
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
iv

il 
an

d 
En

vi
ro

nm
en

ta
l E

ng
in

ee
ri

ng

M
as

te
r’

s 
th

es
is

Guro Stokseth

Digitalising optimisation of early
phase urban stormwater planning

Master’s thesis in Bygg- og miljøteknikk
Supervisor: Tone Merete Muthanna and Erle Kristvik

June 2019





Guro Stokseth

Digitalising optimisation of early phase
urban stormwater planning

Master’s thesis in Civil and Environmental Engineering
Supervisor: Tone Merete Muthanna and Erle Kristvik
June 2019

Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering





Description of Master Thesis spring 2019 

 

Background 
Heavy urbanization and precipitation intensities are putting increased strain on existing stormwater 

systems worldwide. Consequently, many systems need upgrades that counteract these impacts and 

at the same time account for the uncertainties in future rainfall extremes caused by climate change. 

In Norway, policies and practice are leaning towards a system design that depend more on open, 

nature-based solutions (NBS) as alternative to traditional piped systems. Open, nature-based 

solutions add flexibility to future capacity needs and has positive social-environmental impacts, but 

they require surface area – a scarce resource in urban areas. One measure to secure area for open, 

nature-based solutions is to consider stormwater earlier in the planning process than what is usual 

practice in Norway. 

The Norwegian startup Spacemaker (https://spacemaker.ai/) is developing a software based on AI 

technology for generating and exploring building site proposals, given regulatory and physical 

constraints and preferences added by the developer. In addition to generating various site proposals, 

the tool provides more detailed insight of the proposals in the early phases of the planning process 

than manual methods do today. Adding stormwater as a layer to Spacemaker’s framework could help 

ensuring that stormwater is considered earlier in the planning process and hence facilitate 

implementation of open, nature-based solutions.  
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Research questions 

The objective of this research is to develop a methodology for assessing placement, size and 

combinations of SUDS digitally in early- phase urban planning. The master thesis aims to answer the 

following research questions:  

1. To what extent can the proposed methodology address the challenges in traditional 

approach to stormwater management? 

2. Which factors should be optimised for assessing and selecting SUDS configurations? 

3. What is the performance of the proposed methodology? 
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Thesis structure 

This master thesis is presented as a manuscript according to the requirements and structure of a 

research article. As NTNU’s vision “knowledge for a better future”, it is the author’s wish that this 

thesis and research be made available for whomever might find it useful. Therefore, an article 

structure is chosen to facilitate the study’s availability for an international audience. The thesis’ 

summary is written both in Norwegian and English. An extended Norwegian summary will also be 

presented in NKF’s (Norsk Kommunalteknisk Forening) journal Kommunalteknikk. 

This thesis is written in English as a part of the international projects BINGO and Klima2050. The 

manuscript will be submitted as a research article to the journal Water Research and is therefore 

structured based on the format guidelines provided by this journal. The master thesis is at this date 

accepted to be presented in a poster presentation at the Nova Tech- conference in Lyon, France in 

July 2019.  

The master thesis manuscript intended for censorship is somewhat more extensive than the 

academic journal manuscript. This choice was made based on the seeming necessity of covering the 

study’s methods to a satisfactory extent. A comprehensive appendix is also included in order to 

present parts of the study which are not included in the final journal manuscript.  

It should be noted that the methodology has been altered quite a bit through the course of the work 

with this thesis. Initially, the results from the presented programming procedure was to be further 

modelled and evaluated in a software called Urbis. However, due to computer problems and 

unsuccessful troubleshooting, the software has not been used, and thus the intended methodology 

has not been tested in this thesis. However, as the development of a methodology is the objective of 

this thesis, this initial method is described in chapter 2 Materials and methods. The modifications 

made to the method are briefly explained in chapter 2.5.1 Modified method. The study in this thesis 

has been executed by use of the modified method. 
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Summary (EN) 

Climate change and urbanisation is to a large extent causing the drainage systems to be insufficient 

which in turn leads to increased flooding in urban areas. The state of the art worldwide today to 

alleviate such flooding consists in using sustainable urban drainage systems (SUDS). Implementing 

such solutions proves, however, problematic, since the water management engineers typically enter 

the building process too late to influence the physical layout of major projects. In this paper, we 

examine a novel, numerical approach to early inclusion of drainage systems in such projects. 

Key factors for the efficiency of SUDS were identified through a literature review. These were used to 

develop a scoring system based on providing relative proximity to natural conditions. An optimisation 

routine was then developed with the objective of obtaining the highest possible score. The 

optimisation routine was scripted in python to obtain the best possible SUDS configurations. Eleven 

different building proposals for a fictitious development project on a real-life site in Oslo, Norway, 

were spatially analysed. SUDS were subsequently placed for each building proposal by using the 

optimising script.   

First and foremost, the results showed a significant variation in the potential for SUDS 

implementations for the different building proposals, ranging from little to considerable flood 

reduction. This implies that SUDS are highly context dependent. Secondly, the results show great 

potential to analyse a large number of building proposals and SUDS figuration quite efficiently 

through a simple script. This implies the applicability of such analysis early in development projects.    

The need to include SUDS in early urban planning seems clear. It is paramount in order to ensure that 

SUDS serve the much-needed resilience they have proved to provide. Through this research, a first 

step towards ensuring this has been made.  
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Samandrag (NO) 

Klimaendringar og urbanisering fører til at eksisterande dreneringssystem blir utilstrekkelege, noko 

som vidare leier til ein auka frekvens av urbane flaumar. State of the art for handtering av slike 

utfordringar består verden over i dag av å bruke såkalla berekraftige urbane dreneringssystem, eller 

Sustainable Urban Drainage Systems (SUDS). Implementeringa av slike løysingar har derimot vist seg 

å vere problematisk ettersom overvann- ingeniørar typisk blir innlemma i byggeprosessen for seint til 

å ha innverknad på det fysiske oppsettet av tomta. I denne oppgåva ser vi på ei ny, numerisk 

tilnærming til tidleg inkludering av dreneringssystem i slike byggeprosjekt. 

Nøkkelfaktorar for ytingsgrada til SUDS vart identifisert gjennom eit litteraturstudie. Desse faktorane 

vart så brukt til å utvikle eit skoringssystem basert på eit mål om å oppretthalde naturlege tilstandar. 

Ei optimaliseringsrutine vart vidare utvikla med mål om å oppnå høgast mogleg skoring. Denne 

optimaliseringa vart skriven i Python- kode for å oppnå best moglege SUDS- konfigurasjonar. Elleve 

ulike bygningsforslag for eit fiktivt byggeprosjekt på ei verkeleg tomt i Oslo, Noreg, vart romleg 

analysert. Deretter vart SUDS plassert for kvart enkelt bygningsforslag gjennom bruk av 

optimeringsskriptet. 

Resultata viser først og fremst ein betydeleg forskjell i SUDS- potensiale for dei ulike bygningsforslaga 

for tomta, med eit stort spenn i flaumhandteringspotensiale. Dette impliserer at SUDS er svært 

kontekstavhengige. For det andre viser resultata at med ei enkel kode kan ein på effektivt vis 

analysere mengder av bygningsforslag og/eller SUDS konfigurasjonar. Dette viser eit stort potensiale 

for å inkludere desse analysane tidleg i eit byggeprosjekt.  

Behovet for å inkludere SUDS tidleg i urban planlegging er tydeleg. Det er avgjerande for å sikre at 

SUDS yter den sårt trengte robustleiken dei har bevist å kunne sikre. Gjennom denne oppgåva har eit 

første steg mot denne sikringa vorte tatt.  
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urban stormwater planning 
Guro Stoksetha 

a. Department of civil and environmental engineering, Faculty of engineering, Norwegian 

University of Science and Technology (NTNU) 

ABSTRACT 1 

Climate change and urbanisation is to a large extent causing the drainage systems to be insufficient 2 

which in turn leads to increased flooding in urban areas. The state of the art worldwide today to 3 

alleviate such flooding consists in using sustainable urban drainage systems (SUDS). Implementing 4 

such solutions proves, however, problematic, since the water management engineers typically enter 5 

the building process too late to influence the physical layout of major projects. In this paper, we 6 

examine a novel, numerical approach to early inclusion of drainage systems in such projects. 7 

Key factors for the efficiency of SUDS were identified through a literature review. These were used to 8 

develop a scoring system based on providing relative proximity to natural conditions. An optimisation 9 

routine was then developed with the objective of obtaining the highest possible score. The 10 

optimisation routine was scripted in python to obtain the best possible SUDS configurations. Eleven 11 

different building proposals for a fictitious development project on a real-life site in Oslo, Norway, 12 

were spatially analysed. SUDS were subsequently placed for each building proposal by using the 13 

optimising script.   14 

First and foremost, the results showed a significant variation in the potential for SUDS 15 

implementations for the different building proposals, ranging from little to considerable flood 16 

reduction. This implies that SUDS are highly context dependent. Secondly, the results show great 17 

potential to analyse a large number of building proposals and SUDS figuration quite efficiently 18 

through a simple script. This implies the applicability of such analysis early in development projects.    19 

The need to include SUDS in early urban planning seems clear. It is paramount in order to ensure that 20 

SUDS serve the much-needed resilience they have proved to provide. Through this research, a first 21 

step towards ensuring this has been made.  22 

KEYWORDS 23 

Stormwater Management, SUDS, Urban Planning, Python, ArcMap 24 

1 INTRODUCTION 25 

Urban watersheds are characterised by high percentage of impervious areas, and only a small change 26 

in rainfall intensity can cause severe floods (Eckart et al., 2017). Climate change is inflicting rather 27 

severe intensity changes on such urban watersheds, leading to increased flooding in urban areas 28 

worldwide. A panel of experts established by the Norwegian government concluded that the costs of 29 

damages to the Norwegian society caused directly by stormwater, or by consequences imposed by 30 

stormwater, amount to a number between 0,16 to 0,3 billion Euros every year (Hodnesdal, 2018). 31 
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The Norwegian Federation for Engineering Consultancy Associations, Rådgivende Ingeniørers 32 

Forening (RIF), states that the current pipe network in Norway has neither the capacity nor the 33 

condition to handle the increased amounts of stormwater imposed by urbanisation and climate 34 

change (RIF, 2015).  35 

The main tendency today to alleviate such flooding consists in using surface based sustainable urban 36 

drainage systems (SUDS) (Eckart et al., 2018). These solutions add flexibility to future capacity needs 37 

and have shown to contribute positively to maintaining the natural hydrological cycle, as well as 38 

improving air-quality and eco-systems(Eckart et al., 2018, 2017; Ugarelli et al., 2017; Woods-Ballard 39 

et al., 2007). However, these solutions are highly context dependent. Several challenges are involved 40 

in using them: Firstly, they typically demand surface area, a scarce resource in urban areas. Secondly, 41 

SUDS’s performance is highly dependent on their topographic placement. Thirdly, the number of 42 

possible SUDS combinations is identified as a challenge (Eckart et al., 2018). In development projects, 43 

the current practice in Norway is to consider stormwater management after buildings, parking areas 44 

and other elements are considered (Oslo Kommune, 2013). This is limiting the possibility of obtaining 45 

optimal placement and sizing of SUDS. Eckart et. al states that a true comprehensive approach to 46 

SUDS planning would include concerns regarding water and ecology throughout the planning process 47 

(Eckart et al., 2018). 48 

However, through development of data science with the ability to handle, process and analyse big 49 

data, different software is emerging, introducing a nearly unlimited analytical capacity. By enabling 50 

us to assess thousands of potential SUDS- configurations, data science is introducing the possibility of 51 

a paradigm shift in stormwater management. Such an unlimited amount of possible solutions is 52 

challenging to evaluate manually. A scoring system could help automate the selection of qualified 53 

solutions. The objective of this research has therefor been to evaluate how SUDS can be optimised in 54 

terms of placement, size and combinations in early phase development projects, where the physical 55 

layout of building mass is still undecided.    56 

Sustainable urban development has in the past decade become the convention, and the amount of 57 

research on the subject is abundant. However, a research gap presents itself in terms of scale and 58 

timing. On one side, the research is small scale and focused upon optimising the technical 59 

components of the solutions (Johannessen et al., 2018, 2017; Paus et al., 2015). On the other side, 60 

the research is focused on optimising on a catchment scale, looking at whole districts under one 61 

(Kazak et al., 2018; Liu et al., 2016; Zhu et al., 2019). There is little research on optimisation of SUDS 62 

for a single site or development project. Both Jia et al. (2013) and Eckart et al. (2018) present 63 

optimisation on a site scale. These are, however retrofitting projects and do not assess SUDS prior to 64 

the physical layout of the property (Eckart et al., 2018; Jia et al., 2013). Little research is done on 65 

optimising SUDS as part of initial physical planning of a site.  66 

The literature outlines that traditional approach to stormwater management presents great 67 

challenges for the performance of SUDS. It is clear that stormwater management needs to be 68 

assessed earlier in the planning process (Oslo Kommune, 2013). Identified barriers for successful 69 

implementation are the complexity of SUDS (Eckart et al., 2017), their context dependency and 70 

consequently the failure to assess them early enough in the process to take these important 71 

characteristics into account (Eckart et al., 2018). The objective of this research is to develop a 72 

methodology for assessing placement, size and combinations of SUDS digitally in early- phase urban 73 

planning. 74 

In order to address this inquiry, we pose the following research questions: 75 
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1. To what extent can the proposed methodology address the challenges in traditional 76 

approach to stormwater management? 77 

2. Which factors should be optimised for assessing and selecting SUDS configurations? 78 

3. What is the performance of the proposed methodology? 79 

2 MATERIAL AND METHODS 80 

The method presented in this chapter is the initially intended method of this thesis. Due to technical 81 

computer problems late in the process, this method could not be executed. Nevertheless, it is 82 

deemed important to explain the intended methodology, as this has been an objective of the 83 

research. The modified method, which was the one executed in this research, is briefly explained in 84 

chapter 2.5.1.   85 

In order to answer the research questions, a literary review was performed, laying the basis for the 86 

development of a scoring system. Furthermore, a spatial analysis was performed for 11 building 87 

proposals for the model site. An optimising script was then made to place, size and combine SUDS for 88 

each building proposal. Finally, the rainfall response of the SUDS configurations would be tested 89 

through modelling 90 

 91 

 92 

Figure 1- Overview over initially intended method 93 

 94 

In Norway, the three- stage approach to stormwater management has been adopted and is 95 

frequently used as a guideline. It is based on the principal of local handling of stormwater and refers 96 

to three levels of solutions depending on the rainfall intensity and volume. The first stage applies to 97 

every-day events for which the objective should be to retain and infiltrate the water. The second 98 

stage refers to medium events and the aim is to detain the water delaying the flood peak and 99 

subsequent runoff response. The third stage for the large events leading to urban floods in which 100 
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cases the aim should be to secure safe flood paths (Norsk Vann, 2005). It should be noted that the 101 

research reported on in this article, is with this Norwegian convention in mind.  102 

2.1 SITE DESCRIPTION 103 

The site used for the demo project in this research is the urban area of Marienlyst in Oslo, Norway 104 

(Figure 2). Specifically, the property of NRK, the Norwegian Broadcasting. This site was chosen 105 

because it has already been regulated as a residential area. In addition, the municipality of Oslo has a 106 

quite progressive policy for stormwater management, demanding that all rainwater be handled 107 

locally (Oslo Kommune, 2017). Therefor it was considered interesting to work with the demands of 108 

the municipality of Oslo as an objective for the SUDS configuration. Note should be taken, however, 109 

that the building project herein is completely fictive. 110 

Marienlyst lies at around 70 meters above sea level in the north-west of Oslo. The specific site is 111 

41 033,5 m2 and is sloped at around -7% to the south. Considering the objective of this research 112 

being focused on the development of a general methodology, the varying climate of the area has not 113 

been considered. The ground water level in the area is at 8m, and thus does not need to be 114 

considered for this specific research. The soil conditions in the area is either of low permeability or 115 

not registered. However, the municipality of Oslo states that these soil maps should not be given 116 

great reliance, as condition may have been greatly altered due to construction in the area and/or 117 

effects of trees, roots and other biological mechanisms (Oslo Kommune, 2017).  118 

In this research, 11 building proposals are used as input data to the model site. Each proposal is 119 

subject to a spatial analysis and subsequent placement of SUDS. Furthermore, the various proposals 120 

are scored based on their ability to facilitate SUDS.  121 

 122 

 123 

Figure 2- (a) Current flow conditions of the site, (b) flow condition for pre-development conditions 124 
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2.2 LITERARY REVIEW 125 

A literary review has been performed in order to get an overview of the state of research for the 126 

subject. Furthermore, one specific objective of the literary review was to obtain the key factors 127 

affecting the performance, size and placement of SUDS. The literary review consists of two parts. The 128 

first part is a comprehensive review performed in the fall of 2018, prior to the actual research. The 129 

second part, performed in the spring of 2019, is an extension of the initial review.  130 

The initial literary research of 2018 was performed using the Norwegian search engine Oria with the 131 

following input keywords; LID, optimisation, stormwater, SuDS, urban planning, WSUDS, urban flood. 132 

Several academic articles were qualitatively evaluated in order to obtain the most relevant ones for 133 

this study. As this study is part of an emerging field in a novel form of technology, the most recent 134 

articles were considered most important. Eckart et al. (2017) have reviewed the current state of 135 

research considering optimisation, modelling, monitoring and maintenance of SUDS and this was 136 

considered a particularly valuable source as it provided relatively fresh information on the state of 137 

research. A start set for the literary review was obtained through backwards snowballing, meaning 138 

investigation of the bibliography of the most relevant articles (Wohlin, 2014). According to Wohlin 139 

(2014), a good start set is diverse, covering several different publishers, years and authors (Wohlin, 140 

2014). The start set for this research consisted of 9 articles and two design guidelines regarding 141 

SUDS. The reviewed papers had a publishing time span of 9 years, ranging from 2010 to 2018. These 142 

sources also provide a geographical span, which in turn ensures a span in consideration of climate, 143 

topography and other factors affecting SUDS.  144 

Through the initial literary review, the following SUDS were chosen for further investigation: Green 145 

roofs, rain gardens, permeable covers, swales and open detention basins. This selection was based on 146 

their proven ability to handle water volumes in urbanised areas as well as the amount of 147 

documentation and research on their design, construction and use (Woods-Ballard et al., 2007). In 148 

addition, it was considered important that the chosen SUDS were well documented in terms of 149 

design and performance for different contexts as this can give great variations in the focal points of a 150 

study and thus affect the factors considered or mentioned.  151 

The second part of the literary review was executed in the form of a scoping review by following five 152 

steps: (1) Identify the research question, (2) Identify relevant studies, (3) Study selection, (4) Charting 153 

the data, (5) Collating, summarising and reporting the results (Arksey and O’Malley, 2005). In order 154 

to identify relevant studies, Google Scholar was used to perform forward snowballing, meaning 155 

identifying new papers through citation (Wohlin, 2014). The 2017 Eckart review was considered 156 

particularly relevant and through forward snowballing, 54 additional articles were further evaluated. 157 

The evaluation process consisted of three steps of inclusion or exclusion; firstly, looking at the titles, 158 

secondly looking at the abstract and thirdly checking the place and context of the citation. The final 159 

set of literature consists of 16 articles obtained through the steps described above as well as 9 160 

articles provided by professionals and professors involved in the research.  161 

2.3 SPATIAL ANALYSIS 162 

The objective of this part of the study was to model how drainage lines were affected by the 163 

placement of 11 different building proposals. Furthermore, ArcMap was used to model the areas 164 

suitable for SUDS placements. The results of this suitability analysis were then used as input for a 165 

python code placing raingardens and green roofs on the site. The use of python is deemed rather 166 

important in this research for the purpose of facilitating the possibility of assessing thousands of 167 

building proposals. A potential for digital SUDS optimisation is evident in the current development of 168 

software. By using python, the possibility of utilizing this potential is preserved.   169 
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ArcMap 10.6.1 is a geographical information system (GIS) developed for the purpose of creating 170 

maps, perform spatial analysis and manage geographic data (esri, n.d.). In this research, ArcMap is 171 

used for the purpose of modelling the hydrological response of the catchment to the various building 172 

proposals. Though ArcMap demands a license for desktop use, it was deemed appropriate for this 173 

study, as it is known to the researcher.   174 

Python was downloaded from www.python.org. By using the integrated development environment 175 

(IDE) PyCharm, different virtual environments could be created for different parts of the study. A 176 

virtual environment was created to process python codes from ArcMap and was thus using Python 2 177 

which is the python version demanded by ArcMap.   178 

2.3.1 Construction of digital elevation model containing buildings 179 

In order to model the hydrological response to the various building configurations, a digital elevation 180 

model (DEM) had to be manipulated to contain the buildings. This was done using Model Builder in 181 

ArcMap. The steps for obtaining such a model is visually presented in Appendix A and described in 182 

detail below:  183 

1. Import of DEM: A digital elevation model for the area was imported from 184 

www.hoydedata.no in TIFF format with a solution of 1m in the projection ETRS 1989 UTM 185 

Zone 33. 186 

2. Making a table of building polygons: The 11 building proposals were imported to ArcMap. In 187 

the attribute table of each building proposal, an additional field was added by choosing Add 188 

Field. This field was given the name Alt_nr for all 11 proposals. The entire column was given 189 

the number of the corresponding building proposal. All building proposals were initially given 190 

as one single polygon, but by use of the dissolve tool by Alt_nr, each building within the 191 

proposal was represented by an individual polygon. All the building proposals were then 192 

added to the same list by use of Append by feature class.  193 

3. Adding buildings to DEM: In order to manipulate the DEM to contain buildings, the following 194 

procedure was performed for each building proposal by use of the tool Iterate Feature 195 

Selection in Model Builder:  196 

a. Rasterization: Polygons were converted to a raster dataset by use of the tool 197 

Polygon to Raster.  198 

b. Reclassification: The tool Reclassify was used to assign a value of 0 to the part of the 199 

newly made rasters with the initial value of NoValue, as this could potentially give 200 

problems in the following steps.  201 

c. Adding buildings to DEM: The DEM was manipulated by adding a height of 200m to 202 

the DEM within the boundary of each polygon in the building proposal. This was 203 

done using the tool Plus.  204 

4. Manipulated DEM: The model was validated and run, resulting in 11 different manipulated 205 

DEMs containing each of the 11 building proposals. Moving forward, these new rasters were 206 

used for modelling purposes.  207 

2.3.2 Modelling drainage lines in DEM containing buildings 208 

In order to model the drainage lines for each of the 11 DEMs, the ArcHydro- tools were used. 209 

Specifically, the 10 steps of terrain pre-processing were executed. The few alterations made to the 210 

standard procedure are marked with a star. The procedure was executed in the following order: 211 

Fill sinks*  → Flow direction → Flow accumulation → Stream definition** → Stream segmentation → 212 

Catchment Grid Delineation → Catchment Polygon Processing → Drainage Line Processing → Adjoint 213 

Catchment Processing → Drainage Points Processing 214 

http://www.python.org/
http://www.hoydedata.no/
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*Fill sinks is done to fill local surface depressions in the DEM to avoid interrupting flow lines when 215 

calculating main flow paths. Because the DEMs were manipulated to contain buildings, it was 216 

important to hatch the box for Fill Threshold. This was set to 50m to avoid filling the 200m drop in 217 

between the buildings, which could be interpreted as depressions.  218 

**For the given analysis, we were interested in the details of streamlines within the site boundary. 219 

Therefore, the number of cells to initiate a stream was set to 1400 cells. 220 

The result of the hydrological analysis was a set of 11 DEMs representing the hydrological response 221 

for the 11 different building proposals. The results can be seen in Appendix B.  222 

2.3.3 Creating a SUDS potential- model  223 

In order to be able to decide the placement of SUDS for the various building proposals, it was 224 

necessary to analyse the manipulated DEMs to see where potential for SUDS placement lay. In order 225 

to capture water, rain gardens need to lie along the drainage lines of the property. However, not all 226 

parts of the drainage lines are potential placements for rain gardens. A set of analyses were 227 

performed in ArcMap in order to identify all the points along the drainage lines which could fulfil all 228 

the demands for good rain garden placements. This was done by using model builder for one of the 229 

building proposals. The order and the complete model is found in Appendix C. The steps of the model 230 

are explained in the following: 231 

By using the tool Intersect, the intersection points between the drainage lines and the site limit were 232 

obtained. These were considered important for the evaluation of how the building proposals affect 233 

the drainage lines and thus the flood paths. The number of outlet points from the site also equals the 234 

number of directions in which SUDS configurations need to be placed in order to reach the objective 235 

of no runoff from the property.  236 

The sub- catchments of the site were obtained through the hydrological analysis described in 3.4.3. 237 

In the rain garden potential- model, the catchment raster was converted to polygons by using the 238 

tool Raster to Polygon. This was done to obtain the area of each sub- catchment, which required a 239 

polygon form. Obtaining these areas was considered important in order to calculate the demanded 240 

rain garden area within each sub-catchment. Furthermore, the area of these sub-catchments could 241 

give information about the size of the area draining to each of the outlet points identified through 242 

the process described in 2.4.1.  243 

The drainage lines were cut to the extent of the site limit using the tool Clip. In order to be able to 244 

analyse the placements along the drainage lines, points were placed with a 2 m distance along the 245 

course of all the drainage lines using the tool Generate Points Along Lines. Furthermore, these points 246 

were given values extracted from the flow accumulation layer using the tool Extract Values to Points. 247 

The values given to the points were the rastervalue, which was the number of cells draining to the 248 

given point.  249 

The site limit polygon was converted to a polyline using the tool Polygon to polyline. In that way, a 250 

buffer of 2 m could be generated on the inside of the site limit using the tool Buffer. This was done to 251 

make sure the rain gardens were not placed too close to the site limit. The Buffer- tool was also used 252 

to generate a buffer around the building polygons. The buffer was given an extent of 2 m to account 253 

for the demanded distance between buildings and raingardens (Paus and Braskerud, 2013). The points 254 

along the drainage lines that were situated in the buildings buffer zone or the site limit buffer zone 255 

were then erased using the Erase- tool. The points remaining along the various drainage lines were 256 

thus the points available for placement of rain gardens.  257 
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The rain garden potential- model, created in ArcMap as described above, was exported to a python 258 

script and processed in PyCharm. The code was then looped to run for all 11 building proposals. The 259 

result was 11 ArcMap- projects showing only the points available for rain gardens along the drainage 260 

lines. The points available for rain garden placements were imported to the python code as 261 

“RG_potential”. The total drainage line points- series was also imported to the python code for 262 

further analysis. 263 

2.3.4 Script for placement of SUDS 264 

Following the analysis performed in ArcMap and translated to Python code, a new script was created 265 

with the objective of placing and dimensioning rain gardens on the site. The script consisted of two 266 

steps described below. The complete script can be found in Appendix D.  267 

The purpose of the first step of the script was to identify the drainage line connections and 268 

catchment affiliation for each point along the drainage lines:  269 

1. Identify outlet points from the property: All points, both available for rain gardens and not, 270 

were sorted by descending number of cells draining to the given point. The points were then 271 

evaluated based on their “to- and from- nodes”. If the evaluated point was a predecessor of 272 

an already evaluated point, in terms of flow direction, it would not be evaluated. If the 273 

evaluated point had the highest rastervalue of all the points with the same node pair, it was 274 

identified as an outlet point from the propoerty.  275 

2. Grouping points into drainage line networks: All points, available for rain gardens or not, 276 

were sorted into drainage line networks. This was done by evaluating their to- from node as 277 

well as their catchment affiliation. Each point was given the information about who’s 278 

successor it was and who was its predecessor. In that way, for each point along a drainage 279 

line, one can obtain all its upstream points and associated catchment.  280 

The purpose of the second step of the script was to place and size rain gardens along the drainage 281 

lines. In order to handle all the water running off from the site, a script analysing the various 282 

drainage line networks from the outlets point moving in the counter flow direction was created. 283 

Hence, the following procedure was scripted to analyse all draining line networks for each site. This 284 

was done in the following manner:   285 

1. Calculate demanded raingarden area: For each outlet point, the demanded raingarden area 286 

was defined as 9 % of its upstream catchment area in line with the recommendations found 287 

in literature (Magnussen et al., 2015). Each point, moving counter-stream from the outlet 288 

point, was then analysed considering the following:  289 

a. Is the point included in the allowed points- list?  290 

b. Is the next point included in the allowed points list?  291 

It was assumed that a raingarden would not be placed unless there were two or more 292 

points in a row available, as the distance between points were only 2 m.  293 

2. Make raingarden polygon: If two points in a row or more are available, the creation of a 294 

polygon was initiated. The polygon was given an extent of 8 m on each side of the drainage 295 

line. For each available point along the drainage line this was performed, resulting in a set of 296 

coordinates which was then scripted to create a raingarden polygon. In any case where part 297 

of the raingarden- polygon crossed a building’s buffer zone or a sub-catchment boundary, 298 

the polygon was clipped to the extents of these boundaries. If there was room for the 299 

demanded raingarden area, the raingarden was placed. If there was not room for the 300 

demanded raingarden area, the largest possible raingarden was placed and defined, and the 301 
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analysis proceeded upstream. The demanded are of raingarden was now updated, reduced 302 

by the area of the raingarden placed.  303 

When the analysis arrived at a crossroads in the drainage line network, it was scripted to 304 

proceed along the line that has the largest associated catchment. It would subsequently go 305 

back and analyse the other arm of the crossroads. 306 

3. Stop when demanded area of rain garden is reached:  The analysis was scripted to break 307 

when the demanded area of the rain gardens was reached, or when all points in a drainage 308 

line network were analysed.  309 

4. Placing green roofs: The amount of green roof was given as an input percentage value. 310 

Initially this value was set to 40% and thus 40% of each roof was assigned an extensive green 311 

roof. Each roof was assigned a connection to the closest raingarden, so long as the distance 312 

was less than 4 meters. This was done as former research has shown these types of 313 

treatment trains to be very efficient (Kristvik et al., 2019).  314 

The script gave the following output for each building proposal: 315 

• The number of outlet points from the site. And for each outlet point: 316 

o It’s corresponding draining area 317 

o Number of raingardens, including individual areas 318 

o Number of green roofs, including individual areas 319 

o Which raingardens the various green roofs were connected to  320 

2.4 MODELLING RAINFALL RESPONSE FOR SUDS CONFIGURATIONS 321 

The newly developed software, Urbis, was to be used for modelling purposes. The software can 322 

model rainfall response for stand- alone SUDS as well as for combinations of these. The various SUDS 323 

are represented in terms of boxes representing either storage or substrate. The software takes a 324 

rainfall as input and outputs the rainfall response and overflow for the given SUDS configuration.   325 

The resulting SUDS- configurations from the ArcMap analysis and Python- script were to be used as 326 

input for the Urbis- modelling. The inputs for raingardens and green roofs were given fixed values 327 

based on literature, with exception of area. An overview of the fixed valued obtained from literature 328 

is found in Appendix E. Hence, the only variables for the modelling procedure were the number and 329 

combinations of SUDS, their placement and their areas. The rainfall chosen for modelling was a 330 

particularly challenging rainfall event which occurred in Oslo on the 5th of august 2015. As the model 331 

site is situated in Oslo, this event was deemed appropriate for the purposes of this research.  332 

The results were to be evaluated with regards to the output and given a score for water quantity 333 

control. The results would further be used as feedback to improve both the scoring system and the 334 

python script for SUDS placements. The scoring system in question is presented in chapter 2.5.  335 

2.5 SCORING SYSTEM  336 

In order to make the different SUDS configurations comparable, it was considered necessary to 337 

develop a scoring system. The procedure to develop a scoring system presented by Jia et al. (2013) 338 

was used as an inspiration. The first step was to develop key criteria categories for which a level of 339 

index factors within each category would be selected (Jia et al., 2013). By developing a ranking 340 

mechanism that integrated every index factor, we could then obtain a score to compare the various 341 

SUDS configuration.  342 
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For this research, the following key criteria categories were chosen: (1) Resilience, (2) Water quantity 343 

control and (3) Other benefits. All the key criteria categories are given weight points depending on 344 

their impact on the performance of SUDS. These impact factors were initially set to 1, in order to 345 

better evaluate the result of each factor more clearly. These impact factors can also be altered at a 346 

later point in order to put emphasis on whichever criteria might be in focus for the given project. 347 

Within each key criteria category, different index factors were given points based on their 348 

documented effect or benefit for SUDS performance or other desired qualities. 349 

For resilience, the SUDS and SUDS- configurations were ranked based on their performance 350 

documented in the literature (Jia et al., 2013; Kristvik et al., 2019, 2018). They were then given points 351 

based on their placement in the ranking in order to give the most beneficial combination or 352 

configuration the highest value.  353 

For water quantity control, the SUDS configurations were given scores based on their modelled 354 

rainfall response. Following the modelling procedure in Urbis, the result for each SUDS configuration 355 

was analysed and compared to each other and to the goal of no overflow, and subsequently ranked 356 

and given a score. 357 

The score within the third category is adopted from Jia et al. (2013), where the score is a sum of 358 

points given for three sub-categories; rainwater capture and reuse, ecological benefits and aesthetic 359 

benefits (Jia et al., 2013). In this evaluation, raingardens are given a higher score than green roofs 360 

both for rainwater capture and aesthetic benefits, whereas the ecological benefits are given the 361 

same score for the two SUDS.   362 

 363 

2.6 LIMITATIONS 364 

The focal point of this research has been the development of a methodology. The study is therefore 365 

limited to optimising the placement, size and combination of two types of SUDS, namely raingardens 366 

and green roofs. As the objective of the research is the methodology, practical aspects of 367 

implementation and maintenance, as well as aesthetical considerations, are not assessed. 368 

The model site is simplified to a homogenous land cover around the buildings. We do not consider 369 

pathways, playgrounds, parking places etc. Furthermore, the model site is sloped less than 15%, 370 

which is the demand for the implementation of functional raingardens, and is thus exempting us 371 

from considering slope throughout the optimisation (Jia et al., 2013). The soil conditions are not a 372 

part of the optimisation as the soil maps are deemed to inaccurately represent the actual conditions 373 

in the ground, which may have altered due to construction and biological activity in the ground (Oslo 374 

Kommune, 2017). 375 

2.6.1 Modified method 376 

Due to computer related obstacles, the presented method could not be performed, specifically the 377 

modelling procedure in Urbis. This has led to certain modifications which were made in order to have 378 

results to show for and to discuss. A flow chart for the modified method is shown in figure 3. 379 

As modelling results have not been obtained for the SUDS configurations, the scores given for water 380 

quantity control in this research are given qualitatively, based on the results derived through the 381 

python code. The score is given based on the individual proposal’s ability to provide enough surface 382 

area for raingardens. Provided the assumptions made in the development of a SUDS potential model 383 

are correct, the score represents a ranking of the ability to handle water quantity. It should, however, 384 
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be noted that a modelling procedure of the rainfall response of the various configurations would be 385 

valuable in order to confirm this ranking.  386 

Furthermore, the intended feedback from Urbis to the optimisation routine and the scoring system is 387 

compromised, which significantly alters the intended methodology. The possibility of looping Urbis 388 

results with the python code, and thus optimising SUDS placement is not performed. The python 389 

code developed to place, and size SUDS is thus a deterministic one, meaning it will give the same 390 

result each time. This is both a result of the lack of a loop with Urbis as well as raingardens being the 391 

only SUDS considered for placement on the surface. In order to make a stochastic optimisation 392 

routine, that would demand a variable, such as the placement of buildings, a larger number of SUDS 393 

or varying preferences as input from a modelling procedure. The term optimisation used in the title 394 

should therefore in the following be understood as a mere optimisation of early phase planning 395 

rather than the optimisation of SUDS.  396 

 397 

 398 

 399 

Figure 3- Flow chart for modified method 400 

In the following, all results, discussions and conclusions are based on the modified method.  401 

3 RESULTS  402 

This section is a mere presentation of the results obtained through the methods described in chapter 403 

2 and will be further discussed in chapter 4. It should be noted that the results presented in this 404 

chapter are with regards to the assumptions presented throughout the article.   405 

3.1 LITERARY REVIEW 406 

One of the objectives of performing a literary review was to identify factors affecting the 407 

performance of the chosen SUDS in terms of their ability to delay flood peaks and handle stormwater 408 

volume. Initially, all factors mentioned as important for the performance of SUDS were noted 409 
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without further evaluation. The next step was to evaluate the identified key factors and further 410 

categorise them into groups. It was quickly established that some of the factors gave answers to the 411 

question of placement whereas others gave answers to the question of size.  412 

Based on this, the factors were sorted into three main categories according to the discernment of the 413 

authors; placement factors, sizing factors and other design considerations. By having all the factors 414 

categorised it was easier to get an overview over overlapping terms and these were either clearly 415 

separated by distinct terms or combined in one single term, depending on the physical property they 416 

were dependent on. The scheme was then completed as an overview of the key factors identified 417 

through the literary review for each of the selected SUDS. The scheme was named the SUDS selection 418 

aid.  419 

Type of 
consideration 

Flood paths Raingarden Open 
detention 
basin 

Green 
roof 

Permeable 
cover 

Swale 

Placement 
factors 

Runoff volume, 
streamlines, 
topography 

Catchment 
characteristics, 
depth available, 
draining area, Ksat, 

soil conditions, 
topography  

Draining area, 
depth available, 
soil conditions, 
streamlines, 
topography 

Climate Catchment 
characteristics, 
Ksat, soil 
conditions, 
topography 

Climate, depth 
available, Ksat, Soil 
conditions, 
topography 

Sizing factors Available area, 
runoff volume 

Available area, 
Catchment 
characteristics, Ksat, 

evapotranspiration, 
runoff volume  

Available area, 
interception, 
runoff volume 

Available 
area, 
evapotrans
piration, 
design rain, 
loading 
capacity of 
building 

Available area, 
ground stability, 
Ksat, runoff 
volume, traffic 
load 

Available area, 
catchment 
characteristic, 
evapotranspiratio
n, runoff volume 

Other design 
considerations 

 Accessible for 
maintenance, 
distance to building 
foundation, inflow 
velocity 

Climate Hight of 
roof, slope, 
need to be 
planned at 
the time of 
building 
design 

Avoid large silt 
loads/vegetation 
cover on adjacent 
area, should be 
downslope from 
buildings 

Interception, land 
use, difficult in 
dense urban areas 

Table 1- The SUDS selection aid presents the key factors for each type of SUDS derived through a literary study 420 

3.2 SPATIAL ANALYSIS  421 

The spatial analysis consisted of the modelling of drainage lines and the placement of SUDS for each 422 

building configuration. The results showed considerable differences between the building proposals, 423 

both regarding resulting drainage lines and SUDS potential.  424 

3.2.1 Modelling of drainage lines 425 

The modelling of drainage lines showed a considerable variation in how water flowed through the 426 

sites as a response to the various building proposals. In Figure 4, the notable differences of drainage 427 

line response is illustrated by displaying the corresponding drainage lines for building proposal 2 and 428 

7.  For proposal 2 the buildings are hindering the natural flow to the south, resulting in two outlet 429 

points further up on the property, whereas for building proposal 7, all water from the property is 430 

crosses the site boundary through a single point in the south. Comparing these results to the flow 431 

conditions presented in figure 2 shows that the results for proposal 7 comes close to natural flow 432 

conditions whereas the result for building proposal 2 more mirrors the current conditions of the site.  433 
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 434 

Figure 4- Resulting drainage lines for building proposal 2 (left) and building proposal 7 (right). 435 

The alteration of drainage lines can also be evaluated by looking the resulting number of outlet 436 

points from the property for a given proposal. The number of outlet points indicates the number of 437 

directions in which SUDS must be placed in order to achieve the goal of no runoff from the property. 438 

As can be seen from table 2 the number of outlet points varies from 1 to 4 between the building 439 

proposals, which is a considerable difference.   440 

The drainage lines for all building proposals can be found in Appendix B.  441 

3.2.2 Placement of raingardens 442 

The results of the python script for initial placement of rain gardens showed a great variety in the 443 

ability to facilitate enough raingarden area as presented in table 2. In line with the demand for a 444 

raingarden area equal to 9% of the drainage area, only three building proposals were able to 445 

accommodate this demand. In the remaining eight proposals, the raingarden placement potential 446 

varied greatly, and the building proposal with the lowest performance considering raingarden 447 

placement left 96,5 m2 of raingarden area unplaced. The difference between the various building 448 

proposals is significant and should be noted for further evaluation. Figure 5  shows the resulting plot 449 

of alternative 7, which accommodates the demand for raingarden area, and alternative 2, which is 450 

the building proposal furthest from meeting the demand.  451 

 452 
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 453 

Figure 5- SUDS plot for building proposal 2 (a), which was the situation farthest from facilitating enough surface area for the 454 
demanded raingarden area, and building proposal 7 (b), which successfully facilitated enough surface area for raingardens 455 

 456 

3.2.3 Placement of green roofs 457 

In this research, all buildings were provided with green roofs. All building proposals were able to 458 

accommodate the beneficial connection between green roofs and raingarden, though not in all sub-459 

catchments. However, the amount of connections made varied between 9 and 17 connections, which 460 

is a considerable difference.   461 

Building 
proposal 

Number of 
outlet points 

Number of 
raingardens 

Number of 
green roofs 

Number of 
GR- RG 

connections 

Remaining 
raingarden 
area [m2] 

1 4 17 28 13 67,4 

2 3 19 26 13 96,5 

3 3 17 28 14 89,5 

4 2 16 28 16 0 

5 4 17 30 15 36,6 

6 3 9 27 9 53 

7 1 13 28 9 0 

8 2 19 23 12 0 

9 3 21 27 16 31,2 

10 3 16 23 12 92 

11 4 17 34 17 51,3 

Table 2- An overview of the number of outlet points, raingardens, green roofs and raingarden-green roof connections made. 462 
The last column shows the remaining raingarden area that the corresponding building proposal failed to facilitate surface 463 
area for. 464 

Plots for SUDS placement of all building proposals can be found in Appendix F. A numbered plot, 465 

showing a numbering system of raingardens, green roofs and their connections can be found in 466 

Appendix G.   467 
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3.3 SCORING SYSTEM 468 

The score for the index factors within each key criteria category is presented below. However, the 469 

water quantity control was qualitatively scored and is not given a general score here. The resulting 470 

score for each building proposal’s SUDS configuration can be found in table 4, chapter 3.3.1. The 471 

manner in which the system was developed is described in chapter 2.5 along with the procedure of 472 

obtaining the individual key criteria scores.  473 

 474 

SUDS/configuration Resilience Other benefits Water quantity  
control 

    
GR 1 9 N/A 

RG 1,5 12 N/A 

2 x RG 
 

2 N/A N/A 

2 x RG w/ 2 Ksat 2,5 N/A N/A 

Max score, Smax 3,5 12 N/A 

Table 3- Scoring system showing the score for each index factor within each key criteria category 475 

The resulting score within each key criteria category was normalized using the following equation: 476 

𝑓𝑗 =  
∑ 𝑆𝑖𝑛

𝑖=1

𝑆𝑚𝑎𝑥,𝑗
 477 

Equation 1 478 

Where,  479 

 𝑓𝑗 is the score for the jth key criteria category 480 

 𝑆𝑖 is the score for the ith index factor 481 

 𝑆𝑚𝑎𝑥,𝑗 is the highest obtainable score for the jth key criteria category  482 

Each of the SUDS configurations obtained through optimisation could then be given a total score 483 

using the following equation:  484 

𝑋𝑗 =  ∑ 𝑒𝑖 ∗ 𝑓𝑖𝑗, j = [1, 2, 3, 4]   

4

𝑖=1

 485 

Equation 2 486 

Where, 487 

 𝑋𝑗 is the score for the SUDS configuration connected to outlet point j 488 

 𝑒𝑖 is the weight factor for the ith key criteria category 489 

 𝑓𝑖𝑗 is the score within the ith key category for the jth SUDS configuration 490 
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It should be noted that the terms SUDS configuration is used for the configuration of all SUDS within 491 

one sub-catchment of the site. The number of sub- catchments equals the number of outlet points 492 

from the site. The final score for the site will be the sum of the scores for each sub-catchment, 493 

weighted by the sub-catchment’s fraction of the total site area, using the following equation:  494 

𝑆𝑡𝑜𝑡,𝑘 =
∑ 𝑋𝑗 ∗𝑛

𝑗=1 𝑊𝑗

𝑛𝑗
, 𝑘 = 1, 2, 3, … . , 11 495 

Equation 3 496 

Where,  497 

 𝑆𝑡𝑜𝑡,𝑘   is the total score for the kth building proposal’s SUDS configuration 498 

 𝑋𝑗   is the score for the SUDS configuration connected to outlet point j 499 

 𝑊𝑗 is the jth sub-catchment’s fraction of the total site area 500 

 𝑛𝑗 is the total number of outlet points  501 

 502 

3.3.1 Resulting score of SUDS configurations 503 

 504 

Building 
proposal 

Number of 
outlet 
points 

Remaining 
raingarden 
area [m2] 

Resilience 
score 

Other 
benefits 

score 

Water 
quantity 

score 

Score 
 

1 4 67,4 0,9 0,9 0,3 2,10 

2 3 96,5 0,94 0,94 0 1,88 

3 3 89,5 0,93 0,93 0,2 2,06 

4 2 0 0,94 0,94 1 2,88 

5 4 36,6 0,91 0,90 0,6 2,41 

6 3 53 0,94 0,94 0,4 2,28 

7 1 0 0,94 0,94 1 2,88 

8 2 0 0,92 0,92 1 2,84 

9 3 31,2 0,93 0,93 0,7 2,56 

10 3 92 0,93 0,93 0,1 1,96 

11 4 51,3 0,91 0,91 0,5 2,32 

Table 4 - Resulting score for the SUDS configuration of each building proposal as well as scores within each key criteria 505 
category 506 

By use of the presented scoring system, the SUDS configuration for each building proposal was given 507 

a score. The scores range from 1,88 to 2,88. Assessing the various key criteria categories, it is evident 508 

that the category that contributes most to the distinction of the total score is the water quantity 509 

score. The scores within resilience and other benefits present a smaller variety.  510 
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4 DISCUSSION 511 

In this article, a methodology to automatize the placement and dimensioning of SUDS and SUDS 512 

combination has been presented. In this section the results are discussed in light of the research 513 

questions.  514 

4.1 COMPUTER PROGRAMMING POTENTIAL 515 

The need for SUDS is clearly stated in the literature (Eckart et al., 2018; Ugarelli et al., 2017; Woods-516 

Ballard et al., 2007) and is now also a demand in the municipality of Oslo (Oslo Kommune, 2017). In 517 

Norway, SUDS are traditionally considered late in the planning process, but clear guidelines now 518 

state that they should be considered earlier (Oslo Kommune, 2013). However, the complexity of 519 

SUDS has been identified as a barrier for implementation of such solutions (Eckart et al., 2017). 520 

Furthermore, it has been questioned if it is even feasible to analyse the many possible configurations 521 

of SUDS for a site (Eckart et al., 2018). Given this complexity, simple trial- and- error approaches are 522 

deemed inappropriate for the purpose of SUDS planning (Zhang and Chui, 2018). However, the 523 

complexity that computer programming can handle seems to surpass that of SUDS, according to the 524 

research reported on in this article. In this research, we have been able to create a general script, 525 

applicable for other sites and situations, with the ability to calculate the need for raingarden area as 526 

well as placing both raingardens and green roofs on the site. For this specific research, only 11 527 

building proposals were assessed, it should however be noted that the script could have been run for 528 

a much higher number of building proposals. This would more clearly illustrate the time saving 529 

potential of the methodology.  530 

Though the methodology developed in this research is not a comprehensive one in the sense that it 531 

does not include all types of SUDS, it clearly shows the potential for digitalisation of stormwater 532 

planning. By simply assessing the impact of various building proposals on the drainage lines, we can 533 

say something about a building proposals suitability for SUDS. Through a spatial analysis, the 534 

alternation of drainage lines has been illustrated thereby offering a way to improve the traditional 535 

approach to stormwater management; building proposals with a negative impact on the flood 536 

situation can be rejected at an early stage, thus saving both time and money.  537 

The methodology presented in this article is a simple one, demanding little input, but is still providing 538 

valuable information about placement of buildings and SUDS. SUDS are highly context dependent, 539 

meaning that correct placement and construction is paramount in order to secure their function. By 540 

use of this methodology, we can ensure that areas suitable for SUDS are secured at an early stage 541 

when assessing all their demands is an actual possibility. In that way we can help ensure that SUDS 542 

perform the much-needed resilience they have proved to provide.  543 

Assessing the SUDS selection aid obtained through the literary review in this research, it seems 544 

evident that there are many rules for the implementation of SUDS, and that many key factors 545 

coincide for researches across continent boundaries. There are both clear rules, guidelines and 546 

desires for placement, dimensioning and combinations of SUDS. None of which are too complex to 547 

assess in a script. Translating the planning and dimensioning of SUDS to a script has proved 548 

challenging, but is, however, possible. Such a script will only execute the concrete assignments it has 549 

been given, meaning desires and guidelines need to be scripted in a way that holds for a general 550 

situation. This is a time demanding task but is nevertheless feasible according to the research 551 

conducted.  552 
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As this research only concerns two types of SUDS, assessing all SUDS would, no doubt, increase the 553 

complexity of the scrip considerably. On the other hand, making a general script for the optimisation 554 

of SUDS is a one-time effort which in turn exempts us from having to face the complexity of SUDS 555 

each time stormwater management is assessed. For each time such a script is used, it can be 556 

evaluated and updated and thus continuously improve. 557 

4.2 KEY FACTORS FOR EARLY ASSESSMENT OF SUDS 558 

In the development of the SUDS selection aid, three main categories for key factors were obtained: 559 

Placement factors, Sizing factors and Other design considerations. Some terms were overlapping for 560 

two or more categories as they had an impact on multiple aspects of the SUDS. Initially, the factors 561 

for placement and size were considered the most important ones. However, the key factors included 562 

in Other design considerations turned out to be very valuable for the purpose of this research as they 563 

gave more information about SUDS relations to surrounding assets, such as buildings.   564 

Computer programming can handle an enormous detail level. It can be discussed, however, whether 565 

assessing all possible factors is necessary. Considering the significant variations in potential for SUDS 566 

placement obtained through the relatively simple script created in this research, the improvements 567 

that can be made through only a few steps seem notable. In the development of a script for SUDS 568 

placement, we were not able to take all key factors into account. However, by assess in only a few 569 

factors, we are able to give some information about which building proposals are more suitable than 570 

others. The results presented in table 2 shows that the building proposals resulting in the lowest 571 

numbers of outlet points, are the proposals that best facilitates raingarden area. We may not be able 572 

to say that the proposed SUDS configurations for the successful proposals are sufficient, but we can, 573 

however, say something about which proposals are likely to have a negative impact on the drainage 574 

lines and the SUDS potential. In other words, in order to facilitate an improvement of stormwater 575 

management, only the consideration of a few factors may be enough.  576 

The three steps in the three- stage approach to stormwater management are presented, quite 577 

intuitively, based on the severity of the rainfall events. The first step concerns the management of 578 

everyday rainfall events while the third step concerns securing safe flood paths. This implies a way of 579 

thinking concerning stormwater managements. Reviewing the results in this research, however, it 580 

could be argued that a reversion of this three- stage approach would be more desirable in terms of 581 

stormwater planning. The SUDS selection aid shows that securing safe flood paths does not depend 582 

upon many factors. Additionally, safe flood paths are related to the nature of the drainage lines, 583 

which is shown in this research to be strongly affected by the physical layout of a development 584 

project. Given their relatively simple nature, the potential to assess some aspect of drainage lines 585 

before the physical layout of a major project is decided, seems clear. More important than simplicity 586 

and potential is the importance of securing safe flood paths for a flood event in urban areas.  587 

Furthermore, regarding SUDS implementation, it is evident through the results of this research that 588 

the potential flood reducing effect of this early assessment is significant. In this research where only 589 

11 building proposals are assessed, the variation in SUDS potential reflected in the ability to facilitate 590 

raingarden area is considerable. Maybe the complete design and dimensioning of SUDS at an early 591 

stage in the process is a little bit down the road, however, a simple assessment early on could give 592 

very valuable information and save both time and money. This indicates that with some rules or 593 

incentives to where buildings should be placed with regards to drainage line, could strongly enhance 594 

the current practice and thus the flood safety of a development project. Accepting the cost of such 595 
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an early assessment should be easy to accept as damage to property and ecosystems as a result of 596 

urban floods often has proved to exceed the cost of stormwater management (Eckart et al., 2018). 597 

4.3 PERFORMANCE OF THE PROPOSED METHODOLOGY 598 

The concrete results of this research, being the SUDS placement, size and combinations for 599 

Marienlyst is not as important as what these results imply. The results clearly imply that the physical 600 

layout of a property has severe influence on the drainage lines and flood paths as well as potential 601 

for SUDS implementation. More importantly, the results imply that it actually is possible to assess 602 

this in a simple way at an early stage. The results from the placement of rain gardens for 11 different 603 

building proposals showed considerable difference in the ability to facilitate enough surface area for 604 

raingardens. This indicates the importance of assessing SUDS potential before the physical layout of 605 

the site is determined. In urban areas where the damage potential in a flood event is large, securing 606 

the stormwater handling ability of a site is of grave importance.   607 

An important result is that most of the building proposals are able to accommodate the beneficial 608 

configurations of green roof and raingarden, resulting in a rather small variation of score for this key 609 

criteria category. However, by adding the score for water quantity control, the image is quite another 610 

as the distinction between the building proposals is much clearer. A development of the scoring 611 

system to mirror the site’s actual ability to handle stormwater would be beneficial. The weight 612 

factors of the key criteria categories could be altered in order to achieve this. Based on the results 613 

and objective of this research, the water quantity control key factor criteria should be weighted 614 

heavier than resilience and other benefits. The reliability of the resulting score would however have 615 

been higher if the score was given based on modelling results. Nevertheless, a scoring system is 616 

deemed useful in order to optimise SUDS configurations.  617 

The qualitative score of water quantity control is limited in the way that it is only assessed based on 618 

the ability to accommodate 9% of the drained area for raingarden area. It can be expected that the 619 

introduction of green roofs will reduce the need for raingarden area. This would be beneficial to 620 

illustrate in a modelling study. However, limited or not, this research does clearly illustrate that the 621 

building proposals have a great impact on a site’s ability to provide sufficient surface area for 622 

stormwater management.  623 

Due to time limitation, cost has not been a part of the optimisation and scoring system in this 624 

research. It should however be noted, that cost should also be a part of the optimisation. It is of the 625 

author’s opinion important that such a score should account both for structural and maintenance 626 

costs but should not fail to assess the costs saved due to avoided flood incidents.  627 

The performance of the methodology presented in this research may be evaluated in terms of the 628 

concrete results, it should however be noted that the implications brought forth through these 629 

results are of a much higher value. The research has shown that scripting placement and size of 630 

raingardens, green roofs and their interconnection is possible. The suggested methodology can 631 

clearly be improved. However, the general script created in this research resulted in quite telling 632 

variation of SUDS placement and flood security performance. Providing the assumptions made in the 633 

development of the script is correct, the importance of assessing SUDS early in a development 634 

project is clearly shown through the greatly varying results in SUDS potential for the eleven 635 

proposals.  636 
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5 CONCLUSION 637 

The results obtained through this research shows both the potential that lies in early assessment of 638 

SUDS as well as the negative consequences that failing to do so might lead to. A simple assessment of 639 

drainage lines and building placement appears to have a considerable impact on the SUDS potential 640 

for a development project, and consequently the ability to handle stormwater sufficiently, avoid 641 

floods and save money.   642 

Through this research, a change of mindset is also implied, as the complexity of SUDS has been 643 

proved to be manageable through computer programming. The development of new software is 644 

certainly providing a possibility for digitalising stormwater management and optimisation of SUDS. 645 

Furthermore, a call to change of mindset has been suggested through the reversion of the three- 646 

stage approach to stormwater management. The most severe flood incidents, which are the most 647 

damaging ones with regards to property and human health, seem to be the least complex ones to 648 

assess, and should therefore be at the front of the line when planning for stormwater management.  649 

The scoring system developed through this research is limited to the two SUDS assessed. Future work 650 

should seek to develop a comprehensive scoring system, providing a score that can more accurately 651 

mirror the performance of SUDS configurations with regards to water quantity control. This could be 652 

of assistance in an optimisation routine where the objective could be to obtain the highest possible 653 

score.  654 

For future work, the presented script could be developed and improved by use of genetic algorithm. 655 

In genetic algorithms, good solutions are identified in a population of solutions and used to make 656 

new, better solutions, whereas bad solutions are eliminated. In that way, computer learning can be 657 

used to improve such scripts at a high rate (Deb, 1999). This type of algorithm could be used for 658 

designing software to optimise SUDS and could also be utilized to obtain guidelines for developers in 659 

situations where the use of such a software is not an option. 660 

For processes where the assessment of multiple building proposals is not a possibility, guidelines 661 

should be put forth for the placement of buildings with regards to drainage lines and SUDS 662 

placement. These guidelines could then be used by architects, landscapers or others with an impact 663 

on the physical layout of a major project. This would improve the current practice and ensure a 664 

better approach to stormwater management at an early stage.  665 

A small step towards optimising SUDS configurations has been made through this research. The 666 

potential in developing this methodology is clearly stated. Any attempts to further develop or use the 667 

results in this research are more than welcome.  668 
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Appendix A- DEM manipulation model 
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Appendix B- Resulting drainage lines for all building 
proposals 
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Appendix C – Spatial analysis model 
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Appendix D – Python scripts 
 

arcgis_analysis.py 

# -*- coding: utf-8 -*- 

# -------------------------------------------------------------------------

-- 

# arcgis_analysis.py 

# Created on: 2019-05-14 10:03:23.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: arcgis_analysis-2 <Cat4> <build_limit> <DrainageLine4> <Fac4> 

<fixed_building_alt4> <Cat4_polygonModel> <BoundaryIntersection4Model> 

<DrainageLine4_ClipValuesModel> <RG_potential4_Model> 

<BufferAroundBuildingsModel4>  

# Description:  

# This is a model performing all the analysis we need, after the 

hydrological analysis/modelling is performed 

# -------------------------------------------------------------------------

-- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår 

2019\\" 

arcpy.env.overwriteOutput=True 

 

 

for ii in range(4, 15): 

    i = str(ii) 

 

    # Script arguments 

    print("Starting with {}\nSetting parameter values...\n".format(i)) 

    Cat = "ArcGIS_faktisk\\Layers\\cat{}".format(i) 

 

    build_limit = "ArcGIS_faktisk\\build_limit\\build_limit.shp" 

 

    DrainageLine = 

"ArcGIS_faktisk\\avrenningslinjer_garra_original.gdb\\DrainageLine{}".forma

t(i) 

 

    Fac = "ArcGIS_faktisk\\Layers\\fac{}".format(i) 

 

    fixed_building_alt = 

"ArcGIS_faktisk\\alternatives\\alt{}\\fixed_building_alt{}.shp".format(i, 

i) 

 

    Cat_polygonModel = 

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_polygonModel".format(i) 

 

    BoundaryIntersectionModel = 

"ArcGIS_faktisk\\Resultat.gdb\\BoundaryIntersection{}Model".format(i) 

 

    DrainageLine_ClipValuesModel = 

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipValuesModel".format(i) 
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    RG_potential_Model = 

"ArcGIS_faktisk\\Resultat.gdb\\RG_potential{}_Model".format(i) 

 

    BufferAroundBuildingsModel = 

"ArcGIS_faktisk\\Resultat.gdb\\BufferAroundBuildingsModel{}".format(i) 

 

    # Local variables: 

    Cat_ClipModel = 

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_ClipModel".format(i) 

    DrainageLine_clipModel = 

"ArcGIS_faktisk\\Resultat.gdb\\DranageLine{}_clipModel".format(i) 

    DrainageLine_ClipPointsModel = 

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipPointsModel".format(i) 

    build_limit_line_model = 

"ArcGIS_faktisk\\Resultat.gdb\\build_limit_line_model" 

    build_limit_buffer = "ArcGIS_faktisk\\Resultat.gdb\\build_limit_buffer" 

    Drainage_line_from_site_boundary = 

"ArcGIS_faktisk\\Resultat.gdb\\Drainage_line_from_site_boundary{}".format(i

) 

    fixed_buildings_projected = 

"ArcGIS_faktisk\\Resultat.gdb\\fixed_buildings{}_projected".format(i) 

 

    # Process: Intersect 

    print("Intersection between DrainageLine and build_limit") 

    arcpy.Intersect_analysis("{} #;{} #".format(DrainageLine, build_limit), 

BoundaryIntersectionModel, "ALL", "", "POINT") 

 

    # Process: Clip 

    print("Clipping Cat to build_limit") 

    arcpy.Clip_management(Cat, "260797,731117598 6651867,76572595 

261153,825933687 6652129,89853315", Cat_ClipModel, build_limit, "128", 

"ClippingGeometry", "NO_MAINTAIN_EXTENT") 

 

    # Process: Raster to Polygon 

    print("RasterToPolygon for clipped catchment") 

    arcpy.RasterToPolygon_conversion(Cat_ClipModel, Cat_polygonModel, 

"SIMPLIFY", "Value", "SINGLE_OUTER_PART", "") 

 

    # Process: Clip (2) 

    print("Clipping DrainageLine within build_limit") 

    arcpy.Clip_analysis(DrainageLine, build_limit, DrainageLine_clipModel, 

"") 

 

    # Process: Generate Points Along Lines 

    print("Generating points along DrainageLine within build_limit") 

    arcpy.GeneratePointsAlongLines_management(DrainageLine_clipModel, 

DrainageLine_ClipPointsModel, "DISTANCE", "2 Meters", "", "") 

 

    # Process: Extract Values to Points 

    print("Extracting values from Fac to DrainageLine_ClipPointsModel") 

    arcpy.CheckOutExtension("Spatial") 

    arcpy.gp.ExtractValuesToPoints_sa(DrainageLine_ClipPointsModel, Fac, 

DrainageLine_ClipValuesModel, "NONE", "VALUE_ONLY") 

    arcpy.CheckInExtension("Spatial") 

 

    # Process: Polygon To Line 

    print("Converting build_limit to line around polygon") 

    arcpy.PolygonToLine_management(build_limit, build_limit_line_model, 

"IDENTIFY_NEIGHBORS") 

 

    # Process: Buffer 
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    print("Creating buffer around site boundary") 

    arcpy.Buffer_analysis(build_limit_line_model, build_limit_buffer, "3 

Meters", "FULL", "ROUND", "NONE", "", "PLANAR") 

 

    # Process: Erase (2) 

    print("Erasing drainage line points within site limit buffer zone") 

    arcpy.Erase_analysis(DrainageLine_ClipValuesModel, build_limit_buffer, 

Drainage_line_from_site_boundary, "") 

 

    # Process: Project 

    print("Projecting building polygons") 

    arcpy.Project_management(fixed_building_alt, fixed_buildings_projected, 

                             

"PROJCS['ETRS_1989_UTM_Zone_33N',GEOGCS['GCS_ETRS_1989',DATUM['D_ETRS_1989'

,SPHEROID['GRS_1980',6378137.0,298.257222101]],PRIMEM['Greenwich',0.0],UNIT

['Degree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER[

'False_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Centra

l_Meridian',15.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_O

rigin',0.0],UNIT['Meter',1.0]]", 

                             "ETRS_1989_To_WGS_1984", 

                             

"PROJCS['WGS_1984_UTM_Zone_32N',GEOGCS['GCS_WGS_1984',DATUM['D_WGS_1984',SP

HEROID['WGS_1984',6378137.0,298.257223563]],PRIMEM['Greenwich',0.0],UNIT['D

egree',0.0174532925199433]],PROJECTION['Transverse_Mercator'],PARAMETER['Fa

lse_Easting',500000.0],PARAMETER['False_Northing',0.0],PARAMETER['Central_M

eridian',9.0],PARAMETER['Scale_Factor',0.9996],PARAMETER['Latitude_Of_Origi

n',0.0],UNIT['Meter',1.0]]", 

                             "NO_PRESERVE_SHAPE", "", "NO_VERTICAL") 

 

    # Process: Buffer (2) 

    print("Creating buffer zone around buildings") 

    arcpy.Buffer_analysis(fixed_buildings_projected, 

BufferAroundBuildingsModel, "2 Meters", "FULL", "ROUND", "NONE", "", 

"PLANAR") 

 

    # Process: Erase 

    print("Erasing DrainageLine_ClipValuesModel within buffer zone around 

buildings") 

    arcpy.Erase_analysis(DrainageLine_ClipValuesModel, 

BufferAroundBuildingsModel, RG_potential_Model, "") 

 

    print("Finished with {}\n\n".format(i)) 

 

extract_features_from_layer.py 

import arcpy 

from shapely.geometry import Polygon as shp_poly 

 

 

class Point: 

    def __init__(self, x, y, from_node, to_node, arc_id, n_draining_cells): 

        self.x = x 

        self.y = y 

        self.from_node = from_node 

        self.to_node = to_node 

        self.arc_id = arc_id 

        self.n_draining_cells = n_draining_cells 

 

        self.catchment_area = None 

        self.predecessors = [] 
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        self.successors = [] 

 

    def get_tree(self): 

        return [self] + [point for list_of_points in [p.get_tree() for p in 

self.predecessors] for point in list_of_points] 

 

    def get_upstream_draining_area(self): 

        tree = self.get_tree() 

        all_catchments = set([point.catchment_area for point in tree]) 

 

        return sum([shp_poly(catchment.coordinates).area for catchment in 

all_catchments]) 

 

 

class ArcgisPolygon: 

    def __init__(self, coordinates): 

        self.coordinates = coordinates 

 

        self.points_within = [] 

 

 

class GreenRoof: 

    def __init__(self, coordinates, rain_garden_connection): 

        self.coordinates = coordinates 

        self.rain_garden_connection = rain_garden_connection 

 

 

def extract_polygons(infc, ref_point=None): 

    if not ref_point: 

        ref_point = [0., 0.] 

 

    polygons = [] 

    for row in arcpy.da.SearchCursor(infc, ["SHAPE@"]): 

        for part in row[0]: 

            coordinates = [] 

 

            for pnt in part: 

                if pnt: 

                    coordinates.append([pnt.X - ref_point[0], pnt.Y - 

ref_point[1]]) 

                else: 

                    # If pnt is None, this represents an interior ring 

                    print("Interior Ring.\nNo polygon added.") 

            polygons.append(ArcgisPolygon(coordinates)) 

    return polygons 

 

 

def extract_points(infc, ref_point=None): 

    if not ref_point: 

        ref_point = [0., 0.] 

 

    points = [] 

    for row in arcpy.da.SearchCursor(infc, ["SHAPE@", "from_node", 

"to_node", "arcid", "RASTERVALU"]): 

        for pnt in row[0]: 

            points.append(Point(pnt.X - ref_point[0], pnt.Y - ref_point[1], 

row[1], row[2], row[3], row[4])) 

 

    return points 

plot_features_from_layer.py 
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# -*- coding: utf-8 -*- 

 

import arcpy 

from extract_features_from_layer import extract_polygons, extract_points 

from plot_helper import plot_polygons_lines_and_points as plot 

 

 

ref_point = [260985.0, 6652104.0] 

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår 

2019\\" 

 

 

def test_buildings_plot(): 

    infc = "ArcGIS_faktisk\\Resultat.gdb\\buildings12_projected" 

 

    buildings = extract_polygons(infc, ref_point) 

    plot(blue_buildings=[buildings_polygons.buildings_coordinates for 

buildings_polygons in buildings]) 

 

 

def test_polygon_plot(): 

    infc = "ArcGIS_faktisk\\Resultat.gdb\\Cat12_polygonModel" 

 

    catchments = extract_polygons(infc, ref_point) 

    plot(blue_polygons=[polygon.coordinates for polygon in catchments]) 

 

 

def test_point_plot(): 

    infc_blue = "ArcGIS_faktisk\\Resultat.gdb\\RG_potential12_Model" 

    infc_red = 

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine12_ClipValuesModel" 

 

    blue_points = extract_points(infc_blue, ref_point) 

    red_points = extract_points(infc_red, ref_point) 

    plot(blue_points=[[point.x, point.y] for point in blue_points], 

red_points=[[point.x, point.y] for point in red_points]) 

 

 

def test_polygon_and_line_plot(): 

    infc = "ArcGIS_faktisk\\Resultat.gdb\\Cat12_polygonModel" 

    infc_blue = "ArcGIS_faktisk\\Resultat.gdb\\RG_potential12_Model" 

    infc_red = 

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine12_ClipValuesModel" 

    infc_yellow = "ArcGIS_faktisk\\Resultat.gdb\\buildings12_projected" 

 

    catchments = extract_polygons(infc, ref_point) 

    blue_points = extract_points(infc_blue, ref_point) 

    red_points = extract_points(infc_red, ref_point) 

    buildings = extract_polygons(infc_yellow, ref_point) 

 

    # plot(yellow_polygons=[buildings_polygons.coordinates_buildings for 

buildings_polygons in buildings], 

    #      green_polygons=[polygon.coordinates for polygon in catchments], 

    #      blue_points=[[point.x, point.y] for point in blue_points], 

    #      red_points=[[point.x, point.y] for point in red_points], 

    #      ) 

 

 

test_polygon_and_line_plot() 
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Point_catchment_family.py 

# -*- coding: utf-8 -*- 

from extract_features_from_layer import extract_polygons, extract_points, 

GreenRoof 

from shapely.geometry import Point as shp_point, Polygon as shp_polygon, \ 

    MultiPolygon as shp_multi, \ 

    LineString as shp_line, mapping 

 

from plot_helper import plot_polygons_lines_and_points 

 

 

def representative_point(polygon): 

    shapley_representative_point = 

shp_polygon(polygon).representative_point() 

    x = shapley_representative_point.x 

    y = shapley_representative_point.y 

 

    return [x, y] 

 

 

def calculate_area_of_rain_garden(draining_area, size_percentage=0.09): 

    return draining_area*size_percentage 

 

 

def sort_points_by_number_of_draining_cells(points): 

    sorted_points = sorted(points, key=lambda p: p.n_draining_cells, 

reverse=True) 

    return sorted_points 

 

 

def find_outlet_points(points): 

    outlet_points = [] 

    covered_from_to_pairs = set() 

 

    sorted_points = sort_points_by_number_of_draining_cells(points) 

 

    for point in sorted_points: 

        from_to_pair = (point.from_node, point.to_node) 

 

        already_covered = from_to_pair in covered_from_to_pairs 

        if already_covered: 

            continue 

 

        covered_from_to_pairs.add(from_to_pair) 

 

        predecessor_of_already_covered = any([pair[0] == point.to_node for 

pair in covered_from_to_pairs]) 

        if predecessor_of_already_covered: 

            continue 

 

        outlet_points.append(point) 

 

    return outlet_points 

 

 

def update_to_node_for_outlet_point_pair(new_to_node_value, outlet_point, 

points): 

    from_to_pair_for_outlet_point = (outlet_point.from_node, 

outlet_point.to_node) 

    for point in points: 
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        from_to_pair_for_point = (point.from_node, point.to_node) 

 

        if from_to_pair_for_point == from_to_pair_for_outlet_point: 

            point.to_node = new_to_node_value 

 

 

def update_point_network(to_node, points, successor=None): 

    points_with_correct_to_node = [point for point in points if 

point.to_node == to_node] 

    from_to_pairs = list(set([(point.from_node, point.to_node) for point in 

points_with_correct_to_node])) 

 

    for from_to_pair in from_to_pairs: 

        points_between_same_nodes = [point for point in points 

                                     if point.from_node == from_to_pair[0] 

                                     and point.to_node == from_to_pair[1]] 

 

        sorted_points_between_same_nodes = 

sorted(points_between_same_nodes, 

                                                  key=lambda p: 

p.n_draining_cells, 

                                                  reverse=True) 

 

        if successor: 

            

sorted_points_between_same_nodes[0].successors.append(successor) 

            

successor.predecessors.append(sorted_points_between_same_nodes[0]) 

 

        for point_index, point in 

enumerate(sorted_points_between_same_nodes[:-1]): 

            

point.predecessors.append(sorted_points_between_same_nodes[point_index + 

1]) 

            sorted_points_between_same_nodes[point_index + 

1].successors.append(point) 

 

        update_point_network(from_to_pair[0], 

                             points, 

                             successor=sorted_points_between_same_nodes[-

1]) 

 

 

def pair_points_and_catchments(points, catchments): 

    for point in points: 

        for catchment in catchments: 

            if 

shp_polygon(catchment.coordinates).contains(shp_point([point.x, point.y])): 

                point.catchment_area = catchment 

                catchment.points_within.append(point) 

                break 

 

 

def update_to_nodes_for_points_related_to_outlets(outlet_points, 

list_of_list_of_points_to_update): 

    for outlet_point_index, outlet_point in enumerate(outlet_points): 

        for list_of_points in list_of_list_of_points_to_update: 

            update_to_node_for_outlet_point_pair(-outlet_point_index - 1, 

outlet_point, list_of_points) 
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def find_upstream_rain_gardens(start_point, required_raingarden_area, 

allowed_points, building_buffer_polygons): 

    rain_gardens = [] 

    current_catchment = start_point.catchment_area 

 

    current_point = start_point 

    next_point = current_point.predecessors[0] 

 

    while (required_raingarden_area > 0 

           and len(current_point.predecessors) == 1 

           and next_point.catchment_area == current_catchment): 

        current_point_available = any([(p.x, p.y) == (current_point.x, 

current_point.y) for p in allowed_points]) 

 

        if not current_point_available: 

            current_point = current_point.predecessors[0] 

            next_point = current_point.predecessors[0] if 

len(current_point.predecessors) > 0 else None 

            continue 

 

        subsequent_allowable_points = [current_point] 

        while len(next_point.predecessors) == 1 \ 

                and next_point.predecessors[0].catchment_area == 

current_catchment \ 

                and any([(p.x, p.y) == (next_point.x, next_point.y) for p 

in allowed_points]): 

            subsequent_allowable_points.append(next_point) 

            next_point = next_point.predecessors[0] 

 

        if len(subsequent_allowable_points) > 1: 

            # find polygon of raingarden 

            rain_garden_polygon = 

find_raingarden_polygon(subsequent_allowable_points, 

                                                          

required_raingarden_area, 

                                                          

building_buffer_polygons, 

                                                          rain_gardens) 

            rain_gardens.append(rain_garden_polygon) 

            required_raingarden_area -= 

shp_polygon(rain_garden_polygon).area 

 

        current_point = next_point 

 

        if not len(next_point.predecessors) > 0: 

            break 

 

        next_point = current_point.predecessors[0] 

 

    if required_raingarden_area <= 0: 

        return rain_gardens, required_raingarden_area 

 

    if len(current_point.predecessors) < 1: 

        return rain_gardens, required_raingarden_area 

 

    if len(current_point.predecessors) > 1: 

        rain_gardens_from_predecessors = [] 

        remaining_area_from_predecessors = [] 

        for predecessor in current_point.predecessors: 

            if len(predecessor.predecessors) < 1: 

                continue 
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            total_draining_area = predecessor.get_upstream_draining_area() 

            required_area_of_rain_garden = 

min(calculate_area_of_rain_garden(total_draining_area), 

required_raingarden_area) 

 

            rain_gardens_from_predecessor, remaining_area_to_place = 

find_upstream_rain_gardens( 

                predecessor, 

                required_area_of_rain_garden, 

                allowed_points, 

                building_buffer_polygons 

            ) 

 

            area_placed = required_area_of_rain_garden - 

remaining_area_to_place 

            required_raingarden_area -= area_placed 

 

            

rain_gardens_from_predecessors.append(rain_gardens_from_predecessor) 

            

remaining_area_from_predecessors.append(remaining_area_to_place) 

 

        rain_gardens += [raingardens for predecessor_rgs in 

rain_gardens_from_predecessors 

                         for raingardens in predecessor_rgs] 

    elif not next_point.catchment_area == current_point.catchment_area\ 

            and len(next_point.predecessors) > 0: 

        total_draining_area = next_point.get_upstream_draining_area() 

        required_area_of_rain_garden = 

min(calculate_area_of_rain_garden(total_draining_area), 

required_raingarden_area) 

 

        rain_gardens_from_predecessor, remaining_area_to_place = 

find_upstream_rain_gardens( 

            next_point, 

            required_area_of_rain_garden, 

            allowed_points, 

            building_buffer_polygons 

        ) 

 

        area_placed = required_area_of_rain_garden - 

remaining_area_to_place 

        required_raingarden_area -= area_placed 

 

        rain_gardens += rain_gardens_from_predecessor 

 

    return rain_gardens, required_raingarden_area 

 

 

def find_raingarden_polygon(subsequent_allowable_points, 

                            required_raingarden_area, 

                            building_buffer_polygons, 

                            previous_rain_gardens): 

    max_distance = 8.0 

    lower_catchment_area = 100.0 

 

    catchment = subsequent_allowable_points[0].catchment_area 

 

    if shp_polygon(catchment.coordinates).area < lower_catchment_area: 

        return [] 
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    line_segment = shp_line([(p.x, p.y) for p in 

subsequent_allowable_points]) 

    raingarden_polygon = line_segment.buffer(max_distance).convex_hull 

    raingarden_polygon = 

raingarden_polygon.intersection(shp_polygon(catchment.coordinates)) 

 

    for preoccupied_polygons in [bbp.coordinates for bbp in 

building_buffer_polygons] + previous_rain_gardens: 

        if 

raingarden_polygon.intersects(shp_polygon(preoccupied_polygons)): 

            raingarden_polygon = 

raingarden_polygon.difference(shp_polygon(preoccupied_polygons)) 

 

    if isinstance(raingarden_polygon, shp_multi): 

        possible_raingarden_polygons = list(raingarden_polygon) 

        for poly in possible_raingarden_polygons: 

            if any([poly.contains(shp_point([p.x, p.y])) for p in 

subsequent_allowable_points]): 

                raingarden_polygon = poly 

                break 

        if isinstance(raingarden_polygon, shp_multi): 

            return [] 

 

    if raingarden_polygon.area > 1.1*required_raingarden_area and 

len(subsequent_allowable_points) > 2: 

        polygon_based_on_one_point_less = 

find_raingarden_polygon(subsequent_allowable_points[:-1], 

                                            required_raingarden_area, 

                                            building_buffer_polygons, 

                                            previous_rain_gardens) 

        if shp_polygon(polygon_based_on_one_point_less).area >= 

required_raingarden_area: 

            return polygon_based_on_one_point_less 

 

    return mapping(raingarden_polygon)["coordinates"][0] 

 

 

def place_rain_gardens_for_outlet_point(outlet_points, 

allowed_rain_garden_points, building_buffer_polygons): 

    all_rain_gardens = [] 

    all_remaining_area = [] 

    for outlet_point in outlet_points: 

        total_draining_area = outlet_point.get_upstream_draining_area() 

        required_area_of_rain_garden = 

calculate_area_of_rain_garden(total_draining_area) 

 

        rain_gardens, missing_area = 

find_upstream_rain_gardens(outlet_point, 

                                                                  

required_area_of_rain_garden, 

                                                                  

allowed_rain_garden_points, 

                                                                  

building_buffer_polygons) 

 

        all_rain_gardens.append([rg for rg in rain_gardens if rg]) 

        all_remaining_area.append(missing_area) 

 

    return all_rain_gardens, all_remaining_area 
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def find_required_drainage_area_for_point(point): 

    all_points = point.get_tree() 

    all_catchments = set([p.catchment_area for p in all_points]) 

    area_of_all_catchments = sum([shp_polygon(catchment.coordinates).area 

for catchment in all_catchments]) 

    required_drainage_area = 

calculate_area_of_rain_garden(area_of_all_catchments) 

 

    return required_drainage_area 

 

 

def place_green_roofs(buildings, raingardens, required_green_roof_area): 

    green_roofs = [] 

 

    for building in buildings: 

        roof_polygon = building.coordinates 

        area_of_roof = shp_polygon(roof_polygon).area 

        green_roof_polygon = roof_polygon 

 

        while shp_polygon(green_roof_polygon).area > 

required_green_roof_area*area_of_roof + 5.0: 

            green_roof_polygon = 

mapping(shp_polygon(green_roof_polygon).buffer(-0.1))["coordinates"][0] 

 

        nearest_raingarden = sorted(raingardens, key=lambda rg: 

shp_polygon(roof_polygon).distance(shp_polygon(rg)))[0] 

        distance_to_nearest_raingarden = 

shp_polygon(roof_polygon).distance(shp_polygon(nearest_raingarden)) 

 

        if distance_to_nearest_raingarden > 4.0: 

            nearest_raingarden = None 

 

        green_roofs.append(GreenRoof(green_roof_polygon, 

nearest_raingarden)) 

 

    return green_roofs 

 

 

def update_green_roofs_with_name_of_rain_garden_connections(green_roofs, 

outlet_points, rain_gardens): 

    rain_gardens_with_names = [(rg, "{}-{}".format(rg_list_i+1, rg_i+1)) 

                               for rg_list_i, rg_list in 

enumerate(rain_gardens) 

                               for rg_i, rg in enumerate(rg_list)] 

    catchments_with_names = [] 

    for op_i, op in enumerate(outlet_points): 

        op_name = str(op_i+1) 

        catchments_for_op = list(set([p.catchment_area for p in 

op.get_tree()])) 

        for catchment in catchments_for_op: 

            catchments_with_names.append((catchment.coordinates, op_name)) 

 

    for green_roof in green_roofs: 

        if green_roof.rain_garden_connection is not None: 

            for rain_garden, name in rain_gardens_with_names: 

                if rain_garden == green_roof.rain_garden_connection: 

                    green_roof.rain_garden_connection = name 

                    break 

        else: 

            name_of_nearest_catchment = sorted(catchments_with_names, 
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                                               key=lambda 

catchment_with_name: 

shp_polygon(green_roof.coordinates).distance(shp_polygon(catchment_with_nam

e[0])))[0][1] 

            green_roof.rain_garden_connection = name_of_nearest_catchment 

 

 

def place_rain_gardens_on_site(input_path_to_rain_garden_points, 

                               input_path_to_drainage_line_points, 

                               input_path_to_catchment, 

                               input_path_to_buildings, 

                               input_path_to_buildings_with_buffer, 

                               ref_point, 

                               required_green_roof_ratio): 

    points_rg = extract_points(input_path_to_rain_garden_points, ref_point) 

    points_dl = extract_points(input_path_to_drainage_line_points, 

ref_point) 

 

    catchments = extract_polygons(input_path_to_catchment, ref_point) 

    buildings = extract_polygons(input_path_to_buildings, ref_point) 

    building_buffer_polygons = 

extract_polygons(input_path_to_buildings_with_buffer, ref_point) 

 

    pair_points_and_catchments(points_dl + points_rg, catchments) 

    points_dl = [p for p in points_dl if p.catchment_area] 

    points_rg = [p for p in points_rg if p.catchment_area] 

 

    outlet_points = find_outlet_points(points_dl) 

 

    update_to_nodes_for_points_related_to_outlets(outlet_points, 

[points_dl, points_rg]) 

 

    total_catchment_area = sum([shp_polygon(catchment.coordinates).area for 

catchment in catchments]) 

    required_area = calculate_area_of_rain_garden(total_catchment_area) 

 

    for outlet_point in outlet_points: 

        update_point_network(outlet_point.to_node, points_dl, 

successor=None) 

 

    all_rain_gardens, all_remaining_area = 

place_rain_gardens_for_outlet_point(outlet_points, 

                                                                                 

points_rg, 

                                                                                 

building_buffer_polygons) 

 

    all_rain_gardens_flat = [rg for rg_list in all_rain_gardens for rg in 

rg_list] 

 

    green_roofs = place_green_roofs(buildings, 

                                    all_rain_gardens_flat, 

                                    required_green_roof_ratio) 

    update_green_roofs_with_name_of_rain_garden_connections(green_roofs, 

outlet_points, all_rain_gardens) 

 

    blue_polygons = [catchment.coordinates for catchment in 

set([p.catchment_area for p in outlet_points[0].get_tree()])] 

    yellow_polygons = [catchment.coordinates for catchment in 

set([p.catchment_area for p in outlet_points[1].get_tree()])] if 

len(outlet_points) > 1 else [] 
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    green_polygons = [catchment.coordinates for catchment in 

set([p.catchment_area for p in outlet_points[2].get_tree()])] if 

len(outlet_points) > 2 else [] 

    red_polygons = [catchment.coordinates for catchment in 

set([p.catchment_area for p in outlet_points[3].get_tree()])] if 

len(outlet_points) > 3 else [] 

 

    plot_polygons_lines_and_points(red_points=5*[(p.x, p.y) for p in 

outlet_points] + [(p.x, p.y) for p in points_rg], 

                                   blue_points=[(p.x, p.y) for p in 

points_dl], 

                                   blue_polygons=blue_polygons + [rg for 

rg_list in all_rain_gardens for rg in rg_list], 

                                   yellow_polygons=yellow_polygons, 

                                   green_polygons=green_polygons, 

                                   red_polygons=red_polygons, 

                                   gray_polygons=[b.coordinates for b in 

buildings + building_buffer_polygons] * 2, 

                                   white_green_polygons=[gr.coordinates for 

gr in green_roofs], 

                                   points_with_text=[((p.x - 5, p.y - 5), 

p_i+1) for p_i, p in enumerate(outlet_points)] +\ 

                                                     

[(representative_point(gr.coordinates), gr.rain_garden_connection) for gr 

in green_roofs] +\ 

                                                     

[(representative_point(rg), "{}-{}".format(rgl_i + 1, rg_i + 1)) for rgl_i, 

rgl in enumerate(all_rain_gardens) for rg_i, rg in enumerate(rgl)] 

                                    ) 

 

    return outlet_points, all_rain_gardens, required_area, 

all_remaining_area, green_roofs 

 

plot-helper.py 

import matplotlib 

import matplotlib.patches 

import matplotlib.pyplot as plt 

from matplotlib.lines import Line2D 

 

 

def plot_rain_garden_points(all_rain_gardens, catchments, points_dl, 

buildings, buffered_buildings): 

    all_rain_gardens_flattened = [rg for list_of_rg in all_rain_gardens for 

rg in list_of_rg] 

 

    plot_polygons_lines_and_points(green_polygons=[c.coordinates for c in 

catchments], 

                                   blue_polygons=[p for p in 

all_rain_gardens_flattened if p], 

                                   red_points=[(p.x, p.y) for p in 

points_dl], 

                                   red_polygons=[b.coordinates for b in 

buildings + buffered_buildings]) 

 

 

def plot_polygons_lines_and_points( 

   blue_polygons=None, 

   blue_lines=None, 

   blue_points=None, 
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   yellow_polygons=None, 

   yellow_lines=None, 

   red_polygons=None, 

   red_lines=None, 

   red_points=None, 

   green_polygons=None, 

   green_lines=None, 

   gray_polygons=None, 

   white_green_polygons=None, 

   additional_polygons=None, 

   points_with_text=None, 

): 

    lines_2d = [] 

    patches = [] if additional_polygons is None else additional_polygons 

    if blue_polygons: 

        for p in blue_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, alpha=0.4, 

color="blue") 

            patches.append(polygon) 

    if red_polygons: 

        for p in red_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, alpha=0.4, 

color="red") 

            patches.append(polygon) 

    if yellow_polygons: 

        for p in yellow_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, alpha=0.4, 

color="yellow") 

            patches.append(polygon) 

    if yellow_lines: 

        for line in yellow_lines: 

           line_2d = Line2D( 

               [p[0] for p in line], [p[1] for p in line], color="yellow", 

linewidth=1 

           ) 

           lines_2d.append(line_2d) 

    if green_polygons: 

        for p in green_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, alpha=0.4, 

color="green") 

            patches.append(polygon) 

    if green_lines: 

        for line in green_lines: 

            line_2d = Line2D( 

               [p[0] for p in line], [p[1] for p in line], color="green", 

linewidth=1 

            ) 

            lines_2d.append(line_2d) 

    if gray_polygons: 

        for p in gray_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, alpha=0.4, 

color="gray") 

            patches.append(polygon) 

    if white_green_polygons: 

        for p in white_green_polygons: 

            polygon = matplotlib.patches.Polygon(p, True, color="green") 

            patches.append(polygon) 

    if blue_lines: 

        for line in blue_lines: 

            line_2d = Line2D( 

               [p[0] for p in line], [p[1] for p in line], color="blue", 



48 
 

linewidth=1 

            ) 

            lines_2d.append(line_2d) 

    if blue_points: 

        for px, py in blue_points: 

            lines_2d.append( 

               Line2D( 

                   [px - 0.5, px + 0.5], 

                   [py - 0.5, py + 0.5], 

                   color="blue", 

                   linewidth=1, 

               ) 

            ) 

            lines_2d.append( 

               Line2D( 

                   [px - 0.5, px + 0.5], 

                   [py + 0.5, py - 0.5], 

                   color="blue", 

                   linewidth=1, 

               ) 

            ) 

    if red_lines: 

        for line in red_lines: 

            line_2d = Line2D( 

               [p[0] for p in line], [p[1] for p in line], color="red", 

linewidth=1 

            ) 

            lines_2d.append(line_2d) 

    if red_points: 

        for px, py in red_points: 

            lines_2d.append( 

               Line2D( 

                   [px - 0.5, px + 0.5], [py - 0.5, py + 0.5], color="red", 

linewidth=1 

               ) 

            ) 

            lines_2d.append( 

               Line2D( 

                   [px - 0.5, px + 0.5], [py + 0.5, py - 0.5], color="red", 

linewidth=1 

               ) 

            ) 

 

    fig = plt.figure() 

    ax = fig.add_subplot(111) 

    ax.axis("auto") 

 

    if points_with_text: 

        for p, text in points_with_text: 

            ax.text(p[0], p[1], text) 

 

    for patch in patches: 

        ax.add_patch(patch) 

 

    for line in lines_2d: 

        ax.add_line(line) 

 

    plt.axis("equal") 

 

    plt.show() 
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main.py 

# -*- coding: utf-8 -*- 

 

import arcpy 

import json 

 

from point_catchment_family import place_rain_gardens_on_site, 

find_required_drainage_area_for_point 

from shapely.geometry import Polygon as shp_polygon 

 

ref_point = [260985.0, 6652104.0] 

arcpy.env.workspace = "C:\\Users\\guros\\OneDrive - NTNU\\Master vår 

2019\\" 

 

 

results = {} 

 

for building_alternative in range(4, 15): 

    print("Starting with {}...".format(building_alternative)) 

    infc_rg = 

"ArcGIS_faktisk\\Resultat.gdb\\RG_potential{}_Model".format(building_altern

ative) 

    infc_dl = 

"ArcGIS_faktisk\\Resultat.gdb\\DrainageLine{}_ClipValuesModel".format(build

ing_alternative) 

    infc_cat = 

"ArcGIS_faktisk\\Resultat.gdb\\Cat{}_polygonModel".format(building_alternat

ive) 

    infc_buildings = 

"ArcGIS_faktisk\\Resultat.gdb\\buildings{}_projected".format(building_alter

native) 

    infc_building_with_buffer = 

"ArcGIS_faktisk\\Resultat.gdb\\BufferAroundBuildingsModel{}".format(buildin

g_alternative) 

 

    output_results = place_rain_gardens_on_site(infc_rg, 

                                                infc_dl, 

                                                infc_cat, 

                                                infc_buildings, 

                                                infc_building_with_buffer, 

                                                ref_point, 

                                                0.4) 

 

    outlet_points, rain_gardens, required_area_total, remaining_area, 

green_roofs = output_results 

 

    remaining_area = [round(area, 1) for area in remaining_area] 

    required_area_pr_outlet_point = 

[round(find_required_drainage_area_for_point(op), 1) for op in 

outlet_points] 

 

    results["Run {}".format(building_alternative)] = 

{"required_total_raingarden_area": round(required_area_total, 1), 

                                                      

"sum_of_required_raingarden_area_pr_outlet_point": 

sum(required_area_pr_outlet_point), 

                                                      

"sum_of_remaining_area": sum([area for area in remaining_area if area >= 

0]), 
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"required_area_pr_outlet_point": required_area_pr_outlet_point, 

                                                      

"remaining_area_pr_outlet_point": remaining_area, 

                                                      

"rain_gardens_with_areas": ["{}-{}, area: {}".format( 

                                                          rg_for_op_i+1, 

rg_i+1, round(shp_polygon(rg).area, 1)) 

                                                          for rg_for_op_i, 

rg_for_op in enumerate(rain_gardens) 

                                                          for rg_i, rg in 

enumerate(rg_for_op)], 

                                                      

"green_roof_areas_with_connection": ["{}, area: {}".format( 

                                                          

gr.rain_garden_connection, round(shp_polygon(gr.coordinates).area), 1) 

                                                          for gr in 

green_roofs]} 

    print("Sum of remaining area: {}".format(sum([area for area in 

remaining_area if area > 0]))) 

    print("Finished!\n\n") 

 

print("_____\nFinal results") 

print(json.dumps(results)) 
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Appendix E – Fixed values from literature for 
modelling input 
 

 

SUDS Variables Description Other 
design 
considerati
ons 

Numbers Source 

Raingard
en 

A_raingar
den 

Surface area 
of 
raingarden 
[m2] 

Distance to 
buildings > 
1,5 m 

Available area Paus, K.H., Braskerud, B.C., 2013. 
Forslag til dimensjonering 
 og utforming av regnbed for norske 
forhold. Vann. 

A_subcat Area of sub-
catchment 
[m2] 

 
Slope of raingarden 
(5%, <20%) 

Paus, K.H., Braskerud, B.C., 2013. 
Forslag til dimensjonering  
og utforming av regnbed for norske 
forhold. Vann. 

c Average 
runoff 
coefficient 
for the 
catchment [-
] 

Buffer 
distance to 
roads < 
30m, buffer 
distance to 
stram >30, 
to buildings 
>3m 

 
Jia, H., Yao, H., Tang, Y., Yu, S.L., 
Zhen, J.X., Lu, Y., 2013.  
Development of a multi-criteria 
index ranking system for urban 
runoff best management practices 
(BMPs) selection. Environ. Monit. 
Assess. 185, 7915–7933. 
https://doi.org/10.1007/s10661-
013-3144-0 

P Dimensionin
g 
precipitatio
n (input for 
modelling) 

 
Precip input 

 

h_max Height of 
water table 
when it goes 
to overflow 
[m] 

 
0,15-0,30 m Paus, K.H., Braskerud, B.C., 2013. 

Forslag til dimensjonering 
 og utforming av regnbed for norske 
forhold. Vann. 

K_sat Hydraulic 
conductivity 
of filter 
media [m/t] 

 
(40 cm tjukt) K > 0,1 
m/h 

Paus, K.H., Braskerud, B.C., 2013. 
Forslag til  
dimensjonering og utforming av 
regnbed for norske forhold. Vann. 

t_r Dimensionin
g duration 
of runoff 
into the 
raingarden 
[t] 
(time of 
concentratio
n?) 

   

Green 
roof 

  
ET = 4mm/ 
day in Oslo 

 
Johannessen, B.G., Hanslin, H.M., 
Muthanna, T.M., 2017. 
 Green roof performance potential in 
cold and wet regions. Ecol. Eng. 106, 
436–447. 
https://doi.org/10.1016/j.ecoleng.20
17.06.011 

ET 
  

hydraulic cond > 0,6-
70mm/min  
to avoid ponding 

Johannessen, B.G., Muthanna, T.M., 
Braskerud, B.C., 2018. 
 Detention and retention behavior of 
four extensive green roofs in three 
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Nordic climate zones. Water 
(Switzerland) 10, 1–23. 
https://doi.org/10.3390/w10060671 

A_roof Area 
available for 
green roof 
[m2] 

Slope < 10 
%  

 
Woods-Ballard, B., Kellagher, R., 
Woods Ballard, B., 
 Construction Industry Research and 
Information Association, Great 
Britain, Department of Trade and 
Industry, Environment Agency, 2007. 
The SUDS manual, Ciria, …. 

Substrate 
depth 

Height of 
substrate 
[m] 

 
0,10 m Johannessen, B.G., Hanslin, H.M., 

Muthanna, T.M., 2017.  
Green roof performance potential in 
cold and wet regions. Ecol. Eng. 106, 
436–447. 
https://doi.org/10.1016/j.ecoleng.20
17.06.011 

Field 
capacity 

  
Storage = min 0,05 m  Johannessen, B.G., Hanslin, H.M., 

Muthanna, T.M., 2017. 
 Green roof performance potential in 
cold and wet regions. Ecol. Eng. 106, 
436–447. 
https://doi.org/10.1016/j.ecoleng.20
17.06.011 

Wilting 
point 

    

Permeab
le  
cover 

A_surface Surface area 
of 
permeable 
cover [m2] 

   

Permeabil
ity 

  
Runoff coeff 0,40 Woods-Ballard, B., Kellagher, R., 

Woods Ballard, B.,  
Construction Industry Research and 
Information Association, Great 
Britain, Department of Trade and 
Industry, Environment Agency, 2007. 
The SUDS manual, Ciria, …. 
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Appendix F – SUDS placement for all building 
proposals 
 

 

 

 

 

 

 



54 
 

 

 



55 
 

Appendix G – SUDS placements, numbered 
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