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Abstract

We implement a biometric authentication system on the Android platform,
which is based on text-dependent speaker recognition. The Android version
used in the application is Android 4.0. The application makes use of the
Modular Audio Recognition Framework, from which many of the algorithms
are adapted in the processes of preprocessing and feature extraction. In
addition, we employ the Dynamic Time Warping (DTW) algorithm for the
comparison of different voice features. A training procedure is implemented,
using the DTW algorithm to align features. Furthermore, we introduce per-
sonal thresholds, based on which the performance for each individual user
can be further optimized.

We have carried out several tests in order to evaluate the performance of the
developed system. The tests are performed on 16 persons, with in total 240
voice samples, of which 15 samples are from each person. As a result, for
authentication, one of the optimal trade-offs of the False Acceptance Rate
(FAR) and False Rejection Rate (FRR) achieved by the system is shown to
be 13% and 12%, respectively. For identification, the system could identify
the user correctly with a rate of 81%. Our results show that one can actu-
ally improve the system performance in terms of FAR and FRR significantly,
through using the training procedure and the personal thresholds.
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Sammendrag

En tekst-avhengig stemmegjenkjennings-applikasjon har blitt laget til Android-
plattformen. Versjonen av Android brukt er Android 4.0. Applikasjonen
bruker Modular Audio Recognition Framework for mange av algoritmene
brukt for preprosessering og egenskapsuttrekking. Dynamic Time Warping-
algoritmen (DTW) har blitt implementert for bruk i sammenligningen av
disse egenskapene. En treningsprosedyre er ogs̊a implementert. Prosedyren
bruker DTW-algoritmen for å korrigere forskjeller mellom egenskapene. Per-
sonlige terskler er innført for å muliggjøre optimalisering av ytelsen for hver
enkelt bruker.

Flere tester er utført for å evaluere systemets ytelse. Testene er utført
p̊a 16 personer, med totalt 240 opptak, hvor hver person har bidratt med
15 opptak. I forhold til autentisering er en av de optimale trade-offene for
ratene for falsk akseptanse og falsk avvisning beregnet til å være henholdsvis
13 og 12 prosent. I forhold til identifisering er systemets identifikasjonsrate
beregnet til 81%. Resultatene viser at bruken av treningsprosedyren og
personlige terskler, forbedrer ytelsen betydelig.
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Chapter 1

Introduction

The use of smartphones has become more and more popular over the last
years. A study from the market research firm Nielsen [1] shows that the
amount of mobile subscribers in America that has a smartphone, has in-
creased from 38% to 50% only in the last year. The introduction of smart-
phones has made it easier to use many services, such as online banking,
anytime and anywhere. Many of these different services have a need for
authentication of the user. The typical authentication method in use today
is password-based authentication.

Biometrics is considered as a very good method for authentication because
of its tight connection to the user, and its convenience. Biometric charac-
teristics are physically connected to a person, making them very reliable for
both identification and authentication. With the increase in computational
power on mobile devices such as smartphones smartphones, it is now feasi-
ble to use biometrics on such devices.

An authentication application using voice biometrics has been made for
the Android mobile platform. The application uses speaker recognition as
the authentication method. This thesis will describe the implemented ap-
plication, and evaluate its performance.

1.1 Related work

There exist open-source speaker recognition systems that are built for use
on computers. An example is the Modular Audio Recognition Framework
[2] that is partially used in the implementation of our application.

To our knowledge, there are no other open-source speaker recognition ap-
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plications that have been made for the Android platform. There exist some
commercial Application Programming Interfaces (API) that are made for
enabling the development of speaker recognition systems on mobile devices.
Two examples of such API’s are the VoiceVault API [3] and the VeriSpeak
Embedded Software Developer’s Kit (SDK) provided by Neurotechnology
[4].

1.2 Thesis outline

The thesis is outlined as follows.

Chapter 2 - Background The chapter provides background information
on biometrics and biometric systems. It also gives a description of the
different considerations that need to be taken into account regarding security
and privacy in such systems. In addition, the chapter gives an introduction
to the Android platform.

Chapter 3 - System Architecture The chapter gives an explanation of
the architecture of the implemented system. The different algorithms used
in the system will also be described in detail.

Chapter 4 - Technical Procedure The chapter describes the several
implementations done in the system. The implementation of the training
procedure is explained, as well as the introduction of personal thresholds.

Chapter 5 - Experimental Procedure The chapter describes the dif-
ferent experimenting and testing performed on the system.

Chapter 6 - Performance Evaluation The chapter presents the results
from the tests described in Chapter 5. These results are then analyzed and
discussed with regards to performance of the system.

Chapter 7 - Conclusion and Future Work The chapter summarizes
the most important results found, and gives a conclusion on the work done
in the thesis. Possible future work that can further improve the performance
of the application is also presented.
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Chapter 2

Background

This chapter gives an overview of biometrics and biometric systems. The
following sections describe biometrics and biometric systems, as well as the
security and privacy considerations of such systems. In addition, we also
provide a description of the Android platform.

2.1 Biometrics

Biometrics refers to techniques used to recognize individuals by their biolog-
ical characteristics. Biological characteristics can be viewed as either phys-
iological characteristics or behavioral characteristics. Physiological charac-
teristics are the features of a person that are fixed, meaning something the
person is. These characteristics can also be described as passive biological
characteristics. Some examples are:

• Fingerprints: The analysis of the patterns on a fingertip is a very
commonly used method in biometrics.

• Facial structure: Facial recognition identifies people by analyzing
the different structures in an individual’s face.

• Iris: Iris recognition analyzes the different patterns of the iris.

Behavioral characteristics regard what a person does. Such characteristics
can also be described as active characteristics. Some examples are:

• Gait: It is possible to identify people by analyzing their walking
pattern.

• Signature: Most people have a distinct way they write their signa-
ture, which can be used as a behavioral characteristic.
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• Keystroke dynamics: It is also typical that persons have a distinct
way in how they type on a computer keyboard.

Biological characteristics are tightly coupled to a person, making them very
suitable for use in authentication. Not all characteristics are equally suited
for use in authentication though. Some can be difficult to measure and
some can be hard to separate from person to person. Therefore not every
characteristic can be used. As stated in [5], four requirements for biological
characteristics that are to be used in biometrics are:

• Universality: Every person in the world must have this characteris-
tic.

• Distinctiveness: The characteristic should be distinctly different for
each person.

• Permanence: The characteristic should not drastically change for a
person over time.

• Collectability: It should be easy to measure the characteristic.

The importance of each of these requirements will typically vary, depending
on the purpose of the system using these characteristics. If the system has
a need of a very high level of security, then universality and distinctiveness
becomes very important. If the system focuses more on usability, then
collectability becomes more important.

2.2 Authentication and Identification Principles

The definition of authentication varies with regards to what type of envi-
ronment it applies to. In the implemented biometric system, it is restricted
to individuals putting forward an identity claim. The definition will then be
as follows: Authentication is the process of verifying that a claimed identity
put forward by an individual is legitimate.

To be able to verify such a claim, the individual needs some way of proving
his identity. The typical way of doing this is to challenge the individual to
provide some kind of information that only the correct person should be in
possession of. There are typically three different types of such information:

• Something the individual knows

• Something the individual has

• Something the individual is

4



Something the individual knows, is some knowledge only the correct per-
son should know about. Typical examples of such information is passwords
or questions only the correct person knows the answer to. Something the
individual has, are physical objects that only the correct person should be
in possession of, and that no one else should be able to get a hold of. An
example of such an object is a passport. Something the individual is, relates
to biometric characteristics.

The task of the authentication process is to verify that the individual is
in possession of such information. In a biometric system this means that
the individual needs to provide his biometric characteristics, and the system
will verify if these characteristics correspond to the stored characteristics of
the claimed identity. The authentication process can be viewed as the same
as a verification process. It is a one-to-one comparison where we only com-
pare the incoming features with the stored features of the claimed identity.
Whenever authentication is mentioned later in the report, this is the process
referred to.

The use of biometric information often makes us able to identify a person as
well. This is possible to do since biometric characteristics in most cases are
unique for a person. In an identification process the individual only puts
forward his biometric information. It will then be the system’s task to find
the correct identity corresponding to the provided biometric characteristics.
The system will then need to search among all the identities stored in the
system. This can be viewed as a one-to-many comparison.

2.3 Biometric Systems

Figure 2.1 shows the architecture and operations of a typical biometric
system. The figure is taken from the ISO Standard, Biometric Information
Protection [6].

2.3.1 Subsystems

A biometric system typically consists of five subsystems.

Data Capture Subsystem

The data capture subsystem has the task of capturing the biometric char-
acteristics of an individual. It typically consists of sensors able to capture
biometric information. In the case of voice this is typically a microphone
able to record the voice.
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Figure 2.1: Architecture of a biometric authentication system

Signal Processing System

The signal processing subsystem receives the recorded data from the data
capture subsystem. Its task is to process the biometric data and extract
its important features. The recorded biometric sample should be discarded
after this stage, and only the features should be used further on.

Data Storage System

This is the subsystem that handles stored data. It stores the identity of
a user and its corresponding biometric reference. A biometric reference
contains the biometric features of the user.

Comparison Subsystem

The comparison subsystem is used for comparing biometric features. It
computes a comparison score that is further used by the decision subsystem
to determine the outcome of the verification or identification process.

Decision Subsystem

The decision subsystem has the task of determining if a user is verified or
identified, depending on which of the two cases is used. The subsystem takes
as input the calculated score from the comparison. The score is compared
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against a predetermined threshold. The process of this subsystem is different
depending on whether verification or identification is used. In the case
of verification, only one comparison score is calculated, and the decision
subsystem only needs to check if this score is within the threshold. If it
is, the user is verified. In identification, the incoming references need to
be compared against all the enrolled references. The decision subsystem
then needs to make a list of references that is below this threshold when
compared with the incoming reference. A decision is then taken regarding
which of the references in the calculated list that is the correct one.

2.3.2 Processes

As we see from Figure 2.1, there are three different processes that can occur
in such a system.

Enrolment

Before the system can be used for verification or identification, all users
need to be enrolled. This means that all users must provide their identity
and biometric characteristics to the system. These are later used as the ref-
erences during verification or identification. A typical enrolment process is
shown by the dotted red line in Figure 2.1. The individual first registers his
identity in the system. Then the biometric characteristics are provided. The
biometric features are extracted, and then stored as the biometric reference
corresponding to the given ID.

Verification

In verification, an individual makes an identity claim against the system,
and then provides his biometric information. A typical verification pro-
cess is shown by the blue line in the figure. The biometric information is
recorded and processed by the data capture subsystem. The processed data
is sent further on to the signal processing subsystem. Here the features are
extracted from the biometric data. The features are then sent to the com-
parison subsystem. The data storage subsystem checks the claimed identity,
and finds its corresponding biometric reference. The reference is then used
for comparison. The comparison subsystem takes as input the reference and
the incoming features, and calculates a comparison score. This score is used
to determine if the individual can be verified as the claimed identity.
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Identification

In this case, the individual does not claim his identity; he only provides his
biometric information. The task of the system is then to find an enrolled
user that has matching biometric characteristics. The difference from the
verification case will then be that the system needs to compare each enrolled
biometric reference with the incoming reference. The process is shown in
Figure 2.1 by the dotted green line. Each comparison score is sent to the
decision subsystem. If the score is within the threshold, the subsystem will
ask the data storage subsystem for the ID of the compared user. This ID
will then be added to a candidate list. When all enrolled references have
been checked, the list will consist of all the ID’s that had comparison scores
within the threshold. The subsystem then takes a decision on which of the
ID’s in the candidate list that is the correct one.

2.4 Speaker recognition

Speaker recognition is one of several branches of different voice biometrics,
or speech processing techniques. Figure 2.2, taken from [7], shows the dif-
ferent branches, as well as the different categories of speaker recognition.
The goal of speaker recognition is to recognize who is speaking. This is in
contrast to for example speech recognition where the task is to figure out
what is spoken.

The two important branches of speaker recognition are speaker identifica-
tion and speaker verification. Speaker identification is the case where a
person inputs a voice recording in the system without an identity claim.
The system must then try to identify who this person is. Speaker verifica-
tion considers the case where an identity claim is put forward as well as his
voice. The system’s task is then to verify if the claim put forward is correct.

There are two different types of speaker recognition systems. These are
text-independent and text-dependent systems. The two different types have
their advantages and disadvantages.

2.4.1 Text-independent

A text-independent system is able to accept variations in the spoken phrases.
It is independent of the text spoken. Such a system can typically be used
for providing verification or identification of a person by examining ongoing
speech. An example can be a telephone service where a user calls in and
provides an identity. While the user speaks with for example an operator,
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Figure 2.2: Different types of speech processing

the text-independent system can work in the background and verify if the
user is who he claims to be.

The speech input in a text-independent system typically needs to be quite
much longer than that of a system that is text-dependent. The error rates
of such systems also tend to be a bit higher than for a text-dependent system.

In a text-independent system, the features used for comparison are typi-
cally found by averaging the features of the voice spoken, for the entire
recording.

2.4.2 Text-dependent

In a text-dependent system the spoken phrase must be the same each time.
The use of a text-dependent system therefore challenges a user to provide
two types of information to be authenticated. In addition to being the cor-
rect speaker, the user must know the correct passphrase. A text-dependent
system therefore provides two of three types of information described in Sec-
tion 2.2, both information the person knows, and information the person is.

The features in a text-dependent system are typically different than in a
text-independent system. In the text-dependent case we need to look at the
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features of the voice in all the different parts of the recording, to see if the
correct passphrase is used. Therefore we will, in the text-dependent case,
have a set of features of the voice, instead of just one average feature.

In the implemented system it has been chosen to use text-dependent technol-
ogy. The main reason for this is due to the fact that a text-dependent system
is able to provide a higher level of security than what a text-independent
system can provide. Another important reason is that for such a system,
the use of a short and equal phrase each time is more user friendly than
making the user provide quite long samples of speech each time.

2.5 Android

The platform used on the smartphone is Android [8]. The platform is a
software stack containing an operating system, middleware and key appli-
cations, and is specifically designed for use on mobile devices. As of March
2012, Android is the most popular smartphone OS in America, according
to the market research firm Nielsen [9]. The OS holds a market share of
48.5%. The platform is used by several of the biggest mobile makers today,
such as HTC and Samsung. Android is an open platform, which makes ev-
eryone able to build applications that can run on the system. Applications
on Android are made using the Java programming language. The version
used in this project is Android 4.0 (Ice Cream Sandwich).

2.5.1 Architecture

Figure 2.3 shows the major components in Android. The figure is taken
from [8]. The system contains several core applications, which are shipped
with the system. These are applications such as a phone application, web
browser, e-mail client, and several others. The application framework is the
framework used to create the applications. The system also contains several
libraries which can be used. The system runs on a Linux Kernel.

Android provides a communication model, which makes it possible for ap-
plications from same and different vendors to interact. For example, an ap-
plication that needs to show a map can interact with for example Google’s
map application. The different applications communicate through messages
called intents. Intents are sent between components in applications. An-
droid applications are built up by several such components. Intents can ei-
ther be explicit or implicit. Explicit intents are intents that explicitly states
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Figure 2.3: Major components of the Android Operating System

which components it wants to use. Implicit intents only states that it wants
to use a component that has the specified functionality. If we use the map
example, an explicit intent would be an intent that explicitly states that it
wants to use Google’s map component, while an implicit intent would state
that it wants to use a component that has the map functionality, without
specifying which one. Intents can also be used internally in an application,
to invoke different components within the application.

Android has defined four component types:

Activity

Activities are the visual components in the system. These are the compo-
nents the user interacts with, the user interfaces. An application typically
contains several activities that together provide the entire user interface of
the application.

Service

Service components run in the background, and have no direct interaction
with the user. A service can for example process data which is then sent
to an activity and shown to the user. As an example a service operation
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can be a file download which is done in the background while the user does
something else on the application.

Content Provider

A content provider manages stored data, both for internal use within the
application and for use between different applications. The data can be
stored locally on the file system or other places accessible. Different appli-
cations can be able to fetch data from a content provider, depending on the
restrictions set on the content provider.

Broadcast Receiver

A broadcast receiver manages broadcast messages sent throughout the sys-
tem. It can also be used to manage the sending of intents directed to several
receivers.

2.5.2 Android Security

Each Android application runs separately in its own secure sandbox. Hav-
ing an own sandbox means that the applications have their own part of
the system where they can run, and no other applications can access. In
this case it means that the applications run their own virtual machine and
Linux process, separating its running code from everybody else. All files
the application contain are also by default not possible for others to access.

The open communication system in Android makes it susceptible to at-
tacks by misusing the different messages sent throughout the system [10].
The different application components define permissions on which different
types of intents it can receive. If these permissions are badly defined it can
make the application susceptible to different attacks. For example, consider
a component that handles sensitive information, which it passes on to cer-
tain other applications and components. If the permissions regarding which
applications or components that are allowed to receive this information are
defined badly, it could be possible for malicious applications to request and
receive this information via intents. It is therefore important to define the
permissions well, making sure only the correct components and applications
have access.

2.6 System Performance

This section describes the different aspects of providing security in a bio-
metric system. The use of biometrics creates several challenges regarding
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security. Some challenges are quite traditional in regards to providing secu-
rity, while others are more unique for the use of biometrics.

2.6.1 Security Considerations

The ISO standard, ISO 24745, Biometric Information Protection [6], pro-
vides guidance for protecting biometric information. It provides three re-
quirements regarding the security of the information. These are confiden-
tiality, integrity and renewability/revocability.

Confidentiality

In this system, the ability to provide confidentiality means the ability to
keep the data in the system secret. The biometric information should be
kept confidential for multiple reasons. The InterNational Committee for
Information Technology Standards provides three reasons in their report
[11].

• Biometric characteristics are considered sensitive personal informa-
tion, and should therefore not be shown in the clear.

• If the data is not kept confidential, it will provide the attacker with
a digital copy of the biometric value. This can in some cases make
attacks simpler to execute.

• If several applications use the same type of features in their authen-
tication, it could be possible to acquire features from one application
and then inject them into another application.

Integrity

Providing integrity of data means the ability to be certain of the source
of the data, as well as being certain that the data has not been modified
in any way. In this system this relates to the ability of being certain that
the incoming voice sample is a live sample, and not a previously recorded
sample. It is critical that we are able to check the integrity of an incoming
voice recording. It should not be possible to use a recorded sample of the
correct voice to get authenticated. The typical method used for checking the
integrity of incoming biometric data is liveness detection. Liveness detection
is a technique used for enabling detection of whether incoming biometric
data comes from a living person or not. In the case of voice biometrics this
would typically mean being able to separate a recorded voice from a live
sample.
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Renewability/Revocability

This requirement concerns the system’s ability to renew and revoke data
in the case of a database breach. If an attacker has gotten a hold of the
reference of a user, it is desired that this reference is revoked and replaced
with a new one. This can in many cases be hard to do when biometrics is
used. For a text-independent system, renewability is a big challenge. The
reference in such a system will consist of the features of the individual’s
voice, independent of any text. It is therefore very difficult to provide more
than one feature set for each individual, making renewability very hard
in such a system. However, in a text-dependent system, renewability is
possible. Remember that in the text-dependent case we are dependent on
the phrase spoken. Therefore it is possible to create several feature sets for
an individual by making him enroll several sentences. Should a reference be
disclosed, the system can replace the reference with a reference for another
sentence.

Measurement Variations

One of the major problems in using voice, or any other type of biometrics
as an authentication method, is the variations that arise between measure-
ments of the biometric value. Different recordings of the same voice will
typically have some small differences between them. This could occur be-
cause of several factors, such as unwanted noise, or the use of a different
microphone. In a text-dependent system, differences in how the correct
sentence or word is spoken can create variances. For example a vowel can
be spoken longer than in the reference, there can be longer breaks between
words in a sentence, and so on. These variations can create false accep-
tances and false rejections. A false acceptance can occur in two different
cases, depending on whether the system uses identification or verification.
If identification is used, a false acceptance occurs when a user is identified
as a user other than himself. This means that in this case a user enrolled
in the system can create a false acceptance. In the case of verification a
false acceptance happens when an illegitimate user gets verified. A false
rejection occurs when a legitimate user of the system is either not identified
correctly, or not verified.

Because of these occurrences the system needs to set a decision thresh-
old. This threshold defines how much an incoming template can vary from
the reference. If the template has a difference from the reference within the
threshold, it is accepted. If the distance is higher than the threshold, it is
rejected. If an illegitimate user has a template that, when compared with
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the reference, has a distance within the threshold we have a false accep-
tance. If a legitimate user provides a template with a distance above the
threshold we have a false rejection. The rates in which a false acceptance
occurs is typically called False Acceptance Rate (FAR) or False Match Rate
(FMR). The rate for a false rejection is often called False Rejection Rate
(FRR) or False Non-Match Rate (FNMR).

Figure 2.4, from [12] shows two different distributions. The green line shows
the distribution of comparing templates coming from the same user. The
red line shows the distribution of templates from different users. We see
that there is some overlapping between the two distributions. These over-
laps create the false acceptances and false rejections. The defined threshold
can be seen as the value T in the figure. The overlap that occurs to the left
of T is the FRR, shown in the green field. The overlap on the right side is
the FAR, and is shown in the red field.

Figure 2.4: Typical distribution for score parameters

Varying the threshold will create changes in the rates of FAR and FRR. If
the threshold is set quite low only small variations from the reference are
allowed. This will make it harder for an illegitimate user to get accepted,
but at the same time the legitimate user will be rejected more often. There-
fore, in this case, the FAR will decrease while the FRR will increase. If the
threshold is set too high you will get the opposite case with an increasing
FAR and decreasing FRR. We therefore get a trade-off regarding where to
set the threshold. Set it high and the correct user will get good usability by
almost always be accepted, but at the same time the security is degraded
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since the FAR increases. If the threshold is set low the usability will be
degraded since the correct user more often will be rejected, but the security
of the system will be better. What the threshold should be set to therefore
depends on what the specific system desires.

2.6.2 Privacy Considerations

Biometrics can in many cases be viewed as unique identifiers of an individ-
ual. This can be a very good attribute with regard to security, but creates
problems regarding the privacy of the user. Biometric information is viewed
as personal and sensitive information, and can give away important infor-
mation about a person. This, along with the fact that biometric information
in itself can identify a person, is why it is very important to address the
privacy of the information stored in the system.

Biometric information can also contain some other information regarding
the person. One example of this is health related information. The Fidis
deliverable, Biometrics in Identity Management [13] has a list of such infor-
mation that can be found in different biometric characteristics. On voice
recognition it states that it can be possible to find information on diseases
of the nervous system, such as Parkinson’s disease and stroke.

The ISO standard, Biometric Information Protection [6] has listed three
requirements that should be fulfilled in order to protect the privacy of the
users. These are irreversibility, unlinkability and confidentiality.

Irreversibility

The irreversibility requirement states that it should not be possible to re-
verse the stored reference and find the original data. In this system this
means that it should not be possible to derive the original recording of the
voice by analyzing the stored reference.

Unlinkability

This requirement states that it should not be possible to link biometric
references across different applications.

Confidentiality

The references should be kept confidential. It should not be possible for
someone to get a hold of the reference in plain-text.
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Chapter 3

System Architecture

This chapter will describe the architecture of the system built. The first
sections describe the general architecture, while the last sections describe
in detail the different algorithms used in the system.

3.1 Modular Audio Recognition Framework

The system makes use of the Modular Audio Recognition Framework [2],
denoted as MARF. MARF is an open-source framework containing many
algorithms that can be used for processing sound and speech. It also pro-
vides a good framework for adding new algorithms to be used.

There are several reasons why this framework is adapted in the system.
First of all, it contains implementations of many of the algorithms needed
to build a text-dependent speaker recognition system. The framework is
also programmed using the Java programming language, which is also used
for the implementation of this system.

The process in MARF was originally built for text-independent speaker
recognition, but can be modified for use in a text-dependent system. The
modifications we have done will be described later.

3.2 MARF Architecture

This section describes the authentication and enrolment processes in MARF.
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3.2.1 Authentication

Figure 3.1 shows the general pipeline in MARF for the authentication pro-
cess. The voice sample is first recorded and then sent as input to MARF.
The sample is first preprocessed, and the features of the voice sample are
then extracted. The features are then sent to the comparison stage for com-
parison with the stored reference features. The result calculated from the
comparison is used in the decision process.

The framework has implementations of several algorithms for each of the
stages described in the figure.

Figure 3.1: Core pipeline in MARF
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3.2.2 Enrolment

The enrolment process in MARF uses the same pipeline as the authentica-
tion process, with the exception of the comparison stage. The purpose of
the enrolment process is to create the reference that later will be used in
the authentication process. It is similar to the enrolment process shown in
Figure 2.1, in Chapter 2. The MARF enrolment process follows the pipeline
in Figure 3.1 through the feature extraction stage. After this stage the cal-
culated features are stored as the reference for the user.

MARF has a training feature which makes it possible to use more than
one recording to create the reference. The training feature makes it pos-
sible to invoke the enrolment process more than once for each user. The
first time training is called for a user, the process is equal to the enrolment
process described above. After the first time, the reference will already have
been created when the process is called. The difference will then be that the
reference is updated instead of created. The reference is updated by finding
the average features of the different samples used in the training process.

3.3 System Architecture

This section explains how MARF has been used in the implemented system.
The authentication and enrolment processes are described.

3.3.1 Authentication

The implemented system uses the same stages as MARF in the authentica-
tion process. An explanation of how these stages are altered to provide a
text-dependent system follows.

The preprocessing stage has not been altered in the implemented system.
The preprocessing of a voice sample is in general no different in a text-
dependent system from a text-independent system. This component consists
of several algorithms that are implemented in MARF. These are normaliza-
tion, endpointing and silence removal.

The feature extraction component makes use of some algorithms from MARF,
but with some modifications. Since the extraction methods in MARF are
implemented for use in a text-independent system, there is a need for
some changes to make them work in a text-dependent system. The text-
independent algorithms only output the average feature vector for the whole
sample. In a text-dependent system we are in need of getting all the feature
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vectors from the sample. The algorithms are therefore changed to output
all these feature vectors. The system uses two algorithms in the feature
extraction stage, Hamming Window and Linear Predictive Coding (LPC).
The Hamming Window algorithm is used to process data before the actual
extraction and is therefore not modified from the MARF implementation.
The LPC algorithm has been modified to output the entire set of feature
vectors instead only the average vector.

The comparison stage needs more changes than the other two stages. In-
stead of comparing two single feature vectors, we are now comparing two
sets of features. Therefore the algorithms implemented in MARF cannot
be used for the main comparison. The Dynamic Time Warping (DTW)
algorithm is implemented for this purpose. The Manhattan distance is used
for local distance comparison within the DTW algorithm.

The pipeline and stages of the system is shown in Figure 3.2. In the next
sections we will describe in detail the workings of the algorithms used in the
different stages.
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Figure 3.2: Core pipeline in the system

3.3.2 Enrolment

The enrolment process has been completely altered from the one found in
MARF. The first steps in the process are still the same; the pipeline is fol-
lowed until after the feature extraction stage. The difference lies in how
the creation and updating of the reference is done. These tasks are per-
formed by the training procedure implemented in the system. This training
procedure is described in Chapter 4.
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3.4 Preprocessing

The preprocessing stage is the first step in the processing of an incoming
voice recording. There are three different methods that are implemented
in this part of the system. These are normalization, silence removal and
endpointing. The algorithms are described below. The implementation of
each of these algorithms is taken from the MARF framework [2].

3.4.1 Normalization

The use of different microphones, recordings taken in different environments
and other factors will create differences in voice recordings. One important
factor is that the sound level of the voice typically will vary, creating differ-
ent amplitudes for each sample. It is therefore important to normalize these
differences in the amplitude. The method used for this normalization is to
scale the amplitudes of the sample with regards to the maximum amplitude
found in the sample. The implemented algorithm takes the maximum am-
plitude in the sample, and scales the sample by dividing each point with
this value.

3.4.2 Silence Removal

Silence removal removes the parts of an incoming sample that are silent or
almost silent. These parts are found by looking after places in the sample
where the amplitudes are below a certain threshold. The threshold is set to
1% of the maximum amplitude. The values in the sample are denoted by
points that are limited to (-1.0, 1.0), meaning the maximum amplitude is
-1.0 or 1.0, making 1% equal to points within (-0.01, 0.01).

3.4.3 Endpointing

Endpointing is a technique that selects local maximum and minimum values
in the sample, and removes the rest, thereby compressing the data. These
local minimums and maximums are called end-points. The implementation
of the algorithm works as follows:

The algorithm goes through each value in the sample, starting at the be-
ginning. We denote the sample S. Each value in the sample is denoted Si,
where i is the index of the value. A value is chosen if one of the three
conditions below is correct:

• (Si−1 < Si) ∩ (Si+1 < Si)

• (Si−1 > Si) ∩ (Si+1 > Si)
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• (Si−1 = Si) ∪ (Si+1 = Si)

The first statement is the condition for a local maximum, the value must
be bigger than its neighbors. The second denotes a local minimum, meaning
that the value is smaller than its neighbors. The last statement is added
to enable continuous values to be chosen. In addition to these conditions,
the values at the beginning and end of the sample are always chosen. Using
this algorithm the sample is shortened, leaving us with the most important
information.

3.5 Feature Extraction

After the preprocessing stage is finished, the features of the voice are ex-
tracted. The purpose is to extract the crucial information from the sample.
This information makes us able to differentiate between different users. Af-
ter this stage it is possible to discard the original sample. The extraction
process will be slightly different depending on whether the system is based
on text-dependent or text-independent authentication. How these two cases
defer from each other will be explained later in the chapter. The following
sections describe the different algorithms implemented and how they are
used in the system.

3.5.1 Hamming Window

In a spectrum analysis of audio signals it is common to split the signal into
shorter segments before any analysis is done. One particular advantage this
gives is that it makes it possible to compare different templates in the time
domain. To do this, one compares the features from the first segments in
an incoming template with the features from the first segments of the refer-
ence, and so on, until the last segments. This makes it possible to perform
a text-dependent analysis.

To create such segments, or windows, one typically uses a window function.
The most simple window function creates a rectangular window. An exam-
ple of a rectangular window with length M = 21 is shown in Figure 3.3,
taken from [14]. A rectangular window sets all values outside the window
to zero, and doesn’t do any changes on the inside of the window. This will
create a sudden drop to zero at the beginning and end of the window. This
can often create some unwanted variations. To avoid this, one should use
window functions that minimize the side lobes of the window [14]. The
window function used in this system is Hamming Window. An example of
a Hamming Window with length M = 21 is shown in Figure 3.4 [14].
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Figure 3.3: Rectangular window

Figure 3.4: Hamming window

A Hamming Window is defined by the following function [14]:

x = 0.54− 0.46 ∗ cos(2 ∗ π ∗ n/(l − 1)) (3.1)

where x is the new sample amplitude, n is the window index and l denotes
the length of the frame. It is also important that the different windows
overlap somewhat so that each point is valued equally when the windows
are summed up. In one window, the points on the edge will be degraded
towards zero, and won’t give a good representation of the value in itself.
Therefore overlapping of windows is important.
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3.5.2 Linear Predictive Coding

The feature extraction method used in this system is called Linear Predic-
tive Coding (LPC). Using LPC we are able to retrieve the features from
a speech sample. The features can be used for both text-independent and
text-dependent authentication. LPC uses linear prediction to create these
features from the sample. Linear prediction gives a representation of the
voice with less data than the raw sample, and can for example be used for
data compression [15]. These calculated representations can also be used as
features of the voice.

Linear prediction takes as input a discrete time series signal denoted as
sn, where n is an integer varying with time. Linear prediction estimates
future values of the signal sn from linear combinations of past outputs and
inputs from the signal. It can be described as [15]:

sn = −
p∑

k=1

aksn−k +G

q∑
i=0

biun−i, b0 = 1 (3.2)

Here sn−k are the previously observed outputs from the system. ak are the
predictor coefficients. The value un−i denotes the past inputs to the system,
and bi are its corresponding predictor coefficients.

There are two cases of this model that are typically looked at:

• all-zero model, where ak = 0

• all-pole model, where bi = 0

The all-pole model is by far the most used of the two, and is also the one
used in this system. The rest of the description focuses on this model.

In the all-pole model we have bi = 0. The equation then becomes:

sn = −
p∑

k=1

aksn−k +Gun (3.3)

We see that the signal sn is now estimated by a linear combination of its
past values, and some input un. The number of poles used is denoted by p.

The values we are interested in calculating are the predictor coefficients
ak. The coefficients are used as the features of the sample. The system uses
the least-square autocorrelation method to derive these coefficients:
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It is assumed that the input un is unknown. So it is only possible to predict
sn approximately by the following equation:

s̃n = −
p∑

k=1

aksn−k (3.4)

Since we are only able to approximate the value we will get an error between
the approximated value and the correct one. We denote this error value to
be en. The equation for the error will then be:

en = sn − s̃n = sn +

p∑
k=1

aksn−k (3.5)

We are now able to calculate the coefficients ak by minimizing this error.
The details on the minimization procedure and the rest of the implementa-
tion of the algorithm can be found in the documentation on MARF [2].

Use in the system

As described in the previous section, we split the sample into smaller seg-
ments using a Hamming window. Each of these segments is then sent as
input to the implemented LPC algorithm. The algorithm outputs a vector
consisting of the predictor coefficients ak for this segment. The vector will
be of size p, corresponding to the amount of poles used.

The feature vectors are used differently in the implemented system than
in MARF. In MARF the output from the LPC algorithm is one single fea-
ture vector calculated by finding the average predictor coefficients from all
the segments. In the implemented system we are interested in each of the
feature vectors from all the segments, instead of just the average feature
vector.

Both this average feature vector and the entire set of feature vectors are
sent as output from the extraction stage. The reason for this is that the
average feature vector used in MARF can be of interest in the compari-
son stage, even though the main comparison is done on the entire feature
set. Two average feature vectors can be compared using a method that can
calculate the distance between two vectors. In this system the Manhattan
distance is used for this purpose. The distance between two average feature
vectors is, in this report, denoted as the average features distance. How
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such average feature vectors can be used for authentication in the system is
described in later chapters.

3.6 Comparison

Comparison is the step that calculates the difference between the extracted
features and the reference, and determines a comparison score. The com-
parison score is used for determining whether the user is authenticated or
not. The stage compares the extracted features derived from the previous
stages with the reference features. This process can be different depending
on whether identification or verification is used. In the identification case,
comparison must be done against the references of all the enrolled users of
the system. In the case of verification one only needs to compare against
the claimed identity reference.

As mentioned, the comparison done in a text-dependent system is quite
different than in a text-independent system. In the text-independent case,
the output from the feature extraction step is a single average feature vec-
tor. To compare two such vectors there is only a need for an algorithm able
to calculate the difference between two vectors. The Manhattan distance is
used for this purpose. In this system, the extracted features are sequences
of feature vectors from the entire voice sample. Here, an algorithm which is
able to compare time-series of data is needed. The Dynamic Time Warping
(DTW) algorithm is implemented for this case. This algorithm is explained
next.

3.6.1 Dynamic Time Warping

Dynamic Time Warping is an algorithm that compares two vectors that
may vary in time and speed. The algorithm finds an optimal path between
the two vectors. The DTW algorithm is extensively used within biometrics,
examples are speech recognition [16], fingerprint verification [17] and gait
recognition [18]. The algorithm is used in this system because of its ability
to find similarities between samples, even if the similarities are out of phase
in the time domain. Most of the time there will be some shifts and variations
between different utterances of a word or a sentence. For example, a vowel
can be pronounced a little longer, or there can be a shorter pause between
two words in a sentence. To be able to compare such utterances with each
other it is very important to be able to find and correct such differences.
This can be achieved by using the DTW algorithm. Next it is described
how the algorithm works and how it can be used effectively in this system.
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Algorithm

The algorithm takes as input two vectors a = {a0, ......., an} and b = {b0,
......., bm}. Its goal is to calculate an optimal path between the two vectors.
First the algorithm calculates a local distance matrix, dn×m, consisting of
the pairwise distances between all the points in the vectors. As an exam-
ple, the distances {(a0, b0), (a0, b1), ...., (a0, bm)} is calculated for the first
point in a. The same is done for all the other points {a1, ...., an}. In this
system each of these points is in itself a feature vector, consisting of several
points. Therefore, to be able to calculate the distance (an, bm) one needs
a local distance calculation method able to calculate the difference between
two vectors. In this system the Manhattan distance is implemented for this
purpose. The algorithm for the Manhattan distance is described later in
this chapter.

After dn×m is found, the algorithm calculates a global distance matrix,
denoted Dn×m. Each point in this matrix denotes the minimum distance to
the first point, (0, 0). D(n)(m) denotes the minimum distance from the last
point, (n,m), to the first point, (0, 0). D(n)(m) is therefore the minimum
distance between all the points in the two vectors. The matrix is calculated
by the following three equations [19]:

D(i, 0) =

i∑
1

d(i, 0) (3.6)

D(j, 0) =

j∑
1

d(j, 0) (3.7)

D(i, j) = min


D(i, j − 1) + d(i, j)

D(i− 1, j − 1) + 2d(i, j)

D(i− 1, j) + d(i, j)

(3.8)

Since we know each point in D corresponds to the minimum distance from
the point to (0, 0), we are able to calculate the optimal path from the ma-
trix. We start at the last point (n,m) and choose the neighbor with the
minimum distance, that is:

min {D(n− 1)(m), D(n)(m− 1), D(n− 1)(m− 1)} (3.9)

We then repeat the process for this chosen point, choosing its neighbor with

28



the minimum distance. This is repeated until we reach (0, 0). This is an
example of a greedy algorithm, where we always choose the locally optimal
solution to find the optimal global solution.

We now have calculated an optimal path between the two compared sets of
features. This optimal path is called the warping path. Figure 3.5 shows an
example of such a warping path. In the figure, the extracted feature vec-
tors are shown along the horizontal axis, and the reference features along
the vertical axis. The incoming features are in this case longer than the
reference features, meaning that there are more steps in the direction of the
incoming features in the path.

Figure 3.5: Example warping path calculated by DTW

Use in the system

There are two different distances outputted from the DTW algorithm that
are of interest in regards to the authentication process. These are the accu-
mulated distance and the average step distance.

Accumulated Distance The accumulated distance is equivalent to the mini-
mum distance D(n,m). This distance is the entire distance covered by the
warping path. If we use Figure 3.5 as an example, the accumulated distance
will be the sum of the cost of each step taken in the shown warping path.
The cost of each step denotes the distance calculated between the feature
vectors in each step. One important thing to notice regarding the use of
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this distance is its sensitivity to the length of the features compared. The
distance summarizes all the steps, meaning that on average the distance
will increase when the amount of steps increases, and decrease when there
are fewer steps. This means that a short utterance of the correct sentence,
creating a small set of incoming features, on average will get a lower score
than that of a longer utterance of the same sentence.

Average Step Distance The average step distance is also calculated from
the warping path. The distance is the average cost of each step in the warp-
ing path. It is calculated by taking the accumulated distance and dividing
it by the amount of steps taken in the warping path. This distance is less
susceptible to differences in the length of the features compared, since it is
not dependent on the amount of steps taken.

How these values are used in the authentication process will be described
in later chapters.

The implementation of DTW in the system is a modified version of the
open-source JAVA version found on Koders.com [20]. The algorithm is
modified so that the input to the algorithm is two-dimensional, making it
able to process a vector containing feature vectors, instead of only one vec-
tor. The calculation method used to calculate the distances in the dn×m

matrix is modified to use the Manhattan distance. This distance classifier
is described next.

3.6.2 Manhattan Distance

Manhattan distance is, as mentioned, used as the local distance classifier
between two feature vectors from the set of feature vectors used in the
DTW algorithm. Manhattan distance is also known as City block distance.
The Manhattan distance is calculated by taking the distance between each
corresponding points in the vectors and summarizing these. Equation 3.10
shows the calculation of the Manhattan distance between two vectors.

d(a, b) =

n∑
i=1

(|ai − bi|) (3.10)

where a and b denote the vectors compared, and n is the dimension of the
vectors.

The implementation of this algorithm is taken from the MARF framework
[2].
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Chapter 4

Technical Procedure

This chapter describes the different implementations done in the system.

4.1 MARF implementation

MARF is a framework built for use on computers. Therefore it needs some
modifications to be able to run on the Android platform. In particular,
MARF uses the Java Sound API [21], which is not supported by Android.
The API is a low-level API providing functionality for the handling of audio
files. More specifically, MARF uses the classes AudioFormat and AudioIn-
putStream from the API. The AudioFormat class is used for specifying
the format of different audio files. The AudioInputStream class provides
functionality for reading byte-arrays. AudioFormat is used because MARF
provides support for several file formats. In this system all recordings are
done in the same format. Therefore we are not in need of providing func-
tionality for several formats. The functionality provided by AudioFormat
was therefore removed. The functionality provided by AudioInputStream is
still needed in the system, since the ability to read the audio files is critical.
Therefore this functionality needed to be replaced with similar functionality
that is supported by Android. The Apache Commons IO library [22] was
used for this purpose.

MARF contains functionality for storing the references for each user. This
functionality is used in the system with some modifications. The storage
functionality has been altered to enable storage of files on the Android plat-
form. Remember that each application in Android runs in its own sandbox.
This means that each application has one specific location where it is able
to store files. The storage functionality is therefore modified so that all files
will be stored in this location.
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4.2 Training procedure

A training procedure for the system was implemented. This is the enrolment
procedure in the system. The procedure makes it possible to calculate an
average reference from several samples of the correct utterance. The next
sections describe the core algorithm implemented as well as the different
processes the algorithm can be used in.

4.2.1 Algorithm

The goal of the training algorithm is to be able to compute an average
reference from several utterances of the correct passphrase. Each of these
utterances will create a set of features. The task of the training algorithm
will be to align these different sets, and compute an average set of feature
vectors from them.

The utterances of the correct passphrase are typically a bit different from
each other. Examples of differences are time shifts, differences in the length
of the utterance, words spoken more quickly or longer, and several others.
These differences need to be found and corrected if the reference should
work properly. The training algorithm makes use of the DTW algorithm to
find and correct these differences.

The training algorithm takes as input the extracted features of a voice
recording. The algorithm behaves differently depending on whether this
recording is the first to be trained on or not. The first recording trained on
creates the reference for the user. All other training samples only update
this reference.

The extracted features of the first recording are stored as the reference
for the individual. When the next training sample comes as input, the pro-
cess will be different. As explained, the features from this sample needs to
be aligned to the stored reference features. The incoming features and the
reference features are therefore sent as input to the DTW algorithm. The
output from the DTW algorithm of interest in this case, is the warping path.
The path describes how the incoming features are aligned to the reference
features. An example of such a path is shown in Table 4.1.

In this case, both the reference and the incoming features consist of a set
of 6 feature vectors. The numbers in the table describe the index of the
features in the time domain, where 0 is the first vector and 5 is the last
vector. The warping path consists of 7 steps. The rows in the table show
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Reference features Incoming features

0 0

1 1

1 2

2 3

3 4

4 4

5 5

Table 4.1: Example of a warping path

each step. The first step is (0, 0) and the last step is (5, 5). We now choose
the incoming features that correspond to the indexes of the reference. For
index 0, we choose the vector from the incoming features with index 0. For
index 1 there are two feature vectors that correspond. In such cases we
calculate the average of these vectors. We therefore calculate the average
of index 1 and 2 from the incoming features. This process is performed for
all the indexes of the reference. When this is completed, we have a set of
aligned features equal to the length of the reference. The aligned features
are shown in Table 4.2.

Reference features Aligned incoming features

0 0

1 1, 2

2 3

3 4

4 4

5 5

Table 4.2: Aligned features

We are now able to update the reference with these aligned features. The
reference will consist of the average feature vector for each of the indexes.
The update will be to compute the new average when these new aligned
features are added to the set of considered samples.

The ability to train on several samples will make the system’s ability to
recognize the correct individual better and more stable. If only one sample
is used as the reference, the risk is that the sample could be quite far from
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the average value. This case will create larger differences between correct
samples and the reference. As an example, we consider a test done on the
system. The test is done using two persons, and shows the system’s ability
to distinguish them from each other. Table 4.3 shows the results from the
first test, where only one sample from each person is used as the reference.
The left columns show the average distances from Person 1’s reference for
samples from Person 1 and Person 2. The right columns show the same for
Person 2. The distance shown is the accumulated distance.

Person 1 Person 2

Person 1 Person 2 Person 1 Person 2

35,6 49,62 46,33 39

Table 4.3: Average accumulated distance from reference

Table 4.4 shows the results from the second test, where the reference for
each user was created by sending several samples from each person as input
in the training algorithm.

Person 1 Person 2

Person 1 Person 2 Person 1 Person 2

25,43 41,56 42 29,25

Table 4.4: Average accumulated distance from reference with new training
procedure

We see that the average distance from the reference goes drastically down
when training is used.

4.2.2 Training Processes

There have been implemented several training processes that utilizes the de-
scribed training algorithm. The first training process that was implemented
is an iterative process, where the training algorithm is called each time the
user records a new training sample.

The use of this training process creates some problems because of how the
length of the reference is set. The reference length is entirely based on the
length of the first sample sent as input to the training algorithm. This
creates problems when the length of this sample is much longer or shorter
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than the average length of a correct utterance. When the described training
process is used, the length of the reference will be determined by the first
recording done by the user. As an example of the problem this creates, we
consider a test done on the system where this training process was used.
The test consisted of two persons each recording six samples of the same
sentence. Both persons reference was created by using all their samples.
Each sample was then compared against both references. Tables 4.5 and
4.6 show the results from this test. Table 4.5 shows the results when the
accumulated distance is used, while Table 4.6 shows the same for the aver-
age step distance. The left columns show the length of each of the samples
recorded by the user, and their distance from the reference of both Person
1 and Person 2. The right columns show the same for Person 2. The last
row in both tables shows the average values for each of the columns.

Person 1 Person 2

Length Person 1 Person 2 Length Person 1 Person 2

23 23 33 33 41 33

28 26 38 23 32 31

27 30 42 22 31 29

26 24 36 21 26 28

25 29 40 24 30 29

29 30 41 25 29 27

26.33 27 38.33 24.67 31.50 29.50

Table 4.5: Accumulated distances from reference

Person 1 Person 2

Length Person 1 Person 2 Length Person 1 Person 2

23 0.96 0.94 33 1.22 0.97

28 0.87 1.03 23 1.3 0.92

27 1.09 1.23 22 1.2 0.86

26 0.86 0.99 21 1.1 0.84

25 1.07 1.18 24 1.17 0.84

29 0.98 1.21 25 1.08 0.77

26.33 0.97 1.09 24.67 1.18 0.86

Table 4.6: Average step distances from reference

The reference has the length of the features from the first sample. We see

35



that the first samples of both persons have a length quite different from the
others, thereby creating some unwanted effects in the results. We see that
the reference for Person 2 is longer than his other samples. This creates on
average a quite high accumulated distance between his other samples and
the reference. For Person 1, the reference is shorter than the other samples,
making the average accumulated distance also shorter. The problem with
this short reference length is that it creates a low average accumulated dis-
tance for Person 2’s samples compared against Person 1’s reference.

As described in Chapter 3, the average step distance will not vary as much
with the sample length as what the accumulated distance does. This can
be seen in the results, where the difference between the average distance
of Person 1 and 2’s samples when compared to Person 1’s reference has a
greater distinction when the average step distance is used.

To counter this length problem, we implement a new process which takes as
input a set of samples to be trained on, instead of only one at a time. This
makes it possible to select a more appropriate length for the reference. The
new process first extracts the features for each of the samples. It then finds
the sample with the median length of features. This length is chosen as the
length of the reference. Remember that the length of the reference is de-
cided by the length of the sample first processed by the training algorithm.
Therefore the sample with the median length of features is sent as input to
the training algorithm first, thereby creating the reference. The length of
the reference is now set. The rest of the training samples are then sent as
input to the training algorithm, one by one.

A test using this new training process was also performed. The samples
used in this test are the same as in the previous one. The test results are
shown in Table 4.7 and Table 4.8.

We see that by using the new training method, the average accumulated
distance between Person 2’s samples and his reference has decreased signif-
icantly. We also see that Person 2’s distances from the reference of Person
1 now are bigger. The accumulated distances between the reference and
Person 1’s samples have become a bit larger. The reason for this is the
increase in the reference length, creating a longer path to traverse. We see
that this only occurs with the accumulated distance, since the average step
distance on average has decreased from 0.97 to 0.92.

Another advantage achieved by using this training process is that it en-
ables limiting of samples that are possible to train on. A limit can be set on
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Person 1 Person 2

Length Person 1 Person 2 Length Person 1 Person 2

23 31 34 33 41 35

28 29 38 23 40 24

27 28 32 22 36 25

26 25 37 21 32 22

25 28 39 24 37 21

29 28 41 25 35 21

26.33 28.1 36.83 24.67 36.83 24.67

Table 4.7: Accumulated distances from reference

Person 1 Person 2

Length Person 1 Person 2 Length Person 1 Person 2

23 0.96 1.09 33 1.22 1.02

28 1.02 1.33 23 1.38 0.92

27 0.89 1.06 22 1.29 0.90

26 0.86 1.30 21 1.16 0.91

25 0.91 1.31 24 1.24 0.86

29 0.92 1.37 25 1.19 0.82

26.33 0.92 1.24 24.67 1.24 0.90

Table 4.8: Average step distances from reference

how much shorter or longer a sample can be compared to the reference. If a
training sample does not meet these thresholds, it is not used for training.
This makes us able to avoid using bad samples that can corrupt the average
values in the reference.

This new training process is the one used to create references in all the
different tests described in the next chapters.

4.3 Personal thresholds

The implementation of the training process made it possible to introduce
personal thresholds. A threshold is, as explained in Chapter 2, the max-
imum allowed distance between the reference and an incoming sample. If
the distance is above this threshold, the sample is rejected. Such thresholds
are typically set to the same value for all users in the system. A personal
threshold is a threshold set only for one specific person. The use of a default
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threshold can create varying performance in the system for different users.
If a user has a tendency to have big variations in the way he speaks the
passphrase, it is possible that his average distance score could be higher
than usual. With a higher average distance score, the user would experi-
ence getting distance scores above the threshold more frequently than other
users, creating an increased FRR. This would degrade the system’s usability
for this user. In such cases it would be desirable to introduce a personal
threshold for the user. The threshold would be set higher than the default
threshold, degrading the user’s FRR to a normal level, making the system
usable also for this person.

The challenge with using such personal thresholds is that they need to be
set during enrolment. The value of the threshold should optimally be found
by looking at the average distance score for samples compared to the user’s
own reference. The average distance score would be calculated by looking
at the different scores the user achieves during the authentication phase.
Since the threshold needs to be set before this phase, this is not possible.

The only samples possible to use, are the ones collected in the training
process. The problem with using these samples is that their score will be
different than an average distance score from ”fresh” samples, since the
samples used in the training process are included in the reference, creating
on average a lower score than samples not trained on. These samples should
still be able to give a good picture of the average distance of new samples.

The training process was altered so that after the reference is created and
updated with each of the samples, the same samples are compared with
the newly created reference, giving a distance score. The average distance
score is then calculated. This score is used to determine what the threshold
should be set to for this user.

The analysis of how the scores from the training samples can be used for
determining thresholds is presented in Chapter 6.

4.4 Testing framework

A testing framework has been implemented for use in the system. This
framework has been used in all the different tests performed on the system.
The original application is built for running on only one voice recording
at a time. In the application no voice samples should be stored beyond
the authentication process. This becomes a problem during testing of the
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system. If it is only possible to run each sample one time, it will be very
time consuming to perform a thorough test. Therefore we are in need of a
test framework able to store voice samples for use in more than one test. In
addition to this, it is beneficial to run all tests on the same set of samples,
instead of having to change the set of samples for each test. This makes it
easier to compare the results from the different tests.

In the testing framework, the recording of samples is separated from the
authentication and training process. This is done to make the recording
process easier for persons using the test framework.

Figure 4.1 shows the user interface for voice recording in the testing frame-
work. It consists of two sliders and two buttons. The buttons are used for
starting and stopping the recording. The first slider represents the ID of
the person recording the voice. This ID is used to make it possible to know
which person the recording originates from. This information is important
to have later in the testing process. For each different person the system is
tested on, a new ID is chosen. The second slider represents the amount of
samples recorded for the specific ID. The value is incremented automatically
after each recording done.

Figure 4.2 shows the interface for the authentication and training process
in the testing framework. The interface contains three sliders and two but-
tons. The two top sliders represent the same values as the two shown in the
recording interface. These two sliders make it possible to navigate through
the different ID’s and recordings. The third slider makes it possible to select
different sets of references. It is important to be able to have several such
sets of references. As an example of why, consider the testing of the differ-
ent training processes. Each process will create its own set of references.
When all the stored samples will be tested, they can be tested against the
references from the different training processes. In this way we are able
to compare the different procedures. The use of different sets of references
also makes us able to vary the algorithms used in the different processes
and compare the different methods against each other.

The train button trains on either specific samples or sets of samples, de-
pending on which training process that is used. The authenticate button
runs the specified sample through the authentication process. It is then
compared with the reference stored in the specified reference set.
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Figure 4.1: Interface of recording in the test framework

40



Figure 4.2: Interface of the authentication and training in the test frame-
work
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Chapter 5

Experimental Procedure

This chapter describes the different experimenting and testing done on the
system.

5.1 Testing of different utterances

Several different utterances have been tested for their performance. The
goal for this part of the testing is to see if there are some distinct differences
in performance between different types of phrases.

5.1.1 Numbers

The use of numbers was tested. The idea is to have the user enroll each digit
from 0 to 9. During authentication the user would be prompted to speak
five of these numbers chosen at random. By using this challenge-response
technique it would be harder for an imposter to use recordings of the correct
voice. The imposter would need to have recordings of each of the different
numbers.

It was observed that there typically were big variations in the distance
score for correct samples when numbers were used. These big variations
made it difficult to distinguish between the numbers. The reason for the
big variations was most likely caused by the very short length of the utter-
ances, making it easier to get big variations in the recordings. Numbers was
therefore not chosen for the implementation.

5.1.2 Words

The use of single words was also tested. The idea is the same as for the
numbers. The user would train on a set of different words, and at the au-
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thentication phase would be prompted to speak some of them.

Tests showed that the use of single words had the same problem as numbers.
The utterance is too short to be able to avoid big variations, and therefore
it is difficult to achieve consistent results.

5.1.3 Sentences

Different sentences of varying length were tested and compared against the
performance of single words and numbers. The testing showed that the
distance score for correct samples had less variation when sentences were
used. The tests also showed that the system was able to better distinguish
between different sentences than what was the case between numbers and
words.

After testing several different types of utterances, it was found that the
best performance was achieved using a sentence. In the main testing, the
correct passphrace is therefore a sentence.

5.2 Testing of different noises

During the experimentation, several tests with recordings of different noises
were performed. These noises would vary in length and content. Some were
monotone, while others had much variation. In some cases the input was
only silence in different lengths. These tests were performed to measure the
system’s ability to handle different types of input. The different samples of
noise were tested against several references of legitimate users. The results
of these tests was then compared against the typical results of legitimate
samples.

5.2.1 Very short samples

Very short samples often created quite small distance scores. In some cases
the calculated distance was quite close to distances obtained by legitimate
users, especially when the accumulated distance was used. This problem
mainly occurs because of the accumulated distance’s sensitivity to variations
in the length of the incoming sample, as well as the length of the compared
reference. Recall that the accumulated distance is calculated by adding up
the distances from all the different steps taken in the warping path. The
distance therefore varies with the amount of steps in the warping path. This
means that a long warping path typically will create a longer accumulated
distance. The length of the warping path is dependent on the length of
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the incoming features and the reference. This means that if the incoming
features are very short, the warping path will also often be of a small size.
This could in many cases create a small accumulated distance, even in the
case where the incoming features bear no resemblance to the reference.

5.2.2 Very long samples

Very long samples had a good probability of creating quite good scores when
the average step distance was used as the classifying distance. Figure 5.1
shows such a case from the testing. The incoming sample is three times as
big as the compared reference. The sample consists of a monotone sound
and bears no resemblance to the reference. The reference has a length of
100 feature vectors, and the incoming sample consist of 300 feature vectors.

Figure 5.1: The DTW warping path between two sets of features

Since the incoming sample is quite monotone it will typically consist of fea-
ture vectors very similar to each other. Since the sample is much longer
than the reference, there will be a lot of steps in the warping path that only
goes in the direction of the incoming features, as seen in the figure. We see,
for example, that the path follows the same reference feature between (50,
150) to (50, 250). In many cases the DTW algorithm will find a feature
vector in the reference that aligns well with the vectors in the incoming
reference, and follow this vector for many steps. A relatively big part of
the steps taken in the path will therefore be between this reference vector
and similar ones from the incoming features. Because of this the average
step distance will end up quite small, even though the total accumulated
distance will be very big.
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The most extreme cases of this problem occurred when the incoming sam-
ple consisted of a monotone sound, as described above. Other long samples
more varying in sound was also able to create quite good scores in many
cases, so the problem was not only limited to samples with a monotone
sound.

5.2.3 Countermeasures

The simplest solution to avoid such problems is to limit the possible length
of an incoming sample. These problems only occur when the length of the
incoming sample is very disproportionate to the reference length, as ex-
plained above. Therefore limitation of the length of an incoming sample is
needed. The limit is specified with regard to how long or short a sample can
be in comparison to the reference. The challenge when introducing such lim-
itations is to avoid rejecting legitimate samples. Therefore the limits need
to allow natural variations in the length or the correct uttered sentence.
It was found that the optimal limits with regard to allowing such natural
variations, was to let an incoming sample be able to vary with 40% from
the reference. This means that an incoming sample can be 40% shorter or
larger than the reference.

In all other cases than the two described above, samples containing si-
lence or noise were not able to achieve scores close to the ones obtained
by legitimate samples.

5.3 Comparing different sentences

Several tests have been performed to see how well the system is able to
distinguish between different sentences. Since this system is built as a text-
dependent system it should not be possible for a user to be accepted without
speaking the correct phrase. Therefore it is very important that the system
is able to separate between the correct sentence and all other phrases.

The tests were performed by making several users record samples of a num-
ber of sentences. These sentences were typically quite similar in type and
length. This was done to be able to measure the system’s performance in
the extreme case where all sentences are very similar.

The results showed that the system performs quite well in separating sen-
tences. There were few cases where speaking the wrong sentence would
get a user accepted. The tests showed that the typical difference between
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different sentences spoken by the same user was quite equal to the typical
distance between two different users speaking the same sentence.

5.4 Main test

The main test of the system was performed by testing on 16 different per-
sons. Of the 16, 13 were men and 3 were women. All the recordings and
calculations were done on the same smartphone. All the recordings also
used the same microphone to avoid creating separation in samples because
of varying input sources.

The test considers the case where everybody speaks the same sentence.
This is in general a worse situation than the case where the attacker does
not have the knowledge of the right sentence. The goal of the test is to
calculate the rate in which the correct person is verified and the rate in
which an illegitimate person is verified.

5.4.1 Procedure

Each person in the test recorded 15 samples of the same sentence. A ref-
erence was created for every person. The first ten samples recorded were
used for the training procedure, the last five samples were used for the ac-
tual testing. The reason for only using the last five samples for testing is
that they have not been used in the training procedure and therefore can
be considered as totally independent from the reference.

5.4.2 Authentication

The goal of this test is to calculate the system’s performance in regards
to authentication. The two important rates to be considered in this case
are the FAR and FRR. These two rates show the system’s ability to reject
malicious users as well as its ability to accept legitimate users. The FAR
rate has its worst-case when all incoming samples uses the correct sentence.
This is the case considered in this test. For each reference, the five samples
coming from the correct person are considered as legitimate samples, while
the 75 other samples coming from all the other persons are considered ille-
gitimate samples.

We are interested in calculating what the typical distance score is for a
person’s sample when compared to his own reference. This is done by run-
ning each of a person’s five samples against his own reference and calculating
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the score. By doing so for each person, we are able to calculate the distri-
bution of this score.

It is also interesting to look into the typical distance score for illegitimate
samples. This can be compared to the typical score for correct samples and
give a good view of the difference between the two. For each reference, the
75 samples not coming from the correct person is run against the reference,
creating a score. This makes it possible to calculate the distribution of this
score as well.

The two distributions described above give a good measure of what the
FAR and FRR will be in the system. As shown in Figure 2.4, in Chapter
2, the overlap between these two distributions create these two rates. The
distributions make us able to calculate the optimal threshold that minimizes
the FAR and FRR.

There are three differently calculated distances that are of interest in the
system. The first two are the distances output from the DTW algorithm,
the average step distance and the accumulated distance. The last distance
of interest is the distance calculated when comparing the average feature
vectors output from the LPC algorithm, as described in Chapter 3. This
distance will be denoted as the average features distance.

For each of these distances, the distributions described above are calcu-
lated. This makes it possible to find the FAR and FRR for all three. Using
this information, the distances are compared against each other with regard
to performance analysis.

To improve the FAR and FRR, different combinations of the three distances
are tested as well. The tests are performed by setting a threshold for each of
the distances and then testing all correct and wrong samples against these
thresholds. Several combinations are tested to find the optimal trade-off of
the FAR and FRR.

The use of personal thresholds, as explained in Chapter 4, is also tested.
First the average distance score for both samples used and not used in the
training procedure is calculated. These results are then used to determine
how the thresholds should be set. The use of these personal thresholds is
then tested.
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5.4.3 Identification

For testing the system’s ability to identify the correct person, the following
procedure was used. The five testing samples of each person are sent as
input to the system. The system then calculates a result for this sample
against each of the 16 references. The identification rate is then calculated
by looking at how many of the samples that are correctly identified.
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Chapter 6

Performance Evaluation

This chapter will first present the results obtained when performing the
main test described in Chapter 5. These results are then discussed with
regards to the performance of the system.

6.1 Results

6.1.1 Authentication

In this section show the distributions for the average step distance, accu-
mulated distance and the average features distance. Note that in Figure 6.1
and Figure 6.2 the red lines for both the average step distance and accu-
mulated distance do not add up to 1. This is because in around 25% of the
comparison cases, samples are not within the limit for the size of incoming
samples described in Chapter 5. In these cases, a comparison score is never
calculated. This limit was not used when calculating the average features
distance.

Average step distance

Figure 6.1 shows two distributions. The blue line shows the distribution of
the average step distance when a user’s test samples are compared against
his own reference. The red line shows the distribution of the same distance
when the user’s test samples are compared with all the other users’ refer-
ences.

We see that samples compared to the correct reference on average create
a shorter distance. Samples have a distance within 0.9 and 1.4 from the
correct references, while the distance to the wrong references vary between
1 and 1.75. There is a significant overlap between the two distributions.
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Figure 6.1: Distributions for the average step distance

This overlap creates the false acceptance and false rejection rates. These
rates will depend on how high or low we set the threshold for the distance.
If the threshold is set to 1.4 or bigger it will create a FRR on around 0%,
but at the same time the FAR will be very high, around 60%. Different
thresholds are therefore tested in order to find the optimal choice. Table
6.1 shows the FAR and FRR for differently selected thresholds.

Threshold False acceptance rate False rejection rate

1.15 7% 32%

1.20 15% 22%

1.25 28% 8%

1.30 41% 2%

Table 6.1: FAR and FRR for average step distance

We see that the optimal threshold for the average step distance is somewhere
between 1.20 and 1.25.

Accumulated Distance

Figure 6.2 shows the same distributions when using the accumulated dis-
tance instead of the average step distance.

We see that the distances achieved when comparing samples against the
correct reference are on average shorter than the ones for the accumulated
distance. The distributions seem to have a bigger variation, at least for
samples compared with wrong references. Samples have a distance within
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Figure 6.2: Distributions for the accumulated distance

0.85 and 1.65 from correct references, while the distances to wrong refer-
ences vary between 1 and 2.1. Table 6.2 shows the FAR and FRR values
when different thresholds are set for the accumulated distance.

Threshold False acceptance rate False rejection rate

1.25 15% 30%

1.30 21% 22%

1.35 29% 15%

1.40 36% 8%

Table 6.2: FAR and FRR for accumulated distance

The optimal distance threshold for this distance lies somewhere between
1.30 and 1.35. We see that the rates are slightly worse than the ones for the
accumulated distance compared to the average step distance.

Average features distance

Figure 6.3 shows the distribution when the average features distance is used.

We see that this distance doesn’t vary as much as the other two, but still
has a significant overlap between the two distributions. Table 6.3 shows the
FAR and FRR for different thresholds for the average features distance.

We see that the optimal threshold is somewhere around 0.30, creating a
FAR and FRR on 22% and 15%, respectively.
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Figure 6.3: Distributions for the average features distance

Threshold False acceptance rate False rejection rate

0.25 7% 42%

1.30 22% 15%

1.35 41% 6%

1.40 62% 1%

Table 6.3: FAR and FRR for the average features distance

Tests on combinations of the values

A combination of optimal thresholds for the average step distance and the
accumulated distance was first tested. A threshold for the average feature
distance was also set, and was fixed to 0.45 to avoid an increase in the FRR
when this threshold was used. Table 6.4 shows the results from this test-
ing. The notations in the table are Avg for average step distance, Acc for
accumulated distance and Fea for average features distance.

(Avg, Acc, Fea) False acceptance rate False rejection rate

(1.25, 1.35, 0.45) 18% 22%

(1.25, 1.30, 0.45) 16% 25%

(1.20, 1.35, 0.45) 12% 28%

(1.20, 1.30, 0.45) 10% 28%

Table 6.4: FAR and FRR for a combination of optimal thresholds for the
accumulated distance and the average step distance

We see that the FRR is always above 20% when these thresholds are used.
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An FRR over 20% can be considered very high. To be able to decrease the
rate, an increase in some of the thresholds were needed.

As the previous results showed, the single distance that achieves the best
rates is the average step distance. Therefore, only the threshold for this
distance was set around the optimal value. The threshold for the other two
was set around their maximum distance score observed for correct samples.
By doing this, these two distances would not have a big impact on the FRR,
while still limiting the FAR.

Table 6.5 shows the tests of different combinations and their corresponding
rates.

(Avg, Acc, Fea) False acceptance rate False rejection rate

(1.25, 1.45, 0.45) 21% 15%

(1.25, 1.45, 0.40) 18% 15%

(1.25, 1.40, 0.45) 20% 16%

(1.25, 1.40, 0.40) 17% 16%

(1.25, 1.40, 0.35) 12% 18%

(1.20, 1.45, 0.45) 13% 23%

(1.20, 1.45, 0.40) 11% 23%

(1.20, 1.40, 0.45) 12% 23%

(1.20, 1.40, 0.40) 11% 23%

(1.20, 1.40, 0.35) 8% 26%

Table 6.5: FAR and FRR for different combinations of distances

We see that the optimal combination of thresholds is around (1.25, 1.40,
0.35), where the FAR and FRR are 12% and 18% respectively. The FRR
has on average significantly decreased from the test shown in Figure 6.4.

Personal thresholds

We observe during the testing that people have different ways of speaking
the correct sentence. Some often varies the way they speak the sentence,
both in tone and length, while others have very little variations. The per-
sons varying their way of speaking the sentence will typically have a higher
average distance from their own reference than what persons with little vari-
ation will have. The task of the system will then be to spot these differences
by looking at the training data for each individual, and set their individual
thresholds thereafter.
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As previously described in this chapter, the average step distance is used
as the main classifying distance. This is therefore the distance that is fo-
cused on in this section. The results showed a good correlation between the
average step distance from the correct reference from samples used in the
training and the same distance for samples not used in training. Table 6.6
shows the average distance for samples trained on and samples not trained
on for ten of the persons tested.

Person Average step dis-
tance for samples
trained on

Average step dis-
tance for samples
not trained on

1 0.94 1.07

2 1.06 1.18

3 1.01 1.09

4 0.87 1.00

5 0.88 1.05

6 0.94 1.10

7 0.92 0.97

8 0.98 1.06

9 1.00 1.19

10 1.06 1.20

Table 6.6: Average step distance for trained and not trained samples

We see that the average step distance is typically a bit higher for samples
not trained on. We also see that persons having a high average step dis-
tance for samples trained on also tend to have a high distance for samples
not trained on. The same correlation can be seen for persons with low dis-
tances. This information can be used in the training process for setting
personal thresholds.

The personal thresholds should not vary too much from the default thresh-
old. Remember that the optimal threshold for the average step distance is
around 1.25. It should not be possible to set this threshold to much more
than 1.30, because then a significant part of wrong users will be accepted.
Such a high threshold will create a better usability for users with a high
average distance, but the FAR will be around 50%, creating a big security
breach. At the same time, the threshold should not be set too low. The
lowest should be around 1.10 to 1.15, since setting it lower will not increase
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the security with any significance. This is because there are very few illegit-
imate users who could achieve such low distances. The limits set for each
average step distance are shown in Table 6.7.

Average step distance for samples trained on Personal threshold

distance > 1.05 1.30

1.00 < distance < 1.05 1.25

0.95 < distance < 1.00 1.20

distance < 0.95 1.15

Table 6.7: Different thresholds for different distances

The system was then tested when the personal thresholds was implemented.
The results for different limits for the accumulated distance and the average
features distance are shown in Table 6.8.

(Acc, Fea) False acceptance rate False rejection rate

(1.40, 0.40) 13% 12%

(1.40, 0.35) 9% 17%

Table 6.8: FAR and FRR with the use of personal thresholds

We see that both the FAR and FRR are significantly improved from the use
of default thresholds. The best rates are now around 13% for the FAR and
12% for the FRR. The reason for the improved FRR is that we now are able
to accept many of the samples that previously were rejected for the users
who typically got a score between 1.25 and 1.30. At the same time we are
able to avoid any decrease in the rate for users that get a threshold lower
than 1.25. We also see a distinct decrease in the FAR. This occurs because
it is made possible to decrease the threshold for users who consistently get
a score well below 1.25. Of the 16 persons tested on, ten got a personal
limit of either 1.15 or 1.20. Only four of the users got an increased thresh-
old. This means that on average the threshold has decreased from before.
The calculated average threshold when personal limits are used is 1.21. A
lower average threshold for the average step distance creates a lower FAR,
as shown by the previous tests.
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6.1.2 Identification

For the identification process, the distance classifier with the best perfor-
mance was used. This is, as explained, the average step distance. Each
sample was compared against all 16 references. The reference with the
shortest average step distance from the compared sample was identified as
the correct reference. Table 6.9 shows how many of their five samples that
were correctly identified for each of the 16 persons in the test. Table 6.10
shows the calculated results from the data in Table 6.9. We see from the
results that the calculated identification rate of the system is 81%.

Person Amount of correctly identified samples

1 5

2 5

3 4

4 4

5 4

6 3

7 5

8 4

9 4

10 4

11 4

12 2

13 5

14 3

15 4

16 5

Table 6.9: Amount of correctly identified samples

Correctly identified samples 65

Total amount of samples 80

Identification rate 81%

Table 6.10: Identification results
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6.2 Discussion

This chapter discusses the different results found in Section 6.1. In addition,
it is discussed how well the system is able to provide the security and privacy
requirements described in Chapter 2.

6.2.1 Authentication

Performance

One of the best trade-offs for the FAR and FRR are 13% and 12% respec-
tively. Such high rates make the system not well suited for use in applica-
tions that are in need of a high security level. The use of the system would
be more appropriate in applications as an alternative to the password-based
authentication on smartphones.

We see that there is a distinct overlap between the results for correct and
wrong samples for all the three distances tested. These overlaps create quite
high FAR and FRR values for all three. We see that the performance for
each of them is quite equal, with the average step distance having a slightly
better performance. By combining the three distances we were able to im-
prove the performance significantly.

One of the reasons for this improvement is the properties of the average
step distance and the accumulated distance. Since both distances are de-
rived from the same process, one would think the two distances would have
a very high correlation. The experimentation and results showed that this is
not always the case. In Chapter 5 it was shown that the two distances have
two separate problems. The accumulated distance has problems with input
samples of very short length, while the average step distance encountered
the same problem with very long lengths. Even though the length of an in-
coming sample is limited to avoid this problem, it can still occur on a smaller
scale. By using both these values in the decision process we can avoid many
cases where one of these problems would create a false acceptance. In cases
where the incoming samples are quite long, it could be possible that the
calculated average step distance would be lower than the threshold. At the
same time, the accumulated distance would typically be quite high in this
case, because of the long length of the sample. We could then have the
case where the average step distance is within the set threshold, but not the
accumulated distance, making the system reject the sample. By combining
the distances in the decision process we will therefore be able to avoid some
false acceptances where only one of the two values is below the threshold.
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The average features distance has quite a good performance. Its calculated
FARs and FRRs are quite similar to the ones achieved using the average
step distance. It is important though, that this classifier does not become
too important in the classification process. The distance is a good classifier
in regard to determining the correct voice, but is not capable of separating
different sentences. Therefore, if the distance gets an important role in the
classification, the system’s ability to separate different phrases would de-
crease.

It is important to remember that the FAR and FRR values are calculated
in a worse-case environment, where we assume that the attackers know the
correct sentence. In a realistic environment this would not be true. Each
user should keep their sentence confidential. The problem with this is that
it gets very difficult to keep the sentence a secret when it is spoken each
time the system is used. An attacker only needs to be close enough to the
person to hear the phrase. Because of this we cannot totally rely on the
secrecy of the passphrase.

Personal thresholds

The introduction of personal thresholds decrease both the FAR and FRR
significantly. The reason for the decrease in the FRR was found by looking
at the scores for a few of the test subjects. The results showed that some
persons had quite a big variation in the distance calculated for each of their
samples. When the default threshold was used, some of them had very few
of their own samples within the threshold. This made their FRR very high,
so that the system became unusable for them. By introducing personal lim-
its the rate could be lowered significantly for these users.

The decreased FAR can also be explained by looking at the results from
the same persons that caused the decrease in the FRR. These persons had,
as mentioned, big variations in their results. Since the amount of samples
in the testing was quite low, these variations had a big impact on how the
default threshold was set. The threshold was therefore set higher than what
was needed for many of the other test subjects. By using personal thresh-
olds, these persons were able to get a lower threshold set, meaning that
fewer attacks were made possible. This can be seen by looking at the aver-
age threshold, calculated to 1.21, lower than the default threshold of 1.25.

It is very important to not allow too big variations in this personal thresh-
old. If a user has very big variations in the result, the personal threshold
would be set very high to compensate for this. A high threshold will in-
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crease the FAR significantly. With a very high FAR the system could be
deemed unusable if any level of security is needed. This is the reason for
not enabling very big variations in the setting of the threshold.

The challenge when using such personal thresholds is to determine how
the limit should be set for each person. How the limits are set in the system
was decided by analyzing the test results. It is quite possible that these
limits are not optimal in a larger scale. More tests should be performed in
order to give more insights into this.

Limitations in the testing

The amount of samples recorded from each person was 15 in the test, which
is not enough to get conclusive results. Since ten were used for training,
we only had five samples from each person to evaluate the performance.
This meant that the total amount of test samples were only 80. Such a low
amount made the test results very sensitive to bad samples. One single bad
sample could affect the FAR or FRR with more than one percentage point.
It is believed that the system performance could be better than the results
actually calculated here.

6.2.2 Identification

As shown in Chapter 6, the identification rate of the system is calculated
to be about 81%. It is important to understand that this rate only apply
for the case where the system contains the amount of persons the tests in-
cluded, namely 16.

The system’s performance with regard to identification can be compared
against other similar systems, for example the system studied in [23], where
several different techniques for speaker recognition are discussed. Both LPC
and DTW are among the compared algorithms. The system in [23] achieves
identification rates between 70% and 91% for different combinations of the
algorithms. Their tests are done on 12 people, where 10 samples from each
are used in a training procedure. The tests have used 141 samples in the
actual testing. In comparison, our system’s identification rate of 81% can
be considered quite good when our tests included 16 people instead of only
12. It is important to note that the samples in the compared system were
short, around 2 seconds, and recorded from noisy telephone speech. This
in contrast to our system, where samples were a bit longer, and recorded in
environments with small amounts of noise.
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6.2.3 Security

We have not applied a data encryption technique in the system. However,
a certain level of confidentiality of the data is achieved due to the fact that
there are no recorded audio data saved in the system. The only thing stored
are the extracted feature sets.

The system runs no direct integrity check on the incoming voice data. This
means that the system does not know if the incoming sample originates from
a recording or from live speaking. The problem for an attacker trying to
use a recording to get access, is that he needs not only to have a recording
of the correct voice, but the correct sentence as well. If the system was
text-independent it would be possible to use any recording as long as it was
of the correct voice. In this text-dependent system this will not be possible.

One way of improving the integrity check significantly, is to use a challenge-
response technique. The technique makes the user enroll several different
sentences in the system, and prompts one at random when the user wants to
be authenticated. This would mean that an attacker would need recordings
of all the different sentences. The big drawback with this method is that
many users would quickly find it tiresome to provide training samples of
many different sentences. It is therefore a good chance that the usability
of the system would degrade with such an implementation. The question
then becomes what’s most desired, an increase in security, or no decrease in
usability.

6.2.4 Privacy

The only sensitive information stored on each user in the system is the
features of their voice. Each voice sample input to the system is deleted
after the features are extracted. The features are stored in plain-text. Op-
timally these should be encrypted so that no sensitive information is visible.

There exist several cryptographic techniques that can be used to encrypt
biometric references. Two examples are a fuzzy commitment scheme, cre-
ated by Juels and Wattenberg [24] and a fuzzy vault scheme, created by
Juels and Sudan [25]. These are encryption techniques that are able to ac-
cept small variations in the input and still decrypt correctly. This makes
them suited to be used for encryption of biometric features. However, the
ability to accept such variations typically makes them less secure than stan-
dard encryption techniques. As an example, the article ”Finding the original
point set hidden among chaff”, by Cheng et al. [26], shows several attacks
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that can be performed on the fuzzy vault scheme.

We are not able to use the fuzzy commitment scheme to encrypt the features
stored in this system. The scheme is built for encrypting single vectors of
fixed length. In our system, the order and the length of the features typi-
cally vary. This makes it very difficult to use this encryption scheme in this
system.

The fuzzy vault scheme is able to encrypt a set of values, which can have a
different order. If an incoming set overlaps enough when compared to the
reference set, it is decrypted correctly. The problem with using this scheme
is that for two points in the two sets to be considered equal, they would have
to be exactly equal. This is very rarely the case with the different feature
vectors extracted from voice samples. These consist of float numbers, and
almost always have some differences from sample to sample. Therefore we
are not able to use this encrypt scheme either.

It might be possible to encrypt the references in the system, but a suited
encryption technique has not been found so far.
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Chapter 7

Conclusion and Future Work

This chapter summarizes the most important findings, and gives a conlusion
on the work done in the thesis. Future work that can be done on the
application is also proposed.

7.1 Conclusion

A text-dependent speaker recognition application for the Android platform
has been made. The application makes use of several algorithms in the
different phases. Most notably, LPC has been used for the main feature
extraction, and DTW has been used for the comparison of features.

A training procedure was implemented to enable the use of more than one
voice recording in the enrollment process. The implementation used the
DTW algorithm to be able to align the features from the different voice
recordings. The training procedure makes it possible to make a reference
for the user which is close to his average utterance of the passphrase. It was
shown that the use of the training procedure created a more stable perfor-
mance in the authentication phase for users.

Personal thresholds were introduced to be able to set different thresholds for
each user. Testing showed that the use of such thresholds significantly low-
ers both the FAR and FRR, and therefore improves the system performance.

Tests have been performed on the system in regard to both identification
and authentication. The identification rate has been calculated to 81%,
when the identification is restricted to distinguishing between 16 people.
The FAR and FRR have been calculated to 13% and 12%, respectively.
These rates can be considered too high for use in applications that are in
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need of a high level of security.

7.2 Future work

The application has several different features that can be implemented or
improved. This section will discuss the ones that are considered most im-
portant.

7.2.1 User interface

During the implementation the focus has been put on providing a good
performance of the voice recognition. In order to achieve as low as possible
FAR and FRR, which are considered the crucial criteria of the performance,
many tests have been performed and thereafter analyzed. Therefore, the in-
terface made, mainly serves the purpose of testing the application.

All functionality for recording audio, training and authentication is already
accomplished. A more user friendly interface will surely bring a new level
of convenience and result in a better user experience.

7.2.2 Testing

More tests should be performed on the system to better analyze its per-
formance. As discussed in Chapter 6, the amount of samples used in the
testing was not enough to get conclusive results. New tests to be performed
should consider this, and make test subjects record more samples. There-
fore, one would have more samples from each test subject that can be used
for the actual testing. It should also be considered to increase the amount
of test subjects. This would give more insights with regard to the system
performance over a larger set of subjects.

7.2.3 Preprocessing

The main testing done on the system has all been done in environments
with small amounts of background noise. The quick tests done with varying
amounts of noise and varying input sources have shown that the system is
not able to handle many such variations very well.

To be able to perform well in noisy environments, the system must be able
to remove the noise and other variations before the features of an incoming
sample are extracted. Therefore, it is the preprocessing stage in the system
that needs to be improved. An example of an improvement would be to add
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a noise removal algorithm to the preprocessing stage in the pipeline shown
in Figure 3.2.
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