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ABSTRACT 

Scope: Some studies suggest that a high dietary intake of omega 6 fatty acids is pro-

inflammatory. However, whether omega 6 fatty acids actually cause pathogenic 

inflammation in humans is debated. Therefore, we investigated the associations between 

expression of immunology-related genes in peripheral blood mononuclear cells (PBMCs) and 

serum total omega 6 PUFA status.  

Methods and results: We measured serum fatty acid profile and expression of 460 

immunology-related genes in PBMCs from 58 healthy children (6-13 years), and examined 

the expression differences between children with high or low total omega 6 PUFA status 

(upper versus lower tertile). Taken together, both univariate analyses and integrated omics 

analyses support that while high omega 6 PUFA level associated with higher expressing of 

genes related to innate immune responses, it also associated with lower expression of 

several genes related to adaptive immune responses. 

Conclusion: Omega 6 PUFA status associated both positively and negatively with expression 

of specific immunology-related genes in PBMCs in healthy children. Our results may suggest 

a nuanced role for omega 6 fatty acids in the interphase of lipids and inflammation, which 

warrants further examination in gene-environment studies and randomized controlled trials. 

  



INTRODUCTION 

Cardiovascular disease (CVD) is a main cause of death and disability worldwide.[1] It is usually 

caused by atherosclerosis, which is a life-long progressive disease of the arteries mainly 

driven by close and bi-directional interaction between lipids and the immune system.[2] 

Accordingly, expanded knowledge on the interrelationship between lipids and inflammation 

in the early phases of atherosclerosis may have large potential in future prevention of CVD.  

Diet affects the classical risk factors for atherosclerosis.[3] As a key strategy to reduce low-

density lipoprotein cholesterol (LDL-C) and prevent atherosclerotic CVD, health authorities 

worldwide recommend reducing the intake of saturated fatty acids (SFAs) and to increase 

the intake of polyunsaturated fatty acids (PUFAs).[3, 4] Of the latter, omega 6 PUFAs is a major 

component, in particular the essential linoleic acid (C18:2-n6, LA). However, long-chained 

PUFAs like omega 6 PUFAs may be more prone to peroxidation that subsequently could 

contribute to DNA instability, as well as protein and membrane damage. Additionally, the 

omega 6 fatty acid arachidonic acid (C20:4-n6, AA) is a precursor for eicosanoids. These are 

molecules with significant inflammatory potential, and include the prostaglandins and 

leukotrienes, as well as specialized pro-resolving mediators, such as the lipoxins.[5, 6] In other 

words, the recommended intake of omega 6 PUFAs is a balance between beneficial and 

harmful effects on processes involved in atherosclerosis.  

Still, whether dietary intake of omega 6 PUFAs actually causes pathogenic inflammation in 

humans is debated. First, precisely measuring dietary intake of omega 6 PUFAs is inherently 

difficult, even with validated questionnaires. Secondly, inflammation is not a simple entity 

such as C-reactive protein (CRP) or the key pyrogenic interleukins (that is, IL1b, IL6 and 



tumor necrosis factor, TNF), but represents a complex set of molecules and interactions that 

usually includes both pro- and anti-inflammatory signals.[5]  

However, serum total omega 6 PUFA level may be used as a biomarker of dietary total 

omega 6 PUFA intake, since LA, the main contributor of serum total omega 6 PUFA variability, 

cannot be synthesized in humans, and the conversion of LA into long-chain PUFAs is 

limited.[7-10] Moreover, the systemic environment may prime leukocytes in circulation; 

therefore, data obtained from isolated peripheral blood mononuclear cells (PBMCs) could 

well reflect the in vivo situation, and immunology-related mRNA expression in could provide 

a more comprehensive characterization of inflammation, and at a higher resolution, 

compared to standard measurements of circulating markers.  

On this background, the aim of the present study was to investigate if immunology-related 

gene expression in PBMCs associated with serum total omega 6 PUFA status in healthy 

children.  

  



EXPERIMENTAL SECTION 

In the present study in healthy children, we measured immunology-related gene expression 

in PBMCs using Nanostring technology. We adjusted for key covariates, and applied various 

statistical and bioinformatics analyses to associate these measurements with serum omega 6 

PUFA status.  

Subjects 

We used clinical and biological measurements from 58 children that participated in the Stork 

children study, thoroughly described previously.[11] Briefly, in 2015, when the children were 

6-13 years, we examined them with respect to CVD risk factors, including body composition 

using dual-energy X-ray absorptiometry (DEXA). We also collected blood samples and 

isolated PBMCs for mRNA extraction and analyses.  

Fatty acid analyses 

Total serum fatty acid profile was analyzed at Vitas Ltc (Oslo, Norway), and expressed as 

percentage of total fatty acids, as previously described.[7] Total omega 6 PUFA level (in 

percentage) was calculated with the following formula: Total serum omega 6 PUFA level = 

C18:2n6 Linoleic acid (LA) + C18:3n6 Gamma Linoleic acid + C20:2n6 Eicosadienoic acid + 

C20:3n6 Dihomo Gamma Linoleic acid + C20:4n6 Arachidonic acid (AA). These fatty acids 

made up approximately 76 %, 1 %, 1 %, 5 % and 18 % of the total omega 6 PUFA level, 

respectively.  

We split the subjects into tertiles (three groups) of total serum omega 6 PUFA level, and 

focused on the lower (below 33.7 %) and upper tertile (above 35.9 %), hereafter called low 

and high omega 6 group, respectively. 



Nanostring gene expression and bioinformatics analyses 

PBMCs were isolated, and mRNA was extracted as previously described.[12] RNA expression 

analysis was run on the nCounter® analysis system, running 12 samples at a time (referred to 

as one strip). The procedure was performed according to the manufacturer´s instructions, 

applying about 100 ng mRNA. We analyzed a fixed codeset of mRNA target, comprising key 

genes involved in human immunology (nCounter GX Human Immunology Kit v2, Nanostring 

Technologies). We used Nsolver Analysis Software for automated quality control, 

normalization and analysis of nCounter Nanostring data (NanoString Technologies). 

Detection limit was set to 14 mRNA molecules based on the following formula: average 

(negative control) + 2SD (negative controls). Of totally measured 579 target genes in the kit, 

460 were included in the final analyses (79.4 %) (SuppMat 1). Endogenous controls were 

analyzed in Normfinder software from MOMA (Microsoft Excel add-in) with strip and group 

affiliation as factors. Based on this analysis, coefficient of variation (CV) and density of 

frequency, RPL19, POLR2A, ABCF1, HPRT1 and TBP were selected. Finally, number of mRNA 

molecules was normalized against negative, positive and endogenous controls, and the 

resulting data was imported into Partek Genomics Suite 6.6 (NanoString Technologies).  

Batch correction 

To reduce variation from sources other than the group effect, we batch corrected the gene 

expression data. To do this, we analyzed the contribution from a set of covariates related to 

biology as well as technical steps in the pipeline: strip, age, gender, date and time of blood 

sampling, PBMC processing time, and quality and purity of RNA. Although multiple variables 

slightly affected the variation in the dataset, only age (binned/categorized), gender and strip 

were included as covariates in the batch correction adjustment.  



Univariate and multivariate analyses 

Supplemental figure 1 illustrates the outline of the analysis pipeline. We used 4-way ANOVA 

(group, gender, strip and age [binned]) to test for differential gene expression, that is, 

compare gene expression between groups. For further biological insight, we analyzed 

differentially expressed (DE) genes (based on nominal p < 0.05, both higher and lower 

expressed genes) using standard multivariate pathway analyses and gene ontology (GO) 

analyses in Partek Genomics Suite 6.6. Using the complete set of available genes, we also 

performed gene set enrichment analyses (GSEA). These multivariate analyses quantify and 

test enrichment of genes within some aspect of biology, often presented as enrichment 

score (such as a Z score) and corresponding significance level (generally using a Chi-squared-

type test). Gene set enrichment could for example encompass genes related to localization: 

cell membrane or molecular function: IL6 signaling. Hence, they may provide a more holistic 

understanding of complex gene expression results, compared with single gene investigations. 

To further examine these results, we also did GO analyses in Metacore (portal.genego.com, 

Clarivate Analytics, London, UK), which is an accessible bioinformatics tool that enables fast 

analysis of both whole-genome expression datasets as well as smaller subsets of genes. In 

Metacore we also did transcription regulation analyses, which specifically build lists of 

networks for every transcription factor (TF) related to the subset of genes of interest. For 

these analyses, we used DE genes (based on nominal p < 0.05, either higher or lower 

expressed, or both) and five clusters of DE genes (based on FDR < 0.2; see Additional 

statistical analyses).  

In order to estimate the relative proportion of different blood cell types in each sample, we 

used the predictive CIBERSORT algorithm.[13] This algorithm applies feature selection and 



subsequent linear support vector regression (SVR) using a whole-genome gene expression 

data matrix as input, and returns relative proportions of 22 leukocyte subtypes. Since we ran 

the analysis using less than 50 % of the genes for each cell type panel (only 460 genes; not 

whole-genome), the sensitivity of this analysis was expected to be lower than usual. 

However, we filtered out results with a poor goodness of fit (based on deconvolution result 

across all cell subsets), and focused on the cell subsets that make up most of the PBMC pool: 

Monocytes and lymphocytes (mainly resting NK cells, CD8+ T cells, B cells, naïve CD4+ T cells 

and resting CD4+ memory T cells).  

Additional statistical analyses 

In sensitivity analyses, we performed least squares linear regression adjusting for visceral fat 

content according to the following formula: Gene ~ omega 6 groups + visceral fat content + ε. 

In an attempt to detect meaningful patterns of gene expression and thereby improve 

translation of our findings, we correlated all DE genes with Spearman correlation. 

Correlation was in this case used as a measure of co-expression, which may or may not be 

biologically relevant. In contrast to previous analyses, here we defined DE genes as FDR less 

than 0.2 (233 genes); this to include a larger number of genes in the subsequent analyses 

and thereby increase the robustness of the biological interpretations. Next, we calculated 

the Euclidean distance on the correlation matrix, and subsequently performed hierarchical 

clustering (complete linkage) on the distance matrix. Visual inspection of the correlation plot, 

dendogram, and elbow plot of the total within-cluster sum of squares suggested that the 

data contained approximately 3-6 clusters; hence, the dendogram was cut into 5 clusters of 

genes. These candidate genes and gene clusters were subjected to similar multivariate 

analyses as described for the crude DE analysis. 



Additional statistical analyses and visualizations were executed in R version 3.5.0 using the 

RStudio interface.[14] All packages used in the analyses pipeline are listed in the supplemental 

material (SuppMat 2).  

  



RESULTS  

Mean serum omega 6 PUFA level was 37.6 (SD 1.2) and 30.8 (SD 2.1) % in children in the 

upper (n=19) and lower (n=19) tertile, respectively, primarily reflecting increased proportion 

of LA and AA (Table 1). As expected, children in the high omega 6 group had significantly 

different levels of several saturated and monounsaturated fatty acids, as compared with 

children in the low omega 6 group, but with no differences in omega 3 levels (SuppTable 1). 

Also as seen in other studies, children in the high omega 6 group had lower total body fat 

percentage, visceral fat percentage and triglycerides than children in the low omega 6 group 

(Table 1, SuppTable 1).[15, 16] 

Association between serum omega 6 PUFA status and PBMC gene expression 

Forty-six genes (10.0 %) were differentially expressed (DE) between the high and low omega 

6 groups at nominal α significance level 0.05 (Figure 1A-B, SuppTable 2). The most DE genes, 

measured by significance level and fold difference, were HLA-DPB1 (MHC class II DP beta 1), 

TICAM1 (TLR adaptor molecule 1), RELB (RELB proto-oncogene, NF-kB subunit), C5 

(Complement component 5) and FCER1A (Fc fragment of IgE, high affinity I), which were 

higher expressed in the high omega 6 group, and ZAP70 (TCR zeta-chain associated protein 

kinase 70kDa), IL11RA (IL11 receptor alpha), and PDGFRB (Platelet-derived growth factor 

receptor, beta polypeptide), which were lower expressed in the high omega 6 group (Figure 

1A-B, SuppTable 2). Also, although they did not reach statistical significance, a number of 

genes displayed relatively large absolute fold differences between the two groups, including 

the KIR (killer immunoglobulin-like receptors) family of genes (Figure 1A). Also, PTGS2 

(Prostaglandin-endoperoxide synthase 2, also known as Cyclooxygenase 2, COX2), IDO1 

(Indoleamine 2,3-dioxygenase 1) and IL1R1 (Interleukin 1 receptor type 1) positively 



associated with omega 6 PUFA level, and IFNG (Interferon gamma) and CXCR1 (C-X-C motif 

chemokine receptor 1) negatively associated with omega 6 PUFA level.  

Integrated analyses 

In order to understand systematic patterns underlying the gene expression differences 

between the two omega 6 groups, we performed several integrated analyses of many genes 

simultaneously. We focused particularly on pathway analyses, GO analyses, GSEA and 

transcription regulation analyses. 

Pathway analysis displayed enrichment for a number of immunity- and infection-related 

pathways, including NFkB signaling pathway and Influenza A (Figure 2A, SuppTable 3). 

Furthermore, the top three GO terms involved TNF and TNF superfamily processes, but other 

terms included serotonin, myeloid and mast cell processes (Figure 2B, SuppTable 4). More 

specifically, a number of GO terms were enriched by DE genes (P < 0.05) that were 

expressed higher in the high omega 6 group (SuppFig 2, SuppTable 5B, 6B and 7B). Among 

these include the biological process terms immune and inflammatory response, defense 

response and cytokine production, the molecular function terms immunoglobulin, chemokine 

and cytokine receptor binding and activity, and cellular localization related to the cell 

membrane. In contrast, other GO terms were enriched by DE genes (P < 0.05) that were 

lower expressed in the high omega 6 group (SuppFig 2, SuppTable 5C, 6C and 7C). Among 

these include the biological process terms leukocyte and lymphocyte activation, and T cell 

differentiation, the molecular function terms protein tyrosine kinase and PI3 kinase, and 

cellular localization related to both the cell membrane and cytoplasm.  

GSEA analysis showed enrichment of gene sets that include TNF and IFN production, 

response to bacteria, regulation of mitochondrial processes, and innate immune responses 



for the high omega 6 group, which further emphasized key biological differences between 

the two groups (Figure 2C, SuppTable 8).  

Finally, transcription regulation analysis detected large numbers of important TFs (Figure 2D, 

SuppTable 9). The top five were p53, c-Myc, STAT1, STAT3, and SP1, which regulate genes 

involved in immune response, cytokine production and leukocyte activation (Figure 2D, 

SuppTable 9). These and other TFs were enriched in groups of genes that were either higher 

or lower expressed in the high omega 6 group (SuppFig 3, SuppTable 9). However, as for GO 

terms, the relative enrichment of different TFs varied with the expression of DE genes 

(SuppFig 3). For example, Bcl-6, RelA, YY1, IRF8 and STAT6 were mainly enriched in the group 

of higher expressed genes, and STAT5, FOXP3, AML1 and EST1/RUNX1 were mainly enriched 

in the group of lower expressed genes (SuppFig 3).  

Sensitivity analyses 

Both total body fat mass and serum triglycerides were inversely correlated with omega 6 

PUFA level, and both fat mass and monocyte count were associated with multiple sets of 

genes, as defined by cluster analysis (data not shown). To remove some of this confounding 

effect on the association between omega 6 PUFA level and gene expression, we adjusted for 

visceral fat content using linear models. After adjustment, 233 genes were DE between the 

two groups (FDR < 0.2). Next, in an attempt to detect and understand biologically 

meaningful sets of genes, we grouped these 233 genes into 5 gene clusters by calculating 

Spearman’s correlation coefficient, followed by hierarchical clustering (SuppFig 4). 

Supplemental figures 5A-E, visualize the coefficient estimates (± 95 % CI) for all genes as a 

function of group, adjusting for visceral fat content. Interestingly, the five gene clusters were 

different with respect to pattern of GO terms and TFs (SuppFig 6 and 7). Visually, clusters 1 



and 5 displayed similarity, as did clusters 3 and 4; cluster 2, on the other hand, was more 

unique (SuppFig 6 and 7). Cluster 2 consisted of 150 genes that were higher expressed in the 

high omega 6 group. Biological processes such as leukocyte activation, and immune and 

defense response were enriched in these genes; so were the molecular function terms 

pattern recognition receptor (PRR) activity and signal transduction, and the cellular 

localizations terms cell membrane and intracellular vesicles (SuppFig 6). This cluster was also 

associated with TFs that include NFkB and RelA; again emphasizing the importance of innate 

immunity for the genes that were higher expressed (SuppFig 7). In contrast, cluster 1, for 

example, consisted of 42 genes that were lower expressed in the high omega 6 group. These 

genes mapped to biological processes such as lymphocyte activation and leukocyte cell-cell 

adhesion, and molecular functions such as CD40 and TNF receptor binding, and DNA and 

nucleic acid binding, mainly located to the cell membrane (SuppFig 6). Furthermore, multiple 

TFs of the STAT family, including STAT3, STAT5A, STAT5, and STAT6, as well as p53 and RelA 

were enriched by genes in cluster 1 (SuppFig 7).  

Cell type-specific gene expression 

To attribute gene expression differences to specific PBMC cell types, we used the predictive 

CIBERSORT algorithm. First, cell type did not differ markedly across serum omega 6 PUFA 

levels (SuppFig 8). Furthermore, although predicted cell type weakly correlated with 

leukocytes measured by standard differential count (data not shown), they showed clear 

discrepancies between the 5 gene clusters (SuppFig 9), which suggests that gene expression 

differences still may be caused by leukocyte distribution differences. In support of this, in a 

linear model adjusting for visceral fat, monocyte level was higher in the high omega 6 group 

(Figure 3). 



Fatty acid-specific associations 

To shed light on differences between LA and AA in mediating the associations between total 

omega 6 and gene expression, we performed additional sensitivity analyses. Compared with 

omega 6 status, the group affiliation changed minimally if splitting of the subjects was based 

on tertiles of LA status, but it changed markedly if splitting based on tertiles of AA status 

(SuppFig 10A). Out of the 19 in the high omega 6 group, four (21 %) and nine (47 %) were 

reassigned when splitting the groups based on LA and AA, respectively. And out of 19 in the 

low omega 6 group, two (11 %) and eight (42 %) were reassigned when splitting the groups 

based on LA and AA, respectively. This could be explained by the high correlation between 

total omega 6 level and LA, and lower correlation between total omega 6 level and other 

specific fatty acids (SuppFig 10B and C), which suggests that variation in LA is the major 

driver of variation in total serum omega 6. This is further supported by linear models 

adjusted for either AA or LA level on top of the adjustment for visceral fat; only the latter 

displayed a significant recession of the Volcano plot (SuppFig 10D). Finally, DE genes based 

on LA groups enriched pathways and GO terms similar to that based on omega 6 groups, 

whereas DE genes based on AA groups enriched other pathways (data not shown).  

  



DISCUSSION 

In the present study of healthy children, we found that total omega 6 PUFA status was 

associated with expression of a large number of immunology-related genes in PBMCs. The 

differences in gene expression may reflect functional differences in innate and adaptive 

immunity, mediated at least partly by alterations in leukocyte distribution, differentiation or 

activation. 

In main analyses, 46 genes were differentially expressed between the groups. Genes that 

associated with omega 6 PUFA level that are of particular interest include PTGS2, IDO1, IFNG, 

and C5.  

As expected, PTGS2, more commonly known as COX2, was positively associated with omega 

6 PUFA level. PTGS2 is an essential enzyme in prostaglandin synthesis, and in contrast to 

PTGS1, it is also inducible: PTGS2 expression is directly affected by a number of metabolites, 

including LA, AA, and the omega 3 PUFAs EPA and DHA.[5] This single finding may support the 

classical hypothesis that a high omega 6 PUFAs intake can “cause inflammation” via 

increased PTGS2-mediated eicosanoid production; however, depending on the physiological 

setting, the final molecular effect on inflammation are probably determined by a whole 

array of input signals, which complicates interpretation.[5, 6] Nevertheless, this gene is related 

to multiple diseases including autoimmune diseases, cardiovascular disease and diabetes 

type 2, indicating its importance in fatty acid-related pathophysiology.[17, 18] 

IDO1 and IFNG associated positively and negatively with omega 6 PUFA level, respectively. 

This is a surprising and interesting finding. IDO1 is the first and rate-limiting step in 

tryptophan catabolism to form N-formyl-kynurenine, which in monocytes and macrophages 

is an important cellular signal to regulate T cell behavior. IFNG, on the other hand, is a 



cytokine produced in cells from both the innate and adaptive arms of the immune system 

that among other things facilitates protection against intracellular microbes. Of particular 

interest in this setting: IFNγ activates the enzyme IDO in regulation of the tryptophan-

kynurenine pathway, which has pivotal roles in immuno-metabolism.[19] Indeed, this 

pathway may be involved in CVD.[20, 21] Therefore, our data suggest that there is an 

interaction between omega 6 PUFA level and the tryptophan-kynurenine pathway that 

needs further exploration in randomized controlled trials (RCTs).  

C5 was positively associated with omega 6 PUFA level. C5 is a key part of the complement 

system, and has recently been implicated in cholesterol-crystal-mediated inflammation in 

atherosclerosis.[22, 23] C5 can be cleaved to C5a, which is a potent mediator of the immune 

response, for example in activation of Th1 responses via the NLRP3 inflammasome.[24] 

Integrated analyses displayed an association between higher omega 6 PUFA level and higher 

expression of sets of genes that map to the innate immune responses, such as TLR, NFkB and 

NLRP3-related processes, and cytokine production, as well as gene expression-predicted 

percentage of monocytes. These findings are unexpected, because compared for example 

with SFA, omega 6 PUFAs reduce both LDL-C and liver fat content, which causally affects 

atherosclerosis and non-alcoholic fatty liver disease (NAFLD), respectively, both of which are 

highly inflammation-dependent diseases.[25-28] Therefore, we anticipated a negative 

association between omega 6 PUFAs and circulating measures of inflammation.[29-32] One 

may speculate that omega 6 PUFAs induce training of circulating myeloid cells, potentially 

via epigenetic mechanisms. Such a mechanism is described for several transient exposures, 

including a western diet, oxidized LDL, and metabolic signals from the mevalonate 



pathway.[33-35] Of note, Christ and co-workers found that training of monocytes following a 

western diet was mediated via epigenetic modification of NLRP3.[34] 

High omega 6 PUFA level associated negatively with expression of genes that map to 

adaptive immune responses, such as lymphocyte activation and T cell differentiation, 

potentially mediated via cell-cell interactions and protein tyrosine kinase signaling. The 

negative association of IFNG with omega 6 PUFA may further support such a notion. This 

finding, too, is somewhat unexpected. PTGS2 converts AA and the omega 3 fatty acids EPA 

and DHA into eicosanoids.[5] A number of eicosanoids regulate inflammation, and a common 

hypothesis states that higher activity in the AA-eicosanoid pathway inhibits the anti-

inflammatory effects of omega 3 fatty acids, and hence may contribute to certain immune-

related diseases such as asthma, allergy and autoimmune diseases.[36, 37] In contrast, our 

data support that, as opposed to innate immunity, adaptive immunity-mediated responses 

may be attenuated with higher serum level of omega 6.  

Worldwide, dietary guidelines recommend substituting SFA by PUFA to lower serum LDL-C 

and thereby the risk of CVD.[3, 4] For the most part, increased PUFA intake is achieved by a 

consuming a combination of omega 6 and omega 3 PUFAs, of which the former is the main 

contributor. In this respect, in a recent targeted analysis in humans we showed that plasma 

omega 6 and omega 3 PUFA level, and SFA to PUFA ratio, associated with PBMC expression 

of genes related to lipid metabolism, particularly cholesterol metabolism.[38] 

The strengths of the present study include the use of DEXA to measure body composition, 

the high-quality fatty acid profile measurement, as well as the large number of specific 

immunology-related genes examined in PBMCs using state-of-the-art Nanostring technology. 

Also, the study of children may reduce the impact of confounding variables such as exposure 



to alcohol and smoking, and the cumulative effect of lifestyle over many years; these issues 

may be more critical in adult subjects. The main limitations include the cross-sectional 

design and the low number of participants, which increases the probability of type 1 and 2 

errors. Specifically, this may have concealed the true association between omega 6 PUFA 

and immunology-related gene expression. Indeed, omega 6 PUFA level and expression of the 

LDLR gene in PBMCs was inversely correlated in the present study; opposite of our 

expectation based on a randomized controlled trial in adult humans that we recently 

conducted (data not shown). Furthermore, in the CIBERSORT analysis we ran less than 50 % 

of the genes for each cell type panel, which lowers the sensitivity and specificity of the 

analysis. Nevertheless, this analysis may potentially be more sensitive in detecting cell 

distribution differences than standard blood cell types (differential count). Finally, although 

we have adjusted for several covariates, we cannot exclude that the associations between 

omega 6 PUFA status and gene expression is affected by residual confounding, for example 

by specific fatty acids and lipid species, including oxidized compounds.  

In conclusion, in healthy children, omega 6 PUFA status in serum was associated with several 

genes in PBMCs, and integrated analyses revealed that multiple arms of the immune system 

were involved. Interesting, while high omega 6 PUFA levels associated with increased 

expressing of genes related to innate immune responses, it also associated with decreased 

expression of several genes related to adaptive immune responses, suggesting the omega 6 

PUFAs may differently affects these pathways. Our results point to specific genes and 

pathways that may interact with omega 6 PUFA level in homeostatic control of inflammatory 

processes – candidates that warrant further examination in other epidemiological studies, 

and well-conducted gene-environment studies and RCTs in humans.  
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Table 1. Subject characteristics           

 

Omega 6 status 
in lower tertile 

 

Omega 6 status 
in upper tertile 

    n = 19   n = 18-19   P1 

Female gender, n (%) 8 (42) 
 

10 (53) 
 

0.752 
Age, y 9.9 (2.0) 

 
9.8 (2.0) 

 
0.92 

Clinical parameters 
     Weight, kg 40 (17) 

 
35 (10) 

 
0.29 

Height, m 1.43 (0.14) 
 

1.42 (0.14) 
 

0.90 
BMI, kg/m2 18.8 (4.1) 

 
16.9 (2.2) 

 
0.070 

Visceral fat, % 23.8 (12.9) 
 

16.7 (7.1) 
 

<0.05 
SBP, mmHG 109 (8) 

 
105 (6) 

 
0.16 

Biochemistry 
     Total cholesterol, mmol/L 4.0 (0.7) 

 
4.1 (0.6) 

 
0.49 

LDL-C, mmol/L 1.9 (0.6) 
 

2.2 (0.6) 
 

0.20 
HDL-C, mmol/L 1.5 (0.3) 

 
1.7 (0.3) 

 
0.074 

Triglycerides, mmol/L 1.3 (0.5) 
 

0.6 (0.2) 
 

<0.001 
Glucose, mmol/L 5.3 (0.7) 

 
5.3 (0.4) 

 
0.88 

CRP, mg/L 0.8 (0.4) 
 

0.7 (0.3) 
 

0.46 
Omega 6 polyunsaturated fatty acids, % 

    Plasma total n-6 level 30.8 (2.1) 
 

37.6 (1.2) 
 

<0.001 
C18:2n6 Linoleic acid 23.1 (1.8) 

 
28.6 (1.9) 

 
<0.001 

C18:3n6 Gamma Linoleic acid 0.46 (0.22) 
 

0.34 (0.20) 
 

0.093 
C20:2n6 Eicosadienoic acid 0.24 (0.04) 

 
0.24 (0.04) 

 
0.56 

C20:3n6 Dihomo Gamma Linoleic 
acid 1.6 (0.4) 

 
1.5 (0.3) 

 

0.70 

C20:4n6 Arachidonic acid 5.4 (0.9) 
 

6.9 (1.1) 
 

<0.001 

Distributions for all continuous variables are described by mean and SD. Gender 
distribution is described by n and %. 
1Two sample T test 

     2Pearson's Chi-squared test 
      

  



Figure legends 

Figure 1. Differential expression analysis. A) Volcano plot highlighting both significant genes 

and genes with an absolute fold difference above 2.5, and B) top 20 most significantly 

different genes, sorted by fold difference. Log is natural logarithm; size aesthetic is mapped 

to y-axis value. The data are based on 4-way ANOVA between groups with high and low 

omega 6 PUFA level; higher expression means higher in the group with high omega 6 PUFA 

level. Abbreviations: C5, Complement Component 5; CASP10, Caspase 10, Apoptosis-Related 

Cysteine Peptidase; CD1A, Cd1a Molecule; CD2, Cd2 Molecule; CD3D, Cd3d Molecule, Delta 

(Cd3-Tcr Complex); CRADD, Casp2 And Ripk1 Domain Containing Adaptor With Death 

Domain; CXCR1, Chemokine (C-X-C Motif) Receptor 1; FCER1A, Fc Fragment Of Ige, High 

Affinity I, Receptor For; Alpha Polypeptide; FCGRT, Fc Fragment Of Igg, Receptor, 

Transporter, Alpha; HLA-DPB1, Major Histocompatibility Complex, Class Ii, Dp Beta 1; IDO1, 

Indoleamine 2,3-Dioxygenase 1; IFNG, Interferon, Gamma; IL11RA, Interleukin 11 Receptor, 

Alpha; IL1R1, Interleukin 1 Receptor, Type I; IL21R, Interleukin 21 Receptor; IL2RG, 

Interleukin 2 Receptor, Gamma; IRF5, Interferon Regulatory Factor 5; ITGAM, Integrin, Alpha 

M (Complement Component 3 Receptor 3 Subunit); KIR3DL1, Killer Cell Immunoglobulin-Like 

Receptor, Three Domains, Long Cytoplasmic Tail, 1; KIRAS1, Killer Cell Immunoglobulin-Like 

Receptor; KIRAS2, Killer Cell Immunoglobulin-Like Receptor; KIRIS1, Killer Cell 

Immunoglobulin-Like Receptor; KIRIS2, Killer Cell Immunoglobulin-Like Receptor; LILRB3, 

Leukocyte Immunoglobulin-Like Receptor, Subfamily B (With Tm And Itim Domains), 

Member 3; LTBR, Lymphotoxin Beta Receptor (Tnfr Superfamily, Member 3); PDCD2, 

Programmed Cell Death 2; PDGFRB, Platelet-Derived Growth Factor Receptor, Beta 

Polypeptide; POU2F2, Pou Class 2 Homeobox 2; PTGS2, Prostaglandin-Endoperoxide 

Synthase 2 (Prostaglandin G/H Synthase And Cyclooxygenase); RELB, V-Rel 



Reticuloendotheliosis Viral Oncogene Homolog B; TGFBI, Transforming Growth Factor, Beta-

Induced, 68kda; TICAM1, Toll-Like Receptor Adaptor Molecule 1; TLR1, Toll-Like Receptor 1; 

ZAP70, Zeta-Chain (Tcr) Associated Protein Kinase 70kda.  

Figure 2. Integrated omics analyses. The top 20 most relevant A) pathways, B) gene 

ontology (GO) terms, C) gene sets, and D) transcription factors (TFs), sorted by enrichment 

or z score. The numbers to the right represent number of genes present and total number of 

genes in that pathway, GO term, or TF. For gene sets, the number represents total number 

of genes in the respective gene set. The P values are extremely low for all, but for the darker 

the color, the lower the P value; for exact p value, see Supplemental table 3-9. Higher 

enrichment means higher in the group with high omega 6 PUFA level. Results in panel A, B 

and C are based on Partek analyses; results in panel D is based on Metacore analyses (see 

Methods). For abbreviations, see Supplemental tables 3-9. 

Figure 3. CIBERSORT-predicted cell types. Association between omega 6 PUFA level and 

CIBERSORT-predicted leukocyte cell types, based on gene expression pattern. Symbols are 

regression coefficient estimates (± 95 % CI) of difference between high and low omega 6 

groups, adjusted for visceral fat. Higher level means higher in the group with high omega 6 

PUFA level.  
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SUPPLEMENTAL INFORMATION  

Supplemental figures and figure legends 

 

Serum omega 6 fatty acids and immunology-related gene expression in peripheral blood 

mononuclear cells: a cross-sectional analysis in healthy children 
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Supplemental figure 1. Methods flow chart. Methods flow chart that illustrates the main 

univariate and multivariate approaches used in the statistical and bioinformatics analyses, 

and their interrelations.  
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Supplemental figure 2. Gene ontology analysis: higher and lower expressed genes. The top 

gene ontology (GO) terms that display enrichment for differentially expressed genes (P < 

0.05). Labels represent in data and total data for that particular GO term, respectively. Data 

are faceted on type of GO term (rows) and whether genes are higher (UP) or lower (DOWN) 

in the high omega 6 group, or both (UP and DOWN) (columns). Colors denote strength of 

significance; for exact p values, see Supplemental table 5-7. Abbreviations: XXX, extremely 

(low); XX, extremely-very (low); X, very (low).  
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Supplemental figure 3. Transcription factor analysis: higher and lower expressed genes. 

The top transcription factors (TFs) that display enrichment for differentially expressed genes 

(P < 0.05). Labels represent seed nodes and total nodes for that particular TF, respectively. 

Data are faceted on whether genes are higher (UP) or lower (DOWN) in the high omega 6 

group, or both (UP and DOWN) (columns). Colors and point size denote strength of 

significance and Z score; for exact values, see Supplemental table 9. Abbreviations as for 

Supplemental figure 3.  
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Supplemental figure 4. Gene expression correlation heatmap. Correlation heatmap of 233 

genes with FDR < 0.2, after adjusting for visceral fat. Genes are clustered into k = 5 clusters 

using hierarchical clustering (Euclidean distance, complete linkage). Red and blue color 

means positive and negative correlation, respectively; color intensity denotes strength of the 

association. For abbreviations, see Supplemental material 1. 
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Supplemental figure 5. Forestplot: clusters 1-5. Forestplots that display the differences 

between high and low omega 6 groups for single genes in A) cluster 1, B-D) cluster 2, and E) 

clusters 3 through 5. Data are beta estimates ± 95 % confidence interval. The genes were 

clustered into k = 5 clusters using hierarchical clustering (Euclidean distance, complete 

linkage) (see Supplemental figure 5). As opposed to data in Figure 1 and Supplemental table 

2, these results are adjusted for visceral fat. For abbreviations, see Supplemental material 1. 

 



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

C
luster 1

−1.2 −0.8 −0.4 0.0

KIRIS1
KIRIS2

PDGFRB
KIR3DL2

CCL4
GZMB

EOMES
TBX21

GFI1
CD45RA

CTLA4_all
NFATC2
SLAMF6

FADD
TIGIT

CD247
SH2D1A

ABCB1
IRAK2

KLRC4
ICOS

CD40LG
SOCS1

IKZF3
KLRK1

JAK3
TRAF2
ITGA6

TAGAP
STAT4
ZEB1

NFATC3
IL11RA

CD5
TRAF1

LITAF
IKZF2

MAP4K1
PPIA

TRAF5
JAK1
IL16

Change in high omega 6 group

P value

●

●

●

< 0.01

< 0.05

> 0.05

Linear regression analysis

Association between omega 6 level and gene expression

Batch corrected for age, gender and strip,
and adjusted for visceral fat



●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C
luster 2

0.0 0.2 0.4 0.6

CD164
CTNNB1

BCL10
CD46

BCAP31
CTSC
CHUK
BST2
CD58
CD44
CD48

C4BPA
CCL7
APP
AHR

BCL3
CD4
BID

ATG7
CEBPB

CD74
CASP1

CD1D
CD163
ATG12
CCL8

BTK
CDKN1A
CLEC6A

BCL6
CD86

CSF3R
CARD9

CFP
BATF3
CD14
CCR1

CLEC4E
CCR2
CTSS

CSF2RB
CLEC4A

CD36
CSF1R
C4A/B
BST1
CD9

CLEC7A
CIITA
CD1A

Change in high omega 6 group

P value

●

●

●

●

< 0.001

< 0.01

< 0.05

> 0.05

Linear regression analysis

Association between omega 6 level and gene expression

Batch corrected for age, gender and strip,
and adjusted for visceral fat



●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C
luster 2

0.0 0.5 1.0 1.5

GPI
IFNAR2

ITGA5
MAPK14

IRF7
IRAK1

GAPDH
ITGB2
GUSB

LIF
LILRB1
LTB4R

IRF8
LY96

ITGAX
LILRA5
ITGAM
LILRA6

IFNGR1
HLA−DPB1
HLA−DPA1
HLA−DMA

LILRB4
FCGR2A/C

LILRB2
MYD88

FCGR2A
LILRA1

HLA−DMB
HLA−DRB3
HLA−DRA

FCER1G
JAK2

CYBB
IL18

LILRA2
LGALS3
FCGRT

LTBR
IRAK3

LILRB3
ICAM1

IRF5
IL13RA1
ENTPD1

IL1RN
FCGR1A/B

CXCL10
IDO1

MARCO

Change in high omega 6 group

P value

●

●

●

●

< 0.001

< 0.01

< 0.05

> 0.05

Linear regression analysis

Association between omega 6 level and gene expression

Batch corrected for age, gender and strip,
and adjusted for visceral fat



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

C
luster 2

0.0 0.5 1.0

PML
TP53

PTPN2
RAF1

PDCD2
STAT3

TAPBP
PSMB7
PSMD7
TGFB1
PTPN6

TYK2
NFKB2
NOD1

TMEM173
STAT6

POLR1B
TNFSF12

STAT2
TICAM1
TNFSF8

NOTCH2
TNFRSF1B

PECAM1
POU2F2
NFKBIA
PRKCD

SYK
TLR1

S100A9
TNFSF10
TNFRSF8

S100A8
TLR5

PYCARD
PLAUR

SRC
NCF4
TLR8

NOD2
SERPING1

TLR2
TNFSF13B

TLR4
PTAFR

TNFRSF10C
TLR7

TGFBI
NLRP3
PTGS2

Change in high omega 6 group

P value

●

●

●

●

< 0.001

< 0.01

< 0.05

> 0.05

Linear regression analysis

Association between omega 6 level and gene expression

Batch corrected for age, gender and strip,
and adjusted for visceral fat



●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

C
luster 3

C
luster 4

C
luster 5

−0.25 0.00 0.25 0.50 0.75 1.00

UBE2L3
TBK1

CD45RB
IFIH1

BCL2L11
CCRL2

FAS
IL15

SOCS3
IL1R1

IKBKB
TRAF3

IFNAR1
TRAF4
CD274

TNF
CRADD

CD40
RELB

FCGR2B
C6

FCER1A
C5

CCR7
CD28
IL7R

CD3D
ZAP70
IL21R

CD7
CD6
CD2

CD96
LCK

IFITM1
CD3E

S1PR1
ETS1

IL2RG
SIGIRR

IKZF1

Change in high omega 6 group

P value

●

●

●

< 0.01

< 0.05

> 0.05

Linear regression analysis

Association between omega 6 level and gene expression

Batch corrected for age, gender and strip,
and adjusted for visceral fat



Supplemental figure 6. Gene ontology analysis: gene clusters. The top gene ontology (GO) 

terms that display enrichment for differentially expressed genes (FDR < 0.2), after adjusting 

for visceral fat. Labels represent in data and total data for that particular GO term, 

respectively. Data are faceted on type of GO term (rows) and cluster affiliation (columns). 

Colors denote strength of significance; for exact p values, see Supplemental table 5-7. 

Abbreviations as for Supplemental figure 3. 
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Supplemental figure 7. Transcription factor analysis: gene clusters. The top transcription 

factors (TFs) that display enrichment for differentially expressed genes (FDR < 0.2), after 

adjusting for visceral fat. Labels represent seed nodes and total nodes for that particular TF, 

respectively. Data are faceted on cluster affiliation (columns). Colors and point size denote 

strength of significance and Z score; for exact values, see Supplemental table 9. 

Abbreviations as for Supplemental figure 3. 

 



●

●

●

●

●

●

●
●

●
●

15/16

14/15

14/15

13/14

12/13

12/13

11/12

11/12

11/12

11/12

●

●

●

●

●

●

●

●

●
●

83/84

78/79

77/78

77/78

73/74

69/69

68/68

69/69

67/67

66/66

●

●

●

●

●

●

●
●

●

●

5/6

5/6

4/5

4/5

4/5

4/5

4/5

4/5

4/5

3/4

●
●

●

●

●

●

●

●

●

●

5/6

5/6

5/6

5/6

5/6

5/6

4/5

4/5

4/5

4/5

●

●

●

●

●

●
●
●

●

●

10/11

10/11

9/10

8/9

8/9

7/8

7/8

6/7

6/7

5/5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

IRF1
YY1

c−Fos
PU.1
E2F1

FOXO3A
STAT1
STAT6
ETS1
c−Jun

ESR1 (nuclear)
HIF1A

CREB1
AML1 (RUNX1)

RelA (p65 NF−kB subunit)
IRF4
p53

STAT5
FOXP3
c−Myc

SP1
STAT5A

STAT3
IRF8

NF−kB
C/EBPbeta

zScore

●
●
●
●

●

280

260

240

220

200

P value
●

●

●

●

XXX−Low

XX−Low

X−Low

Low

Transcription regulation analysis



Supplemental figure 8. CIBERSORT-predicted cell types. Level of key PBMC cell types 

predicted by CIBERSORT for serum omega 6 groups.  
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Supplemental figure 9. CIBERSORT-gene expression correlation heatmap. Spearman 

correlations between CIBERSORT-predicted cell types and gene expression. Data are faceted 

on immune cell type (rows) and cluster affiliation (columns) (see Supplemental figure 5). 

Blue and red colors mean positive and negative correlation coefficients, respectively. Color 

intensity denotes strength of the association. For abbreviations, see Supplemental material 1. 
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Supplemental Figure 10. Fatty acid-specific associations. Differences between linoleic acid 

(L) and arachidonic acid (AA) in mediating the associations between total omega 6 and gene 

expression. A) Alluvial diagram depicting changes in group affiliation when splitting into 

tertiles based on LA or AA, colored by total omega 6 group affiliation. Note the similarity 

between the left omega 6 group split (left column) and LA group split (middle column), and 

the divergence in the AA group split (right column). B) Heatmap displaying Spearman 

correlation coefficients between all individual fatty acids and desaturase indices, as well as 

total omega 6 level. Both rows and columns are clustered (Euclidean distance, hierarchical 

clustering, complete linkage). Note clustering of very long-chained saturated fatty acids 

(SFAs), LA and AA, and delta 5 desaturase (cluster 1, top left), omega 3 fatty acids (cluster 2, 

middle), and middle- and long-chained SFAs, monounsaturated fatty acids, and other 

desaturase indices (cluster 3, bottom right). C) Scatterplots of total omega 6 level versus the 

specific omega 6 fatty acids. Note a high positive association between total omega 6 level 

and LA, but lower association between total omega 6 level and other specific fatty acids. D) 

Volcano plots displaying coefficient estimates versus p-values from linear models for all 460 

genes, adjusted for visceral fat, or either AA or LA level on top of visceral fat. Note fewer 

significantly different genes in the latter. Abbreviations: c, carbon; c20, C20:0 (and similar for 

the other SFAs); c204n6, C20:4-omega 6 (and similar for the other unsaturated fatty acids); 

d5d/d6d, delta 5/6-desaturase; scd16/scd18, Stearoyl-CoA desaturase (Δ-9-desaturase)-

16/18.  
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Christensen Mol Nutr Food Res: graphical abstract text 

High omega 6 polyunsaturated fatty acids (PUFAs) level, a biomarker of dietary intake of 

omega 6 PUFAs, associated with higher expressing of genes related to innate immune 

responses, and with lower expression of genes related to adaptive immune responses in 

peripheral blood mononuclear cells (PBMCs) in healthy children. A number of specific 

immunology-related genes and pathways were significantly different between high and 

low omega 6 PUFA level. These may be further examined in gene-environment studies 

and randomized controlled trials, in order to better understand how dietary omega 6 

PUFAs influence atherosclerosis development via regulation of gene expression.  
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