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The Journal of Immunology

Complement Component C5 and TLR Molecule CD14
Mediate Heme-Induced Thromboinflammation in
Human Blood

Anub M. Thomas,* Alexandra Gerogianni,† Martin B. McAdam,* Yngvar Fløisand,‡

Corinna Lau,x Terje Espevik,{,‖ Per H. Nilsson,*,† Tom Eirik Mollnes,*,x,# and
Andreas Barratt-Due*,**

Heme is a critical danger molecule liberated from hemeproteins in various conditions, including from hemoglobin in hemolytic

diseases. Heme may cause thromboinflammatory damage by activating inflammatory and hemostatic pathways, such as comple-

ment, the TLRs, coagulation, and platelets. In this study, we explored the effect of single and dual inhibition of complement

component C5 and TLR coreceptor CD14 on heme-induced thromboinflammation in an ex vivo human whole blood model. Heme

induced a dose-dependent activation of complement via the alternative pathway. Single inhibition of C5 by eculizumab attenuated

the release of IL-6, IL-8, TNF, MCP-1, MIP-1a, IFN-g, LTB-4, MMP-8 and -9, and IL-1Ra with more than 60% (p < 0.05 for all)

reduced the upregulation of CD11b on granulocytes and monocytes by 59 and 40%, respectively (p < 0.05), and attenuated

monocytic tissue factor expression by 33% (p < 0.001). Blocking CD14 attenuated IL-6 and TNF by more than 50% (p < 0.05).

In contrast to single inhibition, combined C5 and CD14 was required for a significantly attenuated prothrombin cleavage (72%,

p < 0.05). Markers of thromboinflammation were also quantified in two patients admitted to the hospital with sickle cell disease

(SCD) crisis. Both SCD patients had pronounced hemolysis and depleted plasma hemopexin and haptoglobin. Plasma heme and

complement activation was markedly increased in one patient, a coinciding observation as demonstrated ex vivo. In conclusion,

heme-induced thromboinflammation was largely attenuated by C5 inhibition alone, with a beneficial effect of adding a CD14

inhibitor to attenuate prothrombin activation. Targeting C5 has the potential to reduce thromboinflammation in SCD crisis

patients. The Journal of Immunology, 2019, 203: 1571–1578.

H
eme is the prosthetic group for proteins, such as he-
moglobin, myoglobin, and cytochromes, carrying out
various biological functions, including oxygen transport

and storage (1, 2). In hemolytic disorders, such as malaria and
sickle cell disease (SCD), the release of hemoglobin and accu-
mulation of heme in plasma may be deleterious (3). Normally,

hemoglobin and heme are scavenged by the plasma proteins
haptoglobin and hemopexin, respectively, but increased heme
concentration may exceed the physiological defense capability (4).
Heme induces endothelial injury and exacerbates vascular injury
and vaso-occlusive crisis observed in patients with SCD (5). In
human whole blood, heme is a potent inflammatory stimulus that
induces complement activation, upregulation of proinflammatory
cytokines and chemokines, adhesion molecules, neutrophil migra-
tion, and neutrophil extracellular trap formation (6–8). Recently,
deposits of complement C3 and C5b-9 were demonstrated in
kidney biopsy specimens of SCD nephropathy patients and in a
mouse model of SCD, wherein the alternative pathway was
identified as crucial for the complement activation (9, 10). C3b is
also deposited in the membrane of sickle RBCs, which can adhere
these cells to activated endothelial cells and possibly promote
vaso-occlusive crisis (11). Studies have connected heme to TLR4
binding and a companioned activation of NF-kB, which caused
endothelial cell activation and vasoconstriction (12, 13). Heme-
induced endothelial injury may lead to adhesion and activation of
platelets and leukocytes and tissue factor (TF) upregulation,
subsequently activating coagulation and thrombosis (14). Micro-
vascular endothelial cells, especially in the glomeruli, are sensitive
to heme-induced stress (15). Furthermore, heme drives oxidative
stress by scavenging NO (4). Thus, the liberation of heme over-
whelming the neutralizing capacity of scavenger proteins may
unleash a devastating thromboinflammatory reaction.
Complement and the TLRs are upstream branches of innate

immunity that identify and eliminate pathogens and endogenous
danger motifs by soluble or membrane-bound pattern recognition
receptors for host protection and homeostasis (16, 17). Activation
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of complement occurs via three routes: the classical, the lectin,
and the alternative pathway, all converging by cleavage of C3.
Further activation results in the cleavage of C5 to C5a and C5b.
C5a is a potent anaphylatoxin known to induce downstream
proinflammatory effector functions and to increase thromboge-
nicity by upregulation of TF (18, 19). C5b induces the assembly of
the terminal C5b-9 complement complex (TCC), which exists in
two different forms, the membrane-inserted and the soluble form.
When inserted into a membrane as the membrane attack complex,
it might lyse certain Gram-negative bacteria and cells, such as
erythrocytes, but nuclear and metabolically active cells might
undergo a “sub-lytic attack” that is not able to lyse and kill the cell
but rather activates it by calcium influx and exerts proinflammatory
activity (20–22). The soluble form of TCC, frequently called sC5b-9,
is a water-soluble macromolecule useful as an indicator of com-
plement activation as measured in plasma but without hardly any
biological function (23).
The TLRs are membrane-bound pattern recognition receptors

found on nearly all cells, and they are critical for innate immunity
signaling (24). Activation is dependent on the interaction with co-
factors and accessory molecules, in which CD14 is specifically im-
portant, as it not only enhances LPS responsiveness and TLR4/MD2
signaling but is also implicated in the interaction with most of the
other TLRs (25). Extensive crosstalk and mutual interactions be-
tween complement and the TLRs are essential parts of host defense,
and several studies have demonstrated that combined inhibition of
both has a pronounced attenuating effect on both endogenously and
exogenously induced inflammation (26–29).
The aim of the current study was to explore the inhibitory effect of

targeting C5, CD14, and the combination thereof, in a human whole
blood model of heme-induced thromboinflammation. Additionally,
two patients admitted with acute SCD crisis are discussed in relation
to our ex vivo results.

Materials and Methods
Activators and inhibitors

Hemin is the ferric form of heme. The term heme is used as a generic name
with no particular iron valence. Porcine heme (ferriprotoporphyrin IX,
98% purity; product number 51280; Sigma-Aldrich, St. Louis, MO) was
dissolved in 50 mM NaOH and 145 mM NaCl and kept in the dark at 4˚C
until use. The heme was tested and confirmed as endotoxin free (,5 pg/ml)
by limulus amebocyte lysate test (Pyrotell, E. Falmouth, MA). Complement
C5 was inhibited by eculizumab (100 mg/ml) from Alexion Pharmaceuticals
(Cheshire, CT). Inhibition of CD14 was obtained by using a recombinant
anti-human CD14 IgG2/4 (clone r18D11, 15 mg/ml) produced in our own
laboratory and previously described in detail elsewhere (30). Eritoran
(E5564), was kindly provided by Eisai (Andover, MA) and used at a
concentration 1 mM.

Whole blood experiments

Whole blood experiments were performed using healthy donors and carried
out as previously described (31). In brief, blood drawn by venipuncture was
immediately distributed into polypropylene tubes containing the thrombin
inhibitor lepirudin (Refludan; Celgene, Uxbridge, U.K.) with a final con-
centration 50 mg/ml for anticoagulation during the whole incubation time.
Lepirudin does not have any modulatory effects on complement activation
allowing the inflammatory network upstream of thrombin formation to
crosstalk freely (31). The tubes were preincubated with the inhibitors and
PBS for 5 min at 37˚C. PBS and heme, at final concentrations from 0 to
800 mM, were then added and incubated for 15 or 240 min at 37˚C.
Following incubation, the tubes were placed on ice, and EDTA was added
(final concentration, 20 mM) to stop further activation, and the blood was
centrifuged at 30003 g for 15 min at 4˚C. Plasma was immediately isolated
and stored in aliquots at 280˚C.

Enzyme immunoassays

The soluble TCC, sC5b-9, was quantified in an ELISA as previously
described in detail (32, 33). Briefly, the mAb aE11, which reacts with the

C9 neoepitope exposed after incorporation of C9 in the C5b-9 complex,
was used as the capture Ab, and a biotinylated anti-C6 mAb (clone 9C4)
was used as the detection Ab. The results were expressed in arbitrary units
per milliliter using human serum activated with zymosan as a standard set
to 1000 arbitrary units per milliliter. The C3bc concentration was evaluated
by an ELISA based on the mouse anti-human C3bc Ab, mAb clone bH6,
reacting with a neoepitope exposed in C3b and C3c after C3 activation
(34). The alternative pathway activation was detected by quantifying the
alternative pathway C3-convertase, C3bBbP, based on the monoclonal
anti-factor P, clone number 2 (Quidel, San Diego, CA), binding the C3BbP
complex and detected by anti-C3c when activated) (31, 33). LTB4 in
plasma was quantified using a competitive enzyme immunoassay from
R&D Systems (Minneapolis, MN). Prothrombin fragment 1+2 (PTF1.2) in
plasma was evaluated using Enzygnost F1+2, an enzyme immunoassay
from Dade Behring GmbH (Marburg, Germany). A 27-plex kit from
Bio-Rad Laboratories (Hercules, CA) was used to measure 27 different
cytokines, including chemokines and growth factors, and was performed
according to the instructions from the manufacturer. Plasma matrix
metalloproteinases (MMPs) were detected using a 9-Plex Panel Multi-
plex MMP assay from Bio-Rad Laboratories.

Heme assay

Total heme concentration was quantified in plasma from patients by using the
chromogenic Heme Assay Kit (Sigma-Aldrich). The assay was performed
according to the manufacturer’s instructions, and the colored product was
detected at 405 nm by using a multiplate reader (Tecan Sunrise, Mannedorf,
Switzerland). It is important to point out that this assay does not discriminate
free heme in plasma from heme bound to scavenger- and other heme-binding
proteins.

Hemopexin assay

An ELISA was established for the quantification of hemopexin levels in
EDTA plasma, based on an mAb to hemopexin as the capture Ab (Thermo
Fischer Scientific, Waltham, MA) and a biotinylated anti-human hemopexin
Ab as the detection Ab (Dako A/S, Glostrup, Denmark). Hemopexin, purified
from human serum as described previously (35), was used as a standard.
Plasma samples from 50 healthy blood donors were analyzed indi-
vidually and used to express a 95% reference range (1–3 mg/ml) of the
method.

Flow cytometry

Expression of the activation marker CD11b on granulocytes and monocytes
and CD62P on platelets after 15 min of incubation of heme in whole blood
was detected using flow cytometry. For gating, monocytes were stained with
mouse anti-human CD14 PerCP (BD Biosciences, San Jose, CA); gran-
ulocytes were stained with mouse anti-human CD15 eFluor 450 (Invitrogen,
Waltham, MA), and platelets were stained with mouse anti-human CD42a
FITC (BD Biosciences). Mouse anti-human CD11b APC/Fire 750 from
(BioLegend, San Diego, CA) and mouse anti-human CD62P PE (BD
Biosciences) were used for detection of activation markers on gran-
ulocytes, monocytes, and platelets, respectively. All Abs were incubated
with the whole blood for 30 min. RBCs were thereafter lysed with high-
yield fixative-free lysing solution (Invitrogen), leukocytes were fixed and
resuspended with 0.5% (v/v) paraformaldehyde in PBSA (0.1% BSA) and
then analyzed on an Attune NxT flow cytometer (Thermo Fisher Scientific)
with the threshold set at forward scatter of 2.5 3 104 to remove debris.
Platelets were gated as CD42a-positive on the side scatter plot. CD42a-
negative granulocytes and monocytes were gated in a side scatter CD15
and CD14 dot plot, respectively. Expression of CD11b and CD42a are
given as mean fluorescence intensity. TF expression was measured on
monocytes after 4 h of incubation of heme in whole blood. Cells were stained
with anti-CD15 450, anti-CD42a PE, anti-CD14 PerCP, and mouse anti-
human TF FITC (Sekisui Diagnostics, Stamford, CT). Samples were pre-
pared as described above. Monocytes were gated in the side scatter plot as
CD14-positive and CD42a-negatitive. TF was expressed as mean fluorescence
intensity. The data were analyzed by FlowJo X (Tree Star, Ashland, OR).

Patients

We refer to two patients of African origin with known SCD who were
admitted to the hospital with sickle cell crisis. Patient 1 (male, 32 y) de-
veloped rapid acute chest syndrome with increased fever, hypoxemia, chest
pain, and increased opacities on chest x-rays. Biochemical analyses
revealed anemia, an increased fraction of hemoglobin S (68%), and a low
level of hemoglobin A (21%), whereas haemolysis was demonstrated by
low levels of haptoglobin ,0.1 g/l, significantly increased levels of lactate
dehydrogenase (LDH) (2168 U/l), and bilirubin (99 mmol/l) (Table I).
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Ferritin (6574 mg/l) and procalcitonin (3.2 mg/l) were markedly increased.
Patient 2 (male, 31 y) was clinically less affected and did not have acute
chest syndrome. Biochemical analyses revealed low levels of haptoglobin
(,0.1 g/l), moderately increased LDH (722 U/l) and bilirubin (56 mmol/l).
Increased fractions of hemoglobin S (68%) and low levels of hemoglobin
A (17.8%) were observed (Table I). Both patients received exchange
transfusion according to the hospitals protocol (3500 ml red cell concen-
trate and 1000 ml plasma [patient 1] and 4000 ml red cell concentrate and
1000 ml plasma [patient 2]). Additionally, crystalloid solutions were ad-
ministered. Both patients recovered without any sequel. Blood samples
were taken on K2EDTA tubes prior to exchange transfusion, placed di-
rectly on ice, and centrifuged for 15 min at 35003 g and 4˚C before being
stored at 270˚C. A pool of normal human plasma (NHP) from six healthy
donors was used as control.

Statistics

The data were analyzed using GraphPad (San Diego, CA) Prism version
6 for Mac by ordinary or repeated-measures one-way ANOVAwith Dunnett
multiple-comparison posttest for the comparison of multiple columns and
paired t tests for the comparison of two columns. A p value , 0.05 was
considered statistically significant.

Ethics

Informed written consent was obtained from each donor. The local ethical
committee approved the study.

Results
Heme-induced complement activation and inhibition by
targeting C5

To evaluate heme-induced complement activation, we incubated
whole blood with incremental doses of heme for 15 min and
measured sC5b-9 in plasma. The formation of sC5b-9 increased
modestly by increased heme concentration up to 400 mM,
whereas an abrupt increased formation of sC5b-9 was observed
when 800 mM of heme was used (Fig. 1, upper left). The C5
inhibitor eculizumab completely inhibited heme-induced sC5b-9

formation, whereas no effect was observed by anti-CD14
(Fig. 1, upper right panel). Heme at 800 mM induced in-
creased levels of C3bc and C3bBbP, whereas the level of the
classical and lectin pathway-dependent C4d remained unchanged
compared with background. This indicates that complement acti-
vation occurred via direct activation of the alternative pathway in-
dependently of the classical and the lectin pathway. Neither anti-C5
nor anti-CD14 had any effect on the proximal complement activa-
tion markers (Fig. 1, lower panels). The hemopexin levels were
measured in all donors and found to be in the normal range (i.e., 1.4
to 2.8 mg/ml).

The effect of C5 and CD14 inhibition and the combination
thereof on heme-induced inflammation in whole blood

Cytokines.Whole blood incubated with heme for 240 min induced a
robust release of inflammatory cytokines, including ILs, chemokines,
and IFNs, demonstrated by an increased formation of IL-6, IL-8,
TNF, MCP-1, MIP-1a, IFN-g, and IL-1Ra. C5 inhibition by ecu-
lizumab significantly attenuated the formation of IL-6 by 60%, IL-8
by 85%, TNF by 85%, MCP-1 by 75%, MIP-1a by 66%, IFN-g by
71%, and IL-1Ra by 70% (p , 0.05 for all, Fig. 2). Inhibition of
CD14 reduced the formation of IL-6 by 47% and TNF by 60%
(p , 0.05 for both). The reduction in MIP-1a (52%) was NS, and
no inhibitory effects were observed on IL-8, IL-1Ra, MCP-1, and
IFN-g (Fig. 2). Compared to single C5 inhibition, combined in-
hibition of C5 and CD14 had a more pronounced attenuating ef-
fect on the formation of IL-6, TNF, MIP-1a, and IFN-g, reaching
a higher level of statistical significance (Fig. 2). No significant
effect was observed in heme-induced release of cytokines IL-1b,
IL-2, IL-4, IL-5, IL-7, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17,
eotaxin, FGF-basic, G-CSF, GM-CSF, IP-10, MIP-1b, PDGF-BB,
RANTES, and VEGF. The LPS analog eritoran, competitively
binding TLR4-MD2, was additionally tested. Eritoran didn’t have

FIGURE 1. Heme-induced complement activation. Human whole blood was incubated with different concentrations of heme for 15 min at 37˚C, and

complement activation was evaluated by measuring the formation of sC5b-9 (upper left panel). Human whole blood was incubated with heme, 800 mM, for

240 min at 37˚C in the absence or presence of anti-C5 (eculizumab, 100 mg/ml), aCD14 (15 mg/ml), or the combination thereof. The terminal complement

complex, sC5b-9 (upper right panel), and the complement activation products C3bc and C3bBbP, reflecting alternative pathway activation, and C4d,

reflecting classical/lectin pathways activation (lower panels) are shown. The data are presented as mean 6 SEM (n = 6) for all experiments. Statistical

comparisons were performed between the abovementioned groups and controls. ***p , 0.001.

The Journal of Immunology 1573
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any significant attenuating effect on IL-6, IL-8, TNF, IL-1Ra, MCP,
MIP-1a, or IFN-g (Supplemental Fig. 1).

MMPs and LTB4. Single C5 inhibition attenuated heme-induced
release of MMP-8 and -9 by more than 60% (p , 0.001) and
attenuated the formation of LTB4 by 84% (p , 0.001) (Fig. 3,
upper panel). No effect was observed for single CD14 inhibition,
and no additive effect was obtained by the combined regimen
when compared with single C5 inhibition (Fig. 3, upper panel). No

significant heme-induced release of MMP-1, -2, -3, -4, -5, -6, and
-7 was observed.

CD11b expression on granulocytes and monocytes. In whole
blood, single inhibition of C5 attenuated heme-induced upregu-
lation of the cell surface activation marker CD11b on granulocytes
and monocytes with 59 and 40%, respectively (p , 0.001)
(Fig. 3, lower panel). No significant attenuating effect was ob-
tained for single inhibition of CD14, and the effect observed for

FIGURE 2. The attenuating effect of targeting C5, CD14, and the combination thereof on heme-induced cytokine release. Human whole blood was incubated

with heme, 800 mM for 240 min at 37˚C, in the absence or presence of anti-C5 (eculizumab, 100 mg/ml), aCD14 (15 mg/ml), or the combination thereof. Plasma

was then analyzed, and the concentration of IL-6, IL-8, TNF, IL-1Ra, MCP-1, MIP-1a, and IFN-g are shown. The data are presented as mean 6 SEM (n = 10).

Statistical comparisons were performed between the abovementioned groups and controls (T240). *p , 0.05, **p , 0.01, ***p , 0.001.

FIGURE 3. The attenuating effect of targeting C5, CD14, and the combination thereof on heme-induced MMPs, LTB4, and CD11b. Human whole blood

was incubated with heme, 800 mM for 15 min at 37˚C, in the absence or presence of anti-C5 (eculizumab, 100 mg/ml), aCD14 (15 mg/ml), or the

combination thereof. The release of MMP-8, -9, and LTB4 (upper panels) were evaluated by flow cytometry; the expression of CD11b on granulocytes and

monocytes is shown (lower panels). The data are presented as mean 6 SEM (n = 6) for all experiments. Statistical comparisons are as in Fig. 2. *p , 0.05,

**p , 0.01, ***p , 0.001.
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the combined regimen was similar to what was obtained with
single C5 inhibition (Fig. 3, lower panel).

The effect of C5 and CD14 inhibition and the combination
thereof on heme-induced thrombogenicity in human
whole blood

Single C5 inhibition attenuated TF expression on monocytes by
33% (p , 0.001) (Fig. 4, left). No effect was observed by single
CD14 inhibition, and no additive effect was obtained for the
combined regimen when compared with the effect of eculizumab
alone. The release of PTF1.2, a marker for prothrombin cleavage,
was attenuated by 72% by the combined inhibition of C5 and
CD14 (p, 0.05) (Fig. 4, middle). Single inhibition of either C5 or
CD14 attenuated the release of PTF1.2 significantly. Heme-
induced platelet activation was measured as increased plasma
levels of a-granule b-thromboglobulin, but neither C5 nor CD14
inhibition or the combination thereof had any attenuating effect
(Fig. 4, right panel).

Patients with SCD crisis

Patients 1 and 2 (Table I) both had SCD and were admitted to
the hospital with sickle cell crisis and in need of an exchange
transfusion. Patient 1 was clinically more affected, and routine
biochemical analyses revealed a more severe hemolysis, mea-
sured as higher level of LDH and bilirubin, compared with pa-
tient 2 (Fig. 5A). Further analyses were performed and compared
with a pool of NHP.
The low level of haptoglobin (,0.1 g/l) coincided with an

equivalently low level of hemopexin measured in both patients, which
was almost ablated compared with the pool of NHP (p , 0.001 for
both) (Fig. 5B). Notably, the level of heme was significantly higher
in both patients versus NHP, whereas the heme concentration was
considerably higher in patient 1 compared with patient 2, indicating

more severe hemolysis (p , 0.001) (Fig. 5C). Systemic complement
activation, measured as increased formation of C4d, C3bc, C3bBbP,
C5a, and sC5b-9, was observed in patient 1 (p , 0.01 for all),
whereas only C5a was increased in patient 2 (p, 0.05) (Fig. 5D–H).
Increased formation of C3bBbP and C4d was demonstrated in patient
1, indicating both alternative pathway activation and indicating
the involvement of the classical and/or lectin pathway. Compared
with NHP, increased formation of IL-6, IL-8, TNF, and MIP-1a was
observed in patient 1 (p , 0.01 for all), whereas the levels in patient
2 were similar to what was observed in the control plasma pool
(Fig. 6).
To compare the level of heme used in the ex vivo experiments

with the heme level measured in the patients, we investigated
whether the measured heme concentrations corresponded to the
added amount of heme. Human whole blood was incubated 15 min
at 37˚C with incremental concentrations of heme, 0–800 mM,
before being measured. Additionally, human plasma and PBS was
incubated 15 min at 37˚C with heme at 800 mM. Notably, the
amount of heme was consistently lower compared with what was
added (Supplemental Fig. 2, left panel). Heme added at 400 mM
corresponded to a measured concentration of 80 mM, which is
comparable to the level measured in patient 1, whereas heme added
at 100 mM corresponded to a measured concentration of 35 mM,
comparable to level measured in patient 2. Heme added at 800 mM
in human plasma blood was measured as 140 mM, whereas a sig-
nificantly higher level, 290 mM, was measured in PBS (p , 0.001)
(Supplemental Fig. 2, right panel).

Discussion
To the best of our knowledge, this study demonstrates for the
first time that inhibition of complement component C5 efficiently
attenuated thewhole spectrum of heme-induced thromboinflammation
markers when investigated in human whole blood. Additionally,

FIGURE 4. The attenuating effect of targeting C5, CD14, and the combination thereof on heme-induced thrombogenicity. Human whole blood was

incubated with 800 mM heme for 240 min (TF) or with 100 mM heme for 120 min (prothrombin fragment 1.2, PTF1.2) at 37˚C, in the absence or presence

of anti-C5 (eculizumab, 100 mg/ml), aCD14 (15 mg/ml), or the combination thereof. TF expression was evaluated by flow cytometry. Plasma PTF1.2 and

b-thromboglobulin were quantified by ELISA. The data are presented as mean 6 SEM (n = 6) for all experiments. Statistical comparisons were performed

as for Fig. 2. *p , 0.05, ***p , 0.001.

Table I. Patient characteristics of two male patients, 32 and 31 y of age, respectively, with known SCD, admitted to the hospital with sickle cell crisis

Patients
Prophylactic
Transfusion

Hydroxyurea
Treatment

Hemoglobin
Sickle %

Hemoglobin
Fetal %

Hemoglobin
Adult %

Bilirubin
mmol/l

Haptoglobin
g/l LDH U/l Ferritin mg/l

Patient 1 (32 y)
At admittance No Noa 68 6 24 99 ,0.1 2168 6574
3 d after exchange

transfusion
16 1.4 77 53 ,0.1 1716 5950

Patient 2 (31 y)
At admittance No Yes 68 18 10 56 ,0.1 772 260
3 d after exchange

transfusion
15 1.6 78 19 0.2 363 195

Biochemical data from admittance and 3 d after exchange transfusion.
aHydroxyurea was removed 14 d prior to the admittance because of leg ulcers.
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inhibition of CD14 reduced several of the markers, in particular the
cytokines TNF and IL-6, but complement inhibition was clearly
more powerful. C5 inhibition alone counteracted a broad proin-
flammatory response unleashed by heme and attenuated TF up-
regulation. Interestingly, the combined inhibition of C5 and CD14
was required to significantly attenuate the heme-induced pro-
thrombin cleavage. A sufficient concentration of heme in whole
blood was required to attain complement activation, an ex vivo
observation that coincided with the clinical observation; in the two
patients admitted with SCD crisis, only the patient who showed
elevated levels of heme in plasma presented with systemic com-
plement activation.
Excess liberation of heme is a characteristic feature in hemolytic

pathologies, but, in healthy individuals, liberation of heme in

plasma is efficiently counteracted by the defense capability of
haptoglobin and hemopexin (4). In the ex vivo human whole blood
experiments, a high concentration of heme was required to induce
a moderate but adequate activation of complement. However,
when measured after addition, the concentration was much lower
and comparable to what can be seen in vivo. Furthermore, locally,
in the microcirculation, when RBC are lysed during a vaso-
occlusive crisis, the concentration of heme might be much
higher than what is measured systemically. Still, heme in the range
of 200–300 mM corresponds to lysis of ,0.1% of the circulating
erythrocytes (36). Furthermore, the increased C3bc and C3bBbP
observed ex vivo confirm previous data showing that heme
activates complement by the alternative pathway (10, 36). The
mechanism for heme-induced alternative pathway activation is

FIGURE 5. Heme, hemopexin, and complement activation in two patients with acute SCD crisis. Two patients with acute SCD crisis were admitted to the

hospital in need of exchange transfusion. Blood samples from both patients were obtained prior to the transfusion and stored for evaluation of heme,

hemopexin, and complement activation. Patient 1 had acute chest syndrome with increased fever, hypoxemia, chest pain, and increased opacities on chest

x-rays. Patient 2 was clinically less affected. LDH and bilirubin were measured in both patients before exchange transfusion on the following days (A). The

exchange transfusions were started day 0. Plasma concentration of hemopexin (B) and heme (C) were measured as well the complement activation products

C4d (D), C3bc (E), C3bBbp (F), C5a (G), and sC5b-9 (H). A pool of NHP from six healthy donors was used as control. The analyses were performed in

technical triplicates, and the data are presented as mean 6 SEM. Statistical comparisons were performed between NHP, patient 1 and patient 2. *p , 0.05,

**p , 0.01, ***p , 0.001.

FIGURE 6. Plasma cytokines in the pa-

tients with acute SCD crisis. Concentra-

tions of IL-6, TNF, IL-8, and MIP-1a were

measured in plasma collected from the pa-

tients described in Fig. 5. A pool of NHP

from six healthy donors was used as con-

trol. The analyses were performed in tech-

nical duplicates, and the data are presented

as mean 6 SEM. Statistical comparisons

were performed between NHP, patient 1,

and patient 2. **p , 0.01, ***p , 0.001.
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today not known, but it is proposed that the hydrophobic free
heme would directly bind C3 adjacent to the thioester bond and
promote C3 hydrolysis into C3(H2O). Fluid phase C3H2O is able
to form the alternative pathway C3 convertase C3(H2O)Bb for
cleavage of fluid phase C3 (10). This is also in line with a recent
observation documenting that RBC-derived microvesicles from
SCD patients heme dependently activate complement by the al-
ternative pathway (9). In the current study, the clinically most
affected SCD patient had elevated C4d plasma levels, in addition
to C3bc and C3bBbP, indicating an additional activation of the
classical and/or the lectin pathway. Heme did not elevate C4d in
our experimental model, which is in line with previous results
(37), so this may imply alternative mechanisms of complement
activation in SCD, such as chronic continuous activation, or
part of a delayed hemolytic transfusion reaction involving al-
loantibodies and classical pathway activation (38, 39). Thereby,
the classical and lectin pathway may recognize damaged self-
molecules released in vivo, which are not generated in whole
blood ex vivo.
In the current study, the heme-induced inflammatory response

was found to be predominantly complement dependent and less
CD14 dependent. Single inhibition of C5 attenuated a broad range
of cytokines and attenuated upregulation of the important cell
surface molecule CD11b, thus underscoring the profound anti-
inflammatory potential in targeting this upstream sensor and ef-
fector system of innate immunity (27). Additionally, LTB4, which
is a potent inducer of chemotaxis of neutrophil infiltration and
an important mediator in heme-induced inflammation (40), was
attenuated by C5 inhibition. This supports existing evidence that
LTB4 synthesis is C5a dependent and, thus, blocked by targeting
C5 (41). Heme-induced oxidative stress has previously been
shown to activate MMPs, leading to blood–brain barrier dys-
function (42). MMPs, predominantly derived from degranulation
of neutrophils, are prominent inflammatory actors in several dis-
eases. Ex vivo, the inhibition of C5 attenuated MMP-8 and MMP-9
plasma levels, which is in accordance with a mouse study linking
increased complement activity and C5a formation to increased re-
lease of MMPs (43).
The attenuating effect of blocking CD14 was limited mainly to

IL-6 and TNF in the current study. Nevertheless, the results
confirmed that heme may also act in a CD14-dependend manner,
supposedly via TLR4 (13). In a murine model of SCD, heme-
induced TLR4 signaling activated endothelial cells, resulting in
vaso-occlusion, highlighting the significance of the TLR4 in-
flammatory pathway in heme-dependent inflammation (12). In this
study, however, eritoran alone did not exert any inhibitory effects,
suggesting that heme-induced inflammation in whole blood is not
TLR4 dependent.
Heme induced a vast upregulation of TF and increased the for-

mation of PTF1.2. TF is a transmembrane glycoprotein expressed
within the pool of circulating cells, primarily on monocytes, and is a
key initiator of coagulation (44). PTF1.2 is released upon pro-
thrombin cleavage by factor Xa to yield thrombin (45). In rodent
models of SCD, free heme was shown to trigger activation of the
extrinsic coagulation pathway through TF upregulation on endo-
thelial cells and monocytes, which promotes thrombosis (46, 47).
Furthermore, in SCD mice, the anaphylatoxin C5a appears to play a
key role in vaso-occlusive injuries, promoting inflammation and
upregulation of adhesion molecules, such as VCAM-1, ICAM-1,
and E-selectin (48). The crosstalk and mutual interaction between
the complement and coagulation systems is well described. C5a
enhances upregulation of TF on various cell types (19, 49), and TF
upregulation is attenuated by targeting C5 and by the dual inhibition
of C5 and CD14 (26, 50). Heme-induced thromboinflammation

may amplify these detrimental reactions, as heme is a strong in-
ducer of both inflammation and coagulation (14). In the current
study, TF expression was reduced significantly by single inhibition
of C5, whereas both TF expression and the level of PTF1.2 were
attenuated by the combined C5- and CD14-blocking regimen. Thus,
both C5 inhibition alone and combined inhibition of C5 and
CD14 have vast propensities to attenuate heme-induced throm-
boinflammation, which is the motivation for future in vivo
studies and clinical trials.
Importantly, the two patients with SCD crisis included in this

study mirrored and partly corroborated the ex vivo results. Al-
though both patients were considered in need of exchange
transfusion, patient 1 had substantially more aggravated clinical
symptoms and pathological biochemistry, higher concentration of
heme, and, importantly, more pronounced systemic complement
activation as compared with patient 2. Moreover, the degree of
heme release observed in the patients was also proportional to the
inflammatory response, with increased formation of IL-6, IL-8, TNF,
and MIP-1a. Because only two patients were included in this study,
future clinical studies are necessary to establish whether the mag-
nitude of complement activation in SCD crisis really is dependent
on and correlates to the concentration of heme.
A limitation to this study is the high heme concentrations used in

our experimental model. Importantly, the use of concentrated heme
was based on the titration of heme and correspondingly adequate
complement activation. Although heme at 800 mM is higher com-
pared with what was measured in the two patients, the corre-
sponding measured level of heme was within patient-comparable
range, as demonstrated in Supplemental Fig. 2. We cannot explain
this discrepancy in detail, but we speculate that the plasma envi-
ronment interfered with the signal for detection, as suggested by the
significantly higher amount of heme measured in PBS versus
plasma. However, as long as the heme assay used does not dis-
criminate free heme in plasma from heme bound to proteins, we
cannot claim any certainty on this point.
In conclusion, the present data indicate that heme is a strong

activator of complement through alternative pathway activation, in-
ducing a potent thromboinflammation in human whole blood. Single
inhibition of C5 efficiently attenuated the thromboinflammatory
response. Although the additive effect of the combined inhibition
of C5 and CD14 was small compared with single inhibition of C5,
the study documents the significance of TLRs/CD14 in heme-
induced thromboinflammaton. Thus, single inhibition of C5 and
dual inhibition of C5 and CD14 are therapeutic approaches that
should be considered and explored in future studies of SCD crisis and
other conditions of heme-induced thromboinflammation.
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