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Abstract: The Duran-Grossmann model can deal with heat integration problems with variable 

process streams. Work and Heat Exchange Networks (WHENs) represent an extension of Heat 

Exchange Networks. In WHEN problems, the identities of streams (hot/cold) are regarded as 

variables. The original Duran-Grossmann model has been extended and applied to WHENs 

without knowing the identity of streams a priori. In the original Duran-Grossmann model, the 

max operator is a challenge for solving the model. This paper analyzes four ways to reformulate 

the Duran-Grossmann model. Smooth Approximation, Explicit Disjunctions, Direct 

Disjunctions and Intermediate Temperature strategy are reviewed and compared. The Extended 

Duran-Grossmann model for WHEN problems consists of both binary variables and non-

smooth functions. The Extended Duran-Grossmann model can be reformulated in similar ways. 

In this study, the performance of different reformulations of the Extended Duran-Grossmann 

model for WHEN problems is compared based on a small case study in this paper.  

Key words: Work and Heat Exchange Networks, Duran-Grossmann Model, Reformulations, 

Disjunctive Programming, MINLP 

1. Introduction 

Heat integration has been widely used to save hot/cold utilities because thermal energy 

contributes significantly to the total cost of a process (Huang & Karimi, 2013). The classical 
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heat integration techniques, such as pinch technology (Klemeš & Kravanja, 2013), can only 

deal with the heat integration problem with known stream data. If heat integration and process 

optimization are performed simultaneously, i.e. heat integration considering variable process 

streams, more benefits can be achieved. Duran and Grossmann proposed a mathematical model 

for simultaneous process optimization and heat integration (Duran & Grossmann, 1986). The 

Duran-Grossmann model is a powerful tool to solve the heat integration problem with variable 

process streams. This paper has been cited more than 350 times by the end of 2018. Their 

model has been successfully applied to organic Rankine cycle systems recovering low-

temperature waste heat (Yu et al., 2017a), processes for liquefaction of natural gas (Wechsung 

et al., 2011), optimal reactor network synthesis (Lakshmanan & Biegler, 1996), and fuel cell 

systems (Marechal et al., 2005). To improve the performance of the model, several 

reformulations are proposed in previous studies, which will be reviewed and compared in this 

study. 

The new topic referred to as Work and Heat Exchange Networks (WHENs) arise if pressure 

manipulations are considered while designing Heat Exchanger Networks (HENs). There are 

many potential applications of WHENs theory, such as a novel process for offshore 

liquefaction of natural gas (Aspelund & Gundersen, 2009), effluent gas recovery (Liao et al., 

2017), process integration in carbon capture processes (Fu & Gundersen, 2016), and optimal 

distillation column integration (Nair et al., 2018). More applications can be found in the 

literature (Yu et al., 2018a). More generally speaking, not only the temperature but also the 

pressure have to meet some specifications in a system. Pressure specifications for process 

streams make the problem more challenging compared with conventional HENs. Holiastos and 

Manousiouthakis (2002) proposed a mathematical model minimizing hot/cold/work utility cost 

for HENs. Here “work utility” refers to the generation or consumption of work. Aspelund et al. 

(2007) proposed a manual methodology referred to as Extended Pinch Analysis and Design 
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(ExPAnD), where traditional Pinch Analysis is extended with pressure considerations and 

Exergy Analysis. Marmolejo-Correa and Gundersen (2012) proposed a methodology 

combining Exergy and Pinch Analyses to design a Reverse Brayton cycle for the liquefaction 

of natural gas. Based on this study, Marmolejo-Correa and Gundersen (2013) developed a 

novel diagram for exergy and energy targeting for a heat recovery system subject to changes 

in both temperature and pressure. This method is particularly suitable for low temperature 

systems such as LNG processes. Fu and Gundersen (2015a) presented a systematic graphical 

design procedure for the integration of compressors in HENs above ambient temperature. 

Similarly, Fu and Gundersen (2015b) integrated compressors into heat exchanger networks 

below ambient temperature. Four theorems were proposed and used as the basis for the design 

methodology. Fu and Gundersen also integrated expanders into heat exchanger networks above 

(Fu & Gundersen, 2015c) and below (Fu & Gundersen, 2015d) ambient temperature. 

Wechsung et al. (2011) combined Pinch Analysis, Exergy Analysis, and Mathematical 

Programming to synthesize HENs below ambient temperature with compression and expansion 

of process streams.  

The WHENs problem involves both heat integration and work integration. The Duran-

Grossmann model can be extended to solve WHEN problems. Since the thermodynamic path 

and the identity (hot/cold) of process streams are unknown in WHENs, classical heat 

integration methods cannot be applied. In addition, the identity of streams can also temporarily 

change in WHENs. This paper extends the Duran-Grossmann model to WHEN problems, 

where the identities of streams are unknown a priori. The various reformulations of the original 

Duran-Grossmann model are applied to the Extended Duran-Grossmann model for WHEN 

synthesis problems. There are four different reformulations for the Extended Duran-

Grossmann model presented in the literature. This study investigates the different 

reformulations and their computational expenses. 
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2. Original Duran-Grossmann Model and Reformulations 

The original Duran-Grossmann model can take into account the utility cost and other economic 

indicators simultaneously, and it can be written in a compact way as follows: 
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DG.1 and DG.2 are the equality and inequality constraints for the industrial process. The vector 

ω  denotes process parameters such as pressure, temperature, or parameters in cost correlations. 

DG.3 and DG.4 are used to assign the inlet temperature of each stream to potential pinch 

candidates. It should be noticed that only cold stream inlet temperatures are modified to take 

into account the effect of the Heat Recovery Approach Temperature (HRAT). DG.5 and DG.6 

denote the total hot stream heat load and total cold stream heat load above each pinch candidate 

temperature. DG.7 and DG.8 aim at identifying the correct pinch point, which features the 

maximum heat deficit among all the pinch candidates. DG.9 and DG.10 are energy balances 

for the system.  

The Duran-Grossmann model incorporates max operators, which result in non-

differentiabilities at pT . Max operators are challenging for deterministic solvers and have to 

be removed before solving the model. The original Duran-Grossmann model has proven to be 

powerful in process design. Thus, interest has increased in the Process System Engineering 
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(PSE) field to find ways to reformulate the model. Four different reformulations have been 

found in the literature, and these are presented and used in the Extended Duran-Grossmann 

model for WHEN synthesis. The four reformulations are the following: (1) Smooth 

Approximation, (2) Explicit Disjunction, (3) Direct Disjunction, and (4) an Intermediate 

Temperature strategy.  

2.1 Smooth Approximation for the Heat Integration Model 

The max operator in the Duran-Grossmann model was reformulated by using smooth 

approximations proposed by Balakrishna and Biegler (1992). This reformulation has been 

applied to heat integration problems considering organic Rankine cycles (Yu et al., 2017b) and 

carbon capture processes considering waste heat recovery (Yu et al., 2018b). The max operator 

in the original Duran-Grossmann model can be reformulated by using the equation shown in 

Eq. (1) to modify DG.5 and DG.6.  

{ } 21max 0, ( )
2

x x x ε≅ + +
 

      (1) 

Here, ε  is a small constant, typically between 10-3 and 10-6. 

However, this reformulation may encounter problems when dealing with isothermal streams. 

In addition, the performance of the approximation depends on the value of the small constant, 

which may cause numerical conditioning problem if chosen improperly (Grossmann et al., 

1988). The small parameter is close to zero, and the Smooth Approximation can sometimes be 

ill-conditioned. 

2.2 Explicit Disjunction for the Heat Integration Model 

To remove the max operator in the original Duran-Grossmann model, Grossmann et al. (1998) 

proposed a disjunctive reformulation. This reformulation can even handle isothermal streams 

in a system. The key idea of the disjunctive formulation is the explicit treatment of three 
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possibilities for process stream temperatures: a process stream is totally above, totally below 

or across the pinch candidate temperature, as shown in Figure 1. When a stream is totally above 

the pinch candidate temperature, both the inlet and outlet temperatures are greater than the 

pinch candidate temperature. When a stream is totally below the pinch candidate temperature, 

both the inlet and outlet temperatures are below the pinch candidate temperature. These two 

statements are valid regardless of the streams being hot or cold. However, if the stream is across 

a pinch candidate temperature, the constraints are different for hot and cold streams. For hot 

streams, the inlet temperature is greater than the pinch candidate temperature, and the outlet 

temperature is less than the pinch candidate temperature. In contrast, different constraints apply 

to cold streams. To avoid the use of max operators, intermediate variables are introduced to 

calculate the correct heat load of hot and cold streams respectively, as shown in the Eq. (2).

Fig. 1 Relationship between pinch candidate temperature and process streams (Yu et al., 2018c). 
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      (2) 

Then the max operators in the original Duran-Grossmann model can be replaced by the 

disjunctions shown in Eq. (2). In our study, we refer to this disjunctive reformulation as Explicit 

Disjunction.  

2.3 Direct Disjunction for the Heat Integration Model 

Recently, Quirante et al. (2017) proposed another novel and robust disjunctive reformulation. 

This method reformulates the max operator from a pure mathematical point of view without 

any physical insight regarding the heat integration background. We refer to this reformulation 

as Direct Disjunction in this study. This reformulation has fewer Boolean variables compared 

with the Explicit Disjunction (Grossmann et al., 1998), thus shows better relaxation gaps and 

reduced number of equations.   

The max operator is expressed as follows:  

max(0, )Tc x=φ        (3) 

Based on mathematical analysis, the max operator can be either 0 or a positive number. 

Therefore, a direct disjunction is proposed as shown in Eq. (4). 
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Using this formulation, the max operator in Eqs. DG.4 and DG.5 can be replaced by the 

disjunctions as shown in Eq. (5).  
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      (5) 

2.4 Intermediate Temperature Strategy for the Heat Integration Model 

Anantharaman et al. (2014) revisited the Duran-Grossmann model to improve the solution of 

the formulation. They pointed out that the Explicit Disjunction reformulation has the drawback 

of introducing a large number of binary variables. The novel idea in this study is to introduce 

a new variable named intermediate temperature, to represent the pinch candidate temperature 

and avoid using max operators. We refer to this reformulation as the Intermediate Temperature 

(IT) strategy in this study. The key idea of the three reformulations discussed in Sections 2.1-

2.3 is how to reformulate the max operators in the Duran-Grossmann model. The Intermediate 

Temperature strategy, however, is different from the three previous reformulations. Eqs. DG.5-
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DG.8 in the original Duran-Grossmann model can be written in one single compact equation 

as shown in Eq. (6). 
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In Eq. (6), intermediate temperatures ( ,
M
i pt  and ,

M
j pt ) are introduced. Hot utility consumption is 

determined by the heat deficit between hot and cold streams above each potential pinch 

temperature. To determine the correct intermediate temperature corresponding to the correct 

pinch temperature, more constraints are incorporated in the model. More detailed and updated 

information about this model can be found in the updated notes (Anantharaman, 2018). In this 

reformulation, max operators are avoided but binary variables are introduced. The reformulated 

Duran-Grossmann model with the IT strategy is as follows: 
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Here, ,i py  and ,j py are binary variables indicating whether a stream is above or below a pinch 

candidate. The case where a stream is across the pinch candidate temperature is not treated 
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separately. For hot streams, , 1i py =  corresponds to the case where stream i is below the pinch 

candidate temperature and , 0i py =  corresponds to the case where stream i is above or across 

the pinch candidate temperature. For cold streams, , 1j py =  corresponds to the case where 

stream j is across or below the pinch candidate temperature and , 0j py =  corresponds to the 

case where stream j is above the pinch candidate temperature. M and U are valid upper bounds 

associated with binary variables ,i py and ,j py .  

2.5 Model Complexity 

The four reformulations are proposed in the following chronological order: Smooth 

Approximation (Balakrishna & Biegler, 1992), Explicit Disjunction (Grossmann et al., 1998), 

Intermediate Temperature strategy (Anantharaman et al., 2014) and Direct Disjunction 

(Quirante et al., 2017). Smooth Approximation has the following advantages: no binary 

variables are needed and it is computationally efficient. However, the reformulation has 

difficulty when handling isothermal streams and intermediate utilities. In addition, the Smooth 

Approximation parameter has to be chosen properly, otherwise numerical issues could arise. 

To overcome the limitations of Smooth Approximation, Explicit Disjunction, which is capable 

of handling isothermal streams and multiple utilities, is proposed. However, 3 Boolean 

variables are introduced for each pair of streams and pinch candidates. The number of binaries 

are increasing rapidly with the scale of the problem. Therefore, it becomes challenging to solve 

the model if the problem size is large. Motivated by this challenge, Direct Disjunction, which 

only needs 2 Boolean variables for each pair of streams and pinch candidates, provides a better 

reformulation of the original Duran-Grossmann model. Direct Disjunction should perform 

much better than Explicit Disjunction, especially for medium or large-scale problems. The 

Intermediate Temperature strategy introduces a new continuous variable to avoid using max 

operators. One binary variable to activate/deactivate the corresponding constraints has to be 
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introduced. The different reformulations are subject to the trade-off between continuous 

variables and binary variables.  

3.  Extended Duran-Grossmann model for Work and Heat Integration 

In this study, we mainly focus on the application of the Duran-Grossmann model for Work and 

Heat Exchange Networks (WHENs). The Duran-Grossmann model has been successfully 

extended to WHEN problems (Yu et al., 2018c). A brief introduction to the WHENs problem 

is presented here. The WHENs problem can be stated as follows: Given a set of process streams 

with supply and target state (temperature, pressure), as well as hot, cold and power utilities; the 

objective is to design a network consisting of heat transfer equipment such as heat exchangers, 

heaters and coolers, and pressure manipulation equipment such as expanders, compressors, 

pumps and valves with minimum Exergy Consumption or minimum Total Annualized Cost.  

In the WHENs problem, a process stream whose target pressure is greater than the supply 

pressure is called a work sink stream (WSK). Opposite, a work source stream (WSR) can be 

defined as a process stream whose target pressure is less than the supply pressure. Any process 

stream can be heated, cooled or simply not changed before pressure manipulation. Figure 2 

illustrates the superstructure of a stream in the category of WSK. Detailed information about 

the superstructure is available in Yu et al., 2018c.  

 

Fig. 2 Superstructure for streams belonging to WSK (Yu et al., 2018c) 
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Since the identity of streams in the WHEN is unknown a priori, the Duran-Grossmann model 

cannot be applied directly and has to be extended to a new model using binary variables to 

denote the identity of streams. In the Extended Duran-Grossmann (EDG) model, separate sets 

of hot and cold streams do no longer exist. Binary variables are used to automatically 

distinguish the hot and cold streams in the model. The Extended Duran-Grossmann model can 

be formulated as follows: 
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Here, x  represents the flow rates and temperatures of the streams involved in heat integration.

ω  represents all the other process variables. Eqs. EDG.1 and EDG.2 denote the process 

equality and inequality constraints as those in the original Duran-Grossmann model. sy is a 

binary variable to denote the identity of a process stream. In this study, 1sy =  means stream s 

is a cold stream. QSOA and QSIA denote the total heat load of hot and cold streams above each 

pinch candidate p PC∈ . ( )p
defZ x  is heat deficit above each pinch candidate. ( )xΩ is the heat 

load difference between hot and cold streams. HRAT denotes the heat recovery approach 

temperature. The objective function is minimizing the exergy consumption of the system, 

which is related to the use of thermal utilities and shaft work consumed in the system. In the 
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next sections, the previously reviewed reformulations for the original Duran-Grossmann model 

are applied to the Extended Duran-Grossmann model. Since the identity of the streams are 

unknown a priori, these reformulations have to be revised accordingly. The reformulations for 

the extended Duran-Grossmann model are presented as follows. 

3.1 Smooth Approximation for the Work and Heat Integration Model 

For the Extended Duran-Grossmann model, the max operators can be replaced by Smooth 

Approximations as well. It is similar to the reformulation for the original Duran-Grossmann 

model as discussed in Section 2.1. However, binary variables are involved in the Smooth 

Approximation reformulation in this case. The detailed model is omitted in this section since 

it is straightforward.  

3.2 Explicit Disjunction for the Work and Heat Integration Model 

For the explicit disjunction reformulation, it is not necessary to distinguish between hot and 

cold streams in the Extended Duran-Grossmann model. In contrast to the reformulation in 

Section 2.2, only three disjunctions are needed in the Extended Duran-Grossmann model. 

However, more constraints are needed to take the identity of streams into account in the 

disjunction. Especially for the case where a stream operates across the pinch candidate 

temperature, the constraints are different for hot and cold streams. Therefore, there are 3 more 

constraints in the second disjunction as shown in Eq. (7) compared with the Explicit 

Disjunction reformulation for the original Duran-Grossmann model.  
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      (7) 

Here, R is a valid upper bound to relax the constraints for the binary variables denoting stream 

identities. The value of R can be estimated based on temperatures of the process streams.  

After the reformulation, the Extended Duran-Grossmann model becomes a disjunctive model, 

which can be transformed into a Mixed Integer Non-Linear Programming (MINLP) problem 

by the Big-M method or the convex hull method (Türkay & Grossmann, 1996). In this study, 

LogMIP (Vecchietti & Grossmann, 2004), a specially designed program for disjunctive 

programming, is adopted as the solver. Users can freely choose the Big-M method or convex 

hull method in the GAMS environment, which facilities the modeling and solution substantially.  

3.3 Direct Disjunction for the Work and Heat Integration Model 

Recently, Quirante et al. (2018) proposed a disjunctive model considering unclassified streams 

and area estimation. In their study, the stream identity is expressed as a disjunction. This is in 

contrast to our study, where the stream identity is denoted by using binary variables. Based on 

the reformulation presented in Section 2.4, the direct disjunction reformulation can be applied 

to the Extended Duran-Grossmann model in a similar way. However, only two disjunctions are 

necessary since the Extended Duran-Grossmann model only has one common set for the 

process streams, and does not distinguish between hot and cold streams. The direct disjunction 

can replace the max operator in Eqs. EDG.4 and 5. The resulting disjunctions are shown in Eq. 

(8). Intermediate variables inφ and outφ are introduced in the direct disjunction reformulation.  
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       (8) 

Compared with Explicit Disjunction, only two Boolean variables are needed for each pair of 

streams and pinch candidates. With the above disjunctions, the model can easily be 

implemented in the GAMS environment along with other equations related to the process.  

3.4 Intermediate Temperature Strategy for the Work and Heat Integration Model 

For the Intermediate Temperature strategy, the reformulation is very different from that for the 

original Duran-Grossmann model. In the Extended Duran-Grossmann model, there is only one 

set including both hot and cold streams. Therefore, all the equations are defined based on a 

single stream set. To activate the corresponding constraints for a stream changing from hot 

stream to cold stream, a big-M relaxation strategy is adopted. The Intermediate Temperature 

reformulation for work and heat integration model can be expressed as follows: 
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It should be noticed that sy  is a binary variable to denote the stream identity, while ,s py  is a 

binary variable to denote the relationship between the intermediate temperature and the pinch 

candidate temperature. If the stream identity is a hot stream (i.e. 0sy = ), then constraints EDG-

IT.5-7 are active and constraints EDG-IT.8-10 are relaxed. If the stream identity is a cold 

stream (i.e. 1sy = ), then constraints EDG-IT.8-10 are active and constraints EDG-IT.5-7 are 

relaxed. sM  are valid upper bounds for temperatures to relax the constraints related to binary 

variables sy . Similarly, ,s pM and ,s pU are valid upper bounds associated with binary 

variables ,s py . It should be noted that the value of these parameters will affect the 

computational time of the model. 
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4. Case Study  

This case study is taken from the study by Fu and Gundersen (2015a). The stream data are 

listed in Table 1. There are 4 process streams. Stream C1 is subject to pressure change and 

needs to be compressed from 100 kPa to 300 kPa. The hot and cold utilities are supplied at 

400°C and 15°C respectively. The problem is to determine if stream C1 needs to be split into 

substreams, and to find the optimal inlet temperature(s) for the compressor(s). Since this is a 

small-scale problem, C1 is split only into two substreams in the superstructure to reduce the 

model size. The HRAT is set to be 20°C. The ambient temperature is assumed to be 15°C, thus 

the exergy of cold utility (at 15°C) is zero in this case. The fluids to be compressed are assumed 

to behave like ideal gas with constant specific heat capacity ratio 1.4γ = . 

Table 1. Stream data for the case study 

Stream 
( )°C

supT  ( )°C
tarT  (kW )°C/

FCp  (kW)
H∆  

(kPa)
supP  (kPa)

tarP  

H1 300 50 4 1000 - - 
H2 120 40 4 320 - - 
C1 70 380 3 930 100 300 
C2 30 180 3 450 - - 

Hot utility 400 400 - - - - 
Cold utility 15 15 - - - - 

 

The Extended Duran-Grossmann model can determine the optimal split ratio of stream C2 and 

the optimal temperature(s) of stream C1 before compression. For this case study, all the 

reformulations are able to find the global optimum. The detailed results concerning stream C1 

are listed in Table 2. Without considering pressure manipulation, the original pinch 

temperatures are 120/100°C for hot and cold streams respectively. In the optimal configuration, 

stream C1 is split into two substreams with heat capacity flowrates being 1.47 kW/°C and 1.53 

kW/°C respectively. A new pinch is created and located at 300/280°C. It can be seen that part 

of C1 (substream C1_S1) is heated to the new pinch temperature 280°C before compression. 
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The other part is cooled down to ambient temperature before compression. The optimized 

superstructure of C1 is shown in Figure 3. The results are consistent with the study by Fu and 

Gundersen (2015a).  

 

Fig. 3 The optimized superstructure of C1 

Table 2. Optimal stream data for C1 for all reformulations 

Stream ( )°CsupT  ( )°CtarT  (kW )°C/FCp  (kW)H∆  (kPa)supP  (kPa)tarP  

C1_S1 70 280 1.47 308.7 100     100 
C1_S2 484 380 1.47 152.9 300 300 

C1_S3 70 35 1.53 53.6 100 100 

C1_S4 148.6 380 1.53 354 300 300 

The overall system performance under optimal conditions are summarized in Table 3. The 

Composite Curves and the Grand Composite Curve are shown in Figure 4. The hot utility 

demand is zero because the compression heat of C1_S2 can be fully utilized to heat cold 

streams in the system above the pinch. Stream C1 is compressed at the new pinch temperature 

and at ambient temperature. In contrast, compression at the original pinch temperature or the 

supply temperature are not good options from the perspective of exergy consumption. The 

compression of C1_S1 has the similar effect as a heat pump. After compression, the substream 

C1_S2 becomes a hot stream in the system that will reduce hot utility. The hot and cold 

Composite Curves are closer to each other and there are two pinch points in the GCC. This 

demonstrates that an efficient heat exchanger network can be derived with the optimized 

superstructure for stream C1.  
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         Table 3. System performance under the optimal configuration  

Items Value 
Hot utility (kW) 0 
Cold utility (kW) 413.9 

Pinch temperature (°C) 290 
Compression work (kW) 473.8 

Exergy consumption (kW) 473.8 
Original Pinch compression flowrate (kW/°C) 0 

New Pinch compression flowrate (kW/°C) 1.47 
Ambient compression flowrate (kW/°C) 1.53 
Compression at supT  flowrate (kW/°C) 0 

 

 

Fig. 4 Composite Curves and Grand Composite Curve under optimal conditions 

Even though all the reformulations can reach the same global optimum as discussed above, the 

computational expense shows big differences for the different reformulations. For the Explicit 

Disjunction and the Direct Disjunction reformulations, the disjunctive programming models 

can be reformulated into MINLP models by the Big-M or convex hull methods with LogMIP 

as the solver. In essence, the LogMIP solver calls other MINLP algorithms to solve the 

disjunctive model. For this small-sized problem, BARON (Tawarmalani & Sahinidis, 2004) is 

adopted as the MINLP solver. 
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Table 4 shows the computational performance of each reformulation. It is clear that Smooth 

Approximation performs much better than the other reformulations for this case study. The 

Smooth Approximation reformulation has fewer continuous variables and significantly fewer 

binary variables. The computation time is also considerably less than for the other three 

reformulations. The Direct Disjunction model has more disjunctions and continuous variables 

but fewer binary variables compared with the Explicit Disjunction model. The advantage of 

the Direct Disjunction reformulation is that it can easily be extended to cases with isothermal 

streams and multiple utilities. However, in the WHENs problem, phase change process streams 

are difficult to handle in a general way. Such streams need special attention in WHEN problems. 

The convex hull reformulation performs slightly better than the Big-M method for both Explicit 

and Direct Disjunction. It is clear that the intermediate temperature strategy has much fewer 

binary variables compared with the other two disjunctive reformulations. However, the 

performance of intermediate the temperature strategy is not satisfactory. This reformulation 

can only find an upper bound of the objective function within the CPU time limitation of 4000 

s. The optimality gap is still very large when the solver terminates. The Intermediate 

Temperature strategy shows slow convergence properties. This case study is a simple and small 

size problem and only non-isothermal streams are considered. For large-scale problems, the 

intermediate temperature strategy may fail to get the optimal results using global solvers, such 

as BARON. It has been reported that the Smooth Approximation might cause numerical 

problems when isothermal streams or multiple utilities are involved. For cases without 

isothermal streams, Smooth Approximation performs better than other reformulations, as 

shown in this study. Each reformulation has its own merits and flaws. Which reformulation is 

better depends on the problem size and the stream properties involved in the system. For large-

scale problems, BARON could be unable to reach the global optimum within rational time. 
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Decomposition algorithms are likely to improve the computational efficiency of the Extended 

Duran-Grossmann model.  

Table 4. Computational results for the case study 

Items SA IT 
strategy 

Explicit Disjunction Direct Disjunction 
Big-M Convex hull Big-M Convex hull 

Disjunctions - - 49 49 98 98 

Continuous Variables 161 146 411 908 462 994 

Binary Variables 4 53 151 151 102 102 

Equations 171 339 762 1448 467 663 

CPU time (s) 17.5 4000 207.3 196.3 76.6 61.2 

Objective function 
(kW) 

473.8 473.8* 473.8 473.8 473.8 473.8 

* Upper bound obtained with the maximum computational time being 4000 s.  

5. Conclusions 

In this paper, the Duran-Grossmann model for heat integration is extended to solve Work and 

Heat Exchange Network problems. To solve the model efficiently, four reformulations of the 

original Duran-Grossmann model are reviewed and applied to the WHENs problem. In the 

Extended Duran-Grossmann model, even stream identities are variables in addition to 

temperature and heat capacity flowrate for the process streams. The Extended Duran-

Grossmann model can get the same results as a manual procedure for WHENs based on Pinch 

Analysis and Thermodynamics. Each reformulation has its own advantages and disadvantages. 

For small-scale WHEN problems, all the reformulations can find the global optimum. However, 

the computational efforts and results of different reformulations have been compared. For the 

case study, the results show that the Smooth Approximation outperforms the other three 

reformulations. However, this case study represents a small size problem. Large-scale 

problems should be tested in future work. Isothermal process streams and multiple utilities 

should also be considered. The small parameterε in the Smooth Approximation and the Big-
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M value in the disjunctive programming models have significant influence on the solution of 

the problems.  

In summary, the reformulations of the Extended Duran-Grossmann model can only deal with 

small to moderate scale problems. Since there is a large number of binary variables in the model, 

it is quite computationally expensive for large-scale problems with the four reformulations 

evaluated in this study. In the future, other reformulations or decomposition algorithms should 

be developed for the Extended Duran-Grossmann model in order to solve more complex 

WHEN problems in PSE field.  

Acknowledgments 

This publication has been funded by HighEF-Centre for an Energy Efficient and Competitive 

Industry for the Future. The authors gratefully acknowledge the financial support from the 

Research Council of Norway and user partners of HighEFF, an 8-year Research Centre under 

the FME-scheme (Centre for Environment-friendly Energy Research, 257632/E20). 

Nomenclature 

CC Composite Curve 

C Cold Stream Set 

cu Cold Utility   

def Heat deficit 

DG Duran-Grossmann Model 

EDG Extended Duran-Grossmann Model 

ExPAnD Extended Pinch Analysis and Design 

FCp Heat Capacity Flowrate 

GAMS General Algebraic Modeling System 

GCC Grand Composite Curve  

H Enthalpy/Hot Stream Set  
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HEN Heat Exchange Network 

HRAT Heat Recovery Approach Temperature 

hu Hot utility  

i Hot Streams 

IT Intermediate Temperature 

j Cold Streams 

LogMIP Logic-based disjunctive model solver 

MINLP Mixed Integer Non-Linear Programming 

NLP Non-Linear Programming  

ORC Organic Rankine Cycle 

P Pressure 

p Pinch candidate  

PC Pinch candidate set  

PSE Process System Engineering 

QSOA Heat load of hot streams above pinch candidates 

QSIA Heat load of cold streams above pinch candidates 

R A large number used in the explicit disjunction reformulation 

S Entropy/Stream set 

SA Smooth Approximation 

sup Supply state 

tar Target state 

T Temperature  

WHEN Work and Heat Exchange Network 

WSK Work sink stream 

WSR Work source stream 

Y Boolean variables 

y Binary variables 
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γ  Specific heat capacity ratio 

ω  Process variables 
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