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Abstract
The formation of nanoscale droplets/bubbles from a metastable bulk phase is still connected to
many unresolved scientific questions. In this work we analyze the stability of multicomponent
liquid droplets and bubbles in closed N j ,V, T systems (total mass of components, total volume
and temperature). To investigate this problem, square gradient theory combined with an
accurate equation of state is used. We compare the results from the square gradient model to
the macroscopic capillary description. We find that both predict a finite threshold size for
droplets/bubbles. The work reveals a metastable region close to the minimal droplet/bubble
radius. We find that the liquid compressibility is crucial for the existence of this minimum
threshold size for bubble formation.
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1. Introduction

For nanoscale bubbles or droplets, the thickness of the
interface can be of the same order of magnitude as their
size. Models which do not specifically take into account
surface gradients, such as classical nucleation theory and
discontinuous excess formulations, might then be insufficient.
We will thus use a square gradient theory for curved systems
coupled with an accurate cubic equation of state [1, 2] to
investigate the system. In the square gradient theory, the
Helmholtz energy density has contributions up to second order
in the gradients of the densities. The functional minimization
of the total Helmholtz energy keeping Ni and T constant,
gives the equilibrium density and concentration distributions
in the canonical ensemble [3]. The advantage of this approach
is that continuous profiles across the interface can be found.
Square gradient theory combined with an accurate equation
of state and suitable models for the pure components has
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been used to reproduce experimental results for the surface
tension of planar interfaces of multicomponent mixtures [4].
We will use it here to describe the formation of bubbles and
liquid droplets. To give further insight into how the size of the
system and the composition of the fluid affect the formation
of small bubbles and drops, we will compare the results to a
macroscopic capillary description [5]. While previous work
on this topic has focused on single-component systems [6]
we formulate our problem for mixtures. In addition we give
a detailed thermodynamic stability analysis.

The paper is structured as follows. First, a short intro-
duction will be given to the use of a cubic equation of state
coupled with either the square gradient theory (mesoscopic
approach), or the capillary approach (macroscopic approach)
to describe the formation of bubbles and droplets. We then
show that the capillary approach is able to reproduce results
from the square gradient theory remarkably well for a binary
mixture, using hexane–cyclohexane as an example. Both
approaches will be used to analyze the stability of small
bubbles and the existence of a threshold size below which
no stable bubbles can be formed. Finally, some concluding
remarks are provided.
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2. Theory

Consider a spherical container with volume V, temperature
T and a fixed number Ni of moles of each component i. We
assume that a perfectly spherical bubble or droplet is placed at
the center of the container. We use the Peng–Robinson cubic
equation of state for the pressure

Peos =
RgT

ν − b
+

aα(T )

(ν − bm1)(ν − bm2)
,

where Rg is the universal gas constant, ν is the molar volume,
and a,α and b are parameters of the equation of state.
Furthermore m1 = −1 +

√
2 and m2 = −1 −

√
2. Integration

with respect to the volume gives the residual Helmholtz
energy density (i.e. the difference between the Helmholtz
energy of the homogeneous phase and that of an ideal gas)

feos,res =
RgT

ν
ln

ν

ν − b
−

aα(T )

(m1 − m2)bν
ln

ν − m2b

ν − m1b
·

The Helmholtz energy can be differentiated to give the
other thermodynamic variables. A complete thermodynamic
description of the system is then obtained by linking these
variables to the properties of the ideal gas.

The square gradient model is a formalism frequently
used to describe the surface between two phases. The
equilibrium molar density distributions ci give a minimum of
the Helmholtz energy functional

Fsgm =

∫
V

dr

 feos(T, c) +
1

2

Nc∑
i, j=1

κi j∇ci∇c j

 ·

The subscript sgm refers to the square gradient model,
κi j is symmetric and will be taken constant, c will be used as
short notation for the set

{
c1, . . . , cNc

}
. The total mass of each

component is specified as integral constraints: Ni =
∫

ci dr .
We know from variational calculus that such a minimum is an
extremum of a modified functional which can be interpreted
as the grand potential

�sgm =

∫
V

dr

(
fsgm(T, c, ∇c) −

Nc∑
i=1

ciµsgm,i

)
,

where µsgm,i is the chemical potential of component i. The
Euler–Lagrange equations with integral constraints require
that the first variation of � is zero, which gives, using
spherically symmetry

µsgm,k = µeos,k −

Nc∑
i=1

κik

(
2

r

∂ci

∂r
+

∂2ci

∂r2

)
.

We use as mixing rule for the square gradient constants κi j =
√

κiκ j , where κi are the square gradient coefficients used for
the description of a fluid with only component i. We define

κ = κb, εi =

√
κi

κ
, q =

Nc∑
i=1

εi ci ,

where b labels the most abundant component. Upon
substitution of these definitions, the system of differential

Table 1. The parameters used in capillary models for a 50–50%
(mol) binary mixture of hexane–cyclohexane.

Variable Value

Temperature 330 K
κ1 4.2 × 10−13 J m5 kmol−2

κ2 3.4 × 10−13 J m5 kmol−2

Mole fractions 0.5
Surface tension 0.162 N m−1

Container radius 38 nm

equations reduces to one differential equation and Nc − 1
algebraic equations:(

µsgm,k − µeos,k
)
/εk = µsgm,b − µeos,b = −κ∇

2q.

Note that εb = 1, see [3] for further details. The combined
system of differential and algebraic equations was solved
using the ‘bvp4c’ solver in Matlab. The derivatives of q
were taken zero in r = 0 and at the outer boundary. The
densities were scaled with the density of the liquid-phase at
the bubble-point, cmax = 8.36 kmol m−3.

Following previous work [5, 7] on small bubbles and
droplets we use the capillary model, to be able to compare
the square gradient model to a macroscopic approach. In
this model the bubble/droplet as well as the exterior phase
have homogeneous thermodynamic properties separated by
an interface with radius R and a surface tension σ . We
assume that there is no adsorption of any component at
the dividing surface. This implies that the surface tension
σ can only depend on the temperature. In equilibrium the
chemical potentials of both phases are equal and the Laplace
relation holds for the pressure difference across the surface.
We investigate two models in the capillary approach.

Capillary model 1. We assume that the liquid is
compressible and its pressure and volume are given by the
cubic equation of state.

Capillary model 2. We assume that the liquid is
incompressible and behaves as an ideal mixture. The gas is
ideal.

3. Results and discussion

Results are presented for a 50–50% (mol) binary mixture of
hexane–cyclohexane [3, 8]. Parameters used in the models
can be found in table 1. The square gradient parameters, κ1

and κ2, were chosen such that they reproduce the surface
tensions reported for the single-component systems hexane
and cyclohexane at 300 K [9]. The surface tension used in the
capillary models, see the table, is the one predicted by the
square gradient model for a planar surface.

Both capillary models then reproduce results from the
square gradient model for small bubbles and droplets well.
It is found that the thickness of the surface, coarsely defined
as the zone where the composition deviates from those of
the two homogeneous phases, is significant compared to the
radius. Even if the capillary models are obviously not capable
of reproducing the behavior of the square gradient model at
the surface, the compositions, pressures and densities in the
homogeneous regions are reproduced well, both for the single
component systems, and for the binary system. The location
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Figure 1. The square gradient model (black solid line) compared
with capillary model 1 in the stable (dashed line) and the unstable
(solid line) region, and capillary model 2 (dash-dot lines) for
two-component bubbles at 330 K.

of the equimolar surface (overall molar density) in the square
gradient model gives the radius of the bubble/droplet. The
radii predicted by the capillary models deviate from this by
less than 1%. The difference between the gas and the liquid
pressure in the two cases, also known as the Laplace pressure,
is even less. These observations are true, even if the liquid
is assumed to be incompressible. This shows that a capillary
model can be used as a tool to understand the behavior of
the more detailed square gradient model, and to reveal the
behavior and stability of bubbles and droplets at small sizes.

4. The minimal bubble radius

In this section, we discuss how assumptions about the
liquid-phase will affect the smallest possible bubble-size a
system can have in the canonical ensemble. We also discuss
the stability of the different extrema of the Helmholtz energy
in terms of the Hessian and the work of formation. The
difference in Helmholtz energy between a system with a
bubble (droplet) and a supersaturated gas (undersaturated
liquid) is known as the reversible work of formation, 1W [5,
10]. If this quantity is positive the bubble is stable or
metastable with respect to the homogeneous liquid mixture.
In particular, one can show that there exists a region where a
bubble is metastable, which means that the total Helmholtz
energy of the system is at a local minimum, but 1W is
positive. We define the minimal radius of a bubble as the
smallest radius for which the bubble will form spontaneously,
i.e. the state where 1W = 0.

Figure 1 shows how the radii corresponding to the
extrema of the Helmholtz energy of the system change with
the scaled total mass. The reference mass is the mass of
the homogeneous liquid at the equilibrium density. With a
specified total mass in the system, capillary model 1 predicts
two possible bubble radii, one large and one small, both
representing extrema of the Helmholtz energy in capillary
models 1 and 2. The radii of the large bubbles in both
capillary models are almost identical to the radii predicted
by the square gradient model. In fact, they are so similar

Figure 2. The smallest eigenvalue of the Hessian matrix in capillary
model 1 describing two component bubbles at 330 K, for the stable
(dashed line), the unstable (solid line) and the metastable region
(dash-dot line). The solid line corresponds to small bubbles, and the
upper line to large bubbles.

that they can hardly be distinguished from one another in
figure 1. Since we have two components in this system, there
are three possible eigenvalues of the Hessian, associated with
the number of moles of the components and the volume of
the bubble. Figure 1 shows that the large bubbles give only
positive eigenvalues of the Hessian, which proves that these
solutions are minima, and locally stable bubbles. The small
bubbles (dot-dashed lines) have one negative and two positive
eigenvalues. This means that these solutions are unstable
saddle-points of the Helmholtz energy, corresponding to the
critical bubble of interest for nucleation. The same behavior
was observed for the single-component systems, hexane and
cyclohexane (not shown here).

The region, where the stable and unstable solutions
of capillary model 1 merge, is interesting. From figure 2
we observe that there exist locally stable minima of the
Helmholtz energy of the bubbles, where it is energetically
favorable for the system to have a homogeneous density
and no bubble. We make this observation for both capillary
model 1 and the square gradient model, and refer to this
region as metastable. The minimal radius for a stable bubble
is 8.4 nm, but it is actually possible to have a metastable
bubble down to 6.5 nm in this system, see inset in figure 1.
The minimal stable radius is found by identifying the radius
at which 1W = 0, and the minimal metastable radius is
found by locating the point where the smallest eigenvalue
is close to zero. We have done the same analysis for the
single-components, hexane and cyclohexane and found the
same behavior. Metastable behavior can also be observed
for hexane–cyclohexane droplets near the minimum density,
as already discussed in [7]. One needs to be careful when
distinguishing between metastable and unstable bubbles, since
they are all extremal states of the total Helmholtz energy.
Figure 3 shows the reversible work of formation from
capillary model 1 for two-component bubbles at 330 K.

Another interesting observation is that capillary model
2, when the liquid surrounding the bubble is incompressible,
has only one possible bubble solution at a specified total
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Figure 3. The reversible work of formation from capillary model 1
for two-component bubbles at 330 K for the stable (dashed line), the
unstable (solid line) and the metastable region (dash-dot line).

mass of the system, figure 1. This means that assumptions
about the compressibility of the liquid will have a large
impact on estimates of minimal radii. In the limiting case
of an incompressible liquid, there is no minimal radius of
the bubble, but when the liquid is compressible, a minimal
radius exists. We can address the stability of capillary model 2,
through evaluation of 1W , with homogeneous ideal gas as the
reference state. Then the bubbles are always stable. For small
drops, the assumption of an incompressible liquid changes the
minimal radius of the drop very little.

5. Conclusion

We have investigated how the formation of nanoscale bubbles
are limited by a minimal size in systems with constant Ni , V, T
(total mass of components, total volume and temperature). We
used the square gradient model for curved systems combined

with the cubic equation of state, Peng–Robinson, to analyze
the system from a mesoscopic point of view, and compared
the results to those obtained from the capillary model, which
addresses the problem from a macroscopic point of view.
For the hexane–cyclohexane mixture, we observed that the
capillary model was able to reproduce well the results from
the square gradient model in the homogeneous regions, if
the value for the surface tension obtained from the square
gradient model was used. The minimal radius for a stable
bubble in a 38 nm container in this binary system was found
to be 8.4 nm, but a thermodynamic stability analysis showed
that it was possible to have metastable bubbles down to
6.5 nm. No threshold radius, and only one possible bubble
solution corresponding to a stable bubble was found using the
capillary model with the liquid assumed to be incompressible.
The assumption of incompressible liquid had little effect
on the minimal droplet radius. This indicates that a more
detailed analysis should be done regarding the role of the
compressibility in determining the stability and size of nano
bubbles in binary systems.
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