
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
iv

il
an

d
En

vi
ro

nm
en

ta
l E

ng
in

ee
ri

ng

M
as

te
r’

s
th

es
is

Guro Stokseth

Digitalising optimisation of early
phase urban stormwater planning

Master’s thesis in Bygg- og miljøteknikk
Supervisor: Tone Merete Muthanna and Erle Kristvik

June 2019

Guro Stokseth

Digitalising optimisation of early phase
urban stormwater planning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Tone Merete Muthanna and Erle Kristvik
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering

Description of Master Thesis spring 2019

Background
Heavy urbanization and precipitation intensities are putting increased strain on existing stormwater

systems worldwide. Consequently, many systems need upgrades that counteract these impacts and

at the same time account for the uncertainties in future rainfall extremes caused by climate change.

In Norway, policies and practice are leaning towards a system design that depend more on open,

nature-based solutions (NBS) as alternative to traditional piped systems. Open, nature-based

solutions add flexibility to future capacity needs and has positive social-environmental impacts, but

they require surface area – a scarce resource in urban areas. One measure to secure area for open,

nature-based solutions is to consider stormwater earlier in the planning process than what is usual

practice in Norway.

The Norwegian startup Spacemaker (https://spacemaker.ai/) is developing a software based on AI

technology for generating and exploring building site proposals, given regulatory and physical

constraints and preferences added by the developer. In addition to generating various site proposals,

the tool provides more detailed insight of the proposals in the early phases of the planning process

than manual methods do today. Adding stormwater as a layer to Spacemaker’s framework could help

ensuring that stormwater is considered earlier in the planning process and hence facilitate

implementation of open, nature-based solutions.

Candidate name: Guro Stokseth

Subject: Stormwater

Title: Digitalising optimisation of early phase urban stormwater planning

Start date: 11th January 2019

Due date: 11th June 2019

https://spacemaker.ai/

1

Research questions

The objective of this research is to develop a methodology for assessing placement, size and

combinations of SUDS digitally in early- phase urban planning. The master thesis aims to answer the

following research questions:

1. To what extent can the proposed methodology address the challenges in traditional

approach to stormwater management?

2. Which factors should be optimised for assessing and selecting SUDS configurations?

3. What is the performance of the proposed methodology?

Collaboration partners: Klima2050, BINGO, Spacemaker AI

Location: The master thesis will be conducted at the Department of Civil and

Environmental Engineering. The candidate should have regular meetings with

advisor(s). The simulations and models will be used with licenses and software

available at the Department of Civil and Environmental Engineering

Advisors: Tone Merete Muthanna, Erle Kristvik

2

Preface

This report is the final product of the course “TVM4905 Water and wastewater engineering, Master’s

thesis” at the Norwegian University of Science and Technology (NTNU), Department of Civil and

Environmental Engineering. A preliminary literary research leading up to this master thesis was

performed in the fall of 2018 as a specialization project in the course “TVM4510- Water and

wastewater engineering”. The purpose of this thesis is to investigate the possibility of optimising

placement, size and configurations of sustainable urban drainage systems (SUDS) through computer

programming. Firstly, I would like to extend my sincere gratitude to my two advisors; Professor Tone

Merete Muthanna and PhD candidate Erle Kristvik for their guidance throughout the research

process. Thank you for guiding, challenging and encouraging me. Your spark for this project has been

inspiring. I would also like to thank Simen Braathen at Spacemaker AI for his indispensable guidance

and help in the programming part of this research.

The study was made possible by the project Klima2050 and the BINGO project. In addition, there are

many helpful souls to whom I would like to extend my gratitude:

• Scientist Jardar Lohne, for guidance in the process of writing a scientific article

• Professor Knut Alfredsen, for help and guidance on hydrological modelling in ArcMap

• Professor Yngve Frøyen, for helping solve Model Builder puzzles in ArcMap

• PhD candidate Ana Juarez, for guidance in the use of ArcMap

• Birgitte Johannesen at the Municipality of Trondheim, for fruitful discussion around the

scoring of SUDS as well as providing me with relevant literature

• Norges Kommunaltekniske Forbund (NKF), for bestowing me with a master’s scholarship,

enabling me to travel and collaborate across city and country boundaries

• Post doc. Santiago Sandoval Arenas, for guiding me in the use of his newly developed

software Urbis and letting me use it in my research.

• Data Scientist Marie Ameln at Spacemaker AI, for letting me collaborate with Spacemaker,

and providing sparks of motivation throughout the research by creating a stormwater

channel on Slack.

• Data Scientist Thomas Gjerde, for guidance in the use of Python

Trondheim, June 6, 2019

Guro Stokseth

3

Thesis structure

This master thesis is presented as a manuscript according to the requirements and structure of a

research article. As NTNU’s vision “knowledge for a better future”, it is the author’s wish that this

thesis and research be made available for whomever might find it useful. Therefore, an article

structure is chosen to facilitate the study’s availability for an international audience. The thesis’

summary is written both in Norwegian and English. An extended Norwegian summary will also be

presented in NKF’s (Norsk Kommunalteknisk Forening) journal Kommunalteknikk.

This thesis is written in English as a part of the international projects BINGO and Klima2050. The

manuscript will be submitted as a research article to the journal Water Research and is therefore

structured based on the format guidelines provided by this journal. The master thesis is at this date

accepted to be presented in a poster presentation at the Nova Tech- conference in Lyon, France in

July 2019.

The master thesis manuscript intended for censorship is somewhat more extensive than the

academic journal manuscript. This choice was made based on the seeming necessity of covering the

study’s methods to a satisfactory extent. A comprehensive appendix is also included in order to

present parts of the study which are not included in the final journal manuscript.

It should be noted that the methodology has been altered quite a bit through the course of the work

with this thesis. Initially, the results from the presented programming procedure was to be further

modelled and evaluated in a software called Urbis. However, due to computer problems and

unsuccessful troubleshooting, the software has not been used, and thus the intended methodology

has not been tested in this thesis. However, as the development of a methodology is the objective of

this thesis, this initial method is described in chapter 2 Materials and methods. The modifications

made to the method are briefly explained in chapter 2.5.1 Modified method. The study in this thesis

has been executed by use of the modified method.

4

Summary (EN)

Climate change and urbanisation is to a large extent causing the drainage systems to be insufficient

which in turn leads to increased flooding in urban areas. The state of the art worldwide today to

alleviate such flooding consists in using sustainable urban drainage systems (SUDS). Implementing

such solutions proves, however, problematic, since the water management engineers typically enter

the building process too late to influence the physical layout of major projects. In this paper, we

examine a novel, numerical approach to early inclusion of drainage systems in such projects.

Key factors for the efficiency of SUDS were identified through a literature review. These were used to

develop a scoring system based on providing relative proximity to natural conditions. An optimisation

routine was then developed with the objective of obtaining the highest possible score. The

optimisation routine was scripted in python to obtain the best possible SUDS configurations. Eleven

different building proposals for a fictitious development project on a real-life site in Oslo, Norway,

were spatially analysed. SUDS were subsequently placed for each building proposal by using the

optimising script.

First and foremost, the results showed a significant variation in the potential for SUDS

implementations for the different building proposals, ranging from little to considerable flood

reduction. This implies that SUDS are highly context dependent. Secondly, the results show great

potential to analyse a large number of building proposals and SUDS figuration quite efficiently

through a simple script. This implies the applicability of such analysis early in development projects.

The need to include SUDS in early urban planning seems clear. It is paramount in order to ensure that

SUDS serve the much-needed resilience they have proved to provide. Through this research, a first

step towards ensuring this has been made.

5

Samandrag (NO)

Klimaendringar og urbanisering fører til at eksisterande dreneringssystem blir utilstrekkelege, noko

som vidare leier til ein auka frekvens av urbane flaumar. State of the art for handtering av slike

utfordringar består verden over i dag av å bruke såkalla berekraftige urbane dreneringssystem, eller

Sustainable Urban Drainage Systems (SUDS). Implementeringa av slike løysingar har derimot vist seg

å vere problematisk ettersom overvann- ingeniørar typisk blir innlemma i byggeprosessen for seint til

å ha innverknad på det fysiske oppsettet av tomta. I denne oppgåva ser vi på ei ny, numerisk

tilnærming til tidleg inkludering av dreneringssystem i slike byggeprosjekt.

Nøkkelfaktorar for ytingsgrada til SUDS vart identifisert gjennom eit litteraturstudie. Desse faktorane

vart så brukt til å utvikle eit skoringssystem basert på eit mål om å oppretthalde naturlege tilstandar.

Ei optimaliseringsrutine vart vidare utvikla med mål om å oppnå høgast mogleg skoring. Denne

optimaliseringa vart skriven i Python- kode for å oppnå best moglege SUDS- konfigurasjonar. Elleve

ulike bygningsforslag for eit fiktivt byggeprosjekt på ei verkeleg tomt i Oslo, Noreg, vart romleg

analysert. Deretter vart SUDS plassert for kvart enkelt bygningsforslag gjennom bruk av

optimeringsskriptet.

Resultata viser først og fremst ein betydeleg forskjell i SUDS- potensiale for dei ulike bygningsforslaga

for tomta, med eit stort spenn i flaumhandteringspotensiale. Dette impliserer at SUDS er svært

kontekstavhengige. For det andre viser resultata at med ei enkel kode kan ein på effektivt vis

analysere mengder av bygningsforslag og/eller SUDS konfigurasjonar. Dette viser eit stort potensiale

for å inkludere desse analysane tidleg i eit byggeprosjekt.

Behovet for å inkludere SUDS tidleg i urban planlegging er tydeleg. Det er avgjerande for å sikre at

SUDS yter den sårt trengte robustleiken dei har bevist å kunne sikre. Gjennom denne oppgåva har eit

første steg mot denne sikringa vorte tatt.

6

Table of content

List of figures I

Abbreviations II

Abstract 9

Key words 9

1 Introduction 9

2 Material and Methods 11

3 Results 19

4 Discussion 25

5 Conclusion 28

Acknowledgements 28

Bibliography 29

Appendix A – Digital elevation manipulation model 31

Appendix B – Resulting drainage lines for all building proposals 32

Appendix C – Spatial analysis model 33

Appendix D – Python scripts 34

Appendix E – Fixed values from literature for modelling input 51

Appendix F – SUDS placements for all building proposals 53

Appendix G – SUDS placements numbered 55

7

List of figures and tables

Figure 1 – Overview of initially intended method 11

Figure 2 – Flow conditions for the study area 12

Figure 3 – Flow chart for modified method 19

Figure 4 – Drainage lines for building proposal 2 and 7 21

Figure 5 – SUDS plot for building proposal 2 and 7 22

Table 1 – The SUDS selection aid 20

Table 2 – Resulting numbers for SUDS plots 22

Table 3 – Scoring system 23

Table 4 – Resulting scores for SUDS configurations for all building proposals 24

8

Abbreviations

SUDS Sustainable Urban Drainage Systems

GIS Geographical Information System

IDE Integrated Development Environment

DEM Digital Elevation Model

9

Digitalising optimisation of early phase
urban stormwater planning
Guro Stoksetha

a. Department of civil and environmental engineering, Faculty of engineering, Norwegian

University of Science and Technology (NTNU)

ABSTRACT 1

Climate change and urbanisation is to a large extent causing the drainage systems to be insufficient 2

which in turn leads to increased flooding in urban areas. The state of the art worldwide today to 3

alleviate such flooding consists in using sustainable urban drainage systems (SUDS). Implementing 4

such solutions proves, however, problematic, since the water management engineers typically enter 5

the building process too late to influence the physical layout of major projects. In this paper, we 6

examine a novel, numerical approach to early inclusion of drainage systems in such projects. 7

Key factors for the efficiency of SUDS were identified through a literature review. These were used to 8

develop a scoring system based on providing relative proximity to natural conditions. An optimisation 9

routine was then developed with the objective of obtaining the highest possible score. The 10

optimisation routine was scripted in python to obtain the best possible SUDS configurations. Eleven 11

different building proposals for a fictitious development project on a real-life site in Oslo, Norway, 12

were spatially analysed. SUDS were subsequently placed for each building proposal by using the 13

optimising script. 14

First and foremost, the results showed a significant variation in the potential for SUDS 15

implementations for the different building proposals, ranging from little to considerable flood 16

reduction. This implies that SUDS are highly context dependent. Secondly, the results show great 17

potential to analyse a large number of building proposals and SUDS figuration quite efficiently 18

through a simple script. This implies the applicability of such analysis early in development projects. 19

The need to include SUDS in early urban planning seems clear. It is paramount in order to ensure that 20

SUDS serve the much-needed resilience they have proved to provide. Through this research, a first 21

step towards ensuring this has been made. 22

KEYWORDS 23

Stormwater Management, SUDS, Urban Planning, Python, ArcMap 24

1 INTRODUCTION 25

Urban watersheds are characterised by high percentage of impervious areas, and only a small change 26

in rainfall intensity can cause severe floods (Eckart et al., 2017). Climate change is inflicting rather 27

severe intensity changes on such urban watersheds, leading to increased flooding in urban areas 28

worldwide. A panel of experts established by the Norwegian government concluded that the costs of 29

damages to the Norwegian society caused directly by stormwater, or by consequences imposed by 30

stormwater, amount to a number between 0,16 to 0,3 billion Euros every year (Hodnesdal, 2018). 31

10

The Norwegian Federation for Engineering Consultancy Associations, Rådgivende Ingeniørers 32

Forening (RIF), states that the current pipe network in Norway has neither the capacity nor the 33

condition to handle the increased amounts of stormwater imposed by urbanisation and climate 34

change (RIF, 2015). 35

The main tendency today to alleviate such flooding consists in using surface based sustainable urban 36

drainage systems (SUDS) (Eckart et al., 2018). These solutions add flexibility to future capacity needs 37

and have shown to contribute positively to maintaining the natural hydrological cycle, as well as 38

improving air-quality and eco-systems(Eckart et al., 2018, 2017; Ugarelli et al., 2017; Woods-Ballard 39

et al., 2007). However, these solutions are highly context dependent. Several challenges are involved 40

in using them: Firstly, they typically demand surface area, a scarce resource in urban areas. Secondly, 41

SUDS’s performance is highly dependent on their topographic placement. Thirdly, the number of 42

possible SUDS combinations is identified as a challenge (Eckart et al., 2018). In development projects, 43

the current practice in Norway is to consider stormwater management after buildings, parking areas 44

and other elements are considered (Oslo Kommune, 2013). This is limiting the possibility of obtaining 45

optimal placement and sizing of SUDS. Eckart et. al states that a true comprehensive approach to 46

SUDS planning would include concerns regarding water and ecology throughout the planning process 47

(Eckart et al., 2018). 48

However, through development of data science with the ability to handle, process and analyse big 49

data, different software is emerging, introducing a nearly unlimited analytical capacity. By enabling 50

us to assess thousands of potential SUDS- configurations, data science is introducing the possibility of 51

a paradigm shift in stormwater management. Such an unlimited amount of possible solutions is 52

challenging to evaluate manually. A scoring system could help automate the selection of qualified 53

solutions. The objective of this research has therefor been to evaluate how SUDS can be optimised in 54

terms of placement, size and combinations in early phase development projects, where the physical 55

layout of building mass is still undecided. 56

Sustainable urban development has in the past decade become the convention, and the amount of 57

research on the subject is abundant. However, a research gap presents itself in terms of scale and 58

timing. On one side, the research is small scale and focused upon optimising the technical 59

components of the solutions (Johannessen et al., 2018, 2017; Paus et al., 2015). On the other side, 60

the research is focused on optimising on a catchment scale, looking at whole districts under one 61

(Kazak et al., 2018; Liu et al., 2016; Zhu et al., 2019). There is little research on optimisation of SUDS 62

for a single site or development project. Both Jia et al. (2013) and Eckart et al. (2018) present 63

optimisation on a site scale. These are, however retrofitting projects and do not assess SUDS prior to 64

the physical layout of the property (Eckart et al., 2018; Jia et al., 2013). Little research is done on 65

optimising SUDS as part of initial physical planning of a site. 66

The literature outlines that traditional approach to stormwater management presents great 67

challenges for the performance of SUDS. It is clear that stormwater management needs to be 68

assessed earlier in the planning process (Oslo Kommune, 2013). Identified barriers for successful 69

implementation are the complexity of SUDS (Eckart et al., 2017), their context dependency and 70

consequently the failure to assess them early enough in the process to take these important 71

characteristics into account (Eckart et al., 2018). The objective of this research is to develop a 72

methodology for assessing placement, size and combinations of SUDS digitally in early- phase urban 73

planning. 74

In order to address this inquiry, we pose the following research questions: 75

11

1. To what extent can the proposed methodology address the challenges in traditional 76

approach to stormwater management? 77

2. Which factors should be optimised for assessing and selecting SUDS configurations? 78

3. What is the performance of the proposed methodology? 79

2 MATERIAL AND METHODS 80

The method presented in this chapter is the initially intended method of this thesis. Due to technical 81

computer problems late in the process, this method could not be executed. Nevertheless, it is 82

deemed important to explain the intended methodology, as this has been an objective of the 83

research. The modified method, which was the one executed in this research, is briefly explained in 84

chapter 2.5.1. 85

In order to answer the research questions, a literary review was performed, laying the basis for the 86

development of a scoring system. Furthermore, a spatial analysis was performed for 11 building 87

proposals for the model site. An optimising script was then made to place, size and combine SUDS for 88

each building proposal. Finally, the rainfall response of the SUDS configurations would be tested 89

through modelling 90

 91

 92

Figure 1- Overview over initially intended method 93

 94

In Norway, the three- stage approach to stormwater management has been adopted and is 95

frequently used as a guideline. It is based on the principal of local handling of stormwater and refers 96

to three levels of solutions depending on the rainfall intensity and volume. The first stage applies to 97

every-day events for which the objective should be to retain and infiltrate the water. The second 98

stage refers to medium events and the aim is to detain the water delaying the flood peak and 99

subsequent runoff response. The third stage for the large events leading to urban floods in which 100

12

cases the aim should be to secure safe flood paths (Norsk Vann, 2005). It should be noted that the 101

research reported on in this article, is with this Norwegian convention in mind. 102

2.1 SITE DESCRIPTION 103

The site used for the demo project in this research is the urban area of Marienlyst in Oslo, Norway 104

(Figure 2). Specifically, the property of NRK, the Norwegian Broadcasting. This site was chosen 105

because it has already been regulated as a residential area. In addition, the municipality of Oslo has a 106

quite progressive policy for stormwater management, demanding that all rainwater be handled 107

locally (Oslo Kommune, 2017). Therefor it was considered interesting to work with the demands of 108

the municipality of Oslo as an objective for the SUDS configuration. Note should be taken, however, 109

that the building project herein is completely fictive. 110

Marienlyst lies at around 70 meters above sea level in the north-west of Oslo. The specific site is 111

41 033,5 m2 and is sloped at around -7% to the south. Considering the objective of this research 112

being focused on the development of a general methodology, the varying climate of the area has not 113

been considered. The ground water level in the area is at 8m, and thus does not need to be 114

considered for this specific research. The soil conditions in the area is either of low permeability or 115

not registered. However, the municipality of Oslo states that these soil maps should not be given 116

great reliance, as condition may have been greatly altered due to construction in the area and/or 117

effects of trees, roots and other biological mechanisms (Oslo Kommune, 2017). 118

In this research, 11 building proposals are used as input data to the model site. Each proposal is 119

subject to a spatial analysis and subsequent placement of SUDS. Furthermore, the various proposals 120

are scored based on their ability to facilitate SUDS. 121

 122

 123

Figure 2- (a) Current flow conditions of the site, (b) flow condition for pre-development conditions 124

13

2.2 LITERARY REVIEW 125

A literary review has been performed in order to get an overview of the state of research for the 126

subject. Furthermore, one specific objective of the literary review was to obtain the key factors 127

affecting the performance, size and placement of SUDS. The literary review consists of two parts. The 128

first part is a comprehensive review performed in the fall of 2018, prior to the actual research. The 129

second part, performed in the spring of 2019, is an extension of the initial review. 130

The initial literary research of 2018 was performed using the Norwegian search engine Oria with the 131

following input keywords; LID, optimisation, stormwater, SuDS, urban planning, WSUDS, urban flood. 132

Several academic articles were qualitatively evaluated in order to obtain the most relevant ones for 133

this study. As this study is part of an emerging field in a novel form of technology, the most recent 134

articles were considered most important. Eckart et al. (2017) have reviewed the current state of 135

research considering optimisation, modelling, monitoring and maintenance of SUDS and this was 136

considered a particularly valuable source as it provided relatively fresh information on the state of 137

research. A start set for the literary review was obtained through backwards snowballing, meaning 138

investigation of the bibliography of the most relevant articles (Wohlin, 2014). According to Wohlin 139

(2014), a good start set is diverse, covering several different publishers, years and authors (Wohlin, 140

2014). The start set for this research consisted of 9 articles and two design guidelines regarding 141

SUDS. The reviewed papers had a publishing time span of 9 years, ranging from 2010 to 2018. These 142

sources also provide a geographical span, which in turn ensures a span in consideration of climate, 143

topography and other factors affecting SUDS. 144

Through the initial literary review, the following SUDS were chosen for further investigation: Green 145

roofs, rain gardens, permeable covers, swales and open detention basins. This selection was based on 146

their proven ability to handle water volumes in urbanised areas as well as the amount of 147

documentation and research on their design, construction and use (Woods-Ballard et al., 2007). In 148

addition, it was considered important that the chosen SUDS were well documented in terms of 149

design and performance for different contexts as this can give great variations in the focal points of a 150

study and thus affect the factors considered or mentioned. 151

The second part of the literary review was executed in the form of a scoping review by following five 152

steps: (1) Identify the research question, (2) Identify relevant studies, (3) Study selection, (4) Charting 153

the data, (5) Collating, summarising and reporting the results (Arksey and O’Malley, 2005). In order 154

to identify relevant studies, Google Scholar was used to perform forward snowballing, meaning 155

identifying new papers through citation (Wohlin, 2014). The 2017 Eckart review was considered 156

particularly relevant and through forward snowballing, 54 additional articles were further evaluated. 157

The evaluation process consisted of three steps of inclusion or exclusion; firstly, looking at the titles, 158

secondly looking at the abstract and thirdly checking the place and context of the citation. The final 159

set of literature consists of 16 articles obtained through the steps described above as well as 9 160

articles provided by professionals and professors involved in the research. 161

2.3 SPATIAL ANALYSIS 162

The objective of this part of the study was to model how drainage lines were affected by the 163

placement of 11 different building proposals. Furthermore, ArcMap was used to model the areas 164

suitable for SUDS placements. The results of this suitability analysis were then used as input for a 165

python code placing raingardens and green roofs on the site. The use of python is deemed rather 166

important in this research for the purpose of facilitating the possibility of assessing thousands of 167

building proposals. A potential for digital SUDS optimisation is evident in the current development of 168

software. By using python, the possibility of utilizing this potential is preserved. 169

14

ArcMap 10.6.1 is a geographical information system (GIS) developed for the purpose of creating 170

maps, perform spatial analysis and manage geographic data (esri, n.d.). In this research, ArcMap is 171

used for the purpose of modelling the hydrological response of the catchment to the various building 172

proposals. Though ArcMap demands a license for desktop use, it was deemed appropriate for this 173

study, as it is known to the researcher. 174

Python was downloaded from www.python.org. By using the integrated development environment 175

(IDE) PyCharm, different virtual environments could be created for different parts of the study. A 176

virtual environment was created to process python codes from ArcMap and was thus using Python 2 177

which is the python version demanded by ArcMap. 178

2.3.1 Construction of digital elevation model containing buildings 179

In order to model the hydrological response to the various building configurations, a digital elevation 180

model (DEM) had to be manipulated to contain the buildings. This was done using Model Builder in 181

ArcMap. The steps for obtaining such a model is visually presented in Appendix A and described in 182

detail below: 183

1. Import of DEM: A digital elevation model for the area was imported from 184

www.hoydedata.no in TIFF format with a solution of 1m in the projection ETRS 1989 UTM 185

Zone 33. 186

2. Making a table of building polygons: The 11 building proposals were imported to ArcMap. In 187

the attribute table of each building proposal, an additional field was added by choosing Add 188

Field. This field was given the name Alt_nr for all 11 proposals. The entire column was given 189

the number of the corresponding building proposal. All building proposals were initially given 190

as one single polygon, but by use of the dissolve tool by Alt_nr, each building within the 191

proposal was represented by an individual polygon. All the building proposals were then 192

added to the same list by use of Append by feature class. 193

3. Adding buildings to DEM: In order to manipulate the DEM to contain buildings, the following 194

procedure was performed for each building proposal by use of the tool Iterate Feature 195

Selection in Model Builder: 196

a. Rasterization: Polygons were converted to a raster dataset by use of the tool 197

Polygon to Raster. 198

b. Reclassification: The tool Reclassify was used to assign a value of 0 to the part of the 199

newly made rasters with the initial value of NoValue, as this could potentially give 200

problems in the following steps. 201

c. Adding buildings to DEM: The DEM was manipulated by adding a height of 200m to 202

the DEM within the boundary of each polygon in the building proposal. This was 203

done using the tool Plus. 204

4. Manipulated DEM: The model was validated and run, resulting in 11 different manipulated 205

DEMs containing each of the 11 building proposals. Moving forward, these new rasters were 206

used for modelling purposes. 207

2.3.2 Modelling drainage lines in DEM containing buildings 208

In order to model the drainage lines for each of the 11 DEMs, the ArcHydro- tools were used. 209

Specifically, the 10 steps of terrain pre-processing were executed. The few alterations made to the 210

standard procedure are marked with a star. The procedure was executed in the following order: 211

Fill sinks* → Flow direction → Flow accumulation → Stream definition** → Stream segmentation → 212

Catchment Grid Delineation → Catchment Polygon Processing → Drainage Line Processing → Adjoint 213

Catchment Processing → Drainage Points Processing 214

http://www.python.org/
http://www.hoydedata.no/

15

*Fill sinks is done to fill local surface depressions in the DEM to avoid interrupting flow lines when 215

calculating main flow paths. Because the DEMs were manipulated to contain buildings, it was 216

important to hatch the box for Fill Threshold. This was set to 50m to avoid filling the 200m drop in 217

between the buildings, which could be interpreted as depressions. 218

**For the given analysis, we were interested in the details of streamlines within the site boundary. 219

Therefore, the number of cells to initiate a stream was set to 1400 cells. 220

The result of the hydrological analysis was a set of 11 DEMs representing the hydrological response 221

for the 11 different building proposals. The results can be seen in Appendix B. 222

2.3.3 Creating a SUDS potential- model 223

In order to be able to decide the placement of SUDS for the various building proposals, it was 224

necessary to analyse the manipulated DEMs to see where potential for SUDS placement lay. In order 225

to capture water, rain gardens need to lie along the drainage lines of the property. However, not all 226

parts of the drainage lines are potential placements for rain gardens. A set of analyses were 227

performed in ArcMap in order to identify all the points along the drainage lines which could fulfil all 228

the demands for good rain garden placements. This was done by using model builder for one of the 229

building proposals. The order and the complete model is found in Appendix C. The steps of the model 230

are explained in the following: 231

By using the tool Intersect, the intersection points between the drainage lines and the site limit were 232

obtained. These were considered important for the evaluation of how the building proposals affect 233

the drainage lines and thus the flood paths. The number of outlet points from the site also equals the 234

number of directions in which SUDS configurations need to be placed in order to reach the objective 235

of no runoff from the property. 236

The sub- catchments of the site were obtained through the hydrological analysis described in 3.4.3. 237

In the rain garden potential- model, the catchment raster was converted to polygons by using the 238

tool Raster to Polygon. This was done to obtain the area of each sub- catchment, which required a 239

polygon form. Obtaining these areas was considered important in order to calculate the demanded 240

rain garden area within each sub-catchment. Furthermore, the area of these sub-catchments could 241

give information about the size of the area draining to each of the outlet points identified through 242

the process described in 2.4.1. 243

The drainage lines were cut to the extent of the site limit using the tool Clip. In order to be able to 244

analyse the placements along the drainage lines, points were placed with a 2 m distance along the 245

course of all the drainage lines using the tool Generate Points Along Lines. Furthermore, these points 246

were given values extracted from the flow accumulation layer using the tool Extract Values to Points. 247

The values given to the points were the rastervalue, which was the number of cells draining to the 248

given point. 249

The site limit polygon was converted to a polyline using the tool Polygon to polyline. In that way, a 250

buffer of 2 m could be generated on the inside of the site limit using the tool Buffer. This was done to 251

make sure the rain gardens were not placed too close to the site limit. The Buffer- tool was also used 252

to generate a buffer around the building polygons. The buffer was given an extent of 2 m to account 253

for the demanded distance between buildings and raingardens (Paus and Braskerud, 2013). The points 254

along the drainage lines that were situated in the buildings buffer zone or the site limit buffer zone 255

were then erased using the Erase- tool. The points remaining along the various drainage lines were 256

thus the points available for placement of rain gardens. 257

16

The rain garden potential- model, created in ArcMap as described above, was exported to a python 258

script and processed in PyCharm. The code was then looped to run for all 11 building proposals. The 259

result was 11 ArcMap- projects showing only the points available for rain gardens along the drainage 260

lines. The points available for rain garden placements were imported to the python code as 261

“RG_potential”. The total drainage line points- series was also imported to the python code for 262

further analysis. 263

2.3.4 Script for placement of SUDS 264

Following the analysis performed in ArcMap and translated to Python code, a new script was created 265

with the objective of placing and dimensioning rain gardens on the site. The script consisted of two 266

steps described below. The complete script can be found in Appendix D. 267

The purpose of the first step of the script was to identify the drainage line connections and 268

catchment affiliation for each point along the drainage lines: 269

1. Identify outlet points from the property: All points, both available for rain gardens and not, 270

were sorted by descending number of cells draining to the given point. The points were then 271

evaluated based on their “to- and from- nodes”. If the evaluated point was a predecessor of 272

an already evaluated point, in terms of flow direction, it would not be evaluated. If the 273

evaluated point had the highest rastervalue of all the points with the same node pair, it was 274

identified as an outlet point from the propoerty. 275

2. Grouping points into drainage line networks: All points, available for rain gardens or not, 276

were sorted into drainage line networks. This was done by evaluating their to- from node as 277

well as their catchment affiliation. Each point was given the information about who’s 278

successor it was and who was its predecessor. In that way, for each point along a drainage 279

line, one can obtain all its upstream points and associated catchment. 280

The purpose of the second step of the script was to place and size rain gardens along the drainage 281

lines. In order to handle all the water running off from the site, a script analysing the various 282

drainage line networks from the outlets point moving in the counter flow direction was created. 283

Hence, the following procedure was scripted to analyse all draining line networks for each site. This 284

was done in the following manner: 285

1. Calculate demanded raingarden area: For each outlet point, the demanded raingarden area 286

was defined as 9 % of its upstream catchment area in line with the recommendations found 287

in literature (Magnussen et al., 2015). Each point, moving counter-stream from the outlet 288

point, was then analysed considering the following: 289

a. Is the point included in the allowed points- list? 290

b. Is the next point included in the allowed points list? 291

It was assumed that a raingarden would not be placed unless there were two or more 292

points in a row available, as the distance between points were only 2 m. 293

2. Make raingarden polygon: If two points in a row or more are available, the creation of a 294

polygon was initiated. The polygon was given an extent of 8 m on each side of the drainage 295

line. For each available point along the drainage line this was performed, resulting in a set of 296

coordinates which was then scripted to create a raingarden polygon. In any case where part 297

of the raingarden- polygon crossed a building’s buffer zone or a sub-catchment boundary, 298

the polygon was clipped to the extents of these boundaries. If there was room for the 299

demanded raingarden area, the raingarden was placed. If there was not room for the 300

demanded raingarden area, the largest possible raingarden was placed and defined, and the 301

17

analysis proceeded upstream. The demanded are of raingarden was now updated, reduced 302

by the area of the raingarden placed. 303

When the analysis arrived at a crossroads in the drainage line network, it was scripted to 304

proceed along the line that has the largest associated catchment. It would subsequently go 305

back and analyse the other arm of the crossroads. 306

3. Stop when demanded area of rain garden is reached: The analysis was scripted to break 307

when the demanded area of the rain gardens was reached, or when all points in a drainage 308

line network were analysed. 309

4. Placing green roofs: The amount of green roof was given as an input percentage value. 310

Initially this value was set to 40% and thus 40% of each roof was assigned an extensive green 311

roof. Each roof was assigned a connection to the closest raingarden, so long as the distance 312

was less than 4 meters. This was done as former research has shown these types of 313

treatment trains to be very efficient (Kristvik et al., 2019). 314

The script gave the following output for each building proposal: 315

• The number of outlet points from the site. And for each outlet point: 316

o It’s corresponding draining area 317

o Number of raingardens, including individual areas 318

o Number of green roofs, including individual areas 319

o Which raingardens the various green roofs were connected to 320

2.4 MODELLING RAINFALL RESPONSE FOR SUDS CONFIGURATIONS 321

The newly developed software, Urbis, was to be used for modelling purposes. The software can 322

model rainfall response for stand- alone SUDS as well as for combinations of these. The various SUDS 323

are represented in terms of boxes representing either storage or substrate. The software takes a 324

rainfall as input and outputs the rainfall response and overflow for the given SUDS configuration. 325

The resulting SUDS- configurations from the ArcMap analysis and Python- script were to be used as 326

input for the Urbis- modelling. The inputs for raingardens and green roofs were given fixed values 327

based on literature, with exception of area. An overview of the fixed valued obtained from literature 328

is found in Appendix E. Hence, the only variables for the modelling procedure were the number and 329

combinations of SUDS, their placement and their areas. The rainfall chosen for modelling was a 330

particularly challenging rainfall event which occurred in Oslo on the 5th of august 2015. As the model 331

site is situated in Oslo, this event was deemed appropriate for the purposes of this research. 332

The results were to be evaluated with regards to the output and given a score for water quantity 333

control. The results would further be used as feedback to improve both the scoring system and the 334

python script for SUDS placements. The scoring system in question is presented in chapter 2.5. 335

2.5 SCORING SYSTEM 336

In order to make the different SUDS configurations comparable, it was considered necessary to 337

develop a scoring system. The procedure to develop a scoring system presented by Jia et al. (2013) 338

was used as an inspiration. The first step was to develop key criteria categories for which a level of 339

index factors within each category would be selected (Jia et al., 2013). By developing a ranking 340

mechanism that integrated every index factor, we could then obtain a score to compare the various 341

SUDS configuration. 342

18

For this research, the following key criteria categories were chosen: (1) Resilience, (2) Water quantity 343

control and (3) Other benefits. All the key criteria categories are given weight points depending on 344

their impact on the performance of SUDS. These impact factors were initially set to 1, in order to 345

better evaluate the result of each factor more clearly. These impact factors can also be altered at a 346

later point in order to put emphasis on whichever criteria might be in focus for the given project. 347

Within each key criteria category, different index factors were given points based on their 348

documented effect or benefit for SUDS performance or other desired qualities. 349

For resilience, the SUDS and SUDS- configurations were ranked based on their performance 350

documented in the literature (Jia et al., 2013; Kristvik et al., 2019, 2018). They were then given points 351

based on their placement in the ranking in order to give the most beneficial combination or 352

configuration the highest value. 353

For water quantity control, the SUDS configurations were given scores based on their modelled 354

rainfall response. Following the modelling procedure in Urbis, the result for each SUDS configuration 355

was analysed and compared to each other and to the goal of no overflow, and subsequently ranked 356

and given a score. 357

The score within the third category is adopted from Jia et al. (2013), where the score is a sum of 358

points given for three sub-categories; rainwater capture and reuse, ecological benefits and aesthetic 359

benefits (Jia et al., 2013). In this evaluation, raingardens are given a higher score than green roofs 360

both for rainwater capture and aesthetic benefits, whereas the ecological benefits are given the 361

same score for the two SUDS. 362

 363

2.6 LIMITATIONS 364

The focal point of this research has been the development of a methodology. The study is therefore 365

limited to optimising the placement, size and combination of two types of SUDS, namely raingardens 366

and green roofs. As the objective of the research is the methodology, practical aspects of 367

implementation and maintenance, as well as aesthetical considerations, are not assessed. 368

The model site is simplified to a homogenous land cover around the buildings. We do not consider 369

pathways, playgrounds, parking places etc. Furthermore, the model site is sloped less than 15%, 370

which is the demand for the implementation of functional raingardens, and is thus exempting us 371

from considering slope throughout the optimisation (Jia et al., 2013). The soil conditions are not a 372

part of the optimisation as the soil maps are deemed to inaccurately represent the actual conditions 373

in the ground, which may have altered due to construction and biological activity in the ground (Oslo 374

Kommune, 2017). 375

2.6.1 Modified method 376

Due to computer related obstacles, the presented method could not be performed, specifically the 377

modelling procedure in Urbis. This has led to certain modifications which were made in order to have 378

results to show for and to discuss. A flow chart for the modified method is shown in figure 3. 379

As modelling results have not been obtained for the SUDS configurations, the scores given for water 380

quantity control in this research are given qualitatively, based on the results derived through the 381

python code. The score is given based on the individual proposal’s ability to provide enough surface 382

area for raingardens. Provided the assumptions made in the development of a SUDS potential model 383

are correct, the score represents a ranking of the ability to handle water quantity. It should, however, 384

19

be noted that a modelling procedure of the rainfall response of the various configurations would be 385

valuable in order to confirm this ranking. 386

Furthermore, the intended feedback from Urbis to the optimisation routine and the scoring system is 387

compromised, which significantly alters the intended methodology. The possibility of looping Urbis 388

results with the python code, and thus optimising SUDS placement is not performed. The python 389

code developed to place, and size SUDS is thus a deterministic one, meaning it will give the same 390

result each time. This is both a result of the lack of a loop with Urbis as well as raingardens being the 391

only SUDS considered for placement on the surface. In order to make a stochastic optimisation 392

routine, that would demand a variable, such as the placement of buildings, a larger number of SUDS 393

or varying preferences as input from a modelling procedure. The term optimisation used in the title 394

should therefore in the following be understood as a mere optimisation of early phase planning 395

rather than the optimisation of SUDS. 396

 397

 398

 399

Figure 3- Flow chart for modified method 400

In the following, all results, discussions and conclusions are based on the modified method. 401

3 RESULTS 402

This section is a mere presentation of the results obtained through the methods described in chapter 403

2 and will be further discussed in chapter 4. It should be noted that the results presented in this 404

chapter are with regards to the assumptions presented throughout the article. 405

3.1 LITERARY REVIEW 406

One of the objectives of performing a literary review was to identify factors affecting the 407

performance of the chosen SUDS in terms of their ability to delay flood peaks and handle stormwater 408

volume. Initially, all factors mentioned as important for the performance of SUDS were noted 409

20

without further evaluation. The next step was to evaluate the identified key factors and further 410

categorise them into groups. It was quickly established that some of the factors gave answers to the 411

question of placement whereas others gave answers to the question of size. 412

Based on this, the factors were sorted into three main categories according to the discernment of the 413

authors; placement factors, sizing factors and other design considerations. By having all the factors 414

categorised it was easier to get an overview over overlapping terms and these were either clearly 415

separated by distinct terms or combined in one single term, depending on the physical property they 416

were dependent on. The scheme was then completed as an overview of the key factors identified 417

through the literary review for each of the selected SUDS. The scheme was named the SUDS selection 418

aid. 419

Type of
consideration

Flood paths Raingarden Open
detention
basin

Green
roof

Permeable
cover

Swale

Placement
factors

Runoff volume,
streamlines,
topography

Catchment
characteristics,
depth available,
draining area, Ksat,

soil conditions,
topography

Draining area,
depth available,
soil conditions,
streamlines,
topography

Climate Catchment
characteristics,
Ksat, soil
conditions,
topography

Climate, depth
available, Ksat, Soil
conditions,
topography

Sizing factors Available area,
runoff volume

Available area,
Catchment
characteristics, Ksat,

evapotranspiration,
runoff volume

Available area,
interception,
runoff volume

Available
area,
evapotrans
piration,
design rain,
loading
capacity of
building

Available area,
ground stability,
Ksat, runoff
volume, traffic
load

Available area,
catchment
characteristic,
evapotranspiratio
n, runoff volume

Other design
considerations

 Accessible for
maintenance,
distance to building
foundation, inflow
velocity

Climate Hight of
roof, slope,
need to be
planned at
the time of
building
design

Avoid large silt
loads/vegetation
cover on adjacent
area, should be
downslope from
buildings

Interception, land
use, difficult in
dense urban areas

Table 1- The SUDS selection aid presents the key factors for each type of SUDS derived through a literary study 420

3.2 SPATIAL ANALYSIS 421

The spatial analysis consisted of the modelling of drainage lines and the placement of SUDS for each 422

building configuration. The results showed considerable differences between the building proposals, 423

both regarding resulting drainage lines and SUDS potential. 424

3.2.1 Modelling of drainage lines 425

The modelling of drainage lines showed a considerable variation in how water flowed through the 426

sites as a response to the various building proposals. In Figure 4, the notable differences of drainage 427

line response is illustrated by displaying the corresponding drainage lines for building proposal 2 and 428

7. For proposal 2 the buildings are hindering the natural flow to the south, resulting in two outlet 429

points further up on the property, whereas for building proposal 7, all water from the property is 430

crosses the site boundary through a single point in the south. Comparing these results to the flow 431

conditions presented in figure 2 shows that the results for proposal 7 comes close to natural flow 432

conditions whereas the result for building proposal 2 more mirrors the current conditions of the site. 433

21

 434

Figure 4- Resulting drainage lines for building proposal 2 (left) and building proposal 7 (right). 435

The alteration of drainage lines can also be evaluated by looking the resulting number of outlet 436

points from the property for a given proposal. The number of outlet points indicates the number of 437

directions in which SUDS must be placed in order to achieve the goal of no runoff from the property. 438

As can be seen from table 2 the number of outlet points varies from 1 to 4 between the building 439

proposals, which is a considerable difference. 440

The drainage lines for all building proposals can be found in Appendix B. 441

3.2.2 Placement of raingardens 442

The results of the python script for initial placement of rain gardens showed a great variety in the 443

ability to facilitate enough raingarden area as presented in table 2. In line with the demand for a 444

raingarden area equal to 9% of the drainage area, only three building proposals were able to 445

accommodate this demand. In the remaining eight proposals, the raingarden placement potential 446

varied greatly, and the building proposal with the lowest performance considering raingarden 447

placement left 96,5 m2 of raingarden area unplaced. The difference between the various building 448

proposals is significant and should be noted for further evaluation. Figure 5 shows the resulting plot 449

of alternative 7, which accommodates the demand for raingarden area, and alternative 2, which is 450

the building proposal furthest from meeting the demand. 451

 452

22

 453

Figure 5- SUDS plot for building proposal 2 (a), which was the situation farthest from facilitating enough surface area for the 454
demanded raingarden area, and building proposal 7 (b), which successfully facilitated enough surface area for raingardens 455

 456

3.2.3 Placement of green roofs 457

In this research, all buildings were provided with green roofs. All building proposals were able to 458

accommodate the beneficial connection between green roofs and raingarden, though not in all sub-459

catchments. However, the amount of connections made varied between 9 and 17 connections, which 460

is a considerable difference. 461

Building
proposal

Number of
outlet points

Number of
raingardens

Number of
green roofs

Number of
GR- RG

connections

Remaining
raingarden
area [m2]

1 4 17 28 13 67,4

2 3 19 26 13 96,5

3 3 17 28 14 89,5

4 2 16 28 16 0

5 4 17 30 15 36,6

6 3 9 27 9 53

7 1 13 28 9 0

8 2 19 23 12 0

9 3 21 27 16 31,2

10 3 16 23 12 92

11 4 17 34 17 51,3

Table 2- An overview of the number of outlet points, raingardens, green roofs and raingarden-green roof connections made. 462
The last column shows the remaining raingarden area that the corresponding building proposal failed to facilitate surface 463
area for. 464

Plots for SUDS placement of all building proposals can be found in Appendix F. A numbered plot, 465

showing a numbering system of raingardens, green roofs and their connections can be found in 466

Appendix G. 467

23

3.3 SCORING SYSTEM 468

The score for the index factors within each key criteria category is presented below. However, the 469

water quantity control was qualitatively scored and is not given a general score here. The resulting 470

score for each building proposal’s SUDS configuration can be found in table 4, chapter 3.3.1. The 471

manner in which the system was developed is described in chapter 2.5 along with the procedure of 472

obtaining the individual key criteria scores. 473

 474

SUDS/configuration Resilience Other benefits Water quantity
control

GR 1 9 N/A

RG 1,5 12 N/A

2 x RG

2 N/A N/A

2 x RG w/ 2 Ksat 2,5 N/A N/A

Max score, Smax 3,5 12 N/A

Table 3- Scoring system showing the score for each index factor within each key criteria category 475

The resulting score within each key criteria category was normalized using the following equation: 476

𝑓𝑗 =
∑ 𝑆𝑖𝑛

𝑖=1

𝑆𝑚𝑎𝑥,𝑗
 477

Equation 1 478

Where, 479

 𝑓𝑗 is the score for the jth key criteria category 480

 𝑆𝑖 is the score for the ith index factor 481

 𝑆𝑚𝑎𝑥,𝑗 is the highest obtainable score for the jth key criteria category 482

Each of the SUDS configurations obtained through optimisation could then be given a total score 483

using the following equation: 484

𝑋𝑗 = ∑ 𝑒𝑖 ∗ 𝑓𝑖𝑗, j = [1, 2, 3, 4]

4

𝑖=1

 485

Equation 2 486

Where, 487

 𝑋𝑗 is the score for the SUDS configuration connected to outlet point j 488

 𝑒𝑖 is the weight factor for the ith key criteria category 489

 𝑓𝑖𝑗 is the score within the ith key category for the jth SUDS configuration 490

24

It should be noted that the terms SUDS configuration is used for the configuration of all SUDS within 491

one sub-catchment of the site. The number of sub- catchments equals the number of outlet points 492

from the site. The final score for the site will be the sum of the scores for each sub-catchment, 493

weighted by the sub-catchment’s fraction of the total site area, using the following equation: 494

𝑆𝑡𝑜𝑡,𝑘 =
∑ 𝑋𝑗 ∗𝑛

𝑗=1 𝑊𝑗

𝑛𝑗
, 𝑘 = 1, 2, 3, … . , 11 495

Equation 3 496

Where, 497

 𝑆𝑡𝑜𝑡,𝑘 is the total score for the kth building proposal’s SUDS configuration 498

 𝑋𝑗 is the score for the SUDS configuration connected to outlet point j 499

 𝑊𝑗 is the jth sub-catchment’s fraction of the total site area 500

 𝑛𝑗 is the total number of outlet points 501

 502

3.3.1 Resulting score of SUDS configurations 503

 504

Building
proposal

Number of
outlet
points

Remaining
raingarden
area [m2]

Resilience
score

Other
benefits

score

Water
quantity

score

Score

1 4 67,4 0,9 0,9 0,3 2,10

2 3 96,5 0,94 0,94 0 1,88

3 3 89,5 0,93 0,93 0,2 2,06

4 2 0 0,94 0,94 1 2,88

5 4 36,6 0,91 0,90 0,6 2,41

6 3 53 0,94 0,94 0,4 2,28

7 1 0 0,94 0,94 1 2,88

8 2 0 0,92 0,92 1 2,84

9 3 31,2 0,93 0,93 0,7 2,56

10 3 92 0,93 0,93 0,1 1,96

11 4 51,3 0,91 0,91 0,5 2,32

Table 4 - Resulting score for the SUDS configuration of each building proposal as well as scores within each key criteria 505
category 506

By use of the presented scoring system, the SUDS configuration for each building proposal was given 507

a score. The scores range from 1,88 to 2,88. Assessing the various key criteria categories, it is evident 508

that the category that contributes most to the distinction of the total score is the water quantity 509

score. The scores within resilience and other benefits present a smaller variety. 510

25

4 DISCUSSION 511

In this article, a methodology to automatize the placement and dimensioning of SUDS and SUDS 512

combination has been presented. In this section the results are discussed in light of the research 513

questions. 514

4.1 COMPUTER PROGRAMMING POTENTIAL 515

The need for SUDS is clearly stated in the literature (Eckart et al., 2018; Ugarelli et al., 2017; Woods-516

Ballard et al., 2007) and is now also a demand in the municipality of Oslo (Oslo Kommune, 2017). In 517

Norway, SUDS are traditionally considered late in the planning process, but clear guidelines now 518

state that they should be considered earlier (Oslo Kommune, 2013). However, the complexity of 519

SUDS has been identified as a barrier for implementation of such solutions (Eckart et al., 2017). 520

Furthermore, it has been questioned if it is even feasible to analyse the many possible configurations 521

of SUDS for a site (Eckart et al., 2018). Given this complexity, simple trial- and- error approaches are 522

deemed inappropriate for the purpose of SUDS planning (Zhang and Chui, 2018). However, the 523

complexity that computer programming can handle seems to surpass that of SUDS, according to the 524

research reported on in this article. In this research, we have been able to create a general script, 525

applicable for other sites and situations, with the ability to calculate the need for raingarden area as 526

well as placing both raingardens and green roofs on the site. For this specific research, only 11 527

building proposals were assessed, it should however be noted that the script could have been run for 528

a much higher number of building proposals. This would more clearly illustrate the time saving 529

potential of the methodology. 530

Though the methodology developed in this research is not a comprehensive one in the sense that it 531

does not include all types of SUDS, it clearly shows the potential for digitalisation of stormwater 532

planning. By simply assessing the impact of various building proposals on the drainage lines, we can 533

say something about a building proposals suitability for SUDS. Through a spatial analysis, the 534

alternation of drainage lines has been illustrated thereby offering a way to improve the traditional 535

approach to stormwater management; building proposals with a negative impact on the flood 536

situation can be rejected at an early stage, thus saving both time and money. 537

The methodology presented in this article is a simple one, demanding little input, but is still providing 538

valuable information about placement of buildings and SUDS. SUDS are highly context dependent, 539

meaning that correct placement and construction is paramount in order to secure their function. By 540

use of this methodology, we can ensure that areas suitable for SUDS are secured at an early stage 541

when assessing all their demands is an actual possibility. In that way we can help ensure that SUDS 542

perform the much-needed resilience they have proved to provide. 543

Assessing the SUDS selection aid obtained through the literary review in this research, it seems 544

evident that there are many rules for the implementation of SUDS, and that many key factors 545

coincide for researches across continent boundaries. There are both clear rules, guidelines and 546

desires for placement, dimensioning and combinations of SUDS. None of which are too complex to 547

assess in a script. Translating the planning and dimensioning of SUDS to a script has proved 548

challenging, but is, however, possible. Such a script will only execute the concrete assignments it has 549

been given, meaning desires and guidelines need to be scripted in a way that holds for a general 550

situation. This is a time demanding task but is nevertheless feasible according to the research 551

conducted. 552

26

As this research only concerns two types of SUDS, assessing all SUDS would, no doubt, increase the 553

complexity of the scrip considerably. On the other hand, making a general script for the optimisation 554

of SUDS is a one-time effort which in turn exempts us from having to face the complexity of SUDS 555

each time stormwater management is assessed. For each time such a script is used, it can be 556

evaluated and updated and thus continuously improve. 557

4.2 KEY FACTORS FOR EARLY ASSESSMENT OF SUDS 558

In the development of the SUDS selection aid, three main categories for key factors were obtained: 559

Placement factors, Sizing factors and Other design considerations. Some terms were overlapping for 560

two or more categories as they had an impact on multiple aspects of the SUDS. Initially, the factors 561

for placement and size were considered the most important ones. However, the key factors included 562

in Other design considerations turned out to be very valuable for the purpose of this research as they 563

gave more information about SUDS relations to surrounding assets, such as buildings. 564

Computer programming can handle an enormous detail level. It can be discussed, however, whether 565

assessing all possible factors is necessary. Considering the significant variations in potential for SUDS 566

placement obtained through the relatively simple script created in this research, the improvements 567

that can be made through only a few steps seem notable. In the development of a script for SUDS 568

placement, we were not able to take all key factors into account. However, by assess in only a few 569

factors, we are able to give some information about which building proposals are more suitable than 570

others. The results presented in table 2 shows that the building proposals resulting in the lowest 571

numbers of outlet points, are the proposals that best facilitates raingarden area. We may not be able 572

to say that the proposed SUDS configurations for the successful proposals are sufficient, but we can, 573

however, say something about which proposals are likely to have a negative impact on the drainage 574

lines and the SUDS potential. In other words, in order to facilitate an improvement of stormwater 575

management, only the consideration of a few factors may be enough. 576

The three steps in the three- stage approach to stormwater management are presented, quite 577

intuitively, based on the severity of the rainfall events. The first step concerns the management of 578

everyday rainfall events while the third step concerns securing safe flood paths. This implies a way of 579

thinking concerning stormwater managements. Reviewing the results in this research, however, it 580

could be argued that a reversion of this three- stage approach would be more desirable in terms of 581

stormwater planning. The SUDS selection aid shows that securing safe flood paths does not depend 582

upon many factors. Additionally, safe flood paths are related to the nature of the drainage lines, 583

which is shown in this research to be strongly affected by the physical layout of a development 584

project. Given their relatively simple nature, the potential to assess some aspect of drainage lines 585

before the physical layout of a major project is decided, seems clear. More important than simplicity 586

and potential is the importance of securing safe flood paths for a flood event in urban areas. 587

Furthermore, regarding SUDS implementation, it is evident through the results of this research that 588

the potential flood reducing effect of this early assessment is significant. In this research where only 589

11 building proposals are assessed, the variation in SUDS potential reflected in the ability to facilitate 590

raingarden area is considerable. Maybe the complete design and dimensioning of SUDS at an early 591

stage in the process is a little bit down the road, however, a simple assessment early on could give 592

very valuable information and save both time and money. This indicates that with some rules or 593

incentives to where buildings should be placed with regards to drainage line, could strongly enhance 594

the current practice and thus the flood safety of a development project. Accepting the cost of such 595

27

an early assessment should be easy to accept as damage to property and ecosystems as a result of 596

urban floods often has proved to exceed the cost of stormwater management (Eckart et al., 2018). 597

4.3 PERFORMANCE OF THE PROPOSED METHODOLOGY 598

The concrete results of this research, being the SUDS placement, size and combinations for 599

Marienlyst is not as important as what these results imply. The results clearly imply that the physical 600

layout of a property has severe influence on the drainage lines and flood paths as well as potential 601

for SUDS implementation. More importantly, the results imply that it actually is possible to assess 602

this in a simple way at an early stage. The results from the placement of rain gardens for 11 different 603

building proposals showed considerable difference in the ability to facilitate enough surface area for 604

raingardens. This indicates the importance of assessing SUDS potential before the physical layout of 605

the site is determined. In urban areas where the damage potential in a flood event is large, securing 606

the stormwater handling ability of a site is of grave importance. 607

An important result is that most of the building proposals are able to accommodate the beneficial 608

configurations of green roof and raingarden, resulting in a rather small variation of score for this key 609

criteria category. However, by adding the score for water quantity control, the image is quite another 610

as the distinction between the building proposals is much clearer. A development of the scoring 611

system to mirror the site’s actual ability to handle stormwater would be beneficial. The weight 612

factors of the key criteria categories could be altered in order to achieve this. Based on the results 613

and objective of this research, the water quantity control key factor criteria should be weighted 614

heavier than resilience and other benefits. The reliability of the resulting score would however have 615

been higher if the score was given based on modelling results. Nevertheless, a scoring system is 616

deemed useful in order to optimise SUDS configurations. 617

The qualitative score of water quantity control is limited in the way that it is only assessed based on 618

the ability to accommodate 9% of the drained area for raingarden area. It can be expected that the 619

introduction of green roofs will reduce the need for raingarden area. This would be beneficial to 620

illustrate in a modelling study. However, limited or not, this research does clearly illustrate that the 621

building proposals have a great impact on a site’s ability to provide sufficient surface area for 622

stormwater management. 623

Due to time limitation, cost has not been a part of the optimisation and scoring system in this 624

research. It should however be noted, that cost should also be a part of the optimisation. It is of the 625

author’s opinion important that such a score should account both for structural and maintenance 626

costs but should not fail to assess the costs saved due to avoided flood incidents. 627

The performance of the methodology presented in this research may be evaluated in terms of the 628

concrete results, it should however be noted that the implications brought forth through these 629

results are of a much higher value. The research has shown that scripting placement and size of 630

raingardens, green roofs and their interconnection is possible. The suggested methodology can 631

clearly be improved. However, the general script created in this research resulted in quite telling 632

variation of SUDS placement and flood security performance. Providing the assumptions made in the 633

development of the script is correct, the importance of assessing SUDS early in a development 634

project is clearly shown through the greatly varying results in SUDS potential for the eleven 635

proposals. 636

28

5 CONCLUSION 637

The results obtained through this research shows both the potential that lies in early assessment of 638

SUDS as well as the negative consequences that failing to do so might lead to. A simple assessment of 639

drainage lines and building placement appears to have a considerable impact on the SUDS potential 640

for a development project, and consequently the ability to handle stormwater sufficiently, avoid 641

floods and save money. 642

Through this research, a change of mindset is also implied, as the complexity of SUDS has been 643

proved to be manageable through computer programming. The development of new software is 644

certainly providing a possibility for digitalising stormwater management and optimisation of SUDS. 645

Furthermore, a call to change of mindset has been suggested through the reversion of the three- 646

stage approach to stormwater management. The most severe flood incidents, which are the most 647

damaging ones with regards to property and human health, seem to be the least complex ones to 648

assess, and should therefore be at the front of the line when planning for stormwater management. 649

The scoring system developed through this research is limited to the two SUDS assessed. Future work 650

should seek to develop a comprehensive scoring system, providing a score that can more accurately 651

mirror the performance of SUDS configurations with regards to water quantity control. This could be 652

of assistance in an optimisation routine where the objective could be to obtain the highest possible 653

score. 654

For future work, the presented script could be developed and improved by use of genetic algorithm. 655

In genetic algorithms, good solutions are identified in a population of solutions and used to make 656

new, better solutions, whereas bad solutions are eliminated. In that way, computer learning can be 657

used to improve such scripts at a high rate (Deb, 1999). This type of algorithm could be used for 658

designing software to optimise SUDS and could also be utilized to obtain guidelines for developers in 659

situations where the use of such a software is not an option. 660

For processes where the assessment of multiple building proposals is not a possibility, guidelines 661

should be put forth for the placement of buildings with regards to drainage lines and SUDS 662

placement. These guidelines could then be used by architects, landscapers or others with an impact 663

on the physical layout of a major project. This would improve the current practice and ensure a 664

better approach to stormwater management at an early stage. 665

A small step towards optimising SUDS configurations has been made through this research. The 666

potential in developing this methodology is clearly stated. Any attempts to further develop or use the 667

results in this research are more than welcome. 668

ACKNOWLEDGEMENTS 669

This research was supported by Klima 2050 (http://www.klima2050.no/), BINGO- a better future 670

under climate change (http://www.projectbingo.eu/) and NKF (Norsk Kommunalteknisk Forening). 671

 672

 673

http://www.klima2050.no/
http://www.projectbingo.eu/

29

BIBLIOGRAPHY 674

Arksey, H., O’Malley, L., 2005. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. 675
Methodol. Theory Pract. 8, 19–32. https://doi.org/10.1080/1364557032000119616 676

Deb, K., 1999. An introduction to genetic algorithms. Sadhana 24, 293–315. 677

Eckart, K., McPhee, Z., Bolisetti, T., 2018. Multiobjective optimization of low impact development 678
stormwater controls. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2018.04.068 679

Eckart, K., McPhee, Z., Bolisetti, T., 2017. Performance and implementation of low impact 680
development – A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.06.254 681

Hodnesdal, H., 2018. Manglende håndtering av overvann er et betydelig problem [WWW Document]. 682
Finans Norge. URL https://www.finansnorge.no/aktuelt/nyheter/2018/10/manglende-683
handtering-av-overvann-er-et-betydelig-problem/ 684

Jia, H., Yao, H., Tang, Y., Yu, S.L., Zhen, J.X., Lu, Y., 2013. Development of a multi-criteria index ranking 685
system for urban runoff best management practices (BMPs) selection. Environ. Monit. Assess. 686
185, 7915–7933. https://doi.org/10.1007/s10661-013-3144-0 687

Johannessen, B.G., Hanslin, H.M., Muthanna, T.M., 2017. Green roof performance potential in cold 688
and wet regions. Ecol. Eng. 106, 436–447. https://doi.org/10.1016/j.ecoleng.2017.06.011 689

Johannessen, B.G., Muthanna, T.M., Braskerud, B.C., 2018. Detention and retention behavior of four 690
extensive green roofs in three Nordic climate zones. Water (Switzerland) 10, 1–23. 691
https://doi.org/10.3390/w10060671 692

Kazak, J.K., Chruściński, J., Szewrański, S., 2018. The development of a novel decision support system 693
for the location of green infrastructure for stormwater management. Sustain. 10. 694
https://doi.org/10.3390/su10124388 695

Kristvik, E., Johannessen, B., Muthanna, T., Kristvik, E., Johannessen, B.G., Muthanna, T.M., 2019. 696
Temporal Downscaling of IDF Curves Applied to Future Performance of Local Stormwater 697
Measures. Sustainability 11, 1231. https://doi.org/10.3390/su11051231 698

Kristvik, E., Kleiven, G.H., Lohne, J., Muthanna, T.M., 2018. Assessing the robustness of raingardens 699
under climate change using SDSM and temporal downscaling. Water Sci. Technol. 77, 1640–700
1650. https://doi.org/10.2166/wst.2018.043 701

Liu, Y., Theller, L.O., Pijanowski, B.C., Engel, B.A., 2016. Optimal selection and placement of green 702
infrastructure to reduce impacts of land use change and climate change on hydrology and water 703
quality: An application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 553, 149–163. 704
https://doi.org/10.1016/j.scitotenv.2016.02.116 705

Magnussen, K., Wingstedt, A., Rasmussen, I., Reinvang, R., 2015. Kostnader og nytte ved 706
overvannstiltak. 707

Norsk Vann, 2005. Veileder i overvannshåndtering, rapport 144/2005. 708

Oslo Kommune, 2017. Overvannshåndtering- En veileder for utbygger. 709

Oslo Kommune, 2013. Strategi for overvannshåndtering i Oslo. 710

Paus, K.H., Braskerud, B.C., 2013. Forslag til dimensjonering og utforming av regnbed for norske 711
forhold. Vann. 712

Paus, K.H., Muthanna, T.M., Braskerud, B.C., 2015. Uncorrected Proof implications for design. Hydrol. 713

30

Res. 1–14. https://doi.org/10.2166/nh.2015.084 714

RIF, 2015. Norges tilstand 2015 State of the nation. 715

Ugarelli, R., Hidalgo Martínez, C., Ahmadi, M., Raspati, G., Sivertsen, E., 2017. ASSET MANAGEMENT 716
OF NATURE-BASED SOLUTIONS: WHAT INFORMATION TO COLLECT FOR MAINTENANCE 717
MANAGEMENT-APPLICATION IN TRONDHEIM, NORWAY. LESAM Conf. 718

Wohlin, C. (Blekinge I. of T., 2014. Guidelines for Snowballing in Systematic Literature Studies and a 719
Replication in Software Engineering, in: 18th International Conference on Evaluation and 720
Assessment in Software Engineering. 721

Woods-Ballard, B., Kellagher, R., Woods Ballard, B., Construction Industry Research and Information 722
Association, Great Britain, Department of Trade and Industry, Environment Agency, 2007. The 723
SUDS manual, Ciria, …. 724

Zhang, K., Chui, T.F.M., 2018. A comprehensive review of spatial allocation of LID-BMP-GI practices: 725
Strategies and optimization tools. Sci. Total Environ. 621, 915–929. 726
https://doi.org/10.1016/j.scitotenv.2017.11.281 727

Zhu, Z., Chen, Z., Chen, X., Yu, G., 2019. An assessment of the hydrologic effectiveness of low impact 728
development (LID) practices for managing runoff with different objectives. J. Environ. Manage. 729
231, 504–514. https://doi.org/10.1016/j.jenvman.2018.10.046 730

 731

31

Appendix A- DEM manipulation model

32

Appendix B- Resulting drainage lines for all building
proposals

33

Appendix C – Spatial analysis model

34

Appendix D – Python scripts

arcgis_analysis.py

-*- coding: utf-8 -*-

--

arcgis_analysis.py

Created on: 2019-05-14 10:03:23.00000

(generated by ArcGIS/ModelBuilder)

Usage: arcgis_analysis-2 <Cat4> <build_limit> <DrainageLine4> <Fac4>

<fixed_building_alt4> <Cat4_polygonModel> <BoundaryIntersection4Model>

<DrainageLine4_ClipValuesModel> <RG_potential4_Model>

<BufferAroundBuildingsModel4>

Description:

This is a model performing all the analysis we need, after the

hydrological analysis/modelling is performed

--

Set the necessary product code

import arcinfo

Import arcpy module

import arcpy

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår

2019\\"

arcpy.env.overwriteOutput=True

for ii in range(4, 15):

 i = str(ii)

 # Script arguments

 print("Starting with {}\nSetting parameter values...\n".format(i))

 Cat = "ArcGIS_faktisk\\Layers\\cat{}".format(i)

 build_limit = "ArcGIS_faktisk\\build_limit\\build_limit.shp"

 DrainageLine =

"ArcGIS_faktisk\\avrenningslinjer_garra_original.gdb\\DrainageLine{}".forma

t(i)

 Fac = "ArcGIS_faktisk\\Layers\\fac{}".format(i)

 fixed_building_alt =

"ArcGIS_faktisk\\alternatives\\alt{}\\fixed_building_alt{}.shp".format(i,

i)

 Cat_polygonModel =

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_polygonModel".format(i)

 BoundaryIntersectionModel =

"ArcGIS_faktisk\\Resultat.gdb\\BoundaryIntersection{}Model".format(i)

 DrainageLine_ClipValuesModel =

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipValuesModel".format(i)

35

 RG_potential_Model =

"ArcGIS_faktisk\\Resultat.gdb\\RG_potential{}_Model".format(i)

 BufferAroundBuildingsModel =

"ArcGIS_faktisk\\Resultat.gdb\\BufferAroundBuildingsModel{}".format(i)

 # Local variables:

 Cat_ClipModel =

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_ClipModel".format(i)

 DrainageLine_clipModel =

"ArcGIS_faktisk\\Resultat.gdb\\DranageLine{}_clipModel".format(i)

 DrainageLine_ClipPointsModel =

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipPointsModel".format(i)

 build_limit_line_model =

"ArcGIS_faktisk\\Resultat.gdb\\build_limit_line_model"

 build_limit_buffer = "ArcGIS_faktisk\\Resultat.gdb\\build_limit_buffer"

 Drainage_line_from_site_boundary =

"ArcGIS_faktisk\\Resultat.gdb\\Drainage_line_from_site_boundary{}".format(i

)

 fixed_buildings_projected =

"ArcGIS_faktisk\\Resultat.gdb\\fixed_buildings{}_projected".format(i)

 # Process: Intersect

 print("Intersection between DrainageLine and build_limit")

 arcpy.Intersect_analysis("{} #;{} #".format(DrainageLine, build_limit),

BoundaryIntersectionModel, "ALL", "", "POINT")

 # Process: Clip

 print("Clipping Cat to build_limit")

 arcpy.Clip_management(Cat, "260797,731117598 6651867,76572595

261153,825933687 6652129,89853315", Cat_ClipModel, build_limit, "128",

"ClippingGeometry", "NO_MAINTAIN_EXTENT")

 # Process: Raster to Polygon

 print("RasterToPolygon for clipped catchment")

 arcpy.RasterToPolygon_conversion(Cat_ClipModel, Cat_polygonModel,

"SIMPLIFY", "Value", "SINGLE_OUTER_PART", "")

 # Process: Clip (2)

 print("Clipping DrainageLine within build_limit")

 arcpy.Clip_analysis(DrainageLine, build_limit, DrainageLine_clipModel,

"")

 # Process: Generate Points Along Lines

 print("Generating points along DrainageLine within build_limit")

 arcpy.GeneratePointsAlongLines_management(DrainageLine_clipModel,

DrainageLine_ClipPointsModel, "DISTANCE", "2 Meters", "", "")

 # Process: Extract Values to Points

 print("Extracting values from Fac to DrainageLine_ClipPointsModel")

 arcpy.CheckOutExtension("Spatial")

 arcpy.gp.ExtractValuesToPoints_sa(DrainageLine_ClipPointsModel, Fac,

DrainageLine_ClipValuesModel, "NONE", "VALUE_ONLY")

 arcpy.CheckInExtension("Spatial")

 # Process: Polygon To Line

 print("Converting build_limit to line around polygon")

 arcpy.PolygonToLine_management(build_limit, build_limit_line_model,

"IDENTIFY_NEIGHBORS")

 # Process: Buffer

36

 print("Creating buffer around site boundary")

 arcpy.Buffer_analysis(build_limit_line_model, build_limit_buffer, "3

Meters", "FULL", "ROUND", "NONE", "", "PLANAR")

 # Process: Erase (2)

 print("Erasing drainage line points within site limit buffer zone")

 arcpy.Erase_analysis(DrainageLine_ClipValuesModel, build_limit_buffer,

Drainage_line_from_site_boundary, "")

 # Process: Project

 print("Projecting building polygons")

 arcpy.Project_management(fixed_building_alt, fixed_buildings_projected,

"PROJCS['ETRS_1989_UTM_Zone_33N',GEOGCS['GCS_ETRS_1989',DATUM['D_ETRS_1989'

,SPHEROID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT

['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER[

'False_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Centra

l_Meridian',15.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_O

rigin',0.0],UNIT['Meter',1.0]]",

 "ETRS_1989_To_WGS_1984",

"PROJCS['WGS_1984_UTM_Zone_32N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SP

HEROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['D

egree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER['Fa

lse_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central_M

eridian',9.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origi

n',0.0],UNIT['Meter',1.0]]",

 "NO_PRESERVE_SHAPE", "", "NO_VERTICAL")

 # Process: Buffer (2)

 print("Creating buffer zone around buildings")

 arcpy.Buffer_analysis(fixed_buildings_projected,

BufferAroundBuildingsModel, "2 Meters", "FULL", "ROUND", "NONE", "",

"PLANAR")

 # Process: Erase

 print("Erasing DrainageLine_ClipValuesModel within buffer zone around

buildings")

 arcpy.Erase_analysis(DrainageLine_ClipValuesModel,

BufferAroundBuildingsModel, RG_potential_Model, "")

 print("Finished with {}\n\n".format(i))

extract_features_from_layer.py

import arcpy

from shapely.geometry import Polygon as shp_poly

class Point:

 def __init__(self, x, y, from_node, to_node, arc_id, n_draining_cells):

 self.x = x

 self.y = y

 self.from_node = from_node

 self.to_node = to_node

 self.arc_id = arc_id

 self.n_draining_cells = n_draining_cells

 self.catchment_area = None

 self.predecessors = []

37

 self.successors = []

 def get_tree(self):

 return [self] + [point for list_of_points in [p.get_tree() for p in

self.predecessors] for point in list_of_points]

 def get_upstream_draining_area(self):

 tree = self.get_tree()

 all_catchments = set([point.catchment_area for point in tree])

 return sum([shp_poly(catchment.coordinates).area for catchment in

all_catchments])

class ArcgisPolygon:

 def __init__(self, coordinates):

 self.coordinates = coordinates

 self.points_within = []

class GreenRoof:

 def __init__(self, coordinates, rain_garden_connection):

 self.coordinates = coordinates

 self.rain_garden_connection = rain_garden_connection

def extract_polygons(infc, ref_point=None):

 if not ref_point:

 ref_point = [0., 0.]

 polygons = []

 for row in arcpy.da.SearchCursor(infc, ["SHAPE@"]):

 for part in row[0]:

 coordinates = []

 for pnt in part:

 if pnt:

 coordinates.append([pnt.X - ref_point[0], pnt.Y -

ref_point[1]])

 else:

 # If pnt is None, this represents an interior ring

 print("Interior Ring.\nNo polygon added.")

 polygons.append(ArcgisPolygon(coordinates))

 return polygons

def extract_points(infc, ref_point=None):

 if not ref_point:

 ref_point = [0., 0.]

 points = []

 for row in arcpy.da.SearchCursor(infc, ["SHAPE@", "from_node",

"to_node", "arcid", "RASTERVALU"]):

 for pnt in row[0]:

 points.append(Point(pnt.X - ref_point[0], pnt.Y - ref_point[1],

row[1], row[2], row[3], row[4]))

 return points

plot_features_from_layer.py

38

-*- coding: utf-8 -*-

import arcpy

from extract_features_from_layer import extract_polygons, extract_points

from plot_helper import plot_polygons_lines_and_points as plot

ref_point = [260985.0, 6652104.0]

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår

2019\\"

def test_buildings_plot():

 infc = "ArcGIS_faktisk\\Resultat.gdb\\buildings12_projected"

 buildings = extract_polygons(infc, ref_point)

 plot(blue_buildings=[buildings_polygons.buildings_coordinates for

buildings_polygons in buildings])

def test_polygon_plot():

 infc = "ArcGIS_faktisk\\Resultat.gdb\\Cat12_polygonModel"

 catchments = extract_polygons(infc, ref_point)

 plot(blue_polygons=[polygon.coordinates for polygon in catchments])

def test_point_plot():

 infc_blue = "ArcGIS_faktisk\\Resultat.gdb\\RG_potential12_Model"

 infc_red =

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine12_ClipValuesModel"

 blue_points = extract_points(infc_blue, ref_point)

 red_points = extract_points(infc_red, ref_point)

 plot(blue_points=[[point.x, point.y] for point in blue_points],

red_points=[[point.x, point.y] for point in red_points])

def test_polygon_and_line_plot():

 infc = "ArcGIS_faktisk\\Resultat.gdb\\Cat12_polygonModel"

 infc_blue = "ArcGIS_faktisk\\Resultat.gdb\\RG_potential12_Model"

 infc_red =

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine12_ClipValuesModel"

 infc_yellow = "ArcGIS_faktisk\\Resultat.gdb\\buildings12_projected"

 catchments = extract_polygons(infc, ref_point)

 blue_points = extract_points(infc_blue, ref_point)

 red_points = extract_points(infc_red, ref_point)

 buildings = extract_polygons(infc_yellow, ref_point)

 # plot(yellow_polygons=[buildings_polygons.coordinates_buildings for

buildings_polygons in buildings],

 # green_polygons=[polygon.coordinates for polygon in catchments],

 # blue_points=[[point.x, point.y] for point in blue_points],

 # red_points=[[point.x, point.y] for point in red_points],

 #)

test_polygon_and_line_plot()

39

Point_catchment_family.py

-*- coding: utf-8 -*-

from extract_features_from_layer import extract_polygons, extract_points,

GreenRoof

from shapely.geometry import Point as shp_point, Polygon as shp_polygon, \

 MultiPolygon as shp_multi, \

 LineString as shp_line, mapping

from plot_helper import plot_polygons_lines_and_points

def representative_point(polygon):

 shapley_representative_point =

shp_polygon(polygon).representative_point()

 x = shapley_representative_point.x

 y = shapley_representative_point.y

 return [x, y]

def calculate_area_of_rain_garden(draining_area, size_percentage=0.09):

 return draining_area*size_percentage

def sort_points_by_number_of_draining_cells(points):

 sorted_points = sorted(points, key=lambda p: p.n_draining_cells,

reverse=True)

 return sorted_points

def find_outlet_points(points):

 outlet_points = []

 covered_from_to_pairs = set()

 sorted_points = sort_points_by_number_of_draining_cells(points)

 for point in sorted_points:

 from_to_pair = (point.from_node, point.to_node)

 already_covered = from_to_pair in covered_from_to_pairs

 if already_covered:

 continue

 covered_from_to_pairs.add(from_to_pair)

 predecessor_of_already_covered = any([pair[0] == point.to_node for

pair in covered_from_to_pairs])

 if predecessor_of_already_covered:

 continue

 outlet_points.append(point)

 return outlet_points

def update_to_node_for_outlet_point_pair(new_to_node_value, outlet_point,

points):

 from_to_pair_for_outlet_point = (outlet_point.from_node,

outlet_point.to_node)

 for point in points:

40

 from_to_pair_for_point = (point.from_node, point.to_node)

 if from_to_pair_for_point == from_to_pair_for_outlet_point:

 point.to_node = new_to_node_value

def update_point_network(to_node, points, successor=None):

 points_with_correct_to_node = [point for point in points if

point.to_node == to_node]

 from_to_pairs = list(set([(point.from_node, point.to_node) for point in

points_with_correct_to_node]))

 for from_to_pair in from_to_pairs:

 points_between_same_nodes = [point for point in points

 if point.from_node == from_to_pair[0]

 and point.to_node == from_to_pair[1]]

 sorted_points_between_same_nodes =

sorted(points_between_same_nodes,

 key=lambda p:

p.n_draining_cells,

 reverse=True)

 if successor:

sorted_points_between_same_nodes[0].successors.append(successor)

successor.predecessors.append(sorted_points_between_same_nodes[0])

 for point_index, point in

enumerate(sorted_points_between_same_nodes[:-1]):

point.predecessors.append(sorted_points_between_same_nodes[point_index +

1])

 sorted_points_between_same_nodes[point_index +

1].successors.append(point)

 update_point_network(from_to_pair[0],

 points,

 successor=sorted_points_between_same_nodes[-

1])

def pair_points_and_catchments(points, catchments):

 for point in points:

 for catchment in catchments:

 if

shp_polygon(catchment.coordinates).contains(shp_point([point.x, point.y])):

 point.catchment_area = catchment

 catchment.points_within.append(point)

 break

def update_to_nodes_for_points_related_to_outlets(outlet_points,

list_of_list_of_points_to_update):

 for outlet_point_index, outlet_point in enumerate(outlet_points):

 for list_of_points in list_of_list_of_points_to_update:

 update_to_node_for_outlet_point_pair(-outlet_point_index - 1,

outlet_point, list_of_points)

41

def find_upstream_rain_gardens(start_point, required_raingarden_area,

allowed_points, building_buffer_polygons):

 rain_gardens = []

 current_catchment = start_point.catchment_area

 current_point = start_point

 next_point = current_point.predecessors[0]

 while (required_raingarden_area > 0

 and len(current_point.predecessors) == 1

 and next_point.catchment_area == current_catchment):

 current_point_available = any([(p.x, p.y) == (current_point.x,

current_point.y) for p in allowed_points])

 if not current_point_available:

 current_point = current_point.predecessors[0]

 next_point = current_point.predecessors[0] if

len(current_point.predecessors) > 0 else None

 continue

 subsequent_allowable_points = [current_point]

 while len(next_point.predecessors) == 1 \

 and next_point.predecessors[0].catchment_area ==

current_catchment \

 and any([(p.x, p.y) == (next_point.x, next_point.y) for p

in allowed_points]):

 subsequent_allowable_points.append(next_point)

 next_point = next_point.predecessors[0]

 if len(subsequent_allowable_points) > 1:

 # find polygon of raingarden

 rain_garden_polygon =

find_raingarden_polygon(subsequent_allowable_points,

required_raingarden_area,

building_buffer_polygons,

 rain_gardens)

 rain_gardens.append(rain_garden_polygon)

 required_raingarden_area -=

shp_polygon(rain_garden_polygon).area

 current_point = next_point

 if not len(next_point.predecessors) > 0:

 break

 next_point = current_point.predecessors[0]

 if required_raingarden_area <= 0:

 return rain_gardens, required_raingarden_area

 if len(current_point.predecessors) < 1:

 return rain_gardens, required_raingarden_area

 if len(current_point.predecessors) > 1:

 rain_gardens_from_predecessors = []

 remaining_area_from_predecessors = []

 for predecessor in current_point.predecessors:

 if len(predecessor.predecessors) < 1:

 continue

42

 total_draining_area = predecessor.get_upstream_draining_area()

 required_area_of_rain_garden =

min(calculate_area_of_rain_garden(total_draining_area),

required_raingarden_area)

 rain_gardens_from_predecessor, remaining_area_to_place =

find_upstream_rain_gardens(

 predecessor,

 required_area_of_rain_garden,

 allowed_points,

 building_buffer_polygons

)

 area_placed = required_area_of_rain_garden -

remaining_area_to_place

 required_raingarden_area -= area_placed

rain_gardens_from_predecessors.append(rain_gardens_from_predecessor)

remaining_area_from_predecessors.append(remaining_area_to_place)

 rain_gardens += [raingardens for predecessor_rgs in

rain_gardens_from_predecessors

 for raingardens in predecessor_rgs]

 elif not next_point.catchment_area == current_point.catchment_area\

 and len(next_point.predecessors) > 0:

 total_draining_area = next_point.get_upstream_draining_area()

 required_area_of_rain_garden =

min(calculate_area_of_rain_garden(total_draining_area),

required_raingarden_area)

 rain_gardens_from_predecessor, remaining_area_to_place =

find_upstream_rain_gardens(

 next_point,

 required_area_of_rain_garden,

 allowed_points,

 building_buffer_polygons

)

 area_placed = required_area_of_rain_garden -

remaining_area_to_place

 required_raingarden_area -= area_placed

 rain_gardens += rain_gardens_from_predecessor

 return rain_gardens, required_raingarden_area

def find_raingarden_polygon(subsequent_allowable_points,

 required_raingarden_area,

 building_buffer_polygons,

 previous_rain_gardens):

 max_distance = 8.0

 lower_catchment_area = 100.0

 catchment = subsequent_allowable_points[0].catchment_area

 if shp_polygon(catchment.coordinates).area < lower_catchment_area:

 return []

43

 line_segment = shp_line([(p.x, p.y) for p in

subsequent_allowable_points])

 raingarden_polygon = line_segment.buffer(max_distance).convex_hull

 raingarden_polygon =

raingarden_polygon.intersection(shp_polygon(catchment.coordinates))

 for preoccupied_polygons in [bbp.coordinates for bbp in

building_buffer_polygons] + previous_rain_gardens:

 if

raingarden_polygon.intersects(shp_polygon(preoccupied_polygons)):

 raingarden_polygon =

raingarden_polygon.difference(shp_polygon(preoccupied_polygons))

 if isinstance(raingarden_polygon, shp_multi):

 possible_raingarden_polygons = list(raingarden_polygon)

 for poly in possible_raingarden_polygons:

 if any([poly.contains(shp_point([p.x, p.y])) for p in

subsequent_allowable_points]):

 raingarden_polygon = poly

 break

 if isinstance(raingarden_polygon, shp_multi):

 return []

 if raingarden_polygon.area > 1.1*required_raingarden_area and

len(subsequent_allowable_points) > 2:

 polygon_based_on_one_point_less =

find_raingarden_polygon(subsequent_allowable_points[:-1],

 required_raingarden_area,

 building_buffer_polygons,

 previous_rain_gardens)

 if shp_polygon(polygon_based_on_one_point_less).area >=

required_raingarden_area:

 return polygon_based_on_one_point_less

 return mapping(raingarden_polygon)["coordinates"][0]

def place_rain_gardens_for_outlet_point(outlet_points,

allowed_rain_garden_points, building_buffer_polygons):

 all_rain_gardens = []

 all_remaining_area = []

 for outlet_point in outlet_points:

 total_draining_area = outlet_point.get_upstream_draining_area()

 required_area_of_rain_garden =

calculate_area_of_rain_garden(total_draining_area)

 rain_gardens, missing_area =

find_upstream_rain_gardens(outlet_point,

required_area_of_rain_garden,

allowed_rain_garden_points,

building_buffer_polygons)

 all_rain_gardens.append([rg for rg in rain_gardens if rg])

 all_remaining_area.append(missing_area)

 return all_rain_gardens, all_remaining_area

44

def find_required_drainage_area_for_point(point):

 all_points = point.get_tree()

 all_catchments = set([p.catchment_area for p in all_points])

 area_of_all_catchments = sum([shp_polygon(catchment.coordinates).area

for catchment in all_catchments])

 required_drainage_area =

calculate_area_of_rain_garden(area_of_all_catchments)

 return required_drainage_area

def place_green_roofs(buildings, raingardens, required_green_roof_area):

 green_roofs = []

 for building in buildings:

 roof_polygon = building.coordinates

 area_of_roof = shp_polygon(roof_polygon).area

 green_roof_polygon = roof_polygon

 while shp_polygon(green_roof_polygon).area >

required_green_roof_area*area_of_roof + 5.0:

 green_roof_polygon =

mapping(shp_polygon(green_roof_polygon).buffer(-0.1))["coordinates"][0]

 nearest_raingarden = sorted(raingardens, key=lambda rg:

shp_polygon(roof_polygon).distance(shp_polygon(rg)))[0]

 distance_to_nearest_raingarden =

shp_polygon(roof_polygon).distance(shp_polygon(nearest_raingarden))

 if distance_to_nearest_raingarden > 4.0:

 nearest_raingarden = None

 green_roofs.append(GreenRoof(green_roof_polygon,

nearest_raingarden))

 return green_roofs

def update_green_roofs_with_name_of_rain_garden_connections(green_roofs,

outlet_points, rain_gardens):

 rain_gardens_with_names = [(rg, "{}-{}".format(rg_list_i+1, rg_i+1))

 for rg_list_i, rg_list in

enumerate(rain_gardens)

 for rg_i, rg in enumerate(rg_list)]

 catchments_with_names = []

 for op_i, op in enumerate(outlet_points):

 op_name = str(op_i+1)

 catchments_for_op = list(set([p.catchment_area for p in

op.get_tree()]))

 for catchment in catchments_for_op:

 catchments_with_names.append((catchment.coordinates, op_name))

 for green_roof in green_roofs:

 if green_roof.rain_garden_connection is not None:

 for rain_garden, name in rain_gardens_with_names:

 if rain_garden == green_roof.rain_garden_connection:

 green_roof.rain_garden_connection = name

 break

 else:

 name_of_nearest_catchment = sorted(catchments_with_names,

45

 key=lambda

catchment_with_name:

shp_polygon(green_roof.coordinates).distance(shp_polygon(catchment_with_nam

e[0])))[0][1]

 green_roof.rain_garden_connection = name_of_nearest_catchment

def place_rain_gardens_on_site(input_path_to_rain_garden_points,

 input_path_to_drainage_line_points,

 input_path_to_catchment,

 input_path_to_buildings,

 input_path_to_buildings_with_buffer,

 ref_point,

 required_green_roof_ratio):

 points_rg = extract_points(input_path_to_rain_garden_points, ref_point)

 points_dl = extract_points(input_path_to_drainage_line_points,

ref_point)

 catchments = extract_polygons(input_path_to_catchment, ref_point)

 buildings = extract_polygons(input_path_to_buildings, ref_point)

 building_buffer_polygons =

extract_polygons(input_path_to_buildings_with_buffer, ref_point)

 pair_points_and_catchments(points_dl + points_rg, catchments)

 points_dl = [p for p in points_dl if p.catchment_area]

 points_rg = [p for p in points_rg if p.catchment_area]

 outlet_points = find_outlet_points(points_dl)

 update_to_nodes_for_points_related_to_outlets(outlet_points,

[points_dl, points_rg])

 total_catchment_area = sum([shp_polygon(catchment.coordinates).area for

catchment in catchments])

 required_area = calculate_area_of_rain_garden(total_catchment_area)

 for outlet_point in outlet_points:

 update_point_network(outlet_point.to_node, points_dl,

successor=None)

 all_rain_gardens, all_remaining_area =

place_rain_gardens_for_outlet_point(outlet_points,

points_rg,

building_buffer_polygons)

 all_rain_gardens_flat = [rg for rg_list in all_rain_gardens for rg in

rg_list]

 green_roofs = place_green_roofs(buildings,

 all_rain_gardens_flat,

 required_green_roof_ratio)

 update_green_roofs_with_name_of_rain_garden_connections(green_roofs,

outlet_points, all_rain_gardens)

 blue_polygons = [catchment.coordinates for catchment in

set([p.catchment_area for p in outlet_points[0].get_tree()])]

 yellow_polygons = [catchment.coordinates for catchment in

set([p.catchment_area for p in outlet_points[1].get_tree()])] if

len(outlet_points) > 1 else []

46

 green_polygons = [catchment.coordinates for catchment in

set([p.catchment_area for p in outlet_points[2].get_tree()])] if

len(outlet_points) > 2 else []

 red_polygons = [catchment.coordinates for catchment in

set([p.catchment_area for p in outlet_points[3].get_tree()])] if

len(outlet_points) > 3 else []

 plot_polygons_lines_and_points(red_points=5*[(p.x, p.y) for p in

outlet_points] + [(p.x, p.y) for p in points_rg],

 blue_points=[(p.x, p.y) for p in

points_dl],

 blue_polygons=blue_polygons + [rg for

rg_list in all_rain_gardens for rg in rg_list],

 yellow_polygons=yellow_polygons,

 green_polygons=green_polygons,

 red_polygons=red_polygons,

 gray_polygons=[b.coordinates for b in

buildings + building_buffer_polygons] * 2,

 white_green_polygons=[gr.coordinates for

gr in green_roofs],

 points_with_text=[((p.x - 5, p.y - 5),

p_i+1) for p_i, p in enumerate(outlet_points)] +\

[(representative_point(gr.coordinates), gr.rain_garden_connection) for gr

in green_roofs] +\

[(representative_point(rg), "{}-{}".format(rgl_i + 1, rg_i + 1)) for rgl_i,

rgl in enumerate(all_rain_gardens) for rg_i, rg in enumerate(rgl)]

)

 return outlet_points, all_rain_gardens, required_area,

all_remaining_area, green_roofs

plot-helper.py

import matplotlib

import matplotlib.patches

import matplotlib.pyplot as plt

from matplotlib.lines import Line2D

def plot_rain_garden_points(all_rain_gardens, catchments, points_dl,

buildings, buffered_buildings):

 all_rain_gardens_flattened = [rg for list_of_rg in all_rain_gardens for

rg in list_of_rg]

 plot_polygons_lines_and_points(green_polygons=[c.coordinates for c in

catchments],

 blue_polygons=[p for p in

all_rain_gardens_flattened if p],

 red_points=[(p.x, p.y) for p in

points_dl],

 red_polygons=[b.coordinates for b in

buildings + buffered_buildings])

def plot_polygons_lines_and_points(

 blue_polygons=None,

 blue_lines=None,

 blue_points=None,

47

 yellow_polygons=None,

 yellow_lines=None,

 red_polygons=None,

 red_lines=None,

 red_points=None,

 green_polygons=None,

 green_lines=None,

 gray_polygons=None,

 white_green_polygons=None,

 additional_polygons=None,

 points_with_text=None,

):

 lines_2d = []

 patches = [] if additional_polygons is None else additional_polygons

 if blue_polygons:

 for p in blue_polygons:

 polygon = matplotlib.patches.Polygon(p, True, alpha=0.4,

color="blue")

 patches.append(polygon)

 if red_polygons:

 for p in red_polygons:

 polygon = matplotlib.patches.Polygon(p, True, alpha=0.4,

color="red")

 patches.append(polygon)

 if yellow_polygons:

 for p in yellow_polygons:

 polygon = matplotlib.patches.Polygon(p, True, alpha=0.4,

color="yellow")

 patches.append(polygon)

 if yellow_lines:

 for line in yellow_lines:

 line_2d = Line2D(

 [p[0] for p in line], [p[1] for p in line], color="yellow",

linewidth=1

)

 lines_2d.append(line_2d)

 if green_polygons:

 for p in green_polygons:

 polygon = matplotlib.patches.Polygon(p, True, alpha=0.4,

color="green")

 patches.append(polygon)

 if green_lines:

 for line in green_lines:

 line_2d = Line2D(

 [p[0] for p in line], [p[1] for p in line], color="green",

linewidth=1

)

 lines_2d.append(line_2d)

 if gray_polygons:

 for p in gray_polygons:

 polygon = matplotlib.patches.Polygon(p, True, alpha=0.4,

color="gray")

 patches.append(polygon)

 if white_green_polygons:

 for p in white_green_polygons:

 polygon = matplotlib.patches.Polygon(p, True, color="green")

 patches.append(polygon)

 if blue_lines:

 for line in blue_lines:

 line_2d = Line2D(

 [p[0] for p in line], [p[1] for p in line], color="blue",

48

linewidth=1

)

 lines_2d.append(line_2d)

 if blue_points:

 for px, py in blue_points:

 lines_2d.append(

 Line2D(

 [px - 0.5, px + 0.5],

 [py - 0.5, py + 0.5],

 color="blue",

 linewidth=1,

)

)

 lines_2d.append(

 Line2D(

 [px - 0.5, px + 0.5],

 [py + 0.5, py - 0.5],

 color="blue",

 linewidth=1,

)

)

 if red_lines:

 for line in red_lines:

 line_2d = Line2D(

 [p[0] for p in line], [p[1] for p in line], color="red",

linewidth=1

)

 lines_2d.append(line_2d)

 if red_points:

 for px, py in red_points:

 lines_2d.append(

 Line2D(

 [px - 0.5, px + 0.5], [py - 0.5, py + 0.5], color="red",

linewidth=1

)

)

 lines_2d.append(

 Line2D(

 [px - 0.5, px + 0.5], [py + 0.5, py - 0.5], color="red",

linewidth=1

)

)

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ax.axis("auto")

 if points_with_text:

 for p, text in points_with_text:

 ax.text(p[0], p[1], text)

 for patch in patches:

 ax.add_patch(patch)

 for line in lines_2d:

 ax.add_line(line)

 plt.axis("equal")

 plt.show()

49

main.py

-*- coding: utf-8 -*-

import arcpy

import json

from point_catchment_family import place_rain_gardens_on_site,

find_required_drainage_area_for_point

from shapely.geometry import Polygon as shp_polygon

ref_point = [260985.0, 6652104.0]

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår

2019\\"

results = {}

for building_alternative in range(4, 15):

 print("Starting with {}...".format(building_alternative))

 infc_rg =

"ArcGIS_faktisk\\Resultat.gdb\\RG_potential{}_Model".format(building_altern

ative)

 infc_dl =

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipValuesModel".format(build

ing_alternative)

 infc_cat =

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_polygonModel".format(building_alternat

ive)

 infc_buildings =

"ArcGIS_faktisk\\Resultat.gdb\\buildings{}_projected".format(building_alter

native)

 infc_building_with_buffer =

"ArcGIS_faktisk\\Resultat.gdb\\BufferAroundBuildingsModel{}".format(buildin

g_alternative)

 output_results = place_rain_gardens_on_site(infc_rg,

 infc_dl,

 infc_cat,

 infc_buildings,

 infc_building_with_buffer,

 ref_point,

 0.4)

 outlet_points, rain_gardens, required_area_total, remaining_area,

green_roofs = output_results

 remaining_area = [round(area, 1) for area in remaining_area]

 required_area_pr_outlet_point =

[round(find_required_drainage_area_for_point(op), 1) for op in

outlet_points]

 results["Run {}".format(building_alternative)] =

{"required_total_raingarden_area": round(required_area_total, 1),

"sum_of_required_raingarden_area_pr_outlet_point":

sum(required_area_pr_outlet_point),

"sum_of_remaining_area": sum([area for area in remaining_area if area >=

0]),

50

"required_area_pr_outlet_point": required_area_pr_outlet_point,

"remaining_area_pr_outlet_point": remaining_area,

"rain_gardens_with_areas": ["{}-{}, area: {}".format(

 rg_for_op_i+1,

rg_i+1, round(shp_polygon(rg).area, 1))

 for rg_for_op_i,

rg_for_op in enumerate(rain_gardens)

 for rg_i, rg in

enumerate(rg_for_op)],

"green_roof_areas_with_connection": ["{}, area: {}".format(

gr.rain_garden_connection, round(shp_polygon(gr.coordinates).area), 1)

 for gr in

green_roofs]}

 print("Sum of remaining area: {}".format(sum([area for area in

remaining_area if area > 0])))

 print("Finished!\n\n")

print("_____\nFinal results")

print(json.dumps(results))

51

Appendix E – Fixed values from literature for
modelling input

SUDS Variables Description Other
design
considerati
ons

Numbers Source

Raingard
en

A_raingar
den

Surface area
of
raingarden
[m2]

Distance to
buildings >
1,5 m

Available area Paus, K.H., Braskerud, B.C., 2013.
Forslag til dimensjonering
 og utforming av regnbed for norske
forhold. Vann.

A_subcat Area of sub-
catchment
[m2]

Slope of raingarden
(5%, <20%)

Paus, K.H., Braskerud, B.C., 2013.
Forslag til dimensjonering
og utforming av regnbed for norske
forhold. Vann.

c Average
runoff
coefficient
for the
catchment [-
]

Buffer
distance to
roads <
30m, buffer
distance to
stram >30,
to buildings
>3m

Jia, H., Yao, H., Tang, Y., Yu, S.L.,
Zhen, J.X., Lu, Y., 2013.
Development of a multi-criteria
index ranking system for urban
runoff best management practices
(BMPs) selection. Environ. Monit.
Assess. 185, 7915–7933.
https://doi.org/10.1007/s10661-
013-3144-0

P Dimensionin
g
precipitatio
n (input for
modelling)

Precip input

h_max Height of
water table
when it goes
to overflow
[m]

0,15-0,30 m Paus, K.H., Braskerud, B.C., 2013.

Forslag til dimensjonering
 og utforming av regnbed for norske
forhold. Vann.

K_sat Hydraulic
conductivity
of filter
media [m/t]

(40 cm tjukt) K > 0,1
m/h

Paus, K.H., Braskerud, B.C., 2013.
Forslag til
dimensjonering og utforming av
regnbed for norske forhold. Vann.

t_r Dimensionin
g duration
of runoff
into the
raingarden
[t]
(time of
concentratio
n?)

Green
roof

ET = 4mm/
day in Oslo

Johannessen, B.G., Hanslin, H.M.,
Muthanna, T.M., 2017.
 Green roof performance potential in
cold and wet regions. Ecol. Eng. 106,
436–447.
https://doi.org/10.1016/j.ecoleng.20
17.06.011

ET

hydraulic cond > 0,6-
70mm/min
to avoid ponding

Johannessen, B.G., Muthanna, T.M.,
Braskerud, B.C., 2018.
 Detention and retention behavior of
four extensive green roofs in three

52

Nordic climate zones. Water
(Switzerland) 10, 1–23.
https://doi.org/10.3390/w10060671

A_roof Area
available for
green roof
[m2]

Slope < 10
%

Woods-Ballard, B., Kellagher, R.,
Woods Ballard, B.,
 Construction Industry Research and
Information Association, Great
Britain, Department of Trade and
Industry, Environment Agency, 2007.
The SUDS manual, Ciria, ….

Substrate
depth

Height of
substrate
[m]

0,10 m Johannessen, B.G., Hanslin, H.M.,

Muthanna, T.M., 2017.
Green roof performance potential in
cold and wet regions. Ecol. Eng. 106,
436–447.
https://doi.org/10.1016/j.ecoleng.20
17.06.011

Field
capacity

Storage = min 0,05 m Johannessen, B.G., Hanslin, H.M.,

Muthanna, T.M., 2017.
 Green roof performance potential in
cold and wet regions. Ecol. Eng. 106,
436–447.
https://doi.org/10.1016/j.ecoleng.20
17.06.011

Wilting
point

Permeab
le
cover

A_surface Surface area
of
permeable
cover [m2]

Permeabil
ity

Runoff coeff 0,40 Woods-Ballard, B., Kellagher, R.,

Woods Ballard, B.,
Construction Industry Research and
Information Association, Great
Britain, Department of Trade and
Industry, Environment Agency, 2007.
The SUDS manual, Ciria, ….

53

Appendix F – SUDS placement for all building
proposals

54

55

Appendix G – SUDS placements, numbered

56

57

58

59

60

61

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
iv

il
an

d
En

vi
ro

nm
en

ta
l E

ng
in

ee
ri

ng

M
as

te
r’

s
th

es
is

Guro Stokseth

Digitalising optimisation of early
phase urban stormwater planning

Master’s thesis in Bygg- og miljøteknikk
Supervisor: Tone Merete Muthanna and Erle Kristvik

June 2019

