
Android Apps and Permissions: Security
and Privacy Risks

Trond Boksasp
Eivind Utnes

Master of Telematics - Communication Networks and Networked

Supervisor: Svein Johan Knapskog, ITEM
Co-supervisor: Pern Hui Chia, ITEM

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Third-party applications drive the attractiveness of web and mobile application

platforms. Many platforms (incl. Android, HTML5 web apps, Facebook) rely on

granular permissions to avoid granting full privileges to third-party applications.

The case of Android OS is particularly interesting. However, the permission sys-

tem on Android is complex. There are more than 135 official permissions, and

it has been a challenge in communicating the actual scope of each permission to

both the developers and users. This creates rooms for exploitations; malicious ap-

plications (or grayware) disguise themselves amongst the hundreds of thousands

of normal ones.

This project will focus on a large scale data collection and analysis to measure

and characterise the behaviour of bad applications. The basic ideas (adaptable

to student’s interests) would be as follows:

1. Build an automated and long term data collection process (e.g., using

Bash/Python)

2. Parse and organise the information obtained into structured database (e.g.,

using MySQL)

3. Analyse the data and visualize interesting patterns (e.g., using R)

4. Characterise the behaviour of bad apps (e.g., detecting anomalous permis-

sion requests)

Assignment given: 23.01.2012

Supervisor: Pern Hui Chia, Q2S Professor: Svein Knapskog, Q2S

i

ii

Preface

This master’s thesis completes our 2 year master’s program in Telematics at the

Norwegian University of Science and Technology.

We would like to thank our supervisor Pern Hui Chia from Q2S at NTNU for all

the valuable guidance and help during the course of this project. This project

could not have been accomplished without you. Thanks also to Professor Svein

Johan Knapskog from Q2S for getting this project up and running, and for guiding

us through the finishing stages.

We greatly appreciate the students at Futurum for keeping our spirits up, and

the students at Victoria for keeping us sane.

Lastly, we would like to thank our families for believing in us even when we

didn’t. Your continuous support over the years have been important.

iii

iv

Abstract

This thesis investigates the permissions requested by Android applications, and

the possibility of identifying suspicious applications based only on information

presented to the user before an application is downloaded. During the course of

this project, a large data set consisting of applications published on Google Play

and three different third-party Android application markets was collected over

a two-month period. These applications are analysed using manual pattern re-

cognition and k-means clustering, focusing on the permissions they request. The

pattern analysis is based on a smaller data set consisting of confirmed malicious

applications. The method is evaluated based on its ability to recognise malicious

potential in the analysed applications. The k-means clustering analysis takes

the whole data set into consideration, in the attempt of uncovering suspicious

patterns. This method is evaluated based on its ability to uncover distinct suspi-

cious permission patterns and the findings acquired after further analysis of the

clustering results.

v

vi

Sammendrag

Denne masteroppgaven undersøker tillatelsene etterspurt av Android applikasjo-

ner og mulighetene for å identifisere mistenkelige programmer basert kun p̊a infor-

masjon presentert til brukeren før applikasjonen blir lastet ned. Under gjennom-

føringen av dette prosjektet har vi laget ett datasett best̊aende av applikasjoner

fra Google Play og tre tredjeparts applikasjons-markeder, samlet over en tom̊ane-

ders periode. Applikasjonene er analysert med manuell mønstergjenkjenning og

k-means gruppering med fokus p̊a tillatelsene de ber om. Mønstergjenkjenningen

er basert p̊a et mindre datasett best̊aende av bekreftede ondsinnede applikasjoner,

og metoden er evaluert etter dens evne til å gjenkjenne ondsinnet potensiale i de

analyserte applikasjonene. Grupperingsanalysen tar hele datasettet i betraktning

for å finne mistenkelige mønstre. Denne metoden er evaluert etter dens evne til

å avdekke mistenkelige mønstre og funnene ervervet etter nærmere analyse av

resultatene fra grupperingen.

vii

viii

Contents

Problem Description i

Preface iii

Abstract v

Sammendrag vii

Abbreviations xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Limitations . 2

1.4 Thesis Structure . 3

2 Methodology 5

2.1 Phase 1 - Surveying Android Markets & Android Security 5

2.2 Phase 2 - Developing Data Collection Programs and Infrastructure 6

ix

CONTENTS

2.3 Phase 3 - Data Collection, Initial Analysis Planning 6

2.4 Phase 4 - Analysis, Findings & Write-up 7

3 Background 9

3.1 Short History of Malware . 9

3.2 Android Malware . 10

3.3 Android Security . 11

3.3.1 Permissions . 11

3.3.2 Sandbox . 14

3.3.3 Application signing . 14

3.3.4 Remote kill switch . 15

3.3.5 File system protection . 15

3.3.6 Google Bouncer . 15

3.3.7 Anti-virus applications . 16

3.4 Android Threat Landscape . 16

3.4.1 Trojans . 16

3.4.2 Spyware . 16

3.4.3 Root exploit . 17

3.4.4 Botnet . 18

3.4.5 Premium SMS sender . 18

3.4.6 Drive-by-download . 18

3.4.7 Proof-of-concept . 18

3.4.8 Destructive Trojans . 19

x

CONTENTS

3.4.9 Other threats . 19

3.5 Machine Learning . 20

3.5.1 Supervised learning . 21

3.5.2 Unsupervised learning . 21

3.5.3 K-means . 22

3.6 Related Work . 23

4 Data Collection 27

4.1 Building the Data Set . 27

4.1.1 Market data set . 27

4.1.2 Malicious data set . 32

4.2 Data Sorting . 33

4.2.1 Removing duplicates . 34

4.2.2 Permission filtering . 35

4.3 Final Data Set . 37

5 Analysis 39

5.1 Permission Statistics . 39

5.1.1 Permissions used only by malware 40

5.1.2 Analysis of permissions . 41

5.2 A Closer Look at Malicious Applications 43

5.2.1 CounterClank/Apperhand 44

5.2.2 DroidDream/Rootcager . 45

xi

CONTENTS

5.2.3 Geinimi . 46

5.2.4 GoldDream . 46

5.2.5 Pjapps . 48

5.2.6 adSMS . 51

5.2.7 JimmRussia . 52

5.3 A Closer Look at Potentially Suspicious Applications 52

5.3.1 Advertisement networks . 52

5.3.2 Application builders . 55

5.4 Recognizing Bad Applications . 55

5.4.1 Recognising malware by permissions 56

5.4.2 Analysis using clustering algorithms 60

5.5 Summary of Findings . 79

5.5.1 Pattern analysis . 79

5.5.2 Clustering analysis . 79

5.5.3 Comparing the analysis methods 80

6 Discussion 81

6.1 Implications . 81

6.1.1 Signature and signatureOrSystem permissions and Google

Play . 81

6.1.2 Lack of sufficient documentation of the permissions 82

6.1.3 Application builders used to spread malware 82

6.1.4 Value of pattern-based recognition 83

xii

CONTENTS

6.2 Potential Limitations . 84

6.2.1 Determining number of clusters for k-means 84

6.2.2 On using k-means clustering for analysing Android appli-

cations . 84

7 Ideas for Future Work 87

7.1 Is the Application Suspicious? . 87

7.2 Including Third-party Permissions 88

7.3 Exploring Other Machine Learning Methods 88

8 Conclusion 89

A Surveyed Markets 101

A.1 Selected Markets . 101

A.2 Not Selected Markets . 101

B Permissions 107

C Malware Permission Sets 113

xiii

CONTENTS

xiv

List of Figures

3.1 Android permission request (left) and the permissions of an in-

stalled application (right). Retrieved from [36] 12

5.1 Total within-cluster sum of squares. Each point on the x-axis

represents an increase in the number of k clusters. 62

5.2 Difference in cost between each value of k. Each value on the x-

axis should be read as follows: x = cost(k + 1)− cost(k). Column

x = 3 therefore shows the difference in the cost between cluster 4

and cluster 3. 63

5.3 Results from running k-means with k=16. Shows the distribution

of clusters for each market in percentage. Malware is represented

by ’Contagio’. 65

5.4 Distribution of applications in the sixteen clusters 66

5.5 Comparison between number of applications and within-cluster

sum of squares per cluster. 67

5.6 Permission patterns of the 170 applications assigned to cluster 9.

The figure depicts a table where each column represents a permis-

sion, and each row represents an application in cluster 9. Black

means that the permission is present in the permission requests of

an application. 72

xv

LIST OF FIGURES

5.7 Permission patterns of the 207 applications assigned to cluster 15.

The figure depicts a table where each column represents a permis-

sion, and each row represents an application in cluster 15. Black

means that the permission is present in the permission requests of

an application. 75

5.8 Searching for developer Ashley Williams on AppBrain. The appli-

cations are still visible, but marked as spam. (June 7th, 2012) . . . 77

5.9 Permission patterns of the 451 applications assigned to cluster 13.

The figure depicts a table where each column represents a permis-

sion, and each row represents an application in cluster 13. Black

means that the permission is present in the permission requests of

an application. 78

xvi

List of Tables

4.1 The total number of applications in the data set 37

4.2 The number of applications collected from each market (not count-

ing malware) . 37

5.1 Average number of permissions by data set, and the highest and

lowest number of requested permissions. 40

5.2 Permissions used only by malicious applications 41

5.3 Permissions requested by our CounterClank samples compared to

the frequency of these permissions in the data sets. * not present

in all samples . 45

5.4 Permissions requested by our DroidDream samples compared to

the frequency of these permissions in the data sets. * not present

in all samples . 45

5.5 Permissions requested by our Geinimi samples compared to the

frequency of these permissions in the data sets. * not present in

all samples . 47

5.6 Permissions requested by our GoldDream samples compared to the

frequency of these permissions in the data sets. * not present in

all samples . 48

xvii

LIST OF TABLES

5.7 Permissions requested by our Pjapps.A samples compared to the

frequency of these permissions in the data sets. * not present in

all samples . 49

5.8 Permissions requested by our Pjapps.B samples compared to the

frequency of these permissions in the data sets. * not present in

all samples . 50

5.9 Permissions requested by our Pjapps.C samples compared to the

frequency of these permissions in the data sets. * not present in

all samples . 50

5.10 Permissions requested by our adSMS sample compared to the fre-

quency of these permissions in the data sets. 51

5.11 Permissions requested by our JimmRussia sample compared to the

frequency of these permissions in the market data set. 52

5.12 The ten most popular Android advertisement networks, by the

percentage of applications that use them [84] 53

5.13 The required and optional permissions requested by the adver-

tisement networks. From left to right; Admob [38], AirPush [2],

Millennial Media [57], Leadbolt [50], AdWhirl [1], Mobclix [61],

Inmobi [46], MobFox [62], TapJoy [83] and StartApp [71]. O =

Optional, R = Required. 54

5.14 The seven patterns compared to each other. From left to right:

Geinimi, DroidDream, CounterClank, Pjapps, adSMS, Jimm Rus-

sia, Gold Dream . 59

5.15 Comparison of top permissions in the total data set, including

malicious applications, and cluster 10 69

5.16 Top 10 permissions of cluster 10 70

5.17 Top 8 permissions of cluster 9 . 71

5.18 Categories found in cluster 9 . 72

xviii

LIST OF TABLES

5.19 Developers in cluster 9 . 73

5.20 Names from applications IDs of applications developed by the top

four developers in cluster 9. The X marks that the name has been

confirmed as a developer of Android games. 74

5.21 Top 11 permissions of cluster 15 75

5.22 Top 11 permissions of cluster 13 76

C.2 Permissions requested by DroidDream/Rootcager 114

C.4 Permissions requested by CounterClank/Apperhand 114

C.6 Permissions requested by Geinimi 115

C.8 Permissions requested by GoldDream 116

C.10 Permissions requested by Pjapps.A 116

C.12 Permissions requested by Pjapps.B 117

C.14 Permissions requested by Pjapps.C 118

C.16 Permissions requested by adSMS 119

C.18 Permissions requested by JimmRussia 119

xix

LIST OF TABLES

xx

Abbreviations

Amazon EC2 Amazon Elastic Compute Cloud

APK Application Package

C&C Command and Control Server

DOS Disk Operating System

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

IP Internet Protocol

MD5 Message Digest 5

OEM Original Equipment Manufacturer

SIM Subscriber Identity Module

SMS Short Message Service

SQL Structured Query Language

SSE Sum of Squared Error

UID User Identifier

XML Extensible Markup Language

xxi

Chapter 1

Introduction

With the advent of smartphones, users are, knowingly or not, carrying more and

more private information around with them on their phones. This information

range from the location of the device to the reading habits of the user and even

his or her bank details. While attacks on mobile devices have largely focused on

earning the attacker quick cash by sending text messages to or calling premium

numbers, the focus has shifted towards stealing the private data contained on the

devices [82].

As the Android platform has grown to take one of the largest shares of the smart-

phone market, the platform has become the prime target for criminals seeking

the private data the users are carrying around with them. At the same time, the

security of the platform has come under scrutiny from security professionals.

This project will focus on identifying suspicious applications, both from the offi-

cial Google Play market and third-party markets.

1.1 Motivation

Malicious software is a common problem for every software platform, and the

Android platform is no exception. Since the first malicious Android application

was discovered in 2010, the number of malicious applications has been consist-

ently rising. Looking at the details of the various Android malware applications

1

1.2. OBJECTIVE

recognised by Symantec [82], there is an apparent trend towards information

stealing. We see that a large subsection of the malicious applications is dedicated

to stealing private information from the users.

While the Google team is quick to remove malicious applications from Google

Play when they are made aware of them, this can be after a considerable number

of users have already downloaded the applications. The same applies to other

third-party markets, and as such a method of identifying malicious applications

before they are installed is required. Anti-virus applications and the recently

unveiled Google Bouncer do partially fill this gap, but both the Bouncer and

the anti-virus applications require that the malicious code has been analysed

beforehand. A method of identifying new malicious applications before they are

accepted to the markets is required.

1.2 Objective

The objective of this project is to gather and analyse a large data set consist-

ing of publicly available application information from various Android markets.

Additionally, a sample of malicious applications will be acquired for comparison.

These data sets will be used to examine the permissions requested by applications,

through machine learning and permission request analysis. This examination will

focus on the possibility of distinguishing whether or not an application is “sus-

picious” based on information available before the application is downloaded to

the device, with particular focus on the requested permissions, either one permis-

sion alone or in combination with other permissions. In a real-world scenario, an

application deemed suspicious by this method would be flagged for review.

1.3 Limitations

Because this project only examines the data available to the user before an ap-

plication is downloaded, the source code of the applications will not be taken into

consideration. As such, there are limitations to what can be analysed.

First, this means that implicit vulnerabilities, like permission sharing and cap-

ability leaks, as presented in Chapter 3, will not be detected. Secondly, because

the markets used are not consistently listing third-party permissions among the

regular Android permissions, third-party permissions will not be studied beyond

2

1.4. THESIS STRUCTURE

a cursory examination where appropriate during the analysis of the malicious

applications in Chapter 5.

1.4 Thesis Structure

Chapter 2 presents the methodology used in this project.

Chapter 3 explains the background for this project. It will present general in-

formation on malicious applications, threats and the security model used on the

Android platform. Additionally, it will cover work that relates to this project.

Chapter 4 relates to the data collection done for this project. It will explain

how the third-party markets were chosen, how the data was collected and the

challenges faced in the data collection part of the project.

Chapter 5 presents the analysis of the gathered data. This chapter will include

both pattern analysis and analysis by k-means clustering.

Chapter 6 presents a discussion of the results from Chapter 5.

Chapter 7 present our ideas for future work.

Chapter 8 presents the conclusion of this thesis.

3

1.4. THESIS STRUCTURE

4

Chapter 2

Methodology

The progress of this project was spaced out in four phases.

2.1 Phase 1 - Surveying Android Markets & An-

droid Security

First, decisions were made as to what information would be required and which

markets were suitable. From markets dedicated to open source (F-Droid), mar-

kets aimed at handsets sold by particular vendors (LG, Samsung) to markets

publishing adult content (Mikandi), the list of Android dedicated markets is long

and growing. See Appendix A for a list of all the surveyed markets.

Looking at the list of markets, we were originally afraid that we would have to

discard perfectly valid markets due to time constraints, but in the end only four

markets fulfilled our criteria. The process of selecting suitable markets is further

described in Section 4.1.1.

An application with a template of what data we should focus on was provided

to us by our supervisor. This blueprint was based on his research [17] on the

available data in the Google Play market, and the application was used as a

starting point in the next phase of the project.

After looking at the information present in the selected Android markets, it was

5

2.2. PHASE 2 - DEVELOPING DATA COLLECTION PROGRAMS AND
INFRASTRUCTURE

decided that we would use the template with some modifications. Due to how

some of the selected markets are constructed, the developer information (except

the developer identifier) and the comments made about the application were

ignored. An exception to this was made for the Google Play market, for which

the aforementioned application developed by our supervisor was used.

2.2 Phase 2 - Developing Data Collection Pro-

grams and Infrastructure

Several applications were required to gather the required data, and decisions had

to be made on which language(s) to use. This decision was based on scalability,

platform independence and the existence of any libraries required. The appli-

cation mentioned in the previous phase was used as the baseline for the data

collection programs. One data collection program was required for each market,

as detailed in Section 4.1.

During this phase, one member of the team wrote the data collection program

while the other developed automation and warning scripts for the server. As

explained in Section 4.1.1, the data collection programs were implemented on

an Amazon Elastic Compute Cloud (Amazon EC2) instance, which meant that

server stability was guaranteed by Amazon. This meant that we did not have to

worry about the stability of the servers, but we would still need warnings if the

applications ran into issues.

2.3 Phase 3 - Data Collection, Initial Analysis

Planning

While the programs were collecting data, plans were laid on how to best analyse

the collected data. It is important to note that this was done in this phase in

order to base it on the actual data collected from the markets, as before the data

collection started we were unable to verify how consistent the markets were in

their data presentation.

After the planning was completed, one member of the team started studying the

machine learning algorithms while the other started collecting malicious applica-

tions to use as a comparison for the applications retrieved from the markets.

6

2.4. PHASE 4 - ANALYSIS, FINDINGS & WRITE-UP

During this phase, one of the data collection programs underwent a minor ad-

justment as the F-Droid market changed the layout and coding of the front page.

The issue was quickly rectified, and this combined with the slow growth of the

F-Droid market meant that there was not a significant loss of data.

The data collection phase was stopped after sixty-five days, after having run from

the third of March to the seventh of May. This provided us with a total of 26,438

applications in total, both legitimate and malicious.

2.4 Phase 4 - Analysis, Findings & Write-up

Before the data could be analysed the permission names needed to be standard-

ised, and misspelled and undocumented permissions had to be identified. Anal-

ysis based on categories was largely cut due to time constraints, although briefly

examined during the analysis of the clustering algorithm results.

The analysis was split up between the two members of the team, with one member

analysing patterns in the requested permissions and the second analysing them

using clustering algorithms. The results of these analysis methods were then

compared to each other, and conclusions on the validity of each method were

reached.

7

2.4. PHASE 4 - ANALYSIS, FINDINGS & WRITE-UP

8

Chapter 3

Background

3.1 Short History of Malware

Since the first recognised malicious application, the “Brain” virus [26] which first

attacked the DOS platform back in 1986, viruses have evolved drastically, both

in complexity and targeting. While the original Brain virus simply renamed the

C: drive on the infected computers, more recent Trojans like “Zeus” [23] which

attacks the Windows operating system, and “Flashback” [22] which attacks the

OSX platform, attempt to steal personal and financial information.

This trend has been going on since Brain’s inception, with malicious applications

moving from proof-of-concept and bragging rights towards financially motivated

attacks. The same trend is evident on the mobile platform, when seen as a whole.

The first malware aimed at mobile devices, Cabir [70], infected devices running

the Symbian operating system through their Bluetooth connection with the sole

purpose of propagating itself. It did not appear to have any payload beyond what

was necessary to continue spreading, and as such was more annoying than dan-

gerous. By contrast, recent mobile malware attacking the Android platform, like

DroidKungFu [24] and GinMaster [25], attempt to steal private information much

like their desktop counterparts. Other malicious applications attempt to turn the

devices into bots or simply incur costs on behalf of the malware developers.

9

3.2. ANDROID MALWARE

3.2 Android Malware

Android malware appears to have moved beyond the proof-of-concept and de-

structive phase almost completely. The first malware recorded by Symantec,

Ewalls [76], attempts to steal personal information from the device it is installed

on, including the devices IMEI (International Mobile Equipment Identity) num-

ber and details from the SIM (Subscriber Identity Module) card including oper-

ator name and serial number.

We would argue that this is because the various mobile platforms should be seen

as a single platform as far as malware motivation is concerned. More established

mobile platforms, including Symbian and iOS, have already created a market for

malicious applications which translates to the Android platform.

It is worth noting that despite this, the FakePlayer Trojan [78] is often considered

the first malware aimed at Android [67]. This could be explained by the spread

of the malware, as Ewalls appears to have managed to compromise a far smaller

number of Android devices than Fakeplayer.

Perceived rise of Android malware There are many actors involved in the

Android security scene, including Trend Micro, Symantec, Lookout and many

more. Even as such, it is surprisingly hard to get reliable numbers about mali-

cious applications in the wild, or even the growth of the malicious applications.

Headlines like �Android Malware Surges Nearly Five-Fold Since July� [86] and

�Android malware has jumped up 472% since July� [65] have been touted by

many sites, but finding the original numbers have been surprisingly hard. The

Divide by Zero blog managed to find the original source [72], and noted that the

numbers were misrepresented.

Even industry giants like Trend Micro struggle with providing levelheaded data,

as reading up on their Bouncer-like application (see Section 3.3.6) we are pre-

sented with a collection of impressive numbers. Quoting from the article [58];

�Trend Micro threat research experts identified more than 1,000 malicious An-

droid applications in 2011� without stating whether or not this was unique in-

fections or multiple samples of the same infections, and �that number growing

at an astounding rate of 60% month over month�, culminating in 120,000 mali-

cious applications during 2012. For comparison, there are currently 440,000 [7]

10

3.3. ANDROID SECURITY

applications in the Google Play market.

Despite the sensationalist scaremongering, the consensus is that the number of

malicious applications targeting the Android platform is increasing, and the mal-

ware is becoming more and more sophisticated. As such, even if the numbers are

grossly overstated, identifying and neutralising malicious applications should be

a top priority for both Google and other interested parties.

3.3 Android Security

The Android system uses several methods to secure the devices of the users.

Below we will describe the security features that affect applications directly, which

are the features that are relevant for malicious applications to attempt to defeat

or circumvent.

3.3.1 Permissions

Android restricts the capabilities of applications installed on the device by ex-

plicitly requesting the user to allow the application to access various parts of the

operating system or features of the device. In order for an application to be able

to use one of these capabilities, it is required to have the related permission been

granted by the user (see Appendix B) during installation, as demonstrated in

Figure 3.1. The permission system [36] is comprehensive and provides a good

framework for determining what resources an application will have access to once

it has been installed on a device.

These permissions are stored in a file called manifest.xml found inside the APK

(Application Package) file of the application, and cannot be changed after the

application is installed. An exception from this rule is made when updating

applications, but the user is still required to approve any new permissions, in a

similar process as when first installing the application.

Permissions are all or nothing. This means that when a user is installing an appli-

cation, the user must either grant the application all the permissions it requests

or refrain from installing the application. This solution prevents developers from

worrying about whether or not a refused permission will cause the application

to crash or behave incorrectly when trying to access the denied feature. It also

prevents users from denying a suspicious application certain permissions even if

11

3.3. ANDROID SECURITY

Figure 3.1: Android permission request (left) and the permissions of an installed
application (right). Retrieved from [36]

12

3.3. ANDROID SECURITY

the application itself provides an interesting service. While the general consensus

is that if an application is suspicious, you should not install it, this also affects

genuine applications which request a suspicious combination of permissions.

Developers can also create their own permissions [43], which can be used to

give other applications access to features in the application. This does however

counteract parts of the security imposed on the application by the sandbox feature

covered in Section 3.3.2. These permissions are not explicitly stated to the users

during installation, but can be determined by examining the Android manifest

file.

Permissions are divided into four protection levels named, in order of protection;

normal, dangerous, signature and signatureOrSystem. These levels are based

on their capacity for damage or potential cost to the user, with most of the

permissions being labeled as dangerous . These protection levels can also be

given to third-party permissions.

Permissions with the normal (also called safe) protection level, like VIBRATE

and SET WALLPAPER, are permissions that are not considered to have any

danger associated with them. The Android package installer will not ask the user

for approval for these permissions [41]. The dangerous protection level however,

will cause warnings to be displayed to the user before installation, and requires

the user’s approval to be granted.

The signature and signatureOrSystem protection levels protect the most danger-

ous permissions. Signature permissions are only available to an application that

is signed with the same certificate, see Section 3.3.3, as the certificate that was

used to sign the application declaring the permission [41]. Similarly, the signa-

tureOrSystem level requires the application to either be a system application,

i.e. a part of the system image, or that the application is signed by the same

certificate as the one used to sign the version of the Android system installed on

the device.

There are however some issues with the permission system, but these are prob-

lems with implementation of the permissions rather than the permissions them-

selves. Effectively, the permission system can be circumvented as demonstrated

by Linberry et al. in their Blackhat talk [51], where they revealed that the RE-

CEIVE BOOT COMPLETED permission is not actually checked. This means

13

3.3. ANDROID SECURITY

that any application could register to start when the phone is turned on, and the

system would not actually verify whether or not the application had requested

this permission. It is currently unknown if this affects any other permissions.

Additionally, in some cases an unrelated permission can give access equivalent to

that of another permission, as covered in Section 3.4.9.

3.3.2 Sandbox

In the Android system each application is run as a separate user and provided with

its own UID to separate each application into its own sandbox [36], preventing

direct communication between applications.

Each application is run in its own private environment and is unable to access

other applications or be accessed by other applications directly. This is a time-

tried security feature that is based on capabilities native to the UNIX environment

that Android is built on.

As mentioned in Section 3.3.1, the developer can effectively open the gate to the

sandbox by allowing other applications to access features of the application by

declaring their own permissions. This makes it possible for other applications to

interact with the application despite the sandbox.

Additionally, the developer of an application can ask for a shared UID. With

a shared UID multiple applications signed by the same developer (see Section

3.3.3) will share the same sandbox. Applications employing this method would

have access to each others permissions, meaning that if one application requested

INTERNET and another application requested SEND SMS both applications

would have access to INTERNET and SEND SMS. They would also have access

to each others files and information, and effectively be a single application as far

as the operating system is concerned.

3.3.3 Application signing

The Android platform requires developers to sign their applications [44] before

they can be installed on a device, using a self-signed certificate. This certificate

ensures that a malicious developer is unable to impersonate another developer.

The certificate also provides a level of trust between the developer and the oper-

ating system, in that the signing process alerts the system if the application has

14

3.3. ANDROID SECURITY

been modified after the developer signed it.

3.3.4 Remote kill switch

The Google Play application has the ability to remotely remove applications from

users’ handsets [13] when the application is violating the Developer Distribution

Agreement [37] or the Developer Program Policies [35]. In most cases, applica-

tions that violate these agreements are malicious in one way or another, and this

capability has been utilized to remove malicious applications on more than one

occasion [13, 14] after the applications have been removed from the market itself.

The remote kill switch is however only useful against applications installed through

the Google Play market. Applications installed through unofficial channels are

not affected by this feature.

3.3.5 File system protection

Android protects the core system files of the operating system by storing them

in a read-only partition of the hard drive. Additionally, the sandboxing feature

mentioned above prevents the applications installed on the device from accessing

each other’s files unless the files are intentionally or unintentionally exposed by

the developer, as explained in Section 3.4.9.

3.3.6 Google Bouncer

Google have responded to criticism about Google Play with introducing a new

layer of security, named Bouncer [53]. Bouncer checks new applications when

they are uploaded to the market to identify potentially malicious applications,

even going as far as to simulate the application running on an Android device to

catch any hidden behaviour.

This is however an automated process that uses the characteristics of known

malware to analyse the applications, which means that novel malware will not be

detected by the bouncer. As an example, Trend Micro found several malicious

applications in the Android market as recently as May 2012 [66].

15

3.4. ANDROID THREAT LANDSCAPE

3.3.7 Anti-virus applications

Anti-virus applications are applications created by third-party companies de-

signed to prevent malicious applications from being installed on a device. There

are many anti-virus applications on the market, including applications created

by industry giants like F-Secure and Norton.

The effectiveness of these applications has been debated, but it is apparent that

as with their desktop counterparts, they are becoming necessary in today’s appli-

cation climate. They often come with secondary functionality, like remote wiping

capabilities and the ability to locate the device in the case of loss or theft.

3.4 Android Threat Landscape

There are several threats facing the Android system, and the following sections

will list and explain some of the more common threats. A single malicious appli-

cation can represent more than one of these.

3.4.1 Trojans

Generally speaking, all Android malware are Trojans. Because of the sandbox, as

covered in section 3.3.2, the attack vectors used by viruses and worms are largely

unavailable to the malware developers. Utilizing Trojans have thus become the

norm.

As with its desktop counterparts, the malicious code is usually included as part of

an otherwise legitimate looking application or added on to legitimate applications

which are then redistributed [18] as the original application. Applications misused

for this purpose are often paid applications redistributed as free applications on

third-party markets.

3.4.2 Spyware

One of the most common types of malicious applications for the Android plat-

form, spyware, are designed to siphon off private information of one kind or

another. Spyware comes in two flavours; commercial and malicious. Commercial

spyware are applications installed on the user’s handset manually by another per-

son specifically to spy on the user, while malicious spyware operates in a similar

16

3.4. ANDROID THREAT LANDSCAPE

fashion as its desktop counterpart; covertly stealing data and transmitting it to

a third party.

One of the more famous cases of commercial spyware was CarrierIQ [49], used

extensively by various mobile device manufacturers and vendors. CarrierIQ had

the capability to log everything that was done on a device, including web searches

using the secure HTTPS protocol, and was allegedly used to increase customer

satisfaction by logging dropped calls and similar information [15]. The problem

was that the application had the capabilities for much more, and there was no

way for the average user to get rid of it. Additionally, there was no way for the

users to know what information the vendors deemed necessary to �increase the

user experience�.

3.4.3 Root exploit

Having root access to an Android device works the same way as on other Unix

based platforms, and can be compared with having administrator rights on a

Windows computer. By default, the user will usually not have access to this

feature on an Android device, as it will be locked down by the vendor. This is

done both to prevent the user from accessing parts of the operating system that

can damage or even destroy the device, and to prevent the user from removing

software placed on the device by the vendor.

Root exploits are in most cases created by legitimate members of the Android

community in order to gain control of their own devices, but are considered

a double-edged sword among the security community. While rooting can give

the user control over a device, it also gives the same amount of control to any

applications which gain access to the root rights. This means that root privileges

given to a malicious application can completely compromise the device, as the

application can theoretically remove the root privileges from the user.

Trojans misusing these root exploits are among the most dangerous malicious

applications and can cause all kinds of havoc, completely out of sight from the

user. Like most Trojans, the malicious application pretends to be normal until it

is installed on the user’s device. When installed, it attempts to use one or more

root exploits to gain root access to the device.

An application with root access can replace, modify and install applications as

17

3.4. ANDROID THREAT LANDSCAPE

it wishes, and as an example, the DroidKungFu Trojan [24] installs a backdoor

on the phone once it has gained root access. It then disguises this backdoor

from the user both by using an innocent-looking name and hiding the application

icon from the user. This backdoor can then be used to install other malicious

applications on the device or simply stealing private information.

3.4.4 Botnet

A botnet is a network of compromised devices, usually computers, which an

attacker can use for his own purposes; often to steal sensitive data or as part of a

denial of service attack. The owners of the compromised devices might not even

be aware of the infection beyond noticing that the device is operating slower than

usual. The recent version of the DroidKungFu Trojan [18], mentioned earlier, was

used to create a botnet consisting of compromised Android devices.

3.4.5 Premium SMS sender

Some malicious applications are rather straight-forward in their design, where

they ask for permission to send SMS messages on install and use this capabil-

ity to send SMS messages to premium rate numbers. The Rufraud Trojan [81]

pretended to be free versions of popular applications, and once installed on the

user’s device it would send SMS messages to a premium rate number determined

by the country the phone was located in.

3.4.6 Drive-by-download

Recently, the Android platform has also been targeted by a drive-by-download

attack [55], where the user is presented with a download pretending to be a

system update when visiting a compromised website. If the user installs this

false security update, the device is infected with a Trojan.

3.4.7 Proof-of-concept

Proof of concept Trojans are usually the least dangerous, and do not usually lead

to large outbreaks. These attacks usually have no payload beyond what they

need to infect the devices, like the aforementioned Cabir attack, see Section 3.1.

They are usually created for bragging rights or to demonstrate a vulnerability.

18

3.4. ANDROID THREAT LANDSCAPE

3.4.8 Destructive Trojans

Destructive Trojans aim to damage the infected devices, or data stored on a

device, in some way or another. This can be via file corruption, phone wiping or

similar attacks.

3.4.9 Other threats

In addition to malicious applications the Android platform is vulnerable to other

attack vectors. Some of which will be detailed below.

Phishing. The Android platform is as vulnerable, if not even more, as it’s

desktop counterparts. As noted by Felt and Wagner [31] the small screen on

mobile devices makes it in some cases harder than normal for a user to identify

whether or not he is being spoofed. Additionally, there have been reports of

fake applications pretending to be banking applications [85], which when used to

access the bank would steal the users login information.

Capability leaking. The Woodpecker project [45] reports that applications

are leaking access to privileged device features, providing other applications with

access to features they should not have access to. This means that these appli-

cations are exposing restricted features through less restricted interfaces.

As an example, a flaw was discovered in the Power Control widget [16], which is

standard on all stock Android devices. This flaw leaked access to interfaces on

the widget, allowing applications that did not have access to these features to

toggle features like the GPS on and off. While this does not sound like a major

problem, this was an application that was present on all Android devices. The

potential for abuse was therefore larger than if the vulnerability was found in a

less distributed application.

Information leaking. Similarly to capability leaks above, information leaks

expose sensitive data to other applications on the device. This can be due to

storing sensitive data in unprotected areas, as demonstrated by Brodeur [10], or

the application giving out the information to anyone who knows how to ask. An

example of this was the logging tool HTC installed on their handsets [68]. This

logging tool exposed large amounts of private data to anyone requesting it using

a simple HTTP request, without any validation on whether or not they should

19

3.5. MACHINE LEARNING

have access to the information.

Another source of information leaking is the READ LOG permission [51]. This

permission allows the application to access the system logs, which in some cases,

depending on the applications running on the device, can provide the appli-

cation with access to information equivalent of the GET TASKS, DUMP and

READ HISTORY BOOKMARKS. Additionally, third-party applications were

seen writing information usually restricted to ACCESS COARSE LOCATION,

ACCESS FINE LOCATION, READ SMS and READ CONTACTS to the sys-

tem logs, providing equivalent access to these resources as well.

3.5 Machine Learning

The information on machine learning is based on the lectures given by Andrew

Ng, Associate Professor at Stanford University, published on Coursera [64].

Machine learning is a way of training algorithms to increase our understanding

of a certain set of data. More specifically, machine learning attempts to develop

algorithms from evaluating a set of training examples. It can be used to predict

the outcome of new data based on previously analysed data, or to find patterns

of similarity in a data set. It can also be applied to tasks where computers are to

learn a certain type of behaviour, e.g. maneuvering an autonomous helicopter,

based on some empirical data obtained during a training phase. One of the

strengths of machine learning lies in the ability to perform tasks without explicitly

programming an algorithm. As Arthur Samuel put it [69]: �Field of study that

gives computers the ability to learn without being explicitly programmed.� Samuel

was able to develop a machine learning algorithm designed with the objective to

learn how to play checkers. Even though Samuel himself was not a good checkers

player, the machine learning procedure ended up beating Samuel in checkers in

the end.

Tom M. Mitchell, in his book on machine learning, provided a widely quoted

definition on machine learning [60]: �A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.�

Every type of machine learning algorithm have its own way of measuring its

performance. This is called the algorithm’s cost function. The function is defined

20

3.5. MACHINE LEARNING

so that minimizing it will result in finding the best possible algorithm to apply

to a specific problem.

Machine learning problems can be solved by applying one, or a combination, of

several types of algorithms. Two of these approaches to machine learning are

discussed in the subsequent sections.

3.5.1 Supervised learning

In the real world, people might improve their performance on a specific task by

getting feedback on the work they are doing, be it negative or positive feedback.

An example of supervised learning might be a face recognition program. The

training data will be pictures of faces, which are labeled as the correct or expected

outcome. The learning algorithm will go through these pictures and learn what

patterns to look for in order to characterize a face. The output of the learning

algorithm will be a function which will take pictures as input, and give a response

indicating if the picture is evaluated as a face or not.

3.5.2 Unsupervised learning

A training set might not always be labeled, i.e. the training set has no right

or wrong samples. The objective of the machine learning task might not be to

evaluate a potential solution, as supervised learning does. Instead, the objective

might be to analyse the data in order to find patterns or structure. Unsupervised

learning is applied to tasks where the objective is to find a structure in a given

data set. It might not always be easy to identify patterns in large sets of data,

and unsupervised learning helps to locate such hidden patterns.

An example of a task where unsupervised learning might apply is a market seg-

mentation analysis. A clothing store desires a deeper understanding of their

customers to better fit their needs. Unsupervised learning can be applied to cre-

ate structure in their customer database based on the data they have on their

customers.

A different example might be how to organize computing clusters. Say you have

a large number of computing resources, and you want to find a way to better

organize them so that they work more efficiently. A clustering algorithm can be

applied to analyse the traffic flow between the computing clusters, and find out

21

3.5. MACHINE LEARNING

which clusters are working together, placing them together in the same groups.

These groups can form the basis of an adjustment in how the computing clusters

are organized.

3.5.3 K-means

Several clustering algorithms exist, but the most widely used is k-means. It is

an iterative algorithm, organising numerical data in k number of clusters. The

numerical data, or training sets, are organised in vectors with a dimension equal

to the number of features to be evaluated. K-means consists of two steps:

1. Calculating the distance from the training set vectors to each cluster cen-

troid and assigning the training example to the closest cluster centroid.

2. Moving the cluster centroids to the mean of the respective cluster’s mem-

bers.

The steps are repeated until the algorithm converges. Convergence is achieved

when the second step no longer assigns any vectors to new cluster centroids.

The distance between the n-dimensional vectors (x) and a given cluster centroid

(µ)is given by

‖ x− µ ‖2 (3.1)

where x is a training example, and µ is the cluster centroid. By convention,

the squared distance between the cluster centroid and the training example is

used. This adds to the weight of the distance, although the end result of the cost

function calculation will point to the same solution for either case.

This distance calculation is done for all training examples (x). A training exam-

ple gets assigned to the cluster with the shortest distance after calculating the

distance to all cluster centroids. c denotes the index of the cluster closest to x.

After all the training examples have been assigned to a cluster, the second step

begins. This is where the cluster centroids are moved. Each cluster centroid (µ)

takes up the value of the mean of all the vectors assigned to the cluster.

When the cluster centroids have been re-calculated, the process starts over. This

time, the training sets starts off with a cluster assigned to it. When c does

22

3.6. RELATED WORK

not change its value after the distances have been calculated, the algorithm has

converged.

Random initialisation of k-means. When the k-means algorithm runs through

the first iteration, it needs to initialise the cluster centroids. This can be done

several ways. One option is to choose random vectors in the Rn space. A sec-

ond option is to randomly choose k vectors from the training set. This second

approach is implemented as default in the statistical computing language R [32].

The random initialisation of the cluster centroids may lead to different results for

every new run. The convention is to run k-means several times, and pick the run

where the cost function is minimised to indicate the best fit.

K-means cost function. The cost function is defined as the sum of squares

within all the clusters. Put in other words, the squared distance between each

training example and its respective cluster is added up for every k to form the

result of the cost function. The formal definition of k-means’ cost function is

shown in Equation 3.2. Si refers to the k clusters formed by the training sets.

arg min
S

k∑
i=1

∑
xj∈Si

‖ xj − µi ‖2 (3.2)

3.6 Related Work

With the Android platform being as popular as it is, it has become the research

target of different groups.

Is this App Safe? This is a paper by Chia et al. which investigated privacy

risks associated with applications on the Android, Chrome and Facebook plat-

forms [17]. The authors collected data on applications from each platform, both

new and popular, and analysed the effectiveness of the permission systems of each

of these platforms. They also analysed how some applications are attempting to

trick users into granting them unsafe permissions.

Kirin. This project, by Enck et al., is a security service created to assess ap-

plications at install-time to determine whether or not an application is malicious

23

3.6. RELATED WORK

based on a predefined set of certification rules [19]. The permission rules used by

Kirin are based on the potential for misuse, not whether or not the permission is

generally used for this purpose. Compared to our method, Kirin assesses the ap-

plication after it is downloaded, meaning that it can assess the APK file directly.

It has as such more access to the inner workings of the application, in this case

the Intents specified by the application.

Droidranger. Like our project, the Droidranger project by Zhou et al., exam-

ines the permissions requested by the applications on the Google Play and third-

party markets [87]. The key differences between our project and the DroidRanger

project is that while they have a larger data set than ours, their data set con-

sists of free applications and include source code analysis of the applications.

The third-party markets used in their project are largely Chinese, which we were

unable to parse due to the language barrier.

The focus of the DroidRanger project is to identify malicious applications, while

our project is identifying permissions which can indicate malicious behaviour.

However, their permission-based filtering mechanism operates very similarly to

our pattern analysis.

Stowaway. This project, by Felt et al., identifies hidden permissions in the

Android platform in order to detect over-privileged applications [28]. These per-

missions have been a valuable source during analysis of our malicious data set,

as it allowed us to verify the existence of undocumented permissions.

Mobile Malware Survey. This paper, by Felt et al., details their analysis

of the incentive behind malicious applications and the effectiveness of measures

taken to prevent infections and identifying malicious applications [30]. It explains

the motivation behind several types of malicious behaviour, and the measures

taken to prevent it. Unlike our project, it does not aim at identifying malicious

behaviour or present new methods of identifying malicious applications.

Permission Visualization Using Self-Organizing Map. This paper, by

Barrera et al., examines the permissions requested by Android applications by

categories, and discusses ways in which the android permission model could be

improved [9]. While our data set does include the categories of the application,

our analysis did not take this into account due to time constraints, except in

24

3.6. RELATED WORK

special cases.

25

3.6. RELATED WORK

26

Chapter 4

Data Collection

As mentioned earlier in Section 1.2, achieving the goals of this project required

two data sets of applications for analysis; one sample of real-world market data,

from now on referred to as the market data set, and an infected data set for

comparison. For the purpose of this thesis, an infected data set consists only of

applications infected with malicious code.

4.1 Building the Data Set

We used different methods for retrieving the application samples from their re-

spective websites, as well as retrieving information from the malicious applica-

tions.

4.1.1 Market data set

The gathering of the market data set was based on work done by Chia et.al. [17],

using the data gathering application from their project as a starting point. Unlike

their project however, this project required the collection of data from multiple

markets, not only the official market.

We gathered a large data set from four different application markets, consisting of

multiple features, ranging from developer identity to requested permissions. The

markets were sampled every fifteen minutes during this period, with an update

process being run every week (see Section 4.1.2). This sampling was done over a

27

4.1. BUILDING THE DATA SET

period of two months, from the third of March until the seventh of May 2012.

The key features of this data set is that by sampling all the new applications added

to each market, the data set represents the whole spectrum of applications and

applications are included with no regard for popularity or usefulness. This means

that we catch applications that act suspiciously, break rules or even applications

that contain malware. These are applications that normally would not make it

on to the “top applications” lists, and as such would not be caught if we only

sampled the top applications.

Selecting suitable application markets. In order to obtain as many ap-

plication samples as possible, four Android application markets were chosen;

Google Play [39]/AppBrain [5], Amazon Appstore for Android [3], F-Droid [20]

and SlideMe [52]. The third-party markets were chosen because they fulfilled the

following requirements:

• English language

• Publishes a list of the permissions requested by the applications

• Keeps a list of the latest applications published on the market

• Hosts its own portfolio of applications, not just redirecting the user to

download the application from Google Play

The language requirement was essential in order to keep the database as consis-

tent as possible, while the permission requirement was essential in order for the

data set to have any value for the analysis. As the samples should be of the new

applications added to the market, the site needed to have a list displaying the lat-

est applications added to the market, or another way to identify new applications

quickly. Google Play does not fulfill this requirement, but this has been worked

around as described in the next section. The final requirement was necessary in

order to avoid duplicate data sets. If a market simply retrieved the applications

from the Google Play market, the data set created from this market would be a

near identical copy of the Google Play data set, depending on the method used

to determine new applications.

Google Play/AppBrain. As mentioned earlier, in Chapter 3, the Google Play

[39] market is the official marketplace for Android applications. However, as one

28

4.1. BUILDING THE DATA SET

of the key features of our data set is that it contains applications published to

the markets during our data gathering period, the source of the applications

are the “newest applications” or a similar list on each market. Unfortunately,

Google Play does not hold such a list, and as such the AppBrain [5] market has

been chosen to represent Google Play. The AppBrain market deviates from our

market rules in that it scrapes data from the Google Play market and redirects

the users to Google Play during installation. However, AppBrain does have a

“latest applications” list, which we have used to select which applications we

should retrieve from Google Play.

Amazon Application Store. The Amazon Application Store [3] is the official

application market of Amazon, with many applications aimed at their Kindle Fire

devices. To download applications from the Amazon market, a separate market

application is needed. This application is however not available to customers

outside the United States.

SlideMe. SlideMe [52] is a third-party application store that wants to be the

go-to place for applications based on location, payment methods and niche appeal.

According to their own numbers the SlideMe market application has the second

largest reach after Google Play, and are installed by default on the handsets of

120 different OEMs (Original Equipment Manufacturers).

F-Droid. The F-Droid [20] market is dedicated to free, open source applica-

tions. It provided us with a very small data set, as shown in Section 4.3. This

meant that any results from this market would be negligible when compared to

the three larger markets.

The small data set can be attributed to the submission rules for this market, as

every application uploaded needs to have its source code attached. This prevents

most commercial uses, and it can be assumed that only dedicated open source

developers upload their applications to it.

Collected application information. We retrieved the following information

from the markets, where available:

• The application name

• Version number

29

4.1. BUILDING THE DATA SET

• Required Android version

• Which market the application was observed on

• The time when the application was observed on the market

• The category of the application

• The developer information; name, website and e-mail address

• The average rating and the number of votes

• How many times the application has been downloaded

• The application’s package size

• The permissions requested by the application

• The price of the application, or lack thereof

• The time when the application was last updated

Not all of the collected information is used in the analysis, but it is kept in the

database in case of future study. Of this information, the permissions were the

most important information collected, as this was the most consistent between

the various markets. While not completely identical, the permissions were in-

ternally consistent in the markets which meant that we could easily rewrite the

permissions to one format. For the purposes of this project, the official format

used in the Android permission manifest [40] was used.

Data collection programs and infrastructure. Each market required its

own custom data collection program due to the difference in both style and quality

of the HTML code. However, each program operates in the same fashion as the

others except for the actual parsing of the HTML code of the market.

For each third-party market, we use the Wget tool to download the “Latest Ap-

plications” or equivalent HTML page to the server. This page was then parsed

using the Jericho HTML Parser [47], and links to the information page for each

application was generated from the data. For each of these links, the correspond-

ing HTML page was similarly downloaded from the markets and parsed for the

relevant application information. The application information retrieved from the

markets was then stored in an SQL database, see Section 4.2.

30

4.1. BUILDING THE DATA SET

As covered in Section 4.1.1, for applications on the Google Play market the ap-

plication retrieved the “Latest Android applications” list from the AppBrain site,

which was then parsed and links to the equivalent Google Play application pages

were constructed.

As each application was added to the data set while it was still on the “Latest”

list, we would only have the initial information of the application while it was still

on that list. This would lead to several issues which could degrade the value of the

data set. First, this would misrepresent the popularity of the application, as the

download count and average rating of the application would be stuck at the initial

value. Secondly, we would not know whether or not the application had been

removed from the market, which also would be interesting information that could

indicate malicious behaviour (note that this would not be a definitive indicator

of malicious behaviour, as the application could have been removed for other

reasons, or even renamed). Finally, many applications have their permissions

changed between updates which we would then not be aware of.

To solve this problem a second program was created to update the data set, from

now referred to as the update program. The update program connects to the

database and retrieves the application identifier (appid) from each application.

From this, it generates a link to the application page of each application and

repeats the process of the initial parser program.

In order to make the data collection continuous it was decided to use an external

server for the data collection programs. For this purpose we decided to use cloud

computing services, and our supervisor provided us with a server instance in

the Amazon EC2 [4] which we could use for the duration of this project. This

server provided us with the stability that running the applications from our own

computers would not be able to provide.

Additionally, running the applications in the cloud means that when this project

is finished, our supervisor can continue to gather data without the data set being

disrupted in any way, if so desired.

The data collection was structured in a bash script running every fifteen min-

utes, which executed the java applications for each of the markets. If any errors

occurred, the error message was written to a log file. This log was sent to the au-

thors’ e-mail accounts, along with additional information regarding the affected

31

4.1. BUILDING THE DATA SET

application. The syslog was also included in order to pick up any other log entries

from the server.

An unintended, but positive, side effect of using an Amazon EC2 instance was

that the server farm the instance was located at was in the United States. This

meant that sites like Google Play, which uses the IP address of the customer

to identify his or hers nationality and uses this to determine which currency

to display prices in, listed the prices of the applications in U.S. dollars. This

brought it in line with the remaining markets which listed their prices in the

same currency.

4.1.2 Malicious data set

Several sources were considered for use as a malicious data set. The candidates in-

cluded Symantec’s Threat Explorer database [82], F-Secures Threat Description

database [27] and similar sources, in addition to the Contagio Mobile Dump [59].

The databases of Symantec and F-Secure were ultimately decided against because

it was impractical to automatically collect information from these databases. Ad-

ditionally, the technical details were written by hand by the researchers and as

such the information was inconsistent as to whether or not they listed the permis-

sions requested by the malware. In some cases the permissions were listed by a

screenshot of the malicious application and not otherwise listed in the documen-

tation, and in other cases the permissions were presented as a list of permissions

“that the malware might ask for”. As such, most of this work would have to be

done by hand, and for that reason it was considered too time-consuming for the

purposes of this project. Exceptions to this were made in special cases where the

information from the anti-virus companies was compared to malicious applica-

tions from our data set.

Due to these issues, the Contagio website was used as the source of our mali-

cious data set. Contagio collects and presents samples of malicious applications

uploaded to the website by the public, and anyone can download these samples

from their database. This allowed us to retrieve the permissions easily from each

application, as described in the next section.

Collected application information. We manually downloaded a collection

of 160 infected applications from the Contagio Mini Dump [59] website. These

applications were used to create a data set containing only malicious applications,

32

4.2. DATA SORTING

with the following information:

• Malware name

• Permissions requested

• Original package name where possible

The name of the malware was retrieved alongside the APK file from the Contagio

website. From this file, the original package name and the permissions requested

were retrieved as described in the next section.

Despite its small size, this data set contained multiple instances of some Trojans,

including Geinimi [34] and OzotShielder (also called Kmin) [79]. We initially

assumed that this was because of the spread of the malware, but while this can

be correct for Geinimi, which have received a lot of press attention, OzotShielder

appears to have infected fewer devices.

Data collection programs. Unlike the process used with the market data set,

the malicious applications were retrieved by hand from the Contagio website.

The objective became to identify which permissions were requested by each ap-

plication without attempting to install each and every one on an Android device.

For this reason the Apktool [11] program was used to retrieve the manifest XML

file from the application. Apktool is a decompiler targeting Android applications,

and makes it possible for us to easily extract the manifest XML file contained

inside the APK. The manifest is the file that, as mentioned in Section 3.3.1,

contains all the permissions requested by the application during installation.

To automate this process we wrote another custom program which leveraged both

the Apktool program to retrieve the manifest and the Jericho parser to extract

the permissions from the manifest. The information retrieved from the mali-

cious applications was then labeled as malicious and inserted into the database

alongside the applications collected from the regular markets.

4.2 Data Sorting

Before the information could be used for our purposes, it had to be sorted, du-

plicate information needed to be removed and inconsistent names had to be nor-

33

4.2. DATA SORTING

malised.

4.2.1 Removing duplicates

The market data set consisted of a lot of duplicate data, because the data collec-

tion was done every fifteen minutes even if there were no new applications added

to the markets. The data were stored in two different tables, one containing the

application information (from now referred to as app info), and one containing

the application permissions (from now referred to as app permission).

In the app info table, each application entry is a single row containing all the gen-

eral information about the application, while in the app permission table each

permission has its own row with information connecting it to the specific appli-

cation it belongs to. This translates to several more rows in the app permission

table compared to the app info table. This was necessary because the alterna-

tive was to make an additional column for each permission. This would mean

that the authors would need to know beforehand which permissions would be re-

quested, which is practically impossible as discussed in Section 4.2.2. While this

is done in the table combining the permissions and the application information

(app combined), this is done after evaluating all the retrieved permissions.

To remove duplicate entries from the data set the data entries from the applica-

tion info table are sorted into a new table (from now referred to as app info u),

where duplicate entries are collapsed into unique entry. This table keeps the most

recent information about an application, in addition to keeping track of the first

and last time the application were spotted on the market it was retrieved from.

Note that when this process was run on the malicious data set, the data set

was reduced to 105 applications. This was because it turned out that some of

the malicious application files retrieved from Contagio were different samples of

the same application. A good example of this was the OzotShielder Trojan [79],

which as mentioned earlier was represented in the malicious data set by a large

collection of samples. These samples turned out to be multiple samples of a small

set of applications, and thus were collapsed into a few entries.

The app info u and app permission tables were then merged into one table called

app combined, where the all the application information was stored in a single

row. This made it possible to use the data in the clustering algorithms as covered

34

4.2. DATA SORTING

in Section 5.4.2. Instead of having one row for each of the permissions of the

application, the presence or lack of a permission is indicated by a “1” or a “0”

in the respective column, with “1” indicating that the application requested this

permission, and “0” indicating that this permission was not requested. The next

section will explain the process used to determine which permissions should be

included.

4.2.2 Permission filtering

Inserting all of the permissions into one table presented a new challenge. The

permissions would need to be sorted and examined, in order to decide which per-

missions should be included in the table. Including all the permissions regardless

of their validity was considered, but it was feared that this would complicate both

the statistical analysis and the machine learning process.

As explained in Section 3.3.1, third-party permissions, i.e. permissions declared

by the developers, are not declared to the users during installation or some of the

market websites, like Google Play. This also means that the web scrapers utilized

by this project would also be unable to retrieve these permissions, except if they

were explicitly stated by one of the third-party markets. In order to keep the

markets as compliant to each other as possible, it was concluded that only the

official Android permissions should be included. Essentially, this means that only

permissions with the “android.permission” prefix were included in the permission

list. However, this also removed permissions declared by Google applications like

the stock Browser, the Gmail client and Google Maps.

Because the Android SDK does not inform the developer whether or not a per-

mission native to Android requested in the manifest is written correctly or not,

the permissions retrieved would need to be vetted before they could be used. If

the permission is spelled incorrectly, Android simply assumes that the developer

is requesting a custom permission. This problem, combined with the lack of any

reliable documentation on which permissions are actually considered a part of

the Android system, meant that every permission requested by applications from

the third-party markets and the malicious applications from the Contagio website

required a manual check in order to certify that it was an actual permission and

not a mistake.

Initially, the only source of the permissions used for this check was the official

35

4.2. DATA SORTING

permission manifest [40], and any permissions not included in this list was as-

sumed to be either mistakes or deprecated permissions. However, this turned out

to be false, as this reference list is incomplete. The list was then expanded to

contain all the permissions we could find documentation on.

The final list does contain deprecated permissions, but these permissions have

been requested by applications submitted to the market during the two months

the data gathering applications were running. As 93.3 percent of the Android

devices in circulation are using older versions of Android than the newest version

[42], 4.0.4 at the time of writing, this is to be expected. Additionally, some of the

permissions from the permission manifest are not requested by any application

in the data sets, but has been included for effect.

The permissions were checked against four sources:

• The official permission manifest provided by Google [40]

• The Google Play marketplace [39]

• A permission map provided by our supervisor [17]

• The Android Permissions Demystified Permission Map [29]

The permission was first checked against the official permission manifest provided

by Google [40]. If the permission was not on this list, it was checked against the

Google Play market. This was done first by checking its Google Play description

in the data set against the list of permissions used as a part of the “Is this

application safe?” project [17]. If the description was not found in that list, its

accompanying permission identifier was checked against the“Android Permissions

Demystified” permission map created by Felt et al. [29], to make sure that the

identifier was correct.

In the cases where the permission description did not have a corresponding per-

mission identifier in the permission list, a permission identifier was derived from

the description based on other permissions and their accompanying Google Play

description. This ID was then checked against the permission map. The reason

this works, is because the permission descriptions used by Google are paraphras-

ing the permission identifier, making it relatively easy to derive the identifier from

the description.

36

4.3. FINAL DATA SET

Data set Count
Regular 26,333
Malicious 105

Table 4.1: The total number of applications in the data set

Market Count
Amazon 483
F-Droid 39
Google Play 23,769
SlideMe 2,042

Table 4.2: The number of applications collected from each market (not counting
malware)

In the cases where the permission did not have an accompanying description, i.e.

when permissions were retrieved directly from the manifest file, the existence of

the permission was checked against the permission map. Any permission which

had at this point not been found was not included in the app combined table. The

removed permissions were however kept in the original table for further analysis.

The first permission list contained 151 permissions, but after these were checked

against the documentation and all undocumented and misspelled permissions

were removed, the list was reduced to 137.

This process uncovered weaknesses in the Google Play market which will be

discussed in Section 6.1.1.

4.3 Final Data Set

After the data collection phase was finished, we ended up with a smaller malicious

data set than we would have liked, as seen in Table 4.1. However, this should not

interfere with the analysis.

It is important to note that while the malicious data set contains a wide variety

of Trojans, the data set also contains a large samples of some specific infec-

tions, among them Geinimi and Pjapps.B. While this could theoretically skew

the analysis results for some of the permissions, there are no duplicate malicious

applications in the data set and the duplicate infections will be taken into account

during the analysis.

37

4.3. FINAL DATA SET

As we see in Table 4.2, the amount of applications retrieved from each market are

also very diverse, ranging from F-Droid, which only provided us with thirty-nine

applications, even fewer than our malicious data set, to Google Play, which was

the major contributor with 23,769 applications. As explained in Section 4.1.1,

the various markets have different philosophies, and this affects the number of

applications submitted and accepted to the markets.

The final list of permissions considered in the analysis can be found in Appendix

B.

38

Chapter 5

Analysis

In this chapter we will use the data we have gathered and attempt to find trends

and patterns which separate malicious from legitimate applications. For the

sake of brevity, the “manifest.permission” part of the permission identificators

has been omitted. This is illustrated by the “manifest.permission.INTERNET”

permission, which is shortened to simply“INTERNET”. This is only done for per-

missions native to Android; any third-party applications discussed will still have

their complete designation. As an example, com.motorola.launcher.permission.

READ SETTINGS will not be shortened. This is done to avoid confusion when

permissions from different third-parties have the same identifier.

5.1 Permission Statistics

Appendix B presents, in percentages, how many times each permission has been

requested by an application in the regular market data set compared to the ma-

licious data set. Due to the comparatively small size of the malicious data set,

the numbers were converted to percentages in order to provide a better illustra-

tion of the differences between the data sets. From these percentages it can be

observed that there is a clear divergence between the two samples, and that some

permissions are over-represented in one sample compared to the other. While, as

mentioned before, the malicious data set might be misrepresenting the number of

times some permissions are present in the data set, it is a decent guideline when

used alongside and compared to the regular data set which contains a larger and

39

5.1. PERMISSION STATISTICS

Data set Average # of permissions Highest # Lowest #
Markets 4.33 36 0
Malicious 10.35 106 1

Table 5.1: Average number of permissions by data set, and the highest and lowest
number of requested permissions.

more balanced number.

An important point to make is that all the permissions requested by a malicious

application are not necessarily required for it to do its dirty work. When a Trojan

is attached to a legitimate application, the resulting application requires the

permissions of the original application in addition to the permissions it requires

for its own purposes. This translates to a significant deviation in the amount of

permissions requested by each application. This is presented in Table 5.1, and the

difference in the number of permissions requested have shown to be statistically

significant (Student’s t-test, p < .0001).

The extra“legitimate”permissions requested by malicious applications may hamper

the work done in this project, as we will need to differentiate between permis-

sions required by the malicious code and the permissions required by the original

application. This is where the duplicate infections mentioned in Section 4.3 helps

us, as we can discount any permissions not uniformly requested by the malware

samples.

The subsequent section will look at specific subsets of the permissions.

5.1.1 Permissions used only by malware

Initially, the permissions used only by malicious applications were thought to

be significant. This turned out to be wrong, as the most divergent permissions,

like ACCESS GPS and ACCESS LOCATION, were removed from the data set

because they were undocumented.

The remaining permissions requested only by malware are presented in Table

5.2, and are far less conclusive. This view is strengthened by the Arspam Trojan,

which is requesting eleven of these permissions, only three of which are also

requested by another application. The Arspam Trojan is designed to send spam

text messages to the contacts on the device [74], but requests a total of 106

40

5.1. PERMISSION STATISTICS

Permission # of malicious applications
ACCESS DOWNLOAD MANAGER 1
BRICK 1
DIAGNOSTIC 1
GLOBAL SEARCH CONTROL 1
INJECT EVENTS 2
INTERNAL SYSTEM WINDOW 1
MASTER CLEAR 1
MOUNT FORMAT FILESYSTEMS 1
SET ALWAYS FINISH 2
SET ANIMATION SCALE 1
SET PROCESS LIMIT 2
SIGNAL PERSISTENT PROCESSES 1
SUBSCRIBED FEEDS WRITE 1

Table 5.2: Permissions used only by malicious applications

permissions. This implies that the developer of the Trojan was inexperienced.

5.1.2 Analysis of permissions

During the course of the analysis, three sets of permissions stood out due to

either the frequency of the requests or inconsistencies in how they were used.

This section will look at these permissions.

Text messaging permissions. This covers four permissions:

• SEND SMS

• RECEIVE SMS

• READ SMS

• WRITE SMS

These permissions are requested by a lot of the malicious applications, and com-

paratively few of the applications form the market data set. Of these permissions

the SEND SMS permission is the most prolific, with 1.55 percent of the market

data set and 61.90 percent of the malicious data set, which makes sense as an

attacker leveraging text messages need this permission to send them from the

device.

41

5.1. PERMISSION STATISTICS

The remaining permissions are not as frequently requested, but also contain cap-

abilities that are useful for malware developers. The RECEIVE SMS (1.34 per-

cent of the market data set and 35.24 percent of the malicious data set) and

READ SMS (0.87 percent of the market data set and 48.57 percent of the ma-

licious data set) permissions allow the application to intercept any responses to

the initial text message, and effectively hide the text message exchange from the

user. The WRITE SMS is the least requested permission in this set, with 0.39

percent of the market dataset and 19.05 percent of the malicious dataset request-

ing it. This permission is required if the attacker intends to sign the victim up

for a premium SMS service instead of utilizing the trojan to send single-charge

messages.

READ PHONE STATE. Before Android version 1.6, this permission was

automatically granted to all applications, alongside the WRITE EXTERNAL

STORAGE permission [12]. It provides any application requesting it with access

to a large amount of data, including among other things the IMEI and number

of the device, and information from the SIM card like the IMSI number. This

is information that should not be shared, yet this permission is often misused to

provide a unique identifier for the device and/or user.

Out of the ten advertisement networks listed in Section 5.3.1, six of them request

this permission, and it is optional for two more. These networks are using it to

uniquely identify users; the AirPush and TapJoy networks use the IMEI number

of the device [2, 83], and MobClix requires it for an unspecified unique identifier

[61].

There is a built in function to uniquely identify users without the application

needing the READ PHONE STATE permission, called the“ANDROID ID”, which

would be uniquely generated by each device. This function is however seldom

used, as it was discovered that under some circumstances the generated identi-

fier would not be unique for the Android device [48]. This was fixed in Android

version 2.3, but roughly twenty-five percent of all android devices [42] are still

running version 2.2 or older of the operating system.

Install and delete packages. This covers two permissions:

• INSTALL PACKAGES

42

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

• DELETE PACKAGES

The INSTALL PACKAGES permission is requested by 19.05 percent of the ma-

licious applications, largely the Pjapps Trojan, while it is only requested by 0.49

percent of the regular data set. The DELETE PACKAGES permission is how-

ever only requested by 1.35 percent of the market data set and 2.86 percent of

the malicious data set.

The subsequent observations comes with a caveat; these permissions should never

be usable by a malicious application because of the protection level of the per-

missions. However, malicious applications are requesting the permissions and

analysis done by anti-virus companies on these applications [21, 77] imply that

the applications are able to use these permissions. The authors have been unable

to verify whether or not this is correct.

The INSTALL PACKAGES permission, if granted, allows the application to in-

stall new applications on the device. According to anti-virus companies, Trojans

are using this capability to install backdoors onto infected devices. It is import-

ant to note that an application installed via this method is not limited to the

permissions of the “parent” application.

The DELETE PACKAGES allow the application to remove other applications

from the device. A malicious application could use this to remove anti-virus

application or other applications limiting its capabilities.

In order for these permissions to be granted, the application need to either be

installed in the system partition of the operating system, or signed with the same

key, see Section 3.3.1 as the operating system. Neither of these conditions is met

by malicious applications when they are installed on a device by a regular user.

A Trojan utilising a root exploit could install itself in the system partition, but

would technically not need the permission.

5.2 A Closer Look at Malicious Applications

Seven of the sample Trojans were chosen for detailed study. Five of the Trojans

were selected due to the presence of more than one sample in the malicious data

set, while the remaining two Trojans were selected because one or more anti-

virus companies had published detailed analysis on the malicious application.

43

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Trojans with more than one instance has been chosen because the samples can

be compared to each other in order to weed out some of the permissions which

are not required by the Trojan itself.

It must be stated that the malicious applications are requesting several other

permissions in addition to the permissions we include in our analysis, as discussed

in Section 4.2.2. These permissions are not included in our analysis. A full

overview of the permission requested by the malicious applications is listed in

Appendix C.

5.2.1 CounterClank/Apperhand

CounterClank is a special case of malware, as there is not consensus among anti-

virus providers as to whether or not it is a Trojan, as Symantec states [75], or

very aggressive adware (advertisement software) as Lookout [54] and Sophos [73]

states. Now, aggressive adware is the best description for it, as the functionality

included in the Apperhand framework is becoming a part of legitimate advertise-

ment networks like StartApp and AirPush, as described in Section 5.3.1.

Despite this, CounterClank/Apperhand, and by extension, AirPush and StartApp,

is not something a user would want to have on his device. The advertisements de-

livered by these advertisement networks are excessively intrusive; Apperhand has

the capability to display ads in the notification bar on the device, add shortcuts

to the home screen and add bookmarks to the browser.

The capabilities described here explain why Apperhand is requesting an excessive

amount of third party permissions, which can be viewed in Appendix C. These

permissions relates to both the stock launcher, Trebuchet, and third-party launch-

ers like HTC, LG, Motorola and the highly popular ADW launcher in addition

to the stock Android internet browser.

As mentioned earlier, in Section 4.2.2, we are not tracking third-party permis-

sions at this point. Of our five CounterClank samples, the only constant Android

permissions requested by the application are ACCESS NETWORK STATE, IN-

TERNET and READ PHONE STATE. These are not specific enough to reliably

identify CounterClank in the market, as are also shown in Table 5.3, these are

very common permissions. This is demonstrated in Section 5.4.1.1.

The nature of the third-party permissions requested by CounterClank does how-

44

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS NETWORK STATE 56.62 41.90
ACCESS WIFI STATE * 10.08 25.71
INTERNET 84.05 91.43
READ PHONE STATE 44.03 78.10
WAKE LOCK * 20.57 24.76
WRITE EXTERNAL STORAGE * 44.48 65.71

Table 5.3: Permissions requested by our CounterClank samples compared to the
frequency of these permissions in the data sets. * not present in all samples

Permission % in market % in malware
ACCESS NETWORK STATE * 56.62 41.90
ACCESS WIFI STATE 10.08 25.71
CHANGE WIFI STATE 1.61 11.43
INTERNET 84.05 91.43
KILL BACKGROUND PROCESSES * 1.85 2.86
READ CONTACTS * 6.40 43.81
READ LOGS * 1.61 9.52
READ PHONE STATE 44.03 78.10
RESTART PACKAGES * 0.13 10.47
WRITE CONTACTS 30.56 30.48

Table 5.4: Permissions requested by our DroidDream samples compared to the
frequency of these permissions in the data sets. * not present in all samples

ever mean that the applications could be recognizable with an extended data set

containing third-party permissions, given that the third-party permissions can be

retrieved similarly to the default Android permissions.

5.2.2 DroidDream/Rootcager

DroidDream [80] is a Trojan that leverages two root exploits, rageagainstthecage

and exploid, to gain control of the device. As mentioned in Section 3.4.3, this

means that DroidDream gained full control of the device if the root exploits

succeeded. This Trojan is also special in that it is one of the few Trojans in the

malicious data set that spread through the Google Play market, instead of just

through third-party markets.

As DroidDream uses a root exploit to do its dirty work, it does not require a lot of

permissions to run. And as it is attached to other, legitimate applications, most

of the permissions requested are specific to the original applications. In our data

45

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

set we have to two samples of DroidDream, which only have the INTERNET,

ACCESS WIFI STATE, READ PHONE STATE and CHANGE WIFI STATE

in common, as shown in Table 5.4. As with CounterClank, and demonstrated

in Appendix B, these permissions are relatively common. As we only have two

samples, it is also possible that the presence of these permissions in both samples

is purely accidental. However, it is rare for these permissions to be requested

together, as demonstrated in Section 5.4.1.2.

5.2.3 Geinimi

Geinimi [34] is found attached to repackaged legitimate applications. The mal-

ware has not been found in the Google Play market, but has been found in third

party markets, mainly Chinese. The Trojan has many capabilities, but these cap-

abilities are hidden until it is instructed by a C&C server (Command and Control

server) to utilize them. The capabilities range from making premium phone calls

to stealing personal data like IMEI number and the geographic location of the

device. As shown in Table 5.5, there are a lot of permissions requested by the

Geinimi infected applications, but only a handful of them are requested by every

sample.

As already mentioned, the Geinimi Trojan is well represented in the data set,

with twenty-four samples. We can assume that the permissions shared by all the

samples are required by the Geinimi Trojan, and this provides us with a good

pattern as demonstrated in Section 5.4.1.3. Several permissions were removed due

to being undocumented; ACCESS COARSE UPDATES, ACCESS GPS, AC-

CESS LOCATION, see Section 4.2.2.

5.2.4 GoldDream

The GoldDream [77] Trojan infects devices through repackaged versions of legit-

imate Android games. Once installed on a device, it begins to monitor phone calls

and text messages, and transmits information like phone numbers, text message

contents and duration of phone calls to an external server.

This Trojan is represented by two samples in the data set, one sample of Gold-

Dream.A and one sample of GoldDream.B. The permissions requested by these

samples are however nearly identical, as seen in Table 5.6, with the only differ-

ence being the WAKE LOCK permission. For the purpose of this analysis this

46

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS COARSE LOCATION 11.70 41.90
ACCESS FINE LOCATION 22.77 39.05
ACCESS NETWORK STATE * 56.62 41.90
CALL PHONE 8.21 31.43
CAMERA * 6.40 6.67
GET ACCOUNTS * 7.55 5.71
GET TASKS * 2.34 7.62
INTERNET 84.05 90.57
MODIFY AUDIO SETTINGS * 1.72 3.81
MODIFY PHONE STATE * 0.25 5.71
MOUNT UNMOUNT FILESYSTEMS 0.88 29.52
READ CONTACTS 6.40 43.81
READ LOGS * 1.61 9.52
READ PHONE STATE 44.03 78.10
READ SMS * 0.87 48.57
RECEIVE BOOT COMPLETED * 18.85 22.86
RECEIVE SMS * 1.34 35.24
RECORD AUDIO * 2.86 3.81
REORDER TASKS * 0.02 1.90
RESTART PACKAGES * 0.13 10.48
SEND SMS 1.55 61.90
SET WALLPAPER 3.77 28.57
SYSTEM ALERT WINDOW * 0.96 3.81
VIBRATE * 24.52 20.95
WAKE LOCK * 20.58 24.76
WRITE APN SETTINGS * 0.03 9.52
WRITE CONTACTS 3.56 30.48
WRITE EXTERNAL STORAGE 44.48 65.71
WRITE SMS * 0.39 19.05

Table 5.5: Permissions requested by our Geinimi samples compared to the fre-
quency of these permissions in the data sets. * not present in all samples

47

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS COARSE LOCATION 11.70 41.90
ACCESS FINE LOCATION 22.70 39.05
ACCESS NETWORK STATE 56.62 41.90
ACCESS WIFI STATE 10.08 25.71
CALL PHONE 8.21 31.43
DELETE PACKAGES 1.35 2.86
INSTALL PACKAGES 0.49 19.05
INTERNET 84.05 91.43
PROCESS OUTGOING CALLS 0.51 5.71
READ PHONE STATE 44.03 78.10
READ SMS 0.87 48.57
RECEIVE BOOT COMPLETED 18.85 22.86
RECEIVE SMS 1.34 35.24
SEND SMS 1.55 61.90
WAKE LOCK * 20.58 24.76
WRITE EXTERNAL STORAGE 44.48 65.71

Table 5.6: Permissions requested by our GoldDream samples compared to the
frequency of these permissions in the data sets. * not present in all samples

minor difference was considered irrelevant, as a pattern based on the remaining

permissions will still only match the two GoldDream samples (discounting the

Arspam Trojan), as demonstrated in Section 5.4.1.4.

5.2.5 Pjapps

In the data set we can identify three different versions of the Pjapps Trojan;

Pjapps.A [8], Pjapps.B [21] and Pjapps.C [56]. There are three samples of

Pjapps.A, ten samples of Pjapps.B and two samples of Pjapps.C.

The Pjapps Trojan establishes a botnet of infected devices. When an application

infected with Pjapps is installed on a device, the Trojan sends private information

like the IMEI number and the SIM serial number to a C&C server and awaits

further commands. These commands include sending text messages, installing

applications and adding bookmarks to the browser.

Pjapps.A. The first version of Pjapps, named just Pjapps or in some cases

Pjapps.A, was used to establish a botnet consisting of compromised Android

devices [8]. The Trojan established a back-door on compromised devices, allowing

the developer to send SMS messages, install applications and steal information

48

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS NETWORK STATE * 56.62 41.90
ACCESS WIFI STATE * 10.08 25.71
CHANGE NETWORK STATE * 0.52 4.76
CHANGE WIFI STATE * 1.61 11.43
DISABLE KEYGUARD * 0.51 4.76
INSTALL PACKAGES 0.49 19.05
INTERNET 84.05 91.43
READ PHONE STATE 44.03 78.10
RECEIVE MMS 0.05 7.62
RECEIVE SMS 1.34 35.24
SEND SMS 1.55 61.90
SET PREFERRED APPLICATIONS * 0.28 1.90
VIBRATE * 24.52 20.95
WAKE LOCK * 20.58 24.76
WRITE APN SETTINGS * 0.03 9.52
WRITE EXTERNAL STORAGE 44.48 65.71

Table 5.7: Permissions requested by our Pjapps.A samples compared to the fre-
quency of these permissions in the data sets. * not present in all samples

like IMEI number, device ID and subscriber ID. As demonstrated in Table 5.7,

Pjapps.A requests the INSTALL PACKAGES permission, which means that it

can install additional applications on the device without the involving the device

owner. It is however unclear whether or not this capability would actually be

granted to the application, as discussed in Section 5.1.2.

Note that while all our samples request the RECEIVE MMS permission, this is

not functionality which is a default part of the Trojan.

Pjapps.B. Pjapps.B operates in a similar manner as Pjapps.A. According to

F-Secure, the biggest difference between Pjapps.B and Pjapps.A is that Pjapps.B

requests to start at boot. This could indicate that the Pjapps.B samples have

been given the wrong label, and might actually be samples of Pjapps.A, as only

one of them are requesting the RECEIVE BOOT COMPLETED permission.

However, comparing Table 5.7 and Table 5.8, the samples are so close to each

other that this was not considered a problem, as any pattern based on these two

applications would be virtually indistinguishable.

Pjapps.C. The Pjapps.C Trojan stands out, as there is very little informa-

tion available beyond its name [56]. It is also deviating from the older versions

of Pjapps, as only one of the two samples request the INSTALL PACKAGES

permission, as demonstrated in Table 5.9.

The three Pjapps versions also contained three permissions that were not included

49

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS COARSE LOCATION * 11.70 41.90
ACCESS FINE LOCATION * 22.77 39.05
ACCESS NETWORK STATE * 56.62 41.90
ACCESS WIFI STATE * 10.08 25.71
BLUETOOTH * 0.47 6.67
BLUETOOTH ADMIN * 0.28 5.71
CAMERA * 6.40 6.67
DISABLE KEYGUARD * 0.51 4.76
FLASHLIGHT * 2.94 2.86
INSTALL PACKAGES 0.49 19.05
INTERNET 84.05 91.43
KILL BACKGROUND PROCESSES * 1.85 2.86
READ CONTACTS * 6.40 43.81
READ PHONE STATE 44.03 78.10
READ SMS * 0.87 48.57
RECEIVE BOOT COMPLETED * 18.85 22.86
RECEIVE MMS * 0.05 7.62
RECEIVE SMS 1.34 35.24
RESTART PACKAGES * 0.13 10.48
SEND SMS 1.55 61.90
SET WALLPAPER * 3.77 28.57
VIBRATE * 24.52 20.95
WAKE LOCK * 20.58 24.76
WRITE EXTERNAL STORAGE 44.48 65.71
WRITE SETTINGS * 2.32 9.52
WRITE SMS * 0.39 19.05

Table 5.8: Permissions requested by our Pjapps.B samples compared to the fre-
quency of these permissions in the data sets. * not present in all samples

Permission % market % malware
ACCESS COARSE LOCATION 11.70 41.90
ACCESS DOWNLOAD MANAGER * 0 0.95
ACCESS DRM * 0.004 0.95
ACCESS FINE LOCATION * 22.77 39.05
ACCESS NETWORK STATE 56.62 41.90
ACCESS WIFI STATE * 10.08 25.71
CHANGE NETWORK STATE * 0.52 4.76
INSTALL DRM * 0.008 0.95
INSTALL PACKAGES * 0.49 19.05
INTERNET 84.05 91.43
READ CONTACTS * 6.40 43.81
READ PHONE STATE * 44.03 78.10
READ SMS * 0.87 48.57
RECEIVE BOOT COMPLETED 18.85 22.86
RECEIVE SMS 1.34 35.24
RECEIVE WAP PUSH * 0.004 4.76
SEND DOWNLOAD COMPLETED INTENTS* 0.008 0.95
SEND SMS 1.55 61.90
VIBRATE * 24.52 20.95
WRITE APN SETTINGS * 0.03 9.52
WRITE CALENDAR * 0.67 1.90
WRITE CONTACTS 3.56 30.48
WRITE EXTERNAL STORAGE 44.48 65.71
WRITE SETTINGS * 2.32 9.52
WRITE SMS * 0.39 19.05
WRITE SYNC SETTINGS * 0.15 3.81

Table 5.9: Permissions requested by our Pjapps.C samples compared to the fre-
quency of these permissions in the data sets. * not present in all samples

50

5.2. A CLOSER LOOK AT MALICIOUS APPLICATIONS

Permission % in market % in malware
ACCESS NETWORK STATE 56.62 41.90
ACCESS WIFI STATE 10.08 25.71
BROADCAST PACKAGE REMOVED 0.01 2.86
CHANGE WIFI STATE 1.61 11.43
DEVICE POWER 0.18 4.76
INTERNET 84.05 91.43
KILL BACKGROUND PROCESSES 1.85 2.86
READ PHONE STATE 44.03 78.10
READ SMS 0.87 48.57
RECEIVE SMS 1.34 35.24
SEND SMS 1.55 61.90
WAKE LOCK 20.58 24.76
WRITE APN SETTINGS 0.03 9.52
WRITE EXTERNAL STORAGE 44.48 65.71
WRITE SMS 0.39 19.05

Table 5.10: Permissions requested by our adSMS sample compared to the fre-
quency of these permissions in the data sets.

in the data set due to being undocumented; ACCESS CACHE FILESYSTEM,

ACCESS DOWNLOAD MANAGER ADVANCED, WRITE OWNER DATA.

See Section 4.2.2 for details on why these permissions were discounted.

5.2.6 adSMS

While adSMS is only represented with one sample in the malicious data set,

the FortiNet team has a good write-up on the malware [33] which will be used

for this analysis. The adSMS Trojan pretends to be a system update, which

in the malicious data set is represented with a file name that implies that it is

issued by HTC. Once installed on a device, the malware waits until one of two

conditions are met. When the device is rebooted or the device receives an SMS,

the malware springs into action. It registers the phone to certain services using

SMS, and proceeds to steal private information from the device. The malware

will also attempt to stop other processes on the device, usually processes related

to a Chinese messaging service called QQ.

Unlike the malicious applications analysed earlier in this chapter, this malware is

represented by only one sample. This means that unlike them, all the permissions

requested by this sample, shown in Table 5.10 are all significant for the malware.

This is not saying that these permissions are all requested by all versions of

51

5.3. A CLOSER LOOK AT POTENTIALLY SUSPICIOUS APPLICATIONS

Permission % in market % in malware
SEND SMS 1.55 61.90
INTERNET 84.05 91.43
RECEIVE SMS 1.34 35.23

Table 5.11: Permissions requested by our JimmRussia sample compared to the
frequency of these permissions in the market data set.

the malware, but the permissions are consistent between this sample and the

permissions described by FortiNet [33].

5.2.7 JimmRussia

Like adSMS, this Trojan is only represented by one sample in the data set. This

is accurate, as there is only one known Jimm infection, “Jimm Russia” [63]. The

malware spread on Russian forums and on Russian websites, pretending to be a

version of the messaging client “Jimm”. When the Trojan is installed on a device

it sends text messages to premium numbers.

This malware is very specialised, and only ask for three permissions, as shown

in Table 5.11. This is lower than both the average of the market data set and

the malicious data set, as seen in Table 5.1. The combination of the two text

messaging permissions are however unusual, as demonstrated in Section 5.4.1.7.

5.3 A Closer Look at Potentially Suspicious Ap-

plications

This section will elaborate on advertisement networks and application builders.

5.3.1 Advertisement networks

In this analysis we also need to take advertisement networks into account, as

many free applications implement these networks. Ironically, these advertise-

ment networks are added on to applications in a similar fashion as Trojans, but

unlike Trojans these are in general considered a reasonable trade-off for users

as advertisement supported applications are usually free. Table 5.12 presents

the ten most popular advertisement networks and the percentage of applications

that contain them, as determined by a project done by AppBrain [84]. Based on

Table 5.12, the permissions of these ten advertisement networks were retrieved,

52

5.3. A CLOSER LOOK AT POTENTIALLY SUSPICIOUS APPLICATIONS

Advertisement network % of applications
Admob 39.2
AirPush 6.5
Millennial Media 5.1
LeadBolt 4.1
AdWhirl 3.9
MobClix 3.5
InMobi 2.6
MobFox 1.8
Tapjoy 1.5
Startapp 1.2

Table 5.12: The ten most popular Android advertisement networks, by the per-
centage of applications that use them [84]

see Table 5.13, and compared to our data set. In Table 5.13, LAUNCHER in-

cludes installing shortcuts, reading home settings and shortcuts, and uninstalling

shortcuts. BROWSER includes read- and write-access to browser bookmarks and

history.

Table 5.13 lists the permissions requested by the advertisement networks identi-

fied in Table 5.12. As shown in the table, the INTERNET permission is requested

by all ten networks. This is expected, as the advertisement networks would need

a way to retrieve new ads from the servers. Additionally, Appendix B shows

that the INTERNET permission is requested by 84.05 percent of all the applic-

ations we sampled from the markets. Additionally, the READ PHONE STATE

and the ACCESS NETWORK STATE permissions are well represented, with

ACCESS NETWORK STATE present in the top four advertisement networks.

Using Table 5.13, we can make a rough calculation using the percentage of ap-

plications that contain the top four networks and assume that 54.2 percent of

the applications asking for INTERNET and ACCESS NETWORK STATE con-

tain these four advertisement networks. Comparatively, of our data set, which

admittedly uses a smaller data set than the 140,000 applications that Appbrain

operates with, 56.6 percent of the legitimate applications and 41.5 percent of the

malicious applications ask for the ACCESS NETWORK STATE permission.

It is worth noting that at least two of the networks, AirPush [2] and StartApp

[71], include functionality that was included in the Apperhand framework. These

functionalities were the major contributing factors that made Symantec classify

53

5.3. A CLOSER LOOK AT POTENTIALLY SUSPICIOUS APPLICATIONS

P
e
rm

issio
n

A
M

A
P

M
M

L
B

A
W

M
C

IM
M

F
T

J
S
A

A
C

C
E

S
S

C
O

A
R

S
E

O
O

O
O

A
C

C
E

S
S

F
IN

E
L

O
C

A
T

IO
N

O
O

O
O

O
A

C
C

E
S
S

L
O

C
A

T
IO

N
E

X
T

R
A

C
O

M
M

A
N

D
S

O
A

C
C

E
S
S

N
E

T
W

O
R

K
S
T

A
T

E
R

R
R

R
O

R
C

A
L

L
P

H
O

N
E

O
G

E
T

T
A

S
K

S
R

IN
T

E
R

N
E

T
R

R
R

R
R

R
R

R
R

R
R

E
A

D
P

H
O

N
E

S
T

A
T

E
R

R
R

O
R

O
R

R
R

E
C

E
IV

E
B

O
O

T
C

O
M

P
L

E
T

E
D

R
O

V
IB

R
A

T
E

O
W

A
K

E
L

O
C

K
O

W
R

IT
E

E
X

T
E

R
N

A
L

S
T

O
R

A
G

E
R

L
A

U
N

C
H

E
R

R
B

R
O

W
S
E

R
O

T
a
b
le

5
.13

:
T

h
e

req
u
ired

an
d

op
tion

al
p

erm
ission

s
req

u
ested

b
y

th
e

a
d
vertisem

en
t

n
etw

o
rk

s.
F

rom
left

to
righ

t;
A

d
m

ob
[38

],
A

irP
u
sh

[2],
M

illen
n

ial
M

ed
ia

[57],
L

ead
b

olt
[50],

A
d
W

h
irl

[1
],

M
o
b

clix
[6

1
],

In
m

o
b
i

[4
6
],

M
o
b
F

ox
[62],

T
ap

J
oy

[83]
an

d
S
tartA

p
p

[7
1
].

O
=

O
p
tion

al,
R

=
R

eq
u
ired

.

54

5.4. RECOGNIZING BAD APPLICATIONS

it as a Trojan (see CounterClank, in section 5.2.1). This is worrying, as AirPush

is the second largest network.

There have also been controversy surrounding what information the networks are

retrieving from the devices they are installed on, and for the average user it is

hard to gain insight into what information is retrieved and how to opt out of the

information gathering done by the advertisement networks.

5.3.2 Application builders

During the analysis of the market applications there were some applications which

were asking for a very peculiar set of permissions. These applications, while hav-

ing different developers, had suspiciously common application identifiers. These

applications turned out to have been built by an application builder, a web ap-

plication repackaging websites as mobile applications.

Based on installation counts and application ratings, these applications appear to

have a generally low standard. Based on their application IDs, three application

builders were identified in the data set; Appmakr, Appsbuilder and Appsbar. The

suspicious permissions were requested by the Appmakr applications, and while

these applications do not appear to be malicious, the applications did not have

any obvious reason for requesting these permissions. As an example, fifty-seven

of the seventy-four Appmakr applications requested the CAMERA permission,

while forty-four of the applications requested the READ LOGS permission. As

described in Section 3.4.9, this permission can be used to siphon data from the

device.

Comparatively, the thirty-one Appsbuilder and 666 Appsbar applications did not

ask for any unusual permissions, and the requested permissions generally matched

the advertisement networks covered in Section 5.3.1.

5.4 Recognizing Bad Applications

The subsequent sections describe the methods used in order to identify malicious

and suspicious applications, and the results obtained from applying these methods

to the data set.

55

5.4. RECOGNIZING BAD APPLICATIONS

5.4.1 Recognising malware by permissions

For the purpose of this analysis, a pattern is defined as a selection of permissions

that are requested by the malicious application. A pattern can consist of all

the permissions requested by the application, or a subset of these permissions.

The patterns were created based on the permissions requested by the malicious

applications in Section 5.2, and tests were done by applying these patterns to

the data set, after which the results were reviewed and evaluated based on the

applications that matched the pattern.

The potential of these patterns lies in the theory that malicious applications can

be recognised by the combination of permissions they request, not just which

permissions they request.

The false positive rate is calculated using this formula:

x

26, 333
× 100 (5.1)

x is the number of applications from the market data set which matches the

pattern, and 26,333 is the number of applications in the market data set. Note

that we can not guarantee that the market data set are completely infection

free, the false positive rate in this circumstance means that this many of the

applications would need to be reviewed for infections.

For the purpose of this analysis we have not considered malicious applications

caught by the pattern of another application as a false positive, as the intention

is to find patterns which will catch as many malicious applications as possible.

5.4.1.1 Pattern - Counterclank

CounterClank pattern: ACCESS NETWORK STATE, INTERNET, READ

PHONE STATE.

Using this pattern against the data set resulted in 8,142 legitimate applications

and forty-three malicious applications identified as CounterClank, giving us a

false positive of 30.92 percent. As mentioned in the CounterClank section above,

this result was not surprising.

What is surprising is that the advertisement networks requesting this combina-

56

5.4. RECOGNIZING BAD APPLICATIONS

tion, as shown in Table 5.12 and 5.3.1, only add up to 17.2 percent.

5.4.1.2 Pattern - DroidDream

DroidDream pattern: INTERNET, CHANGE WIFI STATE, ACCESS WIFI

STATE, READ PHONE STATE.

This pattern is rather interesting, as it consists of only four permissions, and only

one of them is overrepresented in the malicious data set. Running this pattern

against the complete data set resulted in twelve malicious applications caught.

Comparatively, from the legitimate market data set the pattern matched 199

applications, mostly from the Google Play market, giving us a false positive rate

of 0.75 percent.

5.4.1.3 Pattern - Geinimi

Geinmi pattern: ACCESS COARSE LOCATION, ACCESS FINE LOCAT-

ION, CALL PHONE, INTERNET, MOUNT UNMOUNT FILESYSTEMS,

READ CONTACTS, READ PHONE STATE, SEND SMS, SET WALL-

PAPER, WRITE CONTACTS, WRITE EXTERNAL STORAGE.

The Geinimi Trojan requests a rather distinct set of permissions, many of which

are not often requested by legitimate applications, as seen in Table 5.5. Using

this pattern on the data set resulted in no hits from the legitimate markets, only

the malicious data set. The pattern matched two additional malware samples;

Universal Androot, which is infected with the Lotoor Trojan, and the Arspam

malware.

5.4.1.4 Pattern - GoldDream

GoldDream pattern: INTERNET, ACCESS NETWORK STATE, READ

PHONE STATE, ACCESS WIFI STATE, WRITE EXTERNAL STORAGE,

ACCESS COARSE LOCATION, ACCESS FINE LOCATION, RECEIVE SMS,

SEND SMS, READ SMS, CALL PHONE, PROCESS OUTGOING CALLS, DE-

LETE PACKAGES, INSTALL PACKAGES, RECEIVE BOOT COMPLETED.

This pattern returns only the GoldDream samples and the Arspam malware from

the malicious data set. Like the Geinimi pattern, this pattern can almost uniquely

identify GoldDream infected applications.

57

5.4. RECOGNIZING BAD APPLICATIONS

5.4.1.5 Pattern - Pjapps

Pjapps pattern: WRITE EXTERNAL STORAGE, RECEIVE SMS, SEND SMS.

The initial pattern derived from the Pjapps Trojan was based on all the different

versions of the Trojan, and the resulting pattern contained, like the Counter-

Clank pattern, only three permissions. Unlike the CounterClank pattern, this

pattern matched twenty-six malicious applications and only fifty-eight legitimate

applications. This translates to a 0.22 percent false positive rate.

Why this pattern caught fewer applications from the legitimate markets is easily

determined from Appendix B, which demonstrates that while the WRITE

EXTERNAL STORAGE permission is rather common, RECEIVE SMS and

SEND SMS are far less common among the applications in the market data set.

A short demonstration of why this works: Using a pattern consisting only of the

RECEIVE SMS permission matches 354 applications from the market data set

and thirty-seven malicious applications, while a similar pattern consisting only of

the SEND SMS matches 409 applications and sixty-five malicious applications.

However, ask for these two together, and the resulting list is reduced to 116 market

applications and thirty-five malicious. Add the WRITE EXTERNAL STOR-

AGE permission, which as stated earlier is a lot more common than the text

messaging permissions, and the result is reduced to fifty-eight market applications

and twenty-six malicious applications.

5.4.1.6 Pattern - adSMS

adSMS pattern: SEND SMS, READ SMS, WRITE SMS, RECEIVE SMS,

DEVICE POWER, WRITE APN SETTINGS, ACCESS NETWORK STATE,

BROADCAST PACKAGE REMOVED, ACCESS WIFI STATE, CHANGE

WIFI STATE, WAKE LOCK, INTERNET, WRITE EXTERNAL STORAGE,

READ PHONE STATE, KILL BACKGROUND PROCESSES.

This pattern is even more specific to this Trojan than the Geinimi pattern is

to Geinimi, see Section 5.4.1.3, and results in only the malware sample being

returned from the malicious data set and no hits in the market data set. As

this effectively means that the malware can be uniquely identified based only on

its permission set, this pattern is effective in determining the presence of this

malware.

58

5.4. RECOGNIZING BAD APPLICATIONS

Permission G DD CC P aS JR GD
ACCESS COARSE LOCATION x x
ACCESS FINE LOCATION x x
ACCESS NETWORK STATE x x x
ACCESS WIFI STATE x x x
BROADCAST PACKAGE REMOVED x
CALL PHONE x x
CHANGE WIFI STATE x
DELETE PACKAGES x
DEVICE POWER x
INSTALL PACKAGES x
INTERNET x x x x x x
KILL BACKGROUND PROCESSES x
MOUNT UNMOUNT FILESYSTEMS x
PROCESS OUTGOING CALLS x
READ CONTACTS x
READ PHONE STATE x x x x x
READ SMS x x
RECEIVE BOOT COMPLETED x
RECEIVE SMS x x x x
SEND SMS x x x x x
SET WALLPAPER x
WAKE LOCK x
WRITE APN SETTINGS x
WRITE CONTACTS x
WRITE EXTERNAL STORAGE x x x x
WRITE SMS x

Table 5.14: The seven patterns compared to each other. From left to right:
Geinimi, DroidDream, CounterClank, Pjapps, adSMS, Jimm Russia, Gold Dream

5.4.1.7 Pattern - JimmRussia

JimmRussia pattern: SEND SMS, INTERNET, RECEIVE SMS.

This pattern is very similar to that of Pjapps, and the same reasoning applies

here. The INTERNET permission is very common, but the SEND SMS and

RECEIVE SMS permissions are less common. Replacing the WRITE EXTER-

NAL STORAGE permission with the more common INTERNET permission res-

ults in 139 applications returned, with ninty-eight false positives which translates

to a 0.37 percent false positive rate. This shows that the INTERNET permission

is slightly more common in combination with SEND SMS and RECEIVE SMS

than WRITE EXTERNAL STORAGE.

5.4.1.8 Comparing the patterns

When comparing the seven patterns to each other (see Table 5.14), two interest-

ing things become apparent. First, all the permissions requested by the Pjapps

and JimmRussia patterns matches the adSMS and GoldDream patterns as well,

meaning that both the adSMS and the GoldDream Trojans would also be caught

59

5.4. RECOGNIZING BAD APPLICATIONS

by the Pjapps and JimmRussia patterns. However, Pjapps and JimmRussia

would not be caught by each others patterns.

Second, the SEND SMS and WRITE EXTERNAL STORAGE permission is

shared by the Geinimi, Pjapps and adSMS patterns, meaning that a pattern made

from these two permissions would catch all three Trojans. From the Pjapps pat-

tern we know that a pattern using only the SEND SMS permission results in 409

market and sixty-five malicious applications, as demonstrated in Section 5.4.1.5.

Adding the WRITE EXTERNAL STORAGE permission to that, the result is

reduced to 212 market and fifty-three malicious applications giving a false positive

percentage of 0.81. The SEND SMS and RECEIVE SMS permissions however,

are shared by Pjapps, adSMS, JimmRussia and Gold Dream, meaning that a pat-

tern based on these two permissions would find all four of these Trojans. From

the Pjapps pattern, in Section 5.4.1.5, it has been demonstrated that asking for

these two permissions together gives a result of 116 market applications and 35

malicious applications. This gives a false positive rate of 0.44 percent.

5.4.2 Analysis using clustering algorithms

The subsequent sections will describe how machine learning has been applied to

the Android application data set. A clustering algorithm, k-means, is used in the

process of identifying patterns in the large amounts of data. This is an algorithm

based on unsupervised learning, as described in Section 3.5.2. The objective of

this approach is to verify if clustering algorithms can be applied to this type of

a problem, in order to heighten our understanding of the data set. The method

of adapting the k-means algorithm to fit our data set will be described in the

next section. When the algorithm had been applied to the data set, the results

were analysed to see if the clusters gave any valuable results. This is described

in Sections 5.4.2.2 through 5.4.2.6.

5.4.2.1 Determine the k number of clusters

For k-means to perform a valid clustering on our data, an appropriate value of

k must be determined. Apart from some minor parameter adjustments, k is the

only input required for running k-means. The k-means algorithm organizes the

input data set in a k number of clusters. Determining the value of k is not an

intuitive task. Because of the great order of variation in possible input data sets,

it is not possible for k-means to automatically assign an appropriate value of k.

60

5.4. RECOGNIZING BAD APPLICATIONS

There are a number of ways to determine k in order for the algorithm to fit the

input data to a certain number of clusters. One way is to take into account the

type of results you want to get out of the clustering algorithm. For illustrative

purposes, an example of t-shirt sizes can be studied [64]. In this case, the value

of k depends on how the owner wants to segment his or her market. In the case

of five clusters (XS, S, M, L, XL) the t-shirt sizes would better fit the customers.

A larger number of sizes to pick from would result in the customers having much

to choose from, and a higher probability of finding a t-shirt that would fit the

customer perfectly. A downside to this number of clusters would be that the

manufacturing process would become more expensive, having to produce five

types of t-shirts instead of a lower number.

In the case of three clusters, the pros and cons would be reversed. The t-shirt

sizes would not reflect the variation in the customers, but the manufacturing

costs would be decreased. When choosing a number of clusters in this case, it all

comes down to what you want your results to look like. The owner has a clear

understanding of what the results might look like, and therefore be able to adjust

the value of k to fit the desired outcome.

For the data set gathered in this project, an equivalent understanding of how

the clustering results will look can not be made. Partly because of the high

dimensionality of the data, and partly because the objective of the clustering task

is to find patterns or groupings not obvious to us without actually performing

the clustering. A different way of determining k is to study the cost function of

several clustering attempts to see how it decreases. A plot of the cost function

values for a range of k might give indications as to which value of k is fitting.

The cost function is a numeric value that describes how well the algorithm per-

forms in fitting the data into clusters. A lower cost function value answers to

a better fit to the data. In one extreme case, when k is equal to N (number of

objects in the data set), the cost function will give 0 as the output, indicating a

perfect fit. The cost function of k-means is represented by the total within-cluster

sum of squares (SSE). The cost function is given by

arg min
S

k∑
i=1

∑
xj∈Si

‖ xj − µi ‖2 (5.2)

61

5.4. RECOGNIZING BAD APPLICATIONS

0

10000

20000

30000

40000

50000

60000

70000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

To
ta

l w
it

h
in

-c
lu

st
e

r
SS

E
o

f
al

l c
lu

st
e

rs

Value of k

Figure 5.1: Total within-cluster sum of squares. Each point on the x-axis repres-
ents an increase in the number of k clusters.

where xj are the data points, µi are the cluster centroids and Si the sets contain-

ing the clustered data points. We calculated the cost function output for a range

of k from two to fifty-one. For each k, the algorithm was run one hundred times

for the purpose of increasing the confidence in the sampled data. The average

for each k can be seen in Figure 5.1.

A desirable result would be that the graph suddenly levelled out after a rapid

drop in the cost function, taking the form of an elbow. If the graph would have

levelled out after such an elbow, we could with great confidence assume that this

point was the most suitable value of k [64]. The graph clearly does not contain

such an elbow.

We decided to look at how much the cost function decreases for each increase

of k. That would give us an understanding of when the graph starts levelling

out or to decrease by an observably steady rate. Each cost function value was

subtracted with its predecessor to show how much the cost decreased between

each number of k. Figure 5.2 shows the results from these calculations. Each

column represents the difference in cost between a given k and its predecessor.

A definite trend is evident, as the level of decrease from each k to the next is

decreasing as the number of clusters increase. The graph shows a steady decrease

from the first column up until column fifteen, marked red. From that point on,

the cost difference varies. The average difference in decrease falls rapidly from

the first to the fifteenth column. After that point, the average would be more

levelled out if represented by a linear function.

62

5.4. RECOGNIZING BAD APPLICATIONS

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

D
if

fe
re

n
ce

 in
 c

o
st

 b
et

w
e

e
n

 v
al

u
e

s
o

f
k

Figure 5.2: Difference in cost between each value of k. Each value on the x-axis
should be read as follows: x = cost(k + 1) − cost(k). Column x = 3 therefore
shows the difference in the cost between cluster 4 and cluster 3.

After studying Figure 5.2, we conclude that column 15 marks the appropriate

point in which to stop. Column 15 represents the difference between k=16 and

k=15. This gives k=16 as the most fitting value of k. We choose this value of k

in the further work with clustering our data set by k-means.

5.4.2.2 Cluster analysis of the data set

When running the k-means algorithm on the Android applications data set, the

different applications will be grouped together based on how similar they are in

their permission patterns. The k-means algorithm only uses the permissions of

each application as input vectors when performing the clustering. Each applic-

ation is represented by a 137-dimensional vector describing each application’s

permission pattern. The results of the clustering algorithm therefore need to

be analysed with the permissions patterns in mind. By looking at the composi-

tion of clusters, we hope to see if this type of clustering in reality groups similar

applications together.

One immediate intuition is that applications with identical permission patterns

will end up in the same cluster. The k-means algorithm assigns each applica-

tion to the nearest cluster, based on the distance between the application and

the cluster centroid vectors. Seeing as the applications vectors is composed of

63

5.4. RECOGNIZING BAD APPLICATIONS

the application’s permissions, the distance from two applications with identical

permissions to any given cluster centroid will always be the same. The results

are expected to demonstrate this intuition in practice.

Figure 5.3 shows some results after the clustering has been completed. The graph

is separated with respect to each market. Each column indicates the percentage

of the market’s applications assigned to a particular cluster. The columns are

marked with its corresponding cluster number. This is done with readability in

mind. For every market, the columns add up to one hundred percent of that

particular market’s applications.

The most apparent observation one makes from looking at the graph, is the spike

in the applications from F-Droid. The spike simply implies that around sixty

percent of the applications are assigned to cluster 10. If the total number of

F-Droid applications in cluster 11 is considered, they only make up a mere 0.6

percent of the total number of applications in the cluster. The reason for this

distinct spike is the comparatively small number of applications collected from

the F-Droid market. These applications sum up to thirty-nine applications. This

is a significantly smaller number than the total number of applications from the

other markets.

5.4.2.3 Distribution of applications over the clusters

Figure 5.4 illustrates the distribution of the applications into different clusters

after the k-means algorithm is applied to the data set. The points on the y-

axis indicates the number of applications, and the x-axis is composed of the

sixteen clusters. Some of the clusters clearly sticks out, in both ends of the scale.

The graph gives an understanding of the composition of the clusters. Some

questions present themselves: Why does cluster 9, 13 and 15 contain significantly

fewer applications than the other clusters? Does a tall column suggest that a

cluster is too general, thus being made up of permission patterns with great

variance between patterns? By looking at the within-cluster sum of squares, we

can determine the density of each cluster. Larger with-cluster sum of squares

means a higher probability of finding applications with contrasting permission

patterns within the cluster. A cluster with high density (low SSE) means a

higher probability of finding applications with similar, and even close to identical,

permission patterns.

64

5.4. RECOGNIZING BAD APPLICATIONS

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

10

10

10

10

10

11

11

11

11

11

12

12

12

12

12

13

13

13

13

13

14

14

14

14

14

15

15

15

15

15

16

16

16

16

16

0,00 % 10,00 % 20,00 % 30,00 % 40,00 % 50,00 % 60,00 % 70,00 %

Contagio

Amazon

Google Play

Fdroid

SlideMe

Percentage of total number of apps in each market

Figure 5.3: Results from running k-means with k=16. Shows the distribution of
clusters for each market in percentage. Malware is represented by ’Contagio’.

65

5.4. RECOGNIZING BAD APPLICATIONS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

e
r

o
f

ap
p

s

Cluster

Figure 5.4: Distribution of applications in the sixteen clusters

5.4.2.4 Density of the clusters

Studying the density of each cluster might get additional insight in how the

clusters are composed. As mentioned, a higher density (low within-cluster SSE)

might imply that the cluster includes applications with close to identical permis-

sion patterns. Figure 5.5 shows a combined plot of the cluster size (in number

of applications) and the within-cluster SSE. In the case of high density clusters,

three clusters make an impression; cluster 9, 13 and 15. These clusters also

include a significantly smaller number of applications than the average cluster.

The combination of a small number of applications and a low within-cluster SSE

points towards similar permission patterns in each of the clusters.

When it comes to clusters containing a large number of applications, cluster 5 and

10 are notable examples. They are comparatively similar in cluster size, and also

show a below-average within-cluster SSE. These clusters are not as dense as the

previously mentioned clusters, but because they are the largest clusters in size,

it is assumed that these clusters represent more common permission patterns.

5.4.2.5 A closer look at interesting clusters

This section includes a closer examination of four clusters. The examination of

the three last clusters include some figures showing the permission patterns of

each cluster. The figures are intended as visual representations of the patterns in

66

5.4. RECOGNIZING BAD APPLICATIONS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cluster

Cluster size Within-cluster SSE

Figure 5.5: Comparison between number of applications and within-cluster sum
of squares per cluster.

each cluster, and not for identifying specific permissions.

Cluster 10. The characteristic of cluster 10 is that the most popular permis-

sions in the data set are under-represented. This is interesting due to the fact

that cluster 10 is the largest cluster, containing 3,918 applications. Table 5.15

lists the most frequently requested permissions in the data set, together with a

summary of the same permissions in cluster 10.

Cluster 10 equals to fifteen percent of the total number of applications in the

data set. An interesting feature of this cluster is that none of the applications

requests INTERNET and ACCESS NETWORK STATE. The INTERNET per-

mission is present in the permission requests of eighty-four percent of the data

set’s applications. The ACCESS NETWORK STATE permission is present in

fifty-four percent of the data set’s applications.

Add up the applications in cluster 10 and the applications not requesting the

INTERNET permission and you get close to the total amount of applications in

the data set. This means that close to one-hundred percent of the applications

requesting the INTERNET permission is assigned to cluster 10.

ACCESS NETWORK STATE enables the application to obtain information about

the network interface of the Android phone. This permission is closely related to

the INTERNET permission, seeing how ACCESS NETWORK STATE is prac-

67

5.4. RECOGNIZING BAD APPLICATIONS

tically always followed by INTERNET. ACCESS NETWORK STATE is reques-

ted 14,954 times in the data set, while 14,846 applications request both AC-

CESS NETWORK STATE and INTERNET. Out of 14,954 requests, merely 108

applications do not request INTERNET in addition.

This signals an unnecessary separation of two permissions. ACCESS NETWORK

STATE is requested in order for the application to get information on the net-

work connectivity. This feature implies that a network connection follows. The

fact that only an insignificant number of applications in the data set request AC-

CESS NETWORK STATE without requesting INTERNET, should argue for the

case that these be conjoined into one.

The reason that these two permissions are the most common in the data set is

due to the fact that they are closely correlated. Practically every application

that request ACCESS NETWORK STATE also request INTERNET. Still, the

relationship is not one-to-one. INTERNET is still requested by about 7,000 more

applications than ACCESS NETWORK STATE.

The two permissions are also present in a large part of the advertisement net-

work libraries on the Android platform, and from the analysis in Section 5.3.1,

INTERNET is required by all of the ad-network libraries. We can therefore say

with certain confidence that cluster 10 is composed of applications that do not

include ad-network libraries in their code. Consequently, the applications will be

less likely to make use of personal information about either the user or the mobile

device.

We do not imply that the applications in cluster 10 are excluded from this type

of behaviour. However, we can be certain that ad-network libraries are not the

reason for this type of behaviour. Although care should be taken when making

the following argument, this may imply that applications in cluster 10 are less

likely to “spy” on the user. We cannot conclude with the assumption of having

found applications that are entirely free of spy-ware. A presentation at the Black-

Hat conference in 2010 [51] describes how spying on a user can be accomplished

without requesting any permissions.

WRITE USER DICTIONARY is requested by thirteen applications in the whole

data set, and all occurrences are in cluster 10. It is not present in the document-

ation provided by Google [40], but the permission has been found on Google

68

5.4. RECOGNIZING BAD APPLICATIONS

P
er

m
is

si
on

#
in

d
a
ta

se
t

%
in

d
a
ta

se
t

#
in

c1
0

%
in

c1
0

IN
T

E
R

N
E

T
2
2
,2

3
0

8
4
.0

8
0

0
A

C
C

E
S
S

N
E

T
W

O
R

K
S
T

A
T

E
1
4
,9

5
4

5
6
.5

6
0

0
W

R
IT

E
E

X
T

E
R

N
A

L
S
T

O
R

A
G

E
1
1
,7

8
2

4
4
.5

6
4
7
0

1
2

R
E

A
D

P
H

O
N

E
S
T

A
T

E
1
1
,6

7
7

4
4
.1

7
61

1
.5

6
V

IB
R

A
T

E
6
,4

7
8

2
4
.5

0
2
4
8

6
.3

3
A

C
C

E
S
S

F
IN

E
L

O
C

A
T

IO
N

6
,0

3
8

2
2
.8

4
20

0
.5

1
W

A
K

E
L

O
C

K
5
,4

4
5

2
0
.6

2
2
4

5
.7

2
R

E
C

E
IV

E
B

O
O

T
C

O
M

P
L

E
T

E
D

4
,9

8
7

1
8
.8

6
37

0
.9

4
A

C
C

E
S
S

C
O

A
R

S
E

L
O

C
A

T
IO

N
3
,1

2
6

1
1
.8

2
9

0
.2

3
A

C
C

E
S
S

L
O

C
A

T
IO

N
E

X
T

R
A

C
O

M
M

A
N

D
S

2
,8

8
4

1
0
.9

1
0

0
A

C
C

E
S
S

W
IF

I
S
T

A
T

E
2
,6

8
1

1
0
.1

4
20

0
.5

1

T
ab

le
5.

15
:

C
om

p
ar

is
on

of
to

p
p

er
m

is
si

on
s

in
th

e
to

ta
l

d
at

a
se

t,
in

cl
u
d
in

g
m

a
li
ci

o
u
s

a
p
p

li
ca

ti
on

s,
a
n
d

cl
u
st

er
1
0

69

5.4. RECOGNIZING BAD APPLICATIONS

Permission # in cluster 10
WRITE EXTERNAL STORAGE 470
VIBRATE 248
WAKE LOCK 224
SET WALLPAPER 131
CAMERA 66
READ PHONE STATE 61
READ CONTACTS 48
WRITE SETTINGS 47
BLUETOOTH 42
CALL PHONE 38

Table 5.16: Top 10 permissions of cluster 10

Play. As mentioned in Section 4.2.2, the permission was included in our analysis

because it is accepted and presented as a valid permission when uploading an

application to Google Play. The tenth most requested permission in the data set,

ACCESS LOCATION EXTRA COMMANDS, is not present in cluster 10. The

permission is requested by ten percent of the applications in the data set.

While this is the largest cluster in number of applications, no clear permission

pattern can be read from the applications assigned to the cluster. The within-

cluster SSE of cluster 10 is below the average for all the clusters combined, but

the distance between the applications within the cluster is still to significant to

be able to represent one distinct pattern. The top 10 permissions in cluster 10 are

listed in Table 5.16. The number of occurrences of each of the top permissions

is too low and too unreliable to be able to identify a distinct pattern. As some

of the subsequent sections will illustrate, patterns can be identified by using this

approach although not in the case of this cluster.

Cluster 9. Due to the combination of small size and high density, cluster 9

indicates a potentially interesting grouping of applications. Given how the k-

means algorithm works, a distinct permission pattern should present itself due to

the low within-cluster SSE. The probability of this result appearing is increased

because of the size of the cluster. 170 applications are assigned to this cluster, a

mere 0.64 percent of the complete data set.

The most prominent characteristic of this cluster is the distinct set of permissions

that form a clear and consistent pattern across nearly all of the applications in

70

5.4. RECOGNIZING BAD APPLICATIONS

Permission # in cluster 9
VIBRATE 170
WRITE EXTERNAL STORAGE 170
INTERNET 169
KILL BACKGROUND PROCESSES 169
ACCESS NETWORK STATE 168
GET ACCOUNTS 168
READ CONTACTS 166
SYSTEM ALERT WINDOW 165

Table 5.17: Top 8 permissions of cluster 9

cluster 9. The top eight permissions in this cluster are listed in Table 5.17. Most

of the permissions listed are common in the complete data set. Two of the permis-

sions are not frequently requested. KILL BACKGROUND PROCESSES gives

the application the permission to call killBackgroundProcesses(String package-

Name), killing all background processes associated with a given package. This

is equivalent to the action the kernel performs in order to kill processes to re-

claim memory. SYSTEM ALERT WINDOW allows the application to create

alert windows even though the application is not in focus. This means that an

application with this permission may create pop-up windows with advertisements

while the user is browsing the web or writing a text message.

In the complete data set, KILL BACKGROUND PROCESSES is requested 491

times, while SYSTEM ALERT WINDOW is requested 258 times. The permis-

sion pattern observed in this cluster represents a large share of these requests,

which is worth noting. The requests may still be justifiable. To verify, a further

study of the applications in this cluster is necessary. To illustrate the obvious

pattern shown in cluster 9, Figure 5.6 depicts a table with rows representing the

applications in cluster 9, and the columns representing each permission. Black

denotes permissions present in the application’s request. Looking at the pattern,

there can be no doubt that the clustering has resulted in identifying a distinct

set of permissions, a pattern describing a certain type of applications. Since the

number of applications in the cluster is not more than 170, Figure 5.6 can also

be examined in order to identify applications that are not fitting one-hundred

percent within the pattern. A short glimpse on the permission pattern of cluster

9 distinguishes seven applications that deviate a bit from the general pattern.

The permission patterns of these applications are still evaluated as close enough

for the clustering algorithm to organize these applications together with the rest

71

5.4. RECOGNIZING BAD APPLICATIONS

Figure 5.6: Permission patterns of the 170 applications assigned to cluster 9. The
figure depicts a table where each column represents a permission, and each row
represents an application in cluster 9. Black means that the permission is present
in the permission requests of an application.

in cluster 9.

One element of interest is the distribution of different categories within the

cluster. If a pattern or a similarity can be found in the distribution of cat-

egories, this can lead to interesting findings. Table 5.18 lists the categories found

in cluster 9 in order of occurrences. Aside from Productivity, Communication,

Education and Entertainment, the categories represent different types of games.

Seeing as the permissions in this cluster form a distinct pattern, and the ap-

Category Occurrence in cluster 9
Arcade & Action 108
Casual 38
Brain & Puzzle 16
Productivity 3
Cards & Casino 2
Communication 1
Education 1
Entertainment 1

Table 5.18: Categories found in cluster 9

72

5.4. RECOGNIZING BAD APPLICATIONS

Developer # of applications in cluster 9
Thio 60
FREEJOYO.COM 41
tinepeng215 41
FREEstudio 21
appbody 1
Blue Coat Systems 1
DuzonBizon 1
EmailTray 1
ETWAP 1
Mint Shirt Productions 1
TopWare Interactive AG 1

Table 5.19: Developers in cluster 9

plications are mainly games, a closer look at the developers may uncover more

information on the applications assigned to this cluster. Table 5.19 lists the de-

veloper IDs from cluster 9. The Table shows that four developers are dominating

this cluster. FREEJOYO.COM and FREEstudio both list the same developer

URL. This gives reason to believe that these two developers actually are one

developer with two different developer IDs.

At the time of writing, the applications from developers FREEJOYO.COM, tin-

apeng215 and FREEstudio are all taken down from the market. A curious ob-

servation is that even though the permission requests from all these developers’

applications are identical, the applications from Thio still exist on Google Play.

While it has not been possible to provide definite answers as to why this is the

case, the applications developed by Thio may be reviewed in order to give clues

to why this has happened.

Apart from the dominating developers, and the distinct permission pattern of

this cluster, the application IDs are also interesting. It turns out that of the 170

applications in this cluster, all of the applications developed by the top four de-

velopers share a similar feature. The application IDs all include one of the names

in Table 5.20. The names appear in the following format: com.droidhen.swf[...],

com.glu.swf[...], com.gameloft.swf[...]. The application IDs for these applications

are all in this format, with the square brackets representing a string of random

numbers making every application ID unique.

Six of these application IDs have been connected to companies who develop

73

5.4. RECOGNIZING BAD APPLICATIONS

application ID Confirmed Android games developer
com.droidhen.swf[...] X
com.ninja.swf[...]
com.finditmario.swf[...]
com.glu.swf[...] X
com.ea.swf[...] X
com.gameloft.swf[...] X
com.rovio.swf[...] X
com.roidgame.swf[...]
se.illusionlabs.swf[...] X

Table 5.20: Names from applications IDs of applications developed by the top
four developers in cluster 9. The X marks that the name has been confirmed as
a developer of Android games.

Android games. Combine this with the fact that the permission patterns are

identical, and it is tempting to conclude that these applications are posing as

legitimate applications in order to lure users into installing them.

Cluster 15. The second smallest cluster in size is cluster 15, containing 207

applications. The eleven most frequently requested permissions are listed in Table

5.21. The number of occurrences of each permission is not as consistent as in the

case of cluster 9. Nevertheless, a pattern can still be observed. No clear result

could be read from looking at the categories of cluster 15. When studying the

overview of the developers present in this cluster, just one developer ID appeared

noticeably more frequent than the others. The developer with ID Balkanboy

Media has developed twenty-two applications, with twenty of them appearing in

cluster 15. Such a high share of the developer’s applications in one cluster is

curious.

Balkanboy Media’s applications have been removed from Google Play since the

time when the application data was collected, though some of the applications

still exist on the AppBrain market. Nineteen of the twenty applications in cluster

15 is in the News & Magazines category. This could justify the identical permis-

sion pattern, since the applications may just be the same application ported for

different usage scenarios. It may also imply that the developer is spamming the

market.

74

5.4. RECOGNIZING BAD APPLICATIONS

Permission # in cluster 15
INTERNET 205
WRITE EXTERNAL STORAGE 205
ACCESS FINE LOCATION 204
ACCESS NETWORK STATE 199
ACCESS LOCATION EXTRA COMMANDS 194
WRITE CONTACTS 187
RECEIVE SMS 175
MODIFY AUDIO SETTINGS 174
READ PHONE STATE 171
VIBRATE 163
GET ACCOUNTS 138

Table 5.21: Top 11 permissions of cluster 15

Figure 5.7: Permission patterns of the 207 applications assigned to cluster 15.
The figure depicts a table where each column represents a permission, and each
row represents an application in cluster 15. Black means that the permission is
present in the permission requests of an application.

Figure 5.7 shows the permission pattern in cluster 15. While a pattern can be

derived from this plot, it does not show the consistency as in the case of cluster

9. This observation is supported by the within-cluster SEE, compared to the

same value for cluster 9. The within-cluster SSE is eleven times larger than the

within-cluster SSE for cluster 9.

75

5.4. RECOGNIZING BAD APPLICATIONS

Permission # in cluster 13
ACCESS MOCK LOCATION 451
ACCESS NETWORK STATE 451
CALL PHONE 451
GET ACCOUNTS 451
INTERNET 451
WRITE EXTERNAL STORAGE 451
WAKE LOCK 450
WRITE CONTACTS 446
CAMERA 434
READ PHONE STATE 434
DELETE PACKAGES 340

Table 5.22: Top 11 permissions of cluster 13

Cluster 13. The third smallest cluster in size is cluster 13, containing 451 ap-

plications. The within-cluster SSE is the second smallest, and looking at Figure

5.5 suggest that this cluster should contain applications showing a similarity in

permission requests when compared to each other. Table 5.22 lists the eleven

most frequently requested permissions in this cluster. Among commonly reques-

ted permissions, the table shows permissions that are not common for the rest

of the data set. ACCESS MOCK LOCATION is requested in total 606 times,

with seventy-four percent of the requests coming from applications in cluster 13.

WRITE CONTACTS is requested in total 969 times, with forty-six percent of

the requests coming from applications in cluster 13. DELETE PACKAGES is

requested in total 359 times, with ninety-five percent of the requests coming from

applications in cluster 13.

Since DELETE PACKAGES is a signatureOrSystem permission, applications

will not be granted this permission if they are not signed by either the device

manufacturer or the signed with the same certificate used to sign the version of

the Android system installed on the device, as covered in Section 5.1.2. While

the application will not have the permission to delete packages, it should still be

mentioned because of the severe damage this could do to a device. The fact that

this permission is even requested should be alarming.

Cluster 13 is not dominated by only a few developers, unlike cluster 9, but there

are still a few developers that stick out from the crowd. Digital Online Media has

developed 38 of the applications in cluster 13, the highest amount of applications

in this cluster. A search on AppBrain and Google Play reveals that the developer

76

5.4. RECOGNIZING BAD APPLICATIONS

Figure 5.8: Searching for developer Ashley Williams on AppBrain. The applica-
tions are still visible, but marked as spam. (June 7th, 2012)

is no longer listed on the markets. Ashley Williams has developed 10 of the

applications in cluster 13. This developer has been classified as a spammer on

the AppBrain market. Developers with a combination of low popularity and

poor ratings on AppBrain may be classified as such [6]. The applications are

still listed on AppBrain, but the user must click to reveal the application because

of the application having been classified as spam. Figure 5.8 shows the search

results for Ashley Williams on AppBrain.

Figure 5.9 shows the permission pattern of cluster 13. As expected, the patterns

are highly visible, because of the low within-cluster SSE of this cluster.

5.4.2.6 Occurrences of malware in the clusters

Some of the malicious applications studied in this project show very distinct

permission patterns. The Geinimi Trojan has a very distinct set of permission

77

5.4. RECOGNIZING BAD APPLICATIONS

Figure 5.9: Permission patterns of the 451 applications assigned to cluster 13.
The figure depicts a table where each column represents a permission, and each
row represents an application in cluster 13. Black means that the permission is
present in the permission requests of an application.

requests, although most of the permissions requested by the infected applications

are commonly requested in the market data set. The Geinimi Trojan will be used

as an example to find out if the clustering results can identify malware present in

the clusters by looking at the clusters the malicious applications are assigned to.

Identifying malware in clusters. The Geinimi trojan’s permission requests

are shown in Table 5.5. As all the samples of Geinimi are quite consistent in

their permission requests, the clustering task is expected to assign most of the

Geinimi applications to the same cluster. K-means groups the applications based

on their vector’s distance to the rest of the applications. As discussed earlier, the

more similar the applications are to each other in form of permission requests,

the closer their respective vectors will be to each other.

The results of the clustering confirms the expectations regarding whether or not

the Geinimi applications will be assigned mainly to the same cluster. Of twenty-

four Geinimi samples, nineteen appears in cluster 11, two in cluster 6 and three

in cluster 2.

This should not be interpreted as cluster 11 containing only Geinimi malware,

despite the fact that nearly all of the Geinimi samples were assigned to this

cluster. Concluding like this would classify over 1,000 market applications as

being infected with the Geinimi Trojan.

This also goes for the other malware samples in the data set. Even though a

78

5.5. SUMMARY OF FINDINGS

malicious application appears in the same cluster as other applications, this does

not imply that all the applications in that cluster contains the same Trojan, or

behaves in the same malicious manner.

If the set of malicious applications was substantially larger, such an approach

might have given more significant results. The fact that the malicious applications

used in this analysis are so few means that the clustering algorithm can not be

used to obtain such results.

5.5 Summary of Findings

A summary of the results from the analysis will be presented in the subsequent

sections.

5.5.1 Pattern analysis

The permissions requested by an application can be used to determine whether

or not it is suspicious. This is because, as demonstrated in Section 5.4.1, even

if the permissions requested by a malicious application are themselves rather

common permissions, the combinations requested by malicious applications are

atypical. The method is however not perfect, as there is a chance of false positives

which varies with the uniqeness of the permission pattern. The more unique the

pattern, the fewer applications are caught by the pattern both from the malicious

data set and the market data set. This false positive range from the GoldDream

pattern, which has a false positive rate of zero, to the DroidDream pattern with

a 0.75 percent false positive rate. The CounterClank pattern did have a false

positive rate of 30.9 percent, but as covered in Section 5.2.1, this pattern can be

discounted due to not being a malicious application.

5.5.2 Clustering analysis

The objective of performing the clustering analysis on the data set was to evaluate

the potential of applying machine learning methods on the data set, by looking

at the results from the clustering. From the results presented in Section 5.4.2.5,

several interesting features of the data set was identified. Groups of applications

deviating from the most common permission requests were identified. In cluster 9,

170 applications potentially spamming the market were identified. Some of these

applications are still listed on Google Play, while applications that were identical

79

5.5. SUMMARY OF FINDINGS

in permission patterns and application ID have been taken down since the time

when the data set was built. The clustering analysis also revealed about 450

applications with close to identical permissions patterns in cluster 13. Because

of the identical permission patterns of these applications, combined with the fact

that some of the applications have already been classified as spam by AppBrain,

they show clear signs of low quality applications possibly spamming the market.

The results obtained from the clustering analysis would most likely not be ob-

tained by manual inspection of the data set. K-means automatically provides

us with a separation of the data set based on the similarity between each of the

applications. This leads to patterns being identified by the clustering algorithm,

providing us with a solid basis for further examination of the data set.

5.5.3 Comparing the analysis methods

The seven Trojans analysed in Section 5.2 were compared to the clustering results.

The objective was to identify whether or not the clustering algorithm ended up

grouping the Trojan samples in the same clusters. The results shows that this

was a fact for the Trojans with several samples in the data set, such as Geinimi

and Pjapps.B. Seven of ten Pjapps.B Trojans were assigned to cluster 16, and

nineteen of twenty-four Geinimi Trojans were assigned to cluster 11. The Trojans

with few samples in the data set did not display this tendency.

The reason for samples of the same malware not being assigned to the same

cluster, can be attributed to two issues. First, the malicious data set consists

of too few infected applications to be able to discern a pattern. Second, even

if two applications are infected with the same Trojan, this does not mean that

the permission requests will be identical, as demonstrated in Section 5.2. If two

samples of the same Trojan show slightly different permission patterns, the k-

means algorithm will not necessarily assign the two samples to the same cluster.

80

Chapter 6

Discussion

This chapter discusses the implications and potential limitations of the results

and methods presented in this thesis.

6.1 Implications

The subsequent sections will present the implications the results presented in this

thesis has for the Android community, and the measures that should be taken by

Google and Android developers.

6.1.1 Signature and signatureOrSystem permissions and

Google Play

During the project we uncovered some strange behaviour in the Google Play

market.

When dealing with the signature and signatureOrSystem protection levels, both

the Android platform and the Google Play market displays some very incongru-

ous behaviour. This behaviour is displayed during both the presentation of the

application on the market as well as during application installation. When re-

questing that the user grant the application permissions with these two protection

levels, the permission requests are hidden from the user on the installation screen

among the safe permissions. This means that the user is required to click show

81

6.1. IMPLICATIONS

all to display them.

It is assumed that this is because these permissions would under normal circum-

stances have no effect due to the protection level. Even so, the fact that it is even

asking for such a permission should be considered a warning sign to the user.

6.1.2 Lack of sufficient documentation of the permissions

During the course of this project we were required to identify both how the secur-

ity features of the Android platform interacts, as well as what the capabilities of

the identified permissions are. We were surprised to discover that while the An-

droid security architecture is rather well documented, the permissions are almost

completely undocumented beyond the information available in the descriptions

presented by Google Play. This is worrying, as this is the only feature that is

presented to the user during normal operation.

To identify the permissions used in the analysis in this thesis, we were required to

go through the process presented in Section 4.2.2. While most of the permissions

are described in Google Play, once you know which permission you are looking

for, the capabilities of the permissions are not adequately described. An example

of this is the popular READ PHONE STATE permission, which is presented in

Google Play [39] with the following description: �Allows to access the phone

features of the device. An application with this permission can determine the

phone number and serial number of this phone, whether a call is active, the

number that call is connected to and the like�. As covered in Section 5.1.2,

this permission also provides access to information like the IMSI and the IMEI

numbers. This is information that is not included in the description, and as such

the permission is presented as less invasive than it actually is.

6.1.3 Application builders used to spread malware

As mentioned in Section 5.3.2, during the analysis of the permissions we dis-

covered a large sample of applications with similar application identifiers and the

same set of permissions, but different developers.

It strikes us that a free application builder could be leveraged as a malware

delivery vector. An attacker could create his own application builder, which would

create applications for other developers, bundled with the attackers own malicious

82

6.1. IMPLICATIONS

code. The attacker could then have a large number of developers spreading his

infected applications with very little personal intervention.

Because the developers are giving up control of the actual coding of the applic-

ations, there is little chance that the developers using the application builder is

going to discover that their applications are infected before they get taken down.

At which point the attacker will already have moved on to a new set of developers.

6.1.4 Value of pattern-based recognition

As the malware used here to create the patterns used for this method are “old”,

it should be made clear that these patterns are not intended to be used for

identifying these specific malicious applications, but to demonstrate whether or

not a system based on this method would work. As mentioned earlier, for the

purpose of this discussion we will refer to any applications from the legitimate

data set that are identified as a malicious application by the patterns as a false

positive.

From the tests done in Chapter 5, we would argue that this is a valid method.

The patterns did in general catch more of the malicious applications than just

the specific malware they were based on, and had a relatively low false positive

rate. The highest false positive of the patterns, not counting the CounterClank

pattern, were 199 applications. This represents 0.75 percent of our legitimate

data set, and applying this pattern to the entire Google Play market, which at

the point of writing consists of roughly 444,000 [7] applications, would result in

a list of roughly 3,330 suspicious applications.

The failure of the CounterClank pattern does however showcase the weakness of

the method. The permissions that each CounterClank sample had in common

were not distinct enough to accurately separate the CounterClank applications

from the legitimate applications. As mentioned in Section 5.2, CounterClank

is not necessarily a malicious application but an aggressive advertisement net-

work. Comparing the CounterClank pattern to the requested permissions from

the advertisement networks in Section 5.3.1, we see that the permissions requested

by CounterClank are all permissions that are required by the AirPush network

which, as mentioned in the same chapter, include functionalities similar to those

of CounterClank.

83

6.2. POTENTIAL LIMITATIONS

While not able to distinctly identify malicious applications, this method can be

used to flag suspicious applications for further review.

6.2 Potential Limitations

The subsequent sections will discuss the methods used during the analysis of the

Android data set. The limitations of each method are presented, and arguments

are made as to whether or not the methods produced valuable results.

6.2.1 Determining number of clusters for k-means

Since the elbow method did not give a clear image on which value of k to use,

we had to make our own assessments on how to best determine the number of

clusters to use in the k-means clustering. By studying the difference of the cost

function from each value of k to the next, we looked for the point where the cost

function started decreasing at a steady rate. The number of clusters were chosen

after visual analysis of the graph showing the decrease for each value of k. Even

though k=16 was the value used in the analysis, the graph does not show a clear

point where the cost function starts to steadily decrease. This means that the

number chosen is not a definitive value, and may be prone to errors. A choice was

made based on the graphical representation of the decrease of the cost function,

but other values of k might have given a different result.

A different number of clusters might have resulted in additional patterns being

observed during the analysis. We must therefore be aware that while results were

obtained from using sixteen clusters in the clustering, there is a chance that there

may be additional findings in this data set.

6.2.2 On using k-means clustering for analysing Android

applications

Based on our analysis, the process of identifying malware through the use of

clustering algorithms is not likely to produce any valuable results. At least not

when only taking the permissions requested by an application into consideration.

Because some permissions give access to a larger range of capabilities than others,

malware assigned to a cluster does not give any indication as to whether or not

this is a cluster containing a lot of malware. As shown in the analysis of the

clustering results of the Geinimi Trojan, it is clear that too much emphasis must

84

6.2. POTENTIAL LIMITATIONS

not be put on the reason for malware being assigned to certain clusters.

The objective of applying the k-means clustering algorithm to the data set, was

to explore the possibilities of finding patterns and other interesting features in

the collection of Android applications. The results clearly shows that the clus-

tering task achieved this. Several distinct permission patterns were identified,

uncovering developers spamming the market and suspicious application identi-

fiers. We are confident that this type of analysis of Android applications can

uncover properties within the data set that would not be found without perform-

ing the clustering. The clustering task is in itself not a time-consuming task,

which means it can be applied to larger data sets than the one used in this pro-

ject. It is hoped that this analysis will encourage further explorations in the field

of machine learning in relation to investigating large sets of Android applications.

85

6.2. POTENTIAL LIMITATIONS

86

Chapter 7

Ideas for Future Work

We have considered some ways the project can be extended, and how the data

set can be used for further research.

7.1 Is the Application Suspicious?

We propose a web based solution where both users and developers can check

whether or not a combination of permissions can be considered to be a suspicious

combination, with advice related to what capabilities the application would have,

and the privacy and monetary risks these permissions would entail. While two

permissions can be harmless when granted separately, the privacy and security

risk can increase drastically if they are granted together. As an example, take

the INTERNET and READ SMS permissions; separately they are harmless, but

combined with each other you get an application that can read your text messages

and send the contents to a third party. There are many permission combinations

that carry severe risks but are not presented as such to the user. A study can be

performed considering these risks, using the patterns presented in this thesis as

a starting point.

This would help in educating both users and developers as to what exactly the

applications are requesting access to.

87

7.2. INCLUDING THIRD-PARTY PERMISSIONS

7.2 Including Third-party Permissions

As covered in Section 4.2.2, we did not put much emphasis on third-party per-

missions in the analysis. However, as the third-party permissions we collected

are still included in the data set, a possible extension to this project is to use the

same methods we have used for our analysis on the third-party permissions.

Note that as Google Play does not list any third-party permissions from appli-

cations not created by Google, the Google Play data set might not be useful for

any analysis which includes other permissions. As Google Play has provided us

with the largest number of applications, this would invalidate a large part of our

data set.

7.3 Exploring Other Machine Learning Methods

While our machine learning analysis has focused on k-means clustering, other

machine learning methods like neural networks can be applied to the problem as

well. If the set of malicious applications had been sufficiently large, the appli-

cations can be used as training examples in a neural network approach. This is

an example of supervised learning, as described in Section 3.5.1. If the malicious

data set consisted of several hundreds, preferably thousands, of applications, a

neural network could be constructed in order to classify new and unknown appli-

cations as malicious or legit. A larger set of possible outcomes should be used in

order to represent a data set with such a high dimensionality.

88

Chapter 8

Conclusion

During the course of this project we created several data collection programs and

the infrastructure required for building a data set of 26,333 applications from four

Android application markets. During the analysis of this data set, we uncovered

incongruous behaviour in the Google Play market regarding permissions with

high protection levels. Additionally, we were able to identify applications built

by third-party application builders.

Manual pattern recognition has proven to be effective in selecting applications

for closer scrutiny. Patterns in the permission requests of malicious applications

were identified, and can be applied to the complete data set in order to single out

applications matching the identified patterns. This can not be considered a reli-

able way of uniquely identifying malicious applications in the complete data set,

but applications matching the malicious patterns can be singled out for review.

K-means clustering has been successful in uncovering suspicious permission pat-

terns in the complete data set, by grouping applications with similar permission

requests together in the same clusters. The clusters are valuable starting points

for closer examination of the data set. While k-means is not suitable for identi-

fying malicious applications based on their permission requests, it has shown its

value in uncovering low quality applications potentially spamming the market, as

well as specific developers publishing such applications.

Both of these methods are valuable additions to the application review process,

89

and should be considered as improvements to the review process currently being

used to prevent malicious and low quality applications from being accepted to

the markets.

90

Bibliography

[1] AdWhirl. Android sdk setup. Available: https://www.adwhirl.com/doc/

android/AdWhirlAndroidSDKSetup.html. Accessed 20.05.12.

[2] AirPush. Developers. Available: http://www.airpush.com/developers.

Accessed 20.05.12.

[3] Amazon. Amazon appstore for android. Available: http:

//www.amazon.com/mobile-apps/b/ref=topnav_storetab_mas?ie=

UTF8&node=2350149011. Accessed 25.01.12.

[4] Amazon. Amazon elastic compute cloud (amazon ec2). Available: http:

//aws.amazon.com/ec2/. Accessed 20.02.12.

[5] AppBrain. Appbrain. Available: http://www.appbrain.com/. Accessed

20.02.12.

[6] AppBrain. Appbrain launches automatic filtering of ”spam”

apps. Available: http://blog.appbrain.com/2010/03/

appbrain-launches-automatic-filtering.html. Accessed 07.06.12.

[7] AppBrain. Number of available android applications. Avail-

able: http://www.appbrain.com/stats/number-of-android-apps. Ac-

cessed 25.05.2012.

[8] Mario Ballano. Android threats getting steamy. Available: http://

www.symantec.com/connect/blogs/android-threats-getting-steamy.

Accessed 10.05.12.

[9] David Barrera, H GÃŒnes Kayacik, Paul C van Oorschot, and Anil

Somayaji. A methodology for empirical analysis of permission-based

91

https://www.adwhirl.com/doc/android/AdWhirlAndroidSDKSetup.html
https://www.adwhirl.com/doc/android/AdWhirlAndroidSDKSetup.html
http://www.airpush.com/developers
http://www.amazon.com/mobile-apps/b/ref=topnav_storetab_mas?ie=UTF8&node=2350149011
http://www.amazon.com/mobile-apps/b/ref=topnav_storetab_mas?ie=UTF8&node=2350149011
http://www.amazon.com/mobile-apps/b/ref=topnav_storetab_mas?ie=UTF8&node=2350149011
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.appbrain.com/
http://blog.appbrain.com/2010/03/appbrain-launches-automatic-filtering.html
http://blog.appbrain.com/2010/03/appbrain-launches-automatic-filtering.html
http://www.appbrain.com/stats/number-of-android-apps
http://www.symantec.com/connect/blogs/android-threats-getting-steamy
http://www.symantec.com/connect/blogs/android-threats-getting-steamy

BIBLIOGRAPHY

security models and its application to android. Available: http://

people.scs.carleton.ca/~paulv/papers/ccs10-som-android.pdf. Ac-

cessed 14.05.12.

[10] Paul Brodeur. Zero-permission android applications. Avail-

able: http://leviathansecurity.com/blog/archives/

17-Zero-Permission-Android-Applications.html. Accessed 22.05.12.

[11] Brut.alll. android-apktool. Available: http://code.google.com/p/

android-apktool. Accessed 01.03.12.

[12] Ed Burnette. What’s new in android 1.6 (donut)? part 2: Devel-

oper features. Available: http://www.zdnet.com/blog/burnette/

whats-new-in-android-16-donut-part-2-developer-features/1369?

pg=3. Accessed 03.06.12.

[13] Rich Cannings. Exercising our remote application removal fea-

ture. Available: http://android-developers.blogspot.com/2010/06/

exercising-our-remote-application.html. Accessed 22.03.12.

[14] Rich Cannings. An update on android market security.

Available: http://googlemobile.blogspot.com/2011/03/

update-on-android-market-security.html. Accessed 22.03.12.

[15] CarrierIQ. Know your customer experience. Available: http://www.

carrieriq.com/know-your-customer-experience/. Accessed 02.04.12.

[16] ccjernigan. Security flaw in power control widget opens protected set-

tings. Available: http://code.google.com/p/android/issues/detail?

id=7890. Accessed 22.05.12.

[17] Pern Hui Chia, Yusuke Yamamoto, and N Asokan. Is this app safe? a

large scale study on application permissions and risk signals. Available:

http://q2s.ntnu.no/~chia/paper/app-www.pdf. Accessed 24.01.12.

[18] Graham Cluley. Android malware poses as angry birds space

game. Available: http://nakedsecurity.sophos.com/2012/04/12/

android-malware-angry-birds-space-game/. Accessed 01.04.12.

[19] William Enck, Machigar Ongtang, and Patrick McDaniel. On

lightweight mobile phone application certification. Available: http://www.

patrickmcdaniel.org/pubs/ccs09a.pdf. Accessed 29.02.12.

92

http://people.scs.carleton.ca/~paulv/papers/ccs10-som-android.pdf
http://people.scs.carleton.ca/~paulv/papers/ccs10-som-android.pdf
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://leviathansecurity.com/blog/archives/17-Zero-Permission-Android-Applications.html
http://code.google.com/p/android-apktool
http://code.google.com/p/android-apktool
http://www.zdnet.com/blog/burnette/whats-new-in-android-16-donut-part-2-developer-features/1369?pg=3
http://www.zdnet.com/blog/burnette/whats-new-in-android-16-donut-part-2-developer-features/1369?pg=3
http://www.zdnet.com/blog/burnette/whats-new-in-android-16-donut-part-2-developer-features/1369?pg=3
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://googlemobile.blogspot.com/2011/03/update-on-android-market-security.html
http://www.carrieriq.com/know-your-customer-experience/
http://www.carrieriq.com/know-your-customer-experience/
http://code.google.com/p/android/issues/detail?id=7890
http://code.google.com/p/android/issues/detail?id=7890
http://q2s.ntnu.no/~chia/paper/app-www.pdf
http://nakedsecurity.sophos.com/2012/04/12/android-malware-angry-birds-space-game/
http://nakedsecurity.sophos.com/2012/04/12/android-malware-angry-birds-space-game/
http://www.patrickmcdaniel.org/pubs/ccs09a.pdf
http://www.patrickmcdaniel.org/pubs/ccs09a.pdf

BIBLIOGRAPHY

[20] F-Droid. F-droid. Available: http://fdroid.org/. Accessed 27.01.12.

[21] F-Secure. New pjapps variant. Available: http://www.f-secure.com/

weblog/archives/00002108.html. Accessed 10.05.12.

[22] F-Secure. Threat description: Trojan-downloader:osx/flashback.c. Avail-

able: http://www.f-secure.com/v-descs/trojan-downloader_osx_

flashback_c.shtml. Accessed 15.04.12.

[23] F-Secure. Threat description: Trojan-spy:w32/zbot. Available:

http://www.f-secure.com/v-descs/trojan-spy_w32_zbot.shtml.

Accessed 15.04.12.

[24] F-Secure. Threat description: Trojan:android/droidkungfu.c. Available:

http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.

shtml. Accessed 15.04.12.

[25] F-Secure. Threat description: Trojan:android/ginmaster.a. Avail-

able: http://www.f-secure.com/v-descs/trojan_android_ginmaster_

a.shtml. Accessed 15.04.12.

[26] F-Secure. Threat description: Virus:boot/brain. Available: http://www.

f-secure.com/v-descs/brain.shtml. Accessed 02.03.12.

[27] F-Secure. Virus and threat descriptions. Available: http://www.f-secure.

com/en/web/labs_global/threats/descriptions. Accessed 01.03.12.

[28] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David

Wagner. Android permissions demystified. Available: http://www.cs.

berkeley.edu/~afelt/android_permissions.pdf. Accessed 30.02.12.

[29] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David

Wagner. A static analysis tool and permission map for identifying permission

use in android applications. Available: http://www.android-permissions.

org/permissionmap.html. Accessed 30.02.12.

[30] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and

David Wagner. A survey of mobile malware in the wild. Available: http:

//www.cs.berkeley.edu/~afelt/mobilemalware.pdf. Accessed 30.02.12.

[31] Adrienne Porter Felt and David Wagner. Phishing on mobile devices. In

Web 2.0 Security and Privacy, 2011. Available: http://w2spconf.com/

2011/papers/felt-mobilephishing.pdf. Accessed 02.05.12.

93

http://fdroid.org/
http://www.f-secure.com/weblog/archives/00002108.html
http://www.f-secure.com/weblog/archives/00002108.html
http://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_c.shtml
http://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_c.shtml
http://www.f-secure.com/v-descs/trojan-spy_w32_zbot.shtml
http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml
http://www.f-secure.com/v-descs/trojan_android_droidkungfu_c.shtml
http://www.f-secure.com/v-descs/trojan_android_ginmaster_a.shtml
http://www.f-secure.com/v-descs/trojan_android_ginmaster_a.shtml
http://www.f-secure.com/v-descs/brain.shtml
http://www.f-secure.com/v-descs/brain.shtml
http://www.f-secure.com/en/web/labs_global/threats/descriptions
http://www.f-secure.com/en/web/labs_global/threats/descriptions
http://www.cs.berkeley.edu/~afelt/android_permissions.pdf
http://www.cs.berkeley.edu/~afelt/android_permissions.pdf
http://www.android-permissions.org/permissionmap.html
http://www.android-permissions.org/permissionmap.html
http://www.cs.berkeley.edu/~afelt/mobilemalware.pdf
http://www.cs.berkeley.edu/~afelt/mobilemalware.pdf
http://w2spconf.com/2011/papers/felt-mobilephishing.pdf
http://w2spconf.com/2011/papers/felt-mobilephishing.pdf

BIBLIOGRAPHY

[32] R Project for Statistical Computing. K-means clustering. Avail-

able: http://stat.ethz.ch/R-manual/R-devel/library/stats/html/

kmeans.html. Accessed 05.06.12.

[33] FortiNet. Android/adsms.a!tr. Available: http://www.fortiguard.com/

av/VID2889424. Accessed 02.06.12.

[34] FortiNet. Android/geinimi.a!tr. Available: http://www.fortiguard.com/

av/VID2374726. Accessed 13.03.12.

[35] Google. Android market developer program policies. Avail-

able: http://www.android.com/us/developer-content-policy.html.

Accessed 22.03.12.

[36] Google. Android security overview. Available: http://source.android.

com/tech/security/index.html. Accessed 04.03.12.

[37] Google. Developer distribution agreement. Available: http:

//www.android.com/us/developer-distribution-agreement.html. Ac-

cessed 22.03.12.

[38] Google. Google admob ads android fundamentals. Available: https://

developers.google.com/mobile-ads-sdk/docs/android/fundamentals.

Accessed 20.05.12.

[39] Google. Goolge play. Available: https://play.google.com/store. Ac-

cessed 25.01.12.

[40] Google. Manifest.permission. Available: http://developer.android.com/

reference/android/Manifest.permission.html. Accessed 15.02.12.

[41] Google. <permission>. Available: http://developer.android.com/

guide/topics/manifest/permission-element.html. Accessed 17.03.12.

[42] Google. Platform versions. Available: http://developer.android.com/

resources/dashboard/platform-versions.html. Accessed 27.05.12.

[43] Google. Security and permissions. Available: http://developer.android.

com/guide/topics/security/security.html. Accessed 17.03.12.

[44] Google. Signing your applications. Available: http://developer.android.

com/guide/publishing/app-signing.html. Accessed 19.03.12.

94

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
http://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
http://www.fortiguard.com/av/VID2889424
http://www.fortiguard.com/av/VID2889424
http://www.fortiguard.com/av/VID2374726
http://www.fortiguard.com/av/VID2374726
http://www.android.com/us/developer-content-policy.html
http://source.android.com/tech/security/index.html
http://source.android.com/tech/security/index.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html
https://developers.google.com/mobile-ads-sdk/docs/android/fundamentals
https://developers.google.com/mobile-ads-sdk/docs/android/fundamentals
https://play.google.com/store
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/guide/topics/manifest/permission-element.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/publishing/app-signing.html

BIBLIOGRAPHY

[45] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic de-

tection of capability leaks in stock android smartphones. Available: http:

//www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf. Ac-

cessed 25.04.12.

[46] InMobi. Android. Available: http://developer.inmobi.com/wiki/index.

php?title=Android. Accessed 20.05.12.

[47] Martin Jericho. Jericho html parser. Available: http://jericho.

htmlparser.net/docs/index.html. Accessed 12.02.12.

[48] Trevor Johns. Android id not random if ro.serialno isn’t set. Avail-

able: http://code.google.com/p/android/issues/detail?id=10639.

Accessed 03.06.12.

[49] David Kravets. Researcher’s video shows secret software on mil-

lions of phones logging everything. Available: http://www.wired.

com/threatlevel/2011/11/secret-software-logging-video/. Accessed

02.04.12.

[50] LeadBolt. What are the different android permissions needed

for? Available: http://qa.leadboltads.com/questions/24/

what-are-the-different-android-permissions-needed-for. Accessed

20.05.12.

[51] Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t

the permissions you are looking for. In BlackHat, 2010. Available: http:

//dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf.

Accessed 02.06.12.

[52] SlideME LLC. Slideme, your marketplace for android apps. Available: http:

//slideme.org/. Accessed 25.01.12.

[53] Hiroshi Lockheimer. Android and security. Available: http:

//googlemobile.blogspot.com/2012/02/android-and-security.html.

Accessed 11.04.12.

[54] Lookout. Lookout’s take on the ’apperhand’ sdk (aka ’an-

droid.counterclank’). Available: http://blog.mylookout.com/blog/

2012/01/27/lookout%E2%80%99s-take-on-the-%E2%80%98apperhand%

E2%80%99-sdk-aka-android-counterclank/. Accessed 19.03.12.

95

http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_WOODPECKER.pdf
http://developer.inmobi.com/wiki/index.php?title=Android
http://developer.inmobi.com/wiki/index.php?title=Android
http://jericho.htmlparser.net/docs/index.html
http://jericho.htmlparser.net/docs/index.html
http://code.google.com/p/android/issues/detail?id=10639
http://www.wired.com/threatlevel/2011/11/secret-software-logging-video/
http://www.wired.com/threatlevel/2011/11/secret-software-logging-video/
http://qa.leadboltads.com/questions/24/what-are-the-different-android-permissions-needed-for
http://qa.leadboltads.com/questions/24/what-are-the-different-android-permissions-needed-for
http://dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf
http://dtors.files.wordpress.com/2010/09/blackhat-2010-final.pdf
http://slideme.org/
http://slideme.org/
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://blog.mylookout.com/blog/2012/01/27/lookout%E2%80%99s-take-on-the-%E2%80%98apperhand%E2%80%99-sdk-aka-android-counterclank/
http://blog.mylookout.com/blog/2012/01/27/lookout%E2%80%99s-take-on-the-%E2%80%98apperhand%E2%80%99-sdk-aka-android-counterclank/
http://blog.mylookout.com/blog/2012/01/27/lookout%E2%80%99s-take-on-the-%E2%80%98apperhand%E2%80%99-sdk-aka-android-counterclank/

BIBLIOGRAPHY

[55] Lookout. Update: Security alert: Hacked websites

serve suspicious android apps (notcompatible). Available:

http://blog.mylookout.com/blog/2012/05/02/security-alert-hacked-

websites-serve-suspicious-android-apps-noncompatible/. Accessed 10.05.12.

[56] McAfee. Virus profile: Android/pjapps.c. Available: http://home.mcafee.

com/virusinfo/virusprofile.aspx?key=580250. Accessed 10.05.12.

[57] Millennial Media. Android. Available: Androidhttp://wiki.

millennialmedia.com/index.php/Android. Accessed 20.05.12.

[58] Trend Micro. Trend micro develops advanced cloud-based mobile

application scanning technology – with capacity to process 5,000+

apps daily. Available: http://newsroom.trendmicro.com/index.php?s=

43&news_item=948&type=archived&year=2012. Accessed 02.03.12.

[59] Mila. Contagio mobile. Available: http://contagiominidump.blogspot.

com/. Accessed 15.04.12.

[60] T.M. Mitchell. Machine Learning. McGraw-Hill Series in Computer Science.

McGraw-Hill, 1997.

[61] MobClix. Technical. Available: http://www.mobclix.com/faqs.html#

faqs-5. Accessed 20.05.12.

[62] MobFox. Mobfox sdk integration guide.

[63] AVG Mobilation. Malware information: Jimm. Available:

http://droidsecurity.appspot.com/securitycenter/securitypost_

20110929.html. Accessed 03.06.12.

[64] Andrew Ng. Machine learning. Available: https://www.coursera.org/

course/ml. Accessed 13.06.12.

[65] Josh Ong. Android malware has jumped up 472% since july. Available:

http://www.appleinsider.com/articles/11/11/16/android_malware_

has_jumped_up_472_since_july.html. Accessed 16.02.12.

[66] Bob Pan. 17 bad mobile apps still up, 700,000+ down-

loads so far. Available: http://blog.trendmicro.com/

17-bad-mobile-apps-still-up-700000-downloads-so-far/. Accessed

04.05.12.

96

http://home.mcafee.com/virusinfo/virusprofile.aspx?key=580250
http://home.mcafee.com/virusinfo/virusprofile.aspx?key=580250
Android http://wiki.millennialmedia.com/index.php/Android
Android http://wiki.millennialmedia.com/index.php/Android
http://newsroom.trendmicro.com/index.php?s=43&news_item=948&type=archived&year=2012
http://newsroom.trendmicro.com/index.php?s=43&news_item=948&type=archived&year=2012
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
http://www.mobclix.com/faqs.html#faqs-5
http://www.mobclix.com/faqs.html#faqs-5
http://droidsecurity.appspot.com/securitycenter/securitypost_20110929.html
http://droidsecurity.appspot.com/securitycenter/securitypost_20110929.html
https://www.coursera.org/course/ml
https://www.coursera.org/course/ml
http://www.appleinsider.com/articles/11/11/16/android_malware_has_jumped_up_472_since_july.html
http://www.appleinsider.com/articles/11/11/16/android_malware_has_jumped_up_472_since_july.html
http://blog.trendmicro.com/17-bad-mobile-apps-still-up-700000-downloads-so-far/
http://blog.trendmicro.com/17-bad-mobile-apps-still-up-700000-downloads-so-far/

BIBLIOGRAPHY

[67] Linda Rosencrance. First trojan malware virus detected for an-

droid smartphones. Available: http://www.securitynewsdaily.com/

26-first-trojan-malware-virus-detected-for-android-smartphones.

html. Accessed 05.02.12.

[68] Artem Russakovskii. Massive security vulnerability in htc an-

droid devices (evo 3d, 4g, thunderbolt, others) exposes phone

numbers, gps, sms, emails addresses, much more. Available:

http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-

in-htc-android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-

numbers-gps-sms-emails-addresses-much-more/. Accessed 22.05.12.

[69] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 44(1.2):206 –226, jan. 2000.

[70] Securelist. Worm.symbos.cabir.a. Available: https://www.securelist.

com/en/descriptions/old60663. Accessed 02.03.12.

[71] StartApp. Permissions. Available: http://www.startapp.com/

permissions/. Accessed 20.05.12.

[72] Tyler Style. Android 472% malware increase scare is sensa-

tionalist. Available: http://www.nirdvana.com/2011/11/17/

android-472-malware-increase-scare-sensationalist/. Accessed

16.02.12.

[73] Vanja Svajcer. Android counterclank is (not) malware.

Available: http://nakedsecurity.sophos.com/2012/02/02/

android-counterclank-is-not-malware/. Accessed 19.03.12.

[74] Symantec. Android.arspam. Available: http://www.symantec.com/

security_response/writeup.jsp?docid=2011-121915-3251-99. Ac-

cessed 07.06.12.

[75] Symantec. Android.counterclank technical details. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=

2012-012709-4046-99&tabid=2. Accessed 18.03.12.

[76] Symantec. Android.ewalls technical details. Available: http:

//www.symantec.com/security_response/writeup.jsp?docid=

2010-073014-0854-99&tabid=2. Accessed 05.02.12.

97

http://www.securitynewsdaily.com/26-first-trojan-malware-virus-detected-for-android-smartphones.html
http://www.securitynewsdaily.com/26-first-trojan-malware-virus-detected-for-android-smartphones.html
http://www.securitynewsdaily.com/26-first-trojan-malware-virus-detected-for-android-smartphones.html
https://www.securelist.com/en/descriptions/old60663
https://www.securelist.com/en/descriptions/old60663
http://www.startapp.com/permissions/
http://www.startapp.com/permissions/
http://www.nirdvana.com/2011/11/17/android-472-malware-increase-scare-sensationalist/
http://www.nirdvana.com/2011/11/17/android-472-malware-increase-scare-sensationalist/
http://nakedsecurity.sophos.com/2012/02/02/android-counterclank-is-not-malware/
http://nakedsecurity.sophos.com/2012/02/02/android-counterclank-is-not-malware/
http://www.symantec.com/security_response/writeup.jsp?docid=2011-121915-3251-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-121915-3251-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012709-4046-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2012-012709-4046-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-073014-0854-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-073014-0854-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-073014-0854-99&tabid=2

BIBLIOGRAPHY

[77] Symantec. Android.golddream technical details. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=

2011-070608-4139-99&tabid=2. Accessed 03.06.12.

[78] Symantec. Androidos.fakeplayer technical details. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=

2010-081100-1646-99&tabid=2. Accessed 05.02.12.

[79] Symantec. Android.ozotshielder technical details. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=

2011-091505-3230-99&tabid=2. Accessed 10.05.12.

[80] Symantec. Android.rootcager technical details. Available:

http://www.symantec.com/security_response/writeup.jsp?docid=

2011-030212-1438-99&tabid=2. Accessed 22.03.12.

[81] Symantec. Android.rufraud technical details. Available: http:

//www.symantec.com/security_response/writeup.jsp?docid=

2011-121306-2304-99&tabid=2. Accessed 19.03.12.

[82] Symantec. Threat explorer. Available: http://www.symantec.com/

security_response/threatexplorer/azlisting.jsp. Accessed 05.02.12.

[83] TapJoy. Getting started with connect sdk (pay per install). Avail-

able: http://knowledge.tapjoy.com/integration-8-x/android/

advertiser/getting-started-with-connect-sdk-pay-per-install.

Accessed 20.05.12.

[84] AppBrain team. Infographic: The top 10 android ad networks. Available:

http://blog.appbrain.com/2012/05/top-10-android-ad-networks.

html. Accessed 20.05.12.

[85] Travis Credit Union. Phishing scam targeting android-based mobile

devices. Available: https://www.traviscu.org/news.aspx?blogmonth=

12&blogyear=2009&blogid=112. Accessed 20.03.12.

[86] Sara Yin. Android malware surges nearly five-fold since

july. Available: http://securitywatch.pcmag.com/none/

290654-android-malware-surges-nearly-five-fold-since-july.

Accessed 16.02.12.

98

http://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-070608-4139-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2010-081100-1646-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-091505-3230-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-091505-3230-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-030212-1438-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-030212-1438-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-121306-2304-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-121306-2304-99&tabid=2
http://www.symantec.com/security_response/writeup.jsp?docid=2011-121306-2304-99&tabid=2
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp
http://www.symantec.com/security_response/threatexplorer/azlisting.jsp
http://knowledge.tapjoy.com/integration-8-x/android/advertiser/getting-started-with-connect-sdk-pay-per-install
http://knowledge.tapjoy.com/integration-8-x/android/advertiser/getting-started-with-connect-sdk-pay-per-install
http://blog.appbrain.com/2012/05/top-10-android-ad-networks.html
http://blog.appbrain.com/2012/05/top-10-android-ad-networks.html
https://www.traviscu.org/news.aspx?blogmonth=12&blogyear=2009&blogid=112
https://www.traviscu.org/news.aspx?blogmonth=12&blogyear=2009&blogid=112
http://securitywatch.pcmag.com/none/290654-android-malware-surges-nearly-five-fold-since-july
http://securitywatch.pcmag.com/none/290654-android-malware-surges-nearly-five-fold-since-july

BIBLIOGRAPHY

[87] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off

of my market: Detecting malicious apps in official and alternative an-

droid markets. Available: http://www.csc.ncsu.edu/faculty/jiang/

pubs/NDSS12_DROIDRANGER.pdf. Accessed 30.04.12.

99

http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_DROIDRANGER.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/NDSS12_DROIDRANGER.pdf

BIBLIOGRAPHY

100

Appendix A

Surveyed Markets

Even with the large number of third-party android markets, very few of them are

suitable for the purpose of this paper.

A.1 Selected Markets

Amazon AppStore http://www.amazon.com/mobile-apps/b?ie=UTF8&

node=2350149011. Currently only available to US residents, but we were still

able to parse the site.

AppBrain http://www.appbrain.com/. Links to android market, but used to

get the latest apps.

F-Droid http://f-droid.org/. FOSS (Free/Open Source Software) applications.

Slide Me http://slideme.org/

A.2 Not Selected Markets

1Mobile http://www.1mobile.com/. Reasons for non-selection: Does not list

app permissions.

92Apk http://www.92apk.com/. Reasons for non-selection: Chinese language.

101

A.2. NOT SELECTED MARKETS

Akillirobot http://www.akillirobot.com/. Reasons for non-selection: Turkish.

Android Application Online https://www.andapponline.com/. Reasons for

non-selection: Does not list app permissions.

Android Gateway https://www.androidgateway.com/. Reasons for non-selec-

tion: Does not list app permissions.

Android Pit http://www.androidpit.com/. Reasons for non-selection: Does

not list app permissions.

Android Tapp http://www.androidtapp.com/apps/. Reasons for non-selection:

Few apps, no latest list.

Android Zoom http://www.androidzoom.com/. Reasons for non-selection:

Permissions list does not appear legit.

AndroLib http://www.androlib.com/. Reasons for non-selection: Links to

market.

Androvation http://androvation.com/. Reasons for non-selection: Pirate site,

but does not list permissions.

Androwire http://androwire.jp/. Reasons for non-selection: Japanese lan-

guage.

AppChina http://www.appchina.com/. Reasons for non-selection: Chinese

language.

Applanet http://applanet.net/. Reasons for non-selection: Pirate site, uses

an application to access the applications.

Appoke http://appoke.com/. Reasons for non-selection: Does not list app

permissions.

102

A.2. NOT SELECTED MARKETS

Appolicious http://www.androidapps.com/. Reasons for non-selection: Does

not list app permissions.

AppsLib http://appslib.com/. Reasons for non-selection: Does not list app

permissions.

AppstoreHQ http://android.appstorehq.com/. Reasons for non-selection: Links

to market.

App Town http://www.apptown.com/Android/. Reasons for non-selection:

Very little app information, does not list permissions.

BlapkMarket http://blapkmarket.com/. Reasons for non-selection: Pirate

site. Login required, makes scraping the data infeasible. Links back to the

Google Play market for permission information.

Brothersoft Mobile http://mobile.brothersoft.com/android/. Reasons for non-

selection: Does not list app permissions.

Camangi http://www.camangimarket.com/. Reasons for non-selection: Does

not list app permissions.

Droidmill http://droidmill.com/. Reasons for non-selection: Does not list app

permissions.

EOE Market http://www.eoemarket.com/. Reasons for non-selection: Chi-

nese language.

ESDN http://www.esdn.ws/. Reasons for non-selection: Does not list app

permissions.

Get Jar http://www.getjar.com/. Reasons for non-selection: Does not list app

permissions.

GoApk http://www.anzhi.com/. Reasons for non-selection: Chinese language.

103

A.2. NOT SELECTED MARKETS

Handango / Pocket Gear http://www.handango.com. Reasons for non-

selection: Does not list app permissions.

Handster http://www.handster.com/. Reasons for non-selection: Does not

list app permissions.

HiMarket http://apk.hiapk.com/himarket. Reasons for non-selection: Chi-

nese language.

Hypermarket http://www.hyper.gen.tr/. Reasons for non-selection: Turkish

language.

Indiroid https://indiroid.com/. Reasons for non-selection: Turkish language.

Insyde Market http://www.insydemarket.com. Reasons for non-selection:

Does not list app permissions.

LG World http://uk.lgworld.com/web.main.dev. Reasons for non-selection:

Does not list app permissions.

Mikandi http://www.mikandi.com/. Reasons for non-selection: Adult apps

only. Requires application.

Mobihand / OnlyAndroid http://www.mobihand.com/. Reasons for non-

selection: Does not list app permissions.

Nduoa http://www.nduoa.com/. Reasons for non-selection: Chinese language.

Nexva http://www.nexva.com/. Reasons for non-selection: Does not list app

permissions.

No Crappy Apps http://nocrappyapps.com/. Reasons for non-selection: Links

to android market.

Pdassi http://pdassi.de/. Reasons for non-selection: German language. Does

not list app permissions.

104

A.2. NOT SELECTED MARKETS

Phoload http://www.phoload.com. Reasons for non-selection: Does not list

app permissions.

Playandroid http://www.playandroid.com/. Reasons for non-selection: Games.

Does not list app permissions.

Podnova http://android.podnova.com/. Reasons for non-selection: Does not

list app permissions.

Samsung Apps http://www.samsungapps.com/. Reasons for non-selection:

Does not list app permissions.

Soc.io http://mall.soc.io/apps. Reasons for non-selection: Does not list app

permissions.

Ten Cents http://open.app.qq.com/. Reasons for non-selection: Chinese lan-

guage.

Turkcell T-Market http://www.t-market.com/storefront/. Reasons for non-

selection: Turkish language.

Ubinuri / Tstore http://www.tstore.co.kr/. Reasons for non-selection: Ko-

rean language.

105

A.2. NOT SELECTED MARKETS

106

Appendix B

Permissions

Percentage of applications requesting each permission by data set:

Permission Normal Malicious

ACCESS ALL DOWNLOADS 0.01 0.00

ACCESS BLUETOOTH SHARE 0.01 0.00

ACCESS CHECKIN PROPERTIES 0.06 0.95

ACCESS COARSE LOCATION 11.70 41.90

ACCESS DOWNLOAD MANAGER 0.00 0.95

ACCESS DRM 0.00 0.95

ACCESS FINE LOCATION 22.77 39.05

ACCESS LOCATION EXTRA COMMANDS 10.94 1.91

ACCESS MOCK LOCATION 2.30 0.95

ACCESS NETWORK STATE 56.62 41.90

ACCESS PROVIDER 0.03 0.00

ACCESS SURFACE FLINGER 0.03 0.95

ACCESS WIFI STATE 10.08 25.71

ACCOUNT MANAGER 0.02 0.95

ADD VOICEMAIL 0.00 0.00

AUTHENTICATE ACCOUNTS 0.17 0.95

BATTERY STATS 0.32 1.90

BIND APPWIDGET 0.12 0.95

107

BIND DEVICE ADMIN 0.01 0.00

BIND INPUT METHOD 0.02 0.95

BIND REMOTEVIEWS 0.00 0.00

BIND TEXT SERVICE 0.00 0.00

BIND VPN SERVICE 0.00 0.00

BIND WALLPAPER 0.04 0.00

BLUETOOTH ADMIN 0.28 5.71

BLUETOOTH 0.47 6.67

BRICK 0.00 0.95

BROADCAST PACKAGE REMOVED 0.01 2.86

BROADCAST SMS 0.05 1.90

BROADCAST STICKY 1.60 2.86

BROADCAST WAP PUSH 0.02 0.95

CALL PHONE 8.21 31.43

CALL PRIVILEGED 0.53 0.95

CAMERA 6.40 6.67

CHANGE COMPONENT ENABLED STATE 0.34 0.95

CHANGE CONFIGURATION 1.25 1.90

CHANGE NETWORK STATE 0.52 4.76

CHANGE WIFI MULTICAST STATE 0.10 0.95

CHANGE WIFI STATE 1.61 11.43

CLEAR APP CACHE 0.06 0.95

CLEAR APP USER DATA 0.06 0.95

CONTROL LOCATION UPDATES 0.16 0.95

DELETE CACHE FILES 0.06 1.90

DELETE PACKAGES 1.35 2.86

DEVICE POWER 0.18 4.76

DIAGNOSTIC 0.00 0.95

DISABLE KEYGUARD 0.51 4.76

DUMP 0.03 1.90

EXPAND STATUS BAR 0.03 1.90

FACTORY TEST 0.00 1.90

FLASHLIGHT 2.94 2.86

FORCE BACK 0.00 0.95

FORCE STOP PACKAGES 0.02 0.00

108

GET ACCOUNTS 7.55 5.71

GET PACKAGE SIZE 0.05 0.95

GET TASKS 2.34 7.62

GLOBAL SEARCH CONTROL 0.00 0.95

GLOBAL SEARCH 0.00 0.95

HARDWARE TEST 0.04 2.86

INJECT EVENTS 0.00 1.90

INSTALL DRM 0.01 0.95

INSTALL LOCATION PROVIDER 0.05 0.95

INSTALL PACKAGES 0.49 19.05

INTERNAL SYSTEM WINDOW 0.00 0.95

INTERNET 84.05 91.43

KILL BACKGROUND PROCESSES 1.85 2.86

MANAGE ACCOUNTS 0.20 0.95

MANAGE APP TOKENS 0.01 0.95

MASTER CLEAR 0.00 0.95

MODIFY AUDIO SETTINGS 1.72 3.81

MODIFY PHONE STATE 0.25 5.71

MOUNT FORMAT FILESYSTEMS 0.00 0.95

MOUNT UNMOUNT FILESYSTEMS 0.88 29.52

NFC 0.04 0.00

PACKAGE USAGE STATS 0.00 0.00

PERSISTENT ACTIVITY 0.08 1.90

PROCESS OUTGOING CALLS 0.51 5.71

READ CALENDAR 0.18 0.95

READ CONTACTS 6.40 43.81

READ FRAME BUFFER 0.02 0.95

READ HISTORY BOOKMARKS 2.77 0.00

READ INPUT STATE 0.00 0.95

READ LOGS 1.61 9.52

READ PHONE STATE 44.03 78.10

READ PROFILE 0.01 0.00

READ SMS 0.87 48.57

READ SOCIAL STREAM 0.00 0.00

READ SYNC SETTINGS 0.15 2.86

109

READ SYNC STATS 0.03 0.95

REBOOT 0.09 1.90

RECEIVE BOOT COMPLETED 18.85 22.86

RECEIVE MMS 0.05 7.62

RECEIVE SMS 1.34 35.24

RECEIVE WAP PUSH 0.00 4.76

RECORD AUDIO 2.86 3.81

REORDER TASKS 0.02 1.90

RESTART PACKAGES 0.13 10.48

SEND DOWNLOAD COMPLETED INTENTS 0.01 0.95

SEND SMS 1.55 61.90

SET ACTIVITY WATCHER 0.03 0.95

SET ALARM 0.04 0.00

SET ALWAYS FINISH 0.00 1.90

SET ANIMATION SCALE 0.00 0.95

SET DEBUG APP 0.04 1.90

SET ORIENTATION 0.11 0.95

SET POINTER SPEED 0.00 0.00

SET PREFERRED APPLICATIONS 0.28 1.90

SET PROCESS LIMIT 0.00 1.90

SET TIME ZONE 0.00 0.95

SET TIME 0.01 0.00

SET WALLPAPER HINTS 0.19 1.90

SET WALLPAPER 3.77 28.57

SIGNAL PERSISTENT PROCESSES 0.00 0.95

STATUS BAR SERVICE 0.04 0.00

STATUS BAR 0.13 0.95

STOP APP SWITCHES 0.00 0.00

SUBSCRIBED FEEDS READ 0.01 0.95

SUBSCRIBED FEEDS WRITE 0.00 0.95

SYSTEM ALERT WINDOW 0.96 3.81

UPDATE DEVICE STATS 0.00 0.95

USE CREDENTIALS 0.36 0.95

USE SIP 0.10 0.00

VIBRATE 24.52 20.95

110

WAKE LOCK 20.58 24.76

WRITE APN SETTINGS 0.03 9.52

WRITE CALENDAR 0.67 1.90

WRITE CONTACTS 3.56 30.48

WRITE EXTERNAL STORAGE 44.48 65.71

WRITE GSERVICES 0.01 0.95

WRITE HISTORY BOOKMARKS 6.79 0.00

WRITE PROFILE 0.00 0.00

WRITE SECURE SETTINGS 0.24 1.90

WRITE SETTINGS 2.32 9.52

WRITE SMS 0.39 19.05

WRITE SOCIAL STREAM 0.00 0.00

WRITE SYNC SETTINGS 0.15 3.81

WRITE USER DICTIONARY 0.05 0.00

111

112

Appendix C

Malware Permission Sets

The complete permission list of each malicious application examined in chapter

5. This includes both documented and third-party permissions.

113

DroidDream/Rootcager
ACCESS NETWORK STATE
ACCESS WIFI STATE
CHANGE WIFI STATE
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
com.android.launcher.permission.INSTALL SHORTCUT
INTERNET
KILL BACKGROUND PROCESSES
READ CONTACTS
READ LOGS
READ PHONE STATE
RESTART PACKAGES
WRITE CONTACTS

Table C.2: Permissions requested by DroidDream/Rootcager

CounterClank/Apperhand
ACCESS NETWORK STATE
ACCESS WIFI STATE
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
com.android.launcher.permission.INSTALL SHORTCUT
com.android.launcher.permission.READ SETTINGS
com.android.launcher.permission.UNINSTALL SHORTCUT
com.fede.launcher.permission.READ SETTINGS
com.htc.launcher.permission.READ SETTINGS
com.lge.launcher.permission.INSTALL SHORTCUT
com.lge.launcher.permission.READ SETTINGS
com.motorola.dlauncher.permission.INSTALL SHORTCUT
com.motorola.dlauncher.permission.READ SETTINGS
com.motorola.launcher.permission.INSTALL SHORTCUT
com.motorola.launcher.permission.READ SETTINGS
INTERNET
org.adw.launcher.permission.READ SETTINGS
READ PHONE STATE
WAKE LOCK
WRITE EXTERNAL STORAGE

Table C.4: Permissions requested by CounterClank/Apperhand

114

Geinimi
ACCESS COARSE LOCATION
ACCESS COARSE UPDATES
ACCESS FINE LOCATION
ACCESS GPS
ACCESS LOCATION
ACCESS NETWORK STATE
CALL PHONE
CAMERA
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
com.android.launcher.permission.INSTALL SHORTCUT
com.android.vending.CHECK LICENSE
com.google.android.googleapps.permission.GOOGLE AUTH
GET ACCOUNTS
GET TASKS
INTERNET
MODIFY AUDIO SETTINGS
MODIFY PHONE STATE
MOUNT UNMOUNT FILESYSTEMS
READ CONTACTS
READ LOGS
READ PHONE STATE
READ SMS
RECEIVE BOOT COMPLETED
RECEIVE SMS
RECORD AUDIO
REORDER TASKS
RESTART PACKAGES
SEND SMS
SET WALLPAPER
SYSTEM ALERT WINDOW
VIBRATE
WAKE LOCK
WRITE APN SETTINGS
WRITE CONTACTS
WRITE EXTERNAL STORAGE
WRITE SMS

Table C.6: Permissions requested by Geinimi

115

GoldDream
ACCESS COARSE LOCATION
ACCESS FINE LOCATION
ACCESS NETWORK STATE
ACCESS WIFI STATE
CALL PHONE
DELETE PACKAGES
INSTALL PACKAGES
INTERNET
PROCESS OUTGOING CALLS
READ PHONE STATE
READ SMS
RECEIVE BOOT COMPLETED
RECEIVE SMS
SEND SMS
WAKE LOCK
WRITE EXTERNAL STORAGE

Table C.8: Permissions requested by GoldDream

Pjapps.A
ACCESS NETWORK STATE
ACCESS WIFI STATE
CHANGE NETWORK STATE
CHANGE WIFI STATE
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
DISABLE KEYGUARD
INSTALL PACKAGES
INTERNET
READ PHONE STATE
RECEIVE MMS
RECEIVE SMS
SEND SMS
SET PREFERRED APPLICATIONS
VIBRATE
WAKE LOCK
WRITE APN SETTINGS
WRITE EXTERNAL STORAGE

Table C.10: Permissions requested by Pjapps.A

116

Pjapps.B
ACCESS COARSE LOCATION
ACCESS FINE LOCATION
ACCESS NETWORK STATE
ACCESS WIFI STATE
BLUETOOTH
BLUETOOTH ADMIN
CAMERA
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
com.android.launcher.permission.INSTALL SHORTCUT
com.android.launcher.permission.UNINSTALL SHORTCUT
com.estrongs.android.pop.PERMISSION
DISABLE KEYGUARD
FLASHLIGHT
INSTALL PACKAGES
INTERNET
KILL BACKGROUND PROCESSES
READ CONTACTS
READ PHONE STATE
READ SMS
RECEIVE BOOT COMPLETED
RECEIVE MMS
RECEIVE SMS
RESTART PACKAGES
SEND SMS
SET WALLPAPER
VIBRATE
WAKE LOCK
WRITE EXTERNAL STORAGE
WRITE SETTINGS
WRITE SMS

Table C.12: Permissions requested by Pjapps.B

117

Pjapps.C
ACCESS CACHE FILESYSTEM
ACCESS COARSE LOCATION
ACCESS DOWNLOAD MANAGER
ACCESS DOWNLOAD MANAGER ADVANCED
ACCESS DRM
ACCESS FINE LOCATION
ACCESS NETWORK STATE
ACCESS WIFI STATE
CHANGE NETWORK STATE
com.android.browser.permission.READ HISTORY BOOKMARKS
com.android.browser.permission.WRITE HISTORY BOOKMARKS
INSTALL DRM
INSTALL PACKAGES
INTERNET
READ CONTACTS
READ PHONE STATE
READ SMS
RECEIVE BOOT COMPLETED
RECEIVE SMS
RECEIVE WAP PUSH
SEND DOWNLOAD COMPLETED INTENTS
SEND SMS
VIBRATE
WRITE APN SETTINGS
WRITE CALENDAR
WRITE CONTACTS
WRITE EXTERNAL STORAGE
WRITE OWNER DATA
WRITE SETTINGS
WRITE SMS
WRITE SYNC SETTINGS

Table C.14: Permissions requested by Pjapps.C

118

adSMS
ACCESS NETWORK STATE
ACCESS WIFI STATE
BROADCAST PACKAGE ADDED
BROADCAST PACKAGE REMOVED
CHANGE WIFI STATE
DEVICE POWER
INTERNET
KILL BACKGROUND PROCESSES
READ PHONE STATE
READ SMS
RECEIVE SMS
SEND SMS
WAKE LOCK
WRITE APN SETTINGS
WRITE EXTERNAL STORAGE
WRITE SMS

Table C.16: Permissions requested by adSMS

JimmRussia
SEND SMS
INTERNET
RECEIVE SMS

Table C.18: Permissions requested by JimmRussia

119

	Title Page
	Problem Description
	Preface
	Abstract
	Sammendrag
	Abbreviations
	Introduction
	Motivation
	Objective
	Limitations
	Thesis Structure

	Methodology
	Phase 1 - Surveying Android Markets & Android Security
	Phase 2 - Developing Data Collection Programs and Infrastructure
	Phase 3 - Data Collection, Initial Analysis Planning
	Phase 4 - Analysis, Findings & Write-up

	Background
	Short History of Malware
	Android Malware
	Android Security
	Permissions
	Sandbox
	Application signing
	Remote kill switch
	File system protection
	Google Bouncer
	Anti-virus applications

	Android Threat Landscape
	Trojans
	Spyware
	Root exploit
	Botnet
	Premium SMS sender
	Drive-by-download
	Proof-of-concept
	Destructive Trojans
	Other threats

	Machine Learning
	Supervised learning
	Unsupervised learning
	K-means

	Related Work

	Data Collection
	Building the Data Set
	Market data set
	Malicious data set

	Data Sorting
	Removing duplicates
	Permission filtering

	Final Data Set

	Analysis
	Permission Statistics
	Permissions used only by malware
	Analysis of permissions

	A Closer Look at Malicious Applications
	CounterClank/Apperhand
	DroidDream/Rootcager
	Geinimi
	GoldDream
	Pjapps
	adSMS
	JimmRussia

	A Closer Look at Potentially Suspicious Applications
	Advertisement networks
	Application builders

	Recognizing Bad Applications
	Recognising malware by permissions
	Analysis using clustering algorithms

	Summary of Findings
	Pattern analysis
	Clustering analysis
	Comparing the analysis methods

	Discussion
	Implications
	Signature and signatureOrSystem permissions and Google Play
	Lack of sufficient documentation of the permissions
	Application builders used to spread malware
	Value of pattern-based recognition

	Potential Limitations
	Determining number of clusters for k-means
	On using k-means clustering for analysing Android applications

	Ideas for Future Work
	Is the Application Suspicious?
	Including Third-party Permissions
	Exploring Other Machine Learning Methods

	Conclusion
	Surveyed Markets
	Selected Markets
	Not Selected Markets

	Permissions
	Malware Permission Sets

