
Classification of Keys in MQQ-SIG

Håkon Jacobsen

Master of Science in Communication Technology

Supervisor: Danilo Gligoroski, ITEM
Co-supervisor: Simona Samardjiska, ITEM

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

Thesis title: Classification of keys in MQQ-SIG
Student’s name: Håkon Jacobsen
Problem description:

Recently, a new multivariate signature scheme MQQ-SIG has been proposed by
Gligoroski et al. In its construction it uses a non-associative structure called
Multivariate Quadratic Quasigroups (MQQ’s), making its design different from the
main classes of multivariate public-key cryptosystems. This system shows excellent
properties in terms of speed, so it is very attractive for future cryptanalysis. As
in any public-key cryptography scheme, it is very important for the designers to
analyze the behavior of the system for different types of keys, i.e. to distinguish
the best possible pool of keys in terms of security. The most important part of the
private key in MQQ-SIG, is a particular MQQ chosen from a pool defined by the
construction in use. On average, these MQQ’s show very promising results, however
experiments have displayed different levels of deviation from the average, due to
the underlying key.

This research will consist of an in depth experimental and theoretical analysis
of the keys used, and their classification. The final objective is to determine the
properties of the MQQ’s that lead to solid or weak keys.

Assignment given: 23.01.2012
Supervisor: Danilo Gligoroski
Co-supervisor: Simona Samardjiska

Abstract

The security of almost all public-key cryptography is based on some
computationally hard problem. Most prominent are the problems of
factoring integers into primes, and computing discrete logarithms in
finite groups. However, in the last two decades, several new public-key
schemes have emerged that base their security on some completely
different problems. One promising proposal, is to base the security of
public-key cryptography on the difficulty of solving large systems of
multivariate quadratic polynomial equations. A major challenge in
designing these public-key systems, is to embed an efficient trapdoor
into the set of equations. Recently, a novel approach towards this
problem was suggested by Gligoroski et al. [GMK08b], using the
concept of quasigroup string transformations. In this thesis, we
describe a methodology for identifying strong and weak keys in the
newly introduced multivariate public-key signature scheme MQQ-SIG,
which is based on the idea of quasigroup string transformations.

We have conducted a large number of experiments, based on Gröb-
ner basis attacks, in order to classify the various parameters that
determine the keys in MQQ-SIG. Our findings show that there are
big differences in the importance of these parameters. The methodol-
ogy consists of a classification of different parameters in the scheme,
together with an introduction of concrete criteria on which keys to
avoid, and which to use. Additionally, we identified an unnecessary
requirement in the original specification, requiring the quasigroups to
fulfill a certain condition. Removing this restriction can potentially
speed up the key generation process by a large factor. Having all
this, we propose a new enhanced key generation algorithm for MQQ-
SIG, which will generate stronger keys and be more efficient than the
original key generation method.

Sammendrag

Sikkerheten til nesten all offentlig nøkkel-kryptografi er basert på et
vanskelig beregnbarhetsproblem. Mest velkjent er problemene med
å faktorisere heltall i sine primtallsfaktorer, og å beregne diskrete
logaritmer i endelige sykliske grupper. I de to siste tiårene, har det
imidlertid dukket opp en rekke andre offentlig nøkkel-systemer, som
baserer sin sikkerhet på helt andre type problemer. Et lovende forslag,
er å basere sikkerheten på vanskeligheten av å løse store likningsett av
flervariable polynomlikninger. En stor utfordring ved å designe slike
offentlig nøkkel-systemer, er å integrere en effektiv “falluke” (trapdoor)
inn i likningssettet. En ny tilnærming til dette problemet ble nylig
foreslått av Gligoroski m.f. [GMK08b], hvor de benytter konseptet
om kvasigruppe-strengtransformasjoner (quasigroup string transfor-
mations). I denne masteroppgaven beskriver vi en metodikk for å
identifisere sterke og svake nøkler i det nylig foreslåtte multivariable
offentlig nøkkel-signatursystemet MQQ-SIG, som er basert på denne
idéen.

Vi har gjennomført et stort antall eksperimenter, basert på Gröbner
basis angrep, for å klassifisere de ulike parametrene som bestemmer
nøklene i MQQ-SIG. Våre funn viser at det er store forskjeller i
viktigheten av disse parametrene. Metodikken består i en klassifisering
av de forskjellige parametrene i systemet, i tillegg til en innføring av
konkrete kriterier for hvilke nøkler som bør velges. Videre, har vi
identifisert et unødvendig krav i den originale spesifikasjonen, som
krevde at kvasigruppene måtte oppfylle et bestemt kriterie. Ved å
fjerne denne betingelsen, kan nøkkel-genererings-algoritmen potensielt
øke ytelsen med en stor faktor. Basert på alt dette, foreslår vi en
ny og forbedret nøkkel-genereringsalgoritme for MQQ-SIG, som vil
generere sterkere nøkler og være mer effektiv enn den originale nøkkel-
genereringsalgoritmen.

Acknowledgments

First of all, I would like to thank Simona Samardjiska for her dedicated
support and encouragement throughout the course of this thesis work.
Patiently, she has answered my numerous questions, and helped me
on as I got stuck on some misguided idea (which happened more
than once). Her comments and suggestions have made an invaluable
contribution to the result of this thesis. For this I am truly grateful.

Last, but not least, I want to thank Professor Danilo Gligoroski for his
continuous belief in my work. His energy and high spirit have been a
huge motivating factor for me, spurring me on towards a better result.

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Symbols and Abbreviations xv

1 Introduction 1
1.1 Public-key cryptography . 3
1.2 The Discrete Logarithm problem . 4
1.3 The factorization problem . 7
1.4 Alternative one-way trapdoor functions 10

2 Multivariate Quadratic Cryptography 13
2.1 TheMQ-problem . 14
2.2 Public-key cryptography based on theMQ-problem 16
2.3 Trapdoor constructions . 18
2.4 Key sizes and computational aspects 20

2.4.1 Key sizes . 20
2.4.2 Efficiency of cryptography based onMQ-trapdoors 21

3 Quasigroups 23
3.1 Basic definitions . 24
3.2 Multivariate quadratic quasigroups 27

vii

4 MQQ-SIG 33
4.1 High level description . 34
4.2 The central map P ′ . 37

4.2.1 Construction of the quasigroup 37
4.2.2 Operation of the central map P ′ 40
4.2.3 The inverse map P ′−1 . 41

4.3 The transformations S and S ′ . 43
4.4 Operating characteristics . 45

4.4.1 Sizes of the public and private key 45
4.4.2 Computational aspects . 46

5 Experimental Analysis 49
5.1 Gröbner basis cryptanalysis . 51
5.2 The parameters of MQQ-SIG . 56
5.3 Experimental procedure . 58

5.3.1 Hardware and software . 58
5.3.2 Attack algorithm . 58

5.4 Experiments on the original MQQ-SIG 59
5.5 The matrix U(x) . 62
5.6 The matrices A1 and A2 . 66
5.7 The matrix B . 70
5.8 The matrix S . 73

6 Enhancing the MQQ-SIG Key Generation Algorithm 79
6.1 The new key generation algorithm 79
6.2 Performance . 80

6.2.1 Procedure . 80
6.2.2 Results . 81

7 Conclusion 85

References 89

List of Figures

2.1 GeneralMQ-design . 17

3.1 A Latin square and a corresponding finite quasigroup. 25

4.1 Signing and verification in MQQ-SIG . 35
4.2 Graphical presentation of the central map P ′ 40
4.3 Graphical presentation of the inverse map P ′−1 42

5.1 Average run times for 100 MQQ-SIG instances of n variables, with n
2

equations removed from the public key. 60
5.2 The time to compute the Gröbner basis for 100 different public keys of

48 variables. 61
5.3 The effect of having linear rows in U(x) 65
5.4 The run times of three instances of 48 variables using 20 different values

for the matrices A1, A2 and B . 67
5.5 The run times of the first 50 original instances of 56 variables where

either A1 or A2 is set to the identity matrix 69
5.6 The run times of the first 50 original instances of 48 and 56 variables

with a random S matrix . 75

6.1 The run times of 50 instances based on the original experiments adjusted
to conform to Algorithm 6.1 . 82

ix

List of Tables

4.1 Performance of MQQ-SIG compared to RSA, ECDSA and variousMQ
signature schemes . 47

5.1 The average time to compute the Gröbner basis for 100 different MQQ-
SIG instances in n variables and n

2 equations removed 61
5.2 The average degree of regularity for 100 MQQ-SIG instances in n vari-

ables and r equations removed . 63
5.3 Average run times for computing the Gröbner basis of 100 MQQ-SIG

instances of n variables, with A1 and A2 set to the identity matrix . . . 68
5.4 Average run times for 100 MQQ-SIG instances of n variables, conditioned

on the matrices Bfi . 72
5.5 The average number of B matrices to test before satisfying the two

rightmost criteria in Table 5.4. 72
5.6 Average run times for 100 MQQ-SIG instances of n variables, with

random S . 74

6.1 Average run times for 100 MQQ-SIG instances of n variables using the
modified key generation algorithm . 83

xi

List of Algorithms

1.1 Diffie-Hellman Key Agreement . 5
1.2 The RSA Cryptosystem . 8
4.1 The MQQ-SIG Signature Scheme . 36
4.2 The MQQ-SIG central map P ′ . 41
5.1 Gröbner basis attack used for all experiments 59
6.1 Enhanced MQQ-SIG key generation 81

xiii

List of Symbols and
Abbreviations

A1, A2 Boolean matrices used in MQQ-SIG.
a, b, c Coefficients of polynomials.

B Boolean matrix used in MQQ-SIG.

c Constant vector used in MQQ-SIG.

D Degree of regularity.

E Extension field of a base field F.

F Generic finite field, usually of q elements.
Fq,GF(q) Finite (Galois) field of q elements.
F∗q The multiplicative group of a finite field Fq.

m Number of equations.
MQ-scheme Public-key cryptography system based on mul-

tivariate quadratic polynomials.
MQQ Multivariate quadratic quasigroup.
MQQ-SIG Digital signature scheme based on multivariate

quadratic quasigroups.

xv

n Number of variables.

O(), o() Standard big-O and small-o notation.

P The public key inMQ-schemes.
P ′ The central map.

Q A quasigroup (Q, ∗), usually finite.
Quadd−kLink MQQ of 2d elements, with d − k quadratic

Boolean functions.
Quadsd−kLinsk Strict MQQ.

r Equations removed from the public key.

S,S ′ The initial linear or affine maps inMQ-schemes.
S Matrix of linear maps S, S ′.
σ0

0 , σ
1
0 Permutations in MQQ-SIG, determining S.

T The final linear map inMQ-schemes.

U(x) Matrix of linear expression in x used in MQQ-
SIG.

v Constant part of affine map S ′.

X = X1 · · ·Xk String of quasigroup elements, input to P ′.
x = (x1, . . . , xn) Either a signature or plaintext block.
x ∈U X Element from X , chosen uniformly at random.

Y = Y1 · · ·Yk String of quasigroup elements, output from P ′.
y = (y1, . . . , yn) Either a digest or ciphertext block.

Z∗p The multiplicative group modulo p.

CHAPTER 1
Introduction

Cryptography was originally a means for the military to protect their secret commu-
nication, but has today become an indispensable tool for securing and safeguarding
all aspects of life on the Internet. While encryption is still one of its fundamental
application areas, modern cryptography offers a host of other essential functionali-
ties which do not necessarily involve secrecy. Examples include digital signatures
for proving authenticity; hash algorithms to prevent tampering; certificates for
establishing trust; password authentication for user identification; zero-knowledge
proofs to prove the possession of secrets without revealing them; digital coins
that can be used just like normal currency; pseudo-random number generators for
enabling fair online games; secure online voting; and so on. This list is far from
exhaustive, but works to illustrate the amazing potential of cryptography. In some
sense, cryptography has gone from being a means to an end, to itself being the
enabler of new business and application possibilities.

With an ever increasing demand for the security capabilities provided by cryp-
tography, it has also become increasingly important that the building blocks that
underlies it are fundamentally sound. Hence, the modern field of cryptography has
been tasked with this very challenge; trying to put the building of secure systems
on a solid foundation. In this process, numerous schemes have been proposed and
almost as many have been broken. The cryptosystems we use today, are those few

1

2 INTRODUCTION

that have been able to remain unscathed from years of dedicated cryptanalytic
efforts at breaking it.

However, for a cryptosystem to be useful, security is not enough; almost as
important is efficiency. Numerous cryptographic schemes exist that are just as
secure as those we use today, but are simply too inefficient or unpractical to be
employed in any real-life system. This illustrates the delicate nature of designing
cryptosystems. On the one hand they must be extremely secure, while on the other,
must work efficiently under real-life conditions and constraints. Thus, the act of
designing secure and efficient cryptographic schemes strikes a fine balance between
highly theoretical analysis, and concrete engineering considerations.

Recently, a promising new digital signature scheme, called MQQ-SIG, was
proposed by Gligoroski et al. [GØJ+11]. This system is several orders of magnitude
faster than the most widely used public-key signature schemes today, and 5 to
20 times faster than other comparable systems. However, little cryptanalysis has
been conducted on it, so its real security is still largely unknown. This thesis
provides the first steps towards a better understanding of the characteristics of
MQQ-SIG. In particular, our new contribution is an extensive experimental study
of the parameters of the scheme, and how they affect the security of the system.
Our end goal is to determine a classification of the parameters that lead to either
strong or weak keys. In general, we are most interested being able to avoid the
weak keys, since we assume that the average case provides sufficient security.

The thesis is structured as follows: Chapter 2 to Chapter 4 provides the necessary
background to understand the workings of MQQ-SIG, where in particular Chapter 4
provides the full specification of the scheme; Chapter 5 contains our new research and
experiments. The real meat of the chapter is four concrete recommendations on how
the various parameters should be chosen in MQQ-SIG in order to avoid generating
weak keys; in Chapter 6 we implement a modified key generation algorithm based on
these recommendations, and compare its performance against the original; Chapter 7
concludes the thesis.

PUBLIC-KEY CRYPTOGRAPHY 3

1.1 Public-key cryptography

The notion of public-key cryptography was first publicly proposed in 1976 by Diffie
and Hellman in their seminal paper [DH76]. Before this, all secure communication
between two parties required a pre-established key to be shared prior to their
exchange of private messages. Unfortunately, there is an inherent asymmetry in the
way our modern communication works, which makes the requirement of mutual
knowledge of the same key a very bad fit. For instance, with e-commerce and
online-banking, there is a clear need to be able to establish secure connections with
people you most probably never have met (and who might even be on the other side
of the earth from you). With the advent of public-key cryptography this problem
could actually be solved.

The basic idea of public-key cryptography is the following: let Alice and Bob
denote two parties wanting to communicate securely∗. Prior to their communica-
tion, both Alice and Bob will have generated a key pair, (KA, ka) and (KB , kb),
respectively. KA is Alice’s public key, and she should make it publicly available, for
instance by posting it on her homepage. Bob would do the same with his public key.
ka and kb are their private keys, and are kept secret from everyone else. Now, when
Bob wants to send a message m to Alice, he gets the public KA from her website
and encrypts the message with it using the public-key encryption function E. That
is, he computes c = E(KA,m), and sends c to Alice. When Alice receives c, she
decrypts it using the decryption function D and her private key ka. That is, she
finds m as m = D(ka, c).

The crucial point of the above scheme is that the private/public key-pairs,
together with the functions E and D, should have a special property; namely that
the only person capable of decrypting a message encrypted under the public key,
should be the owner of the corresponding private key. Because of this property,
public-key cryptography is also called asymmetric cryptography.

Fundamental to the construction of public-key cryptography is the concept
of a one-way trapdoor function. A one-way trapdoor function is a mathematical
function, with the property of being easy to compute in one direction, but virtually
impossible to invert without given some additional information about the “trapdoor”.

∗Note that Alice and Bob represent generic entities; not necessarily human beings. To the contrary;
they will most likely not be humans, but rather computer programs.

4 INTRODUCTION

More specifically, a function ft(x) : D 7→ R is said to be one-way, if it is easy to
evaluate for all x ∈ D, but hard to invert for all images ft(x) in R. It is called a
one-way trapdoor function, if knowledge of some extra information t makes it easy
to compute x ∈ D satisfying y = ft(x) for all y ∈ R.

To fully formalize what it means for a function to be “easy” or “hard” to compute,
one usually states the precise definitions using notions taken from complexity theory.
For instance, a function might be regarded as easy to compute if the time to evaluate
it for any x ∈ D is polynomially bounded in some parameter k. Conversely, it is
hard if the time to compute it is not bounded by any polynomial in k. Of course,
the exact definitions are much more involved than what we have presented here,
often involving probabilistic arguments as well. However, for the purposes of this
thesis, it will suffice to confine ourselves to the intuitive understanding of what it
means for a function to be hard or easy to compute.

When we in the following discuss some concrete candidate† one-way trapdoor
functions, we will be content with an informal treatment. Nevertheless, it should
be implicitly understood that every statement about a problem’s “hardness” could
be qualified according to a formal complexity theoretic definition.

1.2 The Discrete Logarithm problem

In their paper [DH76], Diffie and Hellman suggested a cryptographic scheme which
allowed two parties to agree on a shared secret over a public channel. This famous
algorithm, now simply known as the Diffie-Hellman protocol, is based on the one-
way properties of the modular exponentiation function x 7→ xk (mod p), and is
presented in Protocol 1.1. It is straightforward to verify that both Alice and Bob
will compute the same shared key. For let kalice and kbob represent the values
Alice and Bob derives in Step 3 and 4 in Protocol 1.1, respectively; by the rules of
exponentiation we have

kalice = gabob (mod p) ≡ (gb)a ≡ gab ≡ (ga)b ≡ gbalice (mod p) = kbob.

Hence, Alice and Bob have effectively established a common secret over a public
channel.

†We say candidate, because the (provable) existence of one-way functions is still an open problem.
In particular, their existence would also imply that P 6= NP (see [Gol01, Chap. 2]).

THE DISCRETE LOGARITHM PROBLEM 5

Protocol 1.1 Diffie-Hellman Key Agreement

Input: p a large prime, g a generator for F∗p.
Output: An element k ∈ F∗p shared between Alice and Bob.

1. Alice picks a ∈U F∗p. Then she computes

galice ← ga (mod p)

and sends galice to Bob.

2. Bob picks b ∈U F∗p. Then he computes

gbob ← gb (mod p)

and sends gbob to Alice.

3. Alice computes k ← gabob (mod p).

4. Bob computes k ← gbalice (mod p).

The security of the Diffie-Hellman protocol relies on the assumption that calcu-
lating discrete logarithms is hard in finite cyclic groups. This problem can be stated
more precisely as follows.

Definition 1.1. Discrete Logarithm Problem (DL Problem)
Input: A multiplicative group (G, ·), an element g ∈ G having order n,

and an element h ∈ 〈g〉.
Output: The unique integer 0 ≤ a ≤ n− 1, such that

ga = h.

The integer a is called the discrete logarithm of h, and denoted
logg h.

The above definition formulates the problem in the most general way using a
cyclic subgroup in some generic group G. In our statement of the Diffie-Hellman
protocol we have used the special case of cyclic groups in finite fields F∗p, but it
works similarly in any other finite cyclic group.

6 INTRODUCTION

Now, let galice = ga and gbob = gb be the messages sent by Alice and Bob,
respectively. If the discrete problem was easy, then an adversary eavesdropping on
the communication could calculate a = logg galice and b = logg gbob from galice and
gbob, and thereby obtain k = gab. This is exactly the key Alice and Bob will agree
on. Clearly, for the Diffie-Hellman protocol to be secure the DL problem needs to
be hard. That is, the exponentiation function modulo the group order needs to
have the one-way property. It is generally believed that this is the case.

Unfortunately, the hardness of the DL problem is not sufficient to guarantee the
security of the Diffie-Hellman protocol, because an adversary is not strictly required
to find the two private integers a and b in order to obtain the secret key k. To
see this, assume the attacker have managed to obtain the two transmitted values
galice = ga and gbob = gb. Then, it is conceivable that there might exist some way
to obtain the value k = gab directly, without first calculating the discrete logarithms.
This latter problem is known as the Computational Diffie-Hellman problem (CDH).

Definition 1.2. Computational Diffie-Hellman Problem
Input: A multiplicative group (G, ·), an element g ∈ G having order n,

and two elements h1, h2 ∈ 〈g〉.
Output: An element h3 ∈ 〈g〉 such that logg h3 ≡ logg h1 × logg h2 (mod n).

That is, the CDH problem asks the following question: given gh1
and gh2 , find gh1h2 .

The CDH problem is the true problem an adversary faces when attacking the
Diffie-Hellman protocol. Hence for the protocol to be secure we need to additionally
assume that the CDH problem is hard as well. Then how does the CDH problem
relate to the DL problem?

It is trivial to see that if one could solve the DL problem then the CDH problem
would be easy as well. Given two values h1 and h2, simply calculate their discrete
logarithms and take their product. In other words, a CDH problem instance is
reducible to an equivalent DL problem instance. However, the converse is not true:
given a solver for the CDH problem, it is not known how one can turn it into a
solver for the DL problem. The DL and CDH problems can therefore not be said to
be equivalent given our current understanding. In particular, assuming that the
CDH problem is hard is a stronger assumption than assuming that the DL problem
is hard. Consequently, it cannot be ruled out that there might exist an algorithm

THE FACTORIZATION PROBLEM 7

that solves the CDH problem, and hence breaks the Diffie-Hellman protocol, but
does not also solve the DL problem. Nevertheless, most algorithms for breaking
Diffie-Hellman (and other systems based on the CDH problem, such as ElGamal)
focus on the more general problem of finding discrete logarithms. Therefore, it
is interesting to examine the complexity of the algorithms that compute discrete
logarithms.

Methods for finding discrete logarithms have been studied extensively in the last
few decades. Some algorithms are generic, in the sense that they do not depend
on any particular property of the group, but can be applied to any kind of group.
Examples of these types of algorithms include the Pollard Rho algorithm [Pol78],
the Pohlig-Hellman algorithm [PH78] and Shank’s Baby-Step-Giant-Step algorithm
[Sha71]. Other algorithms are more specialized and depends on certain properties
of the group in order to be applicable. Examples of these algorithms are the Index
Calculus methods [Adl79] and the Number Field Sieves [Gor93], which only works
in groups from Z∗p and F∗pn .

The generic algorithms have a complexity of O(
√
n), where n is the order of the

(sub)group; a result shown to be optimal by Shoup [Sho97b]. In the special cases of
groups (and subgroups) in Z∗p and F∗pn , the number field sieve methods are actually
sub-exponential [Odl99], having an expected run time of

O(e(1+o(1))
√

ln p ln ln p).

As a consequence of these results, p is usually required to be around 1024 bits
in order for the discrete logarithm problem to be considered secure today.

1.3 The factorization problem

Two years after the publication of Diffie and Hellman’s paper and the invention of
public-key cryptography, Rivest, Shamir and Adleman published their now famous
RSA encryption scheme [RSA78]. RSA is probably the most widely used public-key
cryptosystems in the world today. The RSA function is defined as x 7→ xe (mod n),
where n is a composite integer and e < n. Initially it might look similar to the one-
way function used in the Diffie-Hellman protocol, but the crucial difference is that n
is not prime. This property makes it possible to embed a trapdoor into the function,

8 INTRODUCTION

enabling efficient inversion. Therefore, the RSA function can readily be turned into
an encryption scheme. We present the RSA cryptosystem in Algorithm 1.2.

Algorithm 1.2 The RSA Cryptosystem

Key Setup
User Alice sets up her public keys and parameters as follows:

1. generate two large random prime numbers p and q;

2. compute n = pq;

3. compute φ(n) = (p− 1)(q − 1);

4. choose a random integer e < φ(n) such that gcd(e, φ(n)) = 1. Find the unique
integer d such that

ed ≡ 1 (mod φ(n)).

Her public key is (e, n), and her private key is (d, n).
Encryption
For the sender Bob to transmit a message m < n to Alice, he creates the ciphertext
as follows

c← me (mod n).

Decryption
To decrypt a received ciphertext c, Alice computes

m← cd (mod n).

It is easy to verify that encryption and decryption are inverse operations in RSA.
Let c be a ciphertext created as per Algorithm 1.2 of the plaintext message m, that
is, c ≡ me (mod n). Since

ed ≡ 1 (mod φ(n)),

there exists an integer k ≥ 1 such that

ed = k · φ(n) + 1.

Now, when Alice decrypts c she obtains

cd ≡ (me)d ≡ med ≡ mk·φ(n)+1 ≡ (mφ(n))km ≡ m (mod n),

THE FACTORIZATION PROBLEM 9

where the last congruence holds due to Euler’s theorem‡. Thus, RSA is a valid
encryption scheme.

The difficulty of breaking the RSA cryptosystem, or more precisely the RSA
function, is that of finding the e-th root of c modulo n. This is the RSA problem.

Definition 1.3. RSA Problem
Input: A composite integer n = pq, where p and q are primes, an

integer e such that gcd(e, φ(n)) = 1, and a ciphertext c ∈ Z∗n.
Output: The unique integer m ∈ Z∗n satisfying me ≡ c (mod n).

When the trapdoor d is known the RSA problem can be solved efficiently, but
without it the problem is believed to be hard. Hence the security of the RSA
cryptosystem is conditioned on the assumption that the RSA problem is hard.
However, the difficulty of the RSA problem is further dependent on the difficulty of
yet another problem, namely the integer factorization problem.

Definition 1.4. Factorization Problem
Input: An odd composite integer n, with at least two distinct prime factors.
Output: A prime p such that p|n.

If one could efficiently factor composite integers then it would be trivial to break
the RSA system. To see this, assume an attacker has obtained the factorization
of n. Then he can easily compute φ(n), from which the trapdoor d can be found
solving the equation ed ≡ 1 (mod φ(n)). So factoring the public modulus yields a
straightforward attack on the RSA problem. The reverse implication however, is
not known. That is, given a solver for the RSA problem, can it be turned into a
solver for the factorization problem? This is still an open problem.

Interestingly, unlike the case of the DL and CDH problems, there are many
known attacks on RSA that does not involve factoring the modulus. Typically, these
attacks target the private or the public key directly. Examples include Wiener’s
attack on low private exponents [Wie90] and Coppersmith’s attack on low public
exponents [Cop97]. These results, among others, suggest that the RSA problem
most likely is not equivalent to the factorization problem, but rather is strictly
easier. Boneh provides further remarks on this, and description of other attacks, in

‡aφ(n) ≡ 1 (mod n) for all a ∈ Z, where gcd(a, n) = 1, and φ is the Euler function.

10 INTRODUCTION

his survey paper on the RSA problem [Bon99]. Although these alternative avenues
of attack on the RSA problem exits, they can usually be prevented by a suitable
selection of parameters and being careful about the implementation. For a properly
implemented RSA system, factoring seems to be the only viable approach. Hence,
we will briefly mention the best methods for factoring integers.

Algorithms for factoring large integers have been studied for a very long time,
with active research still ongoing today. Several advanced methods have been
proposed, including the Quadratic Sieve algorithm, the Elliptic Curve method and
the General Number Field Sieve (see Lenstra’s survey [Len00] for a description of
these, and many other algorithms for factoring integers). All three methods have a
sub-exponential running time. Currently the fastest method is an algorithm based
on the General Number Field Sieve having an expected run time complexity of

O(e(1.923+o(1))(lnn)1/3(ln lnn)2/3
).

As a result of the efficiency of these sophisticated algorithms, together with the
continuous increase in computer power, today’s recommended size for the modulus
n is 1024 bits or more.

1.4 Alternative one-way trapdoor functions

While cryptosystems based on the hardness of factorization and discrete logarithms
are ubiquitous today, there exists other candidate one-way (trapdoor) functions.
Patarin and Goubin [PG97] describe a list of such candidates. However, given that
we already have two candidate one way functions that accounts for almost all of
today’s public-key cryptography, it is appropriate to ask if there is any incentive to
study alternative methods. To answer this question, there are two key factors to
consider: 1. security - a new proposal should of course be no less secure then today’s
schemes, but is there a compelling reason to switch from the well studied problems
of factorization and discrete logarithms? 2. efficiency - public-key cryptography
is undeniably very slow and use rather large keys when compared to symmetric
cryptography schemes. Could alternative methods mitigate these problems?

We saw in the two previous sections that the best algorithms known for solving
either the discrete logarithm problem or the factorization problem, are subexpo-

ALTERNATIVE ONE-WAY TRAPDOOR FUNCTIONS 11

nential in the size of its key parameter. This is already undesirable for a secure
cryptosystem, since ideally it should have been exponential. Not to say that today’s
public-key cryptography is believed to be unsafe, but it does raise the question
of whether fully polynomial algorithms might exist for these problems. Could
sub-exponential run times be the fundamental limit on how fast we can possibly
hope to compute discrete logarithms and factor integers? Thirty years of research
on these problems have not lead to anything better, but it is difficult to say if this
is due to some inherent property of these problems, or if we simply have not found
the right method yet.

Surprisingly, in the imagined future of quantum computers, cryptosystems based
on the hardness of either factorization or discrete logarithms are broken. This is due
to the startling discovery made by Shor, who found that quantum computers could
solve these problems very efficiently [Sho97a]. While it is highly uncertain whether
anyone will actually be able to build a large quantum computer, Shor’s algorithm
has spurred research into cryptographic schemes that can withstand even computers
with these capabilities. This concept is known as post-quantum cryptography.

Several systems have been suggested as candidates for post-quantum cryptog-
raphy. Common to them all is that they are not based on factoring or discrete
logarithms. Examples include McEliece’s cryptosystem based on error correcting
codes [McE78]; Merkle’s hash based digital signature system [Mer89]; a whole family
of schemes based on lattice problems [Ajt96, HHGPW10]; and finally multivariate
quadratic public-key systems, which is the topic of this thesis (see [BBD08] for
an introduction to all the schemes mentioned above, including a discussion on
their complexity and key sizes). For all these systems, or rather their underlying
one-way function, no attack better than exponential is known, even in the presence
of quantum computers, which makes them good candidates to base a cryptographic
scheme upon.

This leads us to the second point made above, namely efficiency. Many of
the candidates for post-quantum cryptography use very large keys, compared to
conventional public-key cryptosystems. As we noted in the two previous sections,
systems based on either discrete logarithms or factoring currently use key sizes
of around a few thousand bits (or less in the case of elliptic curve cryptography),
whereas the candidates mentioned above can have key sizes ranging in the millions

12 INTRODUCTION

of bits. Besides the obvious increase in storage requirements, large keys makes the
system more complex and can potentially slow it down.

On the other hand, current public-key cryptography is based on modular arith-
metic, which involves rather expensive operations on most CPU’s. Cryptosystems
such as RSA, DSA§ and ECDSA¶, are thousands of times slower than their symmet-
ric key counterparts. Additionally, most of the algorithms for computing modular
arithmetic are inherently sequential, so public-key cryptography based on discrete
logarithms and factorization can not take advantage of multiple processors to speed
up their computations. At the same time, there seems to be a trend among CPU
manufacturers to prefer adding more cores to their chips, rather than increasing
their raw processing power. Combined, these two facts indicate that classical public-
key cryptography will most likely continue to be orders of magnitude slower than
symmetric crypto.

Many of the new cryptosystems mentioned above are already faster then current
public-key schemes, despite their larger key sizes. By taking advantage of parallelism
in their designs, they can potentially be made even faster, even rivaling the speeds
of symmetric cryptography. Thus, the main motivation for studying alternatives to
the discrete logarithm and the factorization problem, is the search for more efficient
public-key cryptography schemes.

§DSA - the Digital Signature Algorithm. Standardized by the American National Institute of
Standards and Technology (NIST) and based on the discrete logarithm problem.
¶ECDSA - Elliptic Curve DSA. The elliptic curve variant of DSA.

CHAPTER 2
Multivariate Quadratic

Cryptography

In this chapter we will study an alternative one-way trapdoor function to the ones
used in Diffie-Hellman and RSA; one that is not based on the hardness of computing
discrete logarithms nor factoring integers. We will be looking at systems of m
multivariate quadratic (MQ) polynomial equations, in n variables, over a finite
field F. The one-way property of a set of multivariate quadratic equations comes
from the fact that it is allegedly very difficult to solve over finite fields. So, while it
is easy to evaluate all the polynomials at some given values from the finite field, it
is generally very hard to find its pre-image. The naive brute-force approach, simply
trying all possible combinations of values from F until the pre-image is found, will be
exponential in the number of variables, more precisely O(|F|n). More sophisticated
algorithms exist, but no one achieves run times better than exponential. Therefore,
systems of multivariate quadratic equations over finite fields are good candidates
for a one-way function.

The challenging part however, is how one can embed a trapdoor into the
set of equations, as to make it useful in public-key cryptography. Matsumoto
and Imai are usually credited for constructing the first public-key cryptosystem
based on multivariate quadratic equations, when they in 1988 proposed their

13

14 MULTIVARIATE QUADRATIC CRYPTOGRAPHY

C∗ scheme [MI88]. The secondMQ-system, called the Stepwise Triangular Scheme
(STS), was introduced in 1993 by Shamir [Sha93], and later a variant of it, called
TTM, was suggested by Moh [Moh99]. A third MQ-scheme was proposed by
Patarin in 1996, and is called Hidden Field Equations (HFE) [Pat96]. Finally, a
fourth scheme, known as Unbalanced Oil and Vinegar (UOV), was suggested in
1999 by Kipnis, Patarin and Goubin [KPG99]. Unfortunately, most of these systems
have been broken in their basic forms.

Until recently, the suggested schemes above have represented the only known
classes on how to create a MQ-trapdoor function. Then, in 2008, Gligoroski et
al. came up with a completely new approach, called MQQ [GMK08b, GMK08a],
which is based on the theory of quasigroups (we will consider quasigroups further in
Chapter 3). Their latest proposal is a signature variant of the MQQ scheme called
MQQ-SIG, and will be the main topic of this thesis (Chapter 4). In this chapter we
will look at the basics ofMQ-based cryptography in general. We will mostly limit
our discussion to the overall design ideas, but will give a brief introduction to a few
of the earlier schemes mentioned above.

2.1 TheMQ-problem

Multivariate quadratic cryptography is based on the problem of solving systems
of multivariate quadratic equations over a finite field. Let P be a system of m
multivariate polynomial equations in n variables over a finite field F

P :=



y1 = p1(x1, . . . , xn)

y2 = p2(x1, . . . , xn)
...

ym = pm(x1, . . . , xn),

(2.1)

where yi ∈ F. Each pk is a polynomial of degree two over F of the form:

pk(x1, . . . , xn) =
∑

1≤i≤j≤n
a

(k)
ij xixj +

n∑
i=1

b
(k)
i xi + c(k),

where a(k)
ij , b

(k)
i , c(k) ∈ F and 1 ≤ k ≤ m. The coefficients ak, bk and ck are called the

quadratic, linear and constant parts of the polynomial pk, respectively. A solution of

THE MQ-PROBLEM 15

this system, is a vector x = (x1, . . . , xn) ∈ Fn so that all the polynomial equations
are satisfied simultaneously, that is, pk(x) = yk for all 1 ≤ k ≤ m. If y ∈ Fm is the
vector holding all the values yk, that is, y = (y1, . . . , ym), then we will write this
more simply as P(x) = y.

TheMQ-problem then, asks to find a solution x ∈ Fn to the system in Equa-
tion 2.1. We denote the class of MQ-problems, containing problems defined by
polynomial vectors such as P, with MQ(Fn,Fm). We formally state the MQ-
problem as follows:

Definition 2.1. MQ-Problem
Input: An instance P ∈MQ(Fn,Fm).
Output: x ∈ Fn such that P(x) = y.

The MQ-problem is known to be hard, specifically, it can be shown to be
NP-complete. A proof of this fact in the general case of F being any finite field,
can be found in [PG97]. However, the special case of F = GF(2) was already shown
to be NP-complete by Fraenkel [FY79]. While NP-hardness is a good baseline on
which to asses the difficulty of a problem, it is not enough by itself to guarantee a
secure cryptosystem.

Firstly, NP-hardness tells us only something about a problem’s worst-case
behavior, but says nothing about its average-case characteristic. The existence of
very efficient SAT-solvers for practical problem instances (see the survey by Gomes
et al. [GKSS08]), illustrates the discrepancy between a NP-hard problems alleged
difficulty and its actual difficulty on real-world problems.

Secondly, a real-life implementation of cryptosystem based on a hard problem
might not have a reduction to the problem itself. That is, the problem of breaking
the cryptosystem might be strictly easier than solving the underlying problem itself.
There are many examples of this, one famous example being the system proposed
by Merkle and Hellman [MH78], which was based on the knapsack problem. The
Knapsack problem is NP-complete, but the cryptosystem itself was completely
broken by Shamir [Sha82].

Lastly, it might be difficult to embed an efficient trapdoor into the problem.
Without this, real life implementations will not be practical.

As can be understood from the above, it is a long way from the discovery of
a problems with the potential of being a one-way trapdoor-function, to actually

16 MULTIVARIATE QUADRATIC CRYPTOGRAPHY

building a secure and efficient cryptosystem from it. TheMQ-problem then, is no
exception.

2.2 Public-key cryptography based on theMQ-problem

We will now describe the general construction of public-key systems based on the
MQ-problem. In aMQ-system the public key is the set of multivariate equations
P . The goal is to embed a trapdoor into this set of polynomial equations, so that it
will be possible to invert it efficiently. Since the genericMQ-problem is NP-hard,
the system of equations cannot simply be generated at random, because then there
would be no way to include a trapdoor into it. Thus,MQ-systems are designed
with an internal algebraic structure in order to make inversion viable. It is hoped
that systems created in such a way will still behave sufficiently like a set of randomly
generated equations.

Key generation

The public key P is usually constructed as the composition of three functions S,
P ′ and T , that is P = T ◦ P ′ ◦ S. The triple (S,P ′, T) is the private key. The
two functions S : Fn → Fn and T : Fm → Fm are linear or affine transformations,
while the central map P ′ : Fn → Fm is a quadratic function. Since linear and
affine transformations are easily invertible, the challenge is to make the central
map P ′ invertible. The variousMQ-schemes can be classified roughly on how they
construct P ′. The purpose of the transformations S, T , is to hide the algebraic
structure present in the central map P ′. A graphical representation of the general
design is shown in Fig 2.1.

Encryption and signature verification

Encryption and signature verification is performed in approximately the same
manner for allMQ-schemes. Let x ∈ Fn be a plaintext message to be encrypted,
or a signature to be verified. To either encrypt or verify x, we simply evaluate

PUBLIC-KEY CRYPTOGRAPHY BASED ON THE MQ-PROBLEM 17

input x

x = (x1, . . . , xn)

x′

y′

output y

private: S

private: P ′

private: T

public:
(p1, . . . , pn)

Figure 2.1: Schematic representation of the genericMQ-design with
public key P and private key (S,P ′, T).

the public key P at x. When used to encrypt, y = P(x) becomes the ciphertext.
When used to verify a signature, the verifier checks that P(x) equals the message
vector y ∈ Fm, for which the signature corresponds to. If y = P(x) the signature is
accepted, otherwise it is rejected.

Decryption and signature generation

Conceptually, decryption/signing works by reversing the the steps shown Fig. 2.1.
Let y ∈ Fm be a ciphertext to be decrypted or a message to be sign. Since the decryp-
tor/signer knows the private key, he can compute this as x = S−1 ◦ P ′−1 ◦ T −1(y).
As already noted, S and T are affine transformations of full rank (with respect
to their matrix representations), and can easily be inverted. However, the exact
procedure to compute P ′−1(y′) is highly dependent on the central map used in the
specificMQ-scheme. We will briefly comment on a few different approaches in the
next section.

Additionally, a complicating factor is that P ′ might not be injective. In other
words, the pre-image of P ′ may not necessarily be unique. This is usually not a
problem for a signing algorithm, but complicates the process of decryption. For

18 MULTIVARIATE QUADRATIC CRYPTOGRAPHY

a ciphertext to be uniquely decrypted, it necessary to add some redundancy in
the encryption process so that the correct plaintext can be discerned among the,
potentially many, pre-images. However, this is a technicality we will not consider
further here, but refer to [WP05b] for details.

2.3 Trapdoor constructions

The big challenge in creating a secure and efficientMQ-system is the construction
of the central trapdoor function P ′. In Chapter 4 we will describe MQQ-SIG in full
detail, so here we just provide a high-level overview on some different approaches
to this problem. Generally, there have been two main approaches to constructing
the central map P ′: “Mixed-Field” (or “Big-Field”) constructions and “Single-Field”
(or “True”) constructions.

In a mixed field construction, P is created using a bijection in an n-dimensional
extension field E over the ground field F. The firstMQ-system C∗, proposed by
Matsumoto and Imai [MI88], was of this type. Later, the Hidden Field Equation
(HFE) system by Patarin [Pat96] has come to represent another basic trapdoor
within this class. The mixed-field construction can briefly be explained as follows.
First, we create an invertible map Q : E → E, and choose a bijection φ : E → Fn.
Recall that each α ∈ E is of the form

an−1t
n−1 + · · ·+ a1t+ a0 with ai ∈ F,

and where the operations are performed modulo some irreducible polynomial π(t) ∈
F[t]. Hence, there is always a natural correspondence φ, between the field element
α ∈ E and the vector β = (b1, . . . , bn) in the vector space Fn, given by the bijection
ai 7→ bi. We then define the central map as follows:

P ′ = φ ◦Q ◦ φ−1.

In C∗, the map Q, is given as

Q : x 7→ xq
λ+1,

where x ∈ E, q = |F| and gcd(qλ + 1, qn + 1) = 1. The last criterion is what
makes this map invertible, since it guarantees the existence of a µ, such that

TRAPDOOR CONSTRUCTIONS 19

µ · (qλ + 1) ≡ 1 (mod qn + 1). Then, the inversion of y = xqλ+1 is found simply
by raising it to the the power of µ. Altogether, this process is reminiscent to how
inversion is performed in RSA, but the hardness assumption is very different. Since
the Frobenius automorphism, x 7→ xq, is a linear transformation over the base field
F, the central map Q can be represented by quadratic polynomials over F.

HFE was proposed some years after C∗ and might initially be seen as a general-
ization of it. The central map Q is given by

Q : x 7→ y =
∑

0≤i,j<n
aijxq

i+qj +
∑

0≤i<n
bixq

i

+ c,

where aij , bjc ∈ E. However, the inversion works very differently from C∗. To invert
Q in HFE, it is necessary to use root finding algorithms for polynomials, whereas in
C∗ it was just raising to an exponent.

In single field constructions, the transformation is defined directly in terms of
the base field F, not utilizing any extension fields at all. The two main examples
of this class are the “Unbalanced Oil and Vinegar” (UOV) scheme suggested by
Patarin et. al [KPG99] and the “Stepwise Triangular System” (STS) due to Wolf
and Preneel [WP05a]. In UOV the central polynomials of P ′ are of the form

pk(x1, . . . , xn) =
v∑
i=1

n∑
j=1

a
(k)
ij xixj +

n∑
i=1

b
(k)
i xj + c(k).

Here a(k)
ij , b(k)

i and c(k) are all elements in F and 1 ≤ k ≤ v = n−m. Notice that
there are no xixj terms where both i, j > v. The variables xi for 1 ≤ i ≤ v are
called the “vinegar” variables and are combined quadratically. The variables xj for
v < j ≤ n are called the “oil” variables, and are not combined with each other, but
only with other vinegar variables. This is the key point of the UOV design, since
it allows for inversion of the system. By assigning random values to the vinegar
variables, we obtain a linear system of equations in the oil variables. Such systems
can be solved efficiently using Gaussian elimination. UOV is only applicable as
a signature scheme since it needs at least twice as many vinegar variables as oil
variables in order to be considered secure [WP05b].

20 MULTIVARIATE QUADRATIC CRYPTOGRAPHY

2.4 Key sizes and computational aspects

2.4.1 Key sizes

A problem common to allMQ-systems is their public key size. Because the public
key is a set of multivariate equations, its size can be very large when compared
to other public-key cryptosystems. Recall that a general multivariate quadratic
polynomial of n variables over a finite field F, is of the form:

p(x1, . . . , xn) =
∑

1≤i≤j≤n
aijxixj +

n∑
i=1

bixi + c,

where aij , bi, c ∈ F. In general, we can potentially have n(n+1)
2 different quadratic

terms in p. However, for the special case of F = GF(2), there will only be
(
n
2
)

quadratic terms, since x2 = x for all x ∈ F2. Hence, the number of potential terms
τ(n) in p(x1, . . . , xn), is given by the formula:

τ(n) =


1 + n+ n(n− 1)

2 = 1 + n(n+ 1)
2 if F = GF(2)

1 + n+ n(n+ 1)
2 = 1 + n(n+ 3)

2 otherwise.
(2.2)

The public key size inMQ-schemes will therefore grow according to the following
expression:

m · τ(n) · log2 |F|,

where m is the number of polynomials.
Interestingly, some MQ-systems cannot generate all possible terms by their

design, making it possible to reduce the size requirements somewhat by choosing
an appropriate encoding scheme. Nevertheless, the key sizes will still increase as
O(mn2). Additionally, if a scheme deviates too much from a genericMQ system,
information about the central map might leak through into the public key. This was
exactly the case of Patarin’s attack [Pat00] on the C∗ scheme by Matsumoto and
Imai [MI88]. He was able to establish a set of bilinear relations between some of the
variables in the public key. This was only possible because of the special properties
of the central map P ′ : x 7→ xqλ+1 (c.f. Section 2.3), which is used in that scheme.

With a common parameter choice like m ≈ 100 and n ≈ 100, the public key in
MQ-schemes can easily be several hundred kilobytes in size. Compared to a few

KEY SIZES AND COMPUTATIONAL ASPECTS 21

thousand bits in systems like RSA, we see that cryptography based on multivariate
cryptography carries an extra burden on its storage and memory requirements.

2.4.2 Efficiency of cryptography based onMQ-trapdoors

There are two “directions” to consider when discussing the efficiency of a public-
key scheme: the encrypting/verification direction, and the decrypting/signing
direction. In aMQ-system this corresponds to applying the functions T ◦ P ′ ◦ S
and S−1 ◦ P ′−1 ◦ T −1, respectively. However, in reality the first function represents
the public key of the scheme, so the internal components are not known. Externally,
only their composition is visible, which is of course the system of multivariate
polynomial equations P. Thus, the two directions are fundamentally different
from an implementation point of view. The encryption/verification direction is the
evaluation of m multivariate quadratic polynomials, while the decrypting/signing
direction is the application of two linear transformations and one quadratic map.
This is in contrast to the public-key schemes we use today, where both directions
are quite similar. There are of course differences in these as well, for example
many implementations are optimized to favor particularly efficient operation in one
direction at the expense of the other, but they are based on the same underlying
algorithms and modular arithmetic. For MQ-schemes, the two directions can
require very different implementations.

We consider the encryption/verification direction first. From Equation 2.2, we
have that each polynomial pi in the public key has τ(n) = O(n2) terms. Hence,
to evaluate it at the value x ∈ Fn, we need to perform O(n2) multiplications
and additions in the finite field F. This yields a total of O(mn2) additions and
multiplications for the full public key. Strategies for how the evaluation of the
public key can be efficiently implemented are discussed in [BBG07].

We now turn to the decryption/signing direction. Recall that S and T are
affine bijections on Fn and Fm, respectively. They are usually implemented as
multiplications with n× n and m×m matrices over the finite field F. So the time
complexity of the secret map is O(n2 + m2) multiplications in F, plus whatever
time needed to invert the central map P . This last part is clearly dependent on the
specific trapdoor function used, so it is difficult to discuss its complexity in general.

CHAPTER 3
Quasigroups

As described in Chapter 2, the main distinctive feature of the variousMQ-schemes
is how they construct the central map P ′. We also noted that essentially, there are
only four basic trapdoor designs known. Other schemes are simply variations on
these four base classes. Unfortunately, most of them have been broken in their basic
forms.

Recently, a completely new approach to creatingMQ-trapdoors was proposed
by Gligoroski et al. in 2008 [GMK08b]. Their idea was to use the algebraic
structures called quasigroups to form the basis for the central invertible map.
Shortly thereafter, they introduced a public-key cryptosystem based on this idea,
called MQQ [GMK08a], and later a signature scheme, called MQQ-SIG [GØJ+11].
The last “Q” in those acronyms stands for “Quasigroup”.

In this chapter we present the necessary theoretical background on quasigroups,
in order to be able to describe the MQQ-SIG scheme in Chapter 4. We refer to
[Smi07] for a more thorough treatment of quasigroup theory.

23

24 QUASIGROUPS

3.1 Basic definitions

Definition 3.1. A quasigroup (Q, ∗) is a set Q together with a binary operation
∗, such that for each u, v in Q there exists unique elements x, y in Q satisfying

u ∗ x = v,

y ∗ u = v.
(3.1)

The number of elements in the set Q is called the order of the quasigroup.

The unique solutions x and y defines two binary operators upon the quasigroup,
called the left and right division∗ respectively. They are denoted \ and / and defined
by the relations

u ∗ x = v ⇔ x = u\v ⇔ u = v/x. (3.2)

It is easy to see that this makes (Q, \) and (Q, /) quasigroups in their own rights.
The operators \ and / satisfy the following identities†:

Proposition 3.2. The quasigroup (Q, ∗) together with the binary operators \ and
/ satisfies the identities

u ∗ (u\v) = v,

(v/u) ∗ u = v,

u\(u ∗ v) = v,

(v ∗ u)/u = v

(3.3)

for all u, v ∈ Q.

Proof. The first two identities are simply the definitions of being a left and right
division in a quasigroup. For the third, note that u\(u∗v) is a solution of u∗x = u∗v,
for all u, v ∈ Q. Simultaneously, we see that also v is a solution of this equation.
Hence, by the uniqueness of the left division, u\(u ∗ v) = v. The last case is proved
analogously.

∗Sometimes also called the left and right parastrophe.
†In fact, this proposition could be taken as the definition of the quasigroups (Q, ∗), (Q, \) and
(Q, /), derived from the algebra (Q, ∗, \, /).

BASIC DEFINITIONS 25

Definition 3.3. An identity element in a quasigroup Q is an element e such that
e ∗ x = x = x ∗ e holds for all x in Q. A quasigroup with an identity element is
called a loop.

Example 3.4. Each group is a quasigroup, with x/y = xy−1 and x\y = x−1y.
Conversely, every (non-empty) associative quasigroup is a group. 4

Example 3.5. (Z,−) is a non-associative quasigroup. 4

Example 3.6. A Latin square is an n× n square filled with n different symbols,
arranged such that each symbol occurs exactly once in each column and in each
row. The multiplication table of a (finite) quasigroup is a Latin square. Conversely;
each Latin square yields the multiplication table of a quasigroup. This is easily seen
to be true, since for any Latin square we can add a left border column and a top
border row and label them with the symbols 1, . . . , n. Each symbol corresponds
to an element in the quasigroup. In Figure 3.1 we see an example of a 5× 5 Latin
square on the left and a corresponding quasigroup multiplication table on the right,
with 4 ∗ 3 = 2, and so on. 4

1 3 4 2 5
3 2 1 5 4
4 1 5 3 2
5 4 2 1 3
2 5 3 4 1

∗ 1 2 3 4 5
1 1 3 4 2 5
2 3 2 1 5 4
3 4 1 5 3 2
4 5 4 2 1 3
5 2 5 3 4 1

Figure 3.1: A Latin square and a corresponding finite quasigroup.

Definition 3.7. Let (Q1, ∗1) and (Q2, ∗2) be quasigroups. A mapping

α : (Q1, ∗1)→ (Q2, ∗2)

is called a homomorphism if for all u, v ∈ Q1

α(u ∗1 v) = α(u) ∗2 α(v).

If α is bijective we call it an isomorphism and say that Q1 and Q2 are isomorphic.

26 QUASIGROUPS

Within quasigroup theory, the common notion of homomorphism’s is often too
strong. A weaker requirement is that of a homotopy:

Definition 3.8. Let (Q1, ∗1) and (Q2, ∗2) be quasigroups. A triple of maps
(α, β, γ)

α, β, γ : (Q1, ∗1)→ (Q2, ∗2)

is called a homotopy if for all u, v ∈ Q1

α(u) ∗2 β(v) = γ(u ∗1 v).

The triple is an isotopy if the maps α, β, γ are bijective. We then say that Q1 and
Q2 are isotopic, and denote it Q1 ∼ Q2.

Proposition 3.9. Let (Q1, ∗1) be a quasigroup, and let Q2 be a set such that
|Q1| = |Q2|. Let α, β, γ be bijective maps: Q2 → Q1. Then (Q2, ∗2), defined by

u ∗2 v = γ−1 (α(u) ∗1 β(v)) ,

for all u, v in Q2, is a quasigroup and (α, β, γ) is an isotopy between (Q2, ∗2) and
(Q1, ∗1).

Proof. We need to prove the existence of unique left and and right divisors in Q2.
Since both cases are handled completely analogous, we only prove the existence of
a unique left divisor.

Let u and w be two elements in the set Q2. We want to find a unique v ∈ Q2,
such that u ∗2 v = w. Let u′ = α(u) and w′ = γ(w), be the two images of u and w
in Q1, under the bijections α and γ, respectively. Since Q1 is a quasigroup, there
exists a unique v′ ∈ Q1 such that u′ ∗1 v

′ = w′. Let v be its corresponding element
in Q2 under the inverse map β−1. Then

w = γ−1(w′)

= γ−1(u′ ∗1 v
′)

= γ−1(α(u) ∗1 β(v))

= u ∗2 v.

Since α, β and γ all are bijections, uniqueness of ∗2 follows from the uniqueness of
∗1 in Q1. The isotopy follows directly from the definition.

MULTIVARIATE QUADRATIC QUASIGROUPS 27

3.2 Multivariate quadratic quasigroups

In this section we will define the special class of quasigroups known as multivariate
quadratic quasigroups. First, we recall some facts about k-ary Boolean functions.

Definition 3.10. A map α : Fk2 → F2 is called a k-ary Boolean function.

It is known that every Boolean function can be represented as a Boolean
polynomial. That is, there exists an isomorphism between the ring of Boolean
functions and the ring of Boolean polynomials. We state this fact without proof in
the following lemma. A a proof can be found in [Chr09, Thm. 2.3].

Lemma 3.11. Every k-ary Boolean function can be uniquely represented as a
Boolean polynomial from F2[x1, . . . , xk].

The unique polynomial representing a k-ary Boolean function f(x1, . . . , xk), also
known as its algebraic normal form (ANF), can in general be written as

ANF (f) = a0 +
∑

1≤i≤k
aixi +

∑
1≤i<j≤k

ai,jxixj +
∑

1≤i<j<s≤k
ai,j,sxixjxs + . . .

where all coefficients a0, ai, ai,j , . . . are in F2. Because of the unique correspondence
between a k-ary Boolean function f , and its ANF-form, we find it convenient to
identify it directly as if it were a polynomial f(x1, . . . , xk) ∈ F2[x1, . . . , xk].

Now, given a function α : Fk2 × Fk2 → Fk2 , we can represent the k-dimensional
vector α = (f1, . . . , fk), consisting of 2k-ary Boolean functions fi, as a vector of
Boolean polynomials (f1, f2, . . . , fk) ∈ (F2[x1, . . . , x2k])k.

Definition 3.12. Let α be a function

α :

m︷ ︸︸ ︷
Fk2 × . . .× Fk2 → Fk2

and let (f1, f2, . . . , fk) ∈ (F2[x1, . . . , x2m])k be its representation in Boolean poly-
nomials. Then we say that α is of degree d if d = max {deg(fi), i = 1, . . . , k}.

Let (Q, ∗) be a finite quasigroup of order 2d. We can identify every element in Q
with a unique element in Fd2. Then the binary operator ∗ can be seen as a Boolean
map ∗ : Fd2 × Fd2 → Fd2 defined as

∗ : (u, v) 7→ w,

28 QUASIGROUPS

where u, v, w ∈ Fd2 satisfy u ∗ v = w. Thus, from the above we can state:

Theorem 3.13. For every quasigroup (Q, ∗) of order 2d and for each bijection
Q→ Fd2, there is a unique map ∗q : Fd2×Fd2 → Fd2, consisting of d uniquely determined
2d-ary Boolean functions f1, . . . , fd, such that for each u, v, w ∈ Q

u ∗ v = w

if and only if

∗q(x1, . . . , xd, y1, . . . , yd) =


f1(x1, . . . , xd, y1, . . . , yd)

...
fd(x1, . . . , xd, y1, . . . , yd)

 ,

where x1, . . . , xd and y1, . . . , yd are the binary representations of u and v respectively.

The representation of quasigroups as a vector of Boolean functions, gives us
a way of classifying them according to their polynomial degrees. The degrees of
quasigroups of order 2d, d ≥ 4, will in generally be higher than two when generated at
random. As explained in Chapter 2, public-key cryptography based on multivariate
equations are usually confined to quadratic polynomials, since any degrees higher
than will lead to extremely large keys. We now define the important class of
quasigroups which are represented by multivariate quadratic polynomials.

Definition 3.14. A quasigroup (Q, ∗) of order 2d is called a Multivariate Quadratic
Quasigroup (MQQ) of type Quadd−kLink if exactly d − k of the polynomials fi
are of degree 2 (i.e. quadratic) and k of them are of degree 1 (i.e. linear), where
0 ≤ k < d.

Example 3.15. Let (Q, ∗) be the quasigroup of order 23 = 8 defined by the
following multiplication table

MULTIVARIATE QUADRATIC QUASIGROUPS 29

∗ 0 1 2 3 4 5 6 7
0 1 0 6 7 2 3 5 4
1 3 6 4 1 0 5 7 2
2 0 5 7 2 3 6 4 1
3 2 3 5 4 1 0 6 7
4 7 1 3 6 4 1 0 5
5 5 4 1 0 6 7 2 3
6 6 7 2 3 5 4 1 0
7 4 1 0 5 7 2 3 6

It can be represented by a corresponding vector of Boolean functions

∗q(x1, x2, x3, x4, x5, x6) =

x1x6 + x2x6 + x3x6 + x1 + x5

x1x5 + x1 + x3 + x4 + x5

x1x5 + x2 + x4 + x5 + x6 + 1

 ,

where

f1 = x1x6 + x2x6 + x3x6 + x1 + x5

f2 = x1x5 + x1 + x3 + x4 + x5

f3 = x1x5 + x2 + x4 + x5 + x6 + 1,

is the ANF of the Boolean functions constituting the function ∗q. Since they are all
of degree two, this is an MQQ 4

It is well known from linear algebra that a function defined as T (x) = A · x + c,
where A is an invertible n × n matrix over F2 and c ∈ Fn2 , is a permutation
of the vector space Fn2 . By Lemma 3.11, T can also be represented as a vector
(f1, f2, . . . , fn), of linear Boolean functions. We call such T a linear permutation.
A useful property of linear permutations, and one that we will need shortly, is
given in the following lemma. However, the proof is somewhat technical and not
very relevant for our purposes, so we will skip it. A proof can be found in [Chr09,
Lemma 2.25].

Lemma 3.16. Let α be a function

α :

m︷ ︸︸ ︷
Fk2 × . . .× Fk2 → Fk2

30 QUASIGROUPS

of degree d > 0, and L be a linear permutation of Fk2 . Then the maps

α′ : x1, . . . ,xm 7→ α (x1, . . . ,L(xr), . . . ,xm)

where 1 ≤ r ≤ m, and

α′′ : x1, . . . ,xm 7→ L (α (x1, . . . ,xm))

are also of degree d.

Definition 3.17. Let Q1, Q2 be quasigroups upon Fd2. We say that Q1 and Q2

are linearly isotopic if there exists three linear permutations L1,L2,L3, which forms
an isotopy (L1,L2,L3) : Q1 → Q2. If L1 = L2 = L3 we say that Q1 and Q2 are
linearly isomorphic.

Theorem 3.18. Let (Q1, ∗1) and (Q2, ∗2) be quasigroups upon Fd2. Define the
relation ∼ so that Q1 ∼ Q2 if and only if Q1 is linearly isotopic to Q2. Then ∼ is
an equivalence relation on the set of quasigroups.

Proof. For every quasigroup Q, (id, id, id) is a linear isotopy from Q to itself, so ∼
is reflexive.

Suppose Q1 ∼ Q2, so there exists a linear isotopy (α, β, γ) : Q1 → Q2. In
particular we have that u ∗1 v = γ−1 (α(u) ∗2 β(v)). Then the inverses of α, β and
γ represents a linear isotopy from Q2 to Q1, that is,

α−1(u) ∗1 β
−1(v) = γ−1 (α (α−1(u)

)
∗2 β

(
β−1(v)

))
= γ−1 (u ∗2 v) ,

for u, v ∈ Q2. So ∼ is symmetric.
Finally, assume Q1 ∼ Q2 and Q2 ∼ Q3, then there exists linear isotopies

(α, β, γ) : Q1 → Q2 and (α′, β′, γ′) : Q2 → Q3. Again we note that

u ∗1 v = γ−1 (α(u) ∗2 β(v))

u ∗2 v = γ′−1 (α′(u) ∗3 β
′(v)) ,

MULTIVARIATE QUADRATIC QUASIGROUPS 31

for any u, v ∈ Fd2. We claim that the triple (α′′, β′′, γ′′), given by α′′ = α′α, β′′ = β′β

and γ′′ = γ′γ, is a linear isotopy from Q1 to Q3. For let u, v ∈ Q1, then

γ′′(u ∗1 v) = γ′′
(
γ−1 (α(u) ∗2 β(v))

)
= γ′′γ−1 (α(u) ∗2 β(v))

= γ′′γ−1 (γ′−1 (α′ (α(u)) ∗3 β
′ (β(v)))

)
= γ′′γ−1γ′−1 (α′α(u) ∗3 β

′β(v))

= α′′(u) ∗3 β
′′(v),

so ∼ is also transitive.

We call the equivalence class of a linear isotopy a linear isotopy class. It is
interesting to know which characteristics of a MQQ that are invariant under a linear
isotopy. That is, which properties are shared among all the quasigroups in a linear
isotopy class? This question is studied in more detail in Chapter 5, but we can
state one easy fact here.

Corollary 3.19. Linearly isotopic Boolean quasigroups have the same degree.

Proof. Immediate from Lemma 3.16.

CHAPTER 4
MQQ-SIG

In 2008, Gligoroski, Markovski and Knapskog [GMK08b] proposed a new way
of creatingMQ-trapdoors, using quasigroup string transformations. Basically, a
quasigroup string transformation treats a bit string z ∈ {0, 1}n, as consisting of
k = n

d equally sized substrings zi. Each of these substrings can be regarded as
elements of a quasigroup (Q, ∗), of 2d elements. Thus, it is possible to define a
transformation on z, based on some application of the quasigroup operation to its
substrings zi. This was exactly the idea of Gligoroski et al., when they devising
their new trapdoor design.

Later they showed how this trapdoor construction could be used to build a public-
key cryptography scheme, which they simply called MQQ∗ [GMK08a]. However,
shortly after its publication the MQQ cipher was broken both by Perret† using a
Gröbner basis approach (which we will return to in Chapter 5); and Mohamed et
al., using the MutantXL algorithm [MDBW09].

Recently, Gligoroski et al. proposed a signature scheme [GØJ+11] based on the
main ideas from the MQQ cryptosystem, called MQQ-SIG. Besides being a signature
scheme, the main difference that separates MQQ-SIG from the MQQ cipher, is that

∗To avoid the potential confusion with the abbreviation we so far have used to denote a multivariate
quadratic quasigroup, we will always qualify the MQQ cipher as “the cryptosystem MQQ”, “the
MQQ cipher” or something similar.
†In a personal e-mail correspondence with one of the designers, according to [FØPG10].

33

34 MQQ-SIG

it only utilize one quasigroup for the central map P , while the original MQQ cipher
used several. Additionally, to counter the previously successful attacks, MQQ-SIG
applies a modification known as the minus-modifier (see [WP05b]), which removes
some equations from the public key. In particular, the first n

2 equations are removed.
They also proved that MQQ-SIG is existentially unforgable under a chosen-message
attack (or CMA-secure for short) in the random oracle model.

This chapter presents the full details of the MQQ-SIG scheme. We explain
both the operation of the system, and the rationale that went into designing it,
according to its designers [GØJ+11]. Additionally, we discuss some computational
and implementation aspects.

4.1 High level description

MQQ-SIG is, like otherMQ-schemes, based on two bijective linear/affine transfor-
mations and one central multivariate quadratic map:

P = S ◦ P ′ ◦ S ′ : {0, 1}n → {0, 1}n. (4.1)

Here, S ′ is a bijective affine transformation defined as S ′(x) = S(x) + v, where
S is given by a bijective linear transformation S(x) = S · x. We will describe the
construction and operation of the central map P ′, in further detail in Section 4.2
and the linear transformation S in Section 4.3. Here, it suffices to know that
they are efficiently invertible transformations. As mentioned in the introduction,
MQQ-SIG employs a common modification of the standardMQ-structure, known
as the “minus”-modifier, which discards half of the public polynomials in the public
key (we refer to [WP05b], for a description of this, and other modifications that
can be done toMQ-schemes). In other words, the public key consists of only half
of the equations generated by the function in Equation 4.1. The operation of the
MQQ-SIG as a digital signature system is specified in Algorithm 4.1.

To sign a message m in MQQ-SIG, the message is first hashed by some standard
hash function H. The message digest is then split into two halves which are
concatenated with two random values. The two values obtained after concatenation
are then fed to the inverse transformations S−1, P ′−1 and S ′−1. The output is the
signature of the message. The signing process is illustrated in Figure 4.1a.

HIGH LEVEL DESCRIPTION 35

m
———
———
———
———

h = h0||h1

y0 = r0||h1 y1 = r1||h1

x0 = D(y0) x1 = D(y1)

Signature = (x0, x1)

H(m)

(a) Signing

h = h0||h1

H(m)

E(x0) || E(x1)

h0 h1||

Signature

Compare

m
———
———
———
———

1

(b) Verification

Figure 4.1: A graphical presentation of the signing and verifi-
cation process in MQQ-SIG. D denotes the function composition:
D = S ′−1 ◦ P ′−1 ◦ S−1.

To verify a message-signature pair, the message is first hashed with the standard
hash function. Then the public key is evaluated on each element of the pair which
makes up the signature. If the message digest and the concatenated result of the
two public key evaluations are equal, the signature is deemed valid. Otherwise, it is
rejected. The verification process is illustrated in Figure 4.1b.

36 MQQ-SIG

Algorithm 4.1 The MQQ-SIG Signature Scheme

Key Setup
Let Alice be a user of the MQQ-SIG scheme. First she generates a MQQ according
to Algorithm 4.2. This provides her with a description of the central map P ′
and its inverse P ′−1. Then she generates an invertible n × n Boolean matrix S
according to the description in Section 4.3. Additionally she picks a hash function
H : {0, 1}∗ → {0, 1}n. The hash function is a standard public parameter of the
MQQ-SIG scheme. Alice now performs the following steps:

1. computes a vector y of n quadratic multivariate polynomials Pi(x1, . . . , xn)
in n variables as:

y = S(P(S ′(x))),

where x = (x1, . . . , xn), and S and S ′ are defined by the matrix S;

2. defines the polynomial vector E as the last half of y. That is, the elements of
E consists of the polynomials Pi(x1, . . . , xn) for i = 1 + n

2 , . . . , n.

The public key is the vector E. Alice’s private key is the triple (S−1,P ′−1
,S ′−1).

Signature Generation
To sign a message m ∈ {0, 1}∗, Alice performs the following steps:

1. computes h = h0||h1 ← H(m), where h0 and h1 both are n
2 bits long;

2. generates two random n
2 -bit values, r0 and r1;

3. set y0 = r0||h0 and y1 = r1||h1;

4. computes x0 = S ′−1(P ′−1(S−1(y0))) and x1 = S ′−1(P ′−1(S−1(y1))).

The digital signature is the pair (x0,x1).

Signature Verification
To verify a message-signature pair (m, (x0,x1)), Bob performs the following steps:

1. compute h = h0||h1 ← H(m);

2. compute z0 ← E(x0) and z1 ← E(x1).

He accepts the signature if z0 = h0 and z1 = h1, otherwise he rejects.

THE CENTRAL MAP P ′ 37

4.2 The central map P ′

4.2.1 Construction of the quasigroup

The most distinguishing factor of the MQQ-SIG scheme is how it constructs its
central map P ′. It is at this stage the theory of multivariate quadratic quasigroups
is utilized to create a trapdoor which is efficiently invertible.

First, recall from Section 3.2 that any quasigroup of order 2d can be uniquely
represented as a d-element vector consisting of 2d-ary Boolean functions. If at least
one of these functions are of degree 2, and the rest of degree 2 or less, the quasigroup
is said to be multivariate quadratic (MQQ). Thus, when we consider the operation
of a given multivariate quadratic quasigroup, it suffices to regard it as a mapping in
the vector space Fd2.

The following Lemma provides sufficient conditions for a quasigroup to be an
MQQ.

Lemma 4.1. ([CKG10]) Let A′1 = (fij), A′2 = (gij) be two d × d matrices of
linear Boolean expressions in the variables x1, . . . , xd and y1, . . . , yd respectively.
Let c be a binary column vector of d elements. If the following two conditions are
fulfilled:

det(A′1) = det(A′2) = 1,

A′1 · (y1, . . . , yd)T + (x1, . . . , xd)T = A′2 · (x1, . . . , xd)T + (y1, . . . , yd)T ,

then the function

∗vv(x1, . . . , xd, y1, . . . , yd) = A′1 · (y1, . . . , yd)T + (x1, . . . , xd)T + c′,

defines a quasigroup (Q, ∗vv) of order 2d that is an MQQ.

In [CKG10, Thm. 11] the conditions in Lemma 4.1 were refined to allow for a
more constructive statement on how to build MQQ’s. In particular, they show that
the matrices A1, A2, are of the form

A′1 = Id +
(

(aij1 , . . . , a
ij
d) · x

)
d×d

,

A′2 = Id +
(

(bij1 , . . . , b
ij
d) · y

)
d×d

,
(4.2)

38 MQQ-SIG

where aijk , b
ij
k ∈ F2, and x = (x1, . . . , xd),y = (y1, . . . , yd) ∈ Fd2.

To construct the MQQ’s in the MQQ-SIG scheme, Gligoroski et al. [GØJ+11]
defines the quasigroup operation as follows:

x ∗ y = B · U(x) ·A2 · y +B ·A1 · x + c, (4.3)

where x = (x1, . . . , xd), y = (y1, . . . , yd), and A1, A2 and B are invertible d × d
matrices over F2, and the vector c is an element in Fd2. The matrix U(x) is an upper
triangular matrix with all diagonal elements equal to 1, and where the elements
above the main diagonal are linear expressions in the variables x1, . . . , xd.

The matrices A1, A2 and B, together with the vector c, can all be generated by
a uniformly random process. The matrix U(x) is computed as a matrix of column
vectors as follows:

U(x) = Id +

U1 ·A1 · x · · · Ud ·A1 · x

 , (4.4)

where the Ui’s are strictly upper triangular matrices having all elements in the rows
{i, . . . , d} zero. The elements in the rows {1, . . . , i− 1} (and which lays above the
main diagonal) may be either 0 or 1, generated uniformly at random. In particular,
U1 is the all zero matrix.

Theorem 4.2. The function ∗ defined in Equation 4.3 represents a multivariate
quadratic quasigroup of order 2d.

Proof. Let us first consider Equation 4.3 without A1, A2 and B, that is, we define
the binary operator ∗′:

x ∗′ y = U(x) · y + x + c′,

where we let c′ = B−1 · c. Note that U(x) is a special form of the matrices in
Equation 4.2, and in particular, det(U(x)) = 1. Hence, this modified expression is
a multivariate quadratic quasigroup according to Lemma 4.1.

Now, since A1, A2 and B are all bijections, Proposition 3.9 gives that (Fd2, ∗)
is a quasigroups, and (A1, A2, B) is an isotopy from (Fd2, ∗′) to (Fd2, ∗). Since the
degrees of quasigroups are kept under linear isotopies (cf. Proposition 3.19), (Fd2, ∗)
is an MQQ.

THE CENTRAL MAP P ′ 39

Example 4.3. Referring back to Example 3.15 in Chapter 3, we had a quasigroup
(Q, ∗), which could be represented by the operation

∗q =

f1

f2

f3

 =

x1x6 + x2x6 + x3x6 + x1 + x5

x1x5 + x1 + x3 + x4 + x5

x1x5 + x2 + x4 + x5 + x6 + 1

 ,

where f1, f2 and f3, were the ANF of the corresponding Boolean functions. Since
they are all of degree two, this is an MQQ of order 23 = 8. Moreover, it is actually
constructed according to Equation 4.3, where

A1 =

0 1 0
1 0 0
1 1 1

 A2 =

1 1 1
0 1 0
0 0 1



B =

0 1 0
1 0 1
1 0 0

 U(x) =

1 x1 0
0 1 x1 + x2 + x3

0 0 1

 c =

0
0
1

 ,

This is an example of the kinds of quasigroups used in MQQ-SIG (albeit with d = 3,
which is too low to be used in a real system). 4

In addition to the definition in Equation 4.3, the designers of MQQ-SIG also
required the MQQ to satisfy the following two con:

∀i ∈ {1, . . . , d} , Rank(Bfi) ≥ 2d− 4, (4.5a)

∃j ∈ {1, . . . , d} , Rank(Bfj) = 2d− 2, (4.5b)

where Bfi is a 2d×2d symmetric Boolean matrix, determined by the i’th polynomial
fi in the MQQ, as

Bfi =
(

0 M

MT 0

)
, (4.6)

where each entry in the d× d matrix M , corresponds to a term xsyt, 1 ≤ s, t ≤ d,
in the original polynomial fi. If the term xsyt is present in fi then the entry in row
s, column t, in M is 1. Otherwise it is 0. In other words, if Bfi = (bjk)2d×2d, then
bj,d+k = bd+k,j = 1 if and only if xjyk is a term in fi.

40 MQQ-SIG

According to Gligoroski et al. [GØJ+11], was the rationale for including the
constraints in Equation 4.5a and 4.5b, to thwart the so-called MinRank attacks
[BFS99, FLDVP08]. The MinRank problem is the following: given a sequence of
matrices (M1, . . . ,Mn) over some finite field and an integer r < n, find a linear
combination of the matrices M1,M2, . . . ,Mn, such that Rank(

∑n
i=1 λiMi) ≤ r. For

special instances of this problem there exists efficient methods to solve the MinRank
problem. These solutions can then further be used to break some MQ-systems
with certain properties [GC00]. We will return to the purpose of these constraints
in Chapter 5, where we analyze the parameters of MQQ-SIG.

4.2.2 Operation of the central map P ′

We now explain how quasigroup string transformations can be used to construct
the central map P ′. In MQQ-SIG the parameter d is set to 8, so the size of the
quasigroup is 28. Recall that P ′ is a function P ′ : {0, 1}n → {0, 1}n, mapping n bits
of input to n bits of output. It is required that n be a multiple of 8.

Consider the bit string x = X = X1X2 · · ·Xk of k = n
8 equally sized bit strings

Xi, based on the original input string x. As explained in Chapter 3, we can identify
each Xi with an element in the vector space F8

2. Hence, we can view X as a string
of elements from the quasigroup (F8

2, ∗) defined in Equation 4.3. The quasigroup
string transformation, turns X into to the output bit string Y = Y1Y2 · · ·Yk, by a
process illustrated in Figure 4.2.

X1 X2 X3 · · · Xk−1 Xk

Y1 Y2 Y3 · · · Yk−1 Yk

∗ ∗ ∗ ∗ ∗

Figure 4.2: A graphical presentation of the construction of the central
map P ′.

In words: the quasigroup operation ∗, is applied successively to each consecutive
pair of vectors Xi, and Xi−1. The procedure alternates between which element is
the left or right element in the quasigroup operation, where Y1 = X1. Finally, the

THE CENTRAL MAP P ′ 41

string y = Y = Y1Y2 · · ·Yk is created as the final output, seen as bit string of length
n = 8 · k. Algorithm 4.2 gives the full details of the method.

By the definition of a quasigroup, the central map P ′ is guaranteed to be an
invertible transformation. Because the first vector X1 is mapped directly to its
output Y1, it is possible to “unwrap” the chain of quasigroup operations applied in
Figure 4.2 by using the appropriate division operator. We will see how this is done
in the next section.

Since the quasigroup is an MQQ, the central map P ′ will be a quadratic
transformation. Composed with the other two functions, S and S ′, we get a public
key P consisting of n quadratic multivariate polynomials.

Algorithm 4.2 The MQQ-SIG central map P ′

Input: A vector x ∈ Fn2 , where n is required to be a multiple of 8. Additionally it
assumed that an MQQ, (Q, ∗), is already defined.
Output: A vector y ∈ Fn2 .

1. Regard the vector x as a string X = X1X2 . . . Xk, where k = n
8 , and each Xi

is an 8-element vector representing an element in Q;

2. Compute the string y = Y1Y2 . . . Yk, where

Yi =


X1 i = 1
Xi−1 ∗Xi i = 2, 4, . . . k
Xi ∗Xi−1 i = 3, 5, . . . k − 1

(4.7)

3. Let y be the final output, regarded as an element in Fn2 .

4.2.3 The inverse map P ′−1

Having dealt with the forward direction of the central map P ′, we now turn to
its inverse. Let y denote the n-bit input vector coming from the S−1 function (cf.
Equation 4.3). As in the case of the forward direction, the input is split into n

8
vectors, Yi ∈ F8

2. Each of these vectors can be considered elements in the MQQ. To
invert the P ′ function we seek to reverse the action done in Equation 4.7. To this
end, the values Xi are obtained by using the quasigroups left and right division

42 MQQ-SIG

operators as follows:

Xi =


Y1 i = 1

Xi−1\Yi i = 2, 4, . . . , k

Yi/Xi−1 i = 3, 5, . . . , k − 1

The process is also illustrated in Fig. 4.3. This unwrapping of the Xi values explains
why it was necessary to set Y1 = X1 in Equation 4.7.

After computing all the left and right divisors, the preimage x = P ′−1(y) is
obtained by forming the bit string x = X1X2 . . . Xk.

Y1 Y2 Y3 . . . Yk−1 Yk

X1 X2 X3 . . . Xk−1 Xk

\ / \ / \

Figure 4.3: A graphical presentation of the construction of the inverse
map P ′−1, using the right and left division operators.

So far we have not said anything about how to actually compute the division
operators \ and /. Unlike the ∗ operator, we do not have a closed form expression
for \ and / readily available. In general, obtaining a closed form formula can be
computationally demanding, since the division operators may not be quadratic. In
fact, the division operators can be of any degree deg where 2 ≤ deg ≤ d [SCG12].
Consequently, the division operators are usually implemented in a way that does
not require a closed form formula. We present two different approaches below.

The simplest approach is to pre-compute the multiplication tables for each
operation based on the original operator ∗. Then \ and / can be implemented
as efficient table lookups. Since the quasigroups in MQQ-SIG are of size 28, this
requires two tables of size 64 KB to be stored. For anything larger than 28, this
approach quickly becomes prohibitively expensive, so it limits the MQQ’s to be of
relatively small sizes.

Another approach, which avoids the storage requirements of the division tables,
is to invert P by solving a system of d linear equations. Recall the following relation
between ∗ and the division operators:

x ∗ y = z⇔ x = y\z⇔ y = z/x.

THE TRANSFORMATIONS S AND S ′ 43

Given two known values x, z ∈ F8
2. To find y = z/x, say, we need to solve the

following system of equations:
z = x ∗ y.

Since the quasigroups in MQQ-SIG are bilinear, this amounts to solving a system of
linear equations in the variables y1, y2, . . . , yd. Using Gaussian elimination this can
be done in approximately O(d3) time. This method reduce the storage requirements
at the expense of somewhat longer run times. Note that this method for inverting
the central map is similar to the approach used in UOV (cf. Section 2.3).

4.3 The transformations S and S ′

The two transformations S and S ′, which constitute the linear and affine part of
the public key in MQQ-SIG, are determined by an invertible n× n Boolean matrix
S. In general, S could be generated uniformly at random, requiring n2 bits to store.
With the proposed sizes of n = 160, 192, 224 or 256, this amounts to an addition of
3 to 8 KBytes to the private key. In order to reduce the size of the private key, the
designers of MQQ-SIG suggested to create S in a special manner, using the concept
of circulant matrices. A circulant matrix is a square matrix, where each row vector
is rotated one element to the right relative to the preceding row vector.

The invertible matrix S is defined in terms of its inverse S−1, which is created
as the sum of two circulant matrices as follows:

S−1 =
n
16⊕
i=0

Iσ0
i
⊕

n
16 +1⊕
i=0

Iσ1
i
, (4.8)

where Iσ0
i
, i = {0, 1, 2, . . . , n16} and Iσ1

i
, i = {0, 1, 2, . . . , n16 + 1} are permutation

matrices of size n, the operation ⊕ is a bitwise exclusive-OR (XOR) of the elements
in the permutation matrices, and σ0

i , σ1
i are permutations on n elements. They are

defined by the following expressions:

σ0
0 − random permutation on {1, 2, . . . n},

σ0
i = RotateLeft(σ0

i−1, 8), for i = {1, . . . , n16},

σ1
0 − random permutation on {1, 2, . . . n},

σ1
i = RotateLeft(σ1

i−1, 8), for i = {1, . . . , n16 + 1}.

44 MQQ-SIG

Of course, σ0
0 and σ1

0 must be chosen such that Equation 4.8 yields an invertible
matrix S−1 (and hence also S = (S−1)−1).

From S we define S to be the linear transformation

S(x) = S · x, (4.9)

and S ′ to be the affine transformation

S ′(x) = S · x + v. (4.10)

The vector v = (v1, v2, . . . , vn) ∈ Fn2 is derived from the permutation σ1
0 =

(1 2 ··· n
s1 s2 ··· sn

)
in the following peculiar manner:

vi =


((
s1+b i−1

8 c

)
mod 16

)
× 16

2(8−i) mod 8

+
(s65+b i−1

8 c

2(8−i) mod 8

) mod 2. (4.11)

Put less succinctly: the bits vi, of the vector v, are constructed as the XOR of
two terms. The first term is the four least significant bits from one of the values
s1, . . . , sn8 , shifted four places to the left, and then shifted between 0-7 places to
the right again, depending on the value of i. The second term is one of the values
s65, . . . , s65+n

8
shifted the same variable number of places to the right.

Gligoroski et al. [GØJ+11], explains the construction of S both from a perfor-
mance and a security perspective. As mentioned in the beginning of the section,
the goal was to reduce the private key size. Since S−1 is uniquely determined by σ0

0

and σ1
0 , it is not necessary to store the full matrix. We will come back to this point

in the next section.
The security argument regards the matrix’ properties compared to a truly

random matrix. The matrix is constructed as the combination of two circulant
matrices instead of using just one circulant matrix. Since the inverse of a circulant
matrix is again circulant, which has strong regular properties, they were afraid that
it might affect the randomness of the multivariate quadratic equations in the public
key. Thus, they chose to use two permutations instead of just one to avoid having a
circulant matrix as one of the transformation in the public key. The cost is in the
need to store two permutations instead of one.

OPERATING CHARACTERISTICS 45

4.4 Operating characteristics

4.4.1 Sizes of the public and private key

The public key in MQQ-SIG consists of n2 randomly generated multivariate quadratic
equations. From Equation 2.2, we know that each polynomial might have 1 +
n(n+1)

2 terms. Since we need one bit to store each potential term, the size of the
public key is n

2 × (1 + n(n+1)
2) bits. For MQQ-SIG the number of variables are

n ∈ {160, 192, 224, 256}, which yields a public key in the range of 128 to 412 KB.
The private key is the triple (S−1,P ′−1

,S ′−1), but in Algorithm 4.1 it is not
specified which parts of the key that need to be stored, because this can be
implementation specific. As explained in Section 4.2.3, the performance of the
division operators can be seen as a time-memory trade-off between faster run times,
at the expense of having to store two lookup tables; and use less memory, at the
cost of having to solve a set of linear equations.

These considerations can be applied to the transformations S−1 and S ′−1 as
well. They are both defined in terms of the matrix S−1 and the vector v. Recall
that S−1 is created in a special way using two circular matrices defined by the
permutations σ0

0 and σ1
0 . Since σ0

0 and σ1
0 uniquely determine S−1 (and v), it is

sufficient to just store them as the representation of the private-key transformations
S−1 and S ′−1 . Consequently, we have the following result:

Proposition 4.4. The linear transformation S−1 can be encoded in a unique way
using 2n bytes.

Proof. Since σ0
0 and σ1

0 are sufficient to uniquely recreate S−1 it is only necessary
to find an encoding of these two permutations. A permutation on n symbols can
be uniquely encoded as a string of n bytes, where each byte represents one of the
symbols, so the claim follows.

For a system which implements the signing part of MQQ-SIG it is possible
to either just store the permutations σ0

0 and σ1
0 , and then recreate S−1 for each

signature, or to store the full matrix S−1 (and v), saving a few cycles when generating
a signature. One might be preferable over the other depending on context.

Finally, the quasigroup needs to be stored, which in MQQ-SIG requires 81 bytes.

46 MQQ-SIG

Proposition 4.5. A multivariate quadratic quasigroup created according to Equa-
tion 4.1, with d = 8, can be encoded in unique way with 81 bytes.

Proof. Recall that each element in the MQQ vector is a bilinear function of the
form

d∑
1≤i,j≤d

aijxiyj +
d∑
i=1

b′ixi +
d∑
i=1

b′′i yi + c,

where aij , b′i, b′′i , c ∈ F2. For d = 8 the quadratic part can potentially require 64 = 82

2
bits to store, the linear part 16 = 2× 8 bits, and the constant 1 bit. Since we have
8 such functions the total storage requirement is 648 = 8× (64 + 16 + 1) bits, or 81
bytes.

To summarize: the size of the private key in MQQ-SIG can be as low as
401 = 81 + 2× 160 bytes, if only the permutations and the quasigroup are stored,
or as high as 136 KB if the division operators are implemented as pre-computed
lookup tables and the full matrix S is stored.

4.4.2 Computational aspects

The designers of MQQ-SIG also provided some performance results of the system,
based on a C implementation submitted to the SUPERCOP benchmarking system
[BL]. We restate their results here in Table 4.1 for easy reference. The test also
included performance numbers from other signature schemes, including RSA [RSA78]
and ECDSA [JMV01], in addition to severalMQ-schemes: Rainbow [DS05], TTS
[YC05] and 3ICP [DWY07].

The results in Table 4.1 show that MQQ-SIG is much faster than both RSA
(600-640 times) and ECDSA (270-360 times) when it comes to signing a message of
59 bytes. It also performs significantly better than the otherMQ-schemes, in the
range from 10 to 400 times faster.

The verification speed is close to that of RSA and ECDSA, and somewhat slower
than theMQ-schemes. This was explained to be due to non-optimized code for this
part of the algorithm, and that they except to see results comparable to the other
MQ-schemes with a better implementation. This is reasonable since the verification
in MQQ-SIG follows a relatively standard approach, found in mostMQ-systems.

OPERATING CHARACTERISTICS 47

The worst performing part of MQQ-SIG is the key generation algorithm. Again,
this is explained to be partially due to unoptimized code. Still, the designers admit
that the key generation will probably be the most time consuming part of the
system.

Table 4.1: Comparison between RSA, ECDSA, and several MQ
schemes: MQQ-SIG, Rainbow, TTS and 3ICP. Operations have been
performed in 64-bit mode of operation on an Intel Core i7 920X machine
running at 2 GHz. Table adopted from [GØJ+11].

Security
level Algorithm KeyGen

(CPU cycles)

Signing of 59
bytes

(CPU cycles)

Verification of a
signature on 59
bytes (CPU

cycles)

Private
key size
(bytes)

Public
key size
(bytes)

280

RSA1024 102,869,553 2,213,1112 60,084 1024 128
ECDSA160 1,201,188 944,364 1,083,060 60 40
MQQSIG160 1,509,486,980 3,476 97,740 401 137,408
RainbowBinary256 30,311,648 38,784 43,800 23,408 30,240

296
RSA1536 322,324,271 5,452,076 87,516 1536 192
ECDSA192 1,799,284 1,390,560 1,662,664 72 48
MQQSIG192 1,894,161,224 4,264 72,652 465 222,360

2112
RSA2048 786,466,598 11,020,696 125,776 2048 256
ECDSA224 2,022,896 1,555,740 1,821,348 84 56
MQQSIG224 3,140,892,292 4,756 95,180 529 352,828

2128

RSA3072 2,719,353,538 31,941,760 230,536 3072 384
ECDSA256 2,296,976 1,780,524 2,085,588 96 64
MQQSIG256 4,839,469,440 4,948 138,324 539 526,368
TTS6440 60,827,704 84,892 76,224 16,608 57,600
3ICP 15,520,100 1,641,032 60,856 12,768 35,712

CHAPTER 5
Experimental Analysis

The notion of weak keys is an important concept in cryptography. Let C be a
cryptographic scheme and k a key in its key space K. We say that k is a weak key
for C, if it has some properties that cause the cipher to behave in some undesirable
way; normally by making cryptanalysis easier. The opposite notion of weak keys, is
strong keys. While it would be preferable to only use strong keys, the designers of a
cipher is usually more concerned with avoiding weak keys in the system. Weak keys
can be found in both symmetric and asymmetric cryptography, but is especially
common in public-key schemes. This is because they often are based on a highly
algebraic formulation, which makes them more susceptible to contain keys that
deviate from the norm due to some special mathematical properties.

To illustrate the concept of weak keys, consider the selection of primes used in
RSA. There are several factorization algorithms that are highly efficient when p
and q are of some special form. For instance, the “Pollard p− 1 attack” works very
well if the factors of p − 1 (or q − 1) contains many small prime factors; and the
“Fermat factorization method” can be efficient if p and q are not too far apart. To
thwart such attacks, special care should be taken when choosing the primes. In
particular, they should not be too close together and be of a special form called

49

50 EXPERIMENTAL ANALYSIS

strong primes∗. Although, the purported benefit of this added complexity has been
disputed by Rivest and Silverman [RS99], it goes to show that choosing the keys
in a cryptosystem is not trivial matter. Furthermore, we have not even considered
attacks other than factorization for breaking RSA, such as Wiener’s attack on
low decryption exponents [Wie90] and Coppersmith’s attack on low encryption
exponents [Cop97].

The notion of weak and strong keys can be extended to also include parameters
that are not technically keys in the cryptographic scheme, but are important for its
behavior nevertheless. An example is elliptic curve cryptography, which is based
on the discrete logarithm problem (DL) in special groups generated by the points
on an elliptic curve. Shoup showed that there is a lower bound on how efficient
generic DL-algorithms can be [Sho97b]. That is, when no special properties of the
group are used to solve the problem, finding discrete logarithms is a hard problem.
Nevertheless, there is a special class of elliptic curves that yields groups in which
a related problem, called the Decisional Diffie-Hellman problem (DDH)†, is easy
solvable. These elliptic curves are called supersingular, and represent a class of
public parameters that cryptosystems based on elliptic curves should avoid.

In this chapter we try to identify different classes of keys found in the MQQ-
SIG scheme. We do so by performing extensive numerical analysis on the various
parameters that defines the system. So far, little is known about what each parameter
actually contributes to the security of the system. By our analysis we hope to
shed some light on the role each parameter plays in the security of MQQ-SIG and
to identify choices of parameters that lead to weak keys. In the next chapter we
propose a modified key generation algorithm that accounts for the findings obtained
here.

The original public-key cryptosystem based on multivariate quadratic quasi-
groups ([GMK08a]) was broken using different variations of Gröbner basis analysis
[MDBW09]. Computing Gröbner bases is a general-purpose method for solving
systems of multivariate equations. We provide a brief introduction on the basics of
Gröbner bases, and the algorithms used to compute them, in the next section.

In addition to the general method of directly solving the system of polynomial

∗A prime p is strong if it is of the form p = aq1 + 1 = bq2 − 1, where both q1 and q2 are large
prime numbers.
†See for instance Chapter 8 and 13 in [Mao03].

GRÖBNER BASIS CRYPTANALYSIS 51

equations (using Gröbner bases or otherwise), there are other attacks that seek
to exploit the internal algebraic structure of MQ-schemes. These specialized
attacks can be much more effective than generic attacks since they incorporate more
knowledge about the internals of the problem. In the cryptanalysis literature there
is an abundance of brokenMQ-schemes due to attacks other than system solving.
Of course, these attacks are usually less applicable to other ciphers since they are
intimately related to the specifications of a particular system. Nevertheless, such
attacks can be devastating for the cryptographic scheme. Currently there are no
known attacks that specifically target the inherent algebraic properties of MQQ-SIG.
In this thesis we only consider weaknesses against Gröbner bases attacks in our
analysis.

5.1 Gröbner basis cryptanalysis

The concept of a Gröbner basis was developed in the sixties by B. Buchberger. It
has applications in many different areas of mathematics, such as algebraic geometry,
number theory, homological algebra and combinatorics. For our purposes, their
usefulness is as a tool for solving systems of multivariate polynomial equations. Let
K be a field and P = K[x1, . . . , xn] the ring of multivariate polynomials. Given a
system of polynomial equations:

f1(x1, . . . , xn) = . . . = fr(x1, . . . , xn) = 0, (5.1)

we call the common set of zeroes for f1, . . . , fr the algebraic variety of the system.
Gröbner bases allow us to describe the algebraic variety for a set of polynomial
equations in a “nice” manner. What makes Gröbner bases so special is that they
are computable. We will later indicate how this can be done. First, we proceed
with a definition of a Gröbner basis. In following we will state some theorems
without proofs, we refer to [KR08] for details and further information on the theory
of Gröbner bases.

Let I = 〈f1, f2, . . . , fr〉 be an ideal in P , generated by the polynomials in the
set {f1, f2, . . . , fr}. We call this set a basis for the ideal I. Unlike the situation in
linear algebra, there is no requirement of independence between the polynomials
in order to form a basis. It can be easily shown that the algebraic variety of the

52 EXPERIMENTAL ANALYSIS

polynomials f1, f2, . . . , fr is the same as their generated ideal. Given a basis for an
ideal I in P we would like to modify it, if possible, to better describe the variety of
the ideal.

To this end, the notion of a division algorithm is an important tool for the task.
For the single variable case K[x], we know that there exists a division algorithm
such that for two polynomials f, g ∈ K[x], there exists unique polynomials q, r in
K[x] such that f(x) = q(x)g(x) + r(x). Furthermore, either r(x) = 0 or the degree
of r(x) is less than the degree of f(x). For the multivariate case there exists an
analogous algorithm, but with some important differences from the univariate case.
We state some of its properties in the following theorem. For ease of notation we
denote K[x1, x2, . . . , xn] by K[x] and a polynomial f in K[x] as f(x).

Theorem 5.1. Let f, g, q and r be polynomials in K[x] such that f(x) = q(x)g(x)+
r(x). The common zeroes of f and g are the same as the common zeroes of g and r.
Also, if f and g are two members of a basis for an ideal I of K[x], then replacement
of f by r in the basis still yields a basis for I.

A natural goal in trying to find a nice basis for an ideal I in K[x], is to either
replace the polynomials in the basis with polynomials of lower degree, or to reduce
the number of variables. Theorem 5.1 says that this can safely be done, when
possible.

Example 5.2. Let {xy2, y2−y} be a basis for the ideal I = 〈xy2, y2−y〉 in R[x, y].
We see that y2 divides xy2, so we carry out the division algorithm to obtain the
remainder of xy2 divided by y2 − y:

x

y2 − y xy2

xy2 − xy

xy

By Theorem 5.1 we can now replace xy2 in the basis with xy. This gives us the new
basis {xy, y2 − y} for I where one of the polynomials has a lower degree then in the
original basis. Since y2 does not divide xy we cannot continue the process. 4

GRÖBNER BASIS CRYPTANALYSIS 53

In order to conduct this reduction in a systematic step-by-step manner, the
notion of term ordering is necessary. For any multivariate polynomial there can
be imposed an order upon its terms based on a monomial ordering. Recall that a
monomial (or power product) is an element in K[x] of the form

xα1
1 xα2

2 · · ·xαnn ,

where all the αi ≥ 0 in Z. We call the sum
∑n
i=1 αi, the total degree of the monomial.

Definition 5.3. A monomial ordering upon K[x] is a total ordering < such that
the following conditions are satisfied for all monomials m,m1,m2 ∈ K[x].

1. 1 < m, if m 6= 1.

2. If m1 < m2, then mm1 < mm2.

3. The ordering is well-ordered (every non-empty subset of monomials in K[x]
have a minimal element with respect to <).

The ordering of multivariate monomials is not unique, however; it can be defined
in several different ways. To illustrate, we provide the definition of two common term
orderings; namely the lexicographical order and the graded reverse lexicographical
order.

Definition 5.4. Let t1 = axα1
1 xα2

2 · · ·xαnn and t2 = bxβ1
1 xβ2

2 · · ·xβnn be two terms
in K[x]. Then t1 <Lex t2 if and only if αi < βi for the first subscript i, reading left
to right, such that αi 6= βi. We call this ordering the lexicographical term order.

Definition 5.5. Let t1 = axα1
1 xα2

2 · · ·xαnn and t2 = bxβ1
1 xβ2

2 · · ·xβnn be two terms
in K[x]. Then t1 <Grevlex t2 if and only if the total degree of t1 is less than the
total degree of t2; or if the total degree is equal, t1 is less than t2 with respect to the
lexicographical order applied to the variables in reverse order. We call this ordering
the graded reverse lexicographical order.

Example 5.6. Given the four terms x1x
2
2x3, x2

3, x3
1 and x2

1x
2
3 in K[x1, x2, x3],

then their lexicographical ordering is

x2
3 <Lex x1x

2
2x3 <Lex x

2
1x

2
3 <Lex x

3
1,

54 EXPERIMENTAL ANALYSIS

and their graded reverse lexicographical ordering is

x2
3 <Grevlex x

3
1 <Grevlex x

2
1x

2
3 <Grevlex x1x

2
2x3.

4

In the following we will consider every polynomial in K[x] to be written in
decreasing order of terms with respect to some term ordering; that is, the first term
has the highest order. We denote by LT(f) the first term of a polynomial f with
respect to the term ordering, and call it the leading term of f . Looking back at
Example 5.2, we see that the new basis we obtained is also of smaller maximal
lexicographical term size than the original basis. Note however, that LT(xy) 6<Lex

LT(y2 − y) = y2.
At last we define what it means for a set of polynomials to be a Gröbner basis

for an ideal I.

Definition 5.7. A set G = {f1, . . . , fn} of non-zero polynomials in K[x1, . . . , xn],
with term ordering <, is a Gröbner basis for the ideal I = 〈f1, . . . , fn〉 if for all
f ∈ I, there exists some g ∈ G such that LT(g) divides LT(f).

The following theorem tells us how Gröbner bases can be used to solve a system
of multivariate polynomials over F2.

Theorem 5.8. The Gröbner basis of the system {f1, . . . , fn, x
2
1−x1, . . . , x

2
n−xn}

in F2[x1, . . . , xn], is of the form G = {x1 − a1, . . . , xn − an}, where ai ∈ F2.
Furthermore, (a1, . . . , an) is exactly the solution in F2 to the system of equations.

The original method for computing Gröbner bases was Buchberger’s algorithm,
introduced in his PhD-thesis [Buc65]. The basic idea of the algorithm is the
following: continuously pick out two polynomials gi, gj , from the original basis and
multiply their leading terms with a monomial as small as possible, such that their
product becomes the same (called their least common multiple). Add them together
with suitable coefficients from K so that cancellation of their leading terms ensues.
Reduce the resulting polynomial, often denoted S(gi, gj), relative to the rest of the
polynomials in the basis using the multivariate division algorithm. If S(gi, gj) can
be reduced to zero, pick another pair of polynomials in the basis and repeat the

GRÖBNER BASIS CRYPTANALYSIS 55

process. If S(gi, gj) cannot be reduced to zero, add it to the basis and start over,
reducing this basis as much as possible.

Buchberger proved that the above process will terminate. In particular, a
Gröbner basis is found when every polynomial S(gi, gj) for all i 6= j can be reduced
to zero using polynomials from the most current basis. This is due to the following
important criterion for determining whether a basis constitute a Gröbner basis.

Theorem 5.9. A basis G = {g1, g2, . . . , gr} is a Gröbner basis for the ideal
I = 〈g1, g2, . . . , gr〉 if and only if, for all i 6= j, the polynomial S(gi, gj) can be
reduced to zero by repeatedly dividing remainders by elements of G.

Although the procedure will eventually finish, it may take a very long time. In
the worst-case the run time can be as bad as doubly exponential, that is, O(22n) in
the number of variables n [BFS03]. Furthermore, the intermediary bases which are
computed in the process can be very large, giving high memory requirements.

In 1999 Faugère proposed a much improved Gröbner basis algorithm called F4

[Fau99], and later a refinement called F5 [Fau02]. These algorithms build on the
Buchberger algorithm, but enhance it by reducing the problem to a sparse linear
algebra problem instead. More precisely, F4/F5 incrementally construct matrices
AD of degree 2, 3, . . . , D; each row containing polynomials of the form mjfij , where
{fij} is some subset of the polynomials from the current basis and m1,m2, . . . are
monomials such that the total degree of mjfij is less than D. Then the row echelon
form of the AD matrices are computed using linear algebra techniques.

The number D represents the maximal total monomial degree that occurs during
the computation. This parameter is called the degree of regularity and is a key
factor in determining the complexity of Gröbner basis algorithms. For the F4/F5

algorithms in particular, it gives the size nD of the matrices AD, where n is the
number of variables. This yields an overall complexity of

O(nωD),

where 2 < ω ≤ 3 is the “linear algebra constant”. For a random system of
multivariate equations, the asymptotic behaviour of the maximal degree occurring
in the computation is on the order D ≈ n

11.114... , see [FJ03, BFS03].
In addition to the F4/F5 algorithms, another method for solving systems of mul-

tivariate quadratic equations called XL, was proposed by Courtois et al. [CKPS00].

56 EXPERIMENTAL ANALYSIS

However, it has been shown (see [ACFP12]) that XL, and its descendant family of
“mutant” algorithms called MXL [MMDB08], are actually Gröbner basis algorithms
as well. Furthermore, they can be considered redundant versions of the F4 algorithm.

Both the F4 algorithm and MutantXL have been used to break the original MQQ
cipher [MDBW09]. In a subsequent cryptanalysis of the cipher (see [FØPG10]),
it was shown that the reason for the MQQ cryptosystem to be so weak against
Gröbner basis attacks was that its degree of regularity was bounded from above by
a very small constant. Hence, even if more variables are added to the system it will
not increase the complexity in any substantial manner.

5.2 The parameters of MQQ-SIG

In order to be able to separate good keys from bad keys in the key generation,
we need to understand all the parameters that defines the key. In this section we
discuss all the constituent parts of the public key in MQQ-SIG. We identify their
role in the algorithm, and how their properties might affect the strength of the keys.
In the following sections we will present an extensive experimental study on each of
the factors identified here.

Recall from Chapter 4 that the public key P in MQQ-SIG is created as the
composition of three transformations:

P = S ◦ P ′ ◦ S ′,

where S and S ′ are linear and affine transformations, respectively, while the central
quadratic map P ′ is the application of the quasigroup operation. The specific
procedure for how to apply the quasigroup operation is an intrinsic part in the
design of MQQ-SIG and not actually relevant for its key generation. Hence, it will
not be considered further here. Additionally, S and S ′ are completely determined by
the matrix S, so in reality there are only two main factors to consider in MQQ-SIG;
the matrix S and the quasigroup itself. First we look at the quasigroup construction.

The quasigroup is constructed according to Equation 4.3 and has the following
parameters: three random invertible Boolean matrices A1, A2 and B, an upper tri-
angular matrix U(x) of linear expressions in x, and a Boolean vector c. Disregarding

THE PARAMETERS OF MQQ-SIG 57

A1, A2, B and c for the moment, we get the expression

x ∗ y = U(x) · y + x, (5.2)

which is a multivariate quadratic quasigroup according to [CKG10]. We see imme-
diately that U(x) is a very central parameter in the quasigroup construction. More
specifically, U(x) defines an isotopy class on which A1, A2 and B all give linearly
isotopic quasigroups within the same equivalence class. The concept of isotopy
classes lead naturally to some questions regarding their security properties.

1. The quasigroup established in Equation 5.2 is rather simple. Many properties
are shared between quasigroups in the same isotopy class. How will the
isotopies created by A1, A2 and B influence the behavior of the system? We
look at A1, A2 and B separately in Section 5.6 and Section 5.7, in order to
answer these questions.

2. Building upon the previous observation, it is also prudent to ask if there exists
isotopy classes which have inherently better or worse properties than others.
This question will be studied in Section 5.5.

Lastly, we look at the matrix S. The standard way to hide the inner structure
of the central map in most MQ schemes, is to use two random affine/linear
transformations S and T . In MQQ-SIG, these transformations are determined
by the specially constructed matrix S. How will this choice affect the security of
the system? Is it better to follow the standard approach? We investigate these
questions in Section 5.8.

In the sections to follow, we hope to be able to distinguish good keys from bad
keys, using extensive numerical analysis. To more easily pinpoint the exact feature
of a parameter that leads to a strong or weak key, we have chosen to study each
parameter separately. That is not to say that we believe the combination of the
components are unimportant. To the contrary, given the complexity of the Gröbner
basis algorithms and how little is known about what makes them efficient, it should
be conceivable that the combination of different parameters might lead to different
results than when varying only one parameter separately. Nevertheless, for ease of
analyzing,we have regarded it as outside the scope of this thesis.

58 EXPERIMENTAL ANALYSIS

5.3 Experimental procedure

5.3.1 Hardware and software

For the experiments we used a 64-bit Ubuntu Linux server, version 10.04.4/2.6.32,
with 64 Intel Xeon 2.27 GHz processors and 1 TB of RAM. To run the attacks
we used the computer algebra system Magma [BCFS], (version 2.17-3). Magma
implements several algorithms for computing Gröbner bases, including the original
algorithm by Buchberger [Buc65] and the new (and faster) F4-algorithm due to
Faugère [Fau99]. For the special case of multivariate equations over F2, F4 is the
algorithm of choice.

The Gröbner basis function in Magma generates a considerable amount of output
on each run. It provides much information on how its run time characteristics
changes from each stage of the algorithm. Of particular interest to us is the total
time needed to compute the basis and the degree of regularity occurring during the
run of the algorithm. Memory consumption is of course also an important factor to
consider, but with 1 TB of RAM available, it was not a major concern for us.

5.3.2 Attack algorithm

For each experiment the attack algorithm was the same, and is specified in Algo-
rithm 5.1. Notice that the system P̃, given to the Gröbner basis algorithm in Step.
6 is not an instance of a “pure” MQQ-SIG public key. Recall that in MQQ-SIG half
of the equations in the public key are discarded. Thus, for a real MQQ-SIG public
key, the system is actually underdetermined (n = 2m). To solve an underdetermined
system of multivariate quadratic equations, Courtois et. al [CGM+02] proposed to
“fix” some of the n variables (e.g. simply by choosing their values at random) to
obtain a system with n ≤ m. The resulting system can then be solved using an
algorithm which is efficient at solving (over)-determined systems, for instance the
XL algorithm [CKPS00].

In our attack algorithm we simulate this approach by evaluating r of the variables
in the public key at random values (Step. 4).

EXPERIMENTS ON THE ORIGINAL MQQ-SIG 59

Algorithm 5.1 Gröbner basis attack used for all experiments

Input: r; the number of equations to remove from the public key.
Output: A Gröbner basis for the public key.

1. Generate the public key P = S ◦ P ′ ◦ S ′ according to the specification of the
experiment.

2. Remove the first r equations of P.

3. Generate a random Boolean vector x = (x1, x2, . . . , xr) ∈ {0, 1}r.

4. Evaluate each of the remaining n−r polynomials Pi(x1, . . . , xn), at the random
vector x, for i = r + 1, . . . , n.

5. Obtain a system P̃ = {Pi(xr+1, . . . , xn)|i = r + 1, . . . , n} of n− r equations
in n− r variables.

6. Call the function GroebnerBasis(P̃) from Magma to find a Gröbner basis for
the system P̃.

5.4 Experiments on the original MQQ-SIG

To provide a benchmark for further experiments, we conducted several measurements
on the time to compute the Gröbner basis for an unmodified MQQ-SIG system. In
the following we will refer back to these benchmarks as the “original experiments”,
and the generated public keys as the “original instances”.

Due to the complexity of these experiments (with respect to run time and
memory requirements), we only ran the MQQ-SIG scheme with 32, 40, 48 and 56
variables. In essence, our procedure can be summarized as follows:

1. generate 100 random MQQ-SIG public keys for each number of variables,
following the description in Chapter 4‡;

2. for each instance, store all parameters necessary to faithfully restore it later;

‡We had to make one adjustment from the original specification. In the definition of the Boolean
vector v (Equation 4.11) it is assumed that the number of variables n in the system will be 160
or more. Hence it is guaranteed that the expression s65+b i−1

8 c
, will always be well-defined. In

our experiments n ≤ 56, so the previous value will not be valid. To circumvent this problem we
instead defined this value as: sb 2n

3 +1c+b i−1
8 c

. We believe that this change will not have affected
the security of the system in any significant way.

60 EXPERIMENTAL ANALYSIS

3. run Algorithm 5.1 with 8 ≤ r ≤ n
2 on each public key.

The run times, averaged over all the instances of a given number of variables,
are presented both in Figure 5.1 and Table 5.1. The graph clearly shows the
exponential nature of adding more equations and variables to the system. What is
more interesting to note, is the very large standard deviation shown in Table 5.1.
Among the 100 test instances of each number of variables, there were some instances
that performed a little better than average, but nothing significantly. Several
instances performed considerably worse than average. This is a strong indication
of the existence of weak keys in the MQQ-SIG scheme. To better illustrate the
prevalence of these bad instances, we provide the full graph in the case n = 48 in
Figure 5.2. As this plot shows, a few instances are very bad. The goal of the next
sections, will be to the establish the exact properties of the keys that results in this
behavior.

32 40 48 56
0

500

1,000

1,500

2,000

2,500

Number of variables n

Se
co
nd

s

Figure 5.1: Average run times for 100 MQQ-SIG instances of n
variables, with n

2 equations removed from the public key.

EXPERIMENTS ON THE ORIGINAL MQQ-SIG 61

Table 5.1: The average time to compute the Gröbner basis for 100
different MQQ-SIG instances in n variables, and with n

2 equations
removed. All numbers in seconds.

n t̄ σ

32 0.13 0.06
40 2.88 0.78
48 138.75 45.66
56 2666.15 739.92

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

120

140

160

180

200

220

Experiment

T
im

e
(s
)

Figure 5.2: The time to compute the Gröbner basis for 100 different
public keys of 48 variables.

62 EXPERIMENTAL ANALYSIS

In Table 5.2, we present the average degree of regularity that appeared during
the runs of the experiments. We have also included the results of running the system
with fewer than n

2 equations removed. There are some missing values in the table
for the case n = 56, indicated by the dots. For these specific scenarios, many of the
instances either required more memory than our computer had, or did not finish
within the time frame set for our experiment.

What these results show, is that the degree of regularity increase, both when we
add more variables to the system, and when we remove more equations from the
public key. MQQ-SIG appears to follow the theorized behavior of a random set of
multivariate equations. Recall from Section 5.1, that the original MQQ cipher was
broken because the degree of regularity did not increase with more added variables.
We see that MQQ-SIG does not share this property.

We also mention that Gligoroski et al. [GØJ+11] also conducted a similar type of
experiment on the degree of regularities of MQQ-SIG. Their findings are essentially
the same as ours.

5.5 The matrix U(x)

The importance of analyzing the matrix U(x) is apparent since it is the sole factor in
determining which linear isotopy class the quasigroup will belong to. To make this
more precise, recall from Definition 3.17 that a linear isotopy between quasigroups
is a triple of bijective linear maps, and from Theorem 3.18 that a linear isotopy
represents an equivalence relation on the set of quasigroups. Hence, in MQQ-SIG,
U(x) defines a specific isotopy class, while A1, A2 and B functions as the isotopy
triples. They send the quasigroup created by U(x) to different quasigroups within
the same equivalence class. In MQQ-SIG these classes are linear, that is, defined
by linear permutations, but we remark that isotopies do not have to be linear in
general.

Since U(x) is the single source for different isotopy classes, it is interesting
investigate the characteristics of the classes it might create. Recall that U(x) is
an upper triangular matrix containing linear expressions in x. If a row does not
contain any terms in x (more specifically: all elements in the row except for the
diagonal element is zero), we call it a linear row.

THE MATRIX U(X) 63

Table 5.2: The average degree of regularity for 100 MQQ-SIG in-
stances in n variables and r equations removed. In parentheses: the
expected degree of regularity for a random system of size n− r.

r/n 16 24 32 40 48 56
8 3 (3) 3.58 (4) 3.94 (5) 4.10 (6) 4.06 (7) 4.02 (8)
9 3.65 (4) 3.97 (5) 4.14 (6) 4.17 (7) 4.32 (8)
10 3.59 (4) 3.98 (5) 4.09 (6) 4.19 (7) 4.37 (8)
11 3.61 (4) 4.00 (5) 4.28 (6) 4.21 (7) 4.58 (8)
12 3.69 (4) 4.00 (5) 4.68 (6) 4.72 (7) 4.78 (8)
13 4.00 (5) 4.84 (6) 4.96 (7) 4.95 (8)
14 4.00 (5) 4.92 (6) 5.00 (7) 5.02 (8)
15 4.00 (5) 4.96 (6) 5.00 (7) 5.00 (8)
16 4.00 (5) 4.97 (6) 5.00 (6) 5.25 (8)
17 4.98 (5) 5.03 (6) 5.20 (7)
18 4.99 (5) 5.08 (6) - (7)
19 5.00 (5) 5.19 (6) - (7)
20 5.00 (5) 5.32 (6) - (7)
21 5.47 (6) - (7)
22 5.62 (6) - (7)
23 5.61 (6) - (7)
24 5.45 (6) - (6)
25 - (6)
26 - (6)
27 5.99 (6)
28 5.99 (6)

Observation 5.10. Every generated U(x) contains at least one linear row, namely
the last one. This is easy to see, since U(x) is an upper triangular matrix, where
the last row is of the form: (0 0 · · · 0 1). Hence, the last coordinate in the product
U(x) · y will contain only linear expressions in y, justifying the term linear row.
Without the isotopy (A1, A2, B), every MQQ in MQQ-SIG will have at least one of
its polynomials containing no quadratic terms.

It is undesirable with an MQQ that contains only linear terms in some of its
coordinates, since it reduces the resulting system complexity. Unfortunately, simply
specifying that that the quasigroup should contain no linear coordinates is not
enough to guarantee a strong system. Gligoroski et al. [GØJ+11] points out that the
quadratic polynomials of an MQQ of type Quadd− kLink, might cancel each other
when combined linearly, yielding a system of less then d− k quadratic polynomials.

64 EXPERIMENTAL ANALYSIS

In other words, the isotopy (A1, A2, B) whose role we can consider to be that of
distributing the quadratic terms among the MQQ vector, might actually weaken
the system.

Later Chen et al. [CKG10] ascertained that this was in fact the case; even more
so, it also happened more frequently than previously expected. They concluded
that the Quadd− kLink classification of MQQ’s is a poor way of assessing its true
complexity. Accordingly, they suggested an alternative way of classifying the MQQ’s;
introducing the notion of a strict MQQ type.

Definition 5.11. A quasigroup (Q, ∗) of order 2d is called an MQQ of strict type,
denoted Quads

d− kLins
k, if there are at least d − k quadratic polynomials whose

linear combinations do not result in a linear form, where 0 ≤ k < d.

The definition of U(x) in MQQ-SIG is based on a procedure for creating quasi-
groups of strict types, taken from [CKG10]. The number of linear rows in U(x)
correspond to the number k in the definition of strict MQQ’s. In particular, the
quasigroups in MQQ-SIG are of the type Quads

7Lins
1 for one linear row, Quads

6Lins
2

for two linear rows, and so on. The specification does not allow for the creation of
MQQ’s of type Quad8Lin0. How to construct quasigroups of this type is an open
problem.

To evaluate the effect of having linear rows in U(x), we created several quasi-
groups where U(x) had between one to six linear rows, and measured their perfor-
mance on a system with n = 48 variables. The exact procedure was as follows:

1. Create one set of random values for A1, A2, B, c, S and v. For simplicity
we chose to generate S and v at random, not using the special construction
described in Section 4.3.

2. Generate 40 U(x) matrices with one linear row, 40 matrices having two linear
rows, and so on§.

3. Run Algorithm 5.1 on the 40 instances of each number of linear rows. Note
that the same set of values, created in Step 1, was used for all experiments.
That is, only the U(x) matrix changed during the procedure, while all other
values was kept constant.

§More explicitly: we simply created random U(x) matrices repeatedly until we found one with
one linear row. Then we manually set the last k rows to be linear rows, with 1 ≤ k ≤ 6.

THE MATRIX U(X) 65

1 2 3 4 5 60

50

100

150

200

Linear rows in U(x)

Se
co
nd

s

Figure 5.3: The effect of having linear rows in the U(x) matrix.
The graph shows the average run time of 40 different instances of 48
variables, all having the same number of linear rows in U(x).

The results are shown in Figure 5.3 and clearly demonstrates that more linear
rows in U(x) affect the behavior of the system in a negative way. It is rather
conclusive that the U(x)’s with several linear rows should be avoided, while those
with only one linear row should be preferred. It should be noted however, that
the probability of a randomly created U(x) to have more than three linear rows is
relatively low. Two or three on the other hand, occur fairly often. Still, the vast
majority contains only one linear row, so adding this criterion to the creation of the
U(x) matrices does not add many extra cycles to the key generation algorithm.

Recommendation 1. The isotopy classes used in MQQ-SIG should be those that
are determined by U(x) matrices having only one linear row.

66 EXPERIMENTAL ANALYSIS

5.6 The matrices A1 and A2

Fix an isotopy class by choosing some U(x). Now it is interesting to see how a
linear isotopy affects the properties of the quasigroups within this equivalence class.
As shown in Proposition 3.19 the degrees of quasigroups are invariant under linear
isotopies. If the security against Gröbner basis attacks also remained the same it
would alleviate the need for the matrices A1, A2 and B. On the other hand, if the
strength of the system varies with different isotopies, we should investigate their
features to understand why they might lead to weak keys. To this end, we examine
the affects of the matrices A1 and A2 in this chapter and look at the matrix B in
the next.

To gauge the contribution of either A1, A2 or B, we picked out three instances of
48 variables from the original experiments (see Section 5.4). We chose the instances
so as to include one with very good performance, one with bad performance and
one being close to the average of all the 100 instances. For ease of reference, we will
refer to them as the “Good”, the “Bad” and the “Average” instance, respectively.
For all three instances, we derived 20 new experiments for each matrix A1, A2 and
B. That is, for each instance we generated 20 new values for A1 and used them to
create new public keys where all values, except A1, remained the same as in the
original instance. Similarly, for A2 and B. We then ran Algorithm 5.1 on all these
modified instances.

The results are shown in Figure 5.4, where 5.4a represents the “Good” instance
on 20 different values for A1, A2 and B, Figure 5.4b the “Bad” instance, and
Figure 5.4c the “Average” instance. As apparent from these graphs, changing either
A1 or A2 do not to alter the behavior of the given isotopy class. For all three cases
the performance is highly consistent across the 20 different values of A1 and A2.
More importantly, a different value of either A1 or A2 will not radically change the
behavior of the quasigroup. If given a weak quasigroup by U(x) and B, changing
A1 or A2 will not help to make it stronger. This motivates the following conjecture.

Conjecture 5.12. Fix U(x), B and c in Equation 4.1. Then the equivalence class
of quasigroups generated by the isotopy (A1, A2, B), for randomly generated A1 and
A2, is invariant with respect to their security against Gröbner basis attacks.

The matrix B, on the other hand, is seen to heavily affect the run times of the

THE MATRICES A1 AND A2 67

2 4 6 8 10 12 14 16 18 200

20

40

60

80

100

120

140

160

180

200

220

Experiment

T
im

e
(s
)

A1
A2
B

(a) The “Good” instance

2 4 6 8 10 12 14 16 18 200

20

40

60

80

100

120

140

160

180

200

220

Experiment

T
im

e
(s
)

A1
A2
B

(b) The “Bad” instance

2 4 6 8 10 12 14 16 18 200

20

40

60

80

100

120

140

160

180

200

220

Experiment

T
im

e
(s
)

A1
A2
B

(c) The “Average” instance

Figure 5.4: The run times of three instances of 48 variables from the
original experiments in Section 5.4, using 20 different values for the
matrices A1, A2 and B.

68 EXPERIMENTAL ANALYSIS

Gröbner basis computations. Additionally, B has the ability to drastically change
the behavior of a quasigroup. In Figure 5.4 we see that for some values of B, the
“Good” instance performs very bad, and on others again, the “Bad” instance is
much better. This indicates that there are some decisive attributes of B which
influence the performance of the system. Hence, subdividing the isotopy class based
on different B’s, seems to be most relevant when classifying the quasigroups (up to
linear isotopies). We will study B in more detail in the next section.

To further validate the irrelevance of A1 and A2 with respect to resistance against
Gröbner basis attacks, we ran several experiments where we simply left out A1 or
A2. For all the instances of 40, 48 and 56 variables generated in Section 5.4, we
reran Algorithm 5.1, but with the matrices A1, A2 set to the identity matrix, either
separately or together. That is, for each instance of a given number of variables
n, we ran three experiments: one with A1 = I8, one with A2 = I8, and one with
A1 = A2 = I8. All the other parameters remained the same as in the original
experiment.

The average times are shown in Table 5.3, but for a clearer exposition we also
plot the 50 first instances of the case n = 56, with A1 = I8 and A2 = I8, in
Figure 5.5a and 5.5b, respectively. We do not show all the instances since the
50 first are sufficient to clearly illustrate the result, and because the remaining
instances exhibited identical behavior (also for n = 40 and 48).

Table 5.3: Average run times for computing the Gröbner basis of 100
MQQ-SIG instances of n variables, with A1 and A2 set to the identity
matrix. All times are in seconds.

Matrix removed
n Original A1 A2 A1 and A2

40 2.88 2.70 2.75 2.60
48 138.75 130.03 129.55 119.51
56 2666.15 2609.95 2643.38 2553.40

As these two graphs distinctly show, removing A1 or A2 from the MQQ con-
struction yields a system with virtually identical behavior. Except for a few outliers,
which are probably due to some rare event of interplay with the other system
parameters, the plots are almost indistinguishable. This is also further supported

THE MATRICES A1 AND A2 69

0 5 10 15 20 25 30 35 40 45 500

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Experiment

T
im

e
(s
)

Original
A1 = I8

(a) A1 = I8

0 5 10 15 20 25 30 35 40 45 500

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Experiment

T
im

e
(s
)

Original
A2 = I8

(b) A2 = I8

Figure 5.5: The run times of the first 50 original instances of 56
variables where either A1 or A2 is set to the identity matrix

70 EXPERIMENTAL ANALYSIS

by the average times given in Table 5.3. Since A1 and A2 are unnecessary for the
security of an MQQ, we make the following recommendation:

Recommendation 2. The matrices A1 and A2 can be excluded from the definition
of a quasigroup in MQQ-SIG (Equation 4.3), without affecting the security of the
system against Gröbner basis attacks.

5.7 The matrix B

We saw in the previous section that the matrix B is very influential for the behavior
of a quasigroup. The significance of B can be seen from the expression

B · (U(x) ·A2 · y) ,

which is taken from the equation defining the MQQ’s in MQQ-SIG (cf. Equation 4.3).
Because U(x) ·A2 · y is a vector of quadratic terms, B will be a decisive factor in
how those terms will be combined linearly in the resulting MQQ. This relates it to
the ranks of the Bfi matrices, which we mentioned in Section 4.2.1 might actually
be important for Gröbner basis computations.

Recall that there were two additional criteria on the quasigroups to be used
in MQQ-SIG. Namely, all the eight matrices Bf1 ,Bf2 , . . . ,Bf8 , must have rank at
least 12, and at least one matrix must have rank 14 (see Equation 4.5a and 4.5b,
respectively), where the Bfi corresponds to the quadratic terms of polynomial fi
in the MQQ. Since B and U(x) are the parameters responsible for the quadratic
terms appearing in MQQ-SIG, the ranks of the Bfi ’s will be totally dependent on
these two matrices. For a Gröbner basis algorithm, the number of quadratic terms
in the polynomials can be an important factor for the effectiveness of the algorithm.
Thus, the criteria in Equation 4.5a and 4.5b, which were initially intended to defeat
MinRank attacks, might actually be important against Gröbner basis attacks as
well.

Since MinRank attacks were outside the scope of this thesis, we did not enforce
the requirements when creating the quasigroups in the original experiments. Based
on the above, this could have had a detrimental effect on the strength of the
generated keys.

THE MATRIX B 71

To assess the prevalence of instances fulfilling the requirements naturally, we
tested each of the original instances to see if they satisfied the criteria. Of all the
experiments we had created (of all number of variables), only four fulfilled the
requirements, that is, only one in one hundred. Even more, we found that many
instances had Bfi = 0 for some of their polynomials fi. What this means, is that
such quasigroups would have some of their polynomials, fi, without quadratic terms.
The MQQ’s would be of type Quad7Lin1 (one linear function) or Quad6Lin2 (two
linear functions). Public keys based on such instances will most likely contain
fewer quadratic terms after the mixing stage with S, than those of type Quad8Lin0.
Consequently, the Gröbner basis algorithm will probably be able to find relations
among the polynomials quicker, and thus eliminate terms faster. Conversely, if the
quasigroups were to satisfy the requirements in Equation 4.5a and 4.5b, they would
most likely exhibit some minimal amount of complexity.

Therefore, we chose test the real influence the ranks of the Bfi matrices could
have on Gröbner basis computations. We tested three cases of MQQ’s: (1) MQQ’s
where at least one of the Bfi matrices had rank zero; (2) MQQ’s where all satisfied
the specified criteria; (3) MQQ’s where no Bfi matrix had rank zero, but did not
also have to satisfy the specified criteria.

Case 1 was to confirm that MQQ’s with zero-ranks would most probably perform
badly. Case 2 was to compare the results of satisfying the criteria with our original
experiments, where no checks had been performed. Case 3 was included to account
for the possibility that the systems satisfying the criteria, might see better results
the original instances simply because they did not include any MQQ’s with linear
polynomials.

The quasigroups were derived from the original set of systems in Section 5.4, by
randomly creating new B matrices until the criteria were met. All other parameters
of the systems remained the same. We ran all 100 (adjusted) instances for 40, 48
and 56 variables and calculated their average results. The times are summarized in
Table 5.4.

The table seems to confirm our hypothesis that quasigroups of type Quads
7Quads

1

and Quads
6Quads

2, should perform noticeably worse than other instances. For n = 48
or n = 56, their results are approximately half that of the original systems, or
around two standard deviations worse. On the other hand, the MQQ’s that satisfy

72 EXPERIMENTAL ANALYSIS

Table 5.4: Average run times for 100 MQQ-SIG instances of n vari-
ables, conditioned on the matrices Bfi . All times in seconds.

No conditions
(original system)

At least one rank
zero No rank zero All satisfy

Equation 4.5
n t̄ σ t̄ σ t̄ σ t̄ σ

40 2.88 0.75 1.90 0.93 2.86 0.72 2.82 0.81
48 138.75 45.66 74.94 54.93 142.39 42.62 138.38 46.09
56 2666.15 709.56 1434.31 894.83 2593.06 711.56 2721.13 637.70

Equation 4.5a and 4.5b, do not appear to perform significantly better than the
“no-zero-rank”-experiments. This suggests that the main advantage of criteria in
Equation 4.5 when it comes to resistance against Gröbner basis attacks, is to filter
out the quasigroups with linear polynomials.

From an efficiency point of view, there is a clear advantage in only requiring that
the quasigroups satisfy the “no-zero-rank” criterion. Since this is a much weaker
requirement, probably a lot more quasigroups will satisfy it, hence generation times
will be faster. To quantify this, we also recorded the number of different B matrices
we had to try before finding a suitable MQQ, our findings are shown in Table 5.5.

Table 5.5: The average number of B matrices to test before satisfying
the two rightmost criteria in Table 5.4.

n No rank zero All satisfy
Equation 4.5

40 1.12 400.00
48 1.06 322.02
56 1.25 434.64

As apparent from this table, the sheer number of B’s that have to be tested
before satisfying Equation 4.5, means that this can potentially be a bottle-neck
in the key generation algorithm. As mentioned in Section 4.4.2, the designers of
MQQ-SIG already acknowledged that the key generation would most likely be
the most demanding part of the system. By removing these unnecessary criteria
and only filter out the “zero-rank” instances instead, we can hope to see speed
improvements in the key generation by a large factor. Hence, we end with the

THE MATRIX S 73

following recommendation.

Recommendation 3. The criteria in Equation 4.5 can be replaced with the
following:

∀i ∈ {1, . . . , d}, Rank(Bfi) > 0.

In other words, it is only required that all elements in the MQQ-vector contain
quadratic terms.

5.8 The matrix S

The last parameter of MQQ-SIG we consider is the matrix S. Recall that S defines
the linear and affine transformations S and S ′ respectively. Their purpose is to
hide the internal structure of the central map P ′. In most MQ-schemes these
linear/affine transformations are simply created by choosing two random matrices
over the field relevant to the scheme. Since a random matrix will not exhibit any
internal exploitable structure (given that it has been created by a sufficiently strong
pseudo-random generator), it can be considered the optimal choice for a linear
transformation in terms of security. However, this means that the entire matrix has
to be stored, which adds to the already large key sizes found inMQ-schemes.

Recall from Section 4.3 that the designers of MQQ-SIG tried to mitigate this
problem by creating S in very special manner¶. S is created as the combination of
two circulant matrices, which makes it is possible to avoid storing the full matrix,
but simply the two permutations σ0

0 and σ1
0 .

The reason for using two circulant matrices instead of just one, was to avoid the
regular structure exhibited in circulant matrices. Even so, the current construction
is still highly structured. Ideally we would hope that S resembles a truly random
matrix, but there is no guarantee that none of its internal structure might leak
through in a Gröbner basis attack. Thus, we decided to evaluate the behavior of S
compared to a truly random matrix.

Our experiment procedure was similar to the one in previous sections: first we
generated a random matrix S for each of the 100 original instances with 40, 48 and

¶Actually, it is S−1 that is created in this way, and S is derived from it as its inverse, i.e.
S = (S−1)−1. This distinction is not important here, so we will simply refer to the matrix S.

74 EXPERIMENTAL ANALYSIS

56 variables. Then, we used these matrices to derive new instances from the original
ones; keeping all parameters the same except for the matrix S. The average results
of running Algorithm 5.1 on these modified instances are shown in Table 5.6. We
also plot the graph for the 50 first instances for 48 and 56 variables††, to better
illustrate the behavior in Figure 5.6.

Table 5.6: Average run times for 100 MQQ-SIG instances of n vari-
ables, with random S

Original Random S

n t̄ σ t̄ σ

40 2.88 0.75 3.22 0.45
48 138.75 45.66 167.44 24.78
56 2666.15 709.56 2996.41 227.64

We see that the modified instances, using a random S, performed better then
the original experiments. While comparable, the difference of their average results is
noticeable. What is more interesting to note however, is how much more consistent
the behavior of the systems with random S are. Figure 5.6 demonstrates that the
original instances have many instances performing very badly, and that there in
general is a large variation in their results. With random matrices, the run times
seem to converge towards a common value, having only a few deviating results.
And even then, those few instances do not lead to extremely bad keys, but are still
relatively close to the average.

These results indicate that the specially constructed S is not able to hide the
internal algebraic structure of the system quite as well as a randomly created S.
This supports our initial assessment of random matrices being the optimal choice for
the linear transformations in terms of hiding the central map P ′. In some sense we
can regard the random construction as the benchmark which other designs should
be measured against.

While the construction used in MQQ-SIG is comparable to the performance of
random matrices on average, it still suffers from the occurrence of very bad keys. If
this design is still to be used, it is essential to be able to identify the instances that

††We chose not to show the graph of the case n = 40, since the run times of these instances are so
low. Nevertheless, they displayed the same characteristic behavior as seen in Figure 5.6.

THE MATRIX S 75

0 5 10 15 20 25 30 35 40 45 500

50

100

150

200

250

Experiment

T
im

e
(s
)

Original S
Random S

(a) 48 variables

0 5 10 15 20 25 30 35 40 45 500

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Experiment

T
im

e
(s
)

Original S
Random S

(b) 56 variables

Figure 5.6: The run times of the first 50 original instances of 48 and
56 variables with a random S matrix

76 EXPERIMENTAL ANALYSIS

might lead to weak keys, so they can be rejected during key generation. To this
end, we tried to investigate some of the parameters that constitute the matrix S in
MQQ-SIG, in order to determine their influence on the systems behavior.

Recall from Proposition 4.4 that the matrix S−1 (and hence S) can be uniquely
determined solely by the parameters σ0

0 and σ1
0 , which are permutations on n

symbols. All permutations can be decomposed into a product of disjoint cycles of
length ≤ n. We chose to focus on this decomposition and looked specifically on
the cycle lengths. From the original experiments on 48 variables in Section 5.4,
we selected the five best and the five worst performing instances, and created two
experiments:

1. For each instance, create a new S where the permutations σ0
0 and σ1

0 are
chosen so that one of the cycles in their disjoint cycle decomposition is of
length ≥ 45. Create 20 such matrices for each instance and measure their
performance.

2. Similar to the experiment above, but now chose σ0
0 and σ1

0 so that none of
the cycles in their disjoint cycle decomposition have length greater than six.

In essence, we had one experiment where the S matrices were created from
permutations of very long cycle lengths, and one where they were created from very
short cycle lengths. This is of course a very crude test procedure, but we chose
it due to its simplicity, and because our main focus has been on the quasigroups
of MQQ-SIG. These tests were just a simple means of discovering whether there
existed a relationship between the cycle lengths and the performance of the linear
transformations. More elaborate test could have been conducted, but we considered
it outside the scope of this thesis. Unfortunately, the results did not give any
conclusive evidence in any direction. The experiments where σ0

0 and σ1
0 contained

long cycles performed neither better nor worse than the original instances in any
consistent manner. Likewise for the case of short cycles. In short, our experiments
were not sufficient to establish any clear connection between the lengths of the
permutation cycles and the performance of the resulting system. Analyzing other
properties of the S matrix in MQQ-SIG could be the topic of further research.

To conclude, we have found that using the special construction of S in MQQ-
SIG, performs worse than using a random matrix. While the average results where

THE MATRIX S 77

comparable, weak keys were generate relatively frequently when using this design,
something that did not happen when using random matrices. We have not been
able to determine exactly which properties of the S matrix in MQQ-SIG that
differentiates it from a random matrix, but there is a definite difference.

That leaves the question whether this construction should be used or not. The
main reason for wanting to use it, is because of the significant reduction in private
key sizes that is possible. Incidentally, we only compared the use of random
matrices with the original instances, and as we have seen in the previous sections,
they contained many bad MQQ’s. Hence, it might be conceivable that if these
quasigroups were filtered out, we might see better results from the special design.
Additionally, the expression defining the matrix S (cf. Equation 4.8) is specifically
designed to be very efficient in both hardware and software [GØJ+11]. On the other
hand, if the division operators of the MQQ are implemented using pre-computed
lookup tables, then the additional cost of storing a full random matrix is negligible.

In the end, the strong and consistent performance of using a random S, and the
uncertainty of why the special construction behaves the way it do, we are led to the
following recommendation.

Recommendation 4. The matrix S, and the vector v, should be created uniformly
at random.

CHAPTER 6
Enhancing the MQQ-SIG

Key Generation Algorithm

In the previous chapter we offered four concrete recommendations on how the
various parameters of MQQ-SIG should be created in order to avoid weak keys from
being generated. However, they are based on measurements were we had adjusted
a single system parameter individually. In the following short chapter, we will put
all these recommendations together into a coherent whole and propose an enhanced
key generation algorithm for MQQ-SIG. Furthermore, we provide numerical results
on the keys created by this new algorithm and compares them to the experiments
we did on original MQQ-SIG specification. The results conclusively show that the
modified key generation algorithm performs much better than the original.

6.1 The new key generation algorithm

First we summarize the results from the previous chapter and the corresponding
recommendations we derived from them.

79

80 ENHANCING THE MQQ-SIG KEY GENERATION ALGORITHM

1. More linear rows in U(x) lead to worse performance. Consequently, when
creating U(x) it should be checked that it only contains one linear row
(Recommendation 1).

2. Including A1 and A2 does not yield a stronger system. Hence, we will simply
drop them in the new algorithm (Recommendation 2).

3. MQQ’s of type Quad8Lin0 perform better than quasigroups where one or more
of the coordinates of the MQQ-vector contain only linear expressions. Thus we
should ensure that only Quad8Lin0 quasigroups are used (Recommendation 3).
We achieve this by generating new B matrices until the requirement is met.

4. Using a random S matrix as the basis for the transformations S and S ′ gives
better and more consistent behavior of the system. Therefore, we will not use
the original design with circulant matrices, but simply use random matrices
(Recommendation 4).

The modified key generation algorithm, taking these recommendations into
account, is given in Algorithm 6.1. Note that the way the parameters are used to
construct the public and private key has not changed; additionally, the verification
and signing procedure are just the same as in the original specification.

6.2 Performance

6.2.1 Procedure

Using the 100 instances from Section 5.4 as a basis (which were created according
to the original MQQ-SIG specification), we created modified instances as per
Algorithm 6.1, with 40, 48 and 56 variables. More specifically, given one of the
original instances, we first set A1 and A2 equal to the identity matrix. Then, we
checked if the original U(x) had more than one linear row; if not, we simply used
it as is; else we generated a new one until a suitable matrix was found. With the
U(x) matrix selected, we used the original B matrix to create an MQQ according
to Equation 6.1, and computed the ranks of its Bfi matrices (cf. Equation 4.6). If
none of the matrices had rank 0 (Recommendation 3), we used the resulting MQQ,
else we created a new B matrix until the criterion was met. Finally, we created a

PERFORMANCE 81

Algorithm 6.1 Enhanced MQQ-SIG key generation

Input: The number of variables n, where n ∈ {160, 192, 224, 256}.
Output: A public key P given by n

2 multivariate quadratic polynomials
Pi(x1, . . . , xn), i = 1 + n

2 , . . . , n. A private key consisting of a MQQ of order
28, a random invertible n× n matrix S over F2, and a a random vector v in Fn2 .

The central map P ′
The MQQ is defined by the following expression:

x ∗ y = B · U(x) · y +B · x + c, (6.1)

where all the parameters have the same meaning as in Equation 4.3. Additionally,
U(x) and B are subject to the following restrictions:

• U(x) must have no linear rows other than the last;

• B must be chosen so that the resulting MQQ is of type Quad8Lin0, or in
other words, Rank(Bfi) > 0 for all 1 ≤ i ≤ 8, where the Bfi matrices are
defined as in Equation 4.6.

Finding U(x) and B that satisfy these constraints, can be done efficiently by simple
trial-and-error until the requirements are met. The central map P ′ is constructed
in exactly the same way as in the original algorithm (cf. Algorithm 4.2).

The linear transformations S and S ′
The matrix S is constructed as a random invertible n× n matrix over F2, and v
is constructed as random element in Fn2 . S and S ′ are then defined just as in the
original algorithm (cf. Equation 4.9 and Equation 4.10, respectively).

random matrix S and a random vector v, for the linear and affine transformations
S and S ′.

6.2.2 Results

In Figure 6.1 we illustrate the run times of the 50 first instances from the original
experiments in Section 5.4 (n = 40, 48 and 56), modified according to the procedure
given above. We only plot the first 50 instances, since the remaining instances
showed exactly the same behavior. However, Table 6.1 summarizes the average run
times of all 100 experiments.

82 ENHANCING THE MQQ-SIG KEY GENERATION ALGORITHM

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Experiment

T
im

e
(s
)

Original
Modified

(a) 40 variables

0 5 10 15 20 25 30 35 40 45 500

20

40

60

80

100

120

140

160

180

200

220

Experiment

T
im

e
(s
)

Original
Modified

(b) 48 variables

Figure 6.1: Run times of 50 instances based on the original experi-
ments in Section 5.4, adjusted to conform to Algorithm 6.1.

PERFORMANCE 83

0 5 10 15 20 25 30 35 40 45 500

500

1,000

1,500

2,000

2,500

3,000

3,500

Experiment

T
im

e
(s
)

Original
Modified

(c) 56 variables

Figure 6.1: (continued)

Table 6.1: Average run times for 100 MQQ-SIG instances of n vari-
ables, using the modified key generation algorithm in Algorithm 6.1

.

Original Modified
n t̄ σ t̄ σ

40 2.88 0.75 3.33 0.25
48 127.49 45.66 161.15 18.49
56 2666.15 709.56 3127.55 143.93

84 ENHANCING THE MQQ-SIG KEY GENERATION ALGORITHM

These results clearly show that the MQQ-SIG instances that were modified in
order to comply with Algorithm 6.1, perform significantly better than the original
instances. As in the experiments where we focused individually on the S matrix
(Section 5.8), we see that the modified approach performs much more consistently
than the original key generation. However, this effect is even more profound now,
when we include the changes to the MQQ parameters, than when simply changed to
a random S matrix, but kept the MQQ generation the same. We both have smaller
fluctuations between the generated instances, and higher run times on average. This
is a testament to the importance of creating strong MQQ’s as well. Furthermore,
note that with an increasing number of variables, the “weakest” keys generated
are relatively much closer to the average, than with fewer variables (contrast, for
example, Figure 6.1b with Figure 6.1c).

If this alleged behavior continues until the level of a real MQQ-SIG system, that
is, with n = 160, 192, 224 or 256, it would mean that very weak keys are unlikely
to be generated by Algorithm 6.1. In the end, these results are strong evidence in
support of modifying the MQQ-SIG key generation algorithm to the one in this
chapter.

CHAPTER 7
Conclusion

MQQ-SIG is a promising new signature scheme that vastly outperforms today’s
public-key signature systems in terms of signing and verification speed, albeit at
the cost of very large public keys. Also, when compared to other MQ-schemes,
its signing speed is significantly better. This is due to the efficiency of the central
map P ′, which is based on multivariate quadratic quasigroups (MQQ’s). However,
not much cryptanalysis has been performed on this special design. In particular,
it is not known whether the strong algebraic properties of quasigroups affect the
structure of the resulting public key. The contribution of this thesis has been a first
step in that direction.

Our main result is a classification of the MQQ’s that leads to weak keys in
MQQ-SIG, based on empirical evidence from running numerous experiments on
the system. We have identified that the most important parameters of an MQQ,
when it comes to security against Gröbner basis attacks, are the matrices U(x) and
B. The matrix U(x) is responsible for which linear isotopy class the MQQ will
belong to, and therefore is a key factor in determining the base properties of the
quasigroup. For maximal complexity, we have found that U(x) should not have
more than one linear row.

Then, given that a linear isotopy class has been selected (governed by some
choice of U(x)), the three matrices A1, A2 and B define the potential quasigroups

85

86 CONCLUSION

within this class. One of the goals of this thesis has been to determine which
properties are shared among all the quasigroups in a linear isotopy class, and which
depend on the choices of A1, A2 and B. Our findings conclusively show that A1

and A2 do not influence the behavior of an isotopy class, but B do. In other words,
the performance of the MQQ’s in an isotopy class, with respect to a Gröbner basis
attack, is invariant under changing A1’s and A2’s, but not B.

The matrix B is essential for enhancing the complexity of the MQQ. While
the exact attributes of the B matrices that lead to weak keys are still unknown,
we have found that it is largely responsible for the number of quadratic terms
appearing in the MQQ’s. This is an important complexity metric for Gröbner basis
algorithms. The designers of MQQ-SIG had already recognized the importance of
this metric, as indicative by their requirements on the ranks of the Bfi matrices,
which represent the quadratic terms in the MQQ’s. However, they did not relate
them to the security against Gröbner basis attacks, but rather to the completely
different threat of MinRank attacks. We have shown that these rank requirements
actually are very important when defending against Gröbner attacks, and that B is
the most critical factor for creating high rank systems. Additionally, we found that
the requirements in the original specification could be eased, while still maintaining
the same security. This lead to a simple heuristic algorithm for creating keys, that
potentially can be 300-400 times faster than using the stricter requirements.

Finally, we investigated the effect of using the specially constructed matrix S as
the basis for the linear and affine maps S and S ′, rather than completely random
matrices. Our results suggest that this choice should be reconsidered. While the
design in MQQ-SIG has a performance comparable (albeit lower) to that of a
random matrix, its behavior is much less predictable, occasionally producing very
weak keys. With random matrices on the other hand, this never occurred.

To verify the authenticity of all our findings we created a modified key generation
algorithm, adjusted to account for the results obtained on the individual parameters,
and compared its performance to the original MQQ-SIG key generation. The results
from these full system tests, support the adjustments we have recommended for
the key generation algorithm. With our proposed changes, the system performs
better on average, in addition to being very much more consistent. This last point
is important, since it demonstrates that it is possible to avoid generating weak keys

87

in the MQQ-SIG system.
However, it is important to emphasize that the focus of this thesis has solely

been on generic attacks based on Gröbner basis computations. We have not made
any attempt to explicitly exploit the internal structure of MQQ-SIG, in particular
we have not directly attacked the algebraic properties of quasigroups underlying the
central map P ′. Withstanding generic attacks, while important, is only a minimal
requirement. Much more cryptanalysis is needed to build enough confidence in the
system to be trusted for real-world use. This is clearly the most important topic
for further research on MQQ-SIG in particular, and the application of MQQ’s to
cryptography in general.

Another interesting area to explore, is how the quasigroup design can be used
to construct a secure encryption scheme. Historically, it has proved difficult to turn
theMQ-problem into an encryption scheme that is both efficient and secure. The
original MQQ cipher being a case in point. Investigating other ways of utilizing
MQQ’s can be a fruitful research direction.

Finally, key sizes is an important factor to consider. While MQQ-SIG is very
fast, its keys sizes are also very large. This can be a real problem for its applicability
on small devices with limited memory resources, such as embedded computers and
microcontrollers. There is already beginning research into creating MQQ’s over
GF(pk), as opposed to just GF(2), which can lead to large reductions in the public
key size. Still, much is unknown about how these systems can be created efficiently.

References

[ACFP12] Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic
Perret. On the relation between the MXL family of algorithms and
Gröbner basis algorithms. Journal of Symbolic Computation, 47:926–
941, 2012. in press.

[Adl79] Leonard Adleman. A subexponential algorithm for the discrete log-
arithm problem with applications to cryptography. In Proceedings
of the 20th Annual Symposium on Foundations of Computer Science,
SFCS ’79, pages 55–60, Washington, DC, USA, 1979. IEEE Computer
Society.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, STOC ’96, pages 99–108, New York, NY,
USA, 1996. ACM.

[BBD08] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen. Post
Quantum Cryptography. Springer Publishing Company, Incorporated,
1st edition, 2008.

[BBG07] Côme Berbain, Olivier Billet, and Henri Gilbert. Efficient implemen-
tations of multivariate quadratic systems. In Eli Biham and Amr
Youssef, editors, Selected Areas in Cryptography, volume 4356 of Lec-
ture Notes in Computer Science, pages 174–187. Springer Berlin /
Heidelberg, 2007.

89

90 REFERENCES

[BCFS] Wieb Bosma, John J. Cannon, Claus Fieker, and Allan Steel. Handbook
of Magma functions, Edition 2.17-3 (2010), 5117 pages.

[BFS99] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffery O. Shallit.
The computational complexity of some problems of linear algebra. J.
Comput. Syst. Sci., 58(3):572–596, June 1999.

[BFS03] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. Complexity of
Gröbner basis computation for semi-regular overdetermined sequences
over GF(2) with solutions in GF(2). Research Report 5049, Inria,
December 2003. 19 pages.

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT benchmarking
of cryptographic systems. Accessed 16 may 2012. http://bench.cr.yp.
to.

[Bon99] Dan Boneh. Twenty years of attacks on the RSA cryptosystem.
NOTICES OF THE AMS, 46:203–213, 1999.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenringes nach einem nulldimensionalen Polynomideal.
PhD thesis, University of Innsbruck, 1965.

[CGM+02] Nicolas Courtois, Louis Goubin, Willi Meier, Jean-Daniel Tacier,
and CP Crypto Lab. Solving underdefined systems of multivariate
quadratic equations. In Proceedings of Public Key Cryptography 2002,
LNCS 2274, pages 211–227. Springer-Verlag, 2002.

[Chr09] Adam Christov. Quasigroup based cryptography. Master’s thesis,
Charles University, Prague, 2009.

[CKG10] Yanling Chen, Svein J. Knapskog, and Danilo Gligoroski. Multivariate
quadratic quasigroups (MQQ): Construction, bounds and complex-
ity. In Inscrypt, 6th China International Conference on Information
Security and Cryptology. Science Press of China, 2010.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate

http://bench.cr.yp.to
http://bench.cr.yp.to

REFERENCES 91

polynomial equations. In Proceedings of the 19th international confer-
ence on Theory and application of cryptographic techniques, EURO-
CRYPT’00, pages 392–407, Berlin, Heidelberg, 2000. Springer-Verlag.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low
exponent RSA vulnerabilities. J. Cryptology, 10:233–260, 1997.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, 22(6):644–654,
November 1976.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable poly-
nomial signature scheme. In John Ioannidis, Angelos Keromytis,
and Moti Yung, editors, Applied Cryptography and Network Security,
volume 3531 of Lecture Notes in Computer Science, pages 317–366.
Springer Berlin Heidelberg, 2005.

[DWY07] Jintai Ding, Christopher Wolf, and Bo-Yin Yang. `-invertible cycles for
multivariate quadratic public key cryptography. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, Public Key Cryptography – PKC 2007,
volume 4450 of Lecture Notes in Computer Science, pages 266–281.
Springer Berlin Heidelberg, 2007.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröb-
ner bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61–88,
June 1999.

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing Gröb-
ner bases without reduction to zero (F5). In Proceedings of the
2002 international symposium on Symbolic and algebraic computation,
ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanalysis of
hidden field equation (HFE) cryptosystems using Gröbner bases. In
In Advances in Cryptology — CRYPTO 2003, pages 44–60. Springer,
2003.

92 REFERENCES

[FLDVP08] Jean-Charles Faugère, Françoise Levy-Dit-Vehel, and Ludovic Perret.
Cryptanalysis of minrank. In Proceedings of the 28th Annual confer-
ence on Cryptology: Advances in Cryptology, CRYPTO 2008, pages
280–296, Berlin, Heidelberg, 2008. Springer-Verlag.

[FØPG10] Jean-Charles Faugère, Rune Steinsmo Ødegård, Ludovic Perret, and
Danilo Gligoroski. Analysis of the MQQ public key cryptosystem.
In Swee-Huay Heng, Rebecca N. Wright, and Bok-Min Goi, editors,
CANS, volume 6467 of Lecture Notes in Computer Science, pages
169–183. Springer, 2010.

[FY79] Aviezri S. Fraenkel and Yaacov Yesha. Complexity of problems in
games, graphs and algebraic equations. Discrete Applied Mathematics,
1(1–2):15 – 30, 1979.

[GC00] Louis Goubin and Nicolas Courtois. Cryptanalysis of the ttm cryp-
tosystem. In Advances in Cryptology - ASIACRYPT 2000, 6th Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings,
pages 44–57, 2000.

[GKSS08] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman.
Chapter 2 satisfiability solvers. In Vladimir Lifschitz Frank van Harme-
len and Bruce Porter, editors, Handbook of Knowledge Representation,
volume 3 of Foundations of Artificial Intelligence, pages 89 – 134.
Elsevier, 2008.

[GMK08a] Danilo Gligoroski, Smile Markovski, and Svein J. Knapskog. Public
key block cipher based on Multivariate Quadratic Quasigroups. IACR
Cryptology ePrint Archive, 2008:320, 2008.

[GMK08b] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Multi-
variate quadratic trapdoor functions based on multivariate quadratic
quasigroups. In Proceedings of the American Conference on Ap-
plied Mathematics, MATH’08, pages 44–49, Stevens Point, Wisconsin,
USA, 2008. World Scientific and Engineering Academy and Society
(WSEAS).

REFERENCES 93

[GØJ+11] Danilo Gligoroski, Rune Steinsmo Ødegård, Rune Erlend Jensen,
Ludovic Perret, Jean-Charles Faugére, Svein Johan Knapskog, and
Smile Markovski. MQQ-SIG, an ultra-fast and provably CMA resistant
digital signature scheme. In Proceedings of the 3rd International
Conference on Trusted Systems, INTRUST, 2011.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, New York, NY, USA, 2001.

[Gor93] Daniel M. Gordon. Discrete logarithms in gf(p) using the number
field sieve. SIAM J. Discrete Math, 6:124–138, 1993.

[HHGPW10] Jeff Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William
Whyte. Practical lattice-based cryptography : NTRUEncrypt and
NTRUSign. The LLL algorithm: Surveys and Applications, pages
1–42, 2010.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The Elliptic
Curve Digital Signature Algorithm (ECDSA). International Journal
of Information Security, 1(1):36–63, August 2001.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and
vinegar signature schemes. In IN ADVANCES IN CRYPTOLOGY —
EUROCRYPT 1999, pages 206–222. Springer, 1999.

[KR08] Martin Kreuzer and Lorenzo Robbiano. Computational Commutative
Algebra 1. Springer Publishing Company, Incorporated, 2008.

[Len00] Arjen K. Lenstra. Integer factoring. Design, Codes and Cryptography,
19(2-3):101–128, March 2000.

[Mao03] Wenbo Mao. Modern Cryptography: Theory and Practice. Prentice
Hall Professional Technical Reference, 2003.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic
coding theory. Technical report, Jet Propulsion Lab Deep Space
Network Progress report, 1978.

94 REFERENCES

[MDBW09] Mohamed Saied Emam Mohamed, Jintai Ding, Johannes Buchmann,
and Fabian Werner. Algebraic attack on the MQQ public key cryp-
tosystem. In Proceedings of the 8th International Conference on
Cryptology and Network Security, CANS ’09, pages 392–401, Berlin,
Heidelberg, 2009. Springer-Verlag.

[Mer89] Ralph C. Merkle. A certified digital signature. In Proceedings on
Advances in cryptology, CRYPTO ’89, pages 218–238, New York, NY,
USA, 1989. Springer-Verlag New York, Inc.

[MH78] Ralph C. Merkle and Martin E. Hellman. Hiding information and
signatures in trapdoor knapsacks. Information Theory, IEEE Trans-
actions on, 24(5):525 – 530, sep 1978.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynomial-
tuples for efficient signature-verification and message-encryption. In
Lecture Notes in Computer Science on Advances in Cryptology-
EUROCRYPT’88, pages 419–453, New York, NY, USA, 1988.
Springer-Verlag New York, Inc.

[MMDB08] Mohamed Saied Emam Mohamed, Wael Said Abd Elmageed Mo-
hamed, Jintai Ding, and Johannes Buchmann. MXL2: Solving poly-
nomial equations over GF(2) using an improved mutant strategy. In
Johannes Buchmann and Jintai Ding, editors, PQCrypto, volume 5299
of Lecture Notes in Computer Science, pages 203–215. Springer, 2008.

[Moh99] Tzuong-Tsieng Moh. A fast public key system with signature and
master key functions. In CrypTEC’99 (Proc. International Workshop
on Cryptographic Techniques & E-commerce). City University of Hong
Kong Press, July 1999.

[Odl99] Andrew Odlyzko. Discrete logarithms: the past and the future.
Designs, Codes, and Cryptography, 19:129–145, 1999.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms
of polynomials (IP): Two new families of asymmetric algorithms. In
Proceedings of the 15th annual international conference on Theory

REFERENCES 95

and application of cryptographic techniques, EUROCRYPT’96, pages
33–48, Berlin, Heidelberg, 1996. Springer-Verlag.

[Pat00] Jacques Patarin. Cryptanalysis of the matsumoto and imai public key
scheme of eurocrypt’98. Designs, Codes and Cryptography, 20:175–209,
2000.

[PG97] Jacques Patarin and Louis Goubin. Trapdoor one-way permutations
and multivariate polynomials. In Proc. of ICICS’97, LNCS 1334,
pages 356–368. Springer, 1997.

[PH78] Stephen Pohlig and Martin E. Hellman. An improved algorithm for
computing logarithms over gf(p) and its cryptographic significance.
IEEE Transactions on Information Theory, 24(1):106–110, 1978.

[Pol78] John M. Pollard. Monte Carlo methods of index computation (mod
p). Mathematics of Computation, 32(143):918–924, 1978.

[RS99] Ronald L. Rivest and Robert D. Silverman. Are ‘strong’ primes needed
for RSA? In The 1997 RSA Laboratories Seminar Series, Seminars
Proceedings, 1999.

[RSA78] Ron R. Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21:120–126, 1978.

[SCG12] Simona Samardjiska, Yanling Chen, and Danilo Gligoroski. Algo-
rithms for construction of multivariate quadratic quasigroups (MQQs)
and their parastrophe operations in arbitrary galois fields. Journal of
Information Assurance and Security, 7, 2012. (To appear).

[Sha71] Daniel Shanks. Class number, a theory of factorization, and genera.
In 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol.
XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 415–440.
Providence, R.I., 1971.

[Sha82] Adi Shamir. A polynomial time algorithm for breaking the basic
merkle-hellman cryptosystem. In Foundations of Computer Science,

96 REFERENCES

1982. SFCS ’08. 23rd Annual Symposium on, pages 145 –152, nov.
1982.

[Sha93] Adi Shamir. Efficient signature schemes based on birational permuta-
tions. In Proceedings of CRYPTO’93, number 773 in LNCS, pages
1–12. Springer-Verlag, 1993.

[Sho97a] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM J. Comput.,
26(5):1484–1509, October 1997.

[Sho97b] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Proceedings of the 16th annual international conference on
Theory and application of cryptographic techniques, EUROCRYPT’97,
pages 256–266, Berlin, Heidelberg, 1997. Springer-Verlag.

[Smi07] Jonathan D.H. Smith. An Introduction to Quasigroups and Their
Representations. Studies in Advanced Mathematics. Chapman &
Hall/CRC, 2007.

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret exponents.
IEEE Transactions on Information Theory, 36:553–558, 1990.

[WP05a] Christopher Wolf and Bart Preneel. Equivalent keys in HFE, C*,
and variations. In In Mycrypt 2005, Lecture Notes in Computer
Science LNCS 3715, Ed Dawson, Serge Vaudenay (Eds, pages 33–49.
Springer-Verlag, 2005.

[WP05b] Christopher Wolf and Bart Preneel. Taxonomy of public key schemes
based on the problem of multivariate quadratic equations. Cryptology
ePrint Archive, Report 2005/077, 2005. http://eprint.iacr.org/.

[YC05] Bo-Yin Yang and Jiun-Ming Chen. Building secure tame-like multi-
variate public-key cryptosystems: the new TTS. In Proceedings of the
10th Australasian conference on Information Security and Privacy,
ACISP’05, pages 518–531, Berlin, Heidelberg, 2005. Springer-Verlag.

http://eprint.iacr.org/

	Title Page
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols and Abbreviations
	Introduction
	Public-key cryptography
	The Discrete Logarithm problem
	The factorization problem
	Alternative one-way trapdoor functions

	Multivariate Quadratic Cryptography
	The MQ-problem
	Public-key cryptography based on the MQ-problem
	Trapdoor constructions
	Key sizes and computational aspects
	Key sizes
	Efficiency of cryptography based on

	Quasigroups
	Basic definitions
	Multivariate quadratic quasigroups

	MQQ-SIG
	High level description
	The central map P'
	Construction of the quasigroup
	Operation of the central map P'
	The inverse map P'

	The transformations S and S'
	Operating characteristics
	Sizes of the public and private key
	Computational aspects

	Experimental Analysis
	Gröbner basis cryptanalysis
	The parameters of MQQ-SIG
	Experimental procedure
	Hardware and software
	Attack algorithm

	Experiments on the original MQQ-SIG
	The matrix U(x)
	The matrices A1 and A2
	The matrix B
	The matrix S

	Enhancing the MQQ-SIG Key Generation Algorithm
	The new key generation algorithm
	Performance
	Procedure
	Results

	Conclusion
	References

