
A Study of Applied Passive
TLS Analysis

Anders Sefjord Torbjørnsen

15-12-2018

Master’s Thesis
Master of Science in Information Security

30 ECTS
Department of Information Security and Communication Technology

Norwegian University of Science and Technology,

Supervisor: Prof. Slobodan Petrovic
Co-Supervisor: Christoffer V. Hallstensen

A Study of Applied Passive TLS Analysis

Preface

This master thesis was carried out at the Norwegian University of Science and
Technology at Gjøvik, during 2018. It is the final assignment of the master’s pro-
gram Information Security. The main subject of the thesis is discovering TLS en-
crypted malicious network traffic passively. This means that the privacy of users
are kept intact, as the privacy of user would be somewhat broken if the network
traffic was to be decrypted and then encrypted on the fly. While some research
is published on this particular topic, it is not a well-researched topic. The thesis
use an already existing, open source tool to extract the meaningful features of
encrypted network traffic, and then an artificial neural network is applied to the
dataset to classify the traffic as either benign or malicious. As the thesis moved
forward, several subproblems occurred, such as obtaining an up-to-date dataset
of benign traffic. As there was no existing good solution for publicly available
datasets, a simple network traffic generator was made in order to create a base-
line.

The idea of the master thesis was suggested by Christoffer V. Hallstensen at the
section for digital security at NTNU, Gjøvik.

This thesis is intended for those that are interested in a combination of network
security and machine learning, and perhaps especially for those that are inter-
ested in traffic from malware, encrypted with TLS.

15-12-2018

Anders Sefjord Torbjørnsen

i

A Study of Applied Passive TLS Analysis

Acknowledgment

I would like to thank my supervisor Slobodan Petrovic for being helpful and pro-
viding good ideas throughout this master thesis. A thank you is also directed to
my co-supervisor, Christoffer V. Hallstensen for coming up with the topic of this
master thesis, and taking the time and providing helpful insight in topics covered
in this thesis.

A big thank you to fellow students for interesting discussions and different angles,
especially (in no particular order) Jan Petter Berg Nilsen, Ingrid Larsen, Jørgen
Ellingsen and Emil Ry. I would also like to thank Anders Granerud for taking the
time to read through the thesis and provide constructive feedback.

A.S.T

ii

A Study of Applied Passive TLS Analysis

Abstract

While the Internet is moving towards more and more encryption of the network
traffic, it is also a trend that is picked up by authors of malware. The traditional
way of detecting malicious traffic or malicious behaviour on the network is to
use a signature-based network intrusion detection system. A signature-based sys-
tem relies on reading the network traffic in plaintext in order to detect patterns,
which it is not able to do when the traffic is encrypted. One work-around for this
problem is to use SSL/TLS inspection.

Instead of breaking end users privacy by inspecting what they believe is encrypted
communication, this thesis investigates the possibility of detecting malicious TLS
encrypted network traffic passively. By taking a look at properties exchanged
when the encrypted network communication channel is established, as well as
the behaviour of the network traffic, the thesis uses these properties in a ma-
chine learning algorithm to classify network traffic as either benign or malicious.
While the machine learning algorithm is easy to implement in a proof-of-concept,
the lack of publicly, up-to-date datasets of benign, encrypted network traffic with
TLS is almost non-existent. This leads to the creation of a TLS encrypted network
traffic generator that creates a baseline for what is considered as benign TLS
traffic. Malicious TLS traffic is collected from open sources, and run through a
multilayer perceptron with backpropagation. Two experiments were carried out
during this thesis; one leading to a correct classification rate of 83% using net-
work behaviour. The other experiment looked at the ciphersuites found in the
TLS handshake of the traffic, and had a correct classification rate of 80%.

iii

A Study of Applied Passive TLS Analysis

Sammendrag

Ettersom bruk av internett stadig beveger seg mer mot bruk av kryptert nettverk-
strafikk, så er dette også en trend som er plukket opp av de som lager skadevare.
Den tradisjonelle måten å detektere skadelig nettverkstrafikk eller skadelig at-
ferd er bruken av signaturbasert inntrengingsdeteksjon. Et signaturbasert system
er avhengig av å lese nettverkstrafikken i klartekst for å oppdage mønster, noe
som blir umulig å gjøre dersom nettverkstrafikken er kryptert. En metode for å
omgå denne problemstillingen er å benytte SSL/TLS inspeksjon.

I stedet for å bryte personvernet til sluttbrukere ved å inspisere det sluttbrukere
tror er kryptert kommunikasjon, så ser denne masteroppgaven på muligheten for
å detektere skadelig TLS-kryptert nettverkstrafikk passivt. Ved å ta en titt på egen-
skaper utvekslet i det den krypterte kommunikasjonskanalen opprettes, i tillegg
til atferden nettverkstraffiken har. Masteroppgaven bruker disse egeneskapene
til å klassifisere trafikk som enten skadelig eller legitim. Ettersom en maskin-
læringsalgoritme er enkelt å implementere i et proof-of-concept, så er det en man-
gel på et oppdatert offentlig datasett med legitim, TLS-kryptert nettverkstrafikk.
Skadelig TLS-trafikk hentes fra åpne kilder, og kjøres gjennom en MLP-algoritme.
To eskperimenter ble gjennomført i løpet av masteroppgaven; en ga en korrekt
klassifiseringsprosent på 83% ved hjelp av atferd av nettversktrafikken. Det an-
dre eksperimentet klassifiserte 80% korrekt basert ciphersuites som ble hentet ut
fra TLS-håndtrykket fra trafikken.

iv

A Study of Applied Passive TLS Analysis

Contents

Preface . i
Acknowledgment . ii
Abstract . iii
Sammendrag . iv
Contents . v
List of Figures . vii
List of Tables . viii
1 Introduction . 1

1.1 Keywords . 1
1.2 Topics Covered . 1
1.3 Problem Description . 2
1.4 Justification, Motivation and Benefits 3
1.5 Research Questions . 4
1.6 Contribution . 4
1.7 Ethical and Legal Considerations 5
1.8 Outline . 5

2 Background . 7
2.1 TLS Encrypted Network Traffic . 7
2.2 Network-based Intrusion Detection Systems 10
2.3 Malicious Network Traffic . 14
2.4 Network Traffic Generation . 16
2.5 Machine Learning . 18

3 Related Work . 21
3.1 Analysis of Encrypted Network Traffic 21
3.2 Intrusion Detection Systems . 26
3.3 Network Traffic Generation . 27
3.4 Machine Learning . 30

4 Methodology . 32
4.1 Experimental Design . 32
4.2 Generation of Benign Traffic . 33

v

A Study of Applied Passive TLS Analysis

4.2.1 General HTTPS Traffic Generation 34
4.2.2 HTTPS browsing . 36

4.3 Malicious Traffic . 37
4.4 Feature Extraction and Selection 39
4.5 Machine Learning . 40

5 Results . 41
5.1 Experiment with SPLT features . 41
5.2 Experiment with TLS features . 42

6 Discussion . 43
6.1 Problems and Challenges . 45
6.2 Limitations . 47

7 Conclusion . 49
7.1 Future Work . 50

Bibliography . 52
A Appendix . 62

A.1 Malware Lookup - Hybrid-Analysis 62
A.2 Malware Data . 62
A.3 URLs Used for PhantomJS and cURL 65

vi

A Study of Applied Passive TLS Analysis

List of Figures

1 Handshake. 10
2 Flow. 11
3 Network Traffic Simulation . 16
4 Network Traffic Emulation . 17
5 Network Traffic Generation . 17
6 Simple Feed-Forward Neural Network 20
7 Comparison of a Google Search and Malware 21
8 Flow of Experiment . 33
9 General Model . 34
10 Flow of Network Traffic Generator. 35

vii

A Study of Applied Passive TLS Analysis

List of Tables

1 Summary of Unencrypted Messages in the TLS 1.2 Handshake . . . 9
2 Simple Confusion Matrix . 14
3 Number of Different Files and Classes 38
4 Features Extracted . 39
5 Confusion Matrix of SPLT Experiment 41
6 Benign SPLT Traffic Details . 41
7 Malicious SPLT Traffic Details . 41
8 Confusion Matrix of TLS Experiment 42
9 Benign TLS Traffic Details . 42
10 Malicious Traffic Details . 42

viii

A Study of Applied Passive TLS Analysis

1 Introduction

1.1 Keywords

Encrypted network traffic, TLS, Neural networks, Intrusion detection, network
traffic generation.

1.2 Topics Covered

Over the last couple of years, usage of encryption on websites have increased
rapidly. Google’s transparency report states that, as of 11th of March 2018, 92%
of Googles services are delivered through HTTPS [1]. In January 2014, the per-
centage was at 50%. In February 2018, it was reported that roughly 40% from
Alexa’s top one million websites redirected to HTTPS, a number which was a lit-
tle over 10% in January 2016 [2]. While the increased usage in encryption on the
web benefits the end user with more privacy and security, it also poses a challenge
to the ones monitoring corporate networks. Zscaler reports that they saw an in-
crease of 30% in 6 months in 2017 on malware that uses TLS [3]. As traditional
network-based intrusion detection systems relies on inspection of the network
traffic in order to detect malware, other detection methods must be used. One
way of solving this challenge is by using a technique called SSL/TLS-inspection.
This is however a method that does not preserve the end-users privacy as well as
perhaps being unfeasible in larger networks.

TLS relies on certificates, and more specifically certificate authors that validate
certificates before they can be used. Letsencrypt [4], launched in 2016, enables
free and automated signing of certificates, making it easier than ever before to
obtain a valid TLS certificate. On one hand, this approach enables web sites to
implement TLS without a cost, and implements encrypted network traffic to its
services. On the other hand, this also enables people with bad intentions to obtain
a free, valid TLS certificate. Between January 2016 and March 2017, Letsencrypt
issued a little over 15 000 certificates that had the word "PayPal" in the certificate
[5]. These certificates were among other things used in phishing, which would
be harder to achieve had the certificate authority had to inspect the certificate

1

A Study of Applied Passive TLS Analysis

requests manually.

Traditional security monitoring of networks are using signatures to detect poten-
tial malicious network communication. Such signatures often rely on the capabil-
ity to read the content of the network traffic, for example a string that is known
to be part of malicious traffic. The signature-based approach of detecting mali-
cious traffic will always be based on known, previously seen or expected network
traffic behaviour. This means that if a signature is created to catch for instance
a previously seen patterns, a slight change to this pattern may go unnoticed by
the security monitoring system. Another approach that authors of malware may
employ to circumvent the signature-based detection is to design their malware
to communicate through encrypted communication channels. By deploying mal-
ware with TLS, the security monitoring systems will not be able to read the con-
tent, due to the encrypted traffic, and thus unable to alert on the malicious traffic.

While encrypted network traffic is currently bypassing signature-based intrusion
detection systems, it exists methods that complement an IDS. Domain reputa-
tion lists and IP blacklists can help detecting such traffic if previously known-bad
domains or IP addresses is reused. Host-based intrusion detection systems, such
as antivirus solutions, are still a somewhat efficient countermeasure to malware,
but encrypted network communication still makes it more difficult to detect ma-
licious software based on the network behavior.

Network traffic generators that generate realistic, TLS encrypted network traf-
fic is needed for experimenting with other solutions to malicious network traffic.
One application for a network traffic generator is anomaly-based intrusion detec-
tion systems that are designed to learn what normal or good network behaviour
is. The generator may create datasets that are shared amongst researchers and
applied to various solutions so that they are able to compare solutions that utilize
anomaly detection.

1.3 Problem Description

While there is nothing wrong with encryption of network traffic, it can be used
for providing users privacy as well as hiding malware communication. When
malware authors implement encrypted communication channels in malware, it

2

A Study of Applied Passive TLS Analysis

makes it harder for the intrusion detection system to detect. A costly solution to
this is to deploy software and hardware that decrypts the encrypted traffic before
it leaves the network before inspecting the data, and then reencrypt and send the
data to its intended destination. This also breaks the privacy of the users, possi-
bly making them believe they have established a secure communication channel
when all of their network traffic is read in plaintext by an intrusion detection
system.

This master thesis aims to develop an easy-to-use network traffic generator for
encrypted network traffic, that also considers the context and the value of real
services. The network traffic generator is capable of generating TLS traffic through
simulated web browsing. By extracting unencrytped features and behaviour from
the generated network traffic, a classifier using a multilayer perceptron with
backpropagation is applied to test the generated network traffic against encrypted
malware traffic. This is in essence a proof-of-concept anomaly detection network
intrusion detection system for TLS encrypted network traffic. Because datasets
on realistic network traffic are difficult to obtain, this thesis provides a method of
creating a dataset of its own, enabling others to similarly create their own dataset,
without the need of sharing possibly sensitive data that may be extracted from
public datasets.

1.4 Justification, Motivation and Benefits

The motivation for writing a thesis on this particular topic is the potential of dis-
covering malicious TLS encrypted network traffic, without SSL/TLS inspection.
As well as being an interesting subject, the potential gain of this thesis is to gain
insight in how to detect the malicious network traffic while at the same time pre-
serving end users’ privacy.A benefit of the thesis will be a methodology of how to
both gather malicious TLS traffic from free and open sources, but also a network
traffic generator to generate TLS traffic that may be applied by others.The thesis
will look into, as well as use, standardized software and file formats, so that it
may benefit others free of cost. Features of interest in TLS traffic will be exam-
ined, and machine learning will be applied to review whether the features are
applicable or not.

3

A Study of Applied Passive TLS Analysis

1.5 Research Questions

This master thesis has two main questions, with two subquestions, where the
main research question of this thesis is:

• How can encrypted malicious traffic be detected without decryption?

◦ Which features are relevant in terms of detecting encrypted malicious
traffic?

◦ How to generate a realistic dataset for testing detection of malicious
encrypted traffic?

• In which cases are passive traffic analysis better or worse than active traffic
analysis?

1.6 Contribution

Since the usage of TLS increases, there is a need for passive TLS analysis to detect
malicious TLS traffic used in malware and by attackers. The contribution of this
thesis will be to provide insight in passive analysis of TLS encrypted communica-
tion, as well as looking into features and behaviour from network traffic that may
be used to classify network traffic as malicious or benign. The proof-of-concept
software and methodology developed in this thesis will become available. This
may may also be of help to others doing experiments or researching TLS traffic.
By creating a network generator, a baseline for testing intrusion detection system
is created. This may be of help to others designing an anamoly detection system.
The proof-of-concept will also potentially display that there is a possibility to de-
tect malicious, encrypted network traffic without using TLS inspection.

Different software that may be used to generate a network traffic dataset is also
examined, and this master thesis will give an insight into why these were not
used in this thesis.

The thesis will also discuss advantages and disadvantages that arise with the
usage of passive analysis, and compare it against the active TLS inspection. This
may be of help to others that are considering a system that will analyze encrypted
traffic, and help them make a decision.

4

A Study of Applied Passive TLS Analysis

1.7 Ethical and Legal Considerations

An ethical consideration that was done in this thesis was the use of real websites
in the network traffic generator that was made. Since the collection of data to
the network traffic generator was done in such a small scale (from one to two
requests per site), it was considered to be okey as the websites selected for the
generator usually have a high amount of traffic to their websites. However, the
network traffic generator may be used to create a high volume of traffic to a sup-
plied list of websites.

A way to circumvent the usage of real, live web sites would be to set up our own
network with different services. This could either be done through a server with
virtual machines, on multiple virtual private servers or on a software-defined net-
work. However, this approach would not have the same realism as real network
traffic to established websites.

Another consideration that has been done is the falsification of the user-agent
in the aforementioned network traffic generator. This is done in order to gener-
ate network traffic that is as close as possible to "a real user". As websites are able
to treat visitors differently, and are able to deny users’ access to a website solely
based on the user agent, this has been considered okey to perform as the traffic
generator generates such a small amount of traffic.

1.8 Outline

This master thesis is structured into 7 chapters. Chapter 1 is the introduction,
where the research questions, problem description and the contributions of the
thesis are presented and discussed. Chapter 2 consists of the background topics
for this thesis, which is created through a study of literature and research on the
subject. In chapter 3, "Related Work", the state-of-the art within topics covered
by these thesis is presented. Chapter 4 elaborates on the experimental method
behind the thesis. Chapter 5 is the chapter where the results are presented. The
6th chapter contains the discussion, along with limitations and things that that
were considered and later abandoned. The last chapter concludes the master

5

A Study of Applied Passive TLS Analysis

thesis, and presents ideas for future work.

6

A Study of Applied Passive TLS Analysis

2 Background

2.1 TLS Encrypted Network Traffic

As Internet browsing became more and more popular, encryption of the network
traffic became a need in order to securely communicate with services such as
banks and online shopping websites. Netscape created the first version of Secure
Sockets Layer (SSL), although not publicly released [6]. SSL v2 [7] was released
in 1995, which implemented MD5 instead of the old CRC method implemented
in version 1. Microsoft later released an improved version of SSL 2.0 called Pri-
vate Communication Techonlogy (PCT) in 1995 [8]. The draft of SSL 3.0 was
released in 1996, and TLS 1.0 was proposed as an upgrade in 1999. TLS 1.1 was
defined in 2006. TLS version 1.2 was released in 2008, and the newest version
is TLS 1.3, released ten years after TLS 1.2, in August 2018 [9]. TLS v1.3 has
implemented these changes:

• Removed deprecated ciphersuites.
• Added new and better ciphersuites.
• Added a feature called 0 round-trip time.
• Enforcing encryption on all messages sent after the ServerHello message.
• Increased the speed of the handshake.

Transport Layer Security operates on the 7th layer of the OSI model, the applica-
tion layer. It is stated RFC for TLS v1.2 that:

The primary goal of the TLS protocol is to provide privacy and data integrity
between two communicating applications" [10].

In essence, this means that TLS is supposed to prevent eavesdropping of network
traffic, so that a client and a host may send encrypted messages to each other
that an eavesdropper is unable to read. Data integrity is needed to prove that
the data is sent is valid. HTTPS uses TLS, and is often implemented in browsers

7

A Study of Applied Passive TLS Analysis

to ensure integrity and confidentiality for clients and servers. The standard port
used for HTTPS is port 443.

Private-public key cryptography is used in TLS, where certificates in the form
of X.509 is used. This format of certificate is specified in RFC 5280 [11]. X.509
Certificates have to be digitally signed in order to be valid, either by the server
that it is using it itself (self-signed) or by a trusted authority (Certificate Author-
ity), CA.

The following happens when a new session is established in TLS v1.2: First, the
client sends a "Client hello" message. This message includes the supported cipher-
suites of the client (algorithms for encryption), supported compression methods
by the client, and extensions supported. The server will then respond with a
"Server hello" message if the cipher suites that is proposed by the client is ac-
ceptable to the server. This message includes among other things the ciphersuite
the server wants to use, and must be one of the cipher suites that the client ini-
tially sent. It also includes a compression method, this must also be one of the
initial presented compression methods presented by the client. After the "Server
hello" message is sent, the server sends a certificate message. This contains the
certificate of the server, as well as the certificate of the certificate author (CA).
The last certificate in this chain will be from a root CA, and is self-signed. As the
client should have a record of all the signed root CAs, it should check its validity.
The key exchange protocol is next, and this is where the client and server agrees
upon a secret key. This uses the previously agreed upon cipher suite to gener-
ate the keys. The server sends its part of the key to the client with the "Server
key exchange" message, and then sends a "Server hello done" message to tell the
client that the server is finished. The client sends its key through the "Client key
exchange" message, followed by the "Change cipher spec" message. This indicates
that the handshake is finished, and the rest of the communication is to be contin-
ued using the agreed upon keys and encryption scheme. The last messages that
is sent in the handshake is the "Encrypted handshake message". This contains a
hash of all the previously messages sent. Table 1 summarizes the unencrypted
messages that is sent between client and server.

8

A Study of Applied Passive TLS Analysis

Table 1: Summary of Unencrypted Messages in the TLS 1.2 Handshake
Message From Information in message

ClientHello Client

Supported cipher suites
Supported compression methods
Supported extensions
Random bytes
Session ID
Version of TLS

Server hello Server

Selected cipher suite
Selected compression method
Selected extensions
Random bytes
Session ID
Version of TLS

Certificate Server Certificate chain of servers certificate
Server key exchange Server Various cryptographic information
Server hello done Server Finished sending information
Client key exchange Client Various cryptographic information

Change cipher spec Client
Compressed value to indicate that
future messages will be encrypted

The TLS handshake initiates an encrypted session. That means that after a couple
of messages back and forth (the handshake), the client and the server agrees on
an encryption setup that only the client and the host are able to decrypt and
read, thus preventing eavesdropping and at the same time enabling data integrity.
Figure 1 shows the messages that is sent in the TLS handshake.

9

A Study of Applied Passive TLS Analysis

Figure 1: TLS 1.2 handshake

After the handshake is finished, encrypted data can be sent back and forth be-
tween the client and the server.

TLS v1.3 has some minor modifications in the handshake that version 1.2 does
not have

• The Server Name Indication (SNI) is now mandatory
• The certificate sent from the server is now encrypted
• Allows resumption of recent established sessions

2.2 Network-based Intrusion Detection Systems

Network-based intrusion detection systems are designed to alert when an intru-
sion occurs, by passively monitoring the traffic that flows in a network. There
are two existing broad classes of IDSs today; Network-based IDS (NIDS) and
host-based IDS (HIDS). A host-based intrusion detection system will be installed
on each individual computer in a network (endpoints), and monitor a combina-
tion of disk activities, memory activities as well as network activity performed
by the computer. Typically, this is presented as antivirus software, which also in-
cludes intrusion prevention system (IPS) to take actions on the alerts created by
the built-in IDS. This means that the software is capable of detecting through
the HIDS, and prevent it using the intrusion prevention module, by for instance

10

A Study of Applied Passive TLS Analysis

putting files in quarantine.

One of the reasons for having a network-based intrusion detection system is
to catch malicious or uncommon behaviour on the network. Intrusion detec-
tion systems can be separated into two classes, based on their detection method;
signature-based or anomaly-based [12].

The components in an IDS is typically a preprocessor, a detection algorithm and
an alert filter. Figure 2 presents the flow of the data in an Network based IDS.

The pre-processor of the IDS is used to among other things decode the net-

Figure 2: Flow of IDS

work data and detecting the underlying protocol that is being used. The data is
then sent to the detection algorithm. Here the algorithm will either use pattern
matching (signature-based) or compare the traffic to what is normal/abnormal
(anomaly based). The detection algorithm send its result to the alert filter, which
uses a decision threshold in order to decide if the event shall be notified to an
operator that may decide to investigate the incident further.

Signature-based intrusion detection systems relies on signatures written of known
attacks. This means that in theory, the IDS is able to detect all of the previ-

11

A Study of Applied Passive TLS Analysis

ous known attacks, but incapable of detecting a new attack, or even a slightly
changed previous attack. Metamorphic malware employs such a technique that
it is changed slightly each time it is run [13]. Metamorphic traffic may also be
designed, so that a signature-based NIDS is not capable of detecting it.

A typical signature for network-based IDSs is simply definitions of what the IDS
is looking for. Rules may be created in such a manner that tells the IDS that it
should send an alert if the pattern that is defined in the rule matches. A single
rule could be so easy as the following pseudo-code:

"Create an Alert if source IP equals destination IP"

The rule could also be so complex that it is defined how many bytes into the
packet the pattern must match, with regular expressions, ascii and hexadecimal
values.

Anomaly-based intrusion detection systems are based on defining "normal" traf-
fic. An example would be to run the IDS in an environment for a couple of days
to "learn" what kind of traffic that is normal in this particular network. During
the learning period, the IDS will not trigger alerts, but rather try to build a level
of understanding of how the network traffic is supposed to look like or behave.
A problem with deploying the IDS in a production environment would be if an
attacker has already compromised a machine in the network. The anomaly de-
tection will thus have a false interpretation of how the network traffic should
behave, and the network traffic may go unnoticed later. After the training pe-
riod is over, the anomaly-based IDS is activated, and will generate alerts based
on what the IDS defines as abnormal or unusual network traffic. This method is
however error-prone, as it has a high rate of false positives because of the com-
plexity of network traffic. New devices or protocols added to the network may
potentially trigger a lot of alerts because the IDS has never seen it before and
thus label it as an anomaly. While an anomaly-based IDS in theory are able to
detect slight changes in network traffic that a signature-based IDS are not able
to, the amount of false positive alerts such an IDS potentially are creating may
be really high [14].

12

A Study of Applied Passive TLS Analysis

An IDS based on anomaly detection requires a baseline, or ground truth, of what
normal traffic is. There is however few publicly available data sets available that
is up to date. As Sommer and Paxson [15] states;

A challenging problem in the evaluation of anomaly detection methods is the
lack of test data with ground truth, due to the limited availability of such data.

One concern in making a real dataset public, derived from a network in pro-
duction, is revelation of sensitive data that may be extracted from the dataset.
Anonymizing the data set before public release has been proposed, but with
larger data sets, the anonymization is not that easy: Coull et al. [16] showed
that it is possible to deanonymize a network data set, and extract information
such as subnets and real IP addresses even though the dataset was supposed to
be anonymized. Manual confirmation of anonymization of the dataset is in most
cases unfeasible, as inspecting each network packet in a large data set is very
time consuming.

One way of generating a labeled dataset of ground truth is by manually inspect-
ing the data and label it by expert knowledge. This is however difficult to carry
out, as the amount of data often is overwhelming. Since one of the most com-
mon data sets, the KDD99 dataset [17] is greatly outdated, there is a need for an
improved data set in order to test various IDS solutions and implementations up
against each other.

Since there is a need for evaluating performance in an intrusion detection system,
several metrics may be applied in order to test the performance of a specific IDS
against another. It does however not exist a set of agreed upon or standardized
metrics. An IDS can classify an event as either true or negative, but in theory,
there are four possible outcomes when an IDS classifies an event:

• True positive
• True negative
• False positive
• False negative

A true positive is when an alarm is correctly triggered, and there has been an in-
cident. A true negative is when an alarm is not triggered, and there has not been

13

A Study of Applied Passive TLS Analysis

an incident. A false positive is when an alarm is triggered, but should not have
been, because there has not been an incident. A false negative is when an alarm
is not triggered, but an incident has occurred. From these four different types,
it is obvious that the most wanted outcome of an alarm would be true positives
and true negatives. While the worst kind of event probably is a false negative, be-
cause the operator will not receive an alarm of an incident, the amount of false
positives may also be disrupting, depending on the amount of alarms.

These four types of events may also be represented in a confusion matrix, as
seen in table 2:

Table 2: Simple Confusion Matrix
P N

P True positive False positive
N False negative True negative

2.3 Malicious Network Traffic

By first defining malware, we establish the context around the definition of mali-
cious traffic. In the National Information Assurance (IA) Glossary, the Committee
on National Security Systems defines malicious code as:

Software or firmware intended to perform an unauthorized process that
will have adverse impact on the confidentiality, integrity, or availability of an
information system. [18]

As there exists multiple reason for creating such software, here are a few:

• Damage reputation
• Financial gain
• Stealing information/intelligence

14

A Study of Applied Passive TLS Analysis

• Showcase skill
• Political reasons

As some of the more advanced types of malware is not only a hit-and-run, or
created as a quick information stealer or credential harvester, some types are
professional made by probably state-actors or large organizations.

More sophisticated forms of malware may incorporate so-called command and
control infrastructure. The "Mitre ATT&CK Matrix for Enterprise" has an entire
column dedicated to this technique [19]. This is one technique that also is used
for botnets, where one or more "masters" controls multiple "slaves" or "zombies"
that can be used for anything the master of the botnet would like, for instance
DDoS attacks. Mirai [20] from 2016 is a well-known botnet created for "Internet
of Things" devices, and later used for DDoS attacks.

One of the techniques used in the Att&ck framework for command and control,
"Commonly used ports" is based on "hiding in plain sight" by using standard ports
for the command and control infrastructure. While some protocols, like HTTP
and DNS, send traffic in plain text, making it easier to use a signature-based IDS,
the usage of TLS on a standard port blends more into the environment. As stated
by Gardiner, Cova and Nagaraja in [21], C2 channels have been found to not
necessarily consist of a physical machine stored in a location, it may also consist
of blog posts, forums and comments in HTML on some web servers. Also under
the exfiltration technique of the Att&ck framework, there is a technique called
"Exfiltration Over Command and Control Channel" which is seen in for instance
Rokrat [22]. Rokrat also took advantage of "commonly used ports" in the Att&ck
framework by using Twitter accounts for the command and control infrastruc-
ture.

Measures used to detect malicious network traffic is typically SSL/TLS decryp-
tion, reputation of IP addresses/domains, host-based IDS/IPS, network-based
anomaly detection, network-based signature detection methods or preferably a
combination of these.

15

A Study of Applied Passive TLS Analysis

2.4 Network Traffic Generation

As research sometimes depends on network traffic that is as close as possible
to "real" network traffic, there exists multiple forms of network traffic genera-
tors. Because networks are complex and relies on several different protocols and
architectures it does not exist an all-in-one solution that satisfies everyone’s need.

Three different words that sometimes are interchanged in network traffic is sim-
ulation, emulation and generation. Network traffic simulation enables a simula-
tion of a network, and it sends simulated data between the components in the
simulated network. Network emulation allows for real, physical devices to be
connected to a simulated network [23]. Network traffic generation is network
traffic that is generated in order to test specific applications. A model of network
simulation, network emulation and network generation can be seen in figure 3,
figure 4 and figure 5.

Figure 3: Network Traffic Simulation

16

A Study of Applied Passive TLS Analysis

Figure 4: Network Traffic Emulation

Figure 5: Network Traffic Generation

As stated earlier, network traffic generation is often done in order to test specific
application. This may be everything from a web server (as in figure 5) to a an
API. On the application side, many network traffic generators are done in order
to test how for instance web servers handle large amount of network traffic. Oth-
ers are made to test lower layers of the OSI model, such as that it tests network
components’ ability to handle large amounts of traffic going through it.

Software-based network generators have the advantages over hardware-based
network generators that it is portable; it can be installed on multiple instances
and in some cases also connect to other nodes to generate traffic [24]. However, a
hardware-based network traffic generator often consists of specialized hardware

17

A Study of Applied Passive TLS Analysis

that perhaps are better in terms of amount of traffic it can generate, but more
expensive due to the cost of hardware.

2.5 Machine Learning

As a subset of artificial intelligence, machine learning has a wide range of appli-
cation [25], and is used for predicting outcomes given input. The word machine
is defined by Merriam-Webster as "a mechanically, electrically, or electronically
operated device for performing a task" [26]. Learning is defined as "knowledge
or skill acquired by instruction or study" [27]. Put together, they form what is
known as a popular used term for using computational power in order to see or
detect a pattern, often implanted by various sorts of algorithms. Already in 1959,
Arthur L. Samuel stated that

"Enough work has been done by verify the fact that a computer can be programmed
so that it will learn to play a better game of checkers than can be played by the
person who wrote the program" [28].

There are multiple types of machine learning that exist:

1. Supervised
2. Unsupervised
3. Semi-supervised
4. Reinforcement learning

When utilizing supervised learning, the algorithm is fed with attributes or fea-
tures that describe a phenomenon, as well as a categorization or a class, also
known as a label. After the algorithm has been fed with attributes and the la-
bels, new data is given to the algorithm without labels. The machine learning
algorithm will then attempt to classify the newly provided data into a class or a
category that it saw in the training data.

Unsupervised learning may used when one do not know the categorization or
class of the attributes. Instead, the machine learning algorithm is fed with at-
tributes without a class, and told to classify the attributes into a specified number
of classes. This essentially asks the algorithm to look after a pattern in the data,
and classify the instances based on the patterns that is found.

18

A Study of Applied Passive TLS Analysis

Machine learning usually needs a lot of computing powers, and in some in-
stances, it is not computationally worth it to use all of the features in the learning.
Instead, only a fraction of the the attributes are used, in a way that compromises
the classification of the machine learning with the computational power it needs
to complete the task satisfying. More features used in machine learning usu-
ally means more complexity. By only selecting the most important features of a
dataset to classify correctly, the complexity lowers while the correctly classified
instances are still held up to a high standard. This is called feature selection, and
is in essence the selection of a subset of the initial features that perhaps gives
a slightly less accurate result, but still computes a good enough answer to the
machine learning problem.

Artificial neural networks, or just neural networks, is a framework that attempts
to mimic the way a human brain works. The topology of a neural network consists
of an input layer (data), zero or more hidden layers, and output layer (classifi-
cation). In each of the layers there are nodes. Each node has a connection to
another node, and if all the nodes are connected to a node in the next layer, the
neural network is considered a feed-forward neural network. Figure 6 visualizes
a feed-forward network with 4 input nodes, 3 nodes in the hidden layer and 2
output nodes. The coloured circle represents bias.

19

A Study of Applied Passive TLS Analysis

Figure 6: Simple Feed-Forward Neural Network

Biases are not connected to the previous layer, as the nodes are, and is added
so that the network have better freedom to find the most optimal solution. Each
of the links between nodes consists of weights, that are continuously changed
during the training of a neural network to find the most appropriate weight.

One of the the neural networks that has been of great benefit is called multilayer
perceptron [29]. It consists of more than zero hidden layers, and is considered
being a feed-forward neural network.

20

A Study of Applied Passive TLS Analysis

3 Related Work

3.1 Analysis of Encrypted Network Traffic

Anderson and McGrew [30] did an experiment on passive analysis on encrypted
traffic, using a Support Vector Machine to classify traffic as either malicious or
benign. They used Joy [31] that parsed the data set they created into JSON for-
matted data. They classified on different compositions, and tried with for instance
HTTP, DNS and TLS, as well as only TLS when they were looking for malicious
activity in their machine learning. This research helped Cisco develop their ETA
(Encrypted Traffic Analytics) [32]. One of the features used in Cisco’s ETA for
determining whether network traffic is malicious or benign is SPLT (Sequence
of Packet Lengths and Times)[33]. The SPLT feature contains the size in bytes
(length) of the payload in each packet of a flow, as well as what they call inter-
arrival, or inter-packet time, which is the time between the sending of packets
in a flow. This is done by checking the time between the first and the second
packet, the second and the third packet and so on until all the interrarival times
are calculated. They illustrate the practical meaning of SPLT in their comparison
between a search on Google and the Betafera Malware, as shown in figure 7.

Figure 7: Comparison of a Google Search and Malware. [34]

In the figure, the horizontal lines that go above the vertical line represent bytes
sent from the client to the server. The horizontal line that goes below the vertical

21

A Study of Applied Passive TLS Analysis

line illustrates bytes sent from the server to the client. The vertical line repre-
sents time. SPLT is especially interesting for detecting uncommon patterns or
behaviour in network traffic, and it also, in theory, does not care about what type
of encryption the network traffic is using.

Anderson and McGrew [35] used the the following features in a machine learn-
ing experiment where Joy [31] was used for feature extraction:

1. Netflow data
2. SPLT
3. Byte distribution
4. TLS information found in the initial handshake

The network-focused, versatile software package "Joy" is described as:

"A package for capturing and analyzing network flow data and intraflow data,
for network research, forensics, and security monitoring." [31]

As understood by the description, Joy has a wide range of application, and it
is both able to run either live captures or analysis of previously captured net-
work traffic in pcap-format. Joy outputs the information in JSON-format, which
makes it easy to read or parse. The analysis of packet capture has the possibility
to extract information regarding a wide range of features from a packet capture:

• Netflow
• SPLT
• Unencrypted features from the TLS handshake
• Byte distribution
• Entropy of data fields
• DNS information
• SSH information
• DHCP information
• HTTP information

The software package also includes another tool called Sletuh. Sleuth reads JSON
formatted output generated by Joy and has the feature to do SQL-like statements

22

A Study of Applied Passive TLS Analysis

on packet captures, with clauses such as "SELECT", "WHERE", and "GROUPBY"
for easy filtering of data.

Anderson and McGrew [30] discovered that in their data set, roughly 70% of
the malicious traffic used self-signed certificates. Lets Encrypt [4] makes it easy
for anyone to create legitimate certificates to a domain, and then signing them
automatically by Lets Encrypt. Lets Encrypt works like a regular CA, but the ser-
vice of signing the certificates by Lets Encrypt is provided for free, making it
easier for good or worse to get a signed certificate from a legitimate CA.

Classification of malware spreading over Skype (and thus utilizing TLS) used
among other things the byte frequency distribution[36]. As Anderson and Mc-
Grew also did in 2016 [35], the packet flows are stitched together to a bi-
directional flow based on source address, destination address, source port, des-
tination port and the type of transport layer protocol used in the traffic. Then,
the Kullback-Leibler divergence is used. According to Korczyński et al.[36], the
encrypted data in the TLS/SSL sessions seemed to be equally distributed. The
features that were used to classify the traffic were the following:

• Frequency of bytes
• A hash based on the three first bytes in each packet
• A hashed value of the byte offset
• Reoccuring bytes in the first 4 bytes of a packet
• The hashed value of the four first packets’ 16 bytes
• Four first directions of packets
• First packet in direction
• Distribution of packet size
• Packet size distribution based on direction
• Bytes that occur more than one time
• The first packet from the server

Their experiment resolved around capturing traffic of the Skype worm known as
"Skipi"[37], and compared it to legitimate Skype usage.

In the experiment done by Bekerman et al. [38], they wanted to find unknown
malware based on the network traffic produced by the malware. They gathered
their dataset by using a sandbox with samples, collected samples from VirusTotal,

23

A Study of Applied Passive TLS Analysis

as well as generated benign network traffic in a lab over 10 days. They labeled
their data using Snort and Suricata with updated rulesets, and the TLS specific
features they looked at was server name, SSL/TLS version and the date the cer-
tificate expired. Other features was also used in their experiment, such as what
ranking the domain had on Alexa, destination ports used, inter-arrival times and
geolocation of the destination IP.

Velan et al. [39] generalized multiple protocols used for encryption of network
traffic, such as IPsec, TLS and SSH into two stages. The first stage contained
the initialization of encrypted network traffic, where unencrypted data were sent
between client and server unencrypted in order to establish the encrypted ses-
sion.This stage is divided into two parts, the handshake phase and the authenti-
cation phase. The second stage is entered after the client and server has estab-
lished a common ground, and agreed upon an encryption scheme, and the data
transferred is encrypted. Data that can be read from the first stage is split into
two main categories; the connection and handshake, and the identifiers that is
used in the earlier mentioned authentication phase. One point of interest for the
paper are the possibility of fingerprinting clients based on ciphersuites offered
in the first stage of their model. This is from the handshake phase. The X.509
certificate is mentioned from the authentication phase because of the possibility
to discover whether the certificate is valid, regardless of what actually happened
when the certificate was used. They specifically mentioned that Server Name In-
dication (SNI) may be derived from stage two, where the data that is sent is
encrypted.

Fingerprinting of clients was further looked at by Husák et al. [40]. They took
the fingerprinting a step further, by creating a dictionary of TLS fingerprints and
matched it against user-agents. They used two different methods for creating the
dictionary; the first one was host-based and relied on users to visit their website.
If they did, the researchers were able to read the user agent in plaintext, and
they also logged the ciphersuites that were offered in the Client Hello message in
the TLS handshake. The second method they used looked into the source address
of the network connections. If they had captured the ciphersuites of a HTTPS
session, and also found a HTTP session from the source address within a certain
time limit.

24

A Study of Applied Passive TLS Analysis

FingerPrinTLS [41] is a tool that is able to fingerprint packet captures or live
traffic to specific browser versions. Currently, the newest fingerprint is from Fire-
fox 52, which was released in March 2017. Sleuth, from the package Joy [31]
also has the ability to fingerprint packet captures based on the ciphersuites. Al-
though it contains a low number of fingerprints, the format of manually adding
fingerprints is made easy by having the list of fingerprints in JSON. The newest
fingerprint in Sleuth is Firefox 58, which was released in January 2018. The tool
called Pytls [42] offers functionality that runs a webserver on an arbitrary port,
and prints out all of the ciphersuites that is offered by the client that connects to
it.

Proxies are in some cases used to inspect the traffic that moves in and out of
the network. The proxy works like a man-in-the-middle attack. By terminating
the connection before it leaves the internal network, and then opening up a new
connection from the proxy to the destination, the inspection is possible. This is
an active approach to TLS analysis, and enables traditional intrusion detection
systems to inspect the payloads of the packets in order to determine if the traf-
fic is malicious or benign. The open source Squid Project has a feature called
"SslBump Peek and Splice" [43], which enables implementation of a proxy that is
able to decrypt, inspect and reencrypt TLS traffic. However, this approach is more
visible to the end user, as the certificate of the proxy has to be accepted by the
user, unless the certificate is deployed on an endpoint during installation. O’Neill
et al. [44] scanned for presence of TLS proxies on 2.8 million connections, and
discovered that around 1/250 of the connections was behind TLS proxies, most
likely to be used for TLS inspection. They also discovered that in the certificate of
those that had a TLS proxy, the issuer name was set to the name of organizations
such as Bitdefender.

Deepend research [45] holds a spreadsheet of of some traffic patterns seen in
malware, HTTP method used, user agent, referring URL and headers. The list
also contain links to the packet capture of some of the malware traffic seen, while
the link to the executable is gone. The list was last updated in 2015. SSL Black-
list [46] is a site that monitors certificates that are related to malicious activity.
They provide a CSV formatted list with labels of what the certificate is related

25

A Study of Applied Passive TLS Analysis

to doing, for instance command and control infrastructure. Hybrid-Analysis [47]
allows for searching for specific ports used in samples submitted. Using the API,
it is possible to craft even more fine-grained searches, such as searching only for
traffic over port 443 that has been labeled as malicious by the sandbox. PacketTo-
tal [48] allows for submission and download of packet captures from their public
web site. PacketTotal utilizes Bro and Suricata under the hood, and it is possible
to search for packet captures based on protocol, verdict of the network traffic,
ports used and underlying protocols. For each packet capture that is analyzed,
rules that are triggered are displayed, and a lot of information may be retrieved
in the analysis. However, there does not exist an API for the site, which makes it
cumbersome to download packet captures in bulk. Malware Traffic Analysis [49]
is a blog that specializes in analysis of malware traffic. There is usually posted
more than 15 entries a month, and the library contains both malware and packet
captures ranging from 2013 to 2018, and it has over 1 500 blog posts in total.
Usually a quick walk through of the malware is done in the blogposts, but the
lack of tagging of the network traffic can make it difficult to find specific patterns
in the traffic. The posts are grouped into names of the malware, so that one can
easily find many samples of a particular malware if that is of interest.

3.2 Intrusion Detection Systems

Bro Network Security Monitor is an open source, scriptable network monitoring
application capable of being implemented as both an IDS and/or an IPS [50]. It
is included in included in the SecurityOnion distribution [51]. In his experiment
with machine learning on HTTPS traffic, František Sťrasák used Bro in order to
create features, in which later was used to classify traffic as either malicious or
benign [52]. By replaying already captured malware traffic and benign traffic
through Bro, he was able to use Bro’s engine to extract features. Bro was also
used in Holz et al. [53], in order to measure TLS certificates. In Lee et al. [54],
Bro was used to create signatures to detect botnet activity. When the signature
that was written matched, the following features where recorded to create a
profile of the traffic:

• count of UDP packets
• count of HTTP packets
• count of SMTP packets
• count of unique IP addressess seen

26

A Study of Applied Passive TLS Analysis

Stratosphere IPS [55] is an open source network intrusion detection system, run-
ning on Linux, Windows and MacOS. It utilizes machine learning to detect mali-
cious traffic, and relies on another program for the collection of network traffic.
Straosphere utilizes free and public data sets for the training of their machine
learning algorithm in what they call behavioral models. This is a set features ex-
tracted from the network traffic that describes the behaviour of connections. It
can for instance extract information whether the network traffic is sent in inter-
vals, such that one may see in beacon traffic from command and control infras-
tructure.

Cisco has a commercial product called Encrypted Threat Analysis (ETA) [32].
This product transfers a copy of the network traffic that is seen in a network to
Cisco, where machine learning is applied to classify the traffic. The results are
then sent back, so that one may receive an alert if the machine learning classifier
from Cisco has labeled a flow malicious.

Snort [56], maintained by Cisco, is an open source IDS that has the capability to
log TLS traffic by using what they call "The SSL Dynamic Preprocessor (SSLPP)".
This feature enables deployment of Snort and then specifies how far into the TLS
handshake that traffic is supposed to be logged. However, the FAQ of SSLPP states
that "Encrypted traffic should be ignored by Snort for both performance reasons
and to reduce false positives." [57].

3.3 Network Traffic Generation

Garcia and Rigaki [58] used generative adversarial networks (GANs) to create
bengin network traffic that is supposed to behave like real-world network traffic
by using reccurrent neural network. They modified the open source version of
a remote access Trojan called "flu" to generate the malicious traffic, in this case
over HTTP rather than HTTPS. However, the network traffic they generated in
this paper was unencrypted HTTP traffic.

For some of the encrypted network traffic used in [52], three days were used
to surf Alexa top 1000 websites to generate network traffic to the experiment.
That meant that accounts were created in order to use services such as Face-
book, Google and Twitter. The datasets created, CTU-20 to CTU-32 are available

27

A Study of Applied Passive TLS Analysis

at [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70] and [71].
Anderson and McGrew [72] captured the network traffic of an enterprise over 12
months in order to use the traffic as benign network traffic in their experiments
of classifying network traffic as malicious or benign. Later they ran their assumed
benign enterprise network traffic dataset through an up-to-date IP-based blacklist
maintained by Cisco Talos, in order to remove malicious network flow from their
dataset, as they assumed their dataset contained malicious network traffic.

In UniLoG (Unified Load Generation Tool) [73], a prototype of a network gener-
ation was made based on a custom, minimal version of Firefox with customized
header fields, "user agent" and "accept". In order to test whether the generation
of traffic resembled a real browser, the performance was measured against usage
of a real browser. Later in the project, a new prototype based on on the WinInet
API was created. This prototype had the possibility to execute modern languages
used on web sites such as JavaScript and CSS. Later, a "pool of websites" was
used in the testing. This consisted of the Alexa top 1 million. The network traffic
generator that was built also supported TLS.

Pupy [74] is a RAT that can be used to generate malicious traffic, as it contains
capabilities of exfiltration of data. It runs entirely in memory and by being modu-
lar, it is up to the user of Pupy to specify which protocols to use for the exfiltration
of data. Pupy already has a module for exfiltration of data over TLS. Iperf [75]
is software that can be used to generate network in a client/server architecture.
It is created both for testing bandwitdth and packet loss, but may also be applied
in order to create network traffic at the transport layer and below, which means
no TLS support.

For packet-level network traffic generators, Scapy [76] is widely used for crafting,
sending and receiving packets. It provides an easy to use framework for creating
all kinds of network packets. It currently has support for TLS up to 1.2. Trafgen
is a part of the netsniff-ng [77] toolsuite. It reads definitions of what packets to
be sent from a text file, and then sends them out on the network.

For generating network traffic without interaction with real websites, virtual-
ization of software using hypervisors in tier 1 or tier 2 enables users to deploy

28

A Study of Applied Passive TLS Analysis

virtual machines that is interconnected through virtual network cards, and thus
can be used to generate network traffic between them, running arbitrary soft-
ware for the generation. Docker [78] has the ability to easily deploy and use
software without much configuration, and may set up a virtual network between
its containers. Nflow-generator [79] creates dummy data and sends it, where the
primary purpose is to test NetFlow log collection. It has the capability to send
HTTPS, SSH and IMAPS in a docker container, which again generates network
traffic. Mininet [80] allows users to easily deploy virtual networks and virtual
hosts in a software-defined networking environment. It has the capability to run
real applications on the virtual hosts, enabling network traffic to be sent back
and forth. Containernet [81][82] is software that "dockerizes" Mininet, and eas-
ily deploys several nodes that can communicate with each other.

TRex is a network traffic generator that has the ability to create network traf-
fic from layer 4 (transport layer) to layer 7 (application layer) [83]. It is able to
use previously recorded packet captures and use the content (payload) of these
as a template for the traffic generation. Further, it allows for customizing of round
trip time, time between packets sent and duration of the generation. TRex then
sends the packets on its virtual network card to another network card, rewriting
the source and destination address and applying the configuration earlier set.
TRex supports HTTPS, by using a HTTPS packet capture as a template.

Warp17 is a network traffic generator that "currently focuses on L5-L7 appli-
cation traffic..." [84], but has the ability to generate traffic from layer 1 (physical
layer) to layer 7. A virtual network has to be built using command line argu-
ments, where there has to be specified IP ranges to be used, gateways, mulitcast
and ports to be used. A wide variety of settings may applied to the generator such
as latency, and it even has a built-in webserver that can be configured to respond
to HTTP traffic. Warp17 currently do not support HTTPS.

Erlacher and Dressler [85] made a network traffic generator they named GEN-
ESIDS, based on Snort. GENESIDS is able to generate malicious traffic based on
Snort rules, so that one may use a Snort rule to generate malicious network traf-
fic, or Snort syntax to define malicious network traffic. After a rule is selected or
written, GENESIDS uses TRex to generate the network traffic, and it may then

29

A Study of Applied Passive TLS Analysis

send the network traffic to an IDS to see if the IDS detects the malicious network
traffic.

3.4 Machine Learning

Anderson and McGrew [30] compared the usage of 1-logistic regression and SVM
with Gaussian kernel in their work of classifying encrypted data, but no signifi-
cant differences were found, apart from the fact that the training of the SVM was
more costly in terms of computational power. The Server Name Indication (SNI),
an optional feature of TLS, was used to gather information about the domain
name and IP address when it was in use. SNI was however only present in roughly
27% of the malicious traffic. The metadata in ClientKeyExchange and clientHello
in TLS was used to determine specific libraries used in TLS implementation. In
their data set, they discovered that the "TLS_RSA_WITH_RC4_128_MD5" was
the most offered by the malicious traffic, while
"TLS_RSA_WITH_AES_128_CBC_SHA" was the most used in the benign traffic.
Also discovered was the use of keys: the malicious traffic seemed to prefer 2048-
bits RSA public keys. By putting the user-agent field together in the context of
which library is in use, as well as features used from TLS on the server side. It
consisted of which type of ciphersuites that was selected, which extensions that
were supported, how long the validity of the certificate was, number of the do-
main names registered to the certificate subject alternate name, and if it was
a self-signed certificate or not. The DNS data used in the experiment checked
whether the domain was in one of the top 100/1000/100 00/100 000 in the
Alexa list, which indicates visitors to the domain. Length of domain name used,
along with the fully qualified domain name (FQDN) was also taken into consid-
eration. From HTTP content fields, they used among other fields the content-type
field and the user-agent field.

Inaccurate ground truth of TLS encrypted network traffic was looked into by
McGrew and Anderson in [72]. They switched classes of a percentage in their
dataset by between 1.5% and 5% because they presumed they had malware traf-
fic that was labeled benign, and benign traffic labeled as malicious. After the
labels were switched, they used different machine learning algorithms in order
to see what impact it had on the results, and compared the results with same
algorithms without relabed traffic. Their results indicated that both linear regres-

30

A Study of Applied Passive TLS Analysis

sion and multilayer perceptron had somewhat similar results given introduced
noise, against the dataset without relabeling. SVM had the worst performance.
The experiment they did also contained different features. One dataset had very
few features, while another had a high number. The dataset with the highest
number of features performed best when introducing malicous traffic to the be-
nign class and vice versa.

An interesting dataset on botnet activity is created by Garcia et al. [86], how-
ever without encrypted traffic. The data set is labeled, hence it may be used on
both supervised or unsupervised machine learning algorithms.

A survey of methods used for classification of encrypted network traffic has been
created by Drasar et al. [39]. Different approaches on supervised machine learn-
ing is presented, such as using naive bayesian classification and support vector
machine (SVM). In their work, they also compare different open-source tools for
the classifications of encrypted network protocols.

Shalaginov et. al [87] looked at DNS logs and developed a methodology for
beaconing and detection of targeted attacks. Because the malware may beacon
in irregular intervals, which means a threshold of a session time will have to
be set in order to detect the beacon. Erquiaga et. al [88] took a look at what
mechanisms the malware used when it was refused Internet connection. This is
relevant in terms of failure functions the malware has, and the backup solution
they discovered.

The Stratosphere IPS project [55] is a solution that leverages both a testing
framework for machine learning [89], as well as utilizing this framework for an
open source, network-based intrustion prevention system. The project has a sis-
ter project called Malware Capture Facility Project [90] which is both analyzing
botnet behaviour as well as sharing the dataset. However, the dataset currently
does not contain any large amounts of TLS traffic.

31

A Study of Applied Passive TLS Analysis

4 Methodology

A literature review had to be done before the experimental methodology was cre-
ated. At first, the literature review was done with focus on getting an overview of
what had previously been done in the field of encrypted network traffic analysis,
as well as diving into the TLS protocol. Features that others had used was exam-
ined. This was supplied with a lot of practical testing of different software and
solution, and getting an overview of the methodology that others had been using
for network traffic generation of benign network traffic. Later, the focus shifted to
examining TLS and malware traffic. Here, the search for already existing packet
captures started. At the end, the methodology that was created is presented in
the 4.1.

4.1 Experimental Design

The experimental design of the thesis is shown in figure 8. First, the network
traffic generation is done, and explained in detail in 4.2. After this is done, ma-
licious traffic is gathered, primarily from Hybrid Analysis. Feature extraction and
feature selection is done in 4.4. A multilayer perceptron with backpropagation is
then applied, and the results can be seen in chapter 5.

32

A Study of Applied Passive TLS Analysis

Figure 8: Flow of Experiment

4.2 Generation of Benign Traffic

In order to produce encrypted network traffic, several tools and methods have
been assessed. None of the existing tools are able to produce encrypted network
traffic that suits the needs of this thesis of real network traffic, hence a tool for
creating such traffic was made. The tool consists of two modules, where each of
the modules has its own purpose of generating a specific type of traffic. Figure 9
displays the generic flow in each of the network traffic generations done in this
thesis.

33

A Study of Applied Passive TLS Analysis

Figure 9: General Model

Tshark, a command line interface to Wireshark, is used for traffic capturing [91].

4.2.1 General HTTPS Traffic Generation

PhantomJS [92] and cURL [93] allows a headless browser to visit web sites.
PhantomJS reads user defined JavaScript (server side), and is most commonly
known for being a tool for testing of website interactions. cURL [93] however, is
a more simple tool, which is used to visit websites and retrieve its content, and
is among other things used for API interactions. cURL does not run JavaScript
on websites, so the browsing is done both with PhantomJS (in order to execute
JavaScript) and cURL. This allows generation of network traffic that is both based
on simply fetching the site and the properties of the network traffic, as well as ac-
tually having a tool execute JavaScript and thus creating more realistic network
traffic.

By using these tools, the experiment is using network traffic that may not ac-
tually behave like a person is browsing. On the other hand, it also enables the
experiment to create network traffic that is somewhat close to malware, except

34

A Study of Applied Passive TLS Analysis

that the traffic is benign, and the generator was visiting renowned websites.

Figure 10 shows the flow of the network traffic generator for HTTPS browsing. A
text file containing URLs are provided to the program, which must have one URL
on each line without http:// or https:// prefix in front of it. The user agent is
set to "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:59.0) Gecko/20100101 Fire-
fox/59.0" in order to not be neglected by web servers, and treated as a regular
desktop browser. The generator visit the first link in the file containing URLs. If
the link it visits do not have any links to other websites, it will move on to the
next URL in the text file and visit it. If there are URLs, the program selects a
random number between 1 and the number of links found on the website, and
the number it generates will represent the selected URL. The program then gen-
erates a random number, either 1 or 0. If the number generated is 1, it will visit
the previously selected link. After this is done, the generator moves to the next
URL in the text file.

Figure 10: Flow of Generating HTTPS Traffic

35

A Study of Applied Passive TLS Analysis

While Alexa top 1 million [94] is a long list of links, not all of the websites may
contain trustworthy content. To overcome this, a list of 60 URLSs of trustwor-
thy sites are generated using expert knowledge. The content of the websites vary
from newspapers to ordering pizza, and is a mix of Norwegian and English writ-
ten websites. By visiting the websites and browsing them before using them in
the experiment, they were confirmed to be running HTTPS and also reachable.
The sites selected ranged from second on Alexa top 1 million, to 476 734th place.
This ensures that both the initial web sites that the generator visits are benign,
but also, in theory, ensures that all of the links on each of the sites consists of
trustworthy content. The full list of URLs used can be found in appendix A.3.

Both the cURL and the PhantomJS experiment is run on a Raspberry Pi 2b [95],
running on Raspbian Stretch 9.4, producing a pcap-file each.

4.2.2 HTTPS browsing

Since cURL and PhantomJS does not interact much with the websites while vis-
iting them (other than establishing a connection and executing JavaScript), the
Selenium IDE for Firefox was used on a subset of a small amount of website
in order to simulate a real user. Selenium is a free and open source interaction
testing framework for websites, and uses browsers such as Firefox or Chrome as
the browser it runs website tests on. The Selenium IDE allows for recording of
test, which is done for each of the websites visited. The tests of each website was
set to last 2 minutes, and the following web sites was selected and tested using
Selenium IDE:

• vg.no
• duckduckgo.com
• norwegian.no
• ebay.com
• twitch.tv
• mail.com

vg.no is a Norwegian newspaper that was used to browse the latest news. Duck-
duckgo is a search engine that was used to search for terms, and was also used to
view pictures. Norwegian is an airline company, and was used to browse holiday
destinations. Ebay is a site to sell and buy (almost) everything, and was used to
browse different articles. Twitch is a streaming website for gamers that was used

36

A Study of Applied Passive TLS Analysis

to produce network traffic of streaming. Mail.com is an Internet e-mail provider,
and was used to log into an e-mail account, reading the email and sending a mail.

By recording web-browsing on these websites, the traffic generated looks more
like a user using the Internet, because there actually is a user behind the brows-
ing. The recorded sessions were then replayed in order to capture the network
traffic they all contain.

Since the replay functionality of Selenium IDE on live, ever-changing websites, it
is difficult to replay the scripts without failure. Because of this, the procedure to
capture the traffic is done at the same time as the recording of the browsing is
done. The script that is generated by Seleniuem IDE is then saved, so that others
may see what was done when the test was recorded, and possibly replay the tests
so that they may generate somewhat similar traffic. These tests may be viewed at
[96].

The network traffic that is generated is mostly TLS 1.2, but because the browser
running the experiment supports 1.3 as well, some of the traffic is version 1.3.
The packet capture generated produced by visiting eBay contained 281 packets
with TLS v1.3, and 9271 packets using TLS v1.2. The rest of the packet captures
only use TLS v1.2.

4.3 Malicious Traffic

In order to collect malicious TLS traffic, the following method was used:

1. Locate hash of malware that use TLS
2. Submit the hash to hybrid-analysis.com to see if exists there
3. Retrieve PCAP from hybrid-analysis

In order to locate malicious traffic, Hybrid-Analysis’ API is used. The following
parameters was used:

• verdict=5

37

A Study of Applied Passive TLS Analysis

• port=443

When the verdict parameter is set to 5, it means that the files that is searched for
is labeled as "malicious" in Hybrid-Analysis’ database. Below is a list of verdicts
that can be specified when searching for malware on Hybrid-Analysis:

• 1. Available
• 2. Whitelisted
• 3. No verdict
• 4. Suspicious
• 5. Malicious

Port 443 specifies the port that the malware must communicate to, and usually
would imply that the traffic that is used is HTTPS. The search used can be found
in appendix A.1

The search returns a JSON formatted list that is saved to disk, with 196 unique
entries at the time the search was conducted. However, of the 196 entries, 157 are
URLs. Some of these are among other things phishing sites, malicious redirects
and browser hijacking, and they were excluded. The rest of the types ("type_short"
in the returned JSON) that is used is found in table 3.

Table 3: Number of Different Files and Classes
Type #
64-bits exe 3
doc 1
exe 19
.NET exe 3

In appendix A.2, the verdict, sha256 and the type of each hash is found.

In order to make sure that the packet captures of these files actually contain
TLS traffic, they are inspected for TLS traffic. Packet captures were downloaded
using a script that read the SHA256 sum from a file, and then downloaded from
Hybrid-Analysis. Because of restraints on the API, this had to be done in batches
of 5 downloads each hour.

38

A Study of Applied Passive TLS Analysis

Since the amount of network traffic found in some of these packet captures,
the largest packet captures are removed from the experiment to even the amount
between malicious and benign traffic.

4.4 Feature Extraction and Selection

Feature extraction is done using "Joy" and the accompanying "model.py" Python
program [31]. Joy is used with these options:

• bidir=1 (Bi-directional)
• tls=1
• type=1 (SPLT)

The feature extraction ("model.py") takes two directories as input; one directory
with malicious traffic in PCAP or PCAPNG format, and one directory with benign
traffic in PCAP or PCAPNG format. The features are extracted, and written to a
CSV-file where the last row is the label indicating if the traffic is malicious or
benign. A quick summary of the features are found in table 4.

Table 4: Features Extracted
Option/feature # of features Information
–ssl 187 Offered cipher suites, extensions
–meta 7 Ports, addresses, packets in/out, bytes in/out
–lengths 100 Size of packets
–times 100 Time between packets
Total 394

394 features is a quite large number considering the network traffic that is gen-
erated in this experiment. Instead of using all of the features, two separate ex-
periments are conducted: One with only the TLS features, and one with the SPLT
feature (–length and –times).

The malicious network traffic that collected from Hybrid Analysis most proba-
bly contained some benign traffic, as the server name extension in some of the
traffic was enabled and had server names such as facebook.com, google.com and
bing.com. As these instances are put in the malicious category, some malicious
network traffic (without a SNI indicating that it is benign) is labeled as benign

39

A Study of Applied Passive TLS Analysis

network traffic. Approximately 1% (27 flows) of the network traffic that is fed to
the machine learning algorithm as benign traffic, is actually malicious.
This was previously done in [72] to counter the inaccurate ground truth they
had, because they knew they had malware traffic classified as benign traffic, and
vice versa. In that experiment, they purposely switched labels on between 1.5%
and 5% of their dataset.

Since the amount of malicious flows of all the hashes found appendix A.2 is
much higher than in the benign dataset, the dataset is reduced. Since the SPLT
dataset consists of 3335 benign flows, 6670 malicious flows (the double of be-
nign) is randomly selected from all of the malicious flows. These are used in the
SPLT experiment.For the TLS experiment, there was 2723 benign flows. The 6670
malicious flows selected in the SPLT dataset are trimmed down to 5446 flows so
that the malicious traffic in the TLS experiment is double the size of the benign
traffic.

4.5 Machine Learning

The machine learning software Weka [97] is used with the "MultillayerPercep-
tron" function with 10-fold cross validation. The following options are set:

• Epochs = 500
• Momentum = 0.2
• Learning rate = 0.3
• Batch size = 100
• Hidden layers = 1
• Input layer nodes = 100
• Hidden layer nodes = 51
• Output layer nodes = 2
• Number of decimals taken into consideration = 2
• Seed = 0
• Cross validation = 10

40

A Study of Applied Passive TLS Analysis

5 Results

5.1 Experiment with SPLT features

A total of 200 features was used in this experiment, all related to packet length
and times. The dataset consisted of 3335 attributes that was labeled as benign,
and 6670 samples that was labeled malicious. Options –lengths and –times are
given to model.py to extract the SPLT. Table 5 shows the confusion matrix for
this experiment.

Table 5: Confusion Matrix of SPLT Experiment
Given label
Benign Malicious

Predicted label
Benign 2186 1149
Malicious 499 6171

Figure 6 shows details about the benign class from the machine learning. Figure
7 shows information about the class of malicious traffic.

Table 6: Benign SPLT Traffic Details
Benign traffic
TP rate FP rate Precision Recall ROC area
0.655 0.075 0.814 0.655 0.873

Table 7: Malicious SPLT Traffic Details
Malicious traffic
TP rate FP rate Precision Recall ROC area
0.925 0.345 0.843 0.925 0.873

The number of correctly classified instances is 8357, while the incorrectly classi-
fied instances is 1648, as seen in 7. This gives a percentage of 83.5282% correctly
classified and 16.4718% incorrectly classified.

41

A Study of Applied Passive TLS Analysis

5.2 Experiment with TLS features

The TLS features extracted is a comprehensive list of possible ciphersuites of-
fered, as well as extensions used in the network traffic. As cURL offers a number
between 20 and 30 different ciphersuites when connecting to a server, and Fire-
fox offers approximately the same amount, feature selection is done to reduce the
amount of ciphersuites. PCA with Ranker is used to find the 100 best features for
this experiment. A total of 187 features was trimmed down to 100 and used in
this experiment, all related to the ciphersuites in the TLS handshake. The dataset
consisted of 2723 attributes that was labeled as benign, and 5446 samples that
was labeled malicious. Table 8 shows the confusion matrix for this experiment.

Table 8: Confusion Matrix of TLS Experiment
Given label
Benign Malicious

Predicted label
Benign 1721 1002
Malicious 583 4863

Figure 9 shows details about the benign class from the machine learning. Figure
10 shows information about the class of malicious traffic.

Table 9: Benign TLS Traffic Details
Benign traffic
TP rate FP rate Precision Recall ROC area
0.632 0.107 0.747 0.632 0.818

Table 10: Malicious Traffic Details
Malicious traffic
TP rate FP rate Precision Recall ROC area
0.893 0.368 0.829 0.893 0.818

The number of correctly classified instances is 6584, while the incorrectly classi-
fied instances is 1585. This gives a percentage of 80.5974% correctly classified
and 19.4026% incorrectly classified.

42

A Study of Applied Passive TLS Analysis

6 Discussion

The thesis has produced a methodology for generating benign network traffic, as
well as utilizing it along with malicious network traffic to classify the network
traffic as either benign or malicious. This was achieved doing two experiments,
one that looked at the ciphersuites used, and one that looked at the behaviour of
the packets with timing and packet sizes. By gathering a dataset as close as pos-
sible to real network traffic ensures that the experiment is more applicable than
if the network traffic had been entirely simulated. However, the results showed
that the machine learning classifier only managed to correctly classify 80% and
83% correctly. While it shows that the algorithm was able to see some patterns,
the dataset may have contained malware that for instance used up to date cipher-
suites, or malware that managed to blend in properly with the benign network
traffic. As the ground truth of the dataset is not 100% accurate, the accuracy of
the classifier may be slightly skewed upwards or downwards in reality. The prob-
lem with the inaccuracy of the dataset is of course that we cannot entirely trust
the classification accuracy. The inaccurate ground truth was somewhat smoothed
out by adding malicious network traffic and labelling it as benign.

The features used for the classification in this thesis was ciphersuites offered in
the TLS handshake and the sequential packet lengths and times of the network
traffic. Considering the complexity of the features, the dataset generated was not
large enough to use all of these features together, instead two separate experi-
ments were conducted and compared. Traditional methods, such as IP reputation
and domain reputation is still relevant features in terms of detecting malicious
encrypted network traffic, but the features used in this thesis focused solely on
what could be derived directly from the network traffic capture without using ex-
ternal sources. This enables the possibility to detect security incidents that would
have gone unnoticed based solely on reputation.

The ciphersuite features that was used could be used in a real time environment,
even denying traffic that use specific ciphersuites. The analysis of SPLT however,

43

A Study of Applied Passive TLS Analysis

needs to be done sometime after the session is established so that enough infor-
mation is gathered before the classification is done. As a larger dataset would
allow for more features being used at the same time, both the ciphersuites, the
extensions offered and the SPLT could be used together, which perhaps could
lead to better accuracy when it comes to classification of the network traffic.

In order to generate a realistic dataset, real services have been used in this the-
sis. This enables the context that many of the existing network traffic generators
are missing today, as they produce dummy data and traffic that does not aim to
mimic specific usage of websites. Three different tools were used, cURL, Phan-
tomJS and Selenium. cURL was used to simply generate the handshake and con-
nect to websites for the certificates, PhantomJS was used to execute JavaScript
on the websites, and finally Selenium were used in order to mimic different types
of user behaviour on websites. By selecting broad categories when using Sele-
nium, the traffic may also be generalized, i.e. the streaming on Twitch may also
look like streaming on YouTube, Netflix and other websites. The ground truth of a
dataset is important, and was taken into consideration when the traffic generator
was made, hence the list of URLs was used.

The Selenium part of the methodology depends on users actually browsing the
Internet, so that others may reproduce it by replaying the generated script. Even
though the manual job of browsing is time consuming, the fact that the behaviour
that a user does in the browser is transcribed into a script is big benefit. The script
that is generated reveals what the user did in the browser, both typing on the
keyboard and also clicking of the mouse. Unfortunately, it does not record time
between pushed buttons, as would have been a great thing to have documented
in cases where auto completion is proposed by a website.

In order for a regular, signature-based IDS to detect malicious network traffic,
there exists a number of properties that it may look for. The destination IP from a
network flow may be checked against a list of IPs that have been previously seen
used in attacks. The same goes for domains, they may be checked against a list of
bad reputation domains. As of now, the server name indication (SNI) extension
of TLS 1.2 is unencrypted, and may therefore be viewed in plaintext by an IDS.
However, SNI is moving towards being encrypted. There is an internet-draft [98]

44

A Study of Applied Passive TLS Analysis

for encryption of the SNI in TLS 1.3. CloudFlare [99] has already activated it
in their networks, and Mozilla Firefox Nightly also has support for this feature
[100]. The initial ciphersuites proposed by the client in the TLS handshake can
also be utilized in an IDS. By first getting an understanding of what kinds of ci-
phersuites are used in the network the IDS is deployed in, rules may be set up to
alert on outdated or suspicious cipher suites, or combinations of suggestions to
ciphersuites that is unlikely to be used in legitimate traffic. In a real world setup,
the intrusion detection systems are not only limited to the TLS traffic, but it also
able to look at a combination of different protocols to gain a larger picture of
what is happening.

Other features that have been seen used is the byte distribution of the content
in each packet sent in a flow. This does however add an even higher complexity
for the machine learning algorithm, as the proposed method of using it consists
of 256 features. Each of the 256 features represent the count of bytes seen in
the flow. Another feature, the initial data packet (also known as IDP) consists of
all the bytes seen in the first data packet sent in a flow. These were not used in
the experiments of this thesis due to the high complexity, which potentially could
overfit.

6.1 Problems and Challenges

Several different approaches for the generation of network traffic was investi-
gated and later abandoned. Software-defined networking was in the early phases
looked into, especially Mininet [80]. Mininet builds on OpenFlow, and allows a
fast and easy way of deploying new networks, with switches and hosts. The hosts
can then be used to interact with one another, and it is possible to deploy a web
server on one host, and use another host to connect to it - thus creating TLS traffic
if HTTPS is implemented. The early phase looked into deploying INetSim [101]
one a host, but was later abandoned due to the fact that it would lack the realistic
touch one would get by using a real network, instead of running it in a virtual
network. Docker was looked into at the same time as Mininet was looked into,
and allows deployment of microservices/containers on a host, which can interact
with other containers. Docker was also abandoned because it lacked the realistic
context one would get by connecting to a real service to generate network traffic.

45

A Study of Applied Passive TLS Analysis

In terms of using an already established network traffic generator, this was also
investigated during the thesis. However, all of the existing, open source tools that
were located lacked either the capability to generate data higher than the trans-
port layer or the ability to generate data that was not purely based on statistics.
The closest generator found was TRex, which seems really promising for gener-
ating network traffic in a much larger scale.

Manually connecting to a web server was also investigated, where software like
Scapy [76], Mausezahn of netsniff-ng [77] was investigated. These software ap-
plications give complete control of what kind of packets to send, but also adds
complexity that is unnecessary, like manually performing the TCP handshake.

Collection of malware samples and/or malicious network traffic utilizing TLS has
been thoroughly investigated. VirustTotal, hybrid-analysis, packetshare, malware-
traffic-analysis, virusshare and packettotal was checked. The hashes from Freddi
Barr-Smith’s master thesis [102] were also looked into where the hashes had
been categorized as using HTTPS, although lacking the information regarding
which ports were used. Malware-traffic-analysis [49] provides packet captures
and analysis of malware. Since there are a lot of packet captures there without
proper labeling of the network features, these are not implemented in the master
thesis.

Packettotal has a nice interface, but has however not yet implemented an API
at the time of writing this thesis. Another problem with Packettotal is that the
packet captures that are downloaded does not have any information regarding
what malware produced the specific network traffic, other than the Snort and
Suricata rules that potenitally was triggered.

VirusTotal [103] is a website that offers both malware and packet captures that
is submitted by everyone. This site has an API that enables both search and mass-
download of files. However, the ability to search for packet captures are almost
non-existent. VirusTotal offers students free access to their paid services, and they
are contacted with questions about a more fine-grained search on their website,
along with an inquiry on retrieving a students license. The students license was
granted, but there is no response whether they have a better API on retrieving

46

A Study of Applied Passive TLS Analysis

packet capture files. They do not hold information on whether their malware
include encrypted network traffic, which means the job of discovering such ac-
tivities will have to be done by running the malware, and capturing the network
traffic the malware perhaps is sending. Because of this, VirusTotal is not looked
into further.

NTNU Gjøvik holds a large malware repository. The owner of this repository was
contacted, and it is discovered that they do not hold information of network be-
haviour. A large set of samples is retrieved from this repository, but none are used
because of the lack of information regarding usage of network communication.

6.2 Limitations

One weakness of the reproducability of the configuration file in Selenium is that
the test that is running must be tested against the exact same website that it
was initially tested on. In several test cases done, the test failed only minutes
after the recording of the session. This led to recording of the packet capture, as
well as the Selenium test, was done at the same time. The recorded scripts for
Selenium can be found at [96], however they are likely to fail as Selenium has
does not record the waiting time between user clicks and behaviour. Instead, Se-
lenium does everything as fast as possible, and thus removes the "human touch"
of browsing when replaying the test. A sleep functionality may be added, which
will slow down the tests, and also makes it configurable. By making the Selenium
scripts available, the packet capture that was done during this master thesis may,
in some way, be reverse-engineered, as the recipe for the packet capture lies in
the Selenium script.

Only one browser was used to browse the Internet when generating network
traffic. This results in some features being present in all of the browsing, such
as ciphersuites offered by the browser. An improved way - obviously more time-
consuming way would be to generate network traffic using several different ver-
sions of browsers, such as Google Chrome, Opera, Internet Explorer and Safari.
Also, different releases of the browsers mentioned could be used, as they may
produce different proposed ciphersuites in the TLS handshake. Due to to time

47

A Study of Applied Passive TLS Analysis

constraints, only one browser was selected. However, the SPLT features that was
extracted from the manual browsing do not care what kind of browser or ver-
sion of TLS that is in use, it only cares for size and timing of the packets. The
TLS features would definately benefit from more diversity, as a broader range of
ciphersuites investigated.

48

A Study of Applied Passive TLS Analysis

7 Conclusion

The thesis has verified that there is possible of using information from the TLS
handshake and the behaviour of the network flow in a machine learning algo-
rithm to distinguish malicious network traffic from benign. Although the results
showed less accuracy than done by others, the process of generating a dataset
consisting of accurate ground truth is done by visiting what is presumed to be le-
gitimate websites, and thus producing benign TLS traffic. The methodology used
for collecting the traffic also shows that it is worth thinking outside of the box
when looking for software to for a specific purpose. Selenium was used for creat-
ing a recipe of how a user behaved on websites, and the automatically generated
script that Selenium produced could be read by others to get an understanding
of what was done on a specific website in each of the testing scenarios.

The thesis has investigated different tools and techniques for network traffic gen-
eration to be used in the experiment. When none of the existing tools suited what
was felt needed for the thesis, a proof-of-concept network traffic generator was
made, consisting of open source software. Malicious network traffic using TLS
was found in open sources, where Hybrid Analysis provided the best way of ob-
taining the packet captures through their API.

The accuracy of the results, respectively 80% and 83% showed that there is still
room for improvement in the classification. It also showed that the behavioural
features (SPLT) was more decisive than the experiment with the ciphersuites.

49

A Study of Applied Passive TLS Analysis

7.1 Future Work

The experiments showed that there is possible to passively determine network
traffic as either benign or malicious, but at the same time, a correct classifica-
tion rate of between 80% and 83% is not good enough to be put into a produc-
tion environment. As the experiment was divided into two separate experiments,
it would be natural to combine the features in the two experiments into one
experiment utilizing both SPLT, ciphersuites and extensions used. Because the
dataset of benign network traffic contained a low number of flows compared to
the amount of features that may be used, it would be a good idea to start with
generating more benign network traffic so that the experiment can be done in
larger scale. TRex, as mentioned earlier in the thesis, could also be of great bene-
fit for future work in this research area. As TRex replays packet capture and may
modify timestamps, it could be of great help to generate a large amount of data
from a small amount of packet captures.

The inaccurate ground truth found in the malicious network traffic could also
be further looked into. This experiment "polluted" the benign class with a small
amount of malicious traffic, but further steps to ensure that the malicious network
traffic is in fact malicious may be taken. One possible way to remove wrongly la-
beled malicious traffic is to run the dataset through an IP blacklist and a domain
reputation list, so that traffic that is isn’t found in the blacklist/domain reputa-
tion list could be removed. Another way of better controlling the ground truth of
the malicious network traffic, is by using software such as GENESIDS. As it has
the possibility to generate malicious network traffic based on Snort rules, it could
be really useful it encapsulated the network traffic with TLS for encrypted traffic
analysis.

More additions to the benign network traffic generator could also be further
looked into. As online chatting services, such as XMPP, may use TLS (and thus
be used in a C2 setting), generating such benign network traffic could be advan-
tageous. Also, scenarios such as VoIP could be further looked into and possibly
implemented. The Selenium tests written in the thesis could also benefit from
being further enhanced, so that they are more robust and possibly work better in
scenarios for replaying the traffic. Another thing to further investigate is to aggre-
gate data from other protocols that is commonly used in a network connection,

50

A Study of Applied Passive TLS Analysis

such as DNS.

51

A Study of Applied Passive TLS Analysis

Bibliography

[1] 2017. Transparency report - https encryption on the web. https:
//transparencyreport.google.com/https/overview. Online; Accessed
25-March-2018.

[2] Helme, S. 2018. Alexa Top 1 Million Analysis - February 2018.
Online; Accessed 25-March-2018. URL: https://scotthelme.co.uk/
alexa-top-1-million-analysis-february-2018/.

[3] Desai, D. 2018. February 2018 Zscaler SSL Threat Report. On-
line; Accessed 25-March-2018. URL: https://www.zscaler.com/blogs/
research/february-2018-zscaler-ssl-threat-report.

[4] 2017. Free ssl/tls certificates. https://letsencrypt.org/. Online; Ac-
cessed 01-December-2017.

[5] PayPal Phishing Certificates Far More Prevalent Than Previously Thought.
https://www.thesslstore.com/blog/lets-encrypt-phishing/. On-
line; Accessed: 2018-09-22.

[6] Oppliger, R. 2009. SSL and TLS: Theory and Practice. Artech House, Inc.,
Norwood, MA, USA.

[7] Hickman, K. E. The SSL Protocol. Expired Internet-Draft, April 1995. URL:
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00.

[8] Thomas, S. A. 2000. SSL TLS Essentials: Securing the Web. Wiley.

[9] Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3.
Proposed standard, August 2018. URL: https://tools.ietf.org/html/
rfc8446.

[10] T. Dierks, E. R. The Transport Layer Security (TLS) Protocol Version 1.2.
Proposed standard, August 2008. URL: https://tools.ietf.org/html/
rfc5246.

52

https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://scotthelme.co.uk/alexa-top-1-million-analysis-february-2018/
https://scotthelme.co.uk/alexa-top-1-million-analysis-february-2018/
https://www.zscaler.com/blogs/research/february-2018-zscaler-ssl-threat-report
https://www.zscaler.com/blogs/research/february-2018-zscaler-ssl-threat-report
https://letsencrypt.org/
https://www.thesslstore.com/blog/lets-encrypt-phishing/
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

A Study of Applied Passive TLS Analysis

[11] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk,
W. Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. Proposed standard, May 2008. URL:
https://tools.ietf.org/html/rfc5280.

[12] Di Crescenzo, G., Ghosh, A., & Talpade, R. 2005. Towards a theory of
intrusion detection. In Proceedings of the 10th European Conference on
Research in Computer Security, ESORICS’05, 267–286, Berlin, Heidelberg.
Springer-Verlag. URL: http://dx.doi.org/10.1007/11555827_16, doi:
10.1007/11555827_16.

[13] Choudhary, S. & Vidyarthi, M. D. 2015. A simple method for detection of
metamorphic malware using dynamic analysis and text mining. Procedia
Computer Science, 54, 265 – 270. Eleventh International Conference on
Communication Networks, ICCN 2015, August 21-23, 2015, Bangalore,
India Eleventh International Conference on Data Mining and Warehous-
ing, ICDMW 2015, August 21-23, 2015, Bangalore, India Eleventh Inter-
national Conference on Image and Signal Processing, ICISP 2015, August
21-23, 2015, Bangalore, India. URL: http://www.sciencedirect.com/
science/article/pii/S1877050915013551, doi:https://doi.org/10.
1016/j.procs.2015.06.031.

[14] Wang, J., Yang, L., Wu, J., & Abawajy, J. H. May 2017. Clustering analysis
for malicious network traffic. In 2017 IEEE International Conference on
Communications (ICC), 1–6. doi:10.1109/ICC.2017.7997375.

[15] Sommer, R. & Paxson, V. May 2010. Outside the closed world: On using
machine learning for network intrusion detection. In 2010 IEEE Sympo-
sium on Security and Privacy, 305–316. doi:10.1109/SP.2010.25.

[16] Coull, S. E., Wright, C. V., Monrose, F., Collins, M. P., & Reiter, M. K. 2007.
Playing devil’s advocate: Inferring sensitive information from anonymized
network traces. In in Proceedings of the Network and Distributed System
Security Symposium, 35–47.

[17] Bay, S. D., Kibler, D. F., Pazzani, M. J., & Smyth, P. 2000. The uci kdd
archive of large data sets for data mining research and experimentation.
SIGKDD Explorations, 2, 81.

53

https://tools.ietf.org/html/rfc5280
http://dx.doi.org/10.1007/11555827_16
http://dx.doi.org/10.1007/11555827_16
http://dx.doi.org/10.1007/11555827_16
http://www.sciencedirect.com/science/article/pii/S1877050915013551
http://www.sciencedirect.com/science/article/pii/S1877050915013551
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.06.031
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.06.031
http://dx.doi.org/10.1109/ICC.2017.7997375
http://dx.doi.org/10.1109/SP.2010.25

A Study of Applied Passive TLS Analysis

[18] Committee on National Security Systems. 2010. National Information
Assurance (IA) Glossary. Committee on National Security Systems. URL:
https://www.cdse.edu/documents/toolkits-issm/cnssi4009.pdf.

[19] 2018. Mitre attck. https://attack.mitre.org/. Online; Accessed 10-
November-2018.

[20] Sinanović, H. & Mrdovic, S. Sept 2017. Analysis of mirai malicious soft-
ware. In 2017 25th International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), 1–5. doi:10.23919/SOFTCOM.
2017.8115504.

[21] Gardiner, Joseph Cova, M. . N. S. 2014. Command control: Understand-
ing, denying and detecting. https://arxiv.org/ftp/arxiv/papers/
1408/1408.1136.pdf. Online; Accessed 10-November-2018.

[22] Mercer, W., Rascagneres, P., & Molyett, M. Introducing rokrat. https:
//blog.talosintelligence.com/2017/04/introducing-rokrat.html.
Online; Accessed 23-November-2018.

[23] A Survey of Network Simulation Tools: Current Status and Future
Developments. https://www.cse.wustl.edu/~jain/cse567-08/ftp/
simtools/index.html. Accessed: 2018-11-03.

[24] Angrisani, L., Botta, A., Miele, G., & Vadursi, M. Oct 2013. An experi-
mental characterization of the internal generation cycle of an open-source
software traffic generator. In 2013 IEEE International Workshop on Mea-
surements Networking (M N), 74–78. doi:10.1109/IWMN.2013.6663780.

[25] Kononenko, I. 2007. Machine learning and data mining : introduction to
principles and algorithms. Horwood Publishing, Chichester, UK.

[26] 2018. "machine". https://www.merriam-webster.com. Online; Accessed
02-November-2018.

[27] 2018. "learning". https://www.merriam-webster.com. Online; Accessed
02-November-2018.

[28] Samuel, A. L. July 1959. Some studies in machine learning using the
game of checkers. IBM Journal of Research and Development, 3(3), 210–
229. doi:10.1147/rd.33.0210.

54

https://www.cdse.edu/documents/toolkits-issm/cnssi4009.pdf
https://attack.mitre.org/
http://dx.doi.org/10.23919/SOFTCOM.2017.8115504
http://dx.doi.org/10.23919/SOFTCOM.2017.8115504
https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf
https://blog.talosintelligence.com/2017/04/introducing-rokrat.html
https://blog.talosintelligence.com/2017/04/introducing-rokrat.html
https://www.cse.wustl.edu/~jain/cse567-08/ftp/simtools/index.html
https://www.cse.wustl.edu/~jain/cse567-08/ftp/simtools/index.html
http://dx.doi.org/10.1109/IWMN.2013.6663780
https://www.merriam-webster.com
https://www.merriam-webster.com
http://dx.doi.org/10.1147/rd.33.0210

A Study of Applied Passive TLS Analysis

[29] Bishop, C. 2006. Pattern recognition and machine learning. Springer, New
York.

[30] Anderson, B. & McGrew, D. 2016. Identifying encrypted malware traffic
with contextual flow data. In Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security, AISec ’16, 35–46, New York, NY, USA.
ACM. URL: http://doi.acm.org/10.1145/2996758.2996768, doi:10.
1145/2996758.2996768.

[31] Anderson, B. & McGrew, D. 2016. Joy. https://github.com/
davidmcgrew/joy. Online; accessed 19-November-2017.

[32] Encrypted traffic analytics (eta). https://www.cisco.com/c/en/us/
solutions/enterprise-networks/enterprise-network-security/
eta.html. Online; accessed 19-November-2017.

[33] Cisco. White paper, cisco public: Encrypted traffic ana-
lytics. https://www.cisco.com/c/dam/en/us/solutions/
collateral/enterprise-networks/enterprise-network-security/
nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf. Online; Accessed
25-November-2018.

[34] Anderson, B. Detecting encrypted malware traffic (with-
out decryption). https://blogs.cisco.com/security/
detecting-encrypted-malware-traffic-without-decryption. On-
line; Accessed 23-November-2018.

[35] Anderson, B., Paul, S., & McGrew, D. Aug 2018. Deciphering mal-
ware’s use of tls (without decryption). Journal of Computer Virology and
Hacking Techniques, 14(3), 195–211. URL: https://doi.org/10.1007/
s11416-017-0306-6, doi:10.1007/s11416-017-0306-6.

[36] Korczyński, M., Berger-Sabbatel, G., & Duda, A. 2013. Two methods
for detecting malware. In Multimedia Communications, Services and Secu-
rity, Dziech, A. & Czyżewski, A., eds, 95–106, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[37] IM-Worm:W32/Skipi.A. https://www.f-secure.com/v-descs/
im-worm_w32_skipi_a.shtml. Accessed: 2018-10-11.

55

http://doi.acm.org/10.1145/2996758.2996768
http://dx.doi.org/10.1145/2996758.2996768
http://dx.doi.org/10.1145/2996758.2996768
https://github.com/davidmcgrew/joy
https://github.com/davidmcgrew/joy
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-network-security/eta.html
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf
https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-decryption
https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-decryption
https://doi.org/10.1007/s11416-017-0306-6
https://doi.org/10.1007/s11416-017-0306-6
http://dx.doi.org/10.1007/s11416-017-0306-6
https://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml
https://www.f-secure.com/v-descs/im-worm_w32_skipi_a.shtml

A Study of Applied Passive TLS Analysis

[38] Bekerman, D., Shapira, B., Rokach, L., & Bar, A. Sept 2015. Unknown
malware detection using network traffic classification. In 2015 IEEE
Conference on Communications and Network Security (CNS), 134–142.
doi:10.1109/CNS.2015.7346821.

[39] Velan, P., Čermák, M., Čeleda, P., & Drašar, M. September 2015. A sur-
vey of methods for encrypted traffic classification and analysis. Netw.,
25(5), 355–374. URL: https://doi.org/10.1002/nem.1901, doi:10.
1002/nem.1901.

[40] Husák, M., Čermák, M., Jirsík, T., & Čeleda, P. Feb 2016. Https traffic anal-
ysis and client identification using passive ssl/tls fingerprinting. EURASIP
Journal on Information Security, 2016(1), 6. URL: https://doi.org/10.
1186/s13635-016-0030-7, doi:10.1186/s13635-016-0030-7.

[41] Brotherston, L. Tls fingerprinting - smarter defending stealthier attack-
ing. https://blog.squarelemon.com/tls-fingerprinting/. Online;
Accessed 25-November-2018.

[42] Ltd, W. Westpointltd/pytls - a python tls library for penetration
testers. https://github.com/WestpointLtd/pytls. Online; Accessed
10-December-2018.

[43] 2017. Features/sslpeekandsplice - squid web proxy plugin. https://
wiki.squid-cache.org/Features/SslPeekAndSplice. Online; accessed
11-December-2017.

[44] O’Neill, M., Ruoti, S., Seamons, K., & Zappala, D. May 2017. Tls inspec-
tion: How often and who cares? IEEE Internet Computing, 21(3), 22–29.
doi:10.1109/MIC.2017.58.

[45] Data, D. R. Malware traffic patterns. http://data.deependresearch.
org/2015/01/malware-traffic-patterns-2015.html. Online; Ac-
cessed 26-November-2018.

[46] 2017. Ssl blacklist. https://sslbl.abuse.ch/. Online; Accessed 02-
December-2017.

[47] Analysis, H. Readme.ssl. https://www.hybrid-analysis.com/. Online;
Accessed 26-November-2018.

56

http://dx.doi.org/10.1109/CNS.2015.7346821
https://doi.org/10.1002/nem.1901
http://dx.doi.org/10.1002/nem.1901
http://dx.doi.org/10.1002/nem.1901
https://doi.org/10.1186/s13635-016-0030-7
https://doi.org/10.1186/s13635-016-0030-7
http://dx.doi.org/10.1186/s13635-016-0030-7
https://blog.squarelemon.com/tls-fingerprinting/
https://github.com/WestpointLtd/pytls
https://wiki.squid-cache.org/Features/SslPeekAndSplice
https://wiki.squid-cache.org/Features/SslPeekAndSplice
http://dx.doi.org/10.1109/MIC.2017.58
http://data.deependresearch.org/2015/01/malware-traffic-patterns-2015.html
http://data.deependresearch.org/2015/01/malware-traffic-patterns-2015.html
https://sslbl.abuse.ch/
https://www.hybrid-analysis.com/

A Study of Applied Passive TLS Analysis

[48] PacketTotal - A free, online PCAP analysis engine. https://packettotal.
com/. Online; Accessed: 1-March-2018.

[49] Malware-Traffic-Analysis-. http://malware-traffic-analysis.net/.
Online; Accessed: 1-March-2018.

[50] Why Choose Bro? https://www.bro.org/why_choose_bro.pdf. Ac-
cessed: 2018-10-11.

[51] Bro - Security-Onion-Solution/security-onion Wiki. https://github.
com/Security-Onion-Solutions/security-onion/wiki/Bro. Ac-
cessed: 2018-10-22.

[52] Detecting malware even when it is encrypted - Machine Learning for
network HTTPS analysis. https://2018.bsidesbud.com/wp-content/
uploads/2018/03/seba_garcia_frantisek_strasak.pdf. Online; Ac-
cessed: 2018-10-22.

[53] Holz, R., Braun, L., Kammenhuber, N., & Carle, G. 2011. The ssl
landscape: A thorough analysis of the x.509 pki using active and pas-
sive measurements. In Proceedings of the 2011 ACM SIGCOMM Confer-
ence on Internet Measurement Conference, IMC ’11, 427–444, New York,
NY, USA. ACM. URL: http://doi.acm.org/10.1145/2068816.2068856,
doi:10.1145/2068816.2068856.

[54] Lee, C., Chou, F., & Chen, C. M. Dec 2015. Automatically gener-
ating payload-based models for botnet detection. In 2015 IEEE Inter-
national Conference on Smart City/SocialCom/SustainCom (SmartCity),
1038–1044. doi:10.1109/SmartCity.2015.206.

[55] Straosphere IPS. https://www.stratosphereips.org/
stratosphere-ips-suite//. Online; Accessed: 2018-10-09.

[56] Cisco. Snort - network intrusion detection prevention system. https:
//www.snort.org/. Online; Accessed 25-November-2018.

[57] Cisco. Readme.ssl. https://snort.org/faq/readme-ssl. Online; Ac-
cessed 25-November-2018.

57

https://packettotal.com/
https://packettotal.com/
http://malware-traffic-analysis.net/
https://www.bro.org/why_choose_bro.pdf
https://github.com/Security-Onion-Solutions/security-onion/wiki/Bro
https://github.com/Security-Onion-Solutions/security-onion/wiki/Bro
https://2018.bsidesbud.com/wp-content/uploads/2018/03/seba_garcia_frantisek_strasak.pdf
https://2018.bsidesbud.com/wp-content/uploads/2018/03/seba_garcia_frantisek_strasak.pdf
http://doi.acm.org/10.1145/2068816.2068856
http://dx.doi.org/10.1145/2068816.2068856
http://dx.doi.org/10.1109/SmartCity.2015.206
https://www.stratosphereips.org/stratosphere-ips-suite//
https://www.stratosphereips.org/stratosphere-ips-suite//
https://www.snort.org/
https://www.snort.org/
https://snort.org/faq/readme-ssl

A Study of Applied Passive TLS Analysis

[58] Rigaki, M. & Garcia, S. May 2018. Bringing a gan to a knife-fight: Adapting
malware communication to avoid detection. In 2018 IEEE Security and
Privacy Workshops (SPW), 70–75. doi:10.1109/SPW.2018.00019.

[59] Index of /publicDatasets/CTU-Normal-20. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-20/. Online; Accessed: 2018-10-22.

[60] Index of /publicDatasets/CTU-Normal-21. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-21/. Online; Accessed: 2018-10-22.

[61] Index of /publicDatasets/CTU-Normal-22. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-22/. Online; Accessed: 2018-10-22.

[62] Index of /publicDatasets/CTU-Normal-23. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-23/. Online; Accessed: 2018-10-22.

[63] Index of /publicDatasets/CTU-Normal-24. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-24/. Online; Accessed: 2018-10-22.

[64] Index of /publicDatasets/CTU-Normal-25. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-25/. Online; Accessed: 2018-10-22.

[65] Index of /publicDatasets/CTU-Normal-26. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-26/. Online; Accessed: 2018-10-22.

[66] Index of /publicDatasets/CTU-Normal-27. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-27/. Online; Accessed: 2018-10-22.

[67] Index of /publicDatasets/CTU-Normal-28. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-28/. Online; Accessed: 2018-10-22.

[68] Index of /publicDatasets/CTU-Normal-29. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-29/. Online; Accessed: 2018-10-22.

[69] Index of /publicDatasets/CTU-Normal-30. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-30/. Online; Accessed: 2018-10-22.

[70] Index of /publicDatasets/CTU-Normal-31. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-31/. Online; Accessed: 2018-10-22.

[71] Index of /publicDatasets/CTU-Normal-32. https://mcfp.felk.cvut.
cz/publicDatasets/CTU-Normal-32/. Online; Accessed: 2018-10-22.

58

http://dx.doi.org/10.1109/SPW.2018.00019
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-20/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-20/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-21/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-21/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-22/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-22/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-23/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-23/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-24/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-24/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-25/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-25/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-26/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-26/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-27/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-27/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-28/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-28/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-29/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-29/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-30/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-30/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-31/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-31/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-32/
https://mcfp.felk.cvut.cz/publicDatasets/CTU-Normal-32/

A Study of Applied Passive TLS Analysis

[72] Anderson, B. & McGrew, D. 2017. Machine learning for encrypted mal-
ware traffic classification: Accounting for noisy labels and non-stationarity.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’17, 1723–1732, New York, NY, USA.
ACM. URL: http://doi.acm.org/10.1145/3097983.3098163, doi:10.
1145/3097983.3098163.

[73] Kolesnikov, A. 2017. Load modelling and generation in IP-based networks : a
unified approach and tool support. Springer Vieweg, Wiesbaden, Germany.

[74] n1nj4sec/pupy. Pupy. https://arxiv.org/ftp/arxiv/papers/1408/
1408.1136.pdf. Online; Accessed 23-November-2018.

[75] Jon Dugan, Seth Elliott, B. A. M. J. P. K. P. 2014–2018. Iperf3. https:
//github.com/esnet/iperf. Online; accessed 10-August-2018.

[76] Biondi, P. 2008–2018. Scapy. https://scapy.net. Online; accessed
10-August-2018.

[77] Borkmann, D. 2009–2018. netsniff-ng. http://netsniff-ng.org/. On-
line; accessed 10-August-2018.

[78] Merkel, D. March 2014. Docker: Lightweight linux containers for con-
sistent development and deployment. Linux J., 2014(239). URL: http:
//dl.acm.org/citation.cfm?id=2600239.2600241.

[79] Hidayat, A. 2015–2017. nflow-generator. https://github.com/
nerdalert/nflow-generator/. Online; accessed 10-August-2018.

[80] Lantz, B., Heller, B., & McKeown, N. 2010. A network in a laptop:
Rapid prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, 19:1–
19:6, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/
1868447.1868466, doi:10.1145/1868447.1868466.

[81] Peuster, M., Karl, H., & van Rossem, S. Nov 2016. Medicine: Rapid
prototyping of production-ready network services in multi-pop environ-
ments. In 2016 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), 148–153. doi:10.1109/NFV-SDN.
2016.7919490.

59

http://doi.acm.org/10.1145/3097983.3098163
http://dx.doi.org/10.1145/3097983.3098163
http://dx.doi.org/10.1145/3097983.3098163
https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.1136.pdf
https://github.com/esnet/iperf
https://github.com/esnet/iperf
https://scapy.net
http://netsniff-ng.org/
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://github.com/nerdalert/nflow-generator/
https://github.com/nerdalert/nflow-generator/
http://doi.acm.org/10.1145/1868447.1868466
http://doi.acm.org/10.1145/1868447.1868466
http://dx.doi.org/10.1145/1868447.1868466
http://dx.doi.org/10.1109/NFV-SDN.2016.7919490
http://dx.doi.org/10.1109/NFV-SDN.2016.7919490

A Study of Applied Passive TLS Analysis

[82] Peuster, M. 2018. Containernet. https://containernet.github.io/.
Online; accessed 10-September-2018.

[83] Cisco. Trex - realistic traffic generator. https://trex-tgn.cisco.com/.
Online; Accessed 7-December-2018.

[84] Networks, J. Juniper/warp17 - the stateful traffic generator for layer 1
to layer 7. https://github.com/Juniper/warp17. Online; Accessed 7-
December-2018.

[85] Erlacher, F. & Dressler, F. 2018. Testing ids using genesids: Realistic
mixed traffic generation for ids evaluation. In Proceedings of the ACM
SIGCOMM 2018 Conference on Posters and Demos, SIGCOMM ’18, 153–
155, New York, NY, USA. ACM. URL: http://doi.acm.org/10.1145/
3234200.3234204, doi:10.1145/3234200.3234204.

[86] García, S., Grill, M., Stiborek, J., & Zunino, A. 2014. An empir-
ical comparison of botnet detection methods. Computers Security,
45(Supplement C), 100 – 123. URL: http://www.sciencedirect.com/
science/article/pii/S0167404814000923, doi:https://doi.org/10.
1016/j.cose.2014.05.011.

[87] Shalaginov, A., Franke, K., & Huang, X. 04 2016. Malware beaconing
detection by mining large-scale dns logs for targeted attack identification.

[88] Erquiaga, M., García, S., & Garcia Garino, C. 10 2017. Observer effect:
How intercepting https traffic forces malware to change their behavior.

[89] StratosphereTestingFramework. https://github.com/
stratosphereips/StratosphereTestingFramework/. Online; Accessed:
2018-10-09.

[90] Malware Capture Facility Project. https://mcfp.weebly.com/. Online;
Accessed: 2018-10-09.

[91] Combs, G. 1998–2018. Wireshark. https://www.wireshark.org/. On-
line; Accessed: 1-March-2018.

[92] Hidayat, A. 2011–2018. PhantomJS. https://github.com/ariya/
phantomjs/. Online; Accessed: 15-March-2018.

60

https://containernet.github.io/
https://trex-tgn.cisco.com/
https://github.com/Juniper/warp17
http://doi.acm.org/10.1145/3234200.3234204
http://doi.acm.org/10.1145/3234200.3234204
http://dx.doi.org/10.1145/3234200.3234204
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://www.sciencedirect.com/science/article/pii/S0167404814000923
http://dx.doi.org/https://doi.org/10.1016/j.cose.2014.05.011
http://dx.doi.org/https://doi.org/10.1016/j.cose.2014.05.011
https://github.com/stratosphereips/StratosphereTestingFramework/
https://github.com/stratosphereips/StratosphereTestingFramework/
https://mcfp.weebly.com/
https://www.wireshark.org/
https://github.com/ariya/phantomjs/
https://github.com/ariya/phantomjs/

A Study of Applied Passive TLS Analysis

[93] Stenberg, D. 1997–2018. cURL. https://github.com/curl/curl. On-
line; Accessed: 15-March-2018.

[94] Keyword Research, Competitive Analysis, Website Ranking | Alexa.
https://www.alexa.com. Online; Accessed: 1-May-2018.

[95] Raspberry Pi 2 Model B. https://www.raspberrypi.org/products/
raspberry-pi-2-model-b/. Online; Accessed: 2018-05-01.

[96] Torbjørnsen, A. andetorb/mis4900 - software for my master thesis. https:
//github.com/andetorb/MIS4900. Online; Accessed 15-December-2018.

[97] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten,
I. H. 2009. The WEKA data mining software: an update. SIGKDD Explo-
rations, 11(1), 10–18.

[98] Huitema, C. & Rescorla, E. SNI Encryption in TLS Through Tunneling. Ex-
pired Internet-Draft, March 2018. URL: https://tools.ietf.org/html/
draft-ietf-tls-esni-02.

[99] Prince, M. Encrypting sni: Fixing one of the core internet bugs. https:
//blog.cloudflare.com/esni/. Online; Accessed 23-November-2018.

[100] Rescorla, E. Encrypted sni comes to firefox nightly.
https://blog.mozilla.org/security/2018/10/18/
encrypted-sni-comes-to-firefox-nightly/. Online; Accessed
23-November-2018.

[101] Thomas Hungenberg, M. E. 2007–2017. INetSim. http://www.inetsim.
org/. Online; Accessed: 30-March-2018.

[102] Barr-Smith, F. Dynamic Behavioural Analysis of Malware via Network
Forensics. Master’s thesis, University of Oxford, England, 2018.

[103] VirusTotal - Free Online Virus, Malware and URL Scanner. https://www.
virustotal.com/en/. Online; Accessed: 1-March-2018.

61

https://github.com/curl/curl
https://www.alexa.com
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://github.com/andetorb/MIS4900
https://github.com/andetorb/MIS4900
https://tools.ietf.org/html/draft-ietf-tls-esni-02
https://tools.ietf.org/html/draft-ietf-tls-esni-02
https://blog.cloudflare.com/esni/
https://blog.cloudflare.com/esni/
https://blog.mozilla.org/security/2018/10/18/encrypted-sni-comes-to-firefox-nightly/
https://blog.mozilla.org/security/2018/10/18/encrypted-sni-comes-to-firefox-nightly/
http://www.inetsim.org/
http://www.inetsim.org/
https://www.virustotal.com/en/
https://www.virustotal.com/en/

A Study of Applied Passive TLS Analysis

A Appendix

A.1 Malware Lookup - Hybrid-Analysis

Returns JSON formatted data.

curl -X POST \
"https://www.hybrid-analysis.com/api/v2/search/terms?_timestamp=<timestamp>"\
-H "accept: application/json" -H "user-agent: Falcon Sandbox" \
-H "api-key: <API-key>" \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "verdict=5&port=443"

A.2 Malware Data

Data from 26 malware samples from Hybrid-Analysis which uses TLS on port 443
and is labeled as malicious.

"verdict": "malicious",
"sha256": "d9651fa343f79f71baf3f0d6554eec10fbe82fea64dea52d6258f88a9e2acb61",
"type_short": "64-bit exe"

"verdict": "malicious",
"sha256": "5753fa05e5aa12e2304ad2e634c5efd3c04e29ef2536a8e6363598c7d360b1d7",
"type_short": "64-bit exe"

"verdict": "malicious",
"sha256": "6750eab2f9c583c272bd8011bc0c2f2b5bf3d947fac39d2150c493c7323d9b79",
"type_short": ".NET exe"

"verdict": "malicious",
"sha256": "10810ac39fa23e7e64330b95724cd649040729705b9fbeba03064fb81ab6346a",
"type_short": "exe"

62

A Study of Applied Passive TLS Analysis

"verdict": "malicious",
"sha256": "91bff092f7ce2d3b04aead6c553c8d6a13d4b6ae5aba1cc3cf7761e16efdbadc",
"type_short": "exe"

"verdict": "malicious",
"sha256": "c878b37b7236aa3a230b9e4b613dee0538182ff043944abcebadf78b08cfc426",
"type_short": "exe"

"verdict": "malicious",
"sha256": "3b0096d6798b1887cffa1288583e93f70e656270119087ceb2f832b69b89260a",
"type_short": "exe"

"verdict": "malicious",
"sha256": "2acd0d9ac5dca23aa232073aebc049ca54bfc8fd5dcae58a7c96cdc18fb7859e",
"type_short": "exe"

"verdict": "malicious",
"sha256": "19c17122fba29f87637d99e6a489dc89ba0baf33f23efe9a956c0cd6d3b0541e",
"type_short": "64-bit exe"

"verdict": "malicious",
"sha256": "001240304b1badd6d05e5d95fcc19316e11f8671ae9b003f8081de65f2e90405",
"type_short": "exe"

"verdict": "malicious",
"sha256": "08e91f45eae7126fddec2d92efd49b67ef3b82c59b0b8c037f675c00e72dec42",
"type_short": "exe"

"verdict": "malicious",
"sha256": "f36f9d655efb7eca37a8b4e0182a90fb2b6bafe6b9f9fa3fdc104405ad6f0d9e",
"type_short": "exe"

"verdict": "malicious",
"sha256": "da56618a8a5a0fb22bb12a90a63e8b9dd715b66f4ec7ba23eaed98d2b8cbddf0",
"type_short": "doc"

63

A Study of Applied Passive TLS Analysis

"verdict": "malicious",
"sha256": "dde36643ab431aba63538ab48d71c79964c9cdbfa60b1ed18a9ce4cccdd80b69",
"type_short": "doc"

"verdict": "malicious",
"sha256": "307c0d90e71f090fca4bc93dd242818f686188c5fb7bdeeab93d9f5a972c58b4",
"type_short": "exe"

"verdict": "malicious",
"sha256": "55fe5e4547d5d0c7e86a2e128b69dce5d9fad78f7781a8791bf03a2536c1511b",
"type_short": "exe"

"verdict": "malicious",
"sha256": "4c93a220ce61bc59280424ef8457951f9fa188de4ef7e7bd8a67ba3ed0d81ae3",
"type_short": "exe"

"verdict": "malicious",
"sha256": "3fb4b65cae358493a5d1d50be276fc863b7a41c2cc2c402cae57af437e075cca",
"type_short": ".NET exe"

"verdict": "malicious",
"sha256": "a9c2dc7b854b7de36380168ddee046c1433b9276c5e9fd1977773d2b0fe16935",
"type_short": "exe"

"verdict": "malicious",
"sha256": "5962f42dcb66ab283a9a9d407b3e90f3591c151e0d77afc5c1bca68e6befbfc6",
"type_short": "exe"

"verdict": "malicious",
"sha256": "9cf6dbcf73ae6bc8b01367bbc68ac9d518b96fe4fdbcfca84f6007e67488aff6",
"type_short": "exe"

"verdict": "malicious",
"sha256": "61216c38f1548b6184092869820343d2e5155fcf1986680e2e259c24239d92a6",

64

A Study of Applied Passive TLS Analysis

"type_short": ".NET exe"

"verdict": "malicious",
"sha256": "da70df51aa80414fcba9bf7322e44e8ea5ed6a3725f342cd05c733376c6f2121",
"type_short": "doc"

"verdict": "malicious",
"sha256": "4af17e81e9badf3d03572e808e0a881f6c61969157052903cd68962b9e084177",
"type_short": "exe"

"verdict": "malicious",
"sha256": "a8b49d5b0cb7e81d5e416bfe1f137d7e2e92087fd70abd905ac31211ee144d88",
"type_short": "exe"

"verdict": "malicious",
"sha256": "c17ac4abdec889f9bdcbf9c9a6144672da18ea5334fa84a34a4f2300f96610c2",
"type_short": "exe"

A.3 URLs Used for PhantomJS and cURL

vg.no
nrk.no
dagbladet.no
aftenposten.no
yr.no
digi.no
tu.no
uninett.no
ntnu.no
uio.no
hioa.no
samordnaopptak.no
altinn.no
skatteetaten.no

65

A Study of Applied Passive TLS Analysis

netflix.com
hbo.com
spotify.com
matprat.no
kolonial.no
peppes.no
dinside.no
finn.no
storm.no
norsk-tipping.no
lanekassen.no
snl.no
regjeringen.no
nsb.no
posten.no
vegvesen.no
ssb.no
dnb.no
lovdata.no
ffi.no
nbc.com
forskning.no
nba.com
paypal.com
ebay.com
nhl.com
usa.gov
amazon.com
cnn.com
peta.org
nato.int
marvel.com
ticketmaster.com
whatsapp.com
merriam-webster.com

66

A Study of Applied Passive TLS Analysis

youtube.com
vive.com/en
sas.no
norwegian.no
wikipedia.org
apple.com
twitch.tv
python.org
ryanair.com
duckduckgo.com
mozilla.org

67

	Preface
	Acknowledgment
	Abstract
	Sammendrag
	Contents
	List of Figures
	List of Tables
	Introduction
	Keywords
	Topics Covered
	Problem Description
	Justification, Motivation and Benefits
	Research Questions
	Contribution
	Ethical and Legal Considerations
	Outline

	Background
	TLS Encrypted Network Traffic
	Network-based Intrusion Detection Systems
	Malicious Network Traffic
	Network Traffic Generation
	Machine Learning

	Related Work
	Analysis of Encrypted Network Traffic
	Intrusion Detection Systems
	Network Traffic Generation
	Machine Learning

	Methodology
	Experimental Design
	Generation of Benign Traffic
	General HTTPS Traffic Generation
	HTTPS browsing

	Malicious Traffic
	Feature Extraction and Selection
	Machine Learning

	Results
	Experiment with SPLT features
	Experiment with TLS features

	Discussion
	Problems and Challenges
	Limitations

	Conclusion
	Future Work

	Bibliography
	Appendix
	Malware Lookup - Hybrid-Analysis
	Malware Data
	URLs Used for PhantomJS and cURL

