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Problem Description

On-demand content delivery over Internet is growing in popularity, ac-
cording to Cisco 90 percent of the global consumer traffic by the end of
2015 will be from video traffic. Premium content providers are seeking
to create sustainable business models in this area by using innovative
streaming solutions. These solutions make the content delivery adapt to
the varying network and end system conditions, and by this addressing
the objective of achieving a high degree of Quality of Experience (QoE).

Adaptive video streaming is a widely used and demanding example
of an “Over-the-Top” service. Technologies for implementing adaptive
video streaming require intelligence at the application layer and are de-
veloped by different companies such as Microsoft’s Smooth Streaming
(Silverlight), Adobe’s Dynamic Streaming, Apple’s HTTP Live Stream-
ing and Move Network’s Adaptive Stream. In Norway we see that both
TV2 Sumo and also NRK are using the Microsoft solution.

Service providers would like to evaluate the quality of their “Over-
the-Top” service. Quality of Service (QoS) captures objective and system-
related characteristics while QoE metrics are typically subjective and user-
oriented. The focus of this master’s thesis will be on bridging these two
quality domains in order to better understand the performance of adap-
tive video streaming. The relation between QoS and QoE metrics will be
studied and examples of quantification will be demonstrated by at least
one case study where quality is considered from the service provider’s
perspective.

Steps to achieve this:

1. Study literature and review state of the art on QoS and QoE quan-
tification and bridging the gap between QoS and QoE.
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2. Propose quality metrics and the relationship between them appli-
cable to adaptive video streaming.

3. Describe one or several scenarios defining goals and the point of
view.

4. Evaluate the use of the proposed metrics on at least one scenario.

Assignment given: 16th of January 2012
Supervisor: Bjørn J. Villa



Abstract

The focus of this thesis has been on Quality of Service (QoS) and Quality
of Experience (QoE) dimensions of adaptive video streaming. By car-
rying out a literature study reviewing the state of the art on QoS and
QoE we have proposed several quality metrics applicable to adaptive
video streaming, amongst them: initial buffering time, mean duration of a
rebuffering event, rebuffering frequency, quality transitions and bitrate. Per-
haps counterintuitively, other research has found that a higher bitrate
does not always lead to a higher degree of QoE. If one look at bitrate in
relation to quality transitions it has been found that users could prefer a
stable video stream, with fewer quality transitions, at the cost of an over-
all higher bitrate. We have conducted two case studies to see if this is
considered by today’s adaptive video streaming technologies. The case
studies have been performed by means of measurements on the players
of Tv2 Sumo and Comoyo. We have exposed the players to packet loss
and observed their behavior by using tools such as Wireshark. Our re-
sults indicate that neither player take the cost of quality transitions into
account in their rate adaptation logic, the players rather strive for a higher
quality level. In both cases we have observed a relatively large number
of quality transitions throughout the various sessions. If we were to give
any recommendations to the Over-the-Top (OTT) service providers, we
would advise them to investigate the effects of quality transitions and
consider including a solution for handling potentially negative effects in
the rate adaptation logic of the player.
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Sammendrag

Fokuset til denne avhandlingen har vært på tjenestekvalitet (QoS) og op-
plevd kvalitet (QoE) i adaptiv videostreaming. Ved å gjennomføre et lit-
teraturstudie med fokus på QoS- og QoE dimensjoner har vi foreslått
flere kvalitetsparametre som gjelder for adaptiv video streaming: ini-
tiell bufringstid, gjennomsnittlig varighet ved rebufring , rebufringshyppighet,
kvalitets-transisjoner og bitrate. Annen forskning har funnet at en høyere
bitrate ikke nødvendivis fører til høyere QoE. Det har blitt vist at brukere
foretrekker en stabil videostrøm med færre kvalitets-transisjoner på bekost-
ning av en generelt høyere bitrate. Vi har gjennomført to case-studier for
å se om dette en noe det blir tatt høyde for i dagens teknologier for adap-
tiv videostreaming. Studiene har blitt gjennomført ved hjelp av målinger
på spillerne til Tv2 Sumo og Comoyo. Vi har utsatt spillerne for pakke-
tap og deretter observert deres adferd ved å bruke verktøy som Wire-
shark. Resultatene fra målingene tyder på at spillerne ikke tar høyde for
en eventuell kostnad i forbindelse med kvalitets-transisjoner. Det virker
som om spillerne heller fokuserer på å oppnå et høyere kvalitetsnivå. Vi
har observert et relativt høyt antall kvalitets-transisjoner for de fleste av
sesjonene. Hvis vi skulle gi en anbefaling til tjenesteleverandørene ville
det være å studere eventuelle negative effekter ved kvalitets-transisjoner
og vurdere å implementere en løsning som håndterer disse i spilleren
deres.
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Chapter 1
Introduction

1.1 Motivation

We are moving towards an “everything over Internet Protocol (IP)” world,
Cisco estimates that the number of devices connected to IP networks will
be twice as high as the global population in 2015 [4]. They also expect
that in 2015 90 percent of the global consumer traffic will consist of video
traffic. This means that enormous amounts of video data is to be trans-
ferred over a “best effort” IP network. Meeting customer expectations
and providing service guarantees over such a network can be hard, but
it is also an interesting field of research.

With the objective of achieving a high degree of QoE, various OTT
service providers in this area use innovative streaming solutions. In these
solutions the content delivery adapts to varying network and end system
conditions. A good understanding of the QoS and QoE dimensions of
adaptive video streaming is important for the service providers to be able
to evaluate their service.

1.2 Methodology

As stated in the problem description at least one case study is to be car-
ried out to better understand the performance of adaptive video stream-
ing. This has been done in accordance with the steps from the problem
description:

1



2 CHAPTER 1. INTRODUCTION

1. Study literature and review state of the art on QoS and QoE quan-
tification and bridging the gap between QoS and QoE.

2. Propose quality metrics and the relationship between them appli-
cable to adaptive video streaming.

3. Describe one or several scenarios defining goals and the point of
view.

4. Evaluate the use of the proposed metrics on at least one scenario.

As our problem description has been fairly open we want to elabo-
rate our workflow from step 3. In this thesis two case studies have been
conducted based on the outcome of step 2. The case studies have been
performed by means of measurements on the video players of Tv2 Sumo
and Comoyo to see if the proposed quality metrics from step 2 are consid-
ered by today’s adaptive video streaming technologies. The work with
measurement has been an iterative process based on the following steps:

1. Setting up a lab.

2. Planning the measurements, setting up scenarios and goals.

3. Data collection (performing the measurements).

4. Data processing and presentation

5. Evaluation of the results.

1.3 Outline

We start our thesis with an introduction to video over IP, streaming and
the Transmission Control Protocol (TCP) in Chapter 2. In Chapter 3 we go
into details on QoS and QoE. A description of the objectives for perform-
ing measurements, the lab set-up and measurement scenarios is given in
Chapter 4, in addition to a describing how we have processed and pre-
sented the data. In Chapter 5 we present the results, before discussing
and evaluation them in Chapter 6. In Chapter 7 we conclude the thesis
together with our views for future work.



Chapter 2
Background

This chapter starts with giving an introduction to the Internet video do-
main in Section 2.1. Thereafter in Section 2.2 we will go into more de-
tails on video streaming. Section 2.2 starts with a historical approach de-
scribing “traditional streaming” in Section 2.2.1 for thereby moving the
focus towards Hypertext Transfer Protocol (HTTP)-based streaming and
adaptive video streaming in Section 2.2.2. In Section 2.3 we give a brief
overview on TCP.

2.1 Video over IP

We are moving towards an “everything over IP” world, Cisco estimates
that the number of devices connected to IP networks will be twice as high
as the global population in 2015 [4]. They also expect that in 2015 90 per-
cent of the global consumer traffic will consist of video traffic. This means
that enormous amounts of video data is to be transferred over a “best ef-
fort” IP network. Meeting customer expectations and providing service
guarantees over such a network can be hard, but is also an interesting
field of research. In this section we provide the reader with an overview
of what is known as video over IP.

2.1.1 Overview

When we speak of video over IP it is natural to distinguish between the
delivery of video over either an open or a closed network [6] (see in Fig-
ure 2.1 on the following page). By an open network we mean the open,

3



4 CHAPTER 2. BACKGROUND

Figure 2.1: Video over IP overview. Figure adapted from [19] (figure 2.2).

uncontrollable Internet – a network which everyone can connect to and
provide their own videos or watch other’s content. Video delivery over
this network is typically done without involvement of the Internet Service
Provider (ISP) (such as Get, Canal Digital etc.), also known as an OTT ser-
vice. When speaking of video content delivery over a closed network we
speak of IPTV, typically managed by ISPs. In Table 2.1 a summary of the
differences between IPTV and OTT video is shown. The most important
technical difference between OTT video delivery and IPTV is the IPTV’s
ability to provide service guarantees through their private and managed
networks. OTT service providers are on the other hand completely de-
pendent on the underlying best effort network. The interaction with the
video player is also somewhat different, where IPTV users typically use
a native Electronic Program Guide (EPG) (on the TV) to navigate and
decide which content to watch [6]. A OTT video service is typically pro-
vided to the end user through a web interface with a plug-in allowing for
video streaming. The differences in the interaction plane are although
converging as IPTV providers now also let their users interact with their
TVs through a EPG in a web-interface, an example of Get’s web EPG is
shown in Figure 2.2 on the next page.

IPTV represents an evolution of TV rather than a revolution [6]. The
user experience is enhanced with means of interaction allowing the user
to choose which content to watch (from a pool of content given by the
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Over-the-Top Video IPTV
Public Internet Controlled network
Generally available on a PC Generally available on a TV
Best effort basis Quality of Service guarantees
Streams Broadcast channels
Downloads Video-on-demand
Web site EPG
Free, advertisement, pre-paid Pre-paid
Open access Walled garden

Table 2.1: Differences between OTT video and IPTV. The table is adapted
from [6] (page 10) where IPTV is denoted service provider-video and
OTT video is denoted as broadband-video.

Figure 2.2: Get’s EPG from http://www.get.no/underholdning/tv-
guide
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service provider, a walled garden approach). OTT service providers rep-
resent more of a TV revolution where the user is free to explore a large
number of free, pre-paid and ad-supported services. OTT video services
are thereby an example of disruption in that they provide competition to
the traditional TV broadcasting model, although they initially might be
technically inferior [6].

2.1.2 Growth and business opportunities

The content offered by the various OTT video service providers can be
divided into two categories (as also shown in Figure 2.1 on page 4):

• User-generated content (YouTube, Vimeo, Myspace)

• Professional content (NRK.no, TV2 Sumo, abc.com, NetFlix, Apple
TV, Comoyo)

There is an incredible amount of both user-generated and professional
video content available, and OTT video together with IPTV represents a
new way of watching TV. Users can now choose to watch their favorite
show regardless of time and place, and on most devices. The power has
shifted from service providers to consumers, which is also one of the rea-
sons for the increased attention to QoE in the last decade. More on QoE
is given in Section 3.2. Figure 2.3 on the next page shows the increased
amount of scientific work done on QoE since 2000.

Not only is a larger variety of content accessible to end users, but there
is also an increasing amount of different devices available. According to
a recent study by Cisco [5] the number of mobile-connected devices will
exceed the world’s population in 2012. This, together with the fact that
mobile video traffic exceeded 52 percent of the traffic in the end of 2011,
indicates that there is a huge growth potential. On the technical side this
growth potential can be stimulated through a standard for HTTP video
streaming, more on this is given in Section 2.2.4.1.

Compared to the fixed price economics of broadcasting, where the
cost for transmitting a program is the same regardless of how many peo-
ple are watching, a marginal cost is associated with OTT video delivery.
The cost depends on the amount of viewers [6]. This might allow market
entrance opportunities for producers of programs attracting a relatively
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Figure 2.3: Papers on QoE.

small audience. The market is changing and the old business models for
broadcasting TV will have to change.

2.2 Video Streaming

Video streaming allows people to access video content over the Internet.
It is simply about the transmission of data from a server to one or several
clients. The client typically starts the content playback a few seconds after
it begins receiving the content from the server, thereby differing from a
normal file download where the entire file has to be downloaded before
starting the playback. In this eay, the scheme allows for the transmission
and rendering of live content.

The most viewed video clip on YouTube has been viewed overwhelm-
ingly 731 240 028 times (as of 29.04.12). Watching video content over
the Internet is obviously popular, and one can see more and more actors
wanting to be a part of this and thus investing in the deployment of new
streaming technology. NRK, Norway’s major television broadcaster, an-
nounced late April 2012 the launching of their new online TV(http://tv.nrk.no/).
There are many providers of such streaming services, among them are
TV2 Sumo, Comoyo, Vimeo, NetFlix and Hulu (as depicted in figure Fig-
ure 2.4 on the following page), just to name some of them.
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Figure 2.4: A screenshot of hulu.com.

Similar for all of them are that their services are run “best effort” over
the Internet. To cope with varying network conditions and still be able
to provide a good service, several approaches for streaming media has
been made. Delivery of media content on the Internet today uses in gen-
eral three different delivery methods [37]: traditional streaming, progressive
download and adaptive video streaming.

2.2.1 Traditional Streaming

Streaming is, as mentioned earlier, about the rendering of an audio/video
file while transferring it. Some systems have in addition to this added
functionality for user interaction such as pause/resume and temporal
jumps within the multimedia file. The Real-time Streaming Protocol (RTSP)
is such a protocol allowing users to interact with the media content [16],
and is considered by [37] as a good example of a traditional streaming
protocol. Traditional streaming protocols are stateful, which means that
the server keeps and updates information regarding the client’s state un-
til the client disconnects. When a connection is established between a
client and a server, the server starts sending a steady stream of Real-time
Transport Protocol (RTP) packets containing video data. RTSP can also
be named a push-based media streaming protocol as it pushes the data
towards the client [2]. HTTP is, on the other side, a stateless pull-based
protocol where the client asks for the desired content. HTTP streaming
will be described in more details in the succeeding sections.

Push-based streaming protocols generally utilize RTP as the packet
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format for data transmission usually running over User Datagram Proto-
col (UDP), a protocol without any inherent rate-control mechanisms [2].
This leaves the server the opportunity to push data packets at a bit rate
decided upon at the application layer. Adjusting the bit rate to the net-
work might be desirable as packet loss and delay may cause the client’s
buffer fill rate to be lower than the buffer consumption rate, eventually
resulting in buffer underflow and playback interruption.

By monitoring available bandwidth and buffers to adjust the trans-
mission bit rate, stateful streaming protocols, such as RTSP, can provide
a smooth playback without pauses and stuttering. The monitoring is usu-
ally done on the client side and this information is reported periodically
to the server by utilizing the RTP Control Protocol (RTCP) [2]. The server
is then in the position of choosing a suitable bit rate for the connection,
given that the video is encoded at multiple bit rates.

2.2.2 Towards HTTP-Based Streaming

It is possible to achieve smooth media playback, as mentioned in Section
2.2.1, using the traditional streaming approach. At the same time there
are some drawbacks using this streaming scheme. One of the drawbacks
is the utilization of UDP for transport protocol as it has a high blocking
probability when traversing firewalls and proxies in the network [37][2].
Also, if a traditional streaming protocol such as RTSP is used for stream-
ing it is required to have specialized servers implementing this protocol,
which means more costs for the content providers. These are problems
not faced if HTTP were used for media delivery. First, HTTP runs over
TCP and port 80 and will not have any blocking problems on interme-
diate network nodes as the Internet is built on HTTP and optimized for
HTTP delivery [37]. Second, as most network nodes support HTTP there
is no need for specialized servers, thus reducing cost. Also, as HTTP is
a stateless protocol, more logic is on the end systems rather than on the
servers. This will lead to a more scalable system compared to the case
when using a traditional, stateful streaming protocol.

Using TCP for streaming media was unthinkable some years ago. Let
me quote a book from 2003 [26]:

In the case of streaming media, however, a large, and more
importantly, consistent bandwidth connection is needed for
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good performance. This is because the streamed packets are
played continuously, and the delay involved in retransmis-
sion of any lost packets using TCP could affect the perfor-
mance just as much, or possible more. As a result, UDP which
does not use retransmission is used for streaming applica-
tions.

This has later on been shown to be wrong; in 2004 a study [33] was con-
ducted, motivated by the knowledge that a significant fraction of com-
mercial streaming traffic was utilizing TCP, to find under which circum-
stances can TCP streaming provide satisfactory performance?. Their outcome
was that TCP generally provides good streaming performance when the
achievable TCP throughput is roughly twice the media bitrate, with only
a few seconds of startup delay. However, such conditions might not be
achievable on the public Internet, as network paths might become con-
gested due to competing traffic or if the delivery path does not offer suf-
ficient bandwidth. Streaming adaptively is therefore required for stream-
ing video over TCP [17], a topic we will have a closer look at in Section
2.2.4.

The emerging trend in the streaming media industry is a steady shift
away from traditional streaming protocols and back to plain HTTP down-
load [37]. As Zambelli [37] asked: “Why not adapt media delivery to the
Internet instead of trying to adapt the entire Internet to streaming protocols”.
HTTP-based video streaming seems like a good option.

2.2.3 Progressive Download

YouTube is together with Vimeo and MySpace one of the big actors uti-
lizing progressive download for their services [37]. The technique of pro-
gressive download is fairly simple; it is nothing more than a normal file
download from a HTTP Web server. The player client allows the media
to be played back while the file download is still in progress, hence the
name progressive download. This allows the user to pause the streaming,
waiting for the download to complete, allowing a smooth playback when
the user decides to press play.

Despite of its popularity, progressive download is not perfect. For in-
stance; it is not very flexible, before starting the download the user has to
select a bitrate for the download. This bitrate remains the same through-
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out the session, also if there is not enough bandwidth available [2]. This
might cause a buffer underflow event leading eventually to an interrup-
tion in the video playback. Another disadvantage of this scheme is the
case when some user decides to quit watching a video after, for example,
ten seconds, after the whole video has already been downloaded to the
buffer. This wastes bandwidth. Adaptive video streaming, which we will
have a look at in the next section, addresses some of the shortcomings of
progressive download.

2.2.4 HTTP-Based Adaptive Video Streaming

Adaptive video streaming is a hybrid of progressive download and stream-
ing [2]. It is a concept using the existing HTTP protocol rather than cre-
ating a new one. There are several different proprietary solutions based
on the same principles for adaptive video streaming. Among them are
Microsoft’s Smooth Streaming, Apple’s HTTP Live Streaming, Adobe’s
HTTP Dynamic Streaming and Move Networks Adaptive Stream. They
are different in many ways, but have in common their use of HTTP and
that their media download can be described as a long series of very small
progressive downloads, rather than one big progressive download [37].

In an implementation of an adaptive streaming solution the video is
cut into many short segments and encoded at the wanted delivery format
and rate. The segment length varies from implementation to implemen-
tation, but the segments are typically a couple of seconds long. At the
video codec level this means that each segment is cut along video Group
of Pictures (GOP) boundaries [37], hence there are no dependencies on
past and future segments, such that the segments can be decoded inde-
pendently.

It is the adaptive streaming client who sends a HTTP GET request to-
wards a server to retrieve a particular video segment. This makes the
client the managing part. The server is only making the content acces-
sible. In this form adaptive video streaming is similar to progressive
download as a video request is done towards a server followed by down-
loading and rendering of the video segment. The difference lies in the
segment size. Short segments enable the client to download only what is
necessary.

More importantly, and making this streaming solution more interest-
ing, are its adaptive properties. The adaptive part comes into play when
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Figure 2.5: Example of client-server communication in adaptive video
streaming where the client reacts to varying network conditions [2].

the video is encoded at multiple bitrates [37]. This allows the client to
switch, according to some rate-adaptation logic, between different bi-
trates each time it requests a new video segment. The client strives to
achieve the best QoE by displaying the highest achievable quality, pro-
viding a fast start-up, fast video seek and reducing skips, freezes and
stutters. The rate adaptation and decision logic is based upon monitor-
ing and estimation of related parameters such as [2]:

• Available network resources (i.e. available bandwidth)

• Device capabilities (i.e. display resolution, available CPU)

• Current streaming conditions (i.e. playback buffer size)

Before one can start an adaptive video streaming session, the client
has to retrieve information about the video content. Information such
as available bitrates and segment duration is of importance so that the
client can send GET requests to the server telling which video segment it
wants. This information is stored at the server in a manifest file. Figure 2.5
shows that this is the first thing the client asks for. The figure also serves
as an example on how a client can adjust the requested bitrate to varying
network conditions.
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Video content available at various bitrates allows customers with a
high bandwidth to watch videos at a high quality at the same time as
customers with lower bandwidth watch videos at a lower quality. The
server simply offers the video encoded at multiple bitrates, while the
client is the decision maker deciding which bitrate to pick. The moni-
toring of CPU usage is useful since it also allows the client to adjust the
bitrate according to how much load the CPU can handle. Also the capa-
bility to monitor and constrain the playback buffer size is an advantage;
it makes it possible to reduce the amount of wasted bandwidth if the cus-
tomer decides to stop watching the video after ten seconds, a problem
with progressive download identified in the previous section.

Another advantage of HTTP-based adaptive streaming is its use of
HTTP, reducing the complexity on the server side and there is no need
for specialized servers at each node as is if using traditional streaming.

As explained, there are many advantages of using HTTP-based adap-
tive streaming, but there are also some drawbacks. The lack of multicast
support is one of them [2]; in the worst case the server has to send the
video as many times as the number of users requesting it. This drawback
is often compensated by utilizing Content Delivery Networks (CDNs)
for delivering data. In CDNs the data is cached on distributed servers
placed strategically around in the network. This reduces the load for the
origin server in addition to that the path to the content can be shortened
significantly [2].

2.2.4.1 MPEG-DASH

Multimedia streaming over the Internet is still in its infancy compared to
its potential market [29]. One reason is that every commercial platform
is a closed system with its own proprietary solution. There is no inter-
operability between these solutions. Apple’s HLS, Microsoft’s Smooth
Streaming and Adobe’s Dynamic Streaming are all examples of solutions
with their own manifest format, content format and streaming protocol.
A HTTP streaming standard would be an instrument for market growth
allowing different streaming solutions to work together rather than in
parallel. Having a HTTP streaming standard will allow a standard-based
client to receive content from a standard-based server.

In April 2009 the Moving Picture Experts Group (MPEG) issued a Call
for Proposal for a HTTP streaming standard. 15 full proposals were re-
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Figure 2.6: Content on HTTP server. Adapted from [29], figure 2.

ceived and in the two following years a standard specification has been
under development with participation from many experts and with col-
laboration from the 3rd Generation Partnership Project (3GPP) [29]. The
resulting standard MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH),
now known as ISO/IEC 23009-1, was frozen technically in August 2011,
and ratified before MPEG-98 (the 98th meeting of MPEG) wrapped up
in December 2011. MPEG-DASH was finally published by International
Organization for Standardization (ISO) in April 2012.

Companies like Netflix, an American provider of on-demand video
streaming, sees advantages by utilizing the MPEG-DASH standard:

“The biggest advantage to us of a standard like MPEG-DASH
is that everything can be encoded one way and encapsulated
one way, and stored on our CDN servers just once. That’s a
benefit both in terms of saving our CDN costs from a storage
perspective and a benefit because you have greater cache effi-
ciency," said Mark Watson, senior engineer for Netflix[30].

The MPEG-DASH specification provides us with a standardized de-
scription of the content stored on a HTTP server. The content which
is stored at the server can be divided into two parts (visualized in Fig-
ure 2.6):

• Media Presentation Description (MPD)

• Segments
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The MPD is a XML-based manifest file describing the available con-
tent and its various characteristics, while the segments contain the actual
multimedia bitstreams in the form of chunks.

MPEG-DASH is about describing what is on the server. Delivery of
the MPD and the media-encoding formats containing the segments, as
well as client behavior for fetching, adaptation heuristics, and playing
content, are out of MPEG-DASH’s scope [29].

2.2.4.2 Microsoft’s Smooth Streaming

Figure 2.7: Microsoft’s Smooth Streaming client-server communication.

As already mentioned, Smooth Streaming is Microsoft’s solution for
HTTP-based adaptive video streaming. It was in October 2008 that Mi-
crosoft first announced that they would feature a new streaming exten-
sion called Smooth Streaming. Promotion of this new technology was
done initially, together with Akamai, through a showcase web site: SmoothHD.com
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[37]. The Smooth Streaming technology is realized through Silverlight, a
free web-browser plug-in developed by Microsoft [21]. As the further
work of this thesis is based on this technology, a more detailed explana-
tion of Microsoft’s Smooth Streaming is given here.

The Smooth Streaming technology uses the MPEG-4 Part 14 (MP4)
media format (ISO/IEC 14496-12). As described in Section 2.2.4, the
video is partitioned into many short segments and encoded at the wanted
bitrate. In the Smooth Streaming specification this means that each seg-
ment is a MP4-fragment. All fragments are stored together in a contigu-
ous MP4 file, hence there is one MP4 file on the server for each encoded
bitrate. The video segments can be accessed at random access thanks to
MP4’s support for payload fragmentation [37]. The streaming client (Sil-
verlight) is now free to ask for a specific segment encoded at a specific
bitrate from the server, which in turn will return the requested segment
as a standalone file over the Internet. Figure 2.7 on the previous page
shows the overall client-server communication.

Before the retrieval of video segments, a manifest file is requested
from the server. As mentioned in Section 2.2.4, this manifest file in-
cludes information about the video content, such as available bitrates,
segment duration and video start-time. The manifest file is based on the
Extensible Markup Language (XML) and in listing 2.1 a simplified exam-
ple is shown.

<?xml version="1.0" encoding="UTF-8"?>

<SmoothStreamingMedia MajorVersion="2" MinorVersion="0"

Duration="2300000000" TimeScale="10000000">

<StreamIndex Type = "video" Chunks = "115" QualityLevels

= "2" MaxWidth = "720" MaxHeight = "480" TimeScale

="10000000" Name = "video" Url="QualityLevels({

bitrate},{CustomAttributes})/Fragments(video={

start_time}">

<QualityLevel Index="0" Bitrate="1536000"

FourCC="WVC1" MaxWidth="720"

MaxHeight="480" CodecPrivateData = "..." >

</QualityLevel>

<QualityLevel Index="5" Bitrate="307200"

FourCC="WVC1" MaxWidth="720"

MaxHeight="480" CodecPrivateData = "...">

</QualityLevel>

<c n="0" d="20000000" />
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<c n="1" d="20000000" />

... <!-- fragment definitions omitted -->

<c n="114" d="19680000" />

<!-- end fragment definitions -->

</StreamIndex>

</SmoothStreamingMedia>

Listing 2.1: Microsoft manifest sample, adapted from [20].

The <StreamIndex> tag in the manifest file specifies the metadata for
one type of track (audio, video or text). From the manifest file sample
we can for instance see the specification of the URL for the video track,
which is in the form of a RESTful URL; clients use this address to retrieve
video segments. Video segment requests typically look like this:

GET http://video.foo.com/NBA.ism/QualityLevels(400000)

/Fragments(video=6102275114)

The value coming after “QualityLevels” is the encoded bitrate (400000).
The value is given in bits per second, meaning that this requested video
segment is encoded at 400 kbps. The value next to “Fragments” is the
fragment start offset (550450000000), this value is expressed in an agreed-
upon time unit (can be seen in the manifest sample as the attribute “Timescale”)
[37]. The recommended value is 10.000.000 which maps to increments of
100 nanoseconds [20]. In the manifest file the duration of each fragment is
announced in the tag <c n=“0” d = “20000000”>, where n is the fragment
number and d is the duration (in Timescale increments). The default frag-
ment duration is 2 seconds. With this information the player knows the
start offset for the next fragment (previous start offset + duration) and
can then send the correct request for the next segment.

The quality level is requested according to which available bitrates
that are announced in the manifest file. The announced bitrates can be
found after the “QualityLevel”-tag together with the attribute “Bitrate=”
(see the manifest sample in listing 2.1).

“There is much more to building a good player than just setting a
source URL for the media element”[37]. The server is just making its con-
tent accessible, while the client decides how and when to switch bitrate.
In the Silverlight framework the clients have a pre-defined way of adapt-
ing the stream to the environment, but it is also possible for developers
to implement their own version of the rate-adaptation process.
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The most challenging part of Smooth Streaming Silverlight develop-
ment is the heuristics module determining how and when to switch bi-
trates, but there are also other things to consider such as [37]:

• The size of the download buffer

• What happens if the user has enough bandwidth, but not enough
Central Processing Unit (CPU) power for consuming the high bi-
trates?

• What if the resolution of the best available video stream is larger
than the screen resolution?

• What happens if the video is paused or hidden in the background?

2.3 TCP

TCP is a connection-oriented protocol providing reliable transmission of
data in addition to mechanisms such as flow- and congestion control.
which also is widely used for the transport of video content. In this sec-
tion we will provide a brief overview of TCP, for more details we refer
the reader to [31].

TCP focuses on reliable and accurate delivery rather than timely de-
livery. If a data packet is lost or corrupted on the way to its destination
it will be retransmitted, which in turn might introduce some delay as
the packets must be received in order. In TCP the sender adjusts the
sending rate to fit the minimum of what the network and receiver can
manage. The receiver announces to the sender its “receiver window” to
inform about its buffer size. On the sender side a “congestion window”
is maintained to adjust the sending rate to the available bandwidth in the
network.

One can divide a TCP flow into two phases: a connection phase and a
transfer phase. The connection phase consists of a three way handshake
for setting up a connection between the sender and receiver. After the
connection set-up the TCP flow will enter the transfer phase. The transfer
phase consists mainly of a slow start and a congestion avoidance period.
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2.3.1 Slow Start and Congestion Avoidance

Figure 2.8 shows a typical transfer phase. After the connection set-up
the congestion window is set to be the maximum size of one segment. A
threshold value is also set (for example 64 kB). The sender starts sending
the amount of data as allowed by the congestion window. The window
is doubled when ACK is received. The congestion window will continue
to increase exponentially until a timeout occurs or the receiver’s window
is reached. Although it is an exponential growth period, this period is
called “slow start”.

Figure 2.8: The transfer period of TCP. Figure from [31].

When reaching the threshold value, the slow start period is over and
the congestion avoidance period takes over. This period is not as agres-
sive as slow start, but the congestion window will keep increasing until
a timeout is received. The threshold is then set to half of the current con-
gestion window, and the TCP flow will enter slow start again.

This is the typical life of a TCP flow, but there are many versions
of TCP today, and the congestion window evolution might not be as
“straight forward” as in Figure 2.8. Some exisiting versions are Tahoe,
Reno, Vegas, Compound, CUBIC. As Dynamic Adaptive Streaming over
HTTP (DASH) systems utilize TCP for transport it is good to be aware
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of that TCP’s possible influence the achieved throughput as it is also – as
DASH is on the application layer – adaptive.



Chapter 3
Quality

This chapter starts with providing an overview of the concept of quality
and motivation for research on QoS- and QoE-dimensions in the Internet
domain in Section 3.1. Thereby we look at the increased interest of QoE
in Section 3.2. In Section 3.3 a top-down approach on video quality is
provided, firstly giving an introduction to video quality influence factors
for further on looking at quality assessment methods in Section 3.3.1. The
focus will gradually move towards quality assessment for adaptive video
streaming. Section 3.4 we discuss why and to who quality measurement
is important. In the last section, Section 3.5, a proposal of metrics appli-
cable to adaptive video streaming is given.

3.1 Internet Quality

Network parameters such as packet loss, delay, bandwidth and jitter
(packet delay variations) affect the performance of applications running
over a network [9]. The tolerance or degree of sensitivity to each of these
parameters varies from application to application. Too much delay can,
for instance, have fatal consequences in an air plane control system while
the same delay in the coffee machine on a workplace does not cause any
more than some irritation among the employees. Guaranteeing for the
delivery and reliability of a service is a requirement for critical applica-
tions such as the air plane control system .

In traditional circuit-switched networks, like the telephone network,
service guarantees for a connection can be made and measured in terms

21
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of setup delays, voice quality etc . In packet-switched networks, such
as the Internet, this is more difficult as the networks were not designed
to deliver per-connection service guarantees [9]. The current Internet ar-
chitecture is based on the best-effort service model where packets might
flow towards the destination through various paths. The different data
packets are then likely to experience different amounts of delay, loss and
jitter along the path. This has been no problem for traditional applica-
tions such as e-mail, File Transfer Protocol (FTP), HTTP and telnet as
they are not delay sensitive in addition to their utilization of TCP which
ensures a reliable data delivery. Network fluctuations (described through
loss, delay etc.) are although likely to have a negative impact on many of
today’s large variety of applications, amongst them OTT video services.
Few service guarantees can be given for applications using the best-effort
network infrastructure; this is in contrast to the fact that many of these
applications are core components of businesses [14]. Research on QoS
and QoE is one way to address this issue.

3.2 From QoS to QoE

The already mentioned network parameters are typical QoS parameters
affecting the performance of networked applications. Specification of
such QoS parameters usually depend on the context of the involved ap-
plications, but the following parameters are considered the basic form of
QoS as other forms can be mapped to them [9]:

• Throughput refers to the amount of data that can be transferred
from a source to a destination per time unit (bits/second).

• Goodput is related to throughput, but only consideres the packet
payload.

• Delay is the time interval between data departure and arrival.

• Packet jitter refers to packet delay variation.

• Loss is data packets not reaching their destination.

For a long time QoS has been a dominating research topic in the com-
munication networks’ domain. QoS was defined by [38] as “providing
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Figure 3.1: QoS and QoE overview for video streaming, figure adapted
from [19](figure 2.6) and [8] (figure 1).

service differentiation and performance assurance for Internet applica-
tions”. This was supposed to be realized through QoS architectures like
Integrated Services and Differentiated Services intending to “pave the way”
for high-quality real-time services like video streaming and Voice-over-IP
[10]. The notion of end-to-end QoS was originally (for more than 10 years
ago), according to the International Telecommunication Union Telecom-
munication Standardization Sector (ITU-T), aiming at the “degree of sat-
isfaction of a user of the service”[11]. The dominating research perspec-
tive on QoS has however, during the years, become more and more a
technical one, focusing on monitoring and improving network perfor-
mance parameters [10] such as the ones listed. A question to be raised is
whether these technical network parameters sufficiently reflect the needs
of end-users. Taking the example of a web-page download over a lossy
network: The end-users do not really perceive the packet loss ratio, but
are typically more concerned about the consequences of the packet loss
such as a longer page download time. A good point from [8] is that the
well-established QoS-tradition is good at investigating what is happen-
ing in the network but fails in providing insight in the why-dimension:
why does a user behave in a certain way or why does the user feel frus-
trated? This is where QoE comes in, providing several dimensions for
understanding the perceived quality. Figure 3.1 illustrates how we place
QoS in the bigger QoE picture.

User experience and the concept of QoE was originally promoted by
Human-Computer Interaction (HCI) researchers to stress concern with
the outcomes of people’s experience with - or through technology [3].
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HCI-researchers tend to emphasize the multi-dimensional character of
experience, highlighting the importance of factors such as emotions, ex-
pectations, context of use and the relationship to other people [8]. This is
in quite a contrast to the “hard” network QoS parameters. Although HCI-
researchers have their focus on the multi-dimensional aspect of QoE a
great deal of the existing definitions of QoE are rather technology-centric
ignoring the subjective character of human experience [8], for example
has QoE been defined as: “an extension of the traditional quality of ser-
vice (QoS) in the sense that QoE provides information regarding the de-
livered services from an end-user point of view”. The ITU-T defines QoE
as: “the overall acceptability of an application or service, as perceived
subjectively by the end-user”[13]. In any of the definitions QoE aims
to grasp a wider area than the network performance-centric QoS. Some
researchers has taken this definition even further and wider and state:
“Quality of Experience deals with ’all relevant aspects that define how
satisfied a person is with a service”’[8]. This definition comes from Kilkki
which also, on LinkedIn, states “Quality of Experience includes everything
that really matters”. QoE focuses on understanding overall human quality
requirements which is a multidisciplinary field based on cognitive sci-
ence, social psychology, economics and engineering science [18]. In the
proceeding sections we will relate these QoE and QoS dimensions more
directly to video streaming.

3.3 Video Quality

There are many factors influencing and contributing to video QoE. All
the processing steps, see Figure 3.2 on the next page, from the actual film-
ing, video post processing, encoding/compression, transmission, decod-
ing to the rendering of the video have strong and direct impact on what
actually is seen. Quality degradation of the video may happen in all steps
in this process. In addition to this, as described in the previous section,
the user is also affected by other factors such as emotions, previous expe-
riences, context of use etc. In [35] a list is provided to enlighten some of
the numerous factors affecting QoE:

• Display type (CRT, LCD, iPad etc.) and properties (size, resolution,
brightness, contrast, response time, color).

• Viewing setup and conditions (distance, lighting).
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Figure 3.2: Video processing steps.

• Video experience of the viewer, will also determine quality expec-
tations (it is hard to go back to standard definition once you have
seen high-definition content).

• Individual interests of the viewer (favorite TV-shows etc.) deter-
mine the focus level of attention.

• Interaction with the service and the display device (web-interface,
remote control, zap-time, EPG)

• Quality and synchronization of the accompanying audio.

The subjectivity and large variety of these factors implies that measur-
ing and optimizing the quality of video systems is a highly complex prob-
lem [35]. One can roughly divide between technical and non-technical
quality influence factors. The technical ones affect the visual fidelity of
the video in terms of distortions in the temporal and spatial video struc-
ture introduced by various the processing steps (mainly compression and
transmission) [35]. Even if one is just focusing on the technical factors the
video systems are still complex (consisting of switches, routers, capture
and display hardware, converters and codecs, and all of them process
the video somehow and hence may affect its quality); in addition to this,
one has to understand how people perceive video and its quality. The
visual perception is even more complex [35]. Studies have for instance
shown that colorful, sharp pictures with high contrast are considered as
more attractive to people than dark, blurry pictures with low contrast
[34]. Further discussion on how quality assessment is done is given in
the next section.

3.3.1 Video Quality Assessment

When it comes to quality assessment methods a distinction is usually
made between subjective and objective methods [8].
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3.3.1.1 Subjective Quality Assessment

The International Telecommunication Union (ITU) defines QoE as “The
overall acceptability of an application or service, as perceived subjectively
by the end user”. This definition implies for measurements of QoE to
be done through subjective experiments. According to [35] subjective ex-
periments represent the most accurate method for obtaining quality rat-
ings. In subjective experiments a number of people are usually asked to
watch a set of video clips for later on to rate what they have seen and
experienced. The rating is often done in accordance with the Mean Opin-
ion Score (MOS), which originates from the voice domain as a subjective
measure of voice quality [12]. Test users are asked to rate quality param-
eters using a standardized five point scale with labels such as Excellent,
Good, Fair, Poor and Bad. Since this is in the subjective domain, one has
to expect some variability of the users’ ratings as people have different
interests and expectations for the video. One can minimize such factors
through precise instructions, training and controlled environments [35].
The ITU suggests standard viewing conditions, assessment procedures,
criteria for selection of test users and material and data analysis methods.

Subjective quality assessment methods

There exist a variety of subjective quality assessment methods. Rec-
ommended methods [35] include Double Stimulus Impairment Scale (DSIS),
Double Stimulus Continuous Quality Scale (DSCQS), Single Stimulus Con-
tinuous Quality Evaluation (SSCQE) and Absolute Category Rating (ACR).
Common for these methods is that they are conducted in a closed lab-
environment. The choice of method depends on what you want to mea-
sure and the application characteristics (quality range etc.). Details for
these methods are omitted from this report as it is out of the scope of the
thesis.

For quality assessment in a more natural setting there are several
methods available in the field of social sciences. Amongst them are meth-
ods such as in-depth interview, survey, observation, etc [8]. The diary
method, which is used for the “self-recording of everyday life events”
has an advantage [8] as it can capture the particulars of an experience not
possible using more traditional methods.

Limitations with subjective quality assessment
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As already mentioned, the MOS scale is often used for rating the qual-
ity. The use of MOS for quality assessment has however been criticized
by authors from various fields [8]. It has for instance been argued that the
intervals of the MOS scale are problematic. They are unequal at the con-
ceptual level in addition to that users usually lack the incentive to report
accurate scores [23, 8]. Also, due to cultural differences in interpretation,
results from subjective experiments are not internationally representative
[8].

Most subjective experiments take place in a controlled lab environ-
ment, which means that results from different experiments can more eas-
ily be compared. On the other hand, as test users are outside their “natu-
ral habitat” in such experiments, the external validity of results obtained
is highly questionable [8].

The main shortcoming with subjective experiments is, according to
[35], the requirement for a large number of viewers, limiting the amount
of video material that can be evaluated in a reasonable amount of time. A
question raised in [3] is whether one can rely on test users’ self-reported
opinion when many of the user behaviors enabled of networked services
are associated with unconscious psychological factors. This is an argu-
ment for more objective quality assessment, which is discussed in the
next section.

3.3.1.2 Objective Quality Assessment

Objective quality measurements are not dependent on test users’ opin-
ions, but are rather based on direct measures of some process or out-
come of user behavior. Objective measurements are typically technology-
centric where data is automatically collected by monitoring tools [3]. User
tests are then necessary to identify and validate the relationship between
technical parameters and the perceived quality (QoE). This section will
start out broad and look at what is done in this area with regards to ob-
jective quality metrics for video over IP before going into more details
on video over TCP and finally DASH, see Figure 3.3 on the following
page. We will end this section by looking at user-centric objective quality
metrics.

Video over IP

The engineering approach for video quality assessment is primarily
based on the extraction and analysis of certain features and artifacts in
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Figure 3.3: Top-down approach for objective quality assessment.

the video. In the image and video processing community, this typically
means looking for blockiness, blurriness and jerkiness etc. which are ar-
tifacts introduced to the video in the compression/encoding or transmis-
sion process [35]. Another approach is to measure the difference between
the transmitted video and the original video. Peak Signal-to-Noise-Ratio
(PSNR) and Mean Squared Error (MSE) are well-known measurement
techniques aiming to measure this video fidelity [35]. These formulas
have been popular because they are simple to understand, and fast and
easy to compute. PSNR is a byte-by-byte comparison of the data, and
thereby only represents an approximate relationship with the video quality
perceived by human observers [35]. Figure 3.4 on the next page demon-
strates this with an example showing two images with identical PSNR at
the same time as their perceived quality is very different.

In [35] it is argued that the network QoS community has equally sim-
ple metrics quantifying transmission errors such as packet loss rate and
bit error rate. Such metrics are relevant to data links, but does not nec-
essarily reflect how the video quality is affected. Excellent QoS does not
necessarily mean excellent QoE. Relating traffic characteristics to user
satisfaction is not a simple task [28]. There is a growing interest in this
field as a result of increasing video service delivery over IP networks [35],
as also discussed in Section 2.1.

Video over TCP

DASH systems use, as mentioned in Section 2.2.2, TCP for its data
transmission. TCP is optimized for accurate and reliable delivery rather
than timely delivery. The reliable features of TCP free the video codec
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Figure 3.4: The left and right picture have the same PSNR at the same
time as the perceived quality is very different. In the leftmost picture
the distortions are in the lower area while in the rightmost picture the
distortions are in the sky and more easily seen. Figure from [35] (figure
1).

from handling packet loss and the resulting picture quality is not de-
graded due to missing frames [22]. The frames simply will not be miss-
ing. Existing objective measures such as PSNR are hence more suited
to quantifying the performance of compression algorithms [27]. These
measurements can be very useful when UDP is used for transport of the
video stream [27], but the focus of this thesis is on HTTP adaptive video
streaming which utilizes TCP.

If the TCP throughput is reduced to a lower level than the current
playback rate, the buffer will be utilized and eventually become exhausted.
This causes the video playback to stop, and such a disruption could greatly
impact the perceived QoE. For this reason the authors of [22] propose to
focus on the temporal structure of videos streamed over TCP. The run-
ning application (the video player) is directly affected by network QoS,
and the users are in turn affected by the video player’s performance.
They further on propose three application performance metrics:

1. Initial buffering time

2. Mean duration of a rebuffering event.

3. Rebuffering frequency
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Through subjective experiments in [22] it is revealed that the rebuffer-
ing frequency is the main factor responsible for variations in QoE. Porter
and Peng in [27] have more or less the same approach, but combine the
rebuffering frequency and duration into one metric which they call pause
intensity. Results from their subjective test show that the pause inten-
sity and the subjective scores are closely correlated. Another interest-
ing finding in [22] was that the effect from the initial buffering time was
not significant and implying that users are generally willing to tolerate
a longer startup delay for a better video watching experience. It should
be noted that the experiments conducted by Porter and Peng were only
simulations of a progressive HTTP video stream with one quality level,
and also the study by [22] was focusing on progressive download. Progres-
sive download was described in Section 2.2.3. Their studies has however
shown that the temporal structure, instead of spatial artifacts (the pic-
ture), is an important factor affetcting the QoE for HTTP video streams.

DASH

DASH video streaming enhances the QoE for users by its automatic
switching between quality levels when, for instance, there are fluctuat-
ing network conditions. Quality transitions are particularly relevant to
DASH-systems, and wrong decisions on choosing quality level may have
a huge impact on the perceived quality. In [24] subjective experiments
have been conducted to measure the effect such quality transitions have
on QoE. In the tests it was found that inserting intermediate levels be-
tween quality drops was favorable for the perceived quality, compared to
switching directly to the target quality level. Another interesting finding
was that in one of their test scenarios the video with the lowest quality
level throughput did not obtain the lowest MOS. In this case there were
no quality transitions, and the users did not know that they were watch-
ing the video with the lowest quality. These experiments indicate that a
stable, but lower quality level is better than having a stream with high
frequency of quality transitions even though it, on average, provides a
higher quality level. In [32] another metric related to quality transistions
is introduced, calling it perceived fairness. The authors of [32] relate the
metric to the social science and psychology domain where it has been
found that users react negatively to any system behavior which gives
better service to another user, unless justification is provided. In terms of
quality of adaptive video streams this can be translated to that end-users
may perceive certain system behavior as un-fair. This could for instance
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be quality transitions to a lower level, frequent quality transitions or pe-
riods with the session rate below some threshold. It has also been found
that quality perception is asymmetrical when adapting the quality down
and when adapting the quality up [7]. Users are more critical to quality
degradations and less pleased by increased quality.

User-centric objective quality assessment

We have now focused on technology-centric objective quality mea-
surements. According to [3] there is a widespread misunderstanding
that objective quality measures can only be collected from technology
and that data from users are necessarily subjective. Some research in this
area [23] has investigated the correlation between user-viewing activi-
ties, network path performance and QoE. Low TCP throughput can, as
previously explained, cause buffer exhaustion and in turn stop the video
playback, thus destructing the temporal structure of the video playback
[23]. Through user-activities such as pausing and reducing the screen-
size the negative impact of a low TCP throughput can be mitigated. Re-
sults from the survey in [23] show that users choose pausing, switching
to a lower video quality and watching with a normal screen size under a
jerky playback scenario. Measuring such user-activities can thus give an
indication of network impairments and bad QoE. Indicators of user sat-
isfaction can also be found from network traffic traces. User experience
described through the interruption probability of user HTTP connections
has been presented [28].

Objective measures of QoE can and should, according to [3] also be col-
lected from user tests as these measures enables us to extend beyond user
perception to user experience. The point is that measures of QoE should con-
cern user performance and based upon actual usage. In terms of video
streaming this could be person-content interactions such as mouse clicks,
time between mouse clicks, eye-tracking, task completion time, et cetera.

3.4 Why Measure Quality?

Better network QoS will in many cases result in better QoE, but fulfilling
all traffic QoS parameters will not guarantee a satisfied customer [25].
The test scenario (mentioned in Section 3.3.1.2) from [24] where the video
sequence with the lowest throughput did not obtain the lowest MOS is
an example of this. From a service provider’s perspective, having fo-
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cus on customer satisfaction is important as the risk of customer churn
is high in a competitive market. In a survey done by Accenture [25] it is
shown that, on average, one dissatisfied customer will tell 13 other peo-
ple about their bad experiences. From the amount of customers having
experienced troubles only one out of 30 will report their problem to the
service provider [25]. A way to avoid losing customers is to constantly
measure QoE and improve it as and when needed. Constantly measur-
ing QoE requires good, objective quality parameters, which can relate
potential network impairments and other factors to end-user QoE.

Reasons to motivate the interest for QoE, in addition to user satisfac-
tion, include network configuration and design, and service testing [14].
In [26] it is also pointed out that quality can be the differentiator when
other factors are equal, if the price is the same but company X have a
reputation in always delivering a high-quality service, people are then
likely to choose company X. It is also possible to price the service differ-
ently according to different quality levels. This could be an instrument
for reaching a bigger audience as people may have different expectations
and willingness to pay for Internet TV. Comoyo, with their Video on De-
mand (VoD) service, is an example of an actor doing this. On some of
their movies, customers can choose to pay more to have access to High
Definition (HD) content rather than Standard Definition (SD).

Ensuring user satisfaction is, as earlier explained, important to the
service provider to keep their market position and customers. Quality
measurement is important to a large variety of stakeholders. In Figure 3.5
on the facing page an overview is given of the different stakeholders for
QoE data.

Measuring subjective and objective user experience metrics in a quan-
titative way will ensure that a large range of techniques can be applied
afterward to derive QoE ratings. This is important so that one can com-
municate QoE in an optimal way to the various stakeholders [3].
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Figure 3.5: QoE data stakeholders with different roles and backgrounds.
Figure adapted from [3] (Table 3).
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3.5 Quality Metrics for Adaptive Video
Streaming

In the preceding sections we have provided a foundation for understand-
ing the QoS and QoE dimensions of adaptive video streaming. We have
seen that the dominating research perspective on QoS has during the
years become more and more a technical one focusing on improving and
monitoring network performance. While QoS parameters can provide
good insight in what is happening in the network, QoE can also provide
insight in the why dimension: Why does a user feel frustrated? QoE pro-
vides several dimensions for understanding user experience. In the fol-
lowing we will discuss the quality metrics applicable for adaptive video
streaming which relates both the QoS and QoE dimensions.

Figure 3.6: Bridging the gap between QoS and QoE.

One way to relate QoS and QoE is to look at the application perfor-
mance metrics. The application (in our case the video player) is, as de-
picted in Figure 3.6, directly affected by network QoS and has at the same
time direct impact on end users’ QoE. In [22], three application perfor-
mance metrics for HTTP video streams were proposed: (1) initial buffering
time, (2) mean duration of a rebuffering event and (3) rebuffering frequency (for
more details see Section 3.3.1.2). Network QoS parameters have a direct
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impact on these metrics. The three metrics are also applicable to adap-
tive video streaming. Metric (2) and (3) are although likely to happen
less frequently in DASH systems compared to progressive download as
a quality rate reduction would normally be triggered before a rebuffering
event occurs.

What makes DASH systems special are their automatic switching be-
tween quality levels. Quality transitions is absolutely a quality metric to
consider. A study [24] supporting this statement has shown that end
users could prefer a stable video stream (fewer quality transitions) at the
expense of an overall higher bitrate. In this study it was also found that
inserting intermediate quality levels when degrading the quality pro-
vides a better QoE than if switching directly to the target quality level.
It has also been found that quality perception is asymmetrical[7]: users
are more critical to quality degradations and less rewarding to increased
quality.

Another metric is the available bitrates (quality levels) at the hosting
webserver. The higher bitrate the better. However, this metric should be
considered in relation to the quality transition metric, as just described.

3.5.1 Scope

The metrics described are all objective application performance metrics
which from various subjective studies have shown to have impact on
end users’ QoE. The finding that a higher bitrate does not always lead
to a higher degree of QoE (when it comes at the cost of more quality
transitions) might not be very intuitive. To see if this is considered by
today’s adaptive video streaming technologies we will perform two case
studies by means of measurements on the video players of Tv2 Sumo and
Comoyo.

The focus will mainly be on the players’ reaction to packet loss, whereby
we will introduce a sufficient amount of packet loss forcing the players
to react. Among the questions we want answeres to are: How long time
will it take before the player triggers its first quality transition? Will the
player stabilize at some quality level, or will we see many quality transi-
tions throughout the session?

Tv2 Sumo’s and Comoyo’s player are both based upon Microsoft’s
Smooth Streaming technology. However, as explained in Section 2.2.4.2,
this does not mean that they are identical since developers are free to
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modify the Silverlight player. We therefore find it interesting performing
measurements on them both.



Chapter 4
Measurements

This chapter starts by clarifying the main objectives for performing mea-
surements on Comoyo’s- and Tv2 Sumo’s video player in Section 4.1. A
lab has been set up for the collection of data and is described in Section
4.2. In Section 4.3 we define the measurement scenarios, and in Section
4.4 we describe how the measurements are to be performed. In the last
section of this chapter we describe how we process and present the data.

4.1 Objectives

In Section 3.5.1 we gave motivation for performing measurements on
Comoyo’s- and Tv2 Sumo’s Silverlight player. The main objectives are
to investigate how packet loss affects the video player and to see if the
video player takes quality transitions into consideration together with bi-
trate. Through the measurements we will try to answer the following
questions:

1. Will the player stabilize at some quality level, or will we see many
quality transitions throughout the session after the introduction of
packet loss?

2. How much time will pass before the player triggers its first quality
transition?

Answers to these objectives can give us an indication to whether qual-
ity transitions is a metric considered by the players.

37



38 CHAPTER 4. MEASUREMENTS

Motivation for objective one:
If the player after some time stabilizes under varying network conditions,
not always striving for the highest quality level, we consider it as a sign
that the player in fact does consider quality transitions as a quality metric
in relation to bitrate.

Motivation for objective two:
If the player is exposed to short-term network fluctuations we would like
the player to rather utilize a bit more from its playback buffer so that un-
necessary quality transitions can be avoided. When we study the players’
reaction time to packet loss we consider it positive if the player use a long
time before it first degrades the quality.

4.2 Data Collection

4.2.1 Lab set-up

Figure 4.1: The lab environment.

To collect the wanted video traffic data a lab has been set up as shown
in Figure 4.1. The lab consists of an end user client, a Cisco router and a
Click modular router, which are decribed in the forthcoming subsections.



4.2. DATA COLLECTION 39

4.2.1.1 End User Client Specification

The computer used as the end user client has the following specifications:

• Windows 7 Professional SP1 64-bit

• Intel Core i7-860 @2.80GHz 2.93 GHz

• 4GB RAM

4.2.1.2 Cisco Router/NAT

The router is a Cisco 1812 Version 12.4.

On the Cisco router we can apply rate limitation through QoS policy
maps. Two policy maps have been defined on the router, one for 10 Mbps
and another for 20 Mbps bandwidth limitation:

policy-map 10MB

class CLASS_SLAP

police 10000000 1000000 conform-action transmit

exceed-action drop

policy-map 20MB

class CLASS_SLAP

police 20000000 1000000 conform-action transmit

exceed-action drop

The rate limitation policy is activated with the following commands
when logged in on the router:

conf t

interface FastEthernet0

service-policy input 10MB

exit

exit

wr
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4.2.1.3 Click Modular Router

The specifications of the Click Modular Router:

• Ubuntu 8.04 32-bit

• Intel Premium 4 2.80GHz

• 3GB RAM

The Click router runs on a Linux machine which runs a clickpatched
version of Ubuntu 8.04. This means that there are some modifications
made on the OS kernel to better suit Click. Click is an open source project
developed at MIT and is a software architecture for building flexible and
configurable routers. A Click router is assembled from several packet
processing modules called elements [15]. The various elements imple-
ment simple router functions like queuing, packet classification, schedul-
ing and interfacing with network devices. We utilize Click to introduce
packet loss while streaming video. What we basically do is to inspect
each incoming TCP packet and drop it with a certain probability. In Click
this means that we use an element to classify incoming TCP packets, this
can be done using the IPClassifier element [15]:

IPClassifier(. . . ): The input takes IP packets and packet data
is examined according to a set of classifiers, one classifier per
output port. Forwards packet to output port corresponding
to the first classifier that matched. Example classifier: “ip src
1.0.0.1 and dst tcp port www” checks that the packet’s source
IP address is 1.0.0.1, its IP protocol is 6 (TCP), and its destina-
tion port is 80.

As we are interested in the incoming TCP packets our utilization of
the IPClassifier element looks like this:

find_data_eth2 :: IPClassifier(tcp, -);

The TCP packets are later on dropped with a certain probability:

-> RandomSample(DROP 0.05)

For more details on the Click configuration see Appendix B.
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Figure 4.2: From raw network data to a video trace file.

4.2.2 Traffic Measurement

There are many applications which can be used to monitor and record
traffic coming in and going out of the computer’s network interface. Wire-
shark (described in Appendix A) is one of the most used applications for
this purpose, and is also the tool we have utilized for our measurements.
Wireshark is run at the end user client machine. Capturing all incoming
and outgoing packets from the network interface is storage and resource
expensive, to reduce this load capture filters can be applied. In addition
to capture filtering one can apply display filters on the capture file for
post processing. Figure 4.2 shows us how this filtering is done in our
measurements.

Recall from Section 2.2.4 that video segments are fetched from the
hosting webserver using the HTTP GET method and is transported by
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TCP. This means that for capturing the video traffic we only need to
look at TCP and HTTP traffic. This is done by setting the capture filter in
Wireshark to:

tcp port http

The capture file (a .pcap file) we end up with should contain all HTTP
and TCP traffic passing through the network interface in the monitoring
period. Further on we use Wireshark’s display filter to only assess the
video related traffic. The assessment of this traffic is done by first finding
the hosting webserver’s IP address for later filtering out the traffic going
to and coming from this address. This can be done by looking at the des-
tination address for the GET-requests sent to the webserver. It has, how-
ever, been noticed that for some of the streamed sessions this destination
address occasionally changes, probably due to some load balancing at the
server side. We therefore first check whether or not this is a case before
filtering out traffic for one or several IP addresses. We have performed
this check by filtering out video GET requests and looking for multiple
destination addresses. The filter applied:

http.request and expert.message contains "video"

When the hosting webserver’s IP address (or addresses) has been
found we filter out the traffic coming from and going to this address:

ip.addr == 148.122.38.92 (example address)

We now have a complete trace of the streamed video session and for
further processing we export the file to a Comma Separated Values (CSV)
file. The generated .csv file is based upon the displayed columns in Wire-
shark, in our case:

• No. - the sequence number of the packet in the capture file.

• Time - the timestamp of the packet, in our case number of seconds
since beginning of the capture (with nanosecond precision).

• Source - the address from where the packet is coming.
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• Destination - the address to where the packet is going.

• Protocol - the protocol name (HTTP or TCP) .

• Length - packet size (in bytes).

• Info - additional information about packet content.

• Src port - port number for where the packet is coming from.

• Dest port - port number for the packet destination.

These elements are exported to .csv. The procedure from the collec-
tion of raw data to the generation of the .csv file is repeated for all exper-
iments.

4.2.3 Limitations

The lab set-up described in the preceding sections has worked quite well.
In this section, however, we will describe the limitations and problems
we have experienced so that further improvements can be made.

4.2.3.1 Monitoring at the End Node

As explained in Section 4.2.2, the recording and monitoring of the video
traffic is done by Wireshark at the end user node. As Wireshark can be
quite resource expensive, a possible scenario is therfore that Wireshark
might interfere with the measurements, thus causing the generation of
faulty data. The best solution would be to have an intermediate node
by which all video traffic is sent for post processing. Due to the time
limitations of this thesis this has not been done. However, we believe that
this scenario is not applicable for our measurements as we only perform
measurements on one video stream at the time.

4.2.3.2 Random Packet Loss

In Section 4.2.1.3, we described that the Click router drops incoming TCP
packets with a certain probability. A question to be raised is how realis-
tic this scenario is, and as future work of the thesis one could consider
emulating a more realistic packet loss scenario (bursty packet loss, etc.).
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4.2.3.3 Wireshark Problems

We experienced several problems with Wireshark when starting the mea-
surements. The problems started while monitoring traffic from tv2sumo.no;
there were periods with no video traffic recorded, although the video was
playing continuously in the background (silent periods up to 60s were
observed). Alternatives to Wireshark were therefore investigated: among
them Capsa, Fiddler and dumpcap. These alternatives did not provide
any better results as we still saw parts of the video traffic missing. We
also tried performing measurements on other end clients than the one
specified in Section 4.2.1.1, but with no luck.

However, when performing measurements on the Tv2 Regular live
sendings on a video player stripped for everything but the player (this
player can be found on cap.item.ntnu.no) we did not see the same large
fractions of missing video traffic. So we decided to perform the mea-
surements on the live sendings at the cost of not being able to perform
repeated measurements on the same video sequence. The same prob-
lems were experienced while doing measurements on Comoyo’s player:
fractions of video traffic were missing in the capture file. A semi-solution
to this was found by doing jumps in the video to a random place, this
seemed to “wake” Wireshark up again.

Due to the explained problems the measurements have taken much
more time than necessary.

4.3 Planning Scenarios

In Section 4.1 we defined the objectives for performing measurements on
TV2 Sumo’s and Comoyo’s Silverlight players. However, before starting
the measurements we need to decide upon exactly how this is to be done.
The questions to be answered include:

1. What video content are we going to perform the measurements on?

2. Which packet loss ratio should we use, and should there be any
bandwidth limitation?

3. For how long time should we measure and how many measure-
ment runs are needed?

4. How much data will have to be processed?
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These questions are addressed in the next subsections.

4.3.1 What Will be Measured?

Although the 2s video segments are encoded at the same QL they vary
in size. In the next chapter a graphical visualization of this is shown.
Performing repeated measurements on the same video sequence could
therefore be beneficial, as we would not need to take these variations into
account in the analysis phase. However, this has proven to be difficult to
do in our case for two reasons:

1. We are considering two different service providers (Tv2 Sumo and
Comoyo).

2. Problems with Wireshark.

The two different service providers offer different video content; there-
fore, performing measurements on the same video sequence is not pos-
sible. We have also repeatedly experienced problems with Wireshark,
as described in Section 4.2.3.3. This has caused the measurements per-
formed for Tv2 Sumo to be performed on their live sendings “Tv2 Reg-
ular” from the player on cap.item.ntnu.no. Live sendings means differ-
ent content for each measurement. The problems with Wireshark were
also experienced when performing measurements on Comoyo’s player.
A way to cope with this problem was found by jumping to a random
time in the video, this seemed to wake the Wireshark process to mea-
sure the incoming traffic. Jumping in the video to a random time, how-
ever, makes it impossible to perform repeated measurements on the same
video sequence.

After these considerations, we to perform measurements on Tv2 Sumo’s
live sending, which offers the following quality levels: {0.25, 0.75, 1.5, 2.5,
3.5, 5.0} Mbps (found in the manifest file in the Wireshark capture). “Varg
Veum - I mørket er alle ulver grå” is the movie chosen for the measure-
ments performed on Comoyo’s player. It was chosen because its highest
QL were the one closest to the highest QL of Tv2’s live sending. The of-
fered bitrates of the Comoyo movie are {0.097, 0.197, 0.295, 0.493, 0.790,
1.177, 1.578, 2.178, 3.959, 5.934} Mbps.
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PL ratio Sumo Comoyo
2% No QL reduction No QL reduction
4% No QL reduction QL reduction
5% QL reduction QL reduction
7% QL reduction QL reduction

Table 4.1: Test runs.

4.3.2 Packet Loss Ratio and Bandwidth Limitation

As we are interested in observing the video player’s reaction to packet
loss, we need to find under which circumstances the player will trigger a
QL degradation due to packet loss. For this reason, we have, performed
some test runs with different configurations of the Click Router (which is,
as explained in Section 4.2.1, the entity dropping incoming packets with a
certain probability). The packet loss in the test runs was first introduced
after the player has already been running for a while, so the player is
already running at the highest QL and we assume the player to be in a
steady state (more on this in Section 5.2). Table 4.1 show the results for
the different test runs.

From Table 4.1 we can see that when 2% packet loss is introduced nei-
ther Sumo nor the Comoyo player react. With 4% packet loss Sumo is able
to keep the highest QL, while Comoyo’s player reduce the requested QL.
On 5% and 7% packet loss QL reduction is triggered in both players. It
should be noted that these testruns were run only to get an indication for
which packet loss ratio a reaction from the two players was triggered. It
was thereby decided to continue the measurements with a packet loss ra-
tio of 5% and 7% in addition to performing measurements with no packet
loss to get an impression of how it “should be”.

As explained in Section 4.2.1.2, a bandwidth limit can be set on the
Cisco router through the defined policy maps. We have chosen to per-
form the measurements on the 10 Mbps profile to get a bit more realistic
testing scenario compared to no limit. A 10 Mbps bandwidth limitation
will not cause any network congestion since the highest QL offered in the
video content to be measured is 5.934 Mbps, which is good as our focus
is on the effects of packet loss, not congestion.
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4.3.3 Measurement Length, Number of Runs and Dataset
Size

We will perform measurement runs of 10 minutes, as this allows us to
perform the measurements in a reasonable amount of time and long enough
to say something about how the two players react to packet loss over
time.

To perform the measurements in a reasonable amount of time it was
decided to restrict the repeated number of measurement runs to 5. As we
are going to perform measurements for three scenarios (no packet loss,
5% loss and 7% loss) for two different players this will result in 2 (play-
ers) x 3 (scenarios) x 5 (runs) x 10 (minutes) = 300 minutes of video mea-
surements. To give an indication for the amount of data this generates,
the size of the Wireshark capture file from one 10 minute measurement
period is roughly 230 000 KB. One .csv file, containing only the video
trace, consists of about 2-300000 lines of data. From this data we expect
be able to answer the questions raised in Section 4.1.

4.4 Performing Measurements

The measurements for the two case studies (Tv2 Sumo and Comoyo)
which includes 3 scenarios (no packet loss, 5- and 7% packet loss) and
5 repetitions are all performed the same way:

1. Time = X: Video playback starts.

2. Time = 0s: After 1-2 minutes of video playback the Wireshark cap-
ture is started, to be sure that the playback buffer is filled up at that
point.

3. Time = 30s: Click starts to drop incoming TCP packets.

4. Time = 600s: End of Wireshark capture.

Step 3 is ignored if it is a no packet loss scenario. It should be noted
that the Click router is started manually, so one can expect small varia-
tions for the start-up time. Click is started through a shell script called
mystart.sh, Figure 4.3 on the following page shows the Click working
environment.
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Figure 4.3: A screenshot showing the Click router in operation during
one of the test-runs.
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4.5 Processing and Presenting Data

After having performed the above described measurements we end up
with 2 cases x 3 scenarios x 5 repetitions = 30 *.csv files containing roughly
2-300000 lines of packet information, each. We extract the data of inter-
est in a Java program (the program can be found attached to the report)
which takes a video trace file as input. Figure 4.4 shows a trace file sam-
ple from one of the measurement runs of Tv2 Sumo.

Figure 4.4: Sample from a video trace file.

When the data of interest has been extracted we write the results to
.txt files. Mathematica has then been used for further processing and
presentation of the results. The overall procedure from reading in the
video trace file to data presentation is shown in Figure 4.5.

Figure 4.5: Processing workflow.

4.5.1 Extracting Data

For the Java program to extract the data of interest we need to know how
the information within the trace file is structured. An overview of the
content in the trace files is given in Section 4.5.1.1 and in Section 4.5.1.2 we
briefly describe how the data processing and the testing of the program
has been performed.
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4.5.1.1 Data Structure

What we see in the trace file is basically a reflection of the Microsoft’s
Smooth Streaming client-server communication protocol, described in
Section 2.2.4.2. What happens is that the client sends a HTTP GET re-
quest to the server; which responds by sending the requested segment.
The server sends a HTTP 200 OK message to the client when the last
packet within the segment has been sent.

In the trace files we can see the GET requests, the 200 OK messages
and the TCP packets in between. We also observe from the trace files
that the Silverlight clients maintain two TCP connections with the server:
one for audio and one for video. The two connections have different
source port numbers, and it has been observed that the player switches
between the two connections at various points in time. This behavior was
also noticed in another study [1] where the authors had a theory that this
behavior could keep the server from falling back to slow start as neither
of the connections would stay idle for a long time.

The content is transferred using TCP, and packets carrying data can
be identified in the trace file as they are marked in the info-field as “[TCP
segment of a reassembled PDU]”. It is possible to distinguish between
audio and video content by combining port number information from
the video/audio GET request and from the transmitted packets. Retrans-
mitted packets can be identified in the trace from the info-field by looking
for “[TCP Retransmission]” and “[TCP Fast Retransmission]”.

In addition to this we have noticed that the GET requests are pipelined:
a new video segment is only requested after the previous one has been
fully received.

Differences between Comoyo and Tv2 Sumo

The address which the clients use to retrieve video and audio seg-
ments from is slightly different in Comoyo and Tv2 Sumo. For handling
both players we have made some modifications of the processing pro-
gram.

4.5.1.2 Processing and Testing

Processing

For each trace file (for each measurement scenario) our processing
program outputs about 10 files containing different information on the
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video traffic characteristics. The data is combined in different ways, in
this section we will not describe all details of the data extraction but
rather focus on what we look at as the “basic building blocks”.

Basic Building Blocks

As will become clear in the in next chapter we have mainly focused
on the extraction of the following data:

• Requested quality level.

• Time for video GET request.

• Number of TCP packets within a video segment.

• Segment transmission time (time from the GET request to the 200
OK).

From the above metrics many combinations can be made. However,
the requested quality level is probably the most important metric to ex-
tract as we in this thesis are focusing on quality transitions in relation
to the achieved bitrate (quality level), which are both derived from the
requested quality level. Listing 4.1 show how we process the trace file
to extract the requested quality level and the corresponding time for the
video GET request.

for(int i =0; i< inputFile.size(); i++){

String [] fields = inputFile.get(i).split(",");

if(fields[6].contains("video=")){

timeGET.add(fields[1].substring(1, fields[1].

length()-2));

requestedQualityLevel.add(findQualityLevel(fields

[6]));

}

}

Listing 4.1: Extracting the requested quality level and the corresponding
time for the GET request.

The inputFile is the video trace file generated by Wireshark. This is
read line by line. If fields[6], which is the info-field in the trace file, con-
tains the string “=video” we know that this entry is a video GET request.
So we save the time for the GET request in one list and requested quality
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level in another list. Recall from Section 2.2.4.2 that GET requests are on
this format:

GET /live/324298.isml/QualityLevels(250000)/Fragments(video=16151840000000)
HTTP/1.1

The method findQualityLevel(fields[6]) extracts the quality level from
a string similar to the one above.

Finding the number of packets within a video segment and finding
the segment transmission time is a bit more complicated. In order to
obtain these values we first find the time of two successive video GET
requests, so as to get a subset (the data between the time of the two GET
requests) of the input video trace file. Inside this subset we extract the
200 OK message belonging to the video GET request (by checking the
port number, we avoid the audio 200 OK). By finding the 200 OK we
now know the segment transmission time, and to assess the number of
packets carrying video data within a segment we just count the packets
within this time flagged with [TCP segment of a reassembled PDU] for
the same port number as the video GET request. For more details we
refer the reader to the attached code.

Output

As mentioned many files are created by this program. Many of them
are formatted such that not much more processing is required. This typ-
ically means long lists of data which are easily read and processed by
Mathematica.

Testing

We have not developed a own testing framework for this program;
however, after every source code modification (the extraction of some
new data) we have been taking several samples of the result and checking
whether it corresponds with what we can see from the original trace file.

4.5.2 Mathematica

We have utilized Mathematica for drawing graphs for many of the cal-
culations shown in the result. Mathematica takes the files created by the
Java program as input. In Appendix D one of the modules made for plot-
ting graphs is shown in order to give the reader an impression on how
we have utilized Mathematica.



Chapter 5
Results

For both Tv2 Sumo and Comoyo we have performed measurements on
three scenarios:

1. No packet loss

2. 5% packet loss

3. 7% packet loss

The measurements are performed in order to answer the objectives
and goals described in Section 4.1. In this chapter the results from the
measurements are presented.

5.1 Methods, Definitions and Assumptions

Packet payload:

Each data packet carries about 1500 bytes of information; this includes
approximately 40 bytes of overhead. When performing calculations in-
cluding packet size we therefore estimate the payload of each packet to
be 1460 bytes.

Active and silent period:

Video segments are typically requested once every 2 seconds when the
player is in its steady state. The time between two successive video GET
requests can be divided into an “active” and a “silent” period where the

53
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active period is during the segment transmission and the silent period is
when no video is being transmitted, see Figure 5.1.

Figure 5.1: The time between two successive video GET requests can be
divided into an active and a silent period.

Segment goodput:

The segment goodput is derived by summing the payload of all TCP
packets within a video segment divided by the transfer time (the active
period).

Average goodput:

The average goodput refers to the moving average of the 2s segment
goodput measurements. This metric takes into account the whole inter-
val between two video requests in contrast to the segment goodput which
only takes the active period into account. Assume that a video GET re-
quest is sent at time ti and that the total number of received TCP packets
containing video content at time ti is given by the variable numTCP (ti),
then the moving average (A(ti)) of the segment goodput at time ti is:

A(ti) =
payload

ti − t0
∗

i∑
i=0

numTCP (ti) (5.1)
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Buffer usage estimation:
The buffer usage is estimated using the video GET requests’ timestamps
in addition to the fact that between two video GET requests 2 seconds of
video is received. Suppose that two successive video GET requests are
sent at times ti−1 and ti. Their time difference is what goes out of the
playback buffer. The playback buffer’s state (in seconds) is estimated as
shown in equation (5.2) and (5.3).

B(ti) = B(ti−1) + input− output (5.2)

B(ti) = B(ti−1) + 2s− (ti − ti−1) (5.3)

This method will work because video requests are pipelined: a new
video segment is only requested when the previous one is fully received.
However, as we do not know B(t0), which is in our case the buffer size
when the buffer is full, we can only be certain about the buffer usage.
The buffer usage would be the difference between B(t0) and B(ti). In the
following sections we have used B(t0) = 10s, just to have some reference
value.

5.2 No Packet Loss

In this section we will provide an overview of some of the characteris-
tics of the two players (Tv2 Sumo and Comoyo) when no packet loss is
introduced in the network. This is of importance for the understanding
of how the players work when they are not affected by the randomized
packet dropping entity. We start by looking at Tv2 Sumo in Section 5.2.1,
thereby we continue with Comoyo in Section 5.2.2.

5.2.1 Tv2 Sumo

Available quality levels: {0.25, 0.75, 1.5, 2.5, 3.5, 5.0} Mbps.
Video: Tv2 Regular, live.

To get an overview of what is going on in both the video player and
in the network we have plotted the requested QL, segment goodput and
average goodput in Figure 5.2 on the following page. The figure shows
that the requested QL is stable at the highest level (5 Mbps). This was
expected as our bandwidth limitation is 10 Mbps, so we should be able
to stream video at a QL of 5 Mbps. The segment goodput varies quite a
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Figure 5.2: A plot showing the segment goodput, requested quality level
and average goodput for one run of Tv2 Sumo’s no packet loss scenario.
It should be noted that the y-axis is logarithmic.

bit, but most segments lies around 25 Mbps. This implies that the seg-
ments are transferred quite fast with a short active period and a longer
silent period. The red line is the moving average of the segment goodput,
defined in Section 5.1. As the requested video segments are all from the
5 Mbps QL we would expect that the average goodput to be more or less
stable around 5 Mbps, which we can observe in Figure 5.2. A reason for
the slight variations in the average goodput (the red line in Figure 5.2)
could be variations in the number of packets in a 2s video segment. With
a 2s video segment encoded at 5 Mbps, assuming a packet payload of
1460 bytes, one can expect the number of packets in the segment to be
around 5000000bps∗2s

1460∗8bit ≈ 856. Figure 5.3 on the next page shows that this
is the case for our measurements, although we have observed segment
sizes spanning from 700 to over 1000 packets within a 2s segment.

The Wireshark capture was started after having streamed the video
for 1-2 minutes, so we assume the player to be in a steady state. With
steady state we mean that video segments are requested at about the
same rate as the video playback rate, which implies that the playback
buffer is stable and filled up. In Figure 5.4 on the facing page the time be-
tween GET-requests is plotted, showing that, on average, a new 2s video
segment is requested every ≈ 2 seconds. However, from the plot we also
observe a special pattern: the time between subsequent GET requests is
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Figure 5.3: Number of packets within a 2s video segments encoded at
5 Mbps. The different colors are results from the various measurement
runs.

not always 2 seconds. The variations we see in the figure seem to equal-
ize each other as the average over the whole period is calculated to be
≈ 1.99 seconds. The same pattern is seen for all the measurement runs;
see Table 5.1.

Figure 5.4: Plot illustrating the interarrival time for the various video
GET requests. Tv2 Sumo, no loss.
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Mean Time Between GET request Standard Deviation
min 1.9932 0.4870
max 2.0057 0.5060
avg 1.9994 -

Table 5.1: GET requests’ interarrival time for the various measurement
runs.
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5.2.2 Comoyo

Available quality levels: {0.097, 0.197, 0.295, 0.493, 0.790, 1.177, 1.578,
2.178, 3.959, 5.934} Mbps.
Video: Varg Veum: I Mørket er alle ulver grå.

In this scenario we have observed that Comoyo throughout the var-
ious sessions plays video at the highest QL, which is 5.934Mbps. This
was expected as our bandwidth limitation (still) is 10Mbps, meaning that
streaming a video encoded at 5.934Mbps should be no problem. In Fig-
ure 5.5 we demonstrate this for one of the measurement runs.

Figure 5.5: A plot showing segment goodput in the active period, average
goodput and requested QL. Note the logarithmic y-axis. Comoyo, no
packet loss.

To also get familiar with the content characteristics of Comoyo we
have made a histogram showing the distribution of the various segment
sizes (in terms of number of packets), shown in Figure 5.6 on the follow-
ing page. We would expect the size to be 5934000bps∗2s

1460byte∗8 ≈ 1016 packets,
which corresponds well with what we observe from the figure.

Also in this scenario we started the Wireshark capture 1-2 minutes
after having started the video playback. To check whether the player is
in its steady state we have calculated the interarrival time for the various
video GET requests. In Figure 5.7 on the next page we have plotted the
results from one of the runs showing that the player sends a new video



60 CHAPTER 5. RESULTS

Figure 5.6: A histogram plot showing the number of packets registered
within a video segment (at the highest QL) for each of the five runs.

GET every ≈ 2s, implying that the player is in steady state. In contrast
to Tv2 Sumo, we do not see the special pattern observed in Figure 5.4 on
page 57; the player simply requests a new segment every ≈2 seconds. By
looking at the relatively low standard deviation in Table 5.2 we see that
this is the case for all runs.

Figure 5.7: Time between video GET requests. Comoyo, no packet loss.
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Mean Time Between GET request Standard Deviation
min 1.99991 0.0293
max 2.00021 0.0326
avg 2.00001 -

Table 5.2: Video GET requests’ interarrival time for the various measure-
ment runs.

5.3 Player’s Reaction to the Introduced Packet
Loss

In this section we look at the player’s overall reaction to packet loss from
the time when packet loss was introduced to the end of the Wireshark
capture, see Figure 5.8.

Figure 5.8: The red line denotes the time period which we are focusing
on in this section.

The packet loss is, as explained in Section 4.2.1.3, introduced by the
Click Modular router which looks at incoming TCP packets and drops
them with a certain probability. In the proceding sections we look at the
player’s reaction at the 5- and 7% packet loss scenario, for both Tv2 Sumo
and Comoyo. More specifically, we will focus on the quality metrics de-
cribed and argued for in Section 3.5: quality transitions and the requested
bitrate (quality level).

5.3.1 Tv2 Sumo

Available quality levels: {0.25, 0.75, 1.5, 2.5, 3.5, 5.0} Mbps.
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5.3.1.1 5% Packet Loss

The player has reacted differently in all the different measurment runs.
This was to be expected, as the entity dropping packets (Click) is a ran-
domized process thus causing different behaviour at the network layer
for each run. Figure 5.9 give an overview of what happens in both the
network and in the player for one of the measurment runs.

Figure 5.9: Plot illustrating the requested QL, the segment goodput in the
active period and average goodput for Tv2 Sumo in the 5% packet loss
scenario. Please note that the y-axis is logarithmic.

From the figure we can see that the player switches between different
quality levels quite frequently (the green marks represent the requested
QL). The player does not seem to stabilize at any level as we observe
quality transitions throughout the session. What and for what reason
quality transitions are triggered is part of the propietary rate adapta-
tion logic inside the player, as described in Section 2.2.4.2. However, a
natural apporoach for making such decisions is for the player to per-
form some available bandwidth estimation based on, for instance, the
observed goodput. We have implemented and plotted the moving av-
erage (see the red line) of the various 2s video segments’ goodput (the
moving average technique is described in Section 5.1). The moving aver-
age can be regarded as an estimation of the available bandwidth as seen
from the video player. For instance, in Figure 5.9, we see that when the
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player for the first time decide to request video segments at a lower QL
(at time = 64.47s) we can also see that the moving average (the red line)
has started to go down. However, from the figure it is also clear that
the video player do not use the moving average of the video segments’s
goodput for deciding whether to change QL as the player adjusts the re-
quested QL up and down while the red line is quite steady (although
going down). As the moving average takes the whole time period into
account, short term changes in segment goodput will not be reflected as
much as if a shorter averaging period were used. So if we were to guess
on how the bandwidth estimation is done we would guess that a “sliding
window” approach is used, taking the last X number of samples into ac-
count to better reflect what is currently happening, now, in the network.
Implementing such a sliding window could be interesting, but is outside
of the scope of this thesis. We will focus more on what we can observe.

Number of QL
transitions

Min 32
Max 36
Avg 34

Table 5.3: This table consists of max, min and the average number of
quality transitions for the five different runs.

Number of QL
transitions

QL transition-
s/minute

Avg. requested
(QL) [Mbps]

32 3.37 3.08
36 3.81 3.26

Table 5.4: Table shows the number of QL transitions per minute and the
average requested QL for the min and max values of the number of qual-
ity transition in a run for Tv2 Sumo 7% packet loss scenario.

Table 5.3 shows the that there is a high number of quality transistions
for the different runs. In Table 5.4 the min and max values from Table 5.3
are connected to the average requested bitrate (QL) and the number of
quality transitions per minute for the respective runs. From this we ob-
serve that the run with the lowest number of quality transitions (32) also
has a lower average QL than the run with the highest number of quality
transisitions. It could seem that the player strives to achieve the highest
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QL at the cost of more quality transistions, as the player does not stabi-
lize. Recall from Section 3.5 that this is could have a negative impact on
the end user’s QoE.

5.3.1.2 7% Packet Loss

Figure 5.10: Plot illustrating the requested QL, the segment goodput in
the active period and average goodput for Tv2 Sumo in the 7% packet
loss scenario. Note the logarithmic y-axis.

0% loss
mean
good-
put
[Mbps]

0% loss
std.
dev.

5% loss
mean
good-
put
[Mbps]

5% loss
std.
dev.

7% loss
mean
good-
put
[Mbps]

7% loss
std.
dev.

min 22.78 8.45 6.64 5.68 3.66 5.2
max 27.65 7.95 7.74 6.68 4.95 7.84
avg 25.26 - 7.22 - 4.23 -

Table 5.5: Mean goodput and the standard deviation for all scenarios.

Figure 5.10 shows one of the measurement runs for this scenario. The
more packet loss that is introduced to the system, the longer time it will
take to tranfer a certain amount of data. With a higher packet loss ratio
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we will experience lower throughput and goodput, as we can see from
Table 5.5. The average goodput (in the active period) from the 0% packet
loss scenario is ≈ 25 Mbps, while it is ≈ 7 Mbps and ≈ 4 Mbps for the 5%
and 7% loss scenarios, respectively. The introduced packet loss clearly
impacts the system. In the previous section (in the 5% scenario) we saw
that the average achieved QL was around 3 Mbps, which is much lower
than the average 7 Mbps goodput. A reason for this could be the large
variations in goodput (described in Table 5.5 by the high standard de-
viation), making it hard to estimate the available bandwidth. In the 7%
packet loss scenario we therefore expect the achieved average QL to be
lower than the average of the mean goodput (≈ 4Mbps) and lower than
what was achieved in the 5% packet loss scenario. In terms of the num-
ber of quality transitions we have observed large variations in how the
player has reacted; see Table 5.6.

Number of QL
transitions

Min 8
Max 25
Avg 15.8

Table 5.6: This table consists of max, min and the average number of
quality transistion for the five different runs.

In Table 5.7 we can see from the runs with the min and max values
of the number of quality transitions that the average requested QL is
1.52 and 1.23 Mbps, respectively. The requested QL has, as expected,
decreased compared to the 5% packet loss scenario.

Number of QL
transitions

QL transition-
s/minute

Avg. requested
(QL) [Mbps]

8 0.85 1.52
25 2.64 1.23

Table 5.7: Shows the number of QL transitions per minute and the aver-
age requested QL for the min and max values of the number of quality
transitions in a run for Tv2 Sumo’s 7% packet loss scenario.
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5.3.2 Comoyo

Available quality levels: {0.097, 0.197, 0.295, 0.493, 0.790, 1.177, 1.578,
2.178, 3.959, 5.934} Mbps

5.3.2.1 5% Packet Loss

Figure 5.11: Plot illustrating the requested QL, the segment goodput in
the active period and average goodput for Comoyo in the 5% packet loss
scenario. Please note that the y-axis is logarithmic.

In this scenario the Comoyo player reacted differently from what we
saw from Sumo in the preceeding sections. After the introduction of
packet loss the player degrades the requested QL and stays at that level.
Figure 5.11 demonstrates this behavior for one of the measurement runs.
From the figure we can see that the player waits for some time after the
introduction of packet loss to degrade the requested QL. The quality is
degraded at time = 52.7s, 22.7s after the Click router started dropping
incoming packets with 5% probability. In the beginning of the capture,
before dropping packets, the red line (which shows the moving average
of segment goodput, see Section 5.1) is as expected at the same level as
the highest QL (5.934 Mbps). The introduced packet loss affects the aver-
age segment goodput (see Table 5.10) and from the red line in Figure 5.11
we can see that the segment goodput is decreasing. In the figure we see
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that the quality degradation process is performed stepwise: the player
goes from 5.934 Mbps to 3.959 Mbps before stabilizing at 2.178 Mbps. Ac-
cording to a study [24] (descibed in Section 3.3.1.2), end-users are favored
with the insertion of intermediate quality levels before requesting the tar-
get QL, a behavior observed for all runs. Table 5.8 gives an overview for
the various runs in terms of number of quality transitions. All runs have
few quality transitions. In Table 5.9 the min and max values from Ta-
ble 5.8 are shown alongside to their average requested QL, which shows
an average of about 2 Mbps.

Number of QL
transitions

Min 2
Max 4
Avg 2.8

Table 5.8: This table consists of max, min and the average number of
quality transistions for the five different runs in Comoyo’s 5% packet loss
scenario.

Number of QL
transitions

QL transition-
s/minute

Avg. requested
(QL) [Mbps]

2 0.21 2.15
4 0.42 2.12

Table 5.9: Table shows the number of QL transitions per minute and the
average requested QL for the min and max values of the number of qual-
ity transitions in a run for Comoyo’s 5% packet loss scenario.

0% loss
mean
good-
put
[Mbps]

0% loss
std.
dev.

5% loss
mean
good-
put
[Mbps]

5% loss
std.
dev.

7% loss
mean
good-
put
[Mbps]

7% loss
std.
dev.

min 15.01 4.23 3.71 1.25 2.46 1.20
max 16.08 4.49 4.01 1.51 2.67 1.51
avg 15.58 - 3.86 - 2.53 -

Table 5.10: Mean goodput and the standard deviation for all Comoyo
scenarios.
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5.3.2.2 7% Packet Loss

In the 7% packet loss scenario Comoyo’s player reacts differently from
the 5% scenario. In this scenario we observe more quality transistions
and a lower requested bitrate, Figure 5.12 demonstrates this. The lower
requested bitrate was expected as the introduction of packet loss causes
the mean segment goodput to decrease (see Table 5.10).

Figure 5.12: Plot illustrating the requested QL, the segment goodput in
the active period and average goodput for Comoyo in the 7% packet loss
scenario. Please note that the y-axis is logarithmic.

The average number of quality transitions for the five measurement
runs is found to be 20, see Table 5.11. This is more than what we observed
in Tv2 Sumo’s case, where the average number of observed quality tran-
sistions for the 7% packet loss scenario was found to be 15.8. It was a bit
suprising to see all these quality transitions in Comoyo’s player, as we in
the 5% packet loss scenario observed a smooth and stable player with-
out many quality transitions. It is also hard to compare the two players
as there are many factors that potentially influence the rate adaptation
logic inside the players. This will be discussed in more detail in the next
chapter.
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Number of QL
transitions

Min 15
Max 26
Avg 20

Table 5.11: This table consists of max, min and the average number of
quality transistions for the five different runs.

5.4 Time to the First Quality Level Degradation

One of the objectives in Section 4.1 was to find how long time it takes for
the player to react to packet loss. In other words, we are interested in the
time period shown in Figure 5.13. For all runs, packet loss is introduced
30 seconds after the Wireshark capture is started.

Figure 5.13: The red line denotes the time period which we are focusing
on in this section.

5.4.1 Tv2 Sumo

5.4.1.1 5% Packet Loss

Time For QL reduction [s] Reaction Time [s]
min 40.18 10.18
max 64.47 34.47
avg 50.71 20.17

Table 5.12: Min, max and average values of the player reaction time to
packet loss.
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Table 5.12 gives an overview of the five runs where the time for QL
reduction is the time in the capture for the QL reduction, while the reac-
tion time is the time difference from the start of the packet loss until the
first QL reduction. From the table we can observe that the reaction times
vary quite a lot, by looking at the time difference of the min and max ob-
servations (34.47s-10.18s = 24.29s), which is huge. To further investigate
if there is any connection between packet loss and the player reaction
time we need to look more closely at the video trace files from the time
when packet loss is introduced to the time when the QL degradation is
registered.

What happens in the time period between the start of the packet loss
and the time for the first QL degradation?

From Table 5.12 we see that the player’s reaction time (time from
packet loss start to QL degradation) varies quite a lot. As we are deal-
ing with a random process (the Click router) we could expect different
behavior for each run. To see if we can connect packet loss to the player’s
reaction time we look into the details of the various measurements. Ear-
lier we have mentioned that there probably is an available bandwidth
estimation algorithm helping the player to decide whether to request a
new QL or not. We also have a hypothesis that there could be some buffer
threshold triggering the player to reduce the QL. In this section we will
investigate this and see if there could be such a buffer threshold.

Figure 5.14: Plot illustrates the segment transmission time for all runs.
Each point in the plot is {time for GET request, segment transmission
time}; the last point denotes the last video segment transmitted before
QL degradation.

We know that the player will have to use its playback buffer if a 2s
video segment takes more than 2s to transfer. A video segment will nat-
urally take longer time to transfer when packets within it are dropped.
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When using TCP dropped packets are retransmitted, which itself intro-
duces some extra delay as one has to take into account the extra transmis-
sion time and the time it takes for TCP to notice that a packet actually is
lost and has to be resent. If the TCP version in use is a loss based one, we
should expect the congestion window to be reduced, resulting in a lower
throughput (see Section 2.3). A lower throughput means less information
transferred per time unit, which will result in a longer segment transmis-
sion time. In Figure 5.14 on the preceding page we have plotted the seg-
ment transmission time for each video segment after the introduction of
packet loss and before the QL degradation. A line is drawn between the
points to better see which ones belong to the various runs. Each point in
the figure is: {GET-request time, segment transfer time (time for 200 OK
- time for GET request}. The last point for each run is the last video seg-
ment requested before the QL degradation. Points which are above the
red horizontal line indicate that the buffer is utilized as they take more
than 2 seconds to transfer. From the figure, it appears that the higher
above this line the video segments in a run are, the shorter the time to QL
degradation is. The blue line is an example of this, where only two video
segments are requested before the quality is degraded and both segments
lie relatively high above the red line.

From the figure it could look like there is some buffer threshold which
triggers the quality degradation. To further investigate this we have esti-
mated the buffer usage, as described in Section 5.1. In Figure 5.15 on the
following page we have made a plot where each point show the buffer
state at the time for the GET request, where the last point shows the buffer
state for the time of requesting a video segment at a lower QL.

The red line in the figure is the mean value of the buffer size at the
time for QL degradation, which we have calculated to be 6.83s. A QL
degradation is triggered after using approximately 10s-6.83s = 3.17s of
the buffer. As seen from Figure 5.15 on the next page, all the various runs
lie around this value. So, if there is a buffer threshold triggering a QL
degradation, the rate adaptation logic will be directly influenced by the
segment transmission time. We therefore look at how packet loss affects
the segment transmission time. This is information which perhaps could
be of use for the player to make better rate adaptation decisions as it
could reflect underlying TCP mechanisms to a greater extent.

Packet Loss and Segment Transmission Time
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Figure 5.15: Plot illustrates the buffer fill level for the various runs of Tv2
Sumo 5% loss. Each point is the buffer level at the moment of a GET
request. Note that the value 10s is just a reference value.

What we do know is that at time = 30s a process is started which drops
incoming TCP packets with a certain probability. We do not know at what
time the respective packets are dropped; however, from the video trace
files we can find information whether a packet has been retransmitted.
This can be done by looking at the info-field in the video trace file and
look for packets flagged with “[TCP Retransmission]” or “[TCP Fast Re-
transmission]”. This gives us more information about what is going on
in the network as we can use these packets as indicators of packet loss.
Since the Click router drops packets with a certain probability we expect
the observed packet loss ratio (the number of retransmitted TCP video
packets divided by the total number of TCP video packets) to be equal to
the dropping probability.

Run # Observed packet loss ratio
1 0.0402
2 0.0397
3 0.0402
4 0.0410
5 0.0414

Table 5.13: Observed packet loss ratio after packet loss introduction (time
= 30s).

However, from Table 5.13 we can see that this is not the case. The
observed packet loss ratio is about 0.04 for all runs, we expected it to be
0.05 for this scenario. For all scenarios we see this pattern: the observed
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Scenario Mean observed
PL: Tv2 Sumo

Mean observed
PL: Comoyo

5% 0.0405 0.0456
7% 0.0536 0.0641

Table 5.14: Mean observed packet loss for all scenarios.

packet loss ratio differs from the expected one, see Table 5.14. The reason
for this is not known, and due to time limits we will not investigate it
further. However, if this is to be done, we would suggest looking into:

• Wireshark (as we have experienced some problems with it) to check
whether it really shows all packets which are restransmitted.

• The TCP protocol- are all retransmitted packets flagged as retrans-
mitted?

• The Click router configuration- could Click be missing out on some
packets?

• The Cisco router - bandwidth limitation, how does it impact packet
loss?

• The stochastic behavior of the packet dropping process, will the
observed loss ratio go towards the expected one for a longer mea-
surement period?

There are many possible reasons for this behavior; however, we will
continue our analysis using the information we have. Using “[TCP Re-
transmit]” and “[TCP Fast Retransmit]” as packet loss indicators. To visu-
alize how packet loss influences the segment transmission time we have
made a plot showing this; see Figure 5.16 on the following page. The
plot consists of data from all the five runs (for the 5% scenario) where the
segment transmission time is plotted together with the amount of lost
packets within the respective video segment.

We can see a tendency that the more packets that are lost, the longer
the transmission time is. However, we also observe that video segment
with about the same amount of packets lost can have very different trans-
mission times. Underlying TCP mechanisms can cause the throughput
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Figure 5.16: XY plot showing the segment transmission time and the
number of lost packets within the respective segment.

to vary, thus influencing the segment transmission time. This is proba-
bly the reason that we observe different transmission times for the same
amount of packet loss.

5.4.1.2 7% Packet Loss

In the 7% loss scenario we would expect the player to react faster than for
the 5% scenario, as more packets lost lead to lower goodput and longer
segment transmission times, thus reaching the buffer threshold faster. Ta-
ble 5.15 gives an indication that the player do react a bit faster than for
the 5% scenario. However, the difference is not big at all: the average re-
action time in the 5% scenario is 20.17 seconds, while in the 7% scenario
it is 17.75 seconds.

Time For QL reduction [s] Reaction Time [s]
min 36.27 6.27
max 59.54 29.54
avg 47.75 17.75

Table 5.15: Min, max and average values of the player reaction time to
packet loss in the 7% loss scenario.

Like in the 5% scenario, we have estimated the buffer usage to see
if we can see the same buffer threshold. Figure 5.17 on the next page,
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however, shows that this is not the case. The buffer threshold which we
thought we had found for the 5% scenario can not be seen in this fig-
ure. The mean buffer utilization is found to be ≈ 7.65s (10s - mean buffer
level). The mean buffer level at the time for QL degradation is shown
in Figure 5.17 as the red line (2.35s). However, as we can see from the
figure, the various runs all degrades the quality having utilized very dif-
ferent amounts of the buffer. So from this we cannot connect the player’s
reaction time to buffer utilization and segment transmission time. What
we can say about the player’s reaction time to the introduced packet loss
is just what we have observed and summarized in Table 5.15.

Figure 5.17: Plot illustrates the buffer fill level for the various runs for the
7% packet loss for Tv2 Sumo. Each point is the buffer level at the moment
of a GET request. Note that the value 10s is just a reference value.

5.4.2 Comoyo

5.4.2.1 5- and 7% Packet Loss

As the results for the 5- and 7% packet loss scenario in Comoyo’s case do
not differ much, we have merged them together in this section.

When looking at the time between the packet loss introduction and
the time for the first QL degradation we, had similar expectations as for
what we have seen in Tv2 Sumo: large variations in the player’s reaction
time. For the 5% packet loss scenario we do observe variations in reaction
time (see Table 5.16), although not as big ones as observed for Tv2 Sumo.
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Time For QL reduction [s] Reaction Time [s]
min 43.91 13.91
max 52.70 22.70
avg 47.83 17.83

Table 5.16: Min, max and average values of the player reaction time to
packet loss. Comoyo, 5% packet loss.

As seen from Table 5.17 the results are not very different for the 7%
packet loss scenario.

Time For QL reduction [s] Reaction Time [s]
min 49.02 19.02
max 56.15 26.15
avg 52.37 22.37

Table 5.17: Min, max and average values of the player reaction time to
packet loss. Comoyo, 7% packet loss.

We also estimated the buffer utilization to see if there was any buffer
threshold triggering the QL degradation. The pattern we saw in Sec-
tion 5.4.1.1 was, however, not found in the two packet loss scenarios
for Comoyo’s player. From the measurements we performed it does not
seem that the QL degradation is being triggered by a buffer threshold.
For the interested reader we have added two figures showing the buffer
utilization for Comoyo’s 5- and 7% packet loss scenario in Appendix C.
What we can say about the player’s reaction time to packet loss is what
is shown in Table 5.16 and Table 5.17. The average player reaction time is
≈ 20s.



Chapter 6
Discussion and Evaluation

OTT service providers are, as previously described, completely depen-
dent on the underlying best-effort network. In order provide the best
service possible there are many important aspects to consider. However,
the focus of this thesis has been on how packet loss in the network (QoS)
affects the video player and thus the end user’s QoE. The players we
have performed measurements on have during the various measurement
runs shown that they are indeed affected adversly by packet loss.

The packet loss which is introduced by a Click Modular Router (see
Section 4.2.1.3) has various implications on the network performance and
thus on the video player’s performance. Table 6.1 shows the mean seg-
ment goodput for all the different scenarios.

Tv2 Sumo mean goodput[Mbps] Comoyo mean goodput[Mbps]
0% loss 25.26 15.58
5% loss 7.22 3.86
7% loss 4.23 2.53

Table 6.1: Mean goodput for all scenarios for Comoyo and Tv2 Sumo.

First, we want to stress that Table 6.1 shows the mean segment good-
put from the active period (see definition in Section 5.1); this is why we in
the 0% packet loss scenario observe goodput values above the 10 Mbps
bandwidth limitation. For the 0% loss scenario we would expect the
mean segment goodput to be similar for Comoyo and Tv2 Sumo. As
seen from the table, this is not the case. A possible explanation for the
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observed differences is the underlying TCP protocol, which can cause dif-
ferences in throughput. We can observe from the differences in goodput
on the various loss scenarios that packet loss clearly has an impact on the
network performance. Now, the question now is how this influences the
players’ performance, which is interesting as it has been shown that ap-
plication performance metrics do impact end users’ QoE. This brings us
back to the main objectives for performing the conducted measurements.
In Section 4.1 we defined two main objectives which we will discuss in
Section 6.1 and Section 6.2.

6.1 The Player’s Reaction to Packet Loss

Objective one: Will the player stabilize at some quality level, or will we
see many quality transitions throughout the session, after the introduc-
tion of packet loss?

In Section 5.3 we presented results for the “Player’s reaction to the
introduced packet loss” addressed the question posed in objective one.
In terms of quality transitions we have found that in all packet loss sce-
narios, expect for one (Comoyo, 5% loss), the player does not seem to
stabilize; Quality transitions were observed throughout the various ses-
sions. Quality transitions were most frequently observed in Tv2 Sumo’s
5% packet loss scenario. For the measurement run with the most qual-
ity transitions, we observed 3.81 QL transitions per minute, and at the
same time achieved a slightly higher bitrate than for the other runs. It
could seem that the player strives to achieve the highest QL at the cost of
more quality transitions. A player which always strives for the highest
QL, not taking the expense of eventual quality transitions into account,
could have a negative impact on the end users’ QoE (recall Section 3.5).
In Figure 5.9 on page 62 (from Tv2 Sumo, 5% loss) we saw examples of
many short-term quality changes which could potentially harm the QoE,
even if a higher bitrate is achieved. These short-term changes in quality
are observed at several points in the 10 minute long measurement period,
also close to the end. Such striving for the highest QL is a behavior also
found in the Netflix player [1].

Comoyo’s behavior in the 5% packet loss scenario seems to be more
conservative. From the results we see that the player performs a step-
wise quality degradation (as recommended in [24]) and stays at the tar-
get quality level throughout the various sessions, which in this case is
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2.178 Mbps. Could it be that the rate adaptation logic for this player
is different? Our results from the 7% packet loss scenario indicate that
this is not the case. The player’s behavior in the 7% scenario is not as
smooth; we have observed unstable sessions with many quality transis-
tions. Why do we see a different behavior in the 5% scenario? We do
not know; however, we have a theory that it may be caused by the con-
tent characteristics. By looking at the quality levels of the content we
have performed measurements on in Comoyo’s case ({0.097, 0.197, 0.295,
0.493, 0.790, 1.177, 1.578, 2.178, 3.959, 5.934} Mbps) we see that there is a
large gap between the 2.178 Mbps and 3.959 Mbps quality levels. It could
be that the player wants to upgrade the quality, but that the next quality
level is too far away from the player’s estimate of the current bandwidth.

Thus, from what we have observed it appears that neither player
takes the cost of quality transitions as it may harm end users’ QoE into
account in their rate adaptation logic. If they had so we would expect
the players to stabilize at some quality level, which we cannot see from
our results (except for the already commented Comoyo 5% loss scenario).
However, one can question how realistic our testing scenario is: random
packet loss over an extended time period. Does the players really need to
handle such a scenario? Regardless of the how realistic the scenario is, we
believe that the player should be able to handle the observed effects of it:
frequent quality transitions. It should not be difficult to implement some
logic into the player saying something along the lines of “if the player
has experienced X number of quality transitions in the last couple of min-
utes, then stabilize at some lower quality level.” The difficult part would
be answering questions like: how long time do one need to stream video
at a higher quality level for it to be worth the cost of having to degrade
the the quality? This is difficult to answer without performing subjective
tests. What we know from what has been done in this area is that users
are favored (higher QoE) with fewer quality transitions at the expense of
a higher bitrate. Evaluating the quality of adaptive video streams using
quality transitions as a quality metric in relation to bitrate is therefore
difficult as we do not know their exact relationship. We would like, how-
ever, to stress the importance of quality transitions as quality metric as it
do have an impact on the perceived quality, but might at the same time
be “forgotten” in the players’ strive for reaching the highest QL.
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6.2 The Player’s Reaction Time

Objective two: How much time will pass before the player triggers its
first quality transition?

In Section 5.4 we presented the results that address objective two. We
see that the time it takes, for the player to react to the introduced packet
loss by triggering a QL degradation varies significantly for all scenarios.
The measurement run with the fastest reaction time (from Tv2 Sumo, 7%
loss) used 6.27s before the player triggered a QL degradation, whereas
the reaction time of the run with the longest reaction time was observed
to be 34.47s (Tv2 Sumo, 5% loss). Comoyo’s results all lie in between
these values, and we observe variations in this player’s reaction time as
well.

We suspect the varying results to be consequence of the randomized
behavior of the packet dropping process. Due to its random behavior we
do not expose the players for the same amount of packet loss each time,
and we should therefore expect different behavior for each measurement
run. For this reason we performed further investigation on the players’
behavior in the time interval between the introduction of packet loss and
the time for the first QL degradation. We wanted to see if there was a
strong connection between packet loss and the player’s decision to de-
grade the quality. As packet loss affects a connection’s throughput thus
causing less bits to be transferred per time unit, we also know that the
transmission time of a 2s video segment would be longer. From this we
made a hypothesis that there could be a buffer threshold triggering the
player to degrade the requested QL. If a 2s video segment takes more
than 2s to transfer; the playback buffer will have to be utilized. We there-
fore investigated the 2s video segments’ transmission times within each
measurement run for the specified time interval.

Our results from Tv2 Sumo, in the 5% packet loss scenario, indicated
that there could be such a buffer threshold. Our calculations showed that
in all measurement runs for this scenario a QL degradation was triggered
after using approximately 3s of the playback buffer. In the investigation
process it was noted that some of the 2s video segements had very dif-
ferent transmission times. Furthermore, we wanted to check if this could
be related to the introduced packet loss. In Figure 5.16 on page 74 we
saw indications for such a connection where the trend says that the more
packets lost within a video segment, the longer the segment transmis-
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sion time will be. However, from this figure we can also observe large
variations where segments with approximately the same amount of lost
packets have very different transmssion times. This behaviour may be
caused by TCP mechanisms. So, if there is a buffer threshold, we might
have found some connections that link packet loss to segment transmis-
sion time, which in turn is essential for the buffer utilization and hence
what makes the player trigger a QL degradation.

However, this buffer threshold was only found for Tv2 Sumo’s 5%
packet loss scenario. In the other scenarios the variations of buffer the
utilization at the time of the first QL degradation are high and we don’t
see any indications that there is a buffer threshold.

To answer objective two: we cannot say more than that we have ob-
served player reaction times between approximately 6 and 35 seconds,
and that the players’ reaction time in all measurement runs vary a lot.
However, if we were to make a recommendation for the desired behavior
we would like to see more of the behavior of the Netflix player observed
in [1]. Netflix’ player has a large playback buffer which it utilizes under
fluctuating network conditions rather than degrading the quality. In this
way one can avoid unnecessary quality transitions under short-term net-
work fluctuations. This would be at the cost of a longer initial delay for
accumulating the large playback buffer. However, as mentioned previ-
ously in [22] it was found that users are generally willing to tolerate a
longer start-up delay for a better viewing experience - thus it is probably
worth the cost. To sum up: we would like to see the players utilize more
data from its buffer before degrading the quality, as this might reduce the
number of quality transitions under short-term network fluctuations.





Chapter 7
Conclusion

In this thesis we have followed the methodology described in Section
1.2. A literature study was first conducted where we reviewed state of
the art on QoS and QoE. The outcome of this study was the proposal of
several quality metrics applicable to adaptive video streaming, amongst
them: initial buffering time, mean duration of a rebuffering event, rebuffer-
ing frequency, quality transitions and bitrate. A higher bitrate will in most
cases lead to a higher degree of QoE, however, according to other re-
search users might prefer a stable video stream with few quality transi-
tions at the cost of an overall higher bitrate. Through measurements on
the players of Tv2 Sumo and Comoyo we wanted to see if this is taken
into consideration by today’s adaptive video streaming technologies.

The results discussed in Section 6.1 imply that, for our measurement
scenarios, neither player takes quality transitions into account in their
rate adaptation logic. For both players a relatively large number of qual-
ity transitions have been observed throughout the various sessions, im-
plying that they do not stabilize, but rather strive for a higher quality
level. If we were to give any recommendations to the OTT service providers
we would advise them to investigate the effects of quality transitions and
consider including a solution for handling potentially negative effects (in
terms of QoE) in the rate adaptation logic of the video player.
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7.1 Future Work

Much of the work of this thesis is based upon research that has found
that users prefer a stable video stream with few quality transitions at the
expense of an overall higher bitrate. Our focus has mainly been on the
relationship between quality transitions and the bitrate. However, as dis-
cussed in Section 6.1, we are not sure of the exact relationship between the
two quality metrics; we just know that keeping a low number of quality
transitions is desirable. Quantifying the relationship between the metrics
would further enhanced the thesis as we could possible have done a bet-
ter estimate the end users’ QoE. This could, for instance, be done through
subjective testing.

Performing the measurements on other technologies than Microsoft’s
Smooth Streaming would be interesting and give an even broader per-
spective on how today’s technologies on adaptive video streaming works.

An area we slightly touched upon in Section 5.4.1.1 was TCP’s in-
fluence on segment transmission times. Further investigation of this, in
order to see how the adaptive TCP works together (or against?) the adap-
tive video player, would be interesting.
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Appendix A
Wireshark

Wireshark is the world’s foremost network protocol analyzer, and is the
de facto standard across many educational institutions and industries
[36].

Figure A.1 shows a screenshot of a Wireshark capture. We have used
Wireshark to capture and analyse video traffic sent across the network
interface. This has been of great value to quantify a video player’s per-
formance.

Figure A.1: A screenshot of Wireshark while capturing video traffic.
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Appendix B
Click Configuration

Listing B.1: Drop incoming TCP packets with a certain probability.

b :: Counter;

c :: Counter;

d :: Counter;

b1 :: Counter;

c1 :: Counter;

d1 :: Counter;

// Shared IP input path and routing table

ip :: Strip(14)

-> CheckIPHeader(INTERFACES

129.241.200.119/255.255.255.0

129.241.197.105/255.255.255.248)

-> rt :: StaticIPLookup(

129.241.200.119/32 0,

129.241.200.255/32 0,

129.241.200.0/32 0,

129.241.197.105/32 0,

129.241.197.111/32 0,

129.241.197.104/32 0,

129.241.200.0/255.255.255.0 1,

129.241.197.104/255.255.255.248 2,

255.255.255.255/32 0.0.0.0 0,

0.0.0.0/32 0,

0.0.0.0/0.0.0.0 129.241.200.1 1);
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92 APPENDIX B. CLICK CONFIGURATION

// ARP responses are copied to each ARPQuerier and the

host.

arpt :: Tee(3);

// Egne queues

bv_ip_q1 :: ThreadSafeQueue(100);

bv_ip_q2 :: ThreadSafeQueue(100);

// Input and output paths for eth1

c_eth1 :: Classifier(12/0806 20/0001, 12/0806 20/0002,

12/0800, -);

out_eth1 :: Queue(100) -> to_Eth1 :: ToDevice(eth1);

arpQ_eth1 :: ARPQuerier(129.241.200.119, 00:19:b9

:13:61:45) -> out_eth1;

find_tcp_ack :: IPClassifier(ip proto 1, -);

find_data_eth2 :: IPClassifier(tcp, -);

FromDevice(eth1) -> c_eth1;

c_eth1[0] -> arpResp_eth1 :: ARPResponder(129.241.200.119

00:19:b9:13:61:45) -> out_eth1;

c_eth1[1] -> arpt;

c_eth1[2] -> ip;

c_eth1[3] -> Print("eth1 non-IP") -> Discard;

arpt[0] -> [1]arpQ_eth1;

// Forwarding path for eth1

rt[1] -> DropBroadcasts

-> b

-> find_tcp_ack

-> c

-> RandomSample(DROP 0)

-> d

-> bv_ip_q1

-> DelayUnqueue(0)

-> [0]arpQ_eth1;

find_tcp_ack[1] -> [0]arpQ_eth1;
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// Input and output paths for eth2

c_eth2 :: Classifier(12/0806 20/0001, 12/0806 20/0002,

12/0800, -);

out_eth2 :: Queue(100) -> to_Eth2 :: ToDevice(eth2);

arpQ_eth2 :: ARPQuerier(129.241.197.105, 00:04:76:8f:a9:e5

) -> out_eth2;

FromDevice(eth2) -> c_eth2;

c_eth2[0] -> arpResp_eth2 :: ARPResponder(129.241.197.105

00:04:76:8f:a9:e5) -> out_eth2;

c_eth2[1] -> arpt;

c_eth2[2] -> ip;

c_eth2[3] -> Print("eth2 non-IP") -> Discard;

arpt[1] -> [1]arpQ_eth2;

// Forwarding path for eth2

rt[2] -> DropBroadcasts

-> b1

-> find_data_eth2

-> c1

// *******************************************************
// ************** ENDRE TALLET HER

************************

-> RandomSample(DROP 0.07)

// *******************************************************
// *******************************************************

-> d1

-> bv_ip_q2

-> DelayUnqueue(0)

-> [0]arpQ_eth2;

find_data_eth2[1] -> [0]arpQ_eth2;

// Local delivery

toh :: ToHost;
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ping_ipc :: IPClassifier(icmp type echo, -);

arpt[2] -> toh;

rt[0] -> IPReassembler

-> ping_ipc;

ping_ipc[0] -> ICMPPingResponder -> [0]rt;

ping_ipc[1] -> EtherEncap(0x0800, 1:1:1:1:1:1,

2:2:2:2:2:2) -> toh;

s :: Script(

label begin_loop,

wait 10000ms,

print "Incoming packets (All/TCP/TCP after

drop): " $(b1.count) $(c1.count) $(d1.count

),

// write d1.reset,

// write b1.reset,

// write c1.reset,

goto begin_loop,

stop)



Appendix C
Comoyo’s Buffer Utilization

We have in this appendix included two figures demonstrating the buffer
usage up to the time for the first QL degradation in the 5- and 7% packet
loss scenario for Comoyo. The red line denotes the mean buffer level at
the time of QL degradation. For more details see Section 5.4.2.

Figure C.1: Plot illustrates the buffer usage for the various runs for the
5% packet loss for Comoyo. Each point is the buffer level at the moment
of a GET request. Note that the value 10s is just a reference value.
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96 APPENDIX C. COMOYO’S BUFFER UTILIZATION

Figure C.2: Plot illustrates the buffer usage for the various runs for the
7% packet loss for Comoyo. Each point is the buffer level at the moment
of a GET request. Note that the value 10s is just a reference value.



Appendix D
Mathematica

CreateGraphs[filePath_, qualityFileName_,

throughputFileName_,

accumFileName_, throughputPlotFileName_,

throughputOverviewPlotFileName_] :=

Module[{GETandQuality, GETandThroughput,

GETandAccumNumPacket,

avgTput, starttime, plots}, (

GETandQuality =

ReadList[filePath <> qualityFileName, {Number, Number

}];

GETandThroughput =

ReadList[filePath <> throughputFileName, {Number,

Number}];

GETandAccumNumPacket =

ReadList[filePath <> accumFileName, {Number, Number

}];

avgTput = {};

starttime = GETandAccumNumPacket[[1, 1]];

Do[avgTput =

Append[avgTput, {GETandAccumNumPacket[[i, 1]],

GETandAccumNumPacket[[i,

2]]*1460*8/

1000000/(GETandAccumNumPacket[[i + 1, 1]] -

starttime)}], {i, 1, Length[

GETandAccumNumPacket] - 1}];

plots = GraphicsArray[

ListPlot[GETandThroughput],
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98 APPENDIX D. MATHEMATICA

ListLogPlot[{GETandQuality, GETandThroughput,

avgTput},

PlotMarkers -> {{"+", Tiny}, {"*", Tiny}, {"-",

Tiny}},

PlotStyle -> {Green, Blue, Red}, Ticks -> Automatic

,

AxesLabel -> {"Seconds", "Mbps"}]];

Export[filePath <> "\\" <> throughputPlotFileName,

plots[[1]],

ImageSize -> 72*6];

Export[filePath <> "\\" <>

throughputOverviewPlotFileName,

plots[[2]], ImageSize -> 72*6];

plots

)];

plots = CreateGraphs[

"C:\\Users\\shuna\\Dropbox\\Master\\Mathematica\\The \

shit\\Sumo\\10MLimit\\No packet loss\\", "GET+QualityR2.

txt",

"GET+ThroughputR2.txt", "GET+accumNumPacketsR2.txt",

"troughput10MLimitNoPLR2.png",

"troughputOverview10MLimitNoPLR2.png"];

Listing D.1: Mathematica module for plotting graphs.
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