distribute to their user. In the latter case, service

providers should take platform and device fragmentation into account otherwise a widget

work on a device but cannot run on other ones.

Distribution Points

Average points 3

The table below summarizes the evaluation for the mobile widgets from service/content

provider viewpoint

Table 11: Summary of evaluation on mobile widget paradigm from service/content provider viewpoint

Content management 4

Administration 3.5

Distribution 3

Average points 3.5

CHAPTER 4: ANALYSIS AND EVALUATION

45

The table below summarizes the evaluation for the mobile widgets from developer,

user and service provider viewpoint

Table 12: Summary of evaluation on mobile widget paradigm

Developer User Service/content provider

3.91 3.22 3.5

4.4. HTML5 mobile app

4.4.1. Developer viewpoint

Ease of developing

- Programming language

Similar to mobile widget developers, HTML5 mobile developers do not need to have

any programming skills in Objective C, C# or Java to build a simple mobile Web app.

Instead, they only have to be familiar with HTML5, CSS3, JavaScript (JQuery

Mobile) and other related Web technologies. Because the technologies are not

complicated to master, skilled Web app developers can easily create many simple

HTML5 mobile Web apps. However, developers should know one of many server

side-scripting languages (e.g. PHP, ASP.NET, Python and Perl) in order to build

large and complicated Web applications, such as banking and ecommerce. The

advanced features of HTML5, CSS3 and jQuery Mobile (discussed later in Ease of

Coding section) can significantly improve the client-side presentation and hence

make HTML5 mobile Web apps superior to traditional mobile Web app and widgets.

- Software Development Kit (SDK)

Developers can use preferred choices of authoring tools, rather than specific platform

SDKs. There are several developer frameworks freely available that give developers

the environment to build mobile Web apps quickly and easily using HTML5, CSS3

and JQuery Mobile. These provide developers with powerful features to code, to test

and deploy HTML5 mobile apps, and to replicate the features of native app UIs, such

as native Webkit animations for pages and buttons, and recognition of touch

interactions on modern smart phones, such as swiping, taping, pinching and rotating.

The frameworks include SenchaTouch, jQTouch, JQuery Mobile, Titanium Mobile

and Aptana. Moreover, developers can choose among commercial frameworks such

as .NET framework and Deamweaver to develop their mobile Web apps.

- Support from community

HTML5 mobile developers can receive many supports from a worldwide community

of Web apps developers, even more than native app developers do. Furthermore, the

developers can access many tutorials and documents available on the SDK’s Website.

MSDN, Google Developer, Dev Opera and W3C are the most famous Websites that

provide many tutorials, sample codes and documents for HTML mobile app

developers.

Ease of developing Points

- Programming language 4

CHAPTER 4: ANALYSIS AND EVALUATION

46

- SDK 5

- Support from community 5

Average points 4.67

Ease of coding

The IDEs such as Aptana Studio, Dreamweaver, NetBeans and Visual Studio 10, which

are very valuable for client side coding (e.g. HTML5, CSS3, JavaScript and other related

technologies) and server side coding (e.g. PHP, ASP.NET and Python). The code editor

provides mobile developers with many powerful features such as code assist, instant

code checking and error feedback, helping developers easily indentify, and fix bugs

and issues. In addition to the code editor, most of the IDEs equip mobile developers with

integrated debugging tools, emulator for testing and deployment wizard to deploy the

Web apps. Another benefit for mobile developers lie in the jQuery Mobile, which is a

lightweight, cross browser JavaScript library that simplifies the client-side scripting of

HTML5, event handling, animation and Ajax on mobile phones. The new library helps

remove the cumbersome that developers have when dealing with traditional JavaScript.

In the other words, jQuery Mobile is designed to change the way we write JavaScript,

which is very complicated. Furthermore, CSS3 is the latest standard of CSS, which

allows for greater control over typography, animations and styling touches such as

shadowing, gradients and rounding off box corners. Developers can shorten the time for

their coding by employing the capabilities that HTML5 provides as discussed in chapter

2. For example, with HTML5’s introduction of the new <video> element, developers can

now include video within their pages without the need for embedding it in a plugin like

Flash. It hence remove the headache of iOS developers since currently iOS does not

support for Flash.

Esiness of coding Points

Average points 5

Ease of debugging

The problem of mobile Web apps is that developers have to debug both client-side and

server-side code, which requires many efforts. However, most of the IDEs discussed

above (e.g. Visual Studio 2010, Aptana and DreamWeaver) include debugging tools that

simplify debugging process at both client-side (HTML5, CSS3 and jQuery Mobile) and

server-side (e.g. ASP.NET, PHP and JSP). The capabilities of the debugging tools

include creating breakpoints, stepping through code, expression watching, stack tracing

and other functionalities. Debugging HTML5 mobile Web apps is much easier than

debugging traditional mobile Web apps because the jQuery Mobile is simple and concise.

Moreover, developers can easily adopt some plugins in the Web browser to debug jQuery

code, such as FireBug, FireQuery, FireFinder and Opera Dragonfly.

Esiness of debugging Points

Average points 3

Ease of testing

- Test project

CHAPTER 4: ANALYSIS AND EVALUATION

47

Developers can use many tools available to create test project testing HTML5, jQuery

Mobile, CSS3, for example CSS3 Test, Front Drag and Aptana. The tools have very

intuitive interface that bring developers a friendly interaction. Moreover, there are

many tutorials and document to instruct how to create test projects by using the tools.

- Emulator

Developers can easily adopt the emulators provided by the IDEs as discussed above

to test their HTML5, CSS3 and jQuery Mobile code. They can test their application

under development or after deploying it on the server. Additionally, developers can

use Opera emulator available for testing Web apps to test their application.

- Real device

Testing HTML5 mobile app on a real device is straightforward. We only have to load

the app onto our mobile browser and run the app from our device. Sencha Touch,

jQTouch, jQuery Mobile and other powerful frameworks ease the development of

HTML5 mobile Web app but using such frameworks cannot guarantee flawless cross-

browser compatibility. For example, the HTML5 mobile apps that use device camera

can only run on Opera Mobile for Android. This means that developers should still

try to test their apps on as many different devices as possible to guarantee that the

apps will work across platforms and browsers.

Ease of testing Points

- Test project 4

- Emulator 5

- Real device 4

Average points 4.33

Ease of deploying and updating

Developers can deploy their application on their Web server. The deployment means no

payment to app store platform and no approval process. After the apps are hosted on the

Web server, there is no lengthy process of having to resubmit improved and updated

versions of the apps and have to go through approval processes all over again. It means

that developers can easily maintain and update the code, and the negative impact of any

problems on the delivery of service to the end users can be very efficiently addressed and

minimised. However, developers must set up their own Web server and deploy the apps

by themselves on the server. They are also responsible for creating access control to the

apps.

Esiness of deploying and updating Points

Average points 3

Ease of distributing

The distribution of HTML5 mobile Web apps is easier than ever before. As soon as

HTML5 mobile apps are hosted on a server, they are accessible for every mobile device

from everywhere [61].

Powerful tools and libraries Points

Average points 5

CHAPTER 4: ANALYSIS AND EVALUATION

48

Application types

- Application using device capabilities

Mobile Web apps cannot fully access hardware features of the devices. However, the

W3C is delivering a set of APIs that make mobile Web apps become much more

powerful and capable of interacting with the devices in the same manner in which

native apps do. The implemented APIs include Geolocation, contacts, calendar, media

capture API, local storage API, messaging and gallery. Furthermore, HTML5 enables

mobile Web apps to adopt local storage of mobile browser for temporarily saving

data to work offline. Developers can flexibly specify which file should be stored on

mobile devices and this save mobile Web app from blank page if the user does not

have Internet connection.

- Application using server capabilities

Mobile Web apps can employ every capability of the Web server, such as storage,

network content and processing ability.

- Application using real time communication

One of the greatest features of HTML5 is the benefit it provides for gaming industry.

HTML5 introduces many features for making an appealing game such as canvas,

jQuery Mobile, video and audio elements, and Web worker providing the game apps

with the ability to run multi-threaded script on the background without interacting

with mobile user. As we combine HTML5 with other exciting Web technologies that

make up an Open Web Platform, we create very interesting real time games with

multi players.

HTML5 mobile Web apps also work great to serve mobile users with banking,

weather forecast and stock market services.

Geolocation is another HTML5 application that can make very good user experience.

The apps can pinpoint exact position by using GPS sensors built in mobile devices.

The apps can also adopt Google Maps to show the current location of mobile users on

a map.

Application types Points

- Application using device’s capabilities 4

- Application using server’s capabilities 5

- Application using real time capabilities 4

Average points 4.33

Powerful tools and libraries

As discussed above, there are many powerful tools and libraries for creating HTM5

mobile Web apps that are open source or commercial. W3C are developing several APIs

to provide developers with capabilities to create mobile Web apps which are as powerful

as native apps. Some are implemented, such as Geolocation, contacts, calendar, media

capture API, local storage API, messaging and gallery. Some are still under development.

Powerful tools and libraries Points

Average points 5

CHAPTER 4: ANALYSIS AND EVALUATION

49

Payment possibility

There are many payment possibilities for HTML5 mobile Web apps. Developers can take

advantage of mobile app store to earn the revenue from each subscription to their apps.

They can also publish their apps on their Web server and make them available for

subscription. In this way, developers do not have to share their revenue with app store but

they have to create the access control on each subscription by themselves. Another way

to distribute their mobile Web apps is via Facebook as mentioned in [33].

Content management Points

Average points 5

The table below summarizes the evaluation for the HTML5 mobile Web apps from

developer viewpoint

Table 13: Summary of evaluation on HTML5 mobile app paradigm from developer viewpoint

Ease of developing 4.67

Ease of coding 5

Ease of debugging 3

Ease of testing 4.33

Ease of deploying and updating 3

Ease of distributing 5

Application types 4.33

Powerful APIs and libraries 5

Payment possibilities 5

Average points 4.37

4.4.2. User viewpoint

Ease of use

- Performance

HTML5 mobile Web apps are lightweight and hence run fast in most of smart

phones. It is more responsive and attractive than old mobile Web apps and widgets

but have slower performance than mobile native apps. Web apps sometimes lag

because they should be loaded into mobile browser.

- User interface

HTML5 provides several new elements to improve the presentation of the Web apps,

making it more attractive than mobile widgets and old Web apps. The improvements

include animation (e.g. fade, slide, pop, flip and cube), audio and video handling.

Hence, HTML5 apps now look similar to native apps. Additionally, the users who do

not have Flash installed on their devices (e.g. iOS user) really benefit from the

capability of playing video on HTML5 Web apps.

- Operation

Similar to using any Web apps, we have to open mobile browser and enter the URI to

load all the HTML5 apps at first, including both user interface and content. Even

though we can simply create a flashy-app like icon on user home screen by creating a

CHAPTER 4: ANALYSIS AND EVALUATION

50

bookmark of the site, entering exactly the URI into a small address bar in the first

time is still a problem.

Ease of use Points

- Performance 4

- User interface 4

- Operation 3

Average points 3.67

Functionality

- Working offline

One of the most interesting features of HTML5 mobile apps is the capability to work

offline by storing temporarily data on local storage supported by mobile browser.

This capability drives HTML5 mobile apps closer to native apps as the key features

of the apps still work even if users have a poor Internet connection. However, the

HTML5 apps that work offline have some concerns, such as synchronization between

the data in local storage and data in remote database.

- Accessing device’s hardware

Another advantage of HTML5 mobile Web app is that it can access several device

hardware features (but not all). The apps hence are functional and make a good user

experience.

- Using real time communication

Mobile HTML5 gaming is excellent but real-time HTML5 gaming is still under

development. Other real time apps (e.g. banking, weather forecast and stock market

display) run very effectively on mobile devices and attract many mobile users. In

addition, mobile user now can enjoy Geolocation capability of HTML5 mobile apps.

The apps can help users find out their current location by adopting Geolocation

service. A sample of using Geolocation service is that Facebook users can get the

event location from their Facebook account, find out their own location by adopting

built-in on their phone and figure out how to travel to the event location from current

location.

Functionality Points

- Working offline 3

- Accessing device’s hardware 3

- Using real time communication 4

Average points 3.33

Installation and update

- Compatibility

Compatibility is currently a problem of HTML5 mobile apps. There are still some

devices do not support HTML5 and HTML5 Web apps cannot run on such devices.

- Downloading and installing

CHAPTER 4: ANALYSIS AND EVALUATION

51

Mobile users do not have to download and install HTML5 mobile apps on their

device. Update also happens on Web server. Therefore, users will be able to reach the

newest content provided by the HTML5 mobile apps and newest version of the apps.

Installation and update Points

- Compatibility 3

- Downloading and installing 5

Average points 4

The table below summarizes the evaluation for the HTML5 mobile Web apps from

user viewpoint

Table 14: Summary of evaluation on HTML5 mobile app paradigm from user viewpoint

Ease of use 3.67

Functionality 3.33

Installation and update 4

Average points 3.67

4.4.3. Service provider viewpoint

Content management

- Content presentation

The limitations of mobile devices (e.g. small screen size, unusable keypad and low

computing capabilities) create many difficulties for content providers to structure their

Web apps. Fortunately, HTML5, CSS3 and JQuery Mobile can change the way content

providers structure their content. Below are some new features that HTML5 introduces to

content providers.

 <input> has autocomplete and autofocus attributes to ease the user input. The

attribute autocomplete will limit the length that the user must enter and autofocus

makes the <input> get focus when the page loads.

 <canvas> is the new element which can be used to draw graphics using scripting

(JQuery Mobile). <canvas> make it easier to draw a graph, make a photo

composition or do simple animation. On other words, <canvas> helps content

providers port a picture or animation to end users very effectively.

 <video> and <audio> help present the content that contain animation, video and

audio much more easily than old mobile Web application.

 Local storage, new input time (e.g. date time) and browser-support form

validation which are natively supported by the language can ease the display of

content and hence make communication between mobile users and content

providers easier. For example, instead of launching JavaScript-based calendar

date-pickers in old mobile Web apps, date element is available in HTML5 display

the date faster on mobile browser

CHAPTER 4: ANALYSIS AND EVALUATION

52

 HTML5 can also help content providers hide the address bar of the HTML5

mobile app when the app loads on mobile devices, making it similar to a native

app.

 CSS3 takes the idea of media type one-step further and enhances their

functionality with media queries. Media queries extend the usefulness of media

types by allowing more precise labelling of style sheets. This customizes the

content's presentation to a specific range of output devices without having to

change the content itself.

- Content delivering

Delivering content to mobile user is no longer much complicated thanks to HTML5,

CSS3 and JScript. However, the adoption of local storage can challenge content

providers in the way that they must ensure the synchronization between local storage

and database server. Moreover, content providers must port the whole page to end

users for the first time user access the Web apps. This can cause increase in network

overhead and is quite inefficient as compared to native apps and mobile widgets

Content management Points

- Content presentation 3

- Content delivering 3

Average points 3

Administration

- Security

Service providers must authenticate the users who want to access HTML5 mobile

apps on the server. They must also protect the integrity of sensitive data (e.g. in

banking transaction) exchanged between mobile users and Web server. The

responsibility in ensuring security mainly stays at server’s side.

- Maintenance

Service providers are responsible for hosting, updating and managing versions of

HTML5 mobile apps. An advantage of maintaining HTML5 mobile apps is that

service providers only have to update their apps on server. Mobile user will

automatically reach the newest app version when they connect to the server and use

the apps.

Administration Points

- Security 3

- Maintenance 4

Average points 3.5

Distribution

Service provider can easily distribute their apps to mobile users. Instead of having to

develop dedicated applications for each mobile platform, to give their customers a

compelling experience, they will be able to offer a single HTML5-based app that will run

across mobile devices-greatly reducing their development costs. Furthermore, making the

http://www.w3.org/TR/css3-mediaqueries/

CHAPTER 4: ANALYSIS AND EVALUATION

53

sites available through HTML5 mobile apps can break the monopoly of app store. For

example, instead of paying a proportion of revenue for each subscription on newspaper or

magazine to the app store, publisher/ content provider can sell their subscription directly

to the end users. They should need a simple Web authentication of the subscription and

the Web apps will be available on any mobile device that supports HTML5.

Distribution Points

Average points 5

The table below summarizes the evaluation for HTML5 mobile Web apps from service

provider viewpoint

Table 15: Summary of evaluation on HTML5 mobile app paradigm from service/content provider

viewpoint

Content management 3

Administration 3.5

Distribution 5

Average points 3.83

The table below summarizes the evaluation for HTML5 mobile Web apps from the

developer, user and service provider viewpoint

Table 16: Summary of evaluation on HTML5 mobile app paradigm

Developer User Service/content provider

4.37 3.67 4

The table below summarizes the evaluation for different mobile application

paradigms from developers, user and service

Table 17: Summary of evaluation on four mobile app paradigms

Mobile app paradigms Developer User Service/content provider

Native apps 4.04 3.78 3.17

Web apps 3.26 2.5 3.67

Widgets 3.91 3.22 3.5

HTML5 4.37 3.67 3.83

54

Chapter 5: Practical verification

In order to verify the evaluation carried out in the previous chapter, we will build a

mobile object recognition/visual search app using the two most promising paradigms:

native app and HTML5 mobile app. The objective of the practical verification is to

ensure that the performed evaluation is conformed to the reality and consequently usable.

The same app will be developed using both paradigms and evaluated according to

developer and user’s viewpoints. Comparisons with the former evaluation will be then

carried out.

Figure 17: Technology architecture implementation

The purpose of the object recognition app is to provide to the user information about a

requested object which can be anything from a glass, a car, a person to a building, a

monument or a mountain. The user uses the camera on his/her mobile phone to capture a

picture of the wanted object and sends it to a server asking for identification and

information.

The motivation for choosing the object recognition app is manifold. First, this app needs

to interact with a server on the Internet and requires a connection. Second, it needs to use

local facilities on the mobile phone such as camera. Finally, the object recognition app is

in itself a useful and exciting application on mobile phones.

Figure 17 depicts our technology architecture implementation. We employ the IQEngine

API as the backend service, and a native app or an HTML5 as the frontend app which

runs on the device. The reason we choose IQEngine for the backend service is that

IQEngine API is very usable, and the object analysis and recognition is quite fast (up to 1

minute per object). Moreover, we receive a lot of support from IQEngine developer

centre such as tutorials and troubleshooting, and 1000 free visual scans from the service.

We can also create our own training database to reduce the time of visual search, which is

an advantage over the other online visual discovery engines. The detail about IQEngine

visual discovery service can be found in the annex section. The other selections for the

CHAPTER 5: PRACTICAL VERIFICATION

55

backend service are Tineye and Google Goggle. However, they are not as advantageous

as IQEngine. Tineye costs $300 for 1000 visual searches and it does not provide much

support for mobile developers. Meanwhile, Google Goggle does not have the API for

developers.

Figure 18: Class structure of the native app

The frontend apps can access the camera and keypad, connect to the Internet and display

the result on device’s screen. User will capture the image of unknown objects by using

device’s camera and send it to IQEngine server by using the available APIs. The server

subsequently analyzes, compares the image with the images in its training database,

labels the objects in the image and responds the device. Finally, the frontend app will

display the label on device’s screen. The mobile phone adopted for the implementation is

the Samsung Galaxy GTI-5500 with Android 2.1.

5.1. Native app

Android, iOS and Windows Phone SDK provide developers with several valuable APIs

and libraries to create an app which can interact with device’s camera. Therefore, we

choose Android SDK and Eclipse IDE to build the native app for the practical

verification. The app then can run on the device with Android platform.

5.1.1. Native app architecture

 Class structure

The app’s architecture has five main classes, including HomeInterface, CameraView,

AndroidExplorer, Inquiry, IQEngine classes (Figure 18). HomeInterface defines the home user

interface of the app. From the home interface, users can choose to capture an image by

using camera or load an available image from device’s storage. CameraView is

responsible for creating device’s camera interface. The CameraView can be considered as

CHAPTER 5: PRACTICAL VERIFICATION

56

the client for the Camera service, which manages the actual camera hardware.

AndroidExplorer helps users select the available image file to upload to IQEngine server.

Inquiry initiates an API object using API key and secret, queries the image, retrieve the

result in JSON format and decode JSON object into String object. IQEngine creates the

package (e.g. the timestamp, image, API key and API signature), sends it to IQEngine

server and obtains the result from the server.

Figure 19: Sequence diagram of the app when users want to capture a picture by using device’s camera

(19a) or select a picture from device’s storage (19b)

 Sequence diagram

Figure 19 shows the sequence diagram of object recognition native app. Users will

interact with the app via CameraView class (1), capture an image and save it on their

device’s storage (2) as in Figure 19a. They can also choose to open an available image

from storage’s device as in Figure 19b. The app asks the users whether they want to send

CHAPTER 5: PRACTICAL VERIFICATION

57

the inquiry. If the users want the inquiry, the app sends the request (3) to Inquiry object.

Inquiry object call query() method to IQEngine object (4), thereby initiating the call to

IQEngine API. IQEngine object gets the timestamp (5), builds the signature by using

HMAC-SHA1 algorithm (6) and send all the parameters (e.g. timestamp, API key,

signature and image) to IQEngine server by using httppost (7). IQEngine object then

retrieves the IQEquery object from IQEngine server and responses Inquiry object with the

IQEquery object (8). Inquery object calls result() method with qId argument which is

extracted from IQEquery (9). IQEngine object again gets timestamp (10), computes

signature (11) and sends request which include qId to IQEngine server (12). IQEngine

object retrieves the JSON object from the server and sends it back Inquiry object (13).

Inquiry object parses the JSON object (14) to obtain the label and sends the label to

CameraView/ AndroidExplorer (15). CameraView/AndroidExplorer finally displays the label on

device’s screen.

Figure 20: Home interface of the native app

5.1.2. Analysis and evaluation

 Developer viewpoint

Ease of developing

- Programming language

As we discuss in the previous chapter, Android allows programmer to write the code

with Java-like language which is easy to learn and use. We do not have any challenge

in programming language to build the native app.

CHAPTER 5: PRACTICAL VERIFICATION

58

Figure 21: Users choose to capture a picture of the wanted object. 21a is the interface of device’s camera.

21b shows the screen when users tap on the screen to capture a picture. As soon as they choose “yes”, the

app sends the picture to IQEngine as shown in 21c, receives the result after about 25 seconds, and displays

it on device’s screen as in 21d.

Figure 22: Users want to load an available picture from the SD card. 22a shows the list of image files stored

in sdcard folder. 22b depicts the waiting screen when the picture is sent to IQEngine server. 22c describes

the result obtaining from the server.

- Software development kit (SDK)

o Applicability

The SDK is very applicable and easy to use. We can write the code, debug, and

perform the test case and the implementation of the app very effectively with

many supports from the SDK. For example, the SDK supports us to create intents

and activities, and call a new activity from an activity. When users click on the

CHAPTER 5: PRACTICAL VERIFICATION

59

button “capture an image” on the home user interface (Figure 20), the app will

create a new intent CameraView, thereby building and running CameraView activity

as shown in Figure 21a. When users finish the camera, they simply click the

button “Quit the camera” to destroy the CameraView activity and return the

HomeInterface activity. Similarly, when users click to select the button “Open

available image”, a file dialog appears as shown in Figure 22a.

Figure 23: Camera preview is sideways on Android 2.1 or lower.

o Specifications and tips

We can find many useful specifications and tips from the developer page of the

SDK by simply clicking on the class or method on our code editor.

o Interaction with device’s hardware

The SDK supports interactions with camera, keypad, WLAN card and device’s

storage. We can deal with the device’s camera by using android.hardware.Camera,

android.view.SurfaceView, and android.view.SurfaceHolder. We can also interact with

the device’s storage by using java.io.file and check the Internet connection by

using android.net.ConnectivityManager before sending the request to IQEngine

server.

However, on Android 2.1 and the earlier versions, the SDK does not support the

methods and fields android.view.display. getRotation(), Surface.Rotation and

android.hardware.Camera.setDisplayOrientation(), making the camera preview

display at an incorrect angle degree in portrait mode as shown in Figure 23.

Moreover, there is no file dialog support from Android SDK to locate a file on the

device’s storage. Therefore, we have to write the code by ourselves to list all the

files in an indicated folder and then select the wanted image file.

o Downloading, installation and configuration

The SDK can be downloaded free from Android developer Website. However, it

requires a large amount of time to install the SDK and the integration of the SDK

into the IDE (e.g. Eclipse) is complicated at first as described in [41].

- SDK Points

o Applicability 5

o Specifications and tips 5

CHAPTER 5: PRACTICAL VERIFICATION

60

o Interaction with device’s hardware 4

o Downloading, installation and configuration 4

Average points 4.5

- Support from community

Community of Android developers is worldwide, which benefits us a lot. We have

found a lot of helpful tutorials, code examples and instructions to build the app and

fix the bugs. Several supports that we have found on the Internet are from

developer.android.com, stackoverflow.com and code.google.com.

Ease of developing Points

- Programming language 5

- SDK 4.5

- Support from community 5

Average points 4.83

Ease of coding

- IDE’s capability

o Code editor

The IDE (Eclipse) is very usable. The code editor is intuitive, which enhance the

code management. The instant feedback with error and warning, import structure,

open type feature, content assistant and quick fix features are great benefit to us

while we write the code by using the code editor.

Figure 24: The home user interface of the native app in portrait and landscape modes. The buttons and the

image display inappropriately in landscape mode.

o User interface builder

We have found Eclipse UI builder inefficient to use. There is no drag and drop

capability provided by Eclipse UI builder. Therefore, we have to write the code

directly in main.xml, camera.xml, imageview.xml and folderview.xml, and

declare the UI variables (e.g. android.widget.button and android.widget.textview) to

CHAPTER 5: PRACTICAL VERIFICATION

61

detect the UI controls defined in the xml files. We can preview the user interface

by clicking the graphic layout tab.

- IDE’s capability Points

o Code editor 5

o UI builder 3

Average points 4

- User interface

Android SDK provides us with a range of Android layout: AbsoluteLayout,

FrameLayout, LinearLayout, RelativeLayout and TableLayout. The layouts are

straightforward to create an intuitive user interface but they are not effective to

build an adaptive user interface. For example, we cannot make the home user

interface display properly in both landscape and portrait modes. The UI elements

(e.g. button, textview, and imageview) do not automatically change the size and

rearrange to adapt to the screen size when the device rotates. Figures 24a depicts

the home user interface in portrait mode. The user interface displays inaccurately

in landscape mode as in Figure 24b.

- Device’s interaction

o Camera

To make the app access the device’s camera is quite complicated though we use

android.hardware.Camera provided by Android SDK. Firstly, we declare camera

permission in our manifest.xml to ensure that the app is allowed to access the

camera. Then, we create a camera instance and set the parameters for the camera.

Without the SurfaceHolder configuration, the camera will be unable to start the

preview. Therefore, we also have to build the camera preview by using a

SurfaceView and a SurfaceHolder. The preview must be started before we take a

picture and close after the picture is taken. Finally, we have to write the code in

the Camera.Picture.Callback to store the image onto device’s storage as soon as the

image is captured. To access the camera, capture an image and save the image

onto device costs at least 140 lines of code.

As discussed in SDK criterion, we cannot make the camera work in portrait mode

due to the limitation of the android.view.display, surface and

android.hardware.Camera classes on Android 2.1. Therefore, we must develop two

versions of the code, one for Android 2.1, and the other for Android 2.2 or higher

so that the app can run properly on all versions of Android.

o Downloading and uploading an image

Unlike HTML5 mobile app, the native app does not download the captured image

but we have to write the code to encode the captured camera stream into an image

in .jpg or .png format and save it on device’s storage.

Android SDK does not support file dialog. Therefore, we have to create our own

file dialog from the scratch and it is a time consuming task. Firstly, we build the

user interface of the file dialog by using android.widget.ListView and

android.widget.TextView. Then we write the code to list all the files and subfolders

CHAPTER 5: PRACTICAL VERIFICATION

62

in an indicated folder by using java.io.File. We finally display the chosen image on

an image view on a new activity (ImageView activity).

Figure 25: Debugging the image capture event

o Internet connection

We can simply make the app connect to the Internet check the Internet connection

by providing it with the permission to access the Internet.

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

We can also check the Internet access by adopting Android.net.ConnectivityManager

as follows

ConnectivityManager cm = (ConnectivityManager) getSystemService
(Context.CONNECTIVITY_SERVICE);

NetworkInfo netInfo = cm.getActiveNetworkInfo();

o Native apps (Camera and photo album)

The app cannot access the native camera and photo album app.

- Device interaction Points

o Camera 3

o Downloading and uploading an image 1

o Internet connection 5

o Native apps 1

Average points 2.5

- IQ Engine server interaction

In order to access and use IQEngine API, we need to get the timestamp on our mobile

device, compute the signature and send a request to IQ Engine server and receive the

result from it.

o Getting timestamp

We can simply get the current timestamp with the following format

"YYYYmmDDHHMMSS" by using java.io.utils.Calendar, java.io.utils.TimeZone and

java.text.SimpleDateFormat. It costs 5 lines of code to get the current timestamp.

CHAPTER 5: PRACTICAL VERIFICATION

63

o Building signature

Computing the signature requires us to import the javax.crypto and

org.apache.commons.codec packages. The org.apache.commons.codec belongs to

Apache common codec library which can be downloaded from [44]. We have to

do the following tasks to build a signature with HMAC-SHA1 algorithm: creating

a new Mac instance that provides the HMAC-SHA1 algorithm and initializing it

with a secret key, digesting the Mac based on the data bytes received from the

image name, timestamp and API key, and converting raw bytes to Hex and then

Hex bytes to signature string. It costs 20 lines of code to build the signature.

Figure 26: An unknown error happens when debugging the image capture code

o Sending request and retrieving result

In order to send an inquiry to IQEngine server and get the result back from the

server, we use http protocol (http post and response). It requires us to import the

org.apache.http into our project which can be downloaded from Apache Website.

Firstly, we create http request/http post which contains the needed entity including

image, API key, signature and timestamp. Subsequently, we create a new http

client to execute the http post and return the http response. Finally, we get entity

from the response and stream it if needed to retrieve the result string. It costs 35

lines of code to send request, receive the response and stream the response to get

the result.

- IQEngine server interaction Points

o Getting time stamp 4

o Building signature 3

o Sending request and retrieving result 3

Average points 3.33

Ease of coding Points

- IDE’s capability 4

- User interface 3

- Device interaction 2.5

- IQEngine server interaction 3.33

Average points 3.21

CHAPTER 5: PRACTICAL VERIFICATION

64

Ease of debugging

We can easily manage the breaking points and trace the variables of the app at runtime as

shown in Figure 25. The debugging tool works inefficiently with the camera-related

packages. It always stops unexpectedly with a “mysterious” reason as in Figure 26. We

can only find out the problem by checking the logcat file after all.

Ease of debugging Points

Average points 2

Ease of testing

- Emulator

The emulator is not efficient to test the apps. We cannot use the local computer

camera in Android emulator.

Figure 27: Deploying the object recognition app onto Android device.

- Real device

We can easily test the app with a real Android phone in a few simple steps. In the

AndroidManifest.xml, we add android:debuggable="true" to the <application> elements. We

turn on “USB debugging” on our devices and install USB driver for adb. Then we

plug in the device over USB and find out the name of the device listed as “device”.

Finally, we can test the app which is running on the device very effectively by using

the SDK and Eclipse IDE. However, if an exception happens, the app will stop

unexpectedly without indicating the name of the exception in the console window.

Therefore, we have to check the logcat file to find out the exception and fix it.

Ease of testing Points

- Emulator 1

- Real device 5

Average points 3

Ease of deploying and updating

It is very straight forward to deploy and update the app onto our device (Figure 27). We

can connect the device with our computer and test the app. The app will subsequently be

deployed on our device. As soon as we update our project on computer, the app is

CHAPTER 5: PRACTICAL VERIFICATION

65

updated on our device. We can also deploy the app by copying the .apk file generated

through the code compilation onto our device and running the app from the device.

Ease of deploying and updating Points

Average points 5

Ease of distributing

- Compatibility

The object recognition app can only run on Android devices. It is not a cross-platform

app.

- Without app store

As we discussed above, to distribute the app is very easy. We only have to distribute

the .apk file to the Android devices and run the app from there. There are many

solutions for distributing the app. We upload the .apk onto a Website and users can

conveniently download and run it. We can also share it via email or Dropbox sharing.

- With app store

We have to pay $25 for the registration fee and then can publish our app onto

Android market. We must also go through several complicated steps to get the license

from Android market to publish our app.

Ease of distributing Points

- Compatibility 1

- Without app store 5

- With app store 3

Average points 3

Application type

- Application using device’s capabilities

Our app can access the device’s camera, keypad, storage (e.g. SD card) and connect

to the WLAN quite effectively. Users can tap the screen to capture the image, save

the image on the SD card and send it to the server afterward. A disadvantage of the

app is that the camera preview is sideways and always displays the picture at an

incorrect 90 degree angle in portrait mode on Android 2.1 or older (Figure 23).

Therefore, users must rotate the device to get the camera preview in landscape mode

when they start the camera. The reason of the disadvantage is the lack of some

methods on Android 2.1 which are available on Android from version 2.2 to support

the SurfaceView rotation as discussed above.

- Application using server capabilities

Our application employ the IQEngine server’s capability (e.g. processing and storage) to

identify unknown object.

Application types Points

- Application using device’s capabilities 4

- Application using server’s capabilities 5

CHAPTER 5: PRACTICAL VERIFICATION

66

Average points 4.5

Powerful APIs and libraries

Android SDK is really useful and applicable, providing us with the powerful APIs and

libraries. The libraries and APIs enable us to build the app which can access device’s

camera (e.g. android.hardware.Camera and android.view.SurfaceHolder), employ IQEngine

API (com.pictures.IQEngine.IQEQuery) and decode the JSON response (e.g.

org.json.JSONObject).

Powerful APIs and libraries Points

Average points 5

Payment possibilities

We can only publish their apps on app store and get revenue for the sale of the apps. For

example, developers get 70% of sale revenue. It is considered as the most solid and

efficient way to sell the native app.

Payment possibilities Points

Average points 3

The table below summarizes the evaluation of native app paradigm on developer

viewpoint after the practical implementation

Table 18: Summary of the evaluation on the native app from developer viewpoint

Ease of developing 4.83

Ease of coding 3.21

Ease of debugging 2

Ease of testing 3

Ease of deploying and updating 5

Ease of distributing 3

Application types 4.5

Powerful APIs and libraries 5

Payment possibility 3

Average points 3.73

 User viewpoint

Ease of use

- Performance

The app is very responsive on the Samsung Galaxy GTI-5500 with Android 2.1. The

time to run the app includes the amount of time to start the app, start the camera,

choose an available image at the device and send the image to the server, and the time

of object recognition process on IQEngine server. We run 50 tests to measure the

time needed for using the app. The average time to start the app is from 120 to 380

milliseconds. Meanwhile, the amount of time to start a camera is within 1150 and

1500 milliseconds, and to capture a picture is about 800 milliseconds. The time to

send the request and get the result back from the server, and display the result is about

25 seconds.

CHAPTER 5: PRACTICAL VERIFICATION

67

- User interface

The app has an intuitive and attractive user interface with button, dialogbox and

camera view, making users easy to interact with the app. The home interface of the

app has three buttons as in Figure 20. When users select to capture a picture, the app

starts the camera as in Figure 21a. After tapping the screen to take a picture, the app

will ask the users if they want to send the picture for the identification as in Figure

21b. If so, the app will send the picture and receive the label of the object as in

Figures 21c and 21d respectively. In case the users want to choose an available image

on device’s storage and send it to the server, the app will displays as in Figures 22a,

22b and 22c respectively. However, it takes 1 or 1.5 second to start the camera and

the camera interface lags when users capture an image. Moreover, the app can only

display the home user interface in portrait mode, and the camera interface in

landscape mode.

- Operation

The app is very usable. Users can easily launch the app by clicking the app’s icon on

home screen. They can also conveniently tap the camera’s interface to capture an

image, save it on device’s storage and send it to IQEngine server for the recognition

process. The image stored onto device’s storage has the name including the

timestamp of the image (e.g. image28032012160049.jpg). Additionally, users can

access IQEngine Web service and get the label of the object in two simple steps:

taping the camera’s interface or selecting an available image on device’s storage and

agreeing to send it to the server. They finally view the result on screen right after the

app receives the label from IQEngine.

Ease of use Points

- Performance 5

- User interface 4

- Operation 5

Average points 4.67

Functionality

- Working offline

The app requires Internet connection to access IQEngine Web service. However, in

case there is no Internet connection, users still capture the image, save it on device’s

storage and send it to the server as soon as they can connect to the Internet.

- Accessing device hardware

The app can access device’s camera, keypad and storage. Moreover, it can also adopt

the Internet connection very effectively. However, on Android 2.1 and below, users

can only use the device’s camera in the landscape mode (Figure 21).

- Object recognition

Currently, the app can be used to label the objects only. The objects detected include

glass, cup, statue, building, car and so on.

Functionality Points

CHAPTER 5: PRACTICAL VERIFICATION

68

- Working offline 3

- Access device’s hardware 4

- Using real time communication 4

Average points 3.67

Installation and update

- Compatibility

The app can only run on Android’s device.

- Downloading and installing

The app is very lightweight to download from the Internet and install on mobile

devices. However, updating the app create a little big challenge. Users have to

download the new version of the app onto their devices to update the app.

Installation and update Points

- Compatibility 1

- Downloading and installing 4

Average points 2.5

The table below summarizes the evaluation of native app paradigm on user viewpoint

after the practical implementation

Table 19: Summary of the evaluation on the native app from user viewpoint

Ease of use 4.67

Functionality 3,67

Installation and update 2.5

Average points 3.61

5.2. HTML5 mobile app

We create an object recognition mobile app by using HTML5 mobile app paradigm.

Actually, it includes HTML5, which only works at client side, and PHP, which is the

server side script. Similar to the native app, our HTML5 mobile app can interact with

device’s camera and storage. Users capture a picture, send it to IQEngine server and

receive the result afterward. The difference between the two is that users must connect to

the Internet and load the app onto their device, and the app only works within mobile

browser. We use Aptana Studio as the IDE for coding the app and Opera Dragonfly for

debugging and testing the code. We also take advantage of the 000Webhost to host our

HTML5 mobile apps including HTML5 files, jQuery Mobile, JavaScript, CSS3 files and

PHP scripts. Currently, the app can only work on Opera Mobile for Android because

only that version of Opera browser supports the getUserMedia API [42] to access device’s

camera.

5.2.1. HTML5 mobile app architecture

The app hosted on 000WebHost.com includes HTML5 and JavaScript files to interact

with our devices (e.g. using camera and storage), PHP script to upload a file from the

devices and to make IQEngine API request, and the CSS3 and jQuery files to define the

page loaded onto mobile browser.

CHAPTER 5: PRACTICAL VERIFICATION

69

HTML5 provides us with the <video> element and navigator.getUsermedia() to interact with

device’s camera and the <input> element to create the file dialog on HTML5 page.

Figure 28: HTML5 mobile app architecture

We adopt jQuery Mobile to design our user interface thereby releasing our headache to

make the app look like a native app. jQuery Mobile is a framework built on top jQuery

that provides a range of user interface elements and features to use in mobile apps. The

app uses several interface elements and features of jQuery Mobile such as of pages

within pages, Ajax navigation, page transition, orientation on change and theming.

In addition to jQuery Mobile, we use CSS3 to define our page, creating better user

experience. The CSS3 features adopted in our app are media –o-paged-x and media

orientation.

Unlike the native app, the device will interact with our app hosted on 000WebHost server

(as in Figure 28) rather than directly communicating with IQEngine server. After

analyzing and recognizing the object, IQEngine server will label the object and send the

result back to the device. Figure 28 describes the way that users access and use the app.

Users open mobile browser (Opera Mobile) and enter the URL huy.host56.com (1). The

app will be loaded onto the browser (index.html). The HTML5 page can access device’s

camera and storage (2). Users will capture a picture via the app (3) and download the

picture (4) onto the device. Users choose the picture from device’s storage (5) and send it

to 000WebHost server via http post (6). The name of the image uploaded onto the server

includes the timestamp when we upload it (e.g. image28032012160049.jpg). The app

sends the inquiry to IQEngine server (7), receives and displays the label (8) (9). Similar

to the native app, the parameters that the HTML5 mobile app delivered to the IQEngine

server include the timestamp of the image, the API key and the signature created by using

HMAC-SHA1 hashing algorithm.

5.2.2. Analysis and evaluation

 Developer viewpoint

Ease of developing

- Programming language

CHAPTER 5: PRACTICAL VERIFICATION

70

HTML5, CSS3, JavaScript and PHP are short and straightforward to code the app.

- Software development kit (SDK)

o Applicability

We use Aptana which is quite applicable to develop the app. Aptana SDK allows

us to manage the files (e.g. image, HTML file, CSS and PHP scripts) and write

the code effectively. It supports the latest HTML5 specifications and CSS3

features. It also provides us a useful IDE with several valuable functionalities

such as immediate feedback with errors and warning, quick fix features, open

type features and content assistant. However, the integrated debugging tool is

useless because it does not support Opera browser to debug JavaScript code.

Therefore, we use Opera Dragonfly to debug and test the app. The Opera

dragonfly will compensate for the drawback of Aptana debugging tool.

o Specifications and tips

Similar to Android SDK, we can find a lot of useful specifications and tips about

HTML5, CSS3, JavaScript and PHP both on W3C and on Aptana Studio IDE.

o Interaction with device hardware

HTML5 provides the <video> element and navigator.getUserMedia() which enables

the app to access device’s camera. However, only Opera Mobile for Android

supports getUserMedia() method to interact with the camera.

To download the image from the canvas element on our HTML page is very

complicated. Whenever the toDataURL() method of the canvas is called, the

method must raise a SECURITY_ERR exception. The reason is the same origin

policy as discussed in [43]. In order to fix the problem, we have to configure the

Opera Mobile on the device as follows. Firstly, we type in about:config into the

address bar. Then we go to Security Pref and select ”Allow Camera To Canvas

Copy”.

Unlike Android native app, HTML5 support the file dialog very efficiently. We

easily work with the file dialog in two lines:

<input name="uploadedfile" type="file" />

<input type="submit" value="Upload File" />

o Downloading, installation and configuration

We can easily download and install the Aptana from Aptana.com and configure

Opera Dragonfly on Opera browser.

- SDK Points

o Applicability 5

o Specifications and tips 5

o Interaction with device’s hardware 3

o Downloading, installation and configuration 5

Average points 4.5

- Support from community

CHAPTER 5: PRACTICAL VERIFICATION

71

The W3C benefits us a lot. We can learn several specifications and features of

HTML5, CSS3, jQuery Mobile and JavaScript from W3C page. We also receive full

support from several developers’ forums.

Ease of developing Points

- Programming language 5

- SDK 4.5

- Support from community 5

Average points 4.83

Ease of coding

- IDE’s capabilities

We employ Aptana as an IDE for developing the app. The IDE can be downloaded

free from Aptana developer’s page.

o Code editor

It is very easy to code the app with Aptana. The Aptana Studio is capable of

generating the code thereby reducing the workload to code the app. Furthermore,

we can enjoy the content assistant, immediate feedback with errors and open type

features of the IDE to write the code faster.

Figure 29: Home user interface of HTML5 mobile app in portrait and landscape modes. We create

the user interface by using jQuery Mobile and CSS3

o User interface builder

Similar to Eclipse, Aptana does not have drag and drop capability to build user

interface. We can only write the code in HTML5 and CSS3 files and view the

user interface by running the code on Web browser.

- IDE’s capability Points

o Code editor 5

o UI builder 2

Average points 3.5

- User interface

CHAPTER 5: PRACTICAL VERIFICATION

72

We employ jQuery Mobile and CSS3 to create our user interface, which is much

simpler than creating the native app’s user interface in the previous section. jQuery

Mobile and CSS3 make our user interface much more adaptive as compared to the

native app. We can make the button, text, image and camera display properly

regardless of the rotation and the size of the device as in Figure 29.

Figure 30: Page in page feature of jQuery Mobile

In order to use jQuery Mobile library, we have to include three files hosted on

000WebHost server in our page: the jQuery Mobile CSS file (jquery.mobile-

1.0a1.min.css), the jQuery library (jquery-1.4.3.min.js) and the jQuery Mobile library

(jquery.mobile-1.0a1.min.js). Then we can simply employ the user interface elements

and features provided by jQuery Mobile to format our page, including page in page,

button, header, content, page transition, Ajax navigation and theming. The

elements and features adopted will result in a smooth experience for the users: the

page is loaded faster and the user interface is more attractive. For example, Figure 30

depicts the page in page feature of jQuery Mobile. From the home page, we call the

“about” page which stays in the same document with “home” page and we can back

to the home page easily from “about” page. This makes user feel like they are

working with a native app rather than a mobile Web app. The following code depicts

the interface elements and features that we have employed in our page.

<div data-role="page" id="home">

<div data-role="header">

 <h1>Home</h1>

 </div>

 <div data-role="content">

About this app

 </div>

</div>

<div data-role="page" id="about">

 <div data-role="header">

 <h1>About this app</h1>

CHAPTER 5: PRACTICAL VERIFICATION

73

 </div>

<div data-role="content">

 …

 /div>

 </div>

Figure 31: Camera rotation

We also use CSS3 to define our page. The new features we use in our page are o-

paged, max-width and min-width. The -o-paged media type enables us to break up the

contents of the <html> element into pages that fill 100% of the height of the Web

browser. These pages should be navigated in between horizontally by swiping right

and left on a touch screen. The media features min-width and max-width help us

target different mobile devices with different screen sizes.

@media -o-paged {

 html { height: 100%; overflow: -o-paged-x; }

 }

- Device‘s interaction

o Camera

An advantage of HTML5 paradigm over the native app is that we can make the

device’s camera work properly on both portrait and landscape modes as in Figure

31. HTML5 <video> element and navigator.getUsermedia() reduce the verbose of

the code to interact with the camera. Firstly, we request a real time video stream

of the device’s camera. Then we display the resulting video stream on our page by

assigning the stream object returned directly to the video element’s src attribute.

After touching the camera interface/video element to capture a picture, we will

display the picture by drawing it on a canvas element. To access the device

camera and save the image onto the device costs only 14 lines of code as follows.

if(navigator.getUserMedia) {

 video.onclick = function () {

 var oCtx = oCanvas.getContext("2d");

CHAPTER 5: PRACTICAL VERIFICATION

74

 oCtx.drawImage(video, 0, 0, 200, 200);

 }

 var success = function (stream) {

 video.src = stream;

 };

 var error = function (err) {

 msg.innerHTML = "Error: " + err.code;

 };

 navigator.getUserMedia('video', success, error);

o Downloading and uploading an image

We can download the canvas image onto our device’s storage by touching the

image. The code is as follows.

var strData = oCanvas.toDataURL();

document.location.href=strData.replace('image/png', 'image/octet-stream');

However, we spend a great amount of time to deal with the same origin policy

because such policy prevents the toDataURL() method from running on Opera

Mobile on Android phone. The browser by default disables the access to any

Stream pixel data via HTML5 <canvas> element. Therefore, we have to override

the restriction by choosing to allow the canvas copy as discussed in the SDK

criterion.

Unlike the Android SDK, HTML support file dialog to select a file from the

device’s storage very effectively. We simply use <input> tag on HTML5 page to

open the file dialog and select the wanted image.

<input type="hidden" name="MAX_FILE_SIZE" value="1000000" />

<input name="uploadedfile" type="file" data-theme="c" />

<input type="submit" value="Upload File" data-theme="c" />

o Internet connection

The app can surely access the Internet. We do not have to set any configuration to

make it connect to the Internet.

o Native app interaction (Camera and photo gallery)

Our HTML5 mobile app cannot make use the built-in camera and the native photo

gallery apps. Actually, we can take advantage of the built-in camera app when we

select a file by using the <input> tag as follows

<input type="file" accept=”image/*;capture=camera” />

The device will open the native camera, allowing people to take a picture and use

the picture as an input. It is an excellent solution for employing device’s built-in

camera app but it only works in Android 3.0 and later versions. Therefore, we do

not employ the solution in our app.

- Device interaction Points

CHAPTER 5: PRACTICAL VERIFICATION

75

o Camera 5

o Downloading and uploading an image 4

o Internet connection 5

o Native app 1

Average points 3.75

- IQ Engine server interaction

We receive full support from PHP library and API to write a PHP script, and host the

script on 000WebHost server. The script is responsible for sending the request and

decoding the JSON response from the IQEngine server.

o Getting timestamp

Getting the current timestamp is straightforward which costs 1 line of PHP code

$timestamp = date(' YYYYmmDDHHMMSS ')

o Building signature

Computing signature by using PHP script is much less verbose than using

Android SDK. We only need to use the hash_mac function with API key,

filename, timestamp and API secret as the input parameters.

$api_sig = hash_hmac("sha1",$temp_api_sig,$api_secret,false);

o Sending request and retrieving result

In order to send the image and other parameters to IQEngine server, we use cURL

file transfer tool. The advantage of cURL is that it is straightforward to use and it

works effectively with IQEngine API. The following code makes request to

IQEngine API and retrieve the response from the server.

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_USERAGENT, 'Mozilla/5.0 (Windows; U; Windows NT 5.1;
en-US; rv:1.8.1.1) Gecko/20061204 Firefox/2.0.0.1');

curl_setopt($ch, CURLOPT_RETURNTRANSFER ,true);

curl_setopt($ch, CURLOPT_BINARYTRANSFER, true);

curl_setopt($ch, CURLOPT_CONNECTTIMEOUT, 2);

curl_setopt($ch, CURLOPT_POST, true);

curl_setopt($ch, CURLOPT_POSTFIELDS, $fields);

curl_setopt($ch, CURLOPT_HEADER , false);

$response = curl_exec($ch);

The biggest drawback of coding the app using the paradigms is that we cannot

deliver the captured image directly to the IQEngine server. Instead, we must

always select to send an image available on the device’s storage to 000WebHost

server and subsequently use the PHP script to make IQEngine API request.

- IQEngine server interaction Points

o Getting time stamp 5

o Building signature 5

http://www.php.net/date

CHAPTER 5: PRACTICAL VERIFICATION

76

o Sending request and retrieving result 4

Average points 4.67

Ease of coding Points

- IDE’s capability 3.5

- User interface 5

- Device interaction 3.75

- IQEngine server interaction 4.67

Average points 4.23

a

b

Figures 32a and 32b: Configuring the debugging tool at development environment

CHAPTER 5: PRACTICAL VERIFICATION

77

Figure 33: Configuring the phone for debugging purpose

Ease of debugging

- Debugging client side code (HTML5, CSS3, and JavaScript)

We cannot debug the code with Aptana Visual Studio because the tool does not

support the debugging with Opera Mobile. Instead, we employ Opera Dragonfly for

remote debugging. The remote debugging means that we debug the HTML5,

JavaScript and CSS files running on mobile devices from the development

environment (our laptop). Opera Dragonfly, which is integrated into Opera browser

on desktop environment, performs the tasks very effectively. We can connect the

device and the laptop to debug the app in some steps as follows.

Figure 34: Debugging the app by using Opera Dragonfly.

From our laptop, we simply start Opera Dragonfly by right clicking on the browser

and selecting “inspect element”. Then we choose “Remote Debugging Configuration”

and declare the port as shown in Figures 32a and 32b.

From our device, we enter opera:debug in the URL field and the IP Address of the

machine running Opera Dragonfy (our laptop’s IP address). We subsequently enter

the port number and click “Connect” as in Figure 33.

CHAPTER 5: PRACTICAL VERIFICATION

78

After connecting the device to our laptop, we can simply manage the breakpoints (e.g.

create, delete and move between the breakpoints) and debug the app running on our

device as displayed in Figure 34.

Points: 5

- Debugging server side code (PHP)

We find it impossible to debug the PHP code running on 000WebHost because

debugging the code concerns several devices such as our laptop, Android phone,

000WebHost server and IQEngine server. Some tools (e.g. Aptana and XCode) can

help debug PHP code but do not support the debugging of the app running on mobile

devices. On the other hand, Opera Dragonfly supports the debugging mobile apps but

cannot be used for debugging server side code.

Ease of debugging Points

- Debugging client side code 5

- Debugging server side code 1

Average points 3

Ease of testing

- Emulator

The emulator is inefficient to test the app because it does not support testing device’s

camera and storage.

- Real device

We can test the app easily by using our real Android devices that have Opera Mobile

installed beforehand. We open the browser and enter the URL to load the app.

Currently, we already test the app with Samsung Galaxy GTI-5500 with Android 2.1

and HTC with Android HTC Sense.

Ease of testing Points

- Emulator 1

- Real device 5

Average points 3

Ease of deploying and updating

There is much more work to deploy the HTML5 mobile app on a server than to deploy

the native app on an Android device. We have to rent the hosting service of 000WebHost

and upload all the files of the app including HTML5 file, CSS file and PHP scripts. We

also have to configure the security parameters of such files (e.g. read, write and so on).

The access control on the app should also be considered when deploying the app on the

server. The app then can be deployed to user’s devices via the Internet.

The update of the app is simpler than the deployment. 000WebHost provides us with a

useful code editor and several specifications and tips, enabling us to edit the files and

update the app conveniently. Users can subsequently retrieve the newest version of the

app via their Web browser without the need to install and update any component of the

app.

CHAPTER 5: PRACTICAL VERIFICATION

79

Ease of deploying and updating Points

Average points 2

Ease of distributing

- Compatibility

Only Opera Mobile on Android supports getUserMedia() method. Therefore, the app can

only run on Opera Mobile installed on Android phone.

- Without app store

The app can be distributed easily on the Internet. Users can load the app and run it on

their device very conveniently without installing it.

- With app store

To distribute the app via Android marketplace costs $25 and we have to go through some

steps to have the app checked by the marketplace.

Ease of distributing Points

- Compatibility 1

- Without app store 5

- With app store 3

Average points 3

Application types

- Application using device’s capabilities

The app is capable of working with the device’s camera, keypad and storage. The camera

works very effectively in both portrait and landscape mode, which is an advantage over

the native app. The app can also interact with device’s storage via the file dialog that is

supported by HTML.

- Application using server’s capabilities

The HTML5 mobile app makes use the capabilities of 000WebHost and IQEngine

servers, such as storage, analysing and identifying capabilities.

Application types Points

- Application using device’s capabilities 5

- Application using server’s capabilities 5

Average points 5

Powerful API and libraries

The app uses the libraries and APIs of HTML5 (e.g. canvas and video), jQuery, PHP (e.g.

cURL, move_uploaded_file, timestamp) and IQEngine server.

Powerful APIs and libraries Points

Average points 5

CHAPTER 5: PRACTICAL VERIFICATION

80

Figures 35a and 35b: Capturing an image by using the HTML5 app.

Payment possibilities

We can sell the app via app store, or publish the app onto a Web server and create the

access control by ourselves to get paid from users. In the former, we have to pay the

registration fee and share the revenue with the app store. In the latter, we only have to

pay the fee for the hosting service.

Payment possibilities Points

Average points 5

The table below summarizes the evaluation of HTML5 mobile app on developer

viewpoint after the practical implementation

Table 20: Summary of the evaluation on the HTML5 mobile app from developer viewpoint

Ease of developing 4.83

Ease of coding 4.23

Ease of debugging 3

Ease of testing 3

Ease of deploying and updating 3

Ease of distributing 3

Application types 5

Powerful APIs and libraries 5

Payment possibility 5

Average points 4.01

 User viewpoint

Ease of use

- Performance

The app is lightweight (117kb) to run quite fast on our Android phone. It takes about

1 second to open Opera browser, 2 to 3 seconds to enter the URL. The time to load

the app on the Opera browser is within 600 and 2100 milliseconds, including loading

the camera, button and file dialog. Meanwhile, it takes about 1300 milliseconds to

download the image and 2100 milliseconds to upload the image onto 000WebHost

CHAPTER 5: PRACTICAL VERIFICATION

81

server and call IQEngine API. The amount of time for analysing and labelling the

image is about 25 seconds. The advantage of HTML5 mobile app over the native app

is that the camera does not lag when we capture a picture of wanted object.

Figures 36a, 36b and 36c: Downloading the image onto device’s storage and selecting an image from the

device’s storage

- User interface

The app has a simple but intuitive user interface, including camera interface, image,

text and button. Users can see the hint by touching the camera and the image and

rotate the device without any viewing difficulty. They can also zoom in and zoom out

the page (Figure 35), and interact with the file dialog very easily. The HTML5 mobile

app will look like a native app if there is no address bar and Opera trademark.

However, because we need time to load the app onto the browser, the user interface

lags sometime.

Figure 37: Object recognition capability of the HTML5 mobile app

- Operation

Similar to the native app, users can choose the wanted task on their home screen.

They can capture an image by tapping the camera interface, save it onto the device by

touching the image, choose to upload the wanted image to 000WebHost server and

call the IQEngine API to get the image labelled. They can also select and upload an

image available on their device’s storage to 000WebHost to make IQEngine API

CHAPTER 5: PRACTICAL VERIFICATION

82

request. One of the drawbacks of the app is that users must open their mobile browser

and load the app whenever they want to access it. It is very inconvenient and time

consuming. Furthermore, users must download the image and send it back to

000WebHost server as described in Figures 36a, 36b and 36c, instead of uploading

the image as soon as capturing it. Another disadvantage is that users must go to

Security Pref and select”Allow Camera To Canvas Copy” on their Opera Mobile

browser to enable the image download onto their device.

Ease of use Points

- Performance 3

- User interface 4

- Operation 2

Average points 3

Functionality

- Working offline

The app cannot work offline. It requires an Internet connection to load the app to Opera

Mobile browser.

- Accessing device’s hardware

The app can access the device’s hardware very efficiently. The camera and the touch

screen work great. The app can also save an image onto device’s storage and upload it

later on.

- Object recognition

Our app can only label the object such as car, building, cup, camera and so on. The app is

not capable of face recognition. Figure 37 depicts the recognition capability of the app.

Figures 37a and 37b show the captured image and the label sent from the server

respectively.

Functionality Points

- Working offline 1

- Access device’s hardware 5

- Using real time communication 4

Average points 3.33

Installation and update

- Compatibility

The app can only run on Opera Mobile for Android.

- Downloading and installing

Users do not have to download and install the app. They can open their Opera Mobile

browser and enter the URL to get the app loaded onto their device.

Installation and update Points

- Compatibility 1

- Downloading and installing 5

CHAPTER 5: PRACTICAL VERIFICATION

83

Average points 3

The table below summarizes the evaluation of HTML5 mobile app paradigm on user

viewpoint after the practical implementation

Table 21: Summary of the evaluation on the HTML5 mobile app from user viewpoint

Ease of use 3

Functionality 3.33

Installation and update 3

Average points 3.11

5.3. PhoneGap application

The paradigm we employ in this section to build object recognition app is also HTML5

mobile app. We still create the app by using HTML5, CSS3 and JavaScript but we do not

use <video> and getUserMedia() to access device’s camera. Instead, we wrap the app with

PhoneGap to enable it access the native APIs (e.g. camera, storage and photo gallery). In

the other words, the PhoneGap use the standard Web technologies to bridge HTML5

Web application and our mobile phone. Therefore, we can write the app in HTML5,

CSS3 and JavaScript, access native features and deploy the app to multiple platforms

(Android, iOS, WP7, Symbian and WebOS). We name this app as PhoneGap app to

distinguish with the HTML5 mobile app discussed in the previous section

In order to develop the app, we use Eclipse as the IDE and PhoneGap as the SDK. We

also use 000WebHost to host the PHP script to interact with IQEngine server.

Figure 38: PhoneGap app architecture

Similar to the HTML5 mobile app, the PhoneGap app allows its users to capture a

picture, send the picture to IQEngine server and get the label back. The app also takes

advantage of 000WebHost to host PHP script which makes IQEngine API requests. The

difference between the two is that HTML5, JavaScript and CSS3 files of the PhoneGap

app stay on mobile device instead of being hosted on 000WebHost server. Therefore, the

PhoneGap app works within mobile browser but its UI controls are loaded much faster

CHAPTER 5: PRACTICAL VERIFICATION

84

than HTML5 mobile app. Another difference is that the app does not use <video> tag and

camera stream of HTML5 but camera API of PhoneGap to access device’s camera.

5.3.1. Phonegap app architecture

The app includes HTML5, CSS3 and JavaScript files which stay on mobile device, and

PHP script which is hosted on 000WebHost server. PhoneGap is the most significant

component of the app because it provides us with very useful JavaScript library and API

to get access to native APIs (Camera, photo gallery and network). The CSS3 will define

the page with a range of media types. Figure 38 describes the app’s architecture. From

the home user interface, users capture a picture or select an available picture in their

photo gallery (1). Then they call PHP script which is responsible for uploading the

captured/chosen image onto 000WebHost server (2) and calling IQEngine API to

recognize the object (3). IQEngine server then sends the result to the device (4) (5).

Figure 39: Home user interface of the PhoneGap app in portrait and landscape modes

5.3.2. Analysis and evaluation

 Developer viewpoint

Ease of developing

- Programming language

HTML5, JavaScript, CSS3 and PHP for coding the app are not verbose and

complicated. We can handle with the language easily.

- Software development kit

o Applicability

We receive full support from the SDK. We can write the code and test the app

very effectively by using Eclipse IDE, and deploy the app onto multiple platforms

and to app store conveniently by using the PhoneGap Build. However, there is no

JavaScript debugging/ compiling support provided by PhoneGap SDK.

o Specifications and tips

We find a lot of handy specifications and tips from PhoneGap developer page

[44].

CHAPTER 5: PRACTICAL VERIFICATION

85

o Interaction with device hardware

PhoneGap enables us to access device’s native features more effectively than any

SDKs. We can create the camera object and make use camera.getPicture to take a

photo or to get an available photo from photo gallery very easily. We can also

simply access the files and folders on device’s storage. Moreover, PhoneGap app

is more advantageous than HTML5 mobile app in the way that it can send the

captured picture to 000WebHost without the need to download the captured

image, open file dialog and choose the image on device’s storage. The app can

also access the Internet and check the network connection easily.

o Downloading, installing and configuring

We download PhoneGap free on PhoneGap developer Website. It is also easy and

timesaving to install the PhoneGap on our laptop. We can choose Android which

is our favorite platform and developing tool to build the app. The other developers

who are familiar with the other platforms (e.g. iOS, Blackberry, Windows Phone,

and Web OS) can also choose these platforms and the corresponding tools to

create the app. However, the SDK’s configuration requires several steps as

described in [45].

- SDK Points

o Applicability 4

o Specifications and tips 5

o Interaction with device’s hardware 5

o Downloading, installation and configuring 4

Average points 4.5

- Support from community

We receive full support from growing community such as tutorials, tools and

troubleshooting to build the app. The forum we always access to find out the solution

for our problem is StackOverFlow forum.

Ease of developing Points

- Programming language 5

- SDK 4.5

- Support from community 5

Average points 4.83

Ease of coding

- IDE’s capabilities

We employ Eclipse as the IDE to develop the app. Eclipse bridges the PhoneGap

SDK and our Web app, and help us manage the files, folders and packages

effectively.

o Code editor

The code editor integrated in Eclipse is inefficient to use. We can only write the

code without any support on instant feedback with error and warning, import

structure, open type feature, content assistant and quick fix features.

CHAPTER 5: PRACTICAL VERIFICATION

86

o User interface builder

User interface builder is also inefficient to create user interface. It does not have

dragging and dropping capability. Instead, we have to write the code in HTML

file and CSS to define the user interface. Moreover, we can only test the user

interface by right clicking on the HTML file and opening it on browser.

- IDE’s capability Points

o Code editor 2

o UI builder 2

Average points 2

Figure 40: Capturing a picture by using device’s camera via PhoneGap

Figure 41: Selecting an image from photo gallery

- User interface

We can make use CSS3’s new features to create the user interface effectively. The

features adopted to define the page are media screen, max-width, min-width and

orientation. The max-width and min-width make the app target different mobile

devices which have different screen widths. Orientation helps the app detect the

rotation of the device (portrait or landscape) to rearrange the UI controls (button,

textview and image) as efficiently as possible. Therefore, we can easily build an

adaptive user interface which enhances the user experience. Formatting the user

CHAPTER 5: PRACTICAL VERIFICATION

87

interface of PhoneGap app is as straightforward as the HTML5 mobile app. The CSS

is declared as follows

@media screen and (max-width: 400px) and (orientation: portrait){

 body {width:100%; margin:0px}

 .Button {width: 90% ; height:10%; margin-bottom: 0px }

 .Image {width:85% ; height:55%}

 .Header{ text-align: center; padding: 4px; font-weight:900;}

}

@media screen and (max-width: 400px) and (orientation: landscape){

 body {width:100%;height:100%; margin:0px}

 .Button {width: 40%; height:15% ;padding: 1px ;font-size:12px;}

 .Image {float: left; width:60% ; height:85%}

 .Header {text-align: center; font-weight:900;font-size:15px; margin-bottom: 5px}

}

@media screen and (min-width: 400px) {

 body {width:100%;height:100%; margin:0px}

 .Button {width: 40% ; height:15% ;padding: 1px ;font-size:20px;}

 .Image {float: left; width:60% ; height:82%}

 .Header {text-align: center; font-weight: 900;font-size:25px; margin-bottom: 15px}

}

The first CSS class (max-width: 400) can target the mobile screen in portrait mode.

The second CSS class can be adopted for the mobile phones but in landscape mode.

The third class can target the devices which have the screen width over 400px (e.g.

laptop and ipad). The float: left property can float the image to the left with the other

UI controls wrapping it when the device’s screen changes to landscape mode. Figure

39 shows the home user interface in both portrait and landscape modes. The image

floats left in landscape mode, and the buttons keep their format and wrap the image.

Points: 5

- Device’s interaction

o Camera

Getting access to device’s camera is very straightforward. We make use the

navigator.camera.getPicture(cameraSucess, cameraError [,cameraOption]) to capture a

picture or to load a picture from photo gallery. cameraSuccess works as the trigger

to fire when we retrieve the photo successfully. If Camera.sourceType is set to

Camera.PictureSourceType.CAMERA (which is default), the camera.getPicture

opens the device's default camera app so that we can take a picture. Once the

photo is taken, the camera app closes and our app is restored. On the other hand,

if Camera.sourceType is set to Camera.PictureSourceType.PHOTOLIBRARY, a photo

chooser dialog is shown, from which a photo from the album can be selected. It

http://docs.phonegap.com/en/1.6.1/cordova_camera_camera.md.html#Camera
http://docs.phonegap.com/en/1.6.1/cordova_camera_camera.md.html#Camera
http://docs.phonegap.com/en/1.6.1/cordova_camera_camera.md.html#Camera
http://docs.phonegap.com/en/1.6.1/cordova_camera_camera.md.html#Camera

CHAPTER 5: PRACTICAL VERIFICATION

88

costs only 6 lines of code to access our device’s camera by using PhoneGap. The

code is as follows.

function capturePhotoWithFile() {

 navigator.camera.getPicture(onPhotoCaptureSuccess, onFail, { quality: 50,
destinationType: Camera.DestinationType.FILE_URI });

 }

 function onPhotoCaptureSuccess(imageData) {

 image.src = imageData;

 }

PhoneGap will save the captured picture as soon as we choose “save” to save it as

in Figure 40. The greatest advantage is that we do not have to write any code to

save the picture onto our devices. PhoneGap will handle with the task

automatically.

Similarly, the following code deals with chosen images from photo gallery

(Figure 41).

function getPhoto() {

 navigator.camera.getPicture(onPhotoURISuccess, onFail, { quality: 50,
destinationType: destinationType.FILE_URI,

 sourceType: pictureSource.PHOTOLIBRARY });

 }

function onPhotoURISuccess(imageURI) {

 image.src = imageURI;

 }

o Downloading and uploading an image

We do not have to write the code to download captured image because PhoneGap

will store the image itself. PhoneGap also supports uploading the image from

photo gallery very effectively. We upload the image to 000WebHost by using

FileTransfer class of PhoneGap and PHP script on 000WebHost server.

var ft = new FileTransfer();

ft.upload(imageURI, "http://huy.host56.com/query.php", success, fail, options);

o Internet connection

Unlike HTML5 mobile Web app, in order to make the PhoneGap app connect to

the Internet, we have to add the Internet access permission into manifest.xml file.

Then the app can access the Internet seamlessly.

 <uses-permission android:name="android.permission.INTERNET" />

o Native apps (camera and photo gallery)

PhoneGap enable us to access the built-in apps such as camera and photo gallery.

Therefore, we need only to write the code to make use the apps instead of

building them ourselves.

CHAPTER 5: PRACTICAL VERIFICATION

89

- Device interaction Points

o Camera 5

o Downloading and uploading an image 5

o Internet connection 5

o Native apps 5

Average points 5

- IQEngine server interaction

We keep the PHP script of HTML5 mobile app to make PhoneGap app interact with

IQEngine server. The script is also hosted on 000WebHost. Therefore, the analysis

and evaluation in this criterion are the same as HTML5 mobile app.

- IQEngine server interaction Points

Average points 4.67

Ease of coding Points

- IDE’s capability 2

- User interface 5

- Device interaction 5

- IQEngine server interaction 4.67

Average points 4.17

Ease of debugging

- Debugging client side code (HTML5, CCS3 and JavaScript)

Unfortunately, PhoneGap does not support debugging JavaScript code. We cannot

find any solution to debug PhoneGap app. We can figure out bugs and exceptions

during the development by using adb logcat. However, it cannot replace a debugging

tool such as Opera Dragonfly and Xcode since it is unable to trace the value of

JavaScript objects.

- Debugging server side code (PHP script)

Similar to the HTML5 mobile app, we cannot debug the PHP script staying on

000WebHost because the script concerns too many devices: our laptop, mobile

phone, 000WebHost server and IQEngine server.

Ease of debugging Points

- Debugging client side code 2

- Debugging server side code 1

Average points 1.5

Ease of testing

- Emulator

The emulator is useless to test the app because it does not support device’s camera.

- Real device

CHAPTER 5: PRACTICAL VERIFICATION

90

The ease of testing the PhoneGap app on physical device depends on the platform to

develop the app. Therefore, we have to consider the testing on Android, iOS and

Windows Phone to guarantee the accuracy of the evaluation on this criterion.

However, since we develop the PhoneGap app for Android platform only, we will use

the result from the evaluation of testing on iOS and Windows Phone in chapter 4-

Analysis and evaluation.

o Android

It is simple to test the app with a real device. We only need to connect our

Android device to the laptop, set debuggable to true and run the app. We test the

app similar to the native app, which is discussed in chapter 4. While we are

testing, we will check the logcat file or use adb tool to figure out the exceptions

that make the app stops unexpectedly.

o iOS

In chapter IV, we give 2 to the testing on iOS platform.

o Windows Phone 7

In chapter IV, we give 2 to the testing on Windows Phone platform.

Testing on real device Points

- Android 5

- iOS 2

- Windows Phone 7 2

Average points 3

Ease of testing Points

- Emulator 1

- Real device 3

Average points 2

Ease of deploying and updating

Similar to the testing on physical device, we have to consider 3 different platforms

(Android, iOS and Windows Phone) on this criterion and make use the result from the

chapter IV.

- Android

Because the PhoneGap app works like a native app on mobile platform, the

deploying and updating of the PhoneGap app is the same as the native app.

Therefore, we can easily connect the Android device to our laptop. Then we choose to

install the app from unknown source on our device. Later on, we test the app from our

laptop, thereby deploying or updating the app automatically to our device.

- iOS

iOS has 3 points in deploying and updating the app criterion.

- Windows Phone

We give Windows Phone 2 points to deploy and update the app.

CHAPTER 5: PRACTICAL VERIFICATION

91

Ease of deploying and updating Points

- Android 5

- iOS 3

- Windows Phone 7 2

Average points 3.33

Ease of distributing

- Compatibility

We can upload the PhoneGap app to PhoneGap Build service [46] and get back a

market-place ready app for iOS, Android and Windows Phone or even more. By

compiling on the cloud with PhoneGap, we get all benefits of cross-platform

development but we can still build the app on our favorite platform (Android).

However, we must pay fee to use PhoneGap Build for compiling the private app.

Moreover, the app distribution depends on the platform we are targeting. For Web OS

and Symbian, the app is ready for submission and distribution. On the contrary, for

iOS and Windows Phone, we have to provide the correct certificates and/or signing

keys to allow distribution, which cost $100 or even more.

- With app store

o Android

In order to publish our app on Android marketplace, we have to fulfill many

requirements to make the app qualified enough and pay $25 for registration fee.

The marketplace then will manage the concerns of the app distribution such as

paying, selling, and security.

o iOS

o Windows Phone 7

Distributing with app store Points

- Android 4

- iOS 4

- Windows Phone 7 3

Average points 3.67

- Without app store

o Android

We can easily distribute the PhoneGap app by copying the .apk file onto user’s mobile

phone. There are many ways to copy the file such as via email and Dropbox sharing.

o iOS

o Windows Phone

Distributing without app store Points

- Android 5

- iOS 3

- Windows Phone 7 1

CHAPTER 5: PRACTICAL VERIFICATION

92

Average points 3

Ease of distributing Points

- Compatibility 4

- Without app store 3.67

- With app store 3

Average points 3.56

Application type

- Application using device’s capabilities

The app can take advantage of device’s hardware feature such as camera, keypad,

storage and WLAN connection. The app also makes use the built-in camera app and

photo gallery app to make it work the same as a native app.

- Application using server’s capabilities

The app makes use the IQEngine server for the recognition (processing and training

database) and 000WebHost server for hosting (storage).

Application types Points

- Application using device’s capabilities 5

- Application using server’s capabilities 5

Average points 5

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50

Tests

S
e
c
o

n
d

s

Native app HTML5 mobile app PhoneGap app

Figure 42: The amount of time to use the native app, HTML5 mobile app and PhoneGap app in

comparison. We perform the tests by using the Samsung Galaxy GTI-5500 with Android 2.1. We create

three timers and integrate them into the apps to measure the time needed to use the apps in milliseconds.

The timer created by using Android Java code is for calculating the time using the native app and the others

are in JavaScript to measure the HTML5 mobile app and the PhoneGap app. We get the system time of

staring the apps and the system time of receiving the result from the IQEngine server for each test. Then,

the time to use the app is calculated by the subtraction of the starting time from the finishing time.

Powerful libraries and APIs

PhoneGap’s library is very powerful, reducing our workload to develop the app.

Additionally, the app also uses IQEngine API to recognize the image.

CHAPTER 5: PRACTICAL VERIFICATION

93

Powerful APIs and libraries Points

Average points 5

Payment possibilities

Since PhoneGap app can target different mobile platforms, the paradigm has more

payment possibility than the native app paradigm. We can earn our revenue by selling the

app via marketplace. We can also create ourselves Website to sell the app (for Android

only). Users can download and install it on their device and pay via the Website.

Payment possibilities Points

Average points 5

The table below summarizes the evaluation of PhoneGap mobile app on developer

viewpoint after the practical verification

Table 22: Summary of the evaluation on the PhoneGap app from developer viewpoint

Ease of developing 4.83

Ease of coding 4.17

Ease of debugging 1.5

Ease of testing 2

Ease of deploying and updating 3.33

Ease of distributing 3.56

Application types 5

Powerful APIs and libraries 5

Payment possibility 5

Average points 3.82

 User viewpoint

Ease of use

- Performance

The app works very efficiently on Samsung Galaxy GTI-5500 with Android 2.1 and

HTC Desire with Android HTC Sense. Similar to the native app and the HTML5

mobile app, we run 50 tests to measure the time to start the app, capture an image,

send the captured image to the server and get the label back. The time to start the app

varies from 400 to 450 milliseconds. Meanwhile the time needed to start the camera

is within 2 and 4 seconds. It also takes about 1400 milliseconds to capture an image,

1500 milliseconds to send the image to 000WebHost and to make IQEngine API

request, and 25 seconds to get the result back from IQEngine server. Figure 42 shows

the time in seconds needed to use the native app, HTML5 mobile app and PhoneGap

app, from starting the app to receiving the result from the server. The native app

requires the least amount of time to use. Meanwhile, it takes longer to use the

HTML5 mobile app than to use the native app and the PhoneGap app. The reason is

that we must run Opera browser and load the app onto the browser before using it.

PhoneGap app takes longer to use than the native app because it takes much more

time to start the camera and capture a picture.

- User interface

CHAPTER 5: PRACTICAL VERIFICATION

94

The PhoneGap app has a simple and intuitive user interface, including button, image

and text. The built-in camera app which is called by the PhoneGap app works really

effective. An advantage over the native app is that the camera can work both in

portrait and landscape mode. Moreover, the photo gallery has amazing look and

works great (Figure 41). We can easily choose the image to upload to the server.

Additionally, the user interface does not lag when we rotate the device.

- Operation

We found it easy and interesting to use the app. Like using a native app, we start the

PhoneGap app by clicking on the app icon on home screen. Then we capture an

image by using built-in camera (Figure 40) or select an available image on photo

gallery (Figure 41). We subsequently send the image for the recognition without any

difficulty. Unlike the HTML5 mobile app, we do not have to download captured

images onto device because the image will be restored automatically right after we

capture it. After a few seconds, we will receive the result from server via alert

message box.

Ease of use Points

- Performance 4

- User interface 5

- Operation 5

Average points 4.67

Functionality

- Working offline

The app needs an Internet access to send captured images to server. However, unlike

HTML5 mobile app, the camera works independently with the Internet. Therefore, we

can still capture an image by using the camera and send the captured image to the

server when we have Internet access.

Figure 43: Object recognition capability of the PhoneGap app

- Accessing device hardware

The app can access device’s camera and storage. It can also make use the built-in

camera app and photo gallery to improve user experience.

CHAPTER 5: PRACTICAL VERIFICATION

95

- Object recognition

The app can only recognize the objects such as computer, car, cake and character. It

does not have face recognition capability. Figure 43 depicts the object recognition

capability of the app. We capture a picture of our laptop keyboard and the app is able

to identify it after a few seconds.

Functionality Points

- Working offline 3

- Access device’s hardware 5

- Using real time communication 4

Average points 4

Installation and update

- Compatibility

Even though we have chance to find many versions of the app targeting different

platforms on marketplaces, the app itself is not cross-platform. It means that we

should find the most suitable version to install on the right platform on our device.

For example, if we have two devices with two different platforms (e.g. iOS and

Android), we still have to download and install the app targeting iOS from Apple app

store and the other app targeting Android from Android marketplace.

- Downloading and installing

We have to access the Internet, download the app from app store and install it on our

mobile phone.

Installation and update Points

- Compatibility 2

- Downloading and installing 4

Average points 3

The table below summarizes the evaluation of PhoneGap mobile app on user viewpoint

after the practical verification

Table 23: Summary of the evaluation on the PhoneGap app from user viewpoint

Ease of use 4.67

Functionality 4

Installation and update 3

Average points 3.89

After the analysis and evaluation of the HTML5 mobile app and PhoneGap app, we find

the points for HTML5 mobile app paradigm by calculating the average points of the two

apps. The table below summarizes the evaluation of HTML5 mobile app paradigm after

all.

Table 24: Summary of the evaluation on the HTML5 mobile app paradigm

 Developer viewpoint User viewpoint

HTML5 mobile app 4.01 3.11

PhoneGap app 3.82 3.89

CHAPTER 5: PRACTICAL VERIFICATION

96

HTML5 mobile app paradigm 3.92 3.5

The table below summarizes the evaluation of native app paradigm and HTML5 mobile

app paradigm after the practical verification.

Table 25: Summary of the evaluation on the native app and HTML5 mobile app paradigms

 Developer viewpoint User viewpoint

HTML5 mobile app paradigm 3.92 3.5

Native app 3.73 3.61

97

Chapter 6: Conclusion

6.1. Discussion

Mobile phones are no longer for only calling and messaging, but provide users with many

interesting apps that ease their life. To an average mobile user, the mobile app paradigms

discussed in this thesis are functionally equivalent. In other words, the paradigms can

meet very basic need of mobile users. However, each paradigm has its own strong points,

thereby meeting the demands of mobile developers, mobile users and service/content

providers in its own way.

For developers, native apps and HTML5 are the best selection to build mobile app. If

developers want to make an app that requires accelerated graphic processing (e.g. high-

end gaming apps), they should develop a native app. Only in that way can the app truly

tap in processing powers and hardware features of the device. On the other hand, for

more straightforward content driven service apps, HTML5 is preferred. It introduces

many new advance features to ease the development of mobile apps. W3C and other third

parties are developing the new APIs and libraries to make HTML5 more powerful and

seamlessly capable of interacting with mobile devices in the same manner in which

native apps do. Widgets are valuable for developers when they want to make a

lightweight, single functional and portable app on mobile phone. Mobile Web app

paradigm obtains the lowest grade because it is very complicated to build a functional

and robust mobile Web app. The result from the practical verification is same that from

the analysis and evaluation. Developers prefer HTML5 mobile app to native app

paradigm even though there is sufficient support to interact with device’s hardware

features (camera, storage and network access) from both of the paradigms. The reason is

that the HTML5/ PhoneGap code to access device’s hardware and Web service is less

verbose and complicated than Android Java code. Building an adaptive user interface on

HTML5 mobile apps is also much more straightforward than on native apps.

Furthermore, the capability of “write once and deploy many” is an advantage of

HTML5/PhoneGap over the native app paradigm.

For mobile user, native apps have the highest performance and usability. They are also

very responsive and functional, which create excellent user experience. Therefore, native

apps still get attention of worldwide users and keep the first position among mobile app

paradigms for many years. HTML5 mobile apps are the second choice of mobile users

since they are lightweight and cross-platform. HTML5 mobile apps are also functional

and perform well on mobile devices and they are coming closer to native apps. Mobile

widgets come third because they are lightweight and quite convenient to use. Users are

not interested in mobile Web apps because they are slow, low functional and unattractive.

The result remain the same in the practical verification. It is understandable that native

app is more preferable than the HTML5 mobile app paradigm. The native app is very

robust and convenient to use while the HTML5 mobile app has several limitations. The

usability and the performance of the HTML5 app are lower than the native app. An

alternative solution is to use HTML5 wrapped with PhoneGap framework that make the

app more native and powerful until HTML5 specifications are completed.

CHAPTER 6: CONCLUSION

98

For service/ content provider, HTML5 mobile apps are the best. Service providers can

build an HTML5 mobile app once and distribute it everywhere. They can hence

seamlessly deliver their content and service to mobile users. Mobile Web apps work in

the same way and get the second position in the race. Mobile widgets and native apps

have the lowest grade because the platform fragmentation still exists when implementing

the apps on mobile phones. Furthermore, service provider must deploy widgets and

native apps onto every device. It is a complicated process and incredibly increases the

cost and effort of service providers.

6.2. Key finding and recommendation

W3C announces that HTML5 is a cross-platform solution that can hook into device’s

hardware (e.g. camera) to create a powerful mobile Web app. In fact, developers face a

fragmentation in mobile platforms and browsers to build an HTML5 app to access

hardware. For example, HTML media capture is the first API in 2011 to standardize

media capture on Web. It works by overloading the <input type="file">and adding new

values for the accept parameter, allowing users to capture their snapshot with device’s

camera. However, the API is too limited to use and only works on Android 3.0 browser.

Another example is the implementation of getUserMedia API belonging to W3C

WEBRTC (Web Real-Time Communication) working group to access device’s camera.

Only Google and Opera currently have developer builds that include the API, and only

Opera Lab on Android supports mobile developers to use it in their apps.

Native apps are well-known for their fast and responsive user interface, and the seamless

capability to access hardware features. However, creating such apps is complicated and

requires much effort from developers on any platform adopted. Meanwhile, jQuery

Mobile simplify the code to build an attractive and adaptive user interface for HTML5

mobile apps. PhoneGap framework also let developers make the HTML5 app access

native APIs much easily and deploy the app on multiple platforms. PhoneGap use the

same native APIs with native apps but abstract them so that developers can write apps in

HTML and JavaScript. Therefore, we recommend that the most effective solution now to

build the apps that are capable of using device hardware (GPS, accelerator and camera)

and working cross-platform is to wrap HTML5, jQuery Mobile and CSS3 with PhoneGap

framework. However, PhoneGap apps cannot absolutely replace native apps because they

perform slower than native apps due to the overhead from an abstraction and HTML

render in addition to the time to execute the native processes.

6.3. Summary and conclusion

In our project, we classify mobile apps into four mobile app paradigms: Native apps,

mobile Web apps, mobile widgets and HTML5 mobile apps. We then analyse and

evaluate the paradigms from developer, user and service/content provider viewpoint

based on pre-defined criteria. For the objectiveness and accuracy in our evaluation, we

start by defining high-level criteria and then breaking them down into finer and more

detailed criteria. The points for the evaluation are given based on the information

collected on the Internet, especially the different user and developer social communities.

After the analysis and evaluation, we conclude that native apps and HTML5 mobile

apps keep their first places in the race of mobile paradigms. Mobile widgets are still

CHAPTER 6: CONCLUSION

99

valuable but their role is no longer so important on mobile devices. Mobile Web apps

will become a history and they are soon replaced by HTML5 mobile apps.

We also perform the practical verification in which we build an object recognition app by

using the two most promising paradigms namely native and HTML5. The mobile app we

develop will access both device’s hardware features (camera, storage and internet access)

and Web service to ensure that all capabilities of a smart phone are adopted in the

practical verification. The verification has the same result as the analysis and evaluation.

HTML5/ PhoneGap mobile app is the most preferable paradigm employed by mobile

developers. However, native app paradigm should be adopted to create a seamless user

experience. Users do not select HTML5 as the best mobile app paradigm because

HTML5 is still limited to use. It is understandable when HTML5 is still growing and it

takes time before the complete version is available. W3C announces that there will

indeed be a finalized version of HTML5 until the middle of 2014 and we believe that

when HTML5 is complete, it will open a new era of mobile Web app.

100

Reference

1. S. Tarkoma (Ed), Mobile Middleware-Architectures, Patterns, and Practice, pp.

3-4, Wiley, 2009.

2. S. Tarkoma and E. Lagerspetz, “Arching over the Mobile Computing Chasm:

Platforms and Runtimes,” Computer, vol. 44, no. 4, pp. 22-28, April 2011.

3. J. Le. Feuvre, C. Concolato and J. C Dufourd, “Widgets mobility,” In

Proceedings of the 6th International Conference on Mobile Technology,

Application; Systems (Mobility '09), no. 25, ACM, New York, NY, USA.

4. C. Raibulet and D. Cammareri, “Automatic generation of mobile widgets,”

International Journal of Pervasive Computing and Communications, 7(2), pp.

132-146, 2011.

5. W3C. Client-Side Web Applications (Widgets) Requirements. [Online] [Cited:

September 2011]

http://www.w3.org/TR/2006/WD-WAPF-REQ-20061109/

6. W3C. Widgets 1.0. [Online] [Cited: September 2011]

http://www.w3.org/TR/2006/WD-widgets-20061109/

7. S. Sire, M. Paquier, A. Vagner and J. Bogaerts, “A messaging API for inter-

widgets communication,” In Proceedings of the 18th international conference on

World Wide Web, April 20-24, 2009, Madrid, Spain, doi:

10.1145/1526709.1526884.

8. Opera. Opera widgets. [Online] [Cited: September 2011]

http://widgets.opera.com/

9. A. Kostiainen, The Web at Runtime in mobile context, Master’s thesis, pp. 67-70,

Helsinki University of Technology, 2008.

10. W3C. Widgets 1.0 requirement. [Online] [Cited: September 2011]

http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/

11. C. Kaar, “An Introduction to Widgets with Particular Emphasis on Mobile

Widgets,” Computing, October 2007.

12. A. Lee and P. M. Road, “Mobile Web Widgets: Enabler of Enterprise Mobility

Work,” The 2nd Workshop on Mashups, Enterprise Mashups and Lightweight

Composition on the Web, 2009.

13. F. W. Zammetti, Practical JavaScript, DOM Scripting, and Ajax Projects, pp.

149-151, Apress, 2007.

14. A. Jaokar and T. Fish, Mobile Web 2.0, futuretext, 2006.

http://www.w3.org/TR/2007/WD-widgets-reqs-20070209/
http://www.integror.net/mem2009/
http://www.integror.net/mem2009/

REFERENCE

101

15. B. Pejiü and A. Pejiü, “Uses of W3C's Geolocation API,” Computational

Intelligence and Informatics (CINTI), 11
th

 International Symposium on, vol., no.,

pp. 319-322, 18-20 Nov. 2010.

16. Y. Liu and E. Wilde. “Personalized location-based services,” In Proceedings of

the 2011 iConference (iConference '11). ACM, New York, NY, USA, pp. 496-

502.

17. Y. Huang, J. Cao, B. Jin, X. Tao, and J. Lu, “Cooperative cache consistency

maintenance for pervasive internet access,” Wirel. Commun. Mob. Comput., pp.

436-450, March 2010.

18. F. Reynolds, ”Web 2.0–In Your Hand,” Pervasive Computing, IEEE , vol.8, no.1,

pp. 86-88, Jan.-March 2009, doi: 10.1109/MPRV.2009.22.

19. Truste. HTML5 and mobile privacy. [Online] [Cited: September 2011]

http://www.truste.com/blog/2011/05/25/html5-and-mobile-privacy/

20. S. Aghaee and C. Pautasso, “Mashup Development with HTML5,” In

Proceedings of the 3
rd

 and 4
th

 International Workshop on Web APIs and Services

Mashups, Ayia Napa, Cyprus, December 2010.

21. E. M. Maximilien, “Mobile Mashups: Thoughts, Directions, and

Challenges,” Semantic Computing, 2008 IEEE International Conference on, vol.,

no., pp. 597-600, 4-7 August 2008, doi: 10.1109/ICSC.2008.100.

22. Zokem. ”Applications capture already half of mobile Internet”. [Online] [Cited:

October 2011]

http://www.zokem.com/2010/09/applications-capture-already-half-of-mobile-

internet-traffic/

23. Flurry. “Mobile apps put the Web in their real mirror”. [Online] [Cited: October

2011]

http://blog.flurry.com/bid/63907/Mobile-Apps-Put-the-Web-in-Their-Rear-view-

Mirror

24. J. Hansen and G. Ghinea, ”Android vs Windows Mobile vs Java ME: a

comparative study of mobile development environments,” In Proceedings of the

3rd International Conference on PErvasive Technologies Related to Assistive

Environments, June 23-25, 2010, Samos, Greece, doi: 10.1145/1839294.1839348

25. G. Chang, C. Tan,G. Li and C. Zhu, ”Developing mobile applications on the

Android platform,” In: X. Jiang, M.Y. Ma, C.W. Chen (eds.) Mobile Multimedia

Processing: Fundamentals, Methods, and Applications. Springer, 2010,

Heidelberg.

26. S. Komatineni, D. MacLean and S.Y. Hashimi, Pro Android 3, pp. 927-939,

Apress, 2011.

27. M. Scot and L. Mike, In Learn OS X Lion, pp. 629-648, Apress, 2011.

28. R. Wentk, XCode 4, p. 7, Apress Inc, 2009

REFERENCE

102

29. Microsoft. Installing Windows Phone SDK. [Online] [Cited: October 2011]

http://msdn.microsoft.com/en-us/library/ff402530(v=vs.92).aspx

30. N. Lecrenski, K. Watson and R. Fonseca-Ensor, Beginning Windows Phone 7

Application Development: Building Windows Phone Applications Using

Silverlight and XNA (1st ed.), pp. 11-18 ,Wrox Press Ltd., Birmingham, UK,

2011.

31. R. Cameron, Pro Windows Phone 7 Development, pp. 50-51, Apress, 2011.

32. S. Allen, Pro Smartphone Cross-Platform Development: iPhone, Blackberry,

Windows Mobile, and Android Development and Distribution, 1st ed, pp. 29-33,

Apress, 2010.

33. Facebook. Mobile Web app tutorial. [Online] [Cited: November, 2011]

 http://developers.facebook.com/docs/mobile/Web/build/#payments

34. M. Mamone, Migrating to iPhone and iPad for .NET Developers, pp. 233-260,

Apress, 2011.

35. P. Crocker and M. Lewis. Mobile Widget Platform Market Analysis:

Understanding the Business Case and ROI, March 2010. UK. [Online] [Cited:

December, 2011]

http://www.smithspointanalytics.com/MobileWidgetPlatformMarketAnalysis.pdf

36. J. Mundy and A. Zisserman (Ed), Geometric invariance in computer vision, MIT

Press, 1992.

37. H. Muras and S. K. Nayar, ”Visual learning and recognition of 3-D objects from

appearance,” International Journal of Computer Vision, vol. 14, pp. 5-24, 1995.

38. P. Belhumeur and D. Kriegman, ”What is the set of images of an object under all

possible illumination conditions,” International Journal of Computer Vision, vol.

28, no. 3, pp. 1-16, 1998.

39. B. S. Song, K. M. Lee and S. U. Lee. Model-based object recognition using

geometric invariants of points and lines. Computer Vision and Image

Understanding, vol. 84, no. 3, pp. 361–383, 2001.

40. N. Winters and J. Santos-Victor, ”Information Sampling for Appearance based

3D Object Recognition and Pose Estimation,” In Proceedings of the 2001 Irish

Machine Vision and Image Processing Conference, Maynooth, Ireland,

September 2001.

41. Y. Hashimi and S. Komatineni, Pro Android, pp. 21-23, Apress, 2009.

42. W3C. getUserMedia: Getting access to local devices that can generate multimedia

stream. [Online] [Cited: April 2012]

http://dev.w3.org/2011/webrtc/editor/getusermedia.html

43. C. Karlof, U. Shankar, J. D. Tygar and D. Wagner, ”Dynamic pharming attacks

and locked same-origin policies for web browsers,” In Proceedings of the 14th

http://www.smithspointanalytics.com/MobileWidgetPlatformMarketAnalysis.pdf
http://dev.w3.org/2011/webrtc/editor/getusermedia.html

REFERENCE

103

ACM conference on Computer and communications security, October 28-31,

2007, Alexandria, Virginia, USA.

44. Apache Commons. Common Codecs. [Online] [Cited: May 2012]

http://commons.apache.org/codec/

45. PhoneGap. API reference. [Online] [Cited: May 2012]

http://phonegap.com/start#android

46. PhoneGap. PhoneGap Build. [Online] [Cited: May 2012]

https://build.phonegap.com/

47. S. Helal, J. Hammer, J. Zhang and A. Khushraj, ”A three-tier architecture for

ubiquitous data access,” ACS/IEEE International Conference on Computer

Systems and Applications , pp. 177-180, 2001.

48. S. Pfeiffer and C. Parker, ”Accessibility for the HTML5 <video> element,” In

Proceeding of 6th International Cross-Disciplinary Conference on Web

Accessibililty (W4A '09). ACM, pp. 98-100.

49. S.Fulton and J.Fulton, HTML5 Canvas, pp. Ed.Orelly Media. 2011.

50. A. Charland and B. Leroux, ”Mobile application development: Web vs. Native,”

Communications of the ACM, vol. 54 no. 5, May 2011.

51. L. Chittaro, ”Visualizing information on mobile devices,” Computer , vol.39,

no.3, pp. 40-45, March 2006.

52. M. Pilgrim, HTML5: Up and Running, p. 23, O'Reilly Media.

53. W. West and S. M. Pulimood, ”Analysis of privacy and security in HTML5 web

storage,” The Journal of Computing Sciences in Colleges, vol. 27, no. 3, pp. 80–

87, 2011.

54. P. Lubbers, B. Albers and F. Salim, Pro HTML5 Programming: Powerful APIs

for Richer Internet Application Development, pp. 243-256, Apress, 2010.

55. P. F. Felzenszwalb and R. Zabih, ”Dynamic Programming and Graph Algorithms

in Computer Vision,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on , vol. 33, no. 4, pp. 721-740, April 2011.

56. D.G. Lowe and J. Tsotsos (Ed), ”Object recognition from local scale-invariant

features. In Proceedings of the Seventh IEEE International Conference on

Computer Vision, vol. 2, no., pp. 1150-1157 vol.2, 1999.

57. N. Pinto, D. D. Cox, J. J. DiCarlo and K. J. Friston (Ed), ”Why is Real-World

Visual Object recognition Hard,” PLoS Comput Biol, vol. 4, no. 1, p. 27, 2008.

58. M.J. Johnson, H.K. A, ”Porting the google android mobile operating system to

legacy hardware,” In Proceeding IASTED Int. Conf. on Portable Lifestyle Devices

(PLD 2010), Marina Del Rey, USA (2010), pp. 620–625.

http://commons.apache.org/codec/
http://phonegap.com/start#android
https://build.phonegap.com/

REFERENCE

104

59. P. Mendes, M. Caceres and B. Dwolatzky, ”A review of the widget landscape and

incompatibilities between widget engines,” AFRICON, 2009, vol., no., pp.1-6, 23-

25 September 2009.

60. A. I. Wasserman, ”Software engineering issues for mobile application

development,” In Proceedings of the FSE/SDP workshop on Future of software

engineering research FoSER ’10, 2010, pp. 397-400.

61. T. Melamed and B. Clayton, ”A Comparative Evaluation of HTML5 as a

Pervasive Media Platform,” 1st International ICST Conference, MobiCASE, San

Diego, CA, USA, vol. 35, pp. 307-325, 26-29 October 2009.

62. G. Buchanan, S. Farrant, M. Jones, H. Thimbleby, G. Marsden and M. Pazzani, ”

Improving mobile internet usability,” In Proceedings of the 10th international

conference on World Wide Web (WWW '01). ACM, New York, NY, USA, pp.

673-680.

63. B. Zhang, T. Xu, W. Wang and X. Jia, ”Research and implementation of cross-

platform development of mobile widget,” Communication Software and Networks

(ICCSN), 2011 IEEE 3rd International Conference on , vol., no., pp.146-150, 27-

29 May 2011.

64. D. Rajapakse, ”Techniques for De-fragmenting Mobile Applications: A

Taxonomy,” In Proceedings of 20th Intl. Conf. on Software Engineering and

Knowledge Engineering Conference (SEKE'08), July 2008.

65. M. Siy, Q. Zhijie and L. Lei, ”Research on Mobile Web Applications End to End

Technology,” 10th International Conference on Computer and Information

Technology (CIT) IEEE 2010 , vol., no., pp.2061-2065, June 29 2010-July 1 2010.

66. K. Kimbler, ”App store strategies for service providers,” 14th International

Conference on Intelligence in Next Generation Networks (ICIN) 2010 , vol., no.,

pp.1-5, 11-14 Oct. 2010.

67. H. Cramer, N. Belloni, F. Kaplan and P. Jermann (Ed), ”Research in the large.

using app stores, markets, and other wide distribution channels in Ubicomp

research,” In Proceedings of the 12th ACM international conference adjunct

papers on Ubiquitous computing- Adjunct (Ubicomp '10 Adjunct), 2010, ACM,

New York, NY, USA, pp. 511-514.

68. S. Schäfer, S. Christmann and S. Hagenhoff, ”W3C Widgets - A solution for

implementing platform-independent mobile applications,” International

Conference on Web Information Systems and Technologies WEBIST 2011. pp.

115-118.

69. Y.-W. Kao, C.-F. Lin, K.-A. Yang and S.-M. Yuan, ”A Cross-Platform Runtime

Environment for Mobile Widget-Based Application,” International Conference

on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC),

2011 , vol., no., pp.68-71, 10-12 Oct. 2011.

70. A. Shanker and S. Lal, ”Android porting concepts,” 3rd International Conference

on Electronics Computer Technology (ICECT), 2011 , vol. 5, no., pp. 129-133, 8-

10 April 2011.

	Title Page
	Abtract

