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Abstract

Ear characteristic is a promising biometric modality that has demonstrated
good biometric performance. In this paper, we investigate a novel and challeng-
ing problem to verify a subject (or user) based on the ear characteristics after
undergoing ear surgery. Ear surgery is performed to reconstruct the abnormal ear
structures both locally and globally to beautify the overall appearance of the ear.
Ear surgery performed for both for beautification and corrections alters the orig-
inal ear characteristics to the greater extent that will challenge the comparison
and subsequently verification performance of the ear recognition systems. This
work presents a new database of images from 211 subjects with surgically altered
ear along with corresponding pre and post-surgery samples. We then propose a
novel scheme for ear verification based on the features extracted using a bank
of filters learnt using Topographic Locally Competitive Algorithm (T-LCA) and
comparison is carried out using Robust Probabilistic Collaborative Representa-
tion Classifier (R-ProCRC). Extensive experiments are carried out on both clean
(normal) and surgically altered ear database to evaluate the performance of the
proposed ear verification scheme. We also present a comprehensive performance
analysis by comparing the performance of the proposed ear recognition scheme
with eight different state-of-the-art ear verification system. Furthermore, we also
present a new scheme to detect both deformed and surgically altered ear using
one-class classification. Experimental results indicate the magnitude of problem
in verifying the surgically altered ears and the signifies the need for considerable
research in this direction.
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Preprint submitted to Elsevier June 12, 2018



1. Introduction

With the widespread use of access control systems that insist the user authen-
tication, biometrics based systems are increasingly becoming popular. Biometric
systems employ physical and/or behavioural characteristics of the individual to
automatically identify/verify the access control. Among the different biometric
characteristics, the 2D ear (or outer ear) has long been recognized as the poten-
tial biometric characteristics for the identification/verification of a person. The
2D ear biometrics exhibit an appealing feature to have unique shape and structure
(even among twins) [1] that can be captured without subject cooperation, not often
affected by the facial expression and demonstrated significant identification accu-
racy, especially in the controlled conditions. These features have contributed to
the 2D ear recognition to elevate them as the promising biometric characteristics
for both biometric and forensic applications.

The 2D ear recognition was first investigated by French criminologist Alphose
Bertillon in 1890 [2]. One of the interesting earlier works was carried out by
the American police officer Alfred Iannarelli [1] on more than 10,000 ear im-
ages using 12 different features to identify the data subjects successfully. Alfred
Iannarelli also conducted a study on the ear from twins and triplets that demon-
strated the unique properties of the ear among twins and triplets [1]. With the
growing progression of biometrics, the machine vision researchers have started
addressing the ear recognition from past decade. This has resulted in a significant
amount of research work in both (1) ear detection (2) ear feature extraction and
comparison technique that improved the overall performance of the ear recogni-
tion system.

(a) (b) (c)

Figure 1: (a) Ear with deformed ear lobe; (b) Ear with Structural impairment; (c) Ear with disfig-
uring defects

Ear detection is the primary step in the ear recognition system that has received
prominent attention from the researchers. Several approaches have been proposed
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that include both manually assisted and completely automatic methods to achieve
ear detection and segmentation. The manually assisted ear segmentation is intro-
duced in [3] that allows to mark manually the landmarks on the ear displayed on
the computer. These landmarks are further used by the computer software to seg-
ment the ear. The template based approaches using deformable contours [4], edge
detectors [5], morphological operations [6] and hybrid approaches [7] based on
pyramids and sequential similarity computation is also explored. Template based
approaches have shown significant improvement in the ear segmentation accuracy
but show the degraded performance especially in the unconstrained conditions.
Shape-based 2D ear segmentation involves in finding the elliptical shape of the
ear using Hough transform and it was introduced in [8]. As the shape-based seg-
mentation schemes are based on the edge information, these methods are prone to
noises that are encountered in the unconstrained scenario. Hybrid approaches that
combine more than one method are: skin color detection combined with template
based approaches [9], Gabor jets combined with Principal Component Analysis
(PCA) [10], ray transforms combined with a shape based approaches [11] and
color information combined with edge extracted from range images [12]. Lastly,
the classifier-based approach using Haar features and Adaboost techniques was
proposed in [13]. This method is further improved by [14] to detect ear with
varying pose, noise, and in presence of multiple ears.

Ear feature extraction and comparisons are widely addressed to develop both
robust and accurate ear recognition system. Various feature extraction methods
are proposed that can be broadly classified into three sub-classes, namely: global
approaches, local approaches and hybrid approaches. The global approaches in-
clude sub-space approaches such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Independent Component Analysis (ICA), Sparse
Representation Classifier (SRC) [15], Fuzzy rules [16] and Kernel Discriminant
Analysis (KDA). Texture based approaches include Gabor filters, Local Binary
Patterns (LBP), Local Phase Quantisation (LPQ), Binarised Statistical Image Fea-
tures (BSIF), wavelet transform, log-Gabor filters, Shape-based Force filed trans-
formations and Voronoi distance graph. The local features include the use of
SIFT, SURF and landmark points. The Hybrid approaches combine more than
one feature extraction techniques. Recently, the use of Convolutional Neural
Network (CNN) was explored for the ear recognition that has demonstrated the
improved results when compared with both shape and texture based techniques.
However, the effectiveness of the CNN depends on the available of the large scale
ear database. The ear recognition for the new born infants are addressed in [16],
[17]. The popularity of 2D ear biometrics also resulted in many survey papers such
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as [18], [19] [20], [21], [22], [23], [24] and they provide the complete overview
on the tools and techniques developed for accurate 2D ear recognition.

1.1. Surgical alteration of ears
The popularity of ear characteristics in biometrics is now challenged by the

problem of surgical alteration for many reasons such as enhancing the beauty and
correcting deformed ears by birth or as a result of accident. The increasing interest
in beautification through a surgery is seen mainly in the developed countries. The
goal of these surgeries is to improve the appearance (or correcting the defects) of
the human body parts to enhance the beauty of the body parts. The beautification
surgery is most commonly performed on face, ear, nose and lips that are driven by
the availability of the affordable cost technology. The ear surgery is gaining pop-
ularity and the recent statistics released by American Society of Aesthetic Plastic
surgery for year 2009 1 report around 29000 ear surgeries in US alone. Among
these 61% are woman and 39% are men undergoing ear surgery. The possible
reasons for the ear surgery include:

1. The prolonged use of large and heavy earrings that can stretch and tear the
ear lobe.

2. Structural impairment caused due to accidents.
3. Correcting disfigured defects by birth.

Figure 1 shows the example of deformed ears as a result of wearing heavy
ear-rings that has resulted in deformed ear lobe (see Figure 1 (a)), structural im-
pairment (see Figure1 (b)) and disfiguring defects (see Figure 1 (c)). Even though
the 2D ear recognition is well addressed problem, the presence of both deformed
and surgery ear will introduce new challenges especially on the accuracy of the
ear recognition.

The primary objective of this paper is to assess and address the challenges
of surgically altered ear in achieving accurate verification performance and also
present the comprehensive evaluation of the nine different state-of-the-art ear
recognition algorithms. Since ear surgery will change both local as well as the
global appearance of the ear characteristic to greater extent, it’s hard to find the
correlation between pre- and post-operated ear. With this backdrop, in our previ-
ous work [25], we made the preliminary study on evaluating the ear recognition
algorithms, especially on the ear lobe surgery database comprised of 44 subjects.

1http://www.realself.com/asps-ear-surgery-statistics
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Figure 2: Illustration of different kind of ear surgeries; The images inside the red dashed line
correspond to the images taken prior to surgery while the images inside blue dashed line depict
the images taken after the surgical procedure. The images for each correction is placed below
each of the corresponding image before surgery. (a) Antihelical fold correction; (b)Constricted ear
correction; (c) Cryptotia correction in upper lobe; (d) Cup ear correction; (e)Lop ear correction;
(f) Microtia correction; (g) Stahl ear correction

Further, we have also introduced the new approach for 2D ear recognition based
on the hybrid fusion of block-wise texture features extracted using Local Phase
Quantization (LPQ) and Histogram of Oriented Gradients (HoG) to mitigate the
effect of ear lobe surgery and to marginally improve the reliability of 2D ear recog-
nition systems.

In this paper, the same work is extended in many directions. By introducing
a new large-scale 2D ear surgery database comprised of 211 subjects with three
different kinds of surgeries: (1) Earlobe surgery, (2) Helical surgery and (3) Oto-
plasty. We then present a novel algorithm for reliable verification of surgically al-
tered ears using a set of naturally learned feature descriptors through Topographic
Locally Competitive Algorithm (T-LCA) [26] [27] [28] in an unsupervised man-
ner. These learned filters are then used to extract the invariant features from the
surgically altered ears that are further classified using Robust Probabilistic Col-
laborative Representation Classifier (R-ProCRC) [29]. The proposed feature ex-
traction and classification scheme has demonstrated an outstanding performance
on both surgically altered ear database and non-surgical (normal) 2D ear database
that shows the significant improvement in performance on both cases. Lastly, we
propose a new scheme based on 1-class SVM classifier to identify the deformed
ear (before surgery). Overall, the main contributions of this work can be listed as
below:

• A comprehensive work that adds a new dimension to 2D ear recognition
by discussing the challenges of ear surgery and systematically evaluating
the biometric performance of existing 2D ear recognition algorithms on a
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surgically altered 2D ear database.

• New large-scale database of surgically altered ears obtained from 211 sub-
jects with three different kinds of procedures: earlobe, helical (both mid and
top) and otoplasty. This new database is acquired to have 2D ear images be-
fore and after surgery for corresponding subjects. Each ear in the database
have one image prior-surgery and one image post-surgery. The magnitude
of problem increases not only due to surgical changes but also due to single
reference samples i.e, single-sample classification problem.s

• A novel scheme for 2D ear verification using naturally inspired features
learned using T-LCA and R-ProCRC that can adequately capture the invari-
ant features to improve the overall verification performance on both surgi-
cally altered ear database and non-surgical (or traditional) 2D ear database.
More precisely, we show that proposed scheme is robust on all three dif-
ferent kinds of ear surgery even when there is only one sample enrolled for
ear.

• Proposed a new scheme to detect both deformed and surgically modified
ears using Local Phase Quantization (LPQ) and 1-class Support Vector Ma-
chine (SVM).

• Extensive experiments are carried out to evaluate the performance of the
proposed scheme along with nine different state-of-the-art ear verification
techniques including the Deep − Learning method based on pre-trained
deep-network (AlexNet).

• Achieving improved performance using the proposed 2D ear recognition
scheme on both, surgically altered and non-surgical ear database when com-
pared with nine different state-of-the-art schemes.

The rest of the paper is organised as follows: Section 2 presents the detailed
description on ear surgery in particular to correct earlobe, helix and beautifica-
tion. Section 3 provides the details on database and experimental protocols. Sec-
tion 4 presents the proposed scheme for improved 2D ear recognition after ear
lobe surgery and Section 5 presents the proposed deformed ear detection scheme.
Finally, Section 6 presents the quantitative results and Section 7 draws the con-
clusion.
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Figure 3: Block diagram of the proposed ear surgery verification scheme

2. Ear Surgery

This section gives a brief overview of external anatomy of the ear and different
kind of procedures performed on the ear to correct various deformities and/or to
beautify it. The external structure of ear is constituted by helix, antihelix, legs of
helix, legs of antihelx, tragus, antitragus and the lobe along with the depressions
called scapha, triangular fossa, concha and intertragical notch. Various surgical
procedures are carried out on local structures of ear to correct the deviation from
the standard structure of the ear and also to enhance the beauty of the ear which
is commonly known as Otoplasty. Further, Earlobes are surgically repaired to fix
the torn, enlarged, punctured earlobes resulting from the long usage of heavy jew-
ellery or trauma [30]. The surgical procedure results in a permanent change of
shape and appearance of the earlobe along with the global structure and texture of
the ear. Another important class of surgery on external ear is the procedure per-
formed on helical part of the ear. The most common cause for the helical surgery
is the congenital ear deformities which often require surgical correction for both
aesthetic and psychological reasons. Another class of surgeries are performed to
correct prominent ears resulting due to auricular malformation along with many
other deformities, such as constricted ears, macrotia, helical rim deformities. Fig-
ure 2 depicts the various categories of the helical corrections done to the ear.

Note: The detailed explanation of different type of surgical procedures are
provided in the supplementary document for the interested readers.
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3. Ear Surgery Database

The major challenge posed in this work was to prepare a surgically altered ear
database, such that for each enrolled ear instance there exists a sample before and
after the ear surgery. To the best of our knowledge, there is yet no publicly avail-
able ear surgery database that will allow the biometric researchers to understand
the impact of ear recognition algorithms and also to develop new techniques to
overcome this challenge. Thus, it is crucial to collect the 2D ear surgery database
such that, each data subject will have 2D ear image captured before and after
surgery.

Inspired from the earlier data collection procedure followed in face plastic
surgery database [31], Labelled Face in Wild (LFW) [32] and many others, we
downloaded the real-world pre-surgery and post-surgery ear images correspond-
ing to the same individual from several web-pages. All the surgery images are
manually selected to assure the presence of full ear in pre-surgery and post-surgery
scenario. Our database is comprised of 211 subjects with both pre-surgery and
post-surgery ear images. For each data subject, there are two frontal ear im-
ages with proper illumination are collected such that the first is taken before
surgery and the second is taken after surgery. Thus, the whole database consists
of 211 × 2 = 422 2D ear samples. The database contains three main varieties of
cases such as: ear lobe surgery (52 subjects), helical surgery (39 Subjects), ear
beautification surgery (120 subjects).

Figure 1 and Figure 2 show the examples of different variety of the deformed
ear samples before and after surgery. It can be visually observed that the surgical
procedure will alter the overall appearance of the ear image both locally and glob-
ally that can degrade the performance of the existing ear verification algorithms.
In addition to surgical alterations, the database also poses challenges in terms
of image quality because of the heterogeneous nature of capture devices (differ-
ent make and manufacture, varying image resolutions) and the limited number of
samples per subject (only two samples per ear where one sample is collected be-
fore surgery and another after surgery). These facts are observed with all three
variety of the ear surgery cases considered in this work. Our database is made
available to the research purpose, and interested researchers are asked to contact
the authors for availing the database.

4. Proposed Ear recognition scheme

Figure 3 shows the block diagram of the proposed scheme for robust ear recog-
nition. The primary objective of the proposed scheme is to explore the naturally
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learned feature descriptors using the T-LCA [26] [27] [28] in an unsupervised
manner. The learned feature descriptors are known to capture the invariant fea-
tures from the images that in turn can be used to extract the discriminant features
for robust ear verification. The proposed scheme can be structured in the follow-
ing functional units:

4.1. Block processing
Given the ear image I , we divide the whole image into six non-overlapping

blocks IB1, IB2, . . . , IB6. In this work, we intend to follow the block based ap-
proach to effectively address the distortion before and after surgery of the ear.
The surgical procedure majorly alters operated area (except in the case of the
completely deformed ear) while retaining the global appearance of the ear. Hence,
the use of the block based approach can preserve the unique information that is
not altered during the surgical process. In this work, we consider only six blocks
such that, we divide the whole image into three non-overlapping horizontal blocks
and three non-overlapping vertical blocks. Each of these blocks is processed in-
dependently using feature extraction, representation and comparison modules as
explained below.

4.2. Feature Extraction and Representation
In this work, we explore the feature (or dictionary) learning approach to learn

the feature descriptors that are used to extract the features from the given ith block
IBi of ear image image I . The problem of feature learning is a well explored
area in which several approaches based on the unsupervised learning using sparse
decomposition is proposed [33] [28] [26] [34] [35]. The primary objective of
these unsupervised learning is to find a unique dictionary (or filter-banks or code-
books) that will form a basis function to extract the features from the given image.
Among the various approaches, the Local Competitive Algorithms (LCA) appear
to be appealing since it is based on exploring the neurally plausible sparse coding
mechanism that can learn the invariant features (or filter banks or dictionary). The
LCA also utilizes the node (dictionary elements are referred as nodes) dynam-
ics based on the principles of thresholding and local competitions that are less
computational when compared to greedy algorithms [26].

The LCA belongs to the class of neurologically inspired algorithms that can be
described using a set of non-linear Ordinary Differential Equations (ODE). Given
the input signal s and the pseudo-overcomplete dictionary φ, the LCA model ap-
proximates the input s as a linear combination of sparse vector and the dictionary
elements as follows [28] [34]:
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ŝ =
∑
m

amφm (1)

Where, φ is the N-by-M matrix where columns are the dictionary elements φm

ε RN , m = 1, . . . ,M ; φ = [φ1, . . . , φM ]. The dictionary elements are commonly
referred as nodes or neurons or atoms.

The sparse co-efficient vector a is determined by solving the LCA algorithm
that can be written in the matrix formulation as follows [28]:

ˆu(t) =
1

τ
[b− u(t)− (φtφ− I)a(t)] (2)

Where, b = [b1, . . . bM ]t = φts are the driving inputs and reflect how well
the signal matches different nodes. The closer the signal to a node, the bigger
is the corresponding driving value. u(t) = [u1(t), . . . , uM(t)]t are the function
representation of time-varying internal states of the system at time t. In LCA,
a non-linearity is introduced in the form of a threshold function Tλ to guarantee
that small internal states that do not add much information and is approximated
to zero. a(t) = [a1(t), . . . , aM(t)]t = Tλ(u(t)) represents the sparse co-efficients
vector.

In this work, we explore the dictionary learning using two layer LCA that is
termed as T-LCA. The T-LCA will first initialize in the layer-1 and then projected
to the layer-2 in a feed forward manner where LCA is performed. Then, the
activity coefficients computed in the layer-2 is projected back to the layer-1, and
then LCA is again performed. The use of topographical structure will mitigate
the perturbation of the input signal and thus the optimal dictionary (of filters)
with invariant properties can be learned using T-LCA. To effectively learn the
dictionary (or filter banks), we begin with the dataset comprised of small patches
of size 16 × 16 that are randomly sampled from 10 different natural images[36].
We have used 100,000 images patches that are preprocessed by subtracting the
mean of each image patch itself to remove the DC component. Since we are using
the image patch size 16 × 16 = 256 and the number of atoms (or neurons) as
256, the dictionary (φ) will result in dimension of 256 filters of size 16× 16. We
begin with random initialization of the dictionary atoms which are then optimized
following the image patched in an iterative way using T-LCA Algorithm.

Figure 4 shows the features (or filters or dictionary elements) learned by T-
LCA that shows the similar characteristics to those of Gabor-like edge detectors.
Further, it is also interesting to note that the distribution of these filters is very

10



Figure 4: T-LCA filter bank (or dictionary or receptive fields).

localized. Thus, the use of T-LCA can learn the significant features and simpler
to implement, fast to run and does not require time-consuming tuning of hyperpa-
rameters. Thus, it is our intuition that the use of these filter banks learned using
T-LCA as the feature extraction techniques for the surgery ear will allow one to
capture the invariant features that will allow improving the verification perfor-
mance.

In the next step, we perform the feature extraction by convolving the ith block
of ear image IBi with each of the 256 filters that are learned using T-LCA. The
feature extraction can be represented as follows:

Fki = IBi ∗ FBk; ∀ k = 1, 2, . . . , 256, ∀i = 1, 2, . . . , 6 (3)

Where, ∗ represents the convolution operation and Fki represent the convolu-
tion result with kth filter with ith ear image block IBi. Figure 5 (c) illustrates the
qualitative results corresponding to the response of the T-LCA filter bank to the
ear image block IBi.

Since the feature extraction technique is computationally tedious with 256 re-
sponses, we propose a two step process that can efficiently represent these ex-
tracted features. The adopted approach will first binarize the each convolved im-
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age (Fk) by comparing each pixel to the present threshold as follows:

Bki(x, y) =

{
1, if Fki(x, y) ≥ 0

0, Otherwise
(4)

Where, (x,y) represents the pixels location and Bki(x, y) represents the bina-
rised convolved image with kth filter and ith ear image block .

In the next step, we represent the binarized images to form a code image by
stacking 8 images each to construct a binary code of 8 bits as follows:

Cil =
8∑

k=1

Bki × 2k−1; ∀ l = 1, 2, . . . , 32 (5)

Where Cil represent the 8-bit binary code for lth stack of 8 images. Since there
are 256 convolved image, we will have 32 (= 256/8) different 8 bit representation.
Cil is also known as code image. Figure 5 (d) shows the qualitative illustration of
the code images Cil.

Following the previous step, we further process the coded image Cil to ob-
tain the time and frequency representation using Short-Term-Fourier-Transform
(STFT) to better represent the localized edge features obtained using t-LCA filter
bank. The local time and frequency responses are computed in a local window W
as given by Equation 6:

FTil(u, v) = Cil(x, y)WR exp{−j2πUTy} (6)

where W represents the window and U represents the frequency at which local
Fourier response is computed. In this work, the local Fourier coefficients are
computed for the frequency points u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T and
u4 = [a,−a]T [37].

The obtained frequency information present in the form of Fourier coefficients
is further separated into real and imaginary parts for each component in Fourier re-
sponse [Re{FTil}, Im{FTil}] to form a final vector Ril which is further as given
by Equation 7.

bil =

{
1, if Ril > 0

0, otherwise
(7)

The quantized coefficients are represented as integer value Qil in the range
of 0 − 255 by using simple binary to decimal conversion strategy as given by
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Figure 5: Qualitative results of the Proposed feature extraction scheme (a) Input ear image (b) Ear
Block (c) T-LCA repose images (d) Coded image (e) time-frequency histograms

Equation. 8.

Zil =
8∑

j=1

bilj × (2(j−1)); (8)

Where j = 1 . . . 8 corresponds to 4 real and 4 imaginary frequency coeffi-
cients.

We represent Zil by using the histogram representation as given below:

Hil =
256∑
e=0

(Zil)e; ∀ l = 1, 2, . . . , 32 (9)

Where, Hil represents the histogram with a dimension of 1× 256 correspond-
ing to lth stack image. Figure 5(e) illustrates the histograms obtained using Equa-
tion 9.

Finally, the histogram features from all 32 stacked binary codes Hil are con-
catenated to form the single feature vector Fi as follows:

Xi = [Hi1‖Hi2‖ . . . ‖Hi32] (10)

Thus, for the each block of the ear image IBi, the proposed feature extraction
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Algorithm 1 Proposed ear feature extraction and comparison scheme
1: Input: Ear Image I; Filter bank learned from T-LCA
2: Variables: k // Number of subjects and i is the number of image blocks.
3: Initialization: Xi = zeros(Nf , k).
4: k = 211 // Number of subjects.
5: Nf = 8192 // Length of features.
6: i = 6 // Number of image blocks.
7: Step 1: Obtain six (i) independent image blocks from ear image I .
8: for i = 1 : Number of image blocks do
9: for j = 1 : Number of subjects do

10: Step 2: Compute the features Fi according to Equation 10.
11: Step 3: Append Fi as the column of Xi

12: end for // Number of subjects
13: Output: Feature matrix Xi corresponding to ith ear block.
14: Step 4: Given the probe image block yi.
15: Step 5: Get the comparison score using R-ProCRC according to Equation

19.
16: Step 6: Repeat Step 1 - Step 5 for all blocks i.
17: end for // Number of image blocks
18: Output: Comparison scores Ci, ∀i = 1, 2, . . . , 6.

and representation will result in feature dimension of 8192 (= 32× 256).

4.3. Comparision
In this work, we employ the Robust Probabilistic Collaborative Representation

Classifier (R-ProCRC) [29] to obtain the comparison score. Given the reference
samples with ith ear image block from k number of subjects can be represented as:
Xi = [Xi1, . . . Xik] and the corresponding labels lx. Then, each data point x can
be represented as the linear combination of collaborative subspace s as: x = Xiα,
where α is the representation vector. The intuition behind R-ProCRC[29] is to for-
mulate s as the probabilistic collaborative space such that, different data points x
have different probabilities of l(x) ε lx that can be defined using Gaussian func-
tion as follows [29]:

P (l(x) ε lx) ∝ exp(−c‖α‖22) (11)

Given the test sample yi corresponding to the same ear block i of the ref-
erence samples, the probability that yi belongs to lXi

, i.e., P (l(yi) ε lXi
) can
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be measured by finding a data point x in s and then compute two probabili-
ties: P (l(x) ε lx) and the probability that yi has the same class label as x, i.e.
P (l(x) = l(yi)) that are formulated as follows [29]:

P (l(yi) ε lXi
) = P [l(yi) = l(x)|l(x) ε lXi

].P (l(x) ε lXi
) (12)

P [l(yi) = l(x)|l(x) ε lXi
] can be measured by the computing the similarity

between x and yi using the Laplacian kernal as follows [29]:

P (l(yi) = l(x)|l(x) ε lXi
) ∝ exp(−κ‖yi − x‖1) (13)

From Equation 11, Equation 12 and Equation 13, it follows that [29]:

P (l(yi) ε lXi
) ∝ exp(−κ‖yi −Xiα‖1 + c‖α‖22) (14)

Where, κ is a constant.
The maximum probability P (l(yi) ε l(Xi)) can be obtained from the above

Equation 14 as [29]:

maxP (l(yi) ε l(Xi)) = maxln(P (l(yi) ε l(Xi)) (15)

The above equation provides a probability representation of yi over the collab-
oration subspace s. However, to perform the classification of the probe samples
yi corresponding to subject k, the R-ProCRC will estimate the probability of yi to
each class-specific sub-space that can be represented as [29]:

α̂ = argminα{‖yi −Xiα‖1 + λ‖α‖22

+
γ

K

K∑
k=1

‖Xiα−Xikαk‖22}
(16)

where, K indicates the joint probability P (l(yi) = 1, . . . , l(yi)). The first two
terms in the above Equation 16; ‖yi − Xiα‖1 + λ‖α‖22 indicates the collabora-
tive representation form that find a data point x = Xiα that is close to yi in the
collaborative subspace s. The third term

∑K
k=1 ‖Xiα −Xikαk‖22 find inside each

subspace of class k a point Xikαk which is close to the common point x. The
parameters γ and λ will act as the weights for these tree terms, which can be set
based on the prior knowledge or though the cross validation.

The solution to the Equation 16 is obtained using the Iterative Reweighted
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Algorithm 2 Weight optimisation using greedy algorithm
Input:

2: Comparison scores Ci, ∀i = 1, 2, . . . , 6 // Comparision scores obtained
individually for each ear image block IBi

Variables:
4: N ; // Number of iteration. wi ∀ i = 1, 2, . . . , 6 // weights GMRFMR@10−1

// Genuine Match Rate (GMR) at False Match Rate (FMR) of 10−1 Best −
GMRFMR@10−1 // Best GMR value obtained during iteration WOpt // Opti-
mized weights corresponding to best GMR
Initialization:

6: N = 1000 wi = rand(1, 6) such that
∑6

i=1wi = 1 // Random initialization
of weights Best − GMRFMR@10−1 = 0; // Initialize to zero IterCount = 0
// Initialize intermediate counter of iteration WOpt = zeros(1, 6) // initialize
best weights to zero
while (IterCount ≤ N ) and (GMRFMR@10−1 < Best − GMRFMR@10−1)
do

8: With initialized weights wi compute the weighted SUM rule according to
the Equation 20.

Compute the False Match Rate(FMR) and False Non-Match Rate
(FNMR).

10: Compute the Genuine Match Rate(GMR) as 1−FNMR at FMR = 10−1.
let this be: GMRFMR@10−1

12: if (GMRFMR@10−1) > (Best−GMRFMR@10−1) then
Best−GMRFMR@10−1 = GMRFMR@10−1 // update GMR value

14: WOpt = wi // update weights value
end if

16: end while
Output: Optimized weights WOpt

16



Least Square (IRLS) technique. The probability P (l(yi) = k) can be computed
by:

P (l(yi) = k ∝ exp(−(‖y −Xiα̂‖1 + λ‖α̂‖22
+

γ

K
‖Xiα̂−Xikα̂k‖22))

(17)

Since (‖y−Xiα̂‖1+λ‖α̂‖22 is same for all subjects, it is discarded in computing
P (l(yi) = k). Let

pk = exp(−(‖Xiα̂−Xikα̂k‖22)) (18)

Then, the classification is formulated as follows:

l(yi) = argmax
x

pk (19)

The outcome of the Equation 19 is used as the comparison score to evaluate the
performance of the proposed scheme for robust ear verification. We carry out the
above mentioned steps for all six blocks as illustrated in the Figure 3 to obtain
the comparison scores Ci, ∀i = 1, 2, . . . , 6 corresponding to each block. Finally,
the comparison scores Ci is fused using weighted sum rule as explained in the
following section.

4.4. Score fusion
In this work, we employ the weighted sum rule to combine the compari-

son scores obtained using R-ProCRC on the individual blocks IBi. Let Ci =
C1, C2, . . . , C6 denotes the comparison scores corresponding to ith ear image
block and wi = w1, w2, . . . , w6 denotes the weights then, the weighted sum rule
can be written as:

Fc =
6∑

i=1

wiCi; such that,
6∑

i=1

wi = 1 (20)

We propose to use the greedy algorithm to compute the optimized weights
to achieve an improved ear verification performance. The proposed weight opti-
mization begins with random initialization of the weights wi such that

∑
i wi =

1. Then, the fitness function is evaluated to check the desired optimization is
achieved. The fitness function used in this work will compute GMR@FAR =
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10−1 and the desired value of GMR is set to 100%. The weights are optimized
in the subsequent iterations till it reached the maximum number of iteration (we
have used 1000 iterations), or the desired value of GMR is achieved. Algorithm 2
illustrate the stepwise procedure of the proposed weighted scheme.

To generalize the weights computed using the proposed optimization scheme,
we have used the independent database i.e. AMI Ear database 2. We have used
the ear samples corresponding to 50 subjects from the AMI Ear database to run
the weight optimization scheme. Then, the optimized weights that are obtained
using AMI Ear database are used in this work to evaluate the both surgery and
non-surgery databases.

Feature 
Extraction ‐ LPQ

Classfication:
One‐class SVM

Deformed ear

Normal ear

Figure 6: Block diagram of the proposed scheme for deformed ear detection

5. Proposed scheme for deformed and surgically altered ear detection

The idea of the proposed approach is to present a generalized approach to
identify the subject with deformed and surgically modified ear to reduce the false
reject. The standard approach to this problem is by defining and estimating the 2D
ear image quality metrics or by using a traditional two class classifiers. Since it
is very challenging to generalize the structural variation of the ear that makes the
task of the 2D ear image definition and estimation harder. Furthermore, the limited
availability of the deformed ear samples will always result in over-fitting problem
in case of conventional 2-class classifiers. This motivates us to approach this issue
using one-class classifiers to detect the deformed ear. Our approach can further be
justified by the availability of the high number of normal (or non-deformed) 2D
ear samples. Thus, the one-class classifier can be trained to produce a model for
the normal ear (or positive data) that can decrease the overfitting problem.

Figure 6 shows the block diagram of the proposed scheme for deformed ear
detection. The proposed approach can be structured in two functional blocks
namely: feature extraction and one-class classification. In this work, we em-
ployed the rotation invariant Local Phase Quantization (LPQ) [37] as the feature

2http://www.ctim.es/researchworks/amieardatabase/
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extraction method by considering its insensitivity due to the imaging noise (blur
or sharpness). LPQ features are obtained based on the local phase information
extracted using the 2D Short-Time Fourier Transform (STFT) that are computed
over the neighborhood region of the rectangular window. Figure 10 illustrates
the qualitative results of the LPQ code image on both deformed (Figure 10 (a))
and normal ear (Figure 10 (b)) that indicate the visual differences in the LPQ
coded features. In the next step, we employ the one-class Support Vector Ma-
chine (SVM) that uses the LPQ features to perform the classification [38]. The
one-class SVM maximizes the separation between the points and the origin to per-
form the classification. Given the training data, the one-class SVM maps the data
to high-dimension feature space then the kernel is used to compute the margin
[38]. Finally, the one-class classification is performed to detect the outliers. In
this work, we have used LIBSVM 3 library for one-class SVM classifier and are
trained using normal ear samples.

Table 1: Verification accuracy of SOTA and proposed algorithms on the non-surgery ear databases

Ear Verification Algorithms
Verification Rate (%)

GMR % @ FMR = 0.1% EER(%)

Multi-resolution algorithm [39] 61.61 11.38

Local Phase Quantisation (LPQ) [37] 49.28 11.47

Binarised Statistical Image Features (BSIF) [40] 62.55 8.52

Log-Gabor features [41] 46.91 18.48

Local texture descriptor based on Radon transform [42] 57.81 5.21

Histogram of Oriented Gradients (HoG) [43] 65.87 7.58

Deep Learning: AlexNet 47.39 32.07

SURF [44] 24.28 14.76

Hybrid Fusion [25] 90.99 3.33

Proposed Method 94.78 0.95

6. Results and Discussion

This section presents and discusses the quantitative results of both proposed
scheme for the ear verification and detection of the deformed ear on our newly
developed ear surgery database.

3https://www.csie.ntu.edu.tw/ cjlin/libsvm/
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(a) Verification performance of the proposed
scheme on non-surgery ear database (IIT
Delhi ear database)
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(b) Verification performance of the proposed
scheme on surgery ear database (best viewed
in color)

Figure 7: Verification performance of the proposed scheme. The dashed lines correspond to block
processed results and thick line corresponds to final result.

6.1. Results on the proposed ear verification scheme
To study the effect of 2D ear surgery on the ear verification systems, we have

selected nine different State-Of-The-Art (SOTA) ear verification algorithms for
this study. These algorithms are: Multi-resolution algorithm using Local Binary
Patterns (LBP) and Wavelet transform [39], Local Phase Quantisation (LPQ) [37],
Binarised Statistical Image Features (BSIF) [40], Log-Gabor features [41], Local
texture descriptor based on Radon transform [42], Histogram of Oriented Gra-
dients (HoG) [43], key point descriptors such as SURF [44] and Hybrid fusion
method particularly tailored for ear surgery verification using HoG and LPQ fea-
tures proposed in [25]. These algorithms are chosen based on the proven accuracy
and also based on their ability to cover a broad spectrum of local and global recog-
nition techniques in the ear recognition literature.

In the spirit of recently reported performance of deep-learning techniques [45],
we have explored a pre-trained deep CNN network - AlexNet to provide the com-
parison with proposed method. The pre-trained network is considered in this case
owing to limited dataset availability in pre-and-post surgery conditions for each
subject (one sample). As a specific note, in order to fully leverage the capability
of deep networks, we perform data augmentation to generate 10 samples for each
image in enrolment by inducing rotation and noise addition with various degrees.
We then fine-tune the Alexnet on the augmented ear data by boosting the learning
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rate of the last layer such that they change faster than the network. In this way, we
do not modify the learning rates of the original layers as these are already signif-
icantly small. The learning rate used in the work are weight learning rate factor
equaling to 10 and bias learning rate factor equaling to 20. To effectively evalu-
ate the performance of the state-of-the-art techniques along with the proposed ear
verification scheme we present two set of experiments such as (1) Performance on
non-surgery ear database and (2) Performance on surgically altered ear database.

6.1.1. Performance on non-surgery ear database
This experiment is presented to analyze the performance of the baseline ear

recognition algorithms along with the proposed scheme on the non-surgery ear
database that is exhibiting similar characteristics to that of ear surgery database
in terms of illumination, pose and number of subjects. Therefore, this experiment
is performed on the publicly available non-surgery ear database - IIT Delhi Ear
database [46]. In this database, we select first 211 data subjects such that each data
subject will have 2 samples. Since each data subject is having two samples, we
perform the experiments by considering one ear image as enrolment and another
ear image as probe.

Figure 7a shows the verification performance of the proposed method inter-
preted with respect to individual blocks and the proposed weighted fusion. The
proposed feature extraction and comparison scheme have indicated the outstand-
ing performance with a verification rate of 94.78% @ FMR = 0.1%. It is also
interesting to note that, the use of individual blocks such as block-1 has demon-
strated the reasonable verification accuracy of 84.47% @ FMR = 0.1%. Further,
the use of optimized weighted sum rule to combine the comparison scores from
all six different blocks also indicated the improved verification performance. It

Table 2: Verification accuracy of SOTA and proposed algorithms on the surgery ear databases

Ear Verification Algorithms
Verification Rate (%)

GMR % @ FMR = 0.1% EER(%)

Multi-resolution algorithm [39] 15.63 22.81

Local Phase Quantisation (LPQ) [37] 4.26 27.94

Binarised Statistical Image Features (BSIF) [40] 12.32 26.07

Log-Gabor features [41] 10.42 31.74

Local texture descriptor based on Radon transform [42] 12.79 28.01

Histogram of Oriented Gradients (HoG) [43] 22.27 22.74

Deep Learning: AlexNet 14.21 41.66

SURF [44] 1.42 32.33

Hybrid Fusion [25] 16.58 18.95

Proposed Method 37.44 14.22
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Figure 8: Comparative performance of the proposed scheme with SOTA on non-surgery ear
database (IIT Delhi ear database)

can be further noted that the weight optimization is carried out on the independent
database (see Section 4.4) and only the obtained optimized weights are used to get
the final results of the proposed scheme. These obtained results justify the appli-
cability of the proposed scheme for the single sample ear verification problem.

Figure 8 shows the comparative verification performance of the proposed scheme
along with eight different State-Of-The-Art (SOTA) on the non-surgery ear database.
The eight different SOTA algorithms are re-implemented (due to the lack of open
source) and evaluated using our protocol that has one image for enrolment and
one image for the probe. Table 1 indicates the quantitative results of the proposed
and SOTA algorithms employed in this work. Based on the achieved results, the
proposed scheme has emerged as the best method with the improved performance
of GMR = 94.78% @ FMR = 0.1 %. These results indicate the efficacy of the
proposed scheme, especially with the single enrolment sample.

6.1.2. Performance on ear surgery database
In this section, we present the quantitative results of the proposed and SOTA

methods on the surgery ear database. In the lines of previous section, the protocol
of evaluation remains with one sample (or image) for enrolment and one sample
for the probe. Mainly, we enrolled the individuals with pre-surgery-image and
obtained the performance by probing with the post-surgery-image.

Figure 7b shows the verification performance of the proposed method inter-
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preted with respect to individual blocks and the weighted score fusion. The pro-
posed feature extraction and comparison scheme have indicated the verification
rate of 37.44% @ FMR = 0.1%. When compared to the performance of the indi-
vidual blocks the optimized weighted sum rule has indicated the improved verifi-
cation performance.

(a) DET Curves
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Figure 9: Comparative performance of the proposed scheme with SOTA on surgery ear database
(best viewed in color)

Figure 9 shows the comparative verification performance of the proposed scheme
along with eight different State-Of-The-Art (SOTA) on the surgery ear database.
Table 2 indicates the quantitative results of the proposed and SOTA algorithms
employed in this work. Based on the obtained results, the proposed scheme has
shown the best performance with GMR = 37.44% at FMR = 0.1%. The improved
performance of the proposed scheme can be attributed to the following facts:

• The proposed system can obtain invariant features from the bank of filters
that primarily extract the localized edge descriptors learned using natural
images.

• Further, the use of R-ProCRC boosts the classification performance by learn-
ing the probabilistic collaboration space from the feature space maximizing
the inter-class distance.

• The use of non-overlapping block based approach and combining them at
the comparison score level using optimised weights based on greedy al-
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gorithm further contributes to the improved performance of the proposed
scheme.

The degraded performance of the state-of-the-art methods can be mainly at-
tributed to the nature of extracted features that are sub-optimal to the problem at
the hand. It is noted from the results that, the use of both micro-texture and shape
features fails drastically due to the deformation of the ear after surgery which do
not correspond to images before surgery to a greater extent. As the shape based
ear recognition techniques are mainly designed to match full shape of the ear, the
verification performance decreases due to complete deformation of the shape after
the surgery as anticipated.

Table 3: Verification accuracy of SOTA and proposed algorithms on lobe, beautification and helix
surgery databases.

Ear Verification Algorithms
Ear Lobe Surgery Beautification Surgery Helix Surgery

GMR % @ EER(%) GMR % @ EER(%) GMR % @ EER(%)

FMR = 0.1% FMR = 0.1% FMR = 0.1%

Multi-resolution algorithm [39] 16.63 20.81 4.26 27.94 15.63 22.81

Local Phase Quantisation (LPQ) [37] 4.00 27.00 4.26 27.94 4.26 27.94

Binarised Statistical Image Features (BSIF) [40] 8.00 22.00 12.32 26.06 8.04 22.03

Log-Gabor features [41] 12.42 33.74 10.47 31.74 10.42 31.74

Local texture descriptor based on Radon transform [42] 10.00 24.02 9.16 27.24 7.69 28.20

Histogram of Oriented Gradients (HoG) [43] 16.00 25.57 16.00 25.57 16.00 25.57

Deep Learning: AlexNet 18.01 20.85 27.5 16.55 7.69 20.61

SURF [44] 1.96 29.31 1.67 33.36 2.56 31.41

Hybrid Fusion [25] 26.00 21.59 26.00 21.59 17.94 23.39

Proposed Method 39.05 18.97 37.67 14.16 35.89 20.59

The quantitative results obtained by both surgery and non-surgery ear database,
it can be observed that (1) The performance of the SOTA scheme along with the
proposed method has indicated the degraded results. This suggests the challenges
of the recognizing the ear that are altered surgically. (2) The proposed method
has demonstrated the improved performance on both surgically altered and non-
surgical ear database.

6.1.3. Performance on individual ear surgery database
In this section, we present the evaluation results of the proposed and SOTA ear

verification algorithms independently on three kinds of surgery such as Ear lobe,
Beautification and Ear Helix.

Results on earlobe surgery. Table 3 shows the quantitative results of the ear recog-
nition algorithms on ear lobe surgery database of 52 subjects. In this database, it
is important to note that only ear lobe part has undergone the surgery, and helix
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part of the ear will remain same with pre and post-surgery. The obtained re-
sults demonstrate the improved performance of the proposed scheme with GMR
= 39.05% at FMR = 0.1%. The performance of the SOTA schemes has indicated
a degraded performance when compared with the performance of the proposed
method.

Results on ear beautification surgery. Table 3 shows the quantitative results of
the ear recognition algorithms on ear beatification database comprised of 120 sub-
jects. It can be noted here also that, the overall performance of the state-of-the-art
ear recognition algorithms has demonstrated the degraded performance. The best
performance is noted with the proposed scheme with GMR = 37.67% at FMR =
0.1%. In fact, this is the most natural case in real-life because, the data subject can
enroll with the ear characteristics that is not completely deformed but may have
small structural defects that can treated with the Otoplasty to make ear beautiful.
Hence, even though the ear biometric systems have very strict quality control in
enrolling the ear samples, it will be challenging to discard these ear samples.

Results on ear Helix surgery. Table 3 shows the quantitative results of the ear
recognition algorithms on ear helix database of 39 subjects. Most of the helix
surgery samples included in our database corresponds the surgery carried out on
both mid and top helix portion of the ear. It can noted here that, the overall per-
formance of the state-of-the-art ear recognition algorithms has demonstrated the
degraded performance. The best performance is noted with the proposed scheme
with GMR = 35.89% at FMR = 0.1%.

Based on the obtained results as indicated in the Table 3, the SOTA ear verifi-
cation algorithms fail drastically to handle all three types of ear surgery. Among
three different surgery databases, the helix surgery database has indicated a greater
degradation. However, the performance of the proposed method has consistently
shown an improved performance. Thus based on the extensive experiments car-
ried out on both surgery and non-surgery ear database, the proposed scheme has
emerged has the best scheme when compared with eight different state-of-the-art
algorithms. This further justifies the applicability of the proposed scheme for the
real-life ear verification applications.

6.2. Results on the proposed scheme with feature reduction
As the proposed scheme obtain high dimensional features obtained by con-

volving the ear patch image with the T-LCA filters, it is interesting to analyse
the role of feature reduction techniques on the overall performance of the veri-
fication. To this extent, we have considered the Principal Component Analysis
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(PCA) to reduce the dimension of feature space and then perform the verification.
Table 4 indicates the performance of the proposed scheme with the feature space
reduction using PCA for various dimensions of the features. The following are
the main observations: (1) The performance of the proposed method with feature
reduction techniques is comparable to the performance without feature reduction
technique on the clean ear database (IIT-D ear database). With feature reduction,
the proposed scheme indicates a performance with EER = 1.31% while without
feature reduction scheme, the EER equals 0.95%. (2) The performance of the pro-
posed scheme with feature reduction technique on the surgery ear database shows
degraded performance when compared with the proposed method without feature
reduction technique. Thus, the use of the feature reduction technique results in the
loss of supplementary information that further degrades the overall performance
of the proposed scheme. Thus, based on this analysis it can be observed that the
use of feature reduction techniques can significantly reduce the feature space at
the cost of degraded performance.

Table 4: Performance of the proposed scheme with feature dimensionality reduction using PCA

Table 5: IITD ear database

PC-Variance (%) EER(%) GMR(%) Feature

@FMR=0.1% Dimension

99 % 1.31 92.52 149

98 % 1.41 91.65 114

95 % 2.36 85.74 54

90 % 8.57 37.47 22

Table 6: Ear Surgery database

PC-Variance (%) EER(%) GMR(%) Feature

@FMR=0.1% Dimension

99 % 15.56 32.53 128

98 % 16.56 24.62 95

95 % 17.06 20.56 48

90 % 21.91 9.97 23

6.3. Computational complexity and execution time of the proposed technique
The proposed features extraction scheme is based on performing the 2D con-

volution of the ear images in a block-based manner with each of 256 T-LCF fil-
ters to derive the final feature vector. The off-line learning of T-LCF filters takes
around 15 minutes based on the extracted features. Given the block image IBi of
size m×n and the T-LCF filter size of x× y, then the 2D convolution of IBi with
a FBkwill result in O(m×n×x× y) operations. In our work, the ear image is of
the dimension 30× 30 with a T-LCF filter of dimension 16× 16. This will result
in 30 × 30 × 16 × 16 = 230400 operations for one block corresponding to one
filter. Thus, for the given ear image I , the proposed feature extraction technique
will perform 353894400 operations. We have also computed the execution time of
the proposed technique on the computer with i7 processor and 16GB RAM run-
ning on Matlab 2016b. The end-to-end execution of the proposed technique for

26



the given the test ear image of the ear Itest will take 6.89× 10−3 seconds to render
the verification score. However, an optimized code on other platforms (for e.g.,
C++) can improve the speed of execution.

6.4. Results on the proposed deformed and surgery ear detection scheme
This section presents the quantitative results of the proposed deformed ear

detection scheme. Since the proposed system is based on the one-class classifier,
we train the SVM classifier using clean (or normal) ear biometric database. In
this work, we employ the normal ear images from publicly available ear databases
such as IIT Delhi [46] and AMI ear database 4 to construct the training dataset.
Thus, our training dataset is comprised of 500 ear images such that 456 ear images
are taken from the IIT Delhi ear database and remaining ear images are taken
from the AMI ear database. To choose the appropriate kernel and to tune its
associated parameters, we have used a small ear database comprising of 80 ear
images (44 from IIT Delhi ear database and remaining from AMI ear database)
as the development database. We perform testing on three different experiments
such as:

(a) (b)

Figure 10: Qualitative results of the LPQ codes on (a) deformed ear (b) normal ear

Experiment 1: In this experiment, we consider testing ear images that corre-
sponds to pre-surgery images. Since the ear images before surgery are normally
deformed due to the various reasons such as wearing heavy ear-rings, accidents,
the improper growth of the ear, etc, this experiment will provide the accuracy of
the proposed method in detecting the deformed ear image. Thus, this analysis will

4http://www.ctim.es/researchworks/amieardatabase/
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use 211 ear images captured before surgery as the testing dataset.
Experiment 2: This experiment will evaluate the performance of the proposed
scheme in correctly identifying the normal ear samples. Since biometric ear sam-
ples exhibit both inter and intra-variability, it is essential to understand the false
rejection of the proposed scheme. To this extent, we have used 340 normal ear
images (293 from IIT Delhi and 47 from AMI ear database) as the testing dataset.
Experiment 3: This experiment will evaluate the performance of the proposed
scheme to detect surgically altered ears. Since the ear surgery process will alter
both geometric and texture features of the ear, it can impact the overall appearance
of the surgically altered ear when compared to the normal ear. To this extent, we
use 211 ear images from post-surgery dataset to evaluate the performance of the
proposed scheme and detect the surgically modified ears correctly.

Table 7 shows the quantitative results of the proposed scheme on three exper-
iments described above. Since the proposed system employs the one-class SVM
classifier, we have evaluated four different kernels whose parameters are tuned
using development dataset. The performance of the proposed method is presented
with test success rate, thus higher the value the better is the performance. As can
be seen, the proposed scheme with polynomial kernel has consistently demon-
strated the better performance in all three experiments. Even though the use of
RBF and Sigmoid Kernels have shown better results than the polynomial kernel
on Experiment-1 and Experiment-3, but show they have indicated a decreased
performance in Experiment 2. The lower value of success rate in Experiment-2
indicates the increase in false reject of the normal ears. Thus, based on the ob-
tained results, we can observe that the proposed scheme with polynomial kernel
demonstrates the best performance on all three experiments with a success rate of
86.72% in detecting deformed ear, 72.25% in detecting normal ear and 84.83% in
detecting the surgically modified ear.

Table 7: Performance of the proposed deformed ear detection scheme with four different kernels

Kernel
Test Success Rate (%)

Deformed Ear Normal Ear Surgery Ear
(Experiment 1) (Experiment 2) (Experiment 3)

Linear 86.25 56.87 85.78

Polynomial 86.72 72.25 84.83
RBF 96.20 53.97 90.04

Sigmoid 94.78 48.17 95.73
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7. Conclusion

Surgically modified ear recognition has been an unexplored area in the field
of ear biometrics that poses various challenges. The increase in appearance con-
sciousness in our population has increased the number of surgical procedures with
the intention to beautify the lobe or helix or both, bring them to the original form
or to restore symmetry. With the advancement in the technology and the afford-
ability, people are undergoing ear surgery not only for the medical reason but
also to improve the appearance to look beautiful. Since undergoing an ear lobe
surgery will change both local as well as global appearance of the ear character-
istic, this poses a new challenge in the 2D ear recognition. This paper introduces
a comprehensive work in the field of ear surgery verification with the following
contributions:

1. A new database is constructed with three different kinds of surgery which
include ear lobe, ear helix and ear beatification. The created database is of
211 subjects with pre and post-surgery ear images.

2. Extensive experiments are presented to evaluate the performance of eight
different state-of-the-art ear recognition algorithms quantitatively. Obtained
comparative results indicate the algorithms’ inability to mitigate the vari-
ation in the surgery which demonstrate the decreased performance when
compared with non-surgery (or clean) ear database.

3. Proposed a novel scheme for ear verification based on the naturally inspired
features learned using T-LCA and R-ProCRC. The proposed system has
demonstrated the outstanding performance on both surgery and non-surgery
ear database. This justifies it’s applicability to the real world applications.

4. Proposed a new scheme to detect the deformed ear based on LPQ and one-
class SVM classifier. The proposed scheme not only detects the deformed
ear with the success rate of 86.72% but also detects the surgically altered
ear with a success rate of 84.83% and normal (or clean) ear with a success
rate of 72.25%.

Based on the obtained results, we believe that more research is required to de-
sign optimal ear recognition algorithms that can account for the challenges due to
surgery. The possible future work may include the use of new kind sensing devices
such as Light Field camera or the Kinect to study the variation of depth informa-
tion from normal to surgically modified ear image to identify the ear surgery sam-
ple more accurately and to improve the overall performance of the ear recognition
system.
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Appendix A

Table 8 shows the quantitative performance of the proposed scheme for ro-
tation and translation on IIT-Delhi ear database. To evaluate the performance of
the proposed scheme in this case, we keep the enrolled samples unaltered and
probe samples are rotated to various degrees and translated (both vertically and
horizontally). Based on the obtained results as indicated in the Table 8 follow-
ing can be observed: (1) The proposed method has indicated good performance
with the small variation in the rotation (up to 4◦ ). However as the rotation angle
increases, the performance of the proposed method decreases. (2) The proposed
method has indicated good results with smaller translation (up to 2 X 2 pixels) in
both horizontal and vertical direction. However, as the translation is increased, the
performance also drops and the proposed approach did not show much variation
in the performance between vertical and horizontal translation.

Table 8: Performance of the proposed scheme on image rotation and translation on IIT Delhi ear
database

Rotation Angle (Degrees) EER (%)

2 0.94

4 01.02

5 01.83

10 03.27

Verification performance versus image rotation

Translation type Translation Pixels EER (%)

2 X 2 0.98

Horizontal 5 X 5 02.31

10 X 10 03.62

2 X 2 0.99

Vertical 5 X 5 01.89

10 X 10 03.21

Verification performance versus image transla-
tion
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