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Natural gas marketing has considerably evolved since the early 1990s, when a set of liberalizing rules were passed in both the United
States and the European Union that eliminated state-driven regulations in favor of open energy markets. These new rules changed
many things in the business of energetics, and therefore new research opportunities arose. Econometric studies about natural gas
emerged as an important area of study since natural gas may now be sold and traded in a number of stock markets, each one
responding to potentially different behavioral drives. In this work, we present a method to differentiate sets of time series based on
a regression model relating price, consumption, supply, and other factors. Our objective is to develop a method to classify different
areas, regions, or states into groups or classes that share similar regression parameters. Once obtained, these groups may be used
to make assumptions about corresponding natural gas prices in further studies.

1. Introduction

In the early 1990s, several regulations were passed in the
US and the European Union [1–3] changing the way natural
gas was marketed and traded. Particularly, this liberalization
[4] effectively ended a period in which natural gas was a
state-driven industry. The liberalization has also created the
emergent natural gas markets, as well as a strong demand for
models to better tackle the new problems and profit from this
new setting [5, 6].

Owing not only to this liberalization, but also to the new
local conditions that aremore open to competition, new small
players entered the natural gas industry, especially at the local
scale. Indeed, the US has over 80 interstate, long-distance
pipelines [7], serving different regions with various climatic,

demographic, economic, and political circumstances.Natural
gas usage in Alabama, for example, intuitively is not the same
as in Oregon; thus the market dynamics of the fuel are also
different, and this, we presume, should be reflected in some
way in the econometric data of the states.

Not only macroeconomic trends, however, are affected
by this setting. When doing cross-regions studies of various
aspects of the supply chain, such as the forecasting of demand
[8, 9], the balancing of the pipelines after imbalances have
been created by the natural gas shippers [10–12], or the
dynamics of interstate-intrastate systems [13], one has to take
into account the existence of different markets. The existence
of a common relationship between price and consumption
of natural gas across several zones allows for strong claims

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 695084, 9 pages
http://dx.doi.org/10.1155/2014/695084



2 Mathematical Problems in Engineering

of uniformity, which are useful when, for example, we are
building scenarios for a stochastic problem. Indeed, if we
manage to group the regions in clusters with similar price
and consumption functions, we can reduce the number of
variables needed in a scenario tree formulation [6, 14].

As such, we specify a regression function that relates
many of the most relevant econometric figures for each of
the 48 contiguous states of the American Union, modeling
price as a function of explicative variables such as natural gas
consumption, supply, and storage levels, as well as population
(number of costumers), oil prices, temperatures, and produc-
tion.The regression coefficients are then used to divide the set
of states into several subsets or groups, obtaining a partition
in which all the states in a group share the same regression
parameters, and thus can be classified as an (implicit) market.
The partition ismade considering both statistical and nonsta-
tistical characteristics of the obtained regression coefficients.
The resulting partitions are next compared with others in
their similitude and statistical significance, which would
validate the goodness of the combination of the dendrogram
and GRASP grouping methods.

This paper is organized as follows. The motivation and
literature review on natural gas econometric regression is
given in Section 2. Section 3 describes the way the regression
function is derived, while Section 4 details the method
for using the said function to perform the classification.
Section 5 presents and discusses the results of the study, and
conclusions are given in Section 6.

2. Natural Gas Price-Consumption Model

This work was motivated by our previous research in the nat-
ural gas supply chain, specifically developing an optimization
model that addresses issues in interstate pipelines. The data
used in thismodel, however, came fromdifferent regions, and
therefore the time series involved did not necessarily behave
in the same way.

As an example, suppose we are trying to model a certain
problem that involves forecasting the residential consump-
tion and price of natural gas in the states of Washington
and Oregon, that is, four time series. If the robustness of the
model is also a concern, then we should additionally consider
different forecasting scenarios. Even with only two possible
forecasting scenarios for each series (high/low consumption
or prices) this translates into 2

4 possible behaviors of the
econometric parameters. If consumption is expressed as a
function of price, however, then the scenario tree has only
2
2 branches. Furthermore, if the regression function for both
states is the same, then the number of scenarios can be
reduced to just two. As the number of states being modeled
scales up, that is, there are more than two parameters of
interest, common assumptions like those mentioned above
help reduce greatly the amount of scenarios in a stochastic
model, optimization, or otherwise.

As we studied particular sets of data, it was noted that
historical data of consumption and price showed conspicuous
properties that could be used for the sake of our aims. Even
though these data collectionswere taken fromdifferent states,
all pairs of time series showed elastic consumption/demand

[15, 16]; exponentially growing price averages [15, 17]; and
both series in every pair seemed to be highly correlated to
each other.

Indeed, the possibility of characterizing one set of series
as a (regression) function of the other was interesting, as
it would reduce the amount of data we needed to consider
when modeling optimization problems. It is, of course, a
common practice in economic andmanagerial sciences to do
that since, for example, demand data is simpler to work with
than price data [18]. The latter is mainly because the demand
is usually easier to predict, and its behavior is less chaotic than
that of prices. Such historical relationships between price
and consumption is a common topic of study in time series
economic analysis [19], which is mostly performed with the
inclusion of other explicative variables, such as the price of
substitutes (electricity, coal) and weather conditions.

This is the case of several models where the calculation
of elasticities is the primary goal of the study [20]. Log-linear
models [21–24] are generally favored because of the ease they
provide when computing elasticity figures. However, linear
models also have applications in the natural gas industry, like
the Short-Term Integrated Forecasting system (STIFS) used
by the United States Energy Information Agency in order to
estimate natural gas demand as a function of several types of
important variables related to the energy industry [25].

2.1. Former and Current Approaches. As explained in our
previous work [26], a carefully designed regression function
can help achieve such strong assumptions. Nevertheless, the
study of such relationships and the possibility of forming
state clusters based merely upon time series data analysis
turned out to be interesting by itself, and we developed two
different approaches to partition the collection of states. As
we observed, neighboring states showed a large amount of
diversity, yet different methods of grouping seemed to place
certain states consistently together.

Two major areas of opportunity discovered were the
design of the regression function, and the trade-off that each
partition algorithm made use of.

Our previous paper [26] aimed at a very definite objective
regarding the qualities of the regression model: it had to
correlate consumption and price of residential natural gas
series, using the former as the explicative variable because
of the ease in its forecasting. The expression thus obtained
served its purpose well, as demonstrated in its application
to the optimization models in [27]; nevertheless, a more
inclusive approach would involve series that comprise more
information. Following the examples found in the literature
and our own experience, we revealed that including more
explicative series provided very good results in terms of
regression fit. This has led to the model presented in the next
section.

Coming back to the partitioning method, the two
approaches presented before were as follows.

(i) The first one is the Dendrogram Grouping Method,
which “cuts” a binary tree (whose nodes represent
regression parameters) based on how close to each
other the parameters arewith respect to a givenmetric
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function and a weight scheme for the entries. This
method proved replicative and fast, but it does not
provide statistical significance to the grouped states’
parameters (i.e., one statemight find that temperature
is a significant regressor, whereas some other state in
the same group may not).

(ii) Another one is a greedy heuristic that starts with a
number of states called “group leaders,” and iteratively
selects for each remaining state the group that suits
the state best, based on its regression coefficient 𝑅2.
Because of the large amount of regressions performed,
this method was reported to be slower and subject
to accidental fluctuations, but the final results always
guaranteed that all states in one group shared the
same significance in their parameters.

In the following sections, we explain how we have
improved over our latest approach, adding explicative power
and robustness to the partitioning method and, ultimately,
creating a better technique to identify similar regions based
on their econometric data.

3. Regression Analysis

3.1. Individual Multiple Linear Regression (IMLR). Let 𝑛 be
the total number of states, 𝑚 the number of observations
per time series (months, in this case), 𝐼 = {1, 2, . . . , 𝑛} the
set of the 48 contiguous states of the American Union, 𝑡 ∈
T = {1, 2, . . . , 𝑚} the (discrete) time parameter, {𝑃󸀠

𝑖,𝑡
} the

differenced residential natural gas price in state 𝑖 ∈ 𝐼 at time
𝑡 ∈ T, {𝑇󸀠

𝑖,𝑡
} the differenced temperature, in Kelvin, shifted

so that the minimum figure is 𝑒, {𝑂󸀠
𝑡
} the differenced average

spot price of oil in the US at time 𝑡 ∈ T, {𝑁󸀠
𝑖,𝑡
} the differenced

number of residential consumers of natural gas in state 𝑖 ∈ 𝐼 at
time 𝑡 ∈ T, and {𝐶󸀠

𝑖,𝑡
} the differenced consumption of natural

gas in state 𝑖 at time 𝑡.
Notice that all these series are differenced, or more

precisely, lag-(−1) differenced from the original values. This
is because the said original values all tested positive for unit
roots in the advanced Dickey-Fuller test. In contrast to the
original series, the differenced series prove to be stationary;
hence we make use of the latter.

This is the linear model we devised to relate the above-
described series:

̂
𝐶
󸀠

𝑖,𝑡
= 𝛼
0,𝑖
+ 𝛼
1,𝑖
𝑃
󸀠

𝑖,𝑡
+ 𝛼
2,𝑖
𝐶
󸀠

𝑖,𝑡−12

+ 𝛼
3,𝑖
𝑇
󸀠

𝑖,𝑡
+ 𝛼
4,𝑖
𝑂
󸀠

𝑡
+ 𝛼
5,𝑖
𝑁
󸀠

𝑖,𝑡
;

𝑡 ∈ T; 𝑖 ∈ 𝐼.

(1)

We choose a Robust Regression Analysis using Huber
weights to fit the series over traditional least-squares method
due to nonnormality of the residuals experienced with the
latter. Furthermore, due to the steps described in the next sec-
tions, heteroskedasticity would likely appear in the residuals
once the pooling regression is carried on.

While most of the series were reasonably fit by (1), a
couple of them showed very erratic behavior in either their

natural gas price or consumption series. This is expected
insofar economic forecasting is commonly subject to the large
instability at time 𝑡. As the driving force behind short-term
fluctuations in natural gas pricing is consumer demand rather
than production supply, price was shown to be a significant
factor when describing market consumption.

The selection of the descriptive variables was made
considering other consumption models in the literature, the
available data, and the significance found in the preliminary
regression analysis. In particular, electricity prices and the
natural gas supply and production, as well as a time index,
were tested but found not to be significant in most of the
states. This was especially interesting in the case of electricity
prices, which certain sources cite as usual descriptors for
the natural gas demand, but which were found to be 0.05
significant in only 12 of the 48 cases and thus dropped from
the model.

The consumption and price of natural gas are endogenous
variables as both are correlated to system shocks, such
as unstable governments or weather-related events. As an
alternative to the use of least squares regression to fit the
model given in (1), a two-stage least squares approach could
be employed with such instrumental variables as the number
of gas producing wells, reserve estimates, and underground
storage, to name only a few. However, this approach is not
considered here, because the response (reaction) time of
consumers’ consumption habits to the shocks is much longer
than that to the spot prices set by the market every day.

3.2. Pooled Multiple Linear Regression (PMLR). Now we
address the issue of how one can use the same regression
formula for more than one state, which would create several
classes of states where demand responds to changes in the
descriptors in a similar mode.

Assume that we have split 𝑛 collections of state time series
into several classes, with the members of each class sharing a
common set of regression parameters. Then the pooled data
from the groupswould be regressed at the same time, creating
pooled regressions.

Let I = {𝐼
1
, 𝐼
2
, . . . , 𝐼

𝐾
} be a partition of 𝐼, and consider the

model:

̂
𝐶
󸀠

𝑖,𝑡
= 𝛽
0,𝑖
+ 𝛽
1,𝑘
𝑃
󸀠

𝑖,𝑡
+ 𝛽
2,𝑘
𝐶
󸀠

𝑖,𝑡−12
+ 𝛽
3,𝑘
𝑇
󸀠

𝑖,𝑡

+ 𝛽
4,𝑘
𝑂
󸀠

𝑡
+ 𝛽
5,𝑘
𝑁
󸀠

𝑖,𝑡
; 𝑡 ∈ 𝑇,

∀𝑖 ∈ 𝐼
𝑘
, 𝑘 = 1, 2, . . . , 𝐾.

(2)

Note that this model—called the Pooled Multiple Linear
Regression (PMLR) model—has 𝐾 sets of parameters for
each regressor variable, except for the intercepts 𝑎𝑖

0
, which we

allow to be different for each state. In comparison, model (1)
has 𝑛 sets of parameters.

How should one define the partition I of the set of states?
A good partition is expected to deliver groups of more or
less congruent sizes, while maintaining a high individual 𝑅2
value for each state. A good partition method should also be
replicative (i.e., the same partition is obtained for the same



4 Mathematical Problems in Engineering

group of states), be fast enough, and support the statistical
significance.

4. Dendrogram-GRASP Grouping
Method (DGGM)

In this section, a combination of both grouping methods
mentioned in [26] into a GRASP heuristic is proposed.
The resulting technique inherits the replicative property
of the dendrogram method, while retaining the statistical
significance of the heuristic algorithm.

4.1. Dendrograms. Dendrograms are binary trees in which
two observation vectors 𝑎 and 𝑏 form the (sub-)branches of a
higher branch 𝑐, so that

(i) these two observation vectors are “closer” to each
other than to any other observation 𝑑,

(ii) 𝑐 is not an observation per se, but a new, artificial
vector formed by some linear combination of 𝑎 and 𝑏.

The term “closer” is interpreted with respect to some
metric (e.g., the Euclidean metric), while the artificial obser-
vations are produced by the weighted combination method.
Once the dendrogram is formed, it is cut down from the root
and thus generating (sub-) dendrograms with the branches
resulting from the cut. The height of the cut is determined
according to one of several criteria (the number of subden-
drograms produced, the maximum allowed membership for
the subdendrogram, etc.) The leaves pertaining to a given
subdendrogram will pool their regression data together and
form one group for the PMLR.

Previous experiments [26] have shown that what is called
the “average euclidean”metric [28] delivers satisfactorily high
𝑅
2 levels with a better homogeneity in the resulting groups

than other linkage function options.

4.2. GRASP Heuristics. GRASP stands for Greedy Ran-
domized Adaptive Search Process; it is a metaheuristic, that
is, a general method designed to provide good—but not
necessarily optimal—results in problems otherwise too com-
plicated to find an optimal solution, especially combinatorial
problems [29].

Summarily, our GRASP approach will start with a seed
formed by several one-state groups; then, for each state, it will
identify those groups that deliver higher 𝑅2 values once the
data for the current state is pooled with that of the group.This
is called the Restricted List of Candidates or RLC. A group 𝐼

𝑘

from the RLC is chosen at random, and the current state is
added to 𝐼

𝑘
, pooling its data with those already in the group.

A number of swaps and movements are performed once the
states are all in place, in order to try to improve the values of
the resulting statistics 𝑅2.

It is important to note that setting the values for the
GRASP routine is rather subjective, since there is no definite
objective to be achieved. Indeed, one cannot determine what
number of groups is optimal, or which way is the best to
define the greedy function. For example, one could prefer to

increase the grouped 𝑅2 value in each group rather than the
average of the individual 𝑅2s in that group, or vice versa.This
is exemplified by the function

𝐹
𝑤
(𝐼
𝑘
) = 𝜔𝑅

2

𝐼𝑘
+
1 − 𝜔

󵄨󵄨󵄨󵄨𝐼𝑘
󵄨󵄨󵄨󵄨

∑

𝑖∈𝐼𝑘

𝑅
2

𝑖
, (3)

where

𝑅
2

𝐼𝑘
= 1 −

∑
𝑡∈T,𝑖∈𝐼𝑘 (𝑦𝑖,𝑡 − 𝑦𝑖,𝑡)

2

∑
𝑡∈T,𝑖∈𝐼𝑘 (𝑦𝑖,𝑡 − 𝑦𝐼𝑘)

,

𝑅
2

𝑖
= 1 −

∑
𝑡∈T (𝑦𝑖,𝑡 − 𝑦𝑖,𝑡)

2

∑
𝑡∈T (𝑦𝑖,𝑡 − 𝑦𝑖)

.

(4)

Here, 𝑦
𝑖,𝑡
= ln𝐶󸀠

𝑖,𝑡
, and 𝑦

𝜄
is understood as the average of all

of the observations belonging to 𝜄 if the latter is a state (e.g.,
𝜄 = 𝑖) or as the average of the observations of the states in 𝜄, if
the latter is a set of states (e.g., 𝜄 = 𝐼

𝑘
).

For the local search, we handle the improvement function
𝐺
𝜏
(𝐼
𝑘
, 𝐼
ℓ
, 𝐼
𝑖
), which is used when deciding if it is convenient

to move state 𝑖 from group 𝑘 to group ℓ. It is parametrized by
the improvement weight 𝜏:

𝐺
𝜏
(𝐼
𝑘
, 𝐼
𝑙
, 𝐼
𝑖
) = (1 − 𝜏)

𝑅
2

𝐼𝑘
+ 𝑅
2

𝐼ℓ

2
+ 𝜏𝑅
2

𝑖
. (5)

4.3. Dendrogram-GRASP Algorithm. The following algo-
rithm is used to classify the set of 48 contiguous states of
the United States into groups that share a common regression
function.

(1) Initialize the values for each of the time series in
each of the 48 states. Set a seed size 𝑠Seed, a max-
imum number of groups 𝑠Max, a RLC size 𝑠RLC, an
individual/grouped 𝑅2 weight 𝜔 ∈ [0, 1], an individ-
ual/grouped threshold 𝜑 ∈ (0, 1), an improvement
weight 𝜏 ∈ (0, 1), a relative improvement threshold
𝜓 ∈ [0, 1], and a maximum number of local search
steps, 𝑠ls.

Seed Selection

(2) Perform an IMLR on each of the 48 sets of time series,
obtaining 𝛼

𝑗,𝑖
, 𝑗 = 0, . . . , 6, 𝑖 ∈ 𝐼.

(3) Form a dendrogram of 48 leaves with the vectors
𝛼, using the average euclidean mean as the linkage
function, and cut it so that there are exactly 𝑠Seed
subtrees.

(4) Select the state with the highest 𝑅2
𝑖
from each of the

obtained groups and call it the 𝑘th group’s leader.
Define the one-state groups obtained as the partition
I
𝑘
. All the nonselected (spare) states form the set

𝐴𝑐𝑡𝑖V𝑒.

Greedy Process

(5) For each state 𝑥 in the set 𝐴𝑐𝑡𝑖V𝑒,

(a) pool the data of 𝑥 with the data of each
of the formed groups and perform a pooled
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regression; select a number of 𝑠RLC groups with
the highest value of the greedy function 𝐹

𝑤
and

form the RLC;
(b) choose randomly one of the groups from the

RLC, for example, 𝐼
𝑎
.

(i) If none of the candidate groups in the
RLC delivers 𝐹

𝑤
(𝐼
𝑘
) > 𝜑 and we have

not yet reached the maximum number of
groups 𝑠Max, create a new group 𝐼

𝑥
= {𝑥}

containing only𝑥, remove𝑥 from the active
set, and update all the parameters.

(ii) Otherwise, assign 𝑥 to 𝐼
𝑎
, remove 𝑥 from

the active set, and update all the parame-
ters.

(6) All of the states are now partitioned into the groups,
and we can begin the local search.

Local Search

(7) For 𝑙 = 𝑖 to 𝑙 = 𝑠ls,

(a) randomly select one of the formed groups, 𝐼
𝑎
,

and one state in that group, 𝑥; select another
group, 𝐼

𝑏
; compute 𝑔

1
= 𝐺
𝜏
(𝐼
𝑎
, 𝐼
𝑏
, 𝑥);

(b) remove 𝑥’s data from 𝐼
𝑎
and pool the same data

of 𝑥 with 𝐼
𝑏
; compute 𝑔

2
= 𝐺
𝜏
(𝐼
𝑎
, 𝐼
𝑏
, 𝑥);

(c) if 𝑔
1
≥ (1 + 𝜓)𝑔

2
, remove 𝑥 from 𝐼

𝑏
and return

it to 𝐼
𝑎
; otherwise, continue.

(8) Report the obtained groups as the desired partition.
(9) End.

4.4. Partition Similarity. To determine the similitude of two
partitions, we will use an expression that, roughly speaking,
counts the number of coincidences found in two partitions
and divides it by the number of total possible coincidences,
given the sizes of the groups in each partition. While there
are many disputable ways to measure the similitude between
partitions with a different number of elements, this method
was chosen because of its normality. Indeed, it will always
return 1 when both partitions are identical and will always
return 0 when there are no coincidences between two
partitions, that is, when no two states share a group in both
partitions and no state is single-grouped in both partitions.

Let I = {𝐼
1
, 𝐼
2
, . . . , 𝐼

𝐾
}, J = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝐿
} be two arbitrary

partitions of the set of states, with 𝐼
𝑖
= {𝐼
𝑖

1
, 𝐼
𝑖

2
, . . . , 𝐼

𝑖

𝑘
𝑖}, 𝑖 =

1, . . . , 𝐾, and 𝐽
𝑗
= {𝐽
𝑗

1
, 𝐽
𝑗

2
, . . . , 𝐽

𝑗

𝑙
𝑗}, 𝑗 = 1, . . . , 𝐿.

The function aI,J defined by

aI,J (𝐼𝑖) = {
1, if 𝐼

𝑖
= {𝑚} = 𝐽 for any 𝐽 ∈ J,

0, otherwise,
𝐼
𝑖
∈ I, (6)

assumes the value 1 if group 𝐼
𝑖
contains a single state in

partition I and this state also forms a group-singleton in
partition J.

For every pair of states, we will assess if they share a group
in a given partition using the following function bJ:

bJ (𝑚, 𝑛) = {
1, if 𝑚, 𝑛 ∈ 𝐽

𝑗
, for any 𝑗;

0, otherwise,
𝑚, 𝑛 ∈ I. (7)

In case the function aI,J has the value of 1, we say that we
have a (one-state) coincidence, whichmeans that the state has
been found incompatible with other states twice, no matter
which method formed partitions I, J.

Similarly, if the function bJ returns 1 for two states in
a group from the partition I, we say that we have a (two-
state) coincidence; that is, in both partitions, the two states
are members of the same group.

To measure the number of coincidences between two
partitions, we use the function:

𝐶
𝑞
(𝐼
𝑖
, I, J)

= aI,J (𝐼𝑖) + (1 − aI,J (𝐼𝑖))

× (∑

𝑚∈𝐼𝑖

∑

𝑛∈𝐼𝑖,𝑛 ̸=𝑚

𝑞bJ (𝑚, 𝑛) + (1 − 𝑞)
2

) ,

(8)

for 𝐼
𝑖
∈ I, 𝑞 = {0, 1}.

If the parameter 𝑞 equals 1, then the function 𝐶
𝑞
counts

the number of either type of coincidences that couples of
states reveal in the group 𝐼

𝑖
in comparison to the groups they

belong to in the partition J. Conversely, if 𝑞 = 0, then we
simply count the total number of possible coincidences for
the states in the group 𝐼

𝑖
∈ I. Note that the function 𝐶

𝑞
is not

necessarily symmetric with respect to the pairs of partitions:
𝐶
𝑞
(𝐼
𝑖
, I, J) need not have the same value as 𝐶

𝑞
(𝐼
𝑖
, J, I).

The similitude function used Sim is defined as follows:

Sim (I, J) =
∑
𝐼𝑖∈I 𝐶1 (𝐼𝑖, I, J) + ∑𝐽𝑗∈J 𝐶1 (𝐽𝑗, J, I)

∑
𝐼𝑖∈I 𝐶0 (𝐼𝑖, I, J) + ∑𝐽𝑗∈J 𝐶0 (𝐽𝑗, J, I)

. (9)

Notice that if there is at least one group in either partition
containing more than one element, then 𝐶

0
for that group

is at least 1, whereas if there exists no such group in either
partition, then aI,J(𝑎) = 1 and consequently𝐶0(𝑎, I, J) = 1 for
any 𝑎 ∈ I ∩ J. Therefore, the denominator is never 0, which
makes this function well defined.

Lemma 1. Let I and J be two partitions of the set 𝐼 =

{1, 2, . . . , 𝑛}, and let function Sim be defined by (9). The
following statements are true:

(1) Sim (I, J) = Sim (J, I);
(2) Sim (I, J) = 1 if and only if I = J;
(3) Sim (I, J) = 0 if and only if there are neither one-state

nor two-state coincidences between I and J;
(4) 0 ≤ Sim(I, J) ≤ 1.

Proof. (1) This is easy to see from the structure of the
function.
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(2) Let I = J. If 𝐼
𝑖
= {𝑚} = 𝐽

𝑘
for some 𝑖 and 𝑘, then

𝐶
1
(𝐼
𝑖
, I, J) = 𝐶

0
(𝐼
𝑖
, I, J). Otherwise, if the order of 𝐼

𝑖
is greater

than one, then the second term in (8) (the definition of 𝐶
𝑞
)

assumes the same value no matter whether 𝑞 = 1 or 𝑞 = 0.
Therefore, the numerator and denominator in Sim are equal.

Conversely, if there exists one 𝐼
𝑖
such that 𝐼

𝑖
̸= 𝐽 for all

𝐽 ∈ J, then 𝐶
1
(𝐼
𝑖
, I, J) is strictly less than 𝐶

0
(𝐼
𝑖
, I, J). Since

𝐶
1
(𝐽
𝑖
, I, J) ≤ 𝐶

0
(𝐽
𝑖
, I, J), it follows that the numerator in (9)

(defining Sim) is strictly smaller than the denominator, and
therefore Sim(I, J) < 1.

(3) If there is at least one one-state coincidence, or a two-
state coincidence, then the numerator in Sim is larger than 0,
and therefore Sim(I, J) > 0.

Conversely, since 𝐶
𝑞
is nonnegative for every value of 𝑞,

Sim(I, J) = 0 means that both terms in the numerator are
zero, which is only possible if aI,J(𝐼𝑖) = aI,J(𝐽𝑗) = 0 for every
member of I and J, and bJ(𝑚, 𝑛) = 0 for every𝑚, 𝑛 ∈ 𝐼, which
means that there is no coincidence of any type between these
two partitions.

(4)The first inequality follows from the fact that both the
numerator and denominator in (9) are positive. The second
inequality comes from the same argument as in item (2);
that is, the numerator is either equal or strictly less than the
denominator.

5. Experimental Results

This section presents the results of the numerical experimen-
tation performed on a number of times series pertaining to
each of the 48 data sets. The values for the historical natural
gas prices, consumption, and number of consumers, as well
as the oil spot prices were taken from the US Energy Infor-
mation Agency, whereas the temperature figures for each
state were obtained from the US Department of Commerce
National Oceanographic and Atmospheric Agency [30].

5.1. IMLR Results. The first step was to perform the IMLR for
the 48 sets of time series; this provided the regression param-
eters for the dendrogram formation. The five time series
corresponding to every state had 240 monthly observations
each.

Individual regression models showed regression 𝑅2 coef-
ficients with the average of 0.77 and theminimumof 0.61.The
normality and heteroskedasticity were not tested due to the
use of Robust Regression with Huber weights. Randomness
of the residuals was tested, and high 𝑃 values were found for
many states.

5.2. Dendrogram-GRASP Grouping Results. There are two
main aspects we wanted to consider when evaluating the
effectiveness of the Dendrogram-GRASP approach: how
replicative it is, and how good a partition is produced. The
first issue is evaluated by examining how good and how
similar the partitions are that come from the same seed (as
opposed to those that come from randomly generated seeds).
The goodness of one partition is measured with the average
group [state] coefficient of determination,𝑅2

𝐼𝑘
[𝑅2
𝑖
], calculated

across all the groups [states] of the partitions.

There are, however, a number of different design param-
eters that should be included in the experimentation. Each
experimental observation consists of the generation of 10
partitions, using the following parameters.

(i) A seed choice: the dendrogram seed (DDR), a random
seed common to all 20 partitions (FIX), and a random
seed for each partition (RND).

(ii) The individual versus grouped 𝑅
2 weight, 𝜔, which

determines what is more important when adding a
new state to an existing group in the GRASP routine:
values considered in the experimentation are 𝜔 = 0

(only the single states’ 𝑅2s are considered), 0.5, and 1
(only the groups’ 𝑅2s are important).

(iii) The new group threshold, 𝜑: the closer the value of 𝜑
to 1, the more likely new single-state groups will be
created in the GRASP routine. The tested values are
𝜑 ∈ {0.90, 0.95}.

(iv) The length of the restricted candidate list, 𝑠RCL: the
values considered are 𝑠RLC ∈ {1, 5}.

(v) The number of local search moves: 𝑠ls ∈ {0, 100}.
(vi) The local search individual/grouped 𝑅

2 weight, 𝜏:
considered values are 𝜏 ∈ {0, 0.66, 1}.

The starting number of groups was fixed at 10, and the
maximum number of groups allowed was set at 15. Each
combination of levels was replicated 20 times. This resulted
in 5760 experimental observations.

In each observation, we calculated the average similitude
between the various partitions involved, as well as their
similitude with a randomly created partition. The compared
similitudes were as follows:

(i) the average similitude of the dendrogram partition to
each of the 20 GRASP partitions (DG);

(ii) the average similitude of a random partition and each
of the 20 GRASP partitions (GR);

(iii) the average similitude of the 20 GRASP partitions
among themselves (GG).

The first part of the analysis consisted in testing all
the experimental observations. After that, only the most
convenient levels were kept.

Tables 1 and 2 present a summary of the results of the
experimental runs. The first three data columns show the
average similarities for each of the three comparisons of
interest, whereas the last two columns show the average of
the individual and grouped coefficients of determination.

A quick look at this table suggests that the similitude
figures are characteristically low: the average similarity of
an arbitrary partition to a randomly formed one, calculated
using all the observations, is 0.0947. This will be called
the partitions’ randomness. If columns 3 and (particularly)
5 approach the average randomness for this experiment,
the partition method is not very efficient. This especially
concerns the cases 𝑠ls = 5, 𝜔 = 0, and 𝜏 = 1, whose similarity
measures are fairly low. Luckily enough, in all these cases the
average GG similarities were found to be statistically different
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Table 1: Experimental Results I.

Factor Level Av. similitude Av. 𝑅2 values
DG GR GG Av. 𝑅2

𝐼𝑖
Av. 𝑅2
𝐼𝑘

𝜑
0.90 0.145 0.079 0.178 0.503 0.535
0.95 0.149 0.079 0.177 0.499 0.537

Seed
DDR 0.182 0.083 0.194 0.513 0.568
FIX 0.130 0.077 0.154 0.489 0.521
RND 0.128 0.077 0.184 0.501 0.520

𝜔

0 0.146 0.082 0.136 0.427 0.564
0.5 0.147 0.079 0.183 0.534 0.535
1 0.148 0.077 0.213 0.542 0.511

𝜏

0 0.160 0.080 0.232 0.699 0.502
0.66 0.141 0.079 0.150 0.455 0.554
1 0.140 0.079 0.149 0.349 0.553

Table 2: Experimental Results II.

Factor Level Av. similitude Av. 𝑅2 values
DG GR GG Max. 𝑅2

𝐼𝑖
Max. 𝑅2

𝐼𝑘

𝑠RLC
1 0.160 0.082 0.247 0.879 0.862
5 0.134 0.076 0.107 0.879 0.871

𝑠ls
0 0.167 0.084 0.236 0.876 0.857
100 0.126 0.075 0.119 0.882 0.876

(higher) than their respective GR similarities by making use
of the Wilcoxon signed-rank (WSR) 𝛼 = 0.95 test.

The average 𝑅2 values in columns 6 and 7 do not deviate
much from the averages across all the observations, 0.602
and 0.624, respectively, with the exception of the grouped
individual parameter 𝑅2

𝐼𝑖
for 𝜏 = 1. It is clear that certain

similarity values for some levels are consistently lower than
others. There is, for example, a very large difference between
the average DG similitude obtained using a DDR seed than
using a RNDor FIX seed and so on. Based on this, we decided
to discard some of the levels whose averages are not only
considerably lower, but also the observations for each level
are determined to be different by a WSR test.

Now let us look at each of the level values we should
consider to drop. The first level, the GRASP new group
threshold 𝜑, shows a very similar GG figure, and equally
similar 𝑅2 values. We decide to keep the factor levels intact,
in case these figures change once other levels are removed.

Seeds are more difficult to assess. The FIX seed shows
lower values than theDDGone, but still higher than theRND.
Weight 𝜏 shows much better numbers in all but the grouped
𝑅
2 entry. Because of this, we pick it as the only label for the

later study. On the contrary,𝜔 is better at value 1, except again
in the grouped 𝑅2 column. This result for 𝜔 is very counter
intuitive! However, the two values serve a similar purpose at
different parts of the process, so this behavior might indeed
be justified.

The factors 𝑠RLC and 𝑠ls were introduced to add variation
in the GRASP routine, and their results appear separated in
Table 2. This is because, while their similitude values work
in the same way as the other factors, the 𝑅2 measurements

per observation are not the average across all 10 partitions
in the observation, but rather the maximum obtained. In
a common GRASP routine, the process will be repeated
several times and the best solution will be adopted. For
our case, this means that we should choose the best of
the 20 partitions in each observation, and this decision
becomes the result for that observation. Arguably, both the
individual and grouped average maximum coefficients of
determination seem to show little difference. In particular,
the differences are deemed not large enough to justify the
trade-off with similarity in all cases. While this was expected
from the extended RLC size, the poor results obtained by the
local search suggest that we should rethink our local search
procedure in the future.

Based on similarity alone, we decided to eliminate the
poorest levels and kept only a single-group state list and a
zero-swaps local search for the second part of the analysis.
After deciding to drop several levels, we will rewrite the
results table including only the accepted levels, to see how the
figures change once the poorest results are winnowed.

Themuch smaller Table 3 is the consequence of fixing𝜔 =

1, 𝜏 = 0, 𝑠RLC = 1, and 𝑠ls = 0 and eliminating the RND seed
choice, which results in 100 observations. Now the similitudes
look much better: we have the sample average of 0.438 and
the maximum of 0.477, which means that, for the parameters
chosen, the similitudes obtained are remarkably higher than
the average randomness.

For the first factor, 𝜑, the similitudes are of little dif-
ference, the same as the determination coefficients in all
accounts. However, for the seed levels, the DDR seed clearly
favors similitude between the seed and the resulting partition.
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Table 3: Experimental Results III.

Factor Level Av. similitude Av. 𝑅2 values
DG GR GG Av. 𝑅2

𝑖
Av. 𝑅2
𝐼𝑘

𝜑
0.90 0.171 0.077 0.432 0.760 0.340
0.95 0.178 0.085 0.432 0.759 0.349

Seed
DDR 0.238 0.090 0.454 0.757 0.432
FIX 0.143 0.074 0.365 0.760 0.299
RND 0.143 0.079 0.477 0.761 0.302

Similitude among resulting partitions is also good at the RND
partition, which could indicate the particular FIX seed was
initially a bad choice when compared to either an average
partition seed or one selected in a methodical way.

The coefficients of determination 𝑅
2 present a rather

interesting development. The individual coefficients 𝑅2
𝑖
are

decent enough when compared to the ones from the dropped
levels, but there is a dramatic drop in the group figures 𝑅2

𝐼𝑘
,

which decreased from an average of around 0.53 to as low as
0.299.This happens because, while focusing on similitude, we
chose in favor of 𝑠ls = 0, which yields the mean 𝑅2

𝐼𝑘
of only

0.366, as opposed to the 0.706 value obtained after fixing 𝑠ls =
100. In Table 2, however, we see the greatermax𝑅2

𝐼𝑘
because it

was relevant to that table. If we were to remake Table 3 using
the value of 𝑠ls = 100 for this level, similitudes would fall
around 10%, but the average group determination coefficients
𝑅
2

𝐼𝑘
would increase to roughly 0.43, which is much better than

that with 𝑠ls = 0. Maximum values for the different 𝑅2s,
correspondent to those in Table 3, remainmostly unchanged.

6. Concluding Remarks

In this paper, we propose and justify a heuristic method
to group several zones based on a regression function that
estimates several factors related to the natural gas demand.
The groups thus obtained share key information regarding
the behavior of natural gas-related historic econometric data.

We start by developing a linear regression model that
correlates natural gas historic residential consumption and
several explicative variables, such as the residential price,
number of consumers, and temperature.Thismodel, inspired
by several examples in the literature, fits well the time series
employed and has good predictive power, but it is by no
means the only one that can be used nor necessarily the best.

The results of each of the 48 regressions performed are
then used to create dendrogram-based partitions, which are
in turn used as the starting point in a GRASP routine.
The latter, while tending to form rather dissimilar partitions
(compared to the dendrogram grouping), has the advantage
of adding statistical significance to all the regressions in all
the groups formed.

We tested several parameters in an experimental design
consisting of more than 4300 observations, six factors, and
two or three levels per factor. Using ad hoc and nonpara-
metric selections, we tried to obtain a good combination of
parameters, namely, one that delivers high similitude between

partitions obtained from the same seed and a satisfactory
goodness of the pooled regressions.

Similitude is measured by a standardized function which
equals 0 if there are no common groups between two parti-
tions of a fixed set and 1 if both partitions are identical. We
were able to obtain experimental conditions with similitudes
(mostly) above 0.43, which are deemed good considering that
the average randomness of a partition in the study is around
0.09.

It is encouraging that, using the regression function
herein proposed, the GRASP routine worked well by itself
and also when combined with the dendrogram partitioning
method. Unfortunately, the inclusion of randomness did
not provide for good results, as it offered no increase in
goodness of the partitions but a considerable decrease in
similitude when a long RLC was used. The proposed local
search approach was found to have a negative impact on
the similitude values, though not overly so. However, at the
same time it did affect heavily the values of the grouped
coefficients of determination when the maximum values
were considered in the selection but the averaged values
were looked into in the end results. The “goodness” of the
regressions, as discussed, must then be judged with a more
nuanced approach.

The entire work frame summarized here is intended to
provide a way to identify individuals (states, in this case)
with common econometric behavior among themselves by
means of statistically significant information. Such results
used to help us in the past in the context of optimization
theory (by greatly decreasing the number of variables in
stochastic problems), and we believe this technique has other
applications in economic analysis.

The planned future work includes enhancing the robust-
ness of themethod by designing better GRASP RLC and local
search procedures, trying sampled regressions when forming
large groups to gain on time and studying how different data
sets and regression models would work in combination with
the Dendrogram-GRASP approach proposed in the paper.
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series analysis applied to construct US natural gas price func-
tions for groups of states,” Energy Economics, vol. 32, no. 4, pp.
887–900, 2010.
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