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Abstract 

Through the Climate Change Act, the UK has committed to reducing the annual emissions by 80 % 

relative to 1990 levels. In 2018, road transport was accountable for one-third of the national 

carbon dioxide emissions. Thus, a decarbonization of this sector has great potential to contribute 

to the national emission reduction. Battery-electric vehicles (BEVs) are currently one of the most 

promising technologies that can contribute to this. Compared to an internal combustion engine 

vehicle (ICEV) running on diesel, the BEV has shown to have lower life cycle emissions if operated 

on low-carbon electricity.  

The objective of this thesis is to assess the optimal timing for electrifying the passenger car fleet 

in the UK. This implies finding the combination of BEVs and ICEVs that minimize the total 

greenhouse gas emissions from the fleet between 2020 and 2050, subject to given constraints. 

The insight is that the timing of the introduction should be seen together with future 

decarbonization of the electricity sector and other potential technological improvements in the 

vehicle technologies. Addressing the timing is necessary since the carbon budget for 

transitioning our society is constrained. The goal of the thesis will be achieved by applying an 

optimization model combined with data from life cycle assessments (LCA) and statistical 

databases. 

Through this thesis it was shown that the deployment of BEVs in the UK is beneficial in terms of 

mitigating climate change, even though the electricity mix is not yet fully renewable. Since the 

UK electricity mix is by now clean enough for BEVs to be environmentally superior to the ICEVs, 

the optimal solution would be to deploy the BEVs as fast as possible. From the scenario analysis 

it was, however, clear that the mitigation potential is reduced if the deployment of electric 

vehicles are delayed or the UK fails to decarbonize the power sector.  

In the short-term, meaning the next decade, it was found that the deployment of BEVs led to an 

increase in the annual fleet emissions, due to the higher embodied emissions in the BEV 

production phase. In the remaining years towards 2050, the large scale BEV deployment will 

contribute to reducing the annual emissions compared to a fleet of only ICEVs. In 2050, the 

annual direct emissions from the fleet will be reduced by 92 %, relative to 2017 levels, if the BEV 

deployment rate follows the path as in the main scenario and the UK successfully implements 

low-carbon energy sources.  
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Sammendrag 

Storbritannia har forpliktet seg til å redusere sine klimagassutslipp med 80 % i 2050, relativt til 

1990. I 2018 stod veitrafikken for en tredjedel av de nasjonal utslippene, så en avkarbonisering 

av denne sektoren har et stort potensiale for å bidra til at Storbritannia når sine klimamål. 

Storskala innføring av elektriske biler er per i dag et av de mest lovende tiltakene som kan bidra 

til dette. Sammenliknet med en konvensjonell bil som kjører på diesel, har elbilen lavere utslipp 

gjennom hele livsløpet hvis den er ladet med elektrisitet fra fornybare kilder.  

Målet med denne oppgaven er å vurdere den optimale timingen for elektrifiseringen av 

Storbritannias bilflåte, og som en del av dette, finne kombinasjonen av elektriske og 

konvensjonelle biler som minimerer de totale klimagassutslippene fra flåten mellom 2020 og 

2050. Storskala innføring av elbiler må sees i sammenheng med en potensiell avkarbonisering 

av elektrisiteten som brukes til ladning av bilen. Timingen er derfor viktig fordi karbonbudsjettet 

vi har til gode for å utvikle samfunnet vårt er begrenset. For å oppnå målet med oppgaven er det 

benyttet en optimeringsmodell, hvor denne er kombinert med data fra livssyklusanalyser og 

statistikk.  

Gjennom oppgaven er det funnet at en innføring av elbiler i Storbritannia er fordelaktig med 

tanke på å redusere klimapåvirkningen fra transportsektoren. Det er også funnet at 

elektrisitetsmiksen i Storbritannia per i dag er ren nok til at til at en elbil har lavere 

livsløpsutslipp enn en dieselbil, også selv om elektrisiteten ikke kun kommer fra fornybare 

kilder. Den optimale løsningen vil derfor være en storskala innføring av elbiler så fort som mulig, 

noe som da må legges til rette for av myndighetene.  

På kort sikt, noe som vil si det neste tiåret, vil en storskala innføring av elbiler føre til høyere 

årlige utslipp på grunn av at en elbil har høyere produksjonsutslipp enn en dieselbil. I de 

resterende årene vil innføringen av elbiler føre til en reduksjon av de årlige utslippene fra 

bilflåten, sammenliknet med en fossil bilflåte. I 2050 vil de årlige direkte utslippene fra bilflåten 

være redusert med 92 % sammenliknet med utslippene i 2017 fra nasjonale databaser, gitt at 

innføringen av elbiler skjer i henhold til det som er modellert i hovedscenarioet i oppgaven, og 

karbonintensiteten til elektrisiteten reduseres markant.   
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1 Introduction  

1.1 Background and motivation 

Transportation facilitates the connection of people, businesses, goods and services. The transport sector is, 

however, the source of a substantial share of the global greenhouse gas emissions, causing a warming of the 

planet (Sims et al., 2014). The majority of vehicles today run on fossil fuels (EIA, 2017), contributing to 

climate change and local air pollution, as well as other externalities such as accidents, noise and congestion. 

Since the demand for transport is expected to increase in the coming years, the emissions from this sector 

will likely see the same trend. Therefore, to prevent further warming of the planet, and mitigating climate 

change, large scale implementation of vehicles with low-carbon drivetrains is needed (Sims et al., 2014). 

This could also contribute to improving air quality, especially in cities with heavy traffic, and reduce noise 

pollution.  

On the contrary, future climate change may also pose a threat to our transport systems, where more 

frequent extreme weather events such as flooding, heat waves, droughts and storms can lead to damage of 

infrastructure and travel disruption (COACCH, 2018). This will also have economic effects in terms of costs, 

for instance related to maintenance and repairs. These costs are often referred to as the costs of inaction, 

since they are put upon societies due to insufficient climate change mitigation measures at an earlier stage 

(UNFCC, 2014).  

The United Kingdom (UK) have through the Climate Change Act set a target to significantly reduce their 

emissions towards 2050, where the government have committed to an at least 80 % emission reduction 

relative to 1990 levels (DECC, 2011). This means that the UK need to reduce the annual emissions by an 

additional 300 Mt CO2-eq, from today’s levels, to reach this. Poor air quality is also the most significant 

environmental risk to public health in the UK. Through the Clean Air Strategy, the government have set goals 

to reduce the emissions of air pollutants such as NOx and PMs, where road transport is a significant 

contributor to the emissions of both (DEFRA, 2018). In 2018, road transport was accountable for one-third 

of the national carbon dioxide emissions in the UK (BEIS, 2019). Thus, a decarbonization of this sector has 

great potential to contribute to the national emission reduction, while reducing the risk to public health.  

Battery electric vehicles (BEVs) are currently one of the most promising technologies that can achieve this. 

Compared to an internal combustion engine vehicle (ICEV) running on diesel or gasoline, the BEV has shown 

to have an emission reduction potential if operated on low carbon electricity (Bauer et al., 2015; Ellingsen 

et al., 2016). Even though the BEVs have no tailpipe emissions during operation, there are emissions linked 

to the production of the lithium-ion batteries used for energy storage, as well as upstream emissions linked 
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to the electricity generation. These factors can also outweigh the benefits of a BEV when compared to an 

ICEV.  

Different approaches to modeling vehicle fleet compositions and the benefit of BEVs in an environmental 

context is found in the literature. The emission reduction potential from BEVs has so far received quite some 

attention in LCA literature (Bauer et al., 2015; Ellingsen et al., 2016; Hawkins et al., 2013; Pero et al., 2018), 

where the electric vehicle is usually compared to a fossil fueled vehicle. Ellingsen et al. (2016) assessed the 

life cycle emissions of BEVs and ICEVs from four different vehicle segments, looking at the change in climate 

change potential when the size of the vehicles is increased. Hawkins et al. (2013) also assessed different 

vehicle technologies based on the LCA methodology, where different battery chemistries were included for 

the BEV.  

To achieve the highest possible emission reduction, the BEV should be produced with, and operated on, 

low-carbon electricity. It is therefore not evident that an electrified fleet is the best option to minimize the 

greenhouse gas emissions from to the transport sector at this time, due to potentially high shares of fossil 

fuels in the electricity mix. This is explored in the study by Casals et al. (2016) which focus on how the 

emissions from BEVs can vary depending on the carbon intensity of the local electricity grids and vehicle 

efficiency. The study considers selected countries in Europe, and the main focus is on the emissions linked 

to the operation of the vehicles. 

At a national level, it is relevant to explore the environmental burden of different vehicle technologies 

regarding large scale deployment. The optimization methodology can be useful for this, and is often used in 

the transport sector for route planning with the goal of minimizing the operation cost or emissions. Some 

studies have aimed at assessing the optimal fleet composition from an environmental and economic 

perspective, including the emissions from the different vehicle technologies as well as the costs of vehicle 

acquisition, operation and maintenance. Lemme et al. (2019) assessed the optimal fleet combination in a 

car-sharing system with the use of an optimization model minimizing the environmental burden related to 

greenhouse gas emissions and local air pollution, while taking into account the economic dimension related 

to the costs of the emissions.  

The optimization method was found to be most commonly applied to passenger cars, but other types of 

transport such as aviation, public transport or freight are also researched. A similar approach as Lemme et 

al. (2019) was taken by Ahani et al. (2016) when assessing the optimal fleet replacement from ICEVs to 

BEVs for an urban freight transport system. This was done by the use of an optimization model minimizing 

the total costs.  
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In addition to focusing on the optimal solution in different transport problems, various authors and 

organizations aim at predicting how the vehicle fleet will evolve in the future, for instance, considering 

different policies. The IEA have through the BLUE Map scenario modelled the global light-duty vehicle fleet 

towards 2050, including diesel, gasoline, hybrid, plug-in hybrid, electric and fuel cell vehicles (IEA, 2011). 

The same approach was taken by Fridstrøm et al. (2016), which assessed how fast technological 

developments with regard to passenger vehicles penetrate into the car fleet. This was done for the 

Norwegian fleet using a stock-flow cohort model, considering the same drivetrain technologies as the IEA.  

1.2 Problem description and structure 

Based on the conditions described in the previous section, there is a need to understand the potential 

environmental benefit of the introduction of BEVs in a fleet context and from a time perspective. The insight 

is that the timing of the introduction should be seen together with future decarbonization of the electricity 

sector and other potential technological improvements with regard to the vehicle technologies. Addressing 

the timing is necessary because the carbon budget for transitioning our society is constrained (Sims R. et 

al., 2014), meaning that different technological options should be deployed in terms of which having the 

best mitigation potential over its whole lifetime.  

The objective of this thesis is to assess the optimal timing for the electrification of the passenger car fleet in 

the UK, with regard to minimizing the total greenhouse gas emissions from the fleet between 2020 and 

2050. This implies finding the optimal combination of BEVs and ICEVs that fulfills this criteria, based on 

their respective life cycle emissions.   

The goal of the thesis will be achieved by applying an optimization model combined with data from life cycle 

assessments (LCAs) and statistical databases. A basic version of the fleet optimization model developed at 

the Industrial Ecology program at NTNU is used as a starting point, and will be adapted for this thesis. Data 

from LCAs are used to model the emission parameters linked to the different life cycle phases of the two 

vehicle types. The carbon intensity of the electricity consumed is also based on the total life cycle emissions. 

The use of LCA data is essential to capture the total environmental burden of each technology, taking into 

account both upstream and direct greenhouse gas emissions. Statistical data is compiled and implemented 

to model the parameters related to the characteristics of the passenger car fleet in the UK.  

Also, it is desirable to assess how the fleet composition is dependent on different decarbonization 

trajectories of the electricity sector and other technological improvements. The sensitivity of the optimal 

solution will be analyzed through different scenarios, where some of the key parameters are changed to 

assess the effect on the fleet composition and total emissions.  
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The thesis is divided into six sections, including this introductory chapter. Section two presents the 

methodology used in the thesis, including an introduction to LCA and optimization, as well as a description 

of the optimization model and modeling equations. Section three presents the case that will be studied and 

contains a description of all scenarios and parameters included in the model, as well as the corresponding 

data basis and assumptions. Section four presents the results for all the included scenarios. Lastly, in 

sections five and six, the results and uncertainties are discussed, and a conclusion is presented.   
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2 Methodology and model description 

In this section, the methodology and tools used in the thesis are described. First, an introduction to LCA and 

the optimization methodology is given. Then, the method for modelling the parameters is described. Lastly, 

the model used for the fleet optimization is described, including all the modeling equations, parameters and 

variables.  

2.1 Life cycle assessment  

The parameters used in the optimization model in this thesis are based on LCAs. Modeling the parameters 

based on LCA data is beneficial to capture the full picture in terms of environmental impact of the vehicle 

fleet, and not only focus on direct emissions, which is often the case when comparing different vehicle 

technologies from a policy perspective. The objective of LCA is to perform consistent comparisons of 

technological systems, taking into account their total environmental impacts (Strømman, 2010).  

LCA considers the entire life cycle of a product or service, from raw material extraction, through material 

manufacturing and energy production, to the use phase and end of life treatment (Finkbeiner et al., 2006). 

This is useful when comparing vehicle technologies since the powertrains are quite different, and require 

different inputs in terms of raw materials and energy during production.  

A full scale LCA usually takes into account multiple environmental impacts, such as potential for global 

warming, acidification, damage to human health, and freshwater or marine eutrophication. In this thesis, 

the focus is on greenhouse gas emissions, and only the global warming potential is considered. The global 

warming potential is quantified in CO2-equivalents, meaning that the emissions of other greenhouse gases, 

for instance methane (CH4) or nitrous oxide (N2O), also are included in the total impact.  

2.2 Optimization 

Optimization is an analytical method used to solve complex problems. The goal is to maximize or minimize 

the value of a function, describing for instance profit, costs, emissions or resource allocation, subject to given 

constraints. The function to be maximized or minimized is the objective function of the optimization 

problem. Whether the objective value is maximized or minimized depends on the formulation of the 

problem and the goal of the study (Luenberger et al., 2008). The objective can be expressed mathematically 

as a function of set decision variables and parameters (Hillier et al., 2010), where the decision variables are 

to be decided in the solution and parameters have predefined values.  
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An optimization model also contains constraints that put restrictions on the values the variables can take, 

and these also are expressed mathematically (Hillier et al., 2010). The constraints can be inequalities 

representing the upper and lower bounds on the variables or equalities describing the values of the 

variables. The solution to the problem is found by adjusting the values of the decision variables until a 

feasible or optimal solution is reached. A general minimization problem can be expressed as seen in 

Equation 2.1, where Z is the objective function to be minimized. Further, A, B and C are parameters and x is 

the decision variable. Note that the symbol used in the first constraint can be either <, = or > depending on 

the problem formulation. In the second constraint the x can be stated as either < 0, free or > 0, where free 

indicates that the decision variable both can take a positive or negative value.  

 

minimize 

subject to 

 

𝑍 = 𝐶 ∙ 𝑥 

𝐴 ∙ 𝑥 < 𝐵 

𝑥 > 0 

2.1 

 
In order to solve the mathematical problem a solver is used to execute the optimization model. The software 

used in this thesis is the General Algebraic Modeling System (GAMS), which is a high-level modeling system 

for mathematical programming and optimization (GAMS, 2018). All equations and constraints are 

represented by linear relationships and the model is solved with the LP solver. The GAMS language is similar 

to common programming languages, and the model can be formulated in a way similar to its mathematical 

description. After running the model in GAMS the output file can be analyzed by the user, where all values 

of the variables are shown. The marginal values, or shadow price, of the equations and variables can also be 

assessed. Where the shadow price is describing the reduced cost of the variable or equation if the right hand 

side is changed.  

2.3 Parameter modeling  

The model contains multiple parameters describing characteristics of the UK vehicle fleet, emission 

intensities of the vehicles’ life cycle phases and carbon intensity of the electricity used for production and 

operation. The parameters are modeled as generalized logistic functions, as seen in Equation 2.2. Where f(t) 

is the parameter value in year t, A indicates the asymptotic parameter value in 2000, B indicates the 

asymptotic parameter value in 2050, τ is the year of maximum gradient and r is the rate of change in the 

year of the maximum gradient. Using this type of function makes it possible to set upper and lower bounds 

on the value the parameters take in the modeling period, as well as adjusting in what year the value of the 

parameter has its highest increase or decrease.  

 𝑓(𝑡) = 𝐴 +
𝐵 − 𝐴

1 + 𝑒−𝑟(𝑡−𝜏)
 2.2 
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Since this study includes forecasts over long time horizons, multiple assumptions and simplifications were 

made regarding the values of the parameters, which are input into the model. The values are based on 

statistics or scientific literature, and where sufficient sources were not available the values are based on 

assumptions. The A and B values for the different parameters have been the focus throughout the thesis and 

will be described for each parameter in section 3. The r is usually set based on the relative change between 

A and B and is not discusses in the following section. The τ is usually decided based on the fit of the 

parameter values in each year to current and historical data, or used to differentiate between different 

technologies and regions in terms of technology maturity or predicted development.   

2.4 Description of the optimization model 

The optimization model used in this thesis is a vehicle fleet optimization model developed at the Industrial 

Ecology department at NTNU. The model was used as a basis and some elements were added to customize 

the model for the purpose of the thesis. This includes separating the emissions from battery production 

from the rest of the BEV production and adding more parameters for the carbon intensity of the electricity 

mixes in different countries. A new restriction to the allowed growth in the BEV market share was also 

added, to make sure the introduction rate of BEVs was realistic.  

The objective in this thesis is to minimize the total greenhouse gas emissions from the passenger car fleet 

in the UK between 2020 and 2050. The overarching goal is to find the combination of drivetrain 

technologies in each year, i.e. number of battery electric vehicles (BEVs) and internal combustion engine 

vehicles running on diesel (ICEVs), that fulfill this objective based on their respective life cycle emissions.  

The sets and corresponding indices, parameters and variables included in the model are shown below. 

Recall that the parameters are required inputs to the model with predefined values for the whole modeling 

period. Each parameter will be described more in detail in section three, together with the assigned value 

and assumptions, where the respective sections are stated on the right hand side in the list below. Note that 

some of the parameters listed below also are defined with additional superscript in the equations to 

explicitly state a drivetrain component or life cycle phase. 

Sets 

T Set of years in the whole modeling period, T = {2000, 2001, 2002, … , 2050} 

I Subset of years in the vehicle stock initialization period, I = {2000, 2001, 2002, … , 2020} 

O Subset of years in the vehicle stock optimization period, O = {2020, 2021, 2002, … , 2050} 

A Set of vehicle age classes, A = {0, 1, 2, … , 20} 

K  Set of drivetrain technologies, K = {ICEV, BEV} 
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Indices 

t Index for year, t ∈ T, I, O  

a Index for vehicle age class, a ∈ A 

k Index for drivetrain technology, k ∈ K 

 

Parameters  

α𝑎 Share of vehicles of age a in the initial vehicle stock 3.5.2 [%] 

β𝑎  Share of vehicles of age a scrapped each year 3.5.2 [%] 

Ct,k
PROD Emission intensity of producing a vehicle with drivetrain k in year t  3.3.1 [kg CO2-eq/veh] 

Ct,k
CNST Constant emission term of producing a vehicle with drivetrain k in year t  3.3.1 [kg CO2-eq/veh] 

Ca,t,k
OPER Emission intensity of operating a vehicle with drivetrain k of age a in year t  3.3.3 [kg CO2-eq/km] 

Ct,k
EOL        Emission intensity of EOL treatment of a vehicle with drivetrain k in year t  3.3.4 [kg CO2-eq/veh] 

CIt Carbon intensity of the electricity mix in year t  3.4 [kg CO2-eq/kWh] 

Dt Annual driving distance per vehicle in year t  3.5.1 [km/veh] 

ϵt,k 
  Electricity requirement of producing a vehicle with drivetrain k in year t  3.3.1 [kWh/veh] 

I𝑎,t,k
OPER Energy consumption of operating a BEV of age a in year t  3.3.3 [kWh/km] 

Vt Vehicle stock size in year t   3.5.1 [veh] 

R1, R2 Shape parameters used in the constraint for BEVs added  3.5.3 [%] 

 

Variables 

Z Objective function to be minimized: Total emissions from the vehicle fleet [kg CO2-eq] 

A𝑎,t,k
  Number of vehicles with drivetrain k at age a added to the fleet in year t [veh] 

LCt,k
TOT Total life cycle emissions from the vehicle fleet with drivetrain k in year t [kg CO2-eq] 

LCt,k
PROD   Total production emissions of vehicles with drivetrain k added in year t [kg CO2-eq] 

LCt,k
OPER   Total emissions from operating the vehicles with drivetrain k in the fleet in year t  [kg CO2-eq] 

LCt,k
EOL      Total emissions from the EOL treatment of vehicles with drivetrain k removed in year t [kg CO2-eq] 

R𝑎,t,k
  Number of vehicles with drivetrain k at age a removed from the fleet in year t [veh] 

S𝑎,t,k
  Number of vehicles with drivetrain k at age a in the fleet in year t [veh] 

ΔSt,k Number of vehicles in the fleet with drivetrain k in year t relative to the previous year [veh] 

 

2.4.1 Objective function and emission modeling 

The objective function to be minimized in the optimization model, Z, is the sum of the total life cycle fleet 

emissions, LCt,k
TOT , for all years t and all drivetrain technologies k, in the period from 2020 to 2050 (Equation 

2.3).  
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 𝑚𝑖𝑛 𝑍 =  ∑ ∑ 𝐿𝐶𝑡,𝑘
𝑇𝑂𝑇

𝑘𝑡

, ∀ 𝑡 ∈  𝑂, 𝑘 ∈ 𝐾 2.3 

The total fleet emissions in year t for each drivetrain technology k is the sum of the emissions from all three 

life cycle phases, LCt,k
PROD, LCt,k

OPER and LCt,k
EOL, in the optimization period (Equation 2.4). 

 𝐿𝐶𝑡,𝑘
𝑇𝑂𝑇 =  𝐿𝐶𝑡,𝑘

𝑃𝑅𝑂𝐷 + 𝐿𝐶𝑡,𝑘
𝑂𝑃𝐸𝑅 + 𝐿𝐶𝑡,𝑘

𝐸𝑂𝐿, ∀ 𝑡 ∈  𝑂, 𝑘 ∈  𝐾 2.4 

The equations for calculating the total emissions from each life cycle phase are dependent on the dynamics 

of the vehicle stock, which will be explained in more detail in section 2.4.2. The production emissions for 

drivetrain technology k in year t, LC𝑡,𝑘
PROD, is dependent on the vehicles with drivetrain k added in year t, 

Aa,t,k, and the emission intensity of producing all vehicle components for drivetrain k in year t, Ct,k
PROD 

(Equation 2.5).  

 𝐿𝐶𝑡,𝑘
𝑃𝑅𝑂𝐷 =  ∑(𝐴𝑎,𝑡,𝑘 ∙ 𝐶𝑡,𝑘

𝑃𝑅𝑂𝐷)

𝑎

, ∀ 𝑡 ∈  𝑂, 𝑘 ∈ 𝐾 2.5 

The parameter Ct,k
PROD is calculated differently for the BEV and ICEV. For the BEV the emissions are 

dependent on both the production of the battery and the production of rest of the vehicle. Each element is 

also split up into a constant emission term, Ct,k
CNST, and the electricity requirement during production, 

ϵt,k 
 (Equation 2.6). The production emissions for the ICEV are only dependent on the production of the 

vehicle, i.e. the constant emission term and the electricity requirement (Equation 2.7). The electricity 

requirements are multiplied with the carbon intensity of the electricity mix, CIt
 , to calculate the emissions, 

where the superscript indicates the production region.  

 𝐶𝑡,𝑘
𝑃𝑅𝑂𝐷 = (𝐶𝑡,𝑘

𝐶𝑁𝑆𝑇,𝐵𝐴𝑇𝑇 + 𝐶𝐼𝑡
𝐴𝑆𝐼𝐴 ∙ 𝜖𝑡,𝑘 

𝐵𝐴𝑇𝑇) + (𝐶𝑡,𝑘
𝐶𝑁𝑆𝑇,𝑉𝐸𝐻 + 𝐶𝐼𝑡

𝐸𝑈𝑅 ∙ 𝜖𝑡,𝑘 
𝑉𝐸𝐻), ∀ 𝑡 ∈ 𝑂, 𝑘 = 𝐵𝐸𝑉 2.6 

 

 𝐶𝑡,𝑘
𝑃𝑅𝑂𝐷 = 𝐶𝑡,𝑘

𝐶𝑁𝑆𝑇,𝑉𝐸𝐻 +  𝐶𝐼𝑡
𝐸𝑈𝑅 ∙ 𝜖𝑡,𝑘 

𝑉𝐸𝐻 , ∀ 𝑡 ∈  𝑂, 𝑘 = 𝐼𝐶𝐸𝑉 2.7 

The total operation emissions from drivetrain technology k in year t, LCt,k
OPER, is calculated from the number 

of vehicles of each drivetrain in the fleet in the given year, Sa,t,k, the emission intensity of driving each 

vehicle, Ca,t,k
OPER, and the total operational distance in year Dt (Equation 2.8). Note that the emission intensity 

of the operation also will depend on the age of the vehicles. 

 𝐿𝐶𝑡,𝑘
𝑂𝑃𝐸𝑅 =  ∑(𝑆𝑎,𝑡,𝑘 ∙ 𝐶𝑎,𝑡,𝑘

𝑂𝑃𝐸𝑅 ∙ 𝐷𝑡)

𝑎

, ∀ 𝑡 ∈  𝑂, 𝑘 ∈ 𝐾 2.8 

The operation emissions from the BEV are dependent on the energy consumption per kilometer driven, 

Ia,t
OPER, and carbon intensity of the electricity in the UK in year t, CIt 

UK  (Equation 2.9).  
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 𝐶𝑎,𝑡,𝑘
𝑂𝑃𝐸𝑅 = 𝐼𝑎,𝑡,𝑘

𝑂𝑃𝐸𝑅 ∙ 𝐶𝐼𝑡 
𝑈𝐾 , ∀ 𝑡 ∈  𝑂, 𝑘 = 𝐵𝐸𝑉 2.9 

The total emissions from the EOL treatment of drivetrain technology k in year t , LCt,k
EOL, is calculated from 

the sum of vehicles removed from the stock in year t of all ages, Ra,t,k, and the emission intensity of the EOL 

for each vehicle, Ct,k
EOL (Equation 2.10).  

 𝐿𝐶𝑡,𝑘
𝐸𝑂𝐿 =  ∑(𝑅𝑎,𝑡,𝑘 ∙

𝑎

𝐶𝑡,𝑘
𝐸𝑂𝐿), ∀ 𝑡 ∈  𝑂, 𝑘 ∈ 𝐾 2.10 

2.4.2 Vehicle stock dynamics 

The model is split into two time periods, an initialization period and an optimization period. The purpose 

of the initialization period is to establish a vehicle fleet that resembles the historic and current fleet in the 

UK. In this thesis the fleet is assumed to only contain ICEVs between 2000 and 2020. The amount of BEVs is 

seen as negligible because the fleet currently contains only 0.15 % of BEVs (DfT, 2018e). From 2020 and 

towards 2050 the fleet composition is optimized and the model will decide the optimal combination of BEVs 

and ICEVs in order to minimize the emissions over the whole period. The equations calculating the different 

aspects of the fleet dynamics are essentially the same as in both periods, with some exceptions which will 

be explained in further detail later in this section.  

Initialization period 

The vehicle demand in each year is driven by a parameter based on historical data and predicted future 

growth of the vehicle stock, Vt
 . In the first year of the initialization period, the age distributed vehicle stock, 

Sa,t,k, is determined by the parameter defining the total number of vehicles in the fleet, and an age 

distribution parameter, αa (Equation 2.11). The age distribution parameter is describing the share of 

vehicles in the fleet at age a, and is based on statistical data averaged over 15 years. In the whole 

initialization period the fleet consists of ICEVs only, and the equations are therefore only valid for drivetrain 

technology k = ICEV. For the case of k = BEV the value of the equations are equal to zero, meaning no BEVs 

are added, removed or present in the fleet when t ∈ I.   

 𝑆𝑎,𝑡.𝑘 = 𝑉𝑡
 ∙ 𝛼𝑎 , ∀  𝑡 = 2000 ∈ 𝐼, 𝑘 = 𝐼𝐶𝐸𝑉 2.11 

In the remaining years of the initialization period the stock of vehicles with drivetrain technology k of age 

a, in year t is given by the size of the stock in the previous year, plus the new vehicles added to the 

stock, Aa,t,k
 , minus the vehicles that are assumed scrapped and therefore removed from the stock, Ra,t,k

  

(Equation 2.12).  



  

 

11 

 𝑆𝑎,𝑡,𝑘 =  𝑆𝑎−1,𝑡−1,𝑘 + 𝐴𝑎,𝑡,𝑘
 − 𝑅𝑎,𝑡,𝑘

 ,          ∀ 𝑡 ≠ 2000 ∈ 𝐼 , 𝑘 = 𝐼𝐶𝐸𝑉    2.12 

All vehicles added to the fleet are assumed to be new, and are therefore assigned to age class 0. The number 

of vehicles added are based on the change in vehicle stock, ΔSt,k, and the total vehicles removed from the 

stock in the previous year (Equation 2.13). Where the change in vehicle stock is calculated from the vehicle 

stock size parameter, taking the difference between the current and previous year (Equation 2.14). The 

vehicles removed from the stock, Ra,t,k
 , are dependent on a parameter describing the share of vehicles in 

the stock of different age classes that are scrapped, βa (Equation 2.15). The scrapping parameter is based 

on a cumulative normal distribution function, which was used to calculate the vehicle death rate for each 

given age.  

 𝐴𝑎,𝑡,𝑘
 = Δ𝑆𝑡,𝑘 + ∑ 𝑅𝑎,𝑡−1,𝑘

 

𝑎

 ,          ∀ 𝑡 ∈ 𝐼 , 𝑘 = 𝐼𝐶𝐸𝑉    2.13 

 

 Δ𝑆𝑡,𝑘 =  𝑉𝑡 − 𝑉𝑡−1,          ∀ 𝑡 ∈ 𝐼 , 𝑘 = 𝐼𝐶𝐸𝑉    2.14 
 

 𝑅𝑎,𝑡,𝑘
 = 𝑆𝑎−1,𝑡,−1,𝑘

 ∙ 𝛽𝑎−1, ∀ 𝑡 ∈ 𝐼, 𝑘 = 𝐼𝐶𝐸𝑉 2.15 

Optimization period 

In the optimization period, the change in vehicle stock, vehicle stock size, vehicles added and vehicles 

removed are calculated in the same way as in the initialization period (Equations 2.12 through 2.15). The 

only differences are the conditions of validity, where in the optimization period  the equations are valid for 

t ∈ O and k ∈ K.  

Since the fleet now consist of both ICEVs and BEVs, it is the sum of the ICEVs and BEVs in the fleet that has 

to fulfil the total vehicle demand given by the parameter Vt (Equation 2.16).  

 ∑ ∑ 𝑆𝑎,𝑡,𝑘

𝑘𝑎

= 𝑉𝑡 , ∀ 𝑡 ∈ 𝑂, 𝑘 ∈ 𝐾 2.16 

 

The total number of BEVs and ICEVs added in the optimization period also has to be balanced in terms of 

the total number of vehicles that are removed from the fleet and the calculated stock growth (Equation 

2.17). 

 ∑ 𝐴𝑎,𝑡,𝑘 = ∑ (ΔSt,k + ∑ 𝑅𝑎,𝑡−1,𝑘
 

𝑎

) 

𝑘𝑘

, ∀ 𝑡 ∈ 𝑂, 𝑘 ∈ 𝐾 2.17 
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An additional constraint is included to restrict the number of BEVs added in each year to provide a realistic 

growth in the BEV stock (Equation 2.18). The parameters R1 and R2 are percentages that can be adjusted in 

order to obtain the desired BEV introduction rate. R1 denotes the annual growth relative to the size of the 

BEV fleet in the previous year. R2 denotes the additional growth relative to the total fleet size, and is included 

to start the BEV introduction if the BEV stock in the previous year is zero.   

 𝐴𝑎,𝑡,𝑘
 ≤ (1 + 𝑅1) ∙ 𝐴𝑎,𝑡−1,𝑘

 + 𝑅2 ∙ 𝑆𝑎−1,𝑡,−1,𝑘
 , ∀ 𝑡 ∈ 𝑂, 𝑘 = 𝐵𝐸𝑉 2.18 
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3 Case description and data  

This section contains a description of the scenarios modeled, as well as a description of the different 

parameters, data sources and assumptions made. First, the vehicles modelled are presented, followed by a 

description of the main storylines of the scenarios. Then, each parameter is presented together with their 

respective values and assumptions. The life cycle emissions parameters for the vehicles and electricity 

mixes are presented first, followed by the parameters linked to the vehicle fleet in the UK. In total, this 

section is quite long, but this is seen as necessary in order to give a thorough explanation of the parameters 

and the corresponding data basis.  

An overview of all input parameters and respective values for the main scenario can be seen in Table B.1 in 

the appendix, while the relative parameter changes in the other scenarios can be seen in Table 3.1 in this 

section. The uncertainties linked to the parameter values and assumptions are discussed in section 5.1.  

3.1 Vehicles modelled 

The optimization model includes two vehicle technologies; Battery-electric vehicles (BEVs) and internal 

combustion engine vehicles (ICEVs). The model only includes one vehicle segment, and it is chosen to model 

a medium-sized vehicle. The past years the sales of small and medium-sized vehicles have increased in the 

UK, while the sale of larger cars has stagnated (SMMT, 2018b). Modelling a medium-sized vehicle is 

therefore chosen to model a vehicle that represents the average in the fleet.  

The main difference comparing the two drivetrains is that the BEV uses electricity stored in an onboard 

battery pack to power an electric motor that provides propulsion, while the ICEV has an engine and a fuel 

tank. The vehicle fleet in the UK has historically been dominated by gasoline vehicles. In the past years, 

however, it is seen that the gasoline sales are declining while the sales of diesel cars are increasing (DfT, 

2018e). The ICEV modeled in this thesis is, therefore, assumed to be a diesel car. Other differences are the 

cost of both buying and operating the vehicles. BEVs usually have a higher purchasing price, but on the other 

hand, they are cheaper to fuel and maintain (IEA, 2018c). Another evident difference is that the BEV has no 

tailpipe emissions, while the ICEV, which is dependent on the combustion of fossil fuels, will emit 

greenhouse gases during its whole lifetime. 

For the BEV it is chosen to model a 42 kWh battery since this is assumed representative for today’s medium-

sized vehicles. When the first commercially available BEVs were launched the battery size was usually in 

the range 16 to 24 kWh, which can be deemed representative for a medium sized vehicle in that period. The 

battery sizes have since increased to meet the demand for longer range BEVs. Thus, 30 to 60 kWh can be 
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deemed as a more common battery size for a medium-sized vehicle today. An overview of previous and 

current BEV models and corresponding battery sizes can be seen in Table C.3 in the appendix.  

3.2 Scenario description 

The purpose of the scenarios included in this study is to assess how the fleet composition would change if a 

variety of parameters in the model were changed. Besides, it is desirable to see how the annual and 

cumulative emissions in the period 2020 to 2050 are changing relative to main scenario. The storylines of 

the various scenarios will be described here, while the exact values for the different parameters are 

described in the respective parameter subsection later.  

Main scenario 

The main scenario is based on statistical data and current trends and is used as a basis for the adjustments 

made in the other scenarios. In this scenario, all maximum gradients of change regarding ICEV lifecycle 

emissions are set to 2025 since the ICEV technology is seen as more mature than the BEV technology  (IEA, 

2018c). The maximum gradients of change for the BEV life cycle emissions are set to 2030. The introduction 

rate of the BEVs is modeled so that the UK can reach its goal of an electric market share of 50 % in 2030. 

Regarding production, the battery is assumed to be produced in Japan, China or South Korea and the other 

vehicle components are assumed to be produced in Europe. It is further assumed that the UK successfully 

decarbonizes the power sector, leading to a carbon intensity of 110 g CO2-eq/kWh in 2050.  

Sustainable transport (ST) scenario 

In the ST scenario, it is assumed that a behavioral change among the UK population, as well as policies 

introduced by the government, will change the way people travel. Travel demand management can be done 

through strategies and policies that reduce the population’s need for driving, for instance, through 

promoting other modes of transport, congestion pricing, parking management and road tolls (Mashayekh 

et al., 2011). This scenario includes a substantial modal shift to other transport modes, such as bus, rail, 

walking or cycling. Since the dependency on a personal vehicle is decreasing, the growth in the vehicle stock 

is assumed slower than in the main scenario. Since more people are choosing public transport, the annual 

driving distance is also expected to have a higher annual decrease. Also, a switch towards larger shares of 

biofuels in the diesel is contributing to bringing down the operation emission from the ICEVs. This is seen 

to happen due to stronger enforcement of the Renewable Transport Fuel Obligation by the UK government, 

which is setting goals for fuel producers in terms of the share of renewable fuels produced. The obligation 

is intended to reduce greenhouse gas emissions from fuels used in road vehicles (DfT, 2018b). It is assumed 

that all ICEVs after 2020 run on biodiesel, which has a lower carbon intensity than regular diesel (Edwards 

et al., 2014).  
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Battery electric success (BE-S) scenario 

In the BE-S scenario it is desirable to see what would happen if the improvements of the battery electric 

technology are more significant and happening faster than what is assumed in the main scenario. This 

includes 20 % lower emission intensities of battery production, BEV operation and end-of-life treatment in 

2050, relative to the main scenario. In addition, multiple policies favoring BEVs are successfully 

implemented leading to a higher introduction rate of electric vehicles. The introduction rate is following the 

most positive trajectory by the Department for Transport, with an electric market share of 70 % in 2030 

(DfT, 2018c). 

Delayed action (DA) scenario 

The DA scenario explores what would happen if the improvements of the technologies for BEVs are delayed 

and will have the steepest decrease in the life cycle emission parameters in 2035 instead of 2030. The 

emission intensities of battery production, energy consumption during operation and emissions from end-

of-life treatment will then be higher in 2050, and a 20 % increase relative to the main scenario is assumed. 

In addition, due to few successful policies favoring BEVs, the electric car sales will increase at a slower rate 

than in the main scenario. Here, the introduction rate is modeled after the slowest introduction rate 

predicted by the Department for Transport, where the share of BEVs of new car sales in 2030 is 30 % (DfT, 

2018c). 

Production location (PL) scenario 

The PL scenario explores what would happen if the production of the vehicles and battery was set to 

different regions. This will then affect the production emissions since the carbon intensity of the electricity 

varies between countries (Moro et al., 2018). It is assumed that the production of the battery and the rest 

of the vehicle happens in the same country, as opposed to the main scenario where the production 

farcicalities are situated in different countries. The first case, PL-A, explores the case of importing the cars 

from Asia, the second case, PL-E, includes production in Europe and the last case, PL-N, explores how 

moving the production of both cars and batteries to Norway, which has almost 100 % renewable electricity, 

would affect the optimal solution.   

ICEV light-weighting (LW) scenario 

The LW scenario assumes that the ICEVs are light-weighted. This assumption is affecting two things; the 

emission intensity of the vehicle production and the fuel consumption during operation. Since light-

weighting the vehicles means substituting materials such as steel with aluminum or magnesium, this will 

increase the production emissions since the upstream emissions embodied in the lighter materials are 

higher (Kim et al., 2013). On the other hand, the benefit of reducing the weight is lower fuel consumption, 

hence lower emissions from the operation of the vehicles (Sims et al., 2014). The benefit of improved fuel 
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economy versus increased emissions from production is dependent on multiple factors, for instance, the 

share of material substituted, choice of substitution material and vehicle lifetime (Kelly et al., 2015; Kim et 

al., 2013; Raugei et al., 2015). This scenario is therefore based on a very simplified case, where it is assumed 

that decreasing the weight of the ICEV leads to an improvement of 6 % in fuel economy (Lewis et al., 2014). 

Since the parameter describing the emissions during ICEV operation is not dependent on the fuel 

consumption in the model it is assumed that the emissions will have the same percentage reduction as the 

fuel consumption. It is further assumed, based on Raugei et al. (2015) that the production emissions due to 

the use of lighter materials will increase by 10 % relative to the main scenario. 

UK electricity trajectory (EL) scenario 

Different trajectories for decarbonizing the UK electricity is included in the EL scenario. This scenario 

explores how the carbon intensity of the electricity used during BEV operation is affecting the optimal fleet 

composition and total emissions. The carbon intensity of the electricity in the main scenario is here seen as 

an optimistic future state. Different cases of higher final carbon intensities are explored where in the first 

case, EL-0, it is assumed that the carbon intensity will not see a reduction and stagnate at today’s level. In 

the rest of the cases EL-30, EL-50 and EL-70, it is assumed that the carbon intensity will be 30 %, 50 % and 

70 % lower than today’s level, respectively. 

Scenario overview  

Table 3.1 shows the key aspects that are affected by the assumptions in each scenario. The changes in the 

parameters are given relative to the main scenario, where = indicates that the parameter is unaffected,  

indicates that the parameter value is increasing and  indicates that the parameter value is decreasing. Note 

that not all parameters are included in the table, but that changes for instance in the electricity mixes will 

affect the other parameters and are therefore assigned to these.  

Table 3.1 – Overview of the parameters changed in the various scenario. The changes are given relative to the main 

scenario, where = denotes that the parameter is unaffected,  denotes that the parameter value is increasing and  
denotes that the parameter value is decreasing 

 Vehicle 

fleet 

size 

Annual 

operating 

distance 

ICEV 

production 

ICEV 

operation 

ICEV 

EOL 

BEV 

production 

BEV 

operation 

BEV 

EOL 

 ST   =  = = = = 

BE-S = = = = =    

DA = = = = =    

PL-A = =  = =  = = 

PL-E = = = = =  = = 

PL-N = =  = =  = = 

LW = =   = = = = 

EL = = = = = =  = 
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3.3 Life cycle emission intensities  

Life cycle emissions from a vehicle are comprised of three phases: production, operation and end-of-life. 

The production phase includes manufacturing of the vehicles, as well as the battery for the BEVs. Both the 

vehicle and battery production are split up into two parts, where the first part is the electricity consumption 

during manufacture and the second part is a constant emission term. The electricity consumption is linked 

to the carbon intensity of the electricity mix in the respective production location to estimate the emission 

burden for this part. Note that the constant emissions also change during the modeling period, but is 

denoted as constant due to the fact that they are not dependent on the electricity mix.  

During the modeling of the life cycle parameters in this thesis the question has usually not been if the 

emission intensity for a given parameter will decrease or not, but how much it will decrease. Since it is 

virtually infeasible to estimate this in any exact way, the future emission intensities are often based on 

assumptions. When available, the reductions have been based on trends seen in data from automotive 

manufacturer or projections from government reports. The focus has been on making sure the 

developments of the two drivetrain technologies were reasonable relative to one another, as well as 

benchmarking the parameter values to results from literature in the current decade.  

It is chosen to base the life cycle emission parameters on the study by Ellingsen et al. (2016), and it is 

assumed that these values are representative for the current decade. The results from Ellingsen et al. (2016) 

were compared to other studies in literature and from the industry. Both the results for the ICEV and the 

BEV are in the range of the average from what is found in industry reports and other studies. An overview 

of the results from reviewed LCA studies can be seen in Table C.1 and Table C.2 in the appendix. 

3.3.1 Production of the vehicles (excluding battery pack) 

For the ICEV, the production of the vehicle includes all components needed to produce a fully functional 

vehicle. For the BEV the production of the battery pack is not included in this section, but the impacts from 

producing all other vehicle components are assigned to this parameter. The electricity requirement includes 

all electricity used during the production phase at the factory, for instance, processing of vehicle parts and 

vehicle assembly. The constant emission term comprises all other non-electricity related emissions, such as 

the use of other fuels and gases for heat in the factory and upstream emissions linked to the materials used.  

Electricity use 

To estimate the electricity used to produce the vehicles, given by parameter ϵt,k 
VEH, sustainability reports 

from Volkswagen, Nissan, BMW and Daimler were assessed. The stated energy consumption in kWh per 
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produced vehicle can be seen in Table 3.2. It is assumed that these values are representative for the 

production of an ICEV since most of the car models produced by these manufacturers are ICEVs. For all 

manufacturers the energy consumption per vehicle produced has been decreasing over the years, with an 

annual reduction of between 1.6 and 4.6 %. It is assumed that this reduction is representative for the 

previous decade, and the average of 3.4 % is used to estimate the energy consumption in 2000. The average 

energy consumption in 2010 was 2953 kWh. Extrapolating this back to 2000 results in an energy 

consumption of 4000 kWh per vehicle.  

Table 3.2 – Energy consumption for producing one vehicle given in kWh per vehicle, and average decrease in the energy 
consumption for the different manufacturers given in percent per year. 1 Volkswagen AG (2018), 2 Nissan Motor 
Corporation (2014, 2018b), 3 BMW Group (2018), 4 Daimler AG (2017).  

 VW 1 Nissan 2 BMW 3 Daimler 4 Average 

2010 2519 2490  3850 2953 

2011  2200  3730 2965 

2012  2300  3710 3005 

2013  2190 2360 3490 2680 

2014  1870 2250 3240 2452 

2015  1860 2190 3060 2370 

2016 2090 1800 2210 2990 2272 

2017 2068 1680 2170 3070 2247 

2018 2037    
2037 

Average 
decrease 

2.7 % p.a. 4.6 % p.a. 1.6 % p.a. 2.9 % p.a. 3.4 % p.a. 

 

Further, Nissan states that around 50 % of the energy used in their manufacturing process is electricity 

(Nissan Motor Corporation, 2014), which results in an electricity consumption of 2000 kWh. This is 

assumed to be representative for the production of an ICEV in the main scenario in 2000. As mentioned in 

the scenario description it is assumed that the weight reduction will increase the production emissions by 

10 % in the LW scenario. It is assumed that the electricity consumption will increase by the same amount, 

leading to an electricity consumption of 2200 kWh. The electricity requirement parameter for the ICEV 

production can be seen in Figure 3.1a. 

The BEV without the battery pack is relatively similar to the ICEV. As a simplification one can say that the 

main difference between the two are that the ICEV has an internal combustion engine and a fuel tank, while 

the BEV has an electric motor and a battery pack.  Of the components mentioned it is the electric motor that 

has the highest associated production emissions, not considering the battery pack (Bauer et al., 2015; 

Hawkins et al., 2013). Since no data were obtained of the differences in electricity consumption during 
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LW

production it is assumed that the BEV production electricity is similar to the ICEV. The electricity 

requirement parameter for the BEV production can be seen in Figure 3.1b. 

To estimate the electricity consumption in manufacturing in 2050 the lowest annual decrease found in 

industry reports of 1.6 % is used, and this rate of reduction is assumed to 2025. From 2025 to 2050 the 

decrease is assumed to slow down to 1 % per year, resulting in a total electricity consumption for producing 

the vehicles of 900 kWh in 2050 in the main scenario. In the battery electric success (BE-S) scenario it is 

assumed that electricity consumption for producing a BEV in 2050 is 20 % lower than in the main scenario 

(720 kWh), while in the DA scenario it is assumed that the consumption is 20 % higher (1080 kWh). In 

addition, the highest gradient of change in the DA scenario is set to 2035, compared to 2030 in the two other 

scenarios.  

 

Figure 3.1a-b – Electricity requirement of producing the ICEV and BEV shown in kWh per vehicle produced. The chart 
for the ICEV is showing the main and light-weighting (LW) scenarios, while the chart for the BEV is showing the main, 
battery electric success (BE-S) and delayed action (DA) scenarios.  

Constant emission term 

According to ACEA (2019) the total CO2 emissions per car produced dropped by 30.1 % between 2008 and 

2017. This reflects the manufacturer’s effort to bring the overall emissions down, and it is likely that they 

will continue to strive for this in the future. The constant emission term, given by parameter Ct,k
CNST,VEH, is 

estimated by taking the total production emissions from Ellingsen et al. (2016) and subtracting the 

emissions linked to the electricity consumption, assuming an average European electricity mix of 521 g CO2-

eq/kWh.  

Ellingsen et al. (2016) estimated the total emissions from producing an ICEV to 4500 kg CO2-eq. Assuming 

approximately 800 kg CO2-eq can be allocated to the electricity use yields a constant emission term of 3700 

kg CO2-eq in the main scenario. For the ICEV it is further assumed that the constant production emissions 

will decrease by 10 %, in line with Bauer et al. (2015), resulting in a constant emissions term of 3400 kg 
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CO2-eq in 2050. Fitting the 2000 value to the other values stated yields production emissions of 

approximately 3900 kg CO2-eq per ICEV in the main scenario. In the LW scenario, where the ICEVs are 

assumed to be light weighted,  the switch from less steel and more aluminum will lead to higher production 

emissions (Kim et al., 2013). As mentioned in the scenario description, it is assumed that the light-weighting 

will increase the production emissions by 10 %, leading to constant emissions of 4300 kg CO2-eq per 

produced vehicle in 2050. The constant emission term parameter for the ICEV can be seen in Figure 3.2a.  

Ellingsen et al. (2016) estimated the production emissions for the BEV, excluding battery pack, to 6500 kg 

CO2-eq. Subtracting the share allocated to the electricity yields a constant emission term of 5700 kg CO2-eq. 

The production emissions are assumed to decline 18 % in the main scenario, also in line with Bauer et al. 

(2015), resulting in a constant emission term of 4670 kg CO2-eq per BEV in 2050. Fitting the 2000 value to 

the other values stated yields production emissions of approximately 5800 kg CO2-eq per BEV. In the BE-S 

scenario and DA scenario the values in 2050 are assumed to change in the same way as for the electricity 

consumption, i.e. a decrease and increase by 20 %. Resulting in 3700 kg CO2-eq and 5600 kg CO2-eq for the 

BEVs produced in the BE-S scenario and DA scenario, respectively. This can be seen in Figure 3.2b. 

 

  

 

 

 

 

 

 

Figure 3.2a-b – Constant emission parameter for producing the ICEV and BEV, given in kilo CO2-equivalents per vehicle 
produced. The chart for the ICEV is shown in the main and the light-weighting (LW) scenarios, while the chart for the 
BEV is showing the main, battery electric success (BE-S) and delayed action (DA) scenarios.  

3.3.2 Production of battery pack 

Emissions from battery production account for 30 to 40 % of the total BEV production emissions (Ellingsen 

et al., 2018). The battery pack is modelled separately since it is likely that it is produced in another region 

than the rest of the vehicle. The battery production is also split up into an electricity requirement and a 

constant emission term.  
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Electricity consumption 

It is estimated that around 50 % of the emissions linked to the battery production are caused by the use of 

energy during battery cell manufacture (Ellingsen et al., 2014; Kim et al., 2016). The main driver for energy 

consumption during cell manufacture is the operation of the dry rooms that are required to assure the 

quality of the battery cells (Ellingsen et al., 2014). The energy used to operate the dry rooms depend on the 

throughput of the factory, i.e. if the factory produces batteries close to its capacity or not. Lower throughput 

than capacity will lead to a higher energy consumption per battery produced and vice versa (Dunn et al., 

2015).  

The energy consumption in battery production, given by parameter ϵt,k 
BATT,  is estimated to be between 147 

and 464 kWh per kWh battery by Ellingsen et al. (2018). The lower value represents a state-of-the art 

production facility, while the higher value represents a smaller scale factory, which is in line with the 

differences described by Dunn et al. (2015). Further, Ellingsen et al. (2018) state that electricity accounts 

for around 57 % of the energy used. This is used as an approximation in this study since few of the other 

studies in literature stated the share of electricity consumed. Applying the lowest value from Ellingsen et al. 

(2018) for the production of a 42 kWh battery pack yields an electricity consumption of approximately 3500 

kWh, which is assumed to be representative for the production in the current decade.  

The price of the lithium ion battery packs has decreased in the past decade, and is predicted to continue 

decreasing in the coming years (Nykvist et al., 2015; Philippot et al., 2019; Tesla Motors, 2014). This can be 

used as an indication of for instance the energy used in the production process, and it is assumed the energy 

consumption has been following the same trend. A decline in electricity consumption of 1 % per year is 

assumed in the main scenario, resulting in a requirement of 2900 kWh per battery in 2050. Fitting the 2000 

value yields 3700 kWh per battery produced. In the BE-S and DA scenarios the electricity requirements are 

assumed to be 20 % lower and higher than in the main scenario in 2050, respectively. This results in an 

electricity requirement of 2320 kWh in the BE-S scenario and 3480 kWh in the DA scenario. The parameter 

values in the different scenarios for the electricity requirement can be seen in Figure 3.3a.  

Constant emission term  

The constant term for the battery production, given by parameter Ct,k
CNST,BATT, is estimated in the same way 

as the constant term for the production of the rest of the vehicle. The emissions linked to the electricity 

consumption were compared to the results from Ellingsen et al. (2016) for the whole battery pack of 

42 kWh, where the emissions were found to 4900 kg CO2-eq. Assuming an average Asian electricity mix of 

900 g CO2-eq/kWh, since the battery is assumed to be produced in either China, South Korea or Japan, yields 

electricity related emissions of around 3000 kg CO2-eq. This results in constant emissions of approximately 

1900 kg CO2-eq in the current decade. The constant emission term of the battery production can be seen in 



  

 

22 

Figure 3.3b. Further, assuming the constant emission term has had and will have a slower decrease than the 

electricity consumption, of 0.5 % reduction per year, results in 2000 kg CO2-eq in 2000 and 1700 kg CO2-eq 

in 2050. In the BE-S scenario it is assumed that the values will be 20 % lower and in the DA scenario the 

values will be 20 % higher in 2050, leading to 1360 kg CO2-eq and 1950 kg CO2-eq, respectively.  

 

Figure 3.3a-b –Electricity consumption and constant emission term parameters for battery production, shown in kWh 
and kilo CO2-eq per battery, respectively. Both charts show the main, battery electric success (BE-S) and delayed action 
(DA) scenario.  

3.3.3 Operation 

The operation is usually the largest contributor of emissions over the vehicle life cycle, and the emission 

burden is dependent on the vehicles’ fuel or energy consumption. The fuel or energy consumption of the 

vehicles is again depend on various factors, for instance driving pattern and speed, road gradient, rolling 

resistance, vehicle design and weight, as well as drivetrain efficiency. As inputs to the operation phase in 

the model, the emission intensity of driving the ICEV, given by parameter Ca,t,k
OPER, and the energy 

consumption of the BEV per km, given by parameter Ia,t,k
OPER, are established. The emissions from the BEV will 

also be dependent on the carbon intensity of the electricity used to charge the vehicle.  

The BEV drivetrain is quite efficient, with an efficiency of between 80 and 90 % (Sims et al., 2014). There 

are however some potential for improvements with regard to the energy density of the battery and battery 

lifetime, which may increase the efficiency in the future (Ellingsen et al., 2018). The efficiency of the ICEV is 

limited by the thermodynamic properties of the internal combustion engine, which has an efficiency of 20 

to 35 % (Sims et al., 2014). Potential improvement in efficiency of the ICEV is more dependent on vehicle 

light-weighting and improvements in rolling resistance and aerodynamics, where these improvements 

could yield a potential fuel consumption reduction of 25 % (Sims et al., 2014). 
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The fuel and energy consumption of the ICEV and BEV are based on the report by Edwards et al. (2014), for 

the European Commission. Their calculations consider the New European Driving Cycle (NEDC) and the 

results are said to represent the most widespread passenger vehicles in Europe, which is of the C-segment. 

The whole well-to-wheel consumption and emissions are estimated, meaning that both production of the 

fuel or electricity, and combustion of the fuel is taken into account.  

Edwards et al. (2014) estimates the emission intensity of an ICEV to 0.15 kg CO2-eq/km in 2010, while the 

energy consumption of the BEV is estimated to 0.14 kWh/km. In the main scenario light-weighting of the 

vehicles is not taken into account, but improvements in other factors such as aerodynamics and the 

drivetrains are considered. It is further predicted by Edwards et al. (2014) that the ICEV emission intensity 

will be reduced to 0.11 kg CO2-eq/km in 2020 and beyond, and the future BEV energy consumption is 

estimated to 0.11 kWh/km. These values are assumed to be representative for the operation of the vehicles 

in 2050. As a previous state in 2000, both values are estimated from fitting the curve to the value stated for 

2010, which yields an emission intensity of 0.16 kg CO2-eq/km for the ICEV and 0.15 kWh/km for the BEV. 

The operational parameters can be seen in Figure 3.4a and b. 

 

Figure 3.4a-b – Parameters for the emissions intensity of ICEV operation and energy consumption during BEV 
operation, shown in kilo CO2-eqivalents and kWh per kilometer, respectively.  

3.3.4 End-of-life 

In the end-of-life phase (EOL) the vehicles are usually recycled or parts of the vehicles can be reused. Reuse 

is the highest hierarchy in product recovery and materials or whole components are reused in either the 

same product or other applications. If the vehicle, or parts of it, are recycled the used materials are collected, 

sorted and later reprocessed to be used in new products. Both reuse and recycling contribute to reducing 

the use of primary raw material, which can contribute to reducing the overall environmental impact. In the 

UK, 85 % of the weight of end-of-life vehicles are either reported to be recycled or reused (Eurostat, 2019a).  

The li-ion battery used in the BEV is usually handled separately in the EOL phase (Dunn et al., 2015). 
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In contrast to the production and operation phase, the EOL phase contributes to a small share of the life 

cycle emissions. The emissions linked to EOL, given by parameter Ct,k
EOL, are also dependent on what kind of 

recycling method that is used and a lot of studies often leave out this phase due to lack of available data 

(Ellingsen et al., 2018). The recycling practices also vary between countries. Comparing the EOL treatment 

of ICEVs and BEVs the latter usually has a higher impact in terms of greenhouse gas emissions due to the 

lithium-ion battery. Recycling of the battery components can however in some cases contribute to lowering 

the total impact of the battery production, since the use of secondary recovered material instead of primary 

materials may be less emission intensive (Dunn et al., 2015). 

 

Figure 3.5a-b – Development of the parameter describing the emissions from the EOL treatment of the BEV and ICEV.  

Ellingsen et al. (2016) estimates the emissions from the EOL phase for a medium sized vehicle to 700 kg 

CO2-eq for a BEV and 500 kg CO2-eq for an ICEV. An additional green energy scenario is modelled by 

Ellingsen et al. (2016), where the EOL of the BEV is estimated to 400 kg CO2-eq. It is stated that this scenario 

is not aiming at predicting the future emissions intensities of the BEV life cycle phases, but rather give an 

indication of where we can hope to land the emissions given that the electricity mix is fully renewable. 

Nevertheless, since the EOL phase modelled in this thesis is not dependent on the carbon intensity of the 

electricity, the green scenario is used as an estimation of the impact from the EOL phase for the BEV in 2050 

in the main scenario. In the BE-S and DA scenarios the EOL emissions are following the same path as the 

other BEV parameters in the scenarios, with a reduction and increase of 20 %, respectively. This can be seen 

in Figure 3.5b.  

It is assumed that the improvements in the EOL phase of ICEVs will decrease less than for the BEV, which is 

modelled with an decrease of 43 %. It is assumed that the emissions intensity for the ICEV treatment will 

see a reduction of 30 %, leading to an emission intensity of 350 kg CO2-eq per vehicle in 2050 in the main 

scenario, as seen in Figure 3.5a. Having established the current and future state of the EOL treatment, the 
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values for 2000 are estimated from fitting the curves to match the points mentioned above. This yields an 

emission intensity of 750 kg CO2-eq per BEV and 550 kg CO2-eq per ICEV in the main scenario. 

3.4 Carbon intensity of the electricity 

To capture that the production of the vehicles, production of the battery pack and operation of the BEV is 

happening at different locations, three different electricity mixes are included in the model. The emissions 

from electricity generation depend on multiple factors, for instance electricity demand, fuels used for 

electricity generation and the thermal efficiency of the system (Ang & Goh, 2016). An energy system based 

on coal as the primary fuel will have a much higher carbon intensity compared to an energy system with 

only renewables (Turconi et al., 2013).  

Different countries with different energy systems will therefore have different carbon intensities, where the 

carbon intensity represents the emissions in kg CO2-equivalents per kilowatt hour of electricity (e.g. 

consumed). The emissions per kilowatt hour will depend on where in the electricity pathway the carbon 

intensity is calculated. Even though the amount of emissions are the same, the losses increase along the 

pathway, leading to a higher carbon intensity towards final consumption (Moro et al., 2018). All the 

electricity mixes described in this subsection include the upstream emissions linked to construction of the 

power plants, and distribution and transmission of the electricity. The carbon intensity is given at low 

voltage, representing the final consumption at the user.  

All carbon intensities included in this subsection are benchmarked against the study by Itten et al. (2014), 

which is based on data from 2008. Here, the carbon intensity of the electricity is estimated for multiple 

countries, including all of the ones relevant for this study. It is also seen as reasonable to use the values from 

Itten et al. (2014) as a basis since the same methodology was used for all calculations. Statistics of the 

historic sources for electricity generation was collected from the IEA (2018a). Since no data of the carbon 

intensity was available for the year 2000, the carbon intensity is based on a simplified assumption that a 

previously higher share of fossil fuels in the energy mix means that the carbon intensity was higher, and 

vice versa. The carbon intensities in 2050 were based on governmental plans and goals regarding the future 

state of the respective energy systems, as well as scientific literature if available.  

3.4.1 Electricity in the UK 

Since the BEVs are operated in the UK and charged with electricity from the national grid an electricity mix 

reflecting this was established, given by parameter CIt
UK. The UK energy system has historically relied on 

primary fuels such as coal and natural gas, with a 73 % fossil share in 2000 and 48 % fossil share in 2016 

(IEA, 2018a). In the past decade, renewable sources such as wind and solar power have been introduced to 
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a larger extent, and most of the coal power is substituted by natural gas, as seen in Figure 3.6. Even though 

natural gas is a fossil fuel it has a lower carbon intensity when compared to coal (Moro et al., 2018; Turconi 

et al., 2013), and can therefore contribute to bringing down the emissions. In addition, the UK depend on 

nuclear power, as well as some imports, mainly from France (Itten et al., 2014). Nuclear power has a low 

carbon intensity and can in terms of emissions be compared to renewable sources (Turconi et al., 2013).  

Based on data from 2008 the carbon intensity of the UK electricity mix was found to be 690 g CO2-eq/kWh 

by Itten et al. (2014). While Moro et al. (2018) estimates the carbon intensity to 630 g CO2-eq/kWh, based 

on data from 2013. This decrease in carbon intensity can be seen in relation to the higher shares of nuclear 

power and renewables in 2013 as well as a decrease in the share of fossil fuels. In 2000 the share of  fossil 

fuels and renewables were slightly lower compared to 2008, while the share of nuclear power was slightly 

higher. Since both nuclear power and renewables have lower carbon intensity per kWh generated than 

fossil fuels such as coal and natural gas (Turconi et al., 2013), it is assumed that the carbon intensity of the 

UK electricity in 2000 was in line with what was estimated by Itten et al. (2014).  

 

Figure 3.6 – Shares of different fuels as input into electricity generation averaged in the United Kingdom from 2000 to 
2016 (IEA, 2018a).  

The use of fossil fuels for electricity generation in the UK peaked in 2010, and the government is now 

focusing on promoting low-carbon electricity, with a focus on renewable energies, nuclear energy and coal 

and natural gas combined with carbon capture and storage (CCC, 2018; IEA, 2012). In addition, the 

government have committed to phase out unabated coal by 2025 (CCC, 2018) and it is projected that the 

direct emissions from the power sector will be 90 % lower in 2050 compared to current levels (DfT, 2018c).  

The estimated carbon intensity of the electricity in 2050 is based on the assumption that the UK will 

successfully phase out coal and implement low-carbon technologies and CCS, which brings the carbon 

intensity down substantially. Studies from literature that assess scenarios for the future of UK electricity 

estimate the carbon intensity in a low-carbon economy to between 90 and 120 g CO2-eq/kWh in 2050 
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(Hammond et al., 2013; Hammond et al., 2017; Stamford et al., 2014). The differences in the carbon 

intensities reflect different policy assumptions and predicted energy demand. Nevertheless, all projections 

include a mix of nuclear power, renewables such as wind and solar and successful implementation of CCS 

technology.  

In the main scenario the carbon intensity in 2050 is based on the average from the presented literature and 

assumed to be 110 g CO2-eq/kWh. The development of the parameter can be seen in Figure 3.7. In the EL 

scenario four different cases are included, where each case represents a higher final carbon intensity in 

2050. The trajectories included are based on a given reduction compared to today’s level, and the reductions 

assessed range from 0 to 70 % reduction.  

 

Figure 3.7 – Development of the parameter for the carbon intensity of the electricity mix in the UK in the main and EL 
scenarios, given in grams of CO2-equivalents per kWh.   

3.4.2 Electricity in Europe 

The UK was the fourth biggest manufacturer of passenger cars in the EU in 2017 (ACEA, 2018a). Cars are 

also both the most exported and imported goods in the UK (OEC, 2017a, 2017b), and 80 % of the passenger 

cars made in the UK are exported (ACEA, 2018b). In terms of imports, 88 % of the cars imported in 2017 

came from Europe (OEC, 2017b). It is therefore reasonable to assume that many of the vehicles on UK roads 

are not produced within the economy, but imported from Europe. To reflect this in the model it is assumed 

that the electricity used to produce the ICEVs and BEVs (excluding battery pack) is of European origin. This 

is represented by parameter CIt
EUR in the model.  

Historically, Europe has been somewhat dependent on fossil fuels such as coal and natural gas for electricity 

generation, with a fossil share of 54 % in 2000. However, compared to the UK, Europe has had higher shares 

of renewables in the electricity mix (IEA, 2018a). In addition, Europe is also dependent on a substantial 

share of nuclear power. The trend seen the last decade shows the fossil share is decreasing and the 
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renewable contribution is increasing, as seen in Figure 3.8. The share of nuclear power in the electricity mix 

has seen a small decrease in the same period.   

 

Figure 3.8 – Shares of different fuels as input into electricity generation in Europe from 2000 to 2016 (IEA, 2018a).  

As a future strategy, the European Commission is seeking to maximize the deployment of renewable energy 

technologies to fully decarbonize Europe’s energy supply (European Commission, 2018). In the main 

scenario it is assumed the carbon intensity of European electricity will reach the same level as the UK , and 

the carbon intensity in 2050 is set to 110 g CO2-eq/kWh, as seen in Figure 3.9.  

 

Figure 3.9 – Development of the parameter for the carbon intensity of the average European electricity mix in the main 
scenario, given in grams of CO2-equivalents per kWh. 

3.4.3 Electricity in China, Japan and South Korea 

Around 80 % of the batteries for electric vehicles today are produced in Asia, namely China, Japan and South 

Korea (Ellingsen et al., 2018; Zenglein et al., 2018). It is therefore assumed that the battery packs for the 

BEVs are produced in one of these countries. An average carbon intensity reflecting the emissions from the 

electricity generation in these countries is therefore established, given by parameter CIt
ASIA.  
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Both China, Japan and South Korea have fossil fuel dependent energy systems, especially on coal. The share 

of fossil fuels has been quite stable the past decades, as seen in Figure 3.10. China has had both a strong 

population growth as well as economic growth the past years, leading to a great increase in the energy 

demand, where this demand has mainly been met by increasing the electricity generated from coal power 

(IEA, 2018a). The share of nuclear power seen in the average is mainly due to electricity from Japan and 

South Korea. However, after the Fukushima accident in Japan in 2011 the majority of the nuclear power 

plants in the country were closed and electricity generation substituted by coal power. The main renewable 

energy source in the countries’ average is hydro power, which has had an increasing contribution to the 

electricity generation in the past years. There has also been an increase in other low-carbon technologies 

such as solar power, wind power and other renewables (IEA, 2018a).  

 

Figure 3.10 – Shares of different fuels as input into electricity generation averaged for China, South Korea and Japan 
from 2000 to 2016 (IEA, 2018a).  

The carbon intensities for the electricity in China, Japan and South Korea has been estimated to 1230, 680 

and 710 g CO2-eq/kWh, respectively, by Itten et al. (2014).  The average of the three electricity mixes, 

approximately 870 g CO2-eq/kWh, is used as a basis for modeling the electricity used for battery production. 

Ang and Su (2016) found that the carbon intensity in both Japan and South Korea had an average annual 

increase of 1.3 % between 1990 and 2013, while the carbon intensity in China had an annual decrease of 

approximately 1 % in the same period. Even though the share of fossil energy sources in the average 

electricity mix was slightly lower in 2000 compared to 2008, as seen in Figure 3.10, it is assumes that the 

carbon intensities estimated by Itten et al. (2014) is representative for 2000.  

The Ministry of Trade, Industry and Energy in South Korea has developed a national plan for the long-term 

electricity supply and demand. The plan contains regulations that promote energy efficiency as well as goals 

for the future sources for electricity generation (MOTIE, 2017). South Korea aims at producing more power 

from renewable energy sources and natural gas, while reducing their dependency on coal and nuclear 
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power. In 2030 it is predicted that 20 % of their electricity will come from renewable sources, 19 % from 

natural gas, 36 % from coal and 24 % from nuclear power (MOTIE, 2017). 

Japan’s energy plan also set targets with regard to reducing their emissions from the power sector. They 

aim at setting reduction targets that are comparable with the EU and implementing a policy program that 

promotes wider introduction of renewable energies. In 2030 it is projected that the energy mix could consist 

of 23 % renewable energy, 21 % nuclear power, 27 % natural gas, 26 % coal and 3 % oil (METI, 2015). In 

order to reduce the emissions from the non-renewable energy sources, Japan also aims at increasing the 

efficiency of their fossil power plants (METI, 2015).  

China has a vision for how their energy system should look towards 2050, where main points are that the 

system should be clean, low-carbon and efficient (CNREC, 2018). In addition, China aims at reducing their 

dependency on fossil fuels, particularly coal, as much as possible, while substituting it with renewable 

sources. Furthermore, the China National Renewable Energy Centre presents a future scenario predicting 

how the power generation mix could look like in 2050. This mix consists of 87 % renewable energies, 5 % 

coal power, 6 % nuclear power and a small amount of other energy sources such as oil, natural gas and 

geothermal (CNREC, 2018).  

 

Figure 3.11 – Development of the carbon intensity of the average electricity mix in China, South Korea and Japan for the 
main scenario, given in grams of CO2-equivalents per kWh. 

Generally, one can see that all the three Asian countries have set goals to reduce their dependency on fossil 

power, as well as implementing more renewables. Even though some of the goals are quite ambitious, for 

instance for China, it is assumed that the average carbon intensity of the electricity mix in 2050 will be 

higher than what is assumed for the UK and Europe. This is also consistent with the predicted development 

by the International Energy Agency (IEA, 2019b), and is seen as realistic due to the substantial shares of 

fossil fuels in the current electricity mixes. In addition it is also assumed that the decarbonization of the 

average carbon intensity will happen later than in the European countries, and the maximum gradient of 

changed is set in 2035.  
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In the main scenario it is assumed that the decrease in carbon intensity will be faster than what was found 

by Ang and Su (2016) due to the current focus on implementation of renewable energies in the three 

countries. With a reduction of 2 % per year the carbon intensity is assumed to approximately 370 g CO2-

eq/kWh in 2050. The development of the parameter for the carbon intensity can be seen in Figure 3.11.  

3.4.4 Electricity based on renewable sources 

A fourth carbon intensity is included in the model in order to model a low-carbon electricity in the PL-N 

scenario. This carbon intensity is based on the Norwegian electricity mix, which consists of more than 98 % 

renewables, mainly hydro power (IEA, 2018a). The carbon intensity of the Norwegian electricity is also 

based on the study by Itten et al. (2014), which estimates the carbon intensity to 50 g CO2-eq/kWh. 

Substantial shares of hydro power in Norway’s electricity mix has been persistent for decades, so the carbon 

intensity estimated by Itten et al. (2014) is assumed to be representative in 2000.  

 

Figure 3.12 – Development of the parameter for the carbon intensity of the electricity in Norway used in the production 
location (PL) scenario, shown in grams of CO2-equivalents per kWh.  

The carbon intensity can be further reduced by introducing larger shares of other renewables with less 

upstream emissions, for instance wind power, which has a carbon intensity of 21 g CO2-eq/kWh (Ecoinvent 

Centre, 2010). Assuming a higher share of wind power in the Norwegian electricity mix towards 2050, the 

final carbon intensity is set to 30 g CO2-eq/kWh.   

3.5 Vehicle fleet characteristics  

This subsection describes the parameters linked to the UK vehicle fleet. Statistical data of different aspects 

of the vehicle fleet was collected from the UK Department for Transport (DfT, 2018d, 2018f). This data is 

comprised of the total number of licensed passenger cars at the end of the year and the total kilometrage 

driven per year by the passenger car fleet. In addition, statistical data describing the historic and predicted 
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vehicles per capita (ONS, 2018). An overview of the historic statistical data can be seen in Table A.1 in the 

appendix.  

3.5.1 Vehicle fleet size and annual operating distance 

Data of the passenger car fleet in the UK was only available from year 2014 to 2017, while data of the fleet 

in Great Britain (GB) was available from 1994 to 2017 (DfT, 2018f). From the data one can see that the fleet 

in the UK contains approximately 1 million more vehicles than the fleet in GB, and it is assumed that this 

holds for all years. The passenger car fleet in the UK, given by parameter Vt, is estimated to 25.4 million cars 

in 2000 and 32.2 million cars in 2017. This further translates to 431 and 488 cars per 1000 capita in 2000 

and 2017, respectively (DfT, 2018f; ONS, 2018). As mentioned in section two, it is assumed that all of the 

vehicles in the passenger car fleet are ICEVs, since the current share of BEVs is deemed negligible (DfT, 

2018e).  

Car ownership has earlier been seen to vary with affluence and social standing. However, a decoupling of 

these factors has been seen the past years (Lansley, 2016). There are also claims that the car ownership in 

UK has reached its peak, and is predicted to level off in the next decades (Goodwin et al., 2013; Headicar, 

2013). This trend can also be seen in statistics, where the car ownership per capita increased 15.7 % 

between 1997 and 2007, but only 3.1 % between 2007 and 2017 (DfT, 2018f; ONS, 2018). 

 

Figure 3.13a-b – Development of the vehicle stock parameter (a) and annual driving distance per vehicle (b) in the main 
and sustainable transport (ST) scenario. The dotted line shows the trend in the statistics from the Department for 
Transport (2018).  

In the main scenario the size of the passenger car fleet in 2050 is based on the assumption that the number 

of cars per capita will follow the same trend as in the past decade, where the average increase per year was 

0.28 %. This results in 535 cars per 1000 capita in 2050. Combining this with the population projection of 

77 million inhabitants (Eurostat, 2019b) results in 41.2 million cars in 2050. In the sustainable transport 
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(ST) scenario a modal shift towards public transport like bus and rail is predicted, leading to a smaller future 

vehicle stock. It is assumed that the number of vehicles per capita will stabilize at the current level, which 

is consistent with the trend seen in more developed countries (Hao et al., 2016), resulting in 35 million 

vehicles in 2050. The differences in the vehicle fleet size parameters used as input in the main and ST 

scenario can be seen in Figure 3.13a.  

Data of the total passenger car kilometrage was only available for GB and the average kilometrage per car 

is therefore estimated based on the GB fleet size. It is assumed that this estimate is representative for car 

use in the UK. The total passenger car road traffic reported in 2000 and 2017 was 376 and 409 billion km, 

respectively (DfT, 2018d). This results in an annual operation distance, given by parameter Dt, of 

approximately 15 700 km in 2000 and 13 100 km in 2017, where the operating distance is calculated by 

dividing the total kilometers driven by the total number of vehicles. It is assumed that the trend in the 

decreasing annual driving distance will continue. The number of trips per person has also been decreasing 

since 2000, supporting these findings (DfT, 2018a). Between 1997 and 2007 the annual decrease was 1 %, 

while between 2007 and 2017 the annual decrease was 0.7 %. This suggests that while the annual 

kilometrage is decreasing it may also decrease at a lower rate in the future.  

In the main scenario the decrease in kilometers driven is assumed to continue at the current rate of 0.7 % 

annually towards 2030. Then it is assumed that the decline will slow down with an annual decrease of 0.3 % 

towards 2050. This results in approximately 11 300 km driven per vehicle in 2050, as seen in Figure 3.13b. 

In the ST scenario it is assumed that the way we use our vehicles will change, and due to the modal shift 

towards public transport the vehicles in the stock will also drive less distance per year. The annual 

kilometers driven is assumed to follow the trend seen the past decade with a 0.7 % reduction per year, 

resulting in 10 400 km driven per vehicle in 2050.  

3.5.2 Vehicle age distribution and lifetime 

The age distribution of the vehicle stock, i.e. the share of vehicles in the stock of different age classes, is 

based on statistical data from the Department for Transport (DfT, 2018f). Historic data containing the 

number of vehicles in the GB fleet at different ages was collected and an average distribution is used in the 

model. Since the data was not available for the UK is assumed that the age distribution of the GB fleet is 

representative for the UK fleet. An average age distribution from year 2000 to 2017 is used. Since the model 

only accounts for vehicles up to 20 years the cars older are left out of the average. This does however not 

exclude many vehicles, since 97 % of the vehicles in the fleet are between 1 and 20 years (DfT, 2018f). The 

normalized age distribution used to set the initial age distribution of the UK vehicle fleet, given by parameter 

αa, can be seen in Figure 3.14a. 



  

 

34 

The probability of a vehicle being scrapped at a certain age is derived using a normal distribution given by 

Equation 3.1. Where the parameter 𝑎 is the age of the vehicle, the parameter μ is the average vehicle lifetime 

and the parameter σ is the standard deviation, all given in years. The share of vehicles exiting the stock at 

each age is given by the cumulative probability of being scrapped up to that age.   

 
𝑓(𝑎, 𝜇, 𝜎) =

1

𝜎√2𝜋
𝑒

−
(𝑎−𝜇)2

2𝜎2  3.1 

 

The average vehicle age at scrapping in the UK is 14 years (SMMT, 2018a), the μ is therefore set to 14 and a 

standard deviation of 4 years is used. This yields the probability of a vehicle being scrapped at a given age 

as seen in Figure 3.14b and the share of vehicles in the stock scrapped at a given age, given by parameter 

βa, as seen in Figure 3.14c. At age 20 it is assumed that all vehicles are scrapped since this is the maximal 

age set in the model and it is not possible for vehicles above this age to persist in the stock. Note that this is 

however not included in Figure 3.14c.  

 

3.5.3 Introduction rate of BEVs 

The UK has through the EV30@30 campaign committed to a goal of reaching 30 % sales share of electric 

vehicles, including passenger cars, vans, buses and trucks, by 2030 (IEA, 2018b). In terms of only passenger 

cars, the government has a separate goal, aiming at a market share of at least 50 % by 2030 (DfT, 2018c). 

Today, the purchase price of a BEV is higher than for the ICEV, which currently one of the limiting factor to 

the uptake of electric vehicles (IEA, 2018c). The introduction of BEVs is therefore largely dependent on 
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policy measures, where financial incentives to facilitate the acquisition of BEVs and reducing their 

operational costs are key examples of successful measures (IEA, 2018c). The UK government has 

established a grant for low emission vehicles, where the buyers get a discount of up to 20 % on the 

purchasing price of the vehicles that are eligible (UK Government, 2019). However, poor provision of 

charging infrastructure is currently one of the greatest barriers of growth in the BEV market in the UK, and 

the charging network is lacking geographic coverage and size (BEIS, 2018).  

As descried in the methodology section, a restriction on the number of BEVs added to the vehicle stock in 

each year is included in the model (Equation 2.18). This is seen as necessary to prevent the model from 

dramatically switching all new car sales from ICEVs to BEVs from one year to another, if this happens to be 

most beneficial in terms of minimizing the emissions. It is seen as more realistic that the shift will happen 

gradually, with an increasing share of BEVs sold each year. Recall that this restriction is dependent on two 

shape parameters, R1 and R2, where R1 is linked to the number of BEVs added to the fleet in the previous 

year and R2 is linked to the total number of vehicles in the fleet.  

 

Figure 3.15 – Share of battery electric vehicles of total vehicles sales for the main, battery electric success (BE-S) and 
delayed action (DA) scenarios. The development of the Norwegian battery electric sales is used to provide a reference 
of a possible path.  

Norway is currently one of the countries with the highest share of BEVs in new car sales, and provides an 

example of how the shift towards an electrified vehicle fleet may look like. Statistics of the historic BEV sales 

in Norway was collected from 2010 to 2018 (Norsk Elbilforening, 2018; SSB, 2018). Based on these 

numbers, a future projection is made assuming an exponential growth. The historic data is together with 

the projection used as a reference for how the BEV introduction could look like in the UK. The trend seen in 

Norway is plotted from 2020 in Figure 3.15 together with the market share developments assumed in the 

main, DA and BE-S scenario.   

In the main scenario it is assumed that the UK achieves the goal of reaching a 50 % share of BEVs in the 

vehicle sales by 2030. In terms of the constraint restricting the additions of BEVs, the parameters R1 and R2 
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are set to 17 % and 0.2 %, respectively. In the battery electric success (BE-S) scenario it is assumed that the 

sale of BEVs will be more successful than in the main scenario, and that the share of BEV in the total vehicles 

added will follow almost the same pattern as seen in Norway. The parameters R1 and R2 are set to 25 % and 

0.2 %, respectively.  In the delayed action (DA) scenario it is assumed that the sale of BEVs will be slower 

than in the main scenario, and it will take longer time before all the new vehicles sold are electric. The 

parameters R1 and R2 are set to 7 % and 0.2 %, respectively.   
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4 Results and analysis 

The results from the optimization model are presented in this section. First, the results from the main 

scenario are presented and analyzed. This includes the breakdown of the emissions from all life cycle phases 

to provide some insight before presenting the optimal vehicle stock composition and fleet dynamics. 

Further, the total vehicle stock emissions are presented. Finally, the results from the rest of the scenarios 

are presented and compared to the main scenario, with a focus on stock composition and emissions.  

4.1 Main scenario 

The main scenario aimed at modeling a realistic development of the vehicle stock, technologies and 

electricity mixes, and was based on trends, current literature, statistics and governmental goals. The results 

in the main scenario will be described more in detail than the other scenarios to provide an understanding 

of the dynamics in the model and how the final emissions are dependent on the inflow and outflow of the 

different vehicle technologies, as well as the stock composition.  

4.1.1 Life cycle emissions 

The life cycle emissions from the two drivetrain technologies are compared in terms of which year the 

vehicles are produced to provide a fair comparison. The lifetime of the vehicles are affecting the total 

environmental burden substantially due to the emissions from the operation phase. Since the annual driving 

distance is modelled as a parameter that is decreasing each year it means that the vehicles produced in 2000 

are likely to have a longer lifetime than the vehicles produced in 2040.  

In this comparison, the vehicles are assumed to be driven for 14 years since this is the average vehicle age 

in the UK (SMMT, 2018a). The annual operating distance is held constant and set to 13 000 km, which 

currently is the average annual driving distance in the UK (DfT, 2018d). The emission values from the 

production of the vehicles and battery pack are taken from the production year. The fuel or energy efficiency 

is also taken from this year and held constant throughout the lifetime. The operation emissions from the 

ICEV will therefore be the same in each year, while the emissions from the BEV operation will change since 

the carbon intensity of the electricity is decreasing. The emissions from the EOL are taken from 14 years 

after the production year, since the vehicles are assumed to enter this phase later. The comparison of the 

ICEV and BEV life cycle emissions for the different production years can be seen in Figure 4.1, where the 

dashed line represents the trajectory of the carbon intensity of the electricity mix in the UK.    
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Figure 4.1 – Comparison of the total life cycle emissions from the ICEVs and BEVs for different production years. The 
total emissions are broken down into the life cycle phases and shown in tons of CO2-eq on the left hand axis. The dashed 
line represents the carbon intensity of the electricity in the UK, shown in kg CO2-eq per kWh on the right hand axis.    

Comparing the life cycle emissions from the vehicles produced in the same year the BEV has a 7 to 54 % 

lower impact, and the ICEV has the higher associated emissions in all production years. This is mainly due 

to its operation phase, which is contributing to more than 80 % of the emissions during the vehicle’s lifetime. 

For the production of the vehicles one can see that the BEV has more than double the emissions compared 

to the ICEV, which is mainly because of the additional emissions linked to the production of the battery pack. 

In terms of the EOL phase, this is contributing to a small share of the total life cycle emissions for both 

drivetrain technologies.  

When comparing the different production years one can see that the emissions from the vehicles with the 

same drivetrain also are decreasing each decade. This is mainly due to the vehicles becoming more energy 

or fuel efficient, as well as the electricity mix becoming less carbon intensive, as seen from the dashed line 

in Figure 4.1. One can here see that the reduced carbon intensity is contributing to a substantial reduction 

in the emissions linked to the BEV operation. This also leads to the gap between the life cycle emissions of 

the ICEV and BEV increasing each decade. Overall, one can here argue that the BEV is a more 

environmentally sound alternative in terms of reduced greenhouse gas emissions, regardless of the carbon 

intensity of the electricity used for charging being high in for instance 2000 and 2010.  

 Since the production of the BEV has a higher associated impact, it may however take some years before it 

reaches the breakeven point compared to the ICEV. The breakeven point is defined as when the cumulative 

emissions of the two drivetrain technologies are equal. A comparison of the breakeven points for the 
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production years 2010, 2020, 2030 and 2040 can be seen in Figure 4.2, where the BEV is represented by 

the green line and ICEV by the blue line. The vehicles produced in 2000 and 2010 break even after 

approximately 10 years, so only the curve for the vehicle produced in 2010 is shown in the figure. The 

vehicles produced in 2020 break even after between 7 and 8 years, while for the vehicles produced in 2030 

break even after 5 years. For the vehicles produced in 2040 it takes only 3 years before the BEV provides 

an emission reduction compared to the ICEV. If the vehicle lifetime however is less than the respective 

values for the different production years, one could argue that the ICEV would be a better option in terms 

of emission reduction. The BEV would then not have managed to compensate for the higher production 

emissions.  

 

 

In the model the lifetime in terms of kilometers driven will vary depending on the production year since the 

scrapping rate for a given vehicle age class is constant and the annual kilometrage is decreasing each year. 

This means that a vehicle produced in year 2000 has a higher probability of having a longer lifetime in terms 

0

5

10

15

20

25

30

35

P
ro

d 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4

E
O

L

to
n

 C
O

2
-e

q

(a) Production year: 2010

0

5

10

15

20

25

30

35
P

ro
d 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

E
O

L

(b) Production year: 2020

0

5

10

15

20

25

30

35

P
ro

d 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4

E
O

L

to
n

  C
O

2
-e

q

(c) Production year: 2030

0

5

10

15

20

25

30

35

P
ro

d 1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4

E
O

L

(d) Production year: 2040

Figure 4.2a-d – Comparison of breakeven point of ICEVs and BEVs produced in different years. The y-axis shows 
the associated emissions in tons of CO2-eq and the x-axis shows the life cycle phases, where the operation is shown 
as the vehicle age.  
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of kilometers driven than a vehicle produced in 2030, which implies that the less energy efficient vehicles 

are driving longer distances, hence contributing to more pollution.  

4.1.2 Vehicle stock dynamics and optimal fleet composition 

The optimal fleet composition is dependent on the stock dynamics of the model, i.e. the numbers of vehicles 

with different drivetrain technologies that enter or leave the vehicle fleet each year. The vehicles added to 

the fleet are shown in Figure 4.3a, given in million vehicles. In the beginning of the optimization period the 

majority of the vehicles added are ICEVs and the BEV sales are increasing slowly. However, after some years, 

the BEV is gaining market, reaching a 50 % share in 2030. By 2034 all new vehicles added to the optimized 

fleet are electric. Looking at the vehicles removed in Figure 4.3b, one can see that mostly ICEVs are exiting 

the stock until 2035. After this, the BEV fleet also starts to age and the share of BEV exiting the stock is 

increasing. This is also due to the increasing numbers of BEVs entering the fleet at an earlier stage.  

 

Figure 4.3a-b – Vehicles added to the vehicle stock and vehicles removed from the stock, shown in million vehicles. The 
bars are split up into the different drivetrain technologies.  

The optimal combination of ICEVs and BEVs in the UK vehicle fleet is the one that fulfills the objective of 

minimizing the total emissions from the vehicle fleet between 2020 and 2050. The optimal stock 

composition can be seen in Figure 4.4 where the red field represents ICEVs and the green field represents 

BEVs. Here one can see that the transition from a fleet based on ICEVs only to a mixed fleet is happening 

gradually. It is optimal to introduce BEVs from the first year of the optimization period and from 2020 to 

2030 the BEV stock is increasing slowly, while in the later years the BEV stock is increasing at a faster rate. 

BEVs are starting to dominate the fleet after 2035, where the electric share is 50 %.  
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The optimal fleet in 2050 is almost 100 % electric, but still contains around thousand ICEVs, even though 

the last ICEVs entered the fleet in 2033. The share of ICEVs still present in the stock is due to the lifetime of 

the vehicles, which in the model is set to a maximum lifetime of 20 years, with an average age of 14 years. 

So, even though the lock-in time of personal vehicles is relatively short compared to the lifetime of other 

larger infrastructure systems, it may take some years for a full fleet turnover to be achieved.  

 

Figure 4.4 – Optimal vehicle fleet composition in the optimization period, shown from year 2020 to 2050, given in 
million vehicles.  

4.1.3 Vehicle fleet emissions 

The objective function value for the optimized vehicle fleet, i.e. the total emissions from the vehicle fleet 

between 2020 and 2050, is found to be 1.94 Gt CO2-equivalents. As a reference, the cumulative direct 

emissions from the passenger cars in the UK between 1990 and 2017 was 2.07 Gt CO2-eq (Jones et al., 2019).  

Recall that the objective function value represents the emissions from both production, operation and end-

of-life treatment. The annual emissions from the optimization period can be seen in Figure 4.5, given in 

mega tons of CO2-eq. The chart is split into emissions from the ICEV stock and BEV stock, and shows the 

source of the emissions in terms of life cycle. The dotted line represents the emissions from the fleet if no 

BEVs were introduced, further referred to as the ICEV baseline.  

In the first 15 years of the optimization period the emissions from the mixed ICEV and BEV fleet are slightly 

higher compared to the ICEV baseline. This can be explained by the higher production emissions from the 

BEVs that are introduced to the stock compared to the ICEVs in the baseline. In the later years the annual 

emissions are dropping below the baseline, even though the vehicle fleet size increases. This relative 
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reduction is due to the BEVs having lower operation emissions than the ICEV, combined with the shift from 

an ICEV to BEV dominated fleet.  

In 2050, the annual emissions from the mixed fleet are 47 % lower than for the ICEV baseline. The drop in 

the annual emissions is caused by two factors; the stock dynamics and the reduction in emissions related to 

the vehicles’ life cycle. Regarding stock dynamics the number of BEVs added is increasing, while vehicles 

removed from the stock mostly are ICEVs. Even though the BEVs have higher production emissions than 

the ICEVs, the fleet now benefits from the lower operation emissions that the BEVs provide.  

 

Figure 4.5 – Total greenhouse gas emissions from the optimized vehicle fleet with a mix of both ICEVs and BEVs. The 
graph shows the annual emissions given in mega tons of CO2-equivalents. The dotted and dashed lines are included as 
references, representing the annual emissions of a fleet consisting of only ICEVs and BEVs, respectively.  

Recall from Figure 4.1 that the gap between the operation emissions from the vehicles with different 

drivetrain technologies produced in the same year is increasing each decade, making it more beneficial in 

terms of emission reduction to switch from ICEVs to BEVs. The removal of the vehicles of older age classes, 

regardless of drivetrain technology, and replacing them with more fuel or energy efficient vehicles will also 

contribute to bringing the overall emissions down over the whole period. The operation phase accounts for 

82 % of the total emissions from the fleet in 2020, while in 2050 this share decreases to 17 %, where the 

majority of the emissions origin from the production of the BEVs. This equals a reduction in annual direct 

emissions of 56 Mt CO2-eq. Comparing the direct emissions from cars in the UK in 1990 to the potential 

annual direct emissions in 2050, given that they reach the level found in this thesis, equals an emission 

saving of 66.4 Mt CO2-eq.  
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Generally, all life cycle emission parameters and carbon intensities of the electricity mixes are modelled to 

decrease year by year. This is however also the case in the ICEV baseline, and the parameters describing the 

life cycle emissions from the ICEVs are the same in both cases. One can therefore argue that the main driver 

for the emission reduction is the introduction of BEVs. The constraint on the additions of BEVs can be 

analyzed from the marginal value of the equation. Here, the marginal value represent the additional 

emission reduction over the whole optimization period if one more BEV was allowed added to the fleet in 

the first year. In the main scenario, emissions could have been reduced with an additional 2.1 mega ton CO2-

eq if one more BEV was added in the first year of the optimization period. 

4.2 Additional scenarios 

The additional scenarios were included to analyze the sensitivity of the optimal solution to key parameters. 

Six scenarios were made to achieve this. Here, the results from the scenarios will be analyzed in terms of 

how the optimal stock composition and annual emissions are changing.  

4.2.1 Stock composition 

The stock composition from the additional scenarios will be compared to the stock composition in the main 

scenario. The optimal stock composition only changed in three of the scenarios, which were the DA, BE-S 

and ST scenarios. This can be seen in Figure 4.6a-c, where the colored lines represent the values from these 

scenarios and the dotted lines represent the main scenario which is here used as a reference. The darker 

lines represent the ICEVs and the lighter lines represent the BEVs.  

Comparing the DA and BE-S scenario, as seen in Figure 4.6a and c, one can see that the stock composition is 

affected more when the introduction is delayed. The shifts in these scenarios are likely to be linked to the 

constraint on the introduction rate of BEVs, which was changed in both cases. Relative to the main scenario 

the BEV introduction in the DA scenario was assumed to be 10 % slower, while it was assumed to be 8 % 

faster in the BE-S scenario. In the DA scenario the shift from a stock based on ICEVs to BEVs happen 5 years 

later than in the main scenario. The fleet will not reach a fully electric state due to the slower BEV 

introduction rate and still contains 5 % ICEVs in 2050. The contrary is seen in the BE-S scenario, where the 

shift happen 1 year earlier than in the main scenario. Due to the faster introduction rate in the BE-S scenario 

the fleet is 100 % electric from 2047. When the constraint applied limits the model in terms of number of 

BEVs introduced this will have implications on the whole optimization period, since the constraint is based 

on the size of the BEV stock in the previous year. A smaller number of BEVs added in year t means that a 

smaller number of BEVs can be added in year t+1, which can be seen in Figure 4.6a to limit the fleet of being 

100 % electrified.  
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Figure 4.6a-c – Optimal stock composition in the delayed action, sustainable transport and battery electric success 
scenarios, all compared to the main scenario shown as the dotted line. The darker colored lines represent the ICEVs and 
the lighter lines represent the BEVs.  

In the ST scenario, seen in Figure 4.6b, the stock composition switch is happening in the same year as in the 

main scenario. However, the stock is different than in the main scenario due to the different stock sizes. In 

the LW, PL and EL scenarios, the stock composition followed the same slopes as in the main scenario. In 

these scenarios the constraint of BEVs added was kept equal to the main scenario, and the change in the 

other parameter values did not affect the introduction rate of the BEVs, thus neither the optimal fleet 

composition. This shows that the stock dynamics are quite dependent on this constraint, especially when 

the life cycle emissions related to the BEVs are lower than for the ICEVs.  

4.2.2 Vehicle stock emissions 

Even though the stock composition only changed in three of the scenarios, the annual emission curves and 

total emissions were different in all cases. The total fleet emissions in the optimization period and the curves 

of the annual emissions, both shown relative to the ICEV baseline, can be seen in Figure 4.7 for the different 

scenarios. Figure 4.7a-f shows the annual emissions in year 2020 to 2050, while Figure 4.7g shows the 

cumulative emissions from the whole period for each scenario. The scenarios can here be seen as different 

measures to take, or pathways to follow, to reduce the emissions from the transport sector. Figure 4.7g 

shows it is clear that all the scenarios provide a reduction in the total emissions relative to the baseline.  
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Figure 4.7a-g – Panel a to f  show the annual emissions from all scenarios compared to the baseline case with only ICEVs 
(dotted line), where the emissions are shown in mega tons of CO2-equivalents. Panel g shows the total emissions in the 
whole period for each scenario relative to the ICEV baseline case, where the change is given in percent.  
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The scenario providing the largest emission reduction, with 33 % lower total emissions, is the ST scenario 

shown in Figure 4.7a. In this scenario the vehicle stock was assumed to have a slower growth than in the 

rest of the scenarios, which is one of the drivers of emission reduction, since less cars on the road equals 

less emissions. Note that the additional emissions that would come from the increased use of public 

transport services is not included in this scenario. Including these emissions would have made the climate 

change mitigation potential lower than what was shown in Figure 4.7g.  

Reducing the weight of the ICEVs, seen in Figure 4.7d, also proved to have a good emission reduction 

potential, even though the vehicle fleet composition did not change compared to the main scenario and the 

ICEV production emissions were assumed to increase. The emission intensity of ICEV operation was, 

however, also assumed to decrease. Given that the operation is contributing to more than 80 % of the total 

life cycle emission for the ICEV, it will have a good effect in terms of reduced emissions to improve the fuel 

efficiency of the conventional vehicles. In Figure 4.7g one can also see that the reduced emissions from the 

LW scenario is in line with the reduction seen from the BE-S scenario.  

The BE-S and DA scenario, shown in Figure 4.7b and c, include two different trajectories of how the BEV 

introduction could look like. The annual emission curves are quite similar the first 10 years of the 

optimization period. After this point the emissions in the BE-S scenario see a steeper decline, resulting in 

lower annual emissions in 2050 than in the DA scenario. Regarding total emissions, one can see that the BE-

S scenario offers a 6 % higher emission reduction than the DA scenario. Comparing the two scenarios to the 

main scenario one can see that the relative difference are 2 % and 4 %, for the BE-S and DA scenarios, 

respectively. Recall from Figure 4.6 that the switch points in these scenarios were moved earlier and later 

relative to the main scenario. This can then be used as an indication of the importance of the timing of the 

introduction of BEVs in order to minimize the total emissions. The more the introduction is delayed, the 

lower is the benefit from the fleet electrification within the given period.  

In the PL scenarios the vehicles and battery pack were assumed to be produced in different countries or 

regions that have different electricity mixes. From the results in Figure 4.7e one can see that the regions 

with the electricity with the highest carbon intensity naturally also have the highest annual emissions. The 

same holds for the total emissions seen for PL-A, PL-E and PL-N in Figure 4.7g. An interesting observation 

here is the small difference between the case where the production was set to Europe and the case for 

Norway. The Norwegian electricity was modelled with a substantially lower carbon intensity than the 

European electricity, and it was expected that this would be more visible on the annual and total emissions. 

When changing the production location, other attributes of the production phase may also change. This is 

for instance the case for the battery production, where dry rooms are used during cell manufacture 

(Ellingsen et al., 2018). If the production is occurring in a region with a humid climate this may contribute 
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to increasing the energy use, and vice versa for a dry climate. These factors are however not taken into 

account in the scenarios presented here.  

In the EL scenarios, different trajectories for the development of the UK electricity mix was tested to see 

how this affected the stock composition and emissions. None of the cases in this scenario affected the stock 

composition. It is however evident that the total emission reduction potential decreases if there are no or 

little improvement in the carbon intensity of the electricity. Looking at all the cases in the EL scenario shown 

in Figure 4.7f, one can also see that the timing of decarbonizing the electricity plays an important role 

regarding how fast and how much the annual emissions from the passenger car fleet can be reduced. 

Comparing the EL-0 and EL-70 case from Figure 4.7g, where the carbon intensity relative to today’s level 

was assumed to have a 0 % and 70 % improvement, one can see that there is a difference in emissions 

reduction potential of 13 %. Compared to the ICEV baseline one can also see that the introduction of BEVs 

provides a 2 % reduction in the total emissions if the electricity mix is not getting cleaner. Even though this 

is a small reduction, it is a reduction, and one can see the BEVs still are a better alternative than ICEVs if the 

electricity mix has not reached a low-carbon state.    
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5 Discussion  

The optimal timing of vehicle fleet electrification in the UK was researched. This implied finding the 

combination of conventional diesel vehicles (ICEVs) and battery-electric vehicles (BEVs) in the fleet, while 

minimizing the total vehicle fleet emissions in the period 2020 to 2050. This was done through an 

optimization model, where the input parameters were based on data from LCA literature or government 

statistics. The dynamic behavior of the passenger car fleet was considered in the model, including vehicle 

fleet size, vehicle use and fleet turnover time. Also, future technological improvements in vehicle 

technologies and decarbonization pathways of the UK electricity were included.  

Through the thesis, it was shown that it would be optimal introducing BEVs as soon and fast as possible to 

reduce the total vehicle fleet emissions. Seen from an environmental perspective, this implies that the fleet 

electrification not is constrained by the carbon intensity of the electricity. This was found to be the case 

even though the UK is still dependent on fossil energy sources such as natural gas and coal (IEA, 2018a). 

The electricity can, therefore, be deemed clean enough for the BEV to provide lower greenhouse gas 

emissions when compared to a diesel vehicle.  

5.1 Assumptions and limitations 

The optimization model was dependent on exogenous data. It was, therefore, emphasized benchmarking 

the parameter values in the current decade to literature and statistics from the same period. One of the main 

limitations of this thesis are the assumptions made linked to the future parameter values. Projecting the 

future states in terms of the carbon intensity of electricity mixes, life cycle emissions of ICEVs and BEVs and 

how the uptake of BEVs will look like is not feasible. One can, therefore, argue that the uncertainty of the 

parameter values is increasing along the modeling timeline. Nevertheless, where available, the assumptions 

were based on trends from statistical data and future goals or projections from governments, which are 

seen as credible sources for possible future outcomes. Misestimating the parameter values could have 

affected the optimal timing of BEV deployment. This mainly regards the parameters linked to the life cycle 

emissions of the vehicles, since these are used in the optimization model to choose the vehicle with the 

lowest climate change impact.  

5.1.1 Life cycle emissions 

The emission intensities of the vehicle life cycle phases are based on results from literature and car 

manufacturers. The study by Ellingsen et al. (2016) was used as a basis to model the emissions for both the 

ICEV and BEV. Ellingsen et al. (2016) state that the results in the study were well aligned with industry 
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reports from, for instance, Volkswagen and Daimler. However, using exogenous LCA data in the 

optimization model give room for some uncertainties. Basing the data on a self-performed LCA study would 

have simplified the split of the production emissions concerning what is electricity related and what is non-

electricity related. Besides, it could generally have made the estimation of the vehicle related parameters 

more accurate and tailored to the two drivetrain technologies assessed in this thesis. 

The electricity requirements for producing the vehicles were based on averages from car manufacturers, 

which only accounts for the electricity used in the respective factories (BMW Group, 2018; Daimler AG, 

2017; Nissan Motor Corporation, 2014, 2018b). Even though manufacturer data can be considered a 

credible source, only accounting for the electricity at the factory leads to an underestimation of the total 

electricity consumption in the whole production chain. The total electricity consumption, when accounting 

for upstream activities linked to raw material extraction and production, is most likely higher than what is 

used in this study. However, the sum of the constant emission term and electricity emission parameters in 

this thesis were benchmarked against the results from Ellingsen et al. (2016), and adjusted to be in line with 

the study. Modeling the production emissions as two parameters might, therefore, not lead to great 

uncertainty in the current decade. However, since one part is dependent on the carbon intensity of the 

electricity, this might lead to the parameter value being underestimated in the future, when the carbon 

intensity is low.   

The operation phases were modeled based on the assumption that the energy and fuel consumption were 

static, hence not dependent on driving pattern, road gradients, and local conditions. Driving patterns with 

frequent starts and stops, representative for urban driving, will require more energy than driving on a 

highway at constant speed (Rangaraju et al., 2015; Sims et al., 2014). Steep road gradients also require more 

power from the motor, hence lead to a higher energy or fuel consumption. This implies that the operational 

parameters in this thesis represent a simplified version of reality. This simplification was, however, 

necessary to make sure the vehicle technologies were comparable on an equal basis in the optimization 

model. 

The energy consumption of the BEV and the emission intensity of the ICEV were based on the study by 

Edwards et al. (2014). The study is accounting for the total well-to-wheel emissions and energy or fuel 

consumption in a European context. In the calculations, Edwards et al. (2014) used a passenger vehicle from 

the C-segment, which represents a medium sized car. This is consistent with the vehicle size modeled in this 

thesis. When comparing this emission intensity and energy consumption to what is applied in other studies, 

or measured by manufacturers, it was found that the values from Edwards et al. (2014) were lower.  

Medium sized BEVs are often modeled with a 24 kWh battery , while in this thesis, a 42 kWh battery capacity 

was assumed. It should be noted that Edwards et al. (2014) based their calculations on a 24 kWh battery 
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pack when assessing the energy consumption of the BEV, which may have led to the energy consumption 

parameter being underestimated in this thesis. Therefore, the model’s dependency on this parameter was 

checked by changing the upper asymptotic value of the respective logistic function. This showed that the 

value could be increased by 100 % without affecting the optimal fleet composition. Higher energy 

consumption would, however, affect the total greenhouse gas emissions, and increase the total fleet 

emissions.  

One factor that was not considered in this thesis is the limited lifetime of lithium-ion batteries. The lifetime 

depends on the number of charging cycles (Ellingsen et al., 2018), and the battery might need to be replaced 

during the vehicle lifetime. In this thesis, it was assumed that the batteries will last the whole vehicle life. 

Including the battery pack replacement could have changed the optimal fleet composition, since it would 

increase the total life cycle emission of the BEVs. It was, however, chosen to leave this out of the model since 

the lifetime of the vehicles, in terms of kilometers driven, changes depending on the production year. 

Assuming the vehicles reach the age of 14 years, which is the average passenger car lifetime in the UK 

(SMMT, 2018a), leads to a maximum kilometer lifetime in the model of 201 000 km, while the minimum 

lifetime would be 162 000 km. Nissan and Volkswagen offer a battery warranty of 8 years or 160 000 km, 

which can indicate how long the battery can be expected to last (Nissan Motor Corporation, 2018a; 

Volkswagen AG, 2019). To test the importance of omitting the battery replacement, the model was run with 

two battery packs in the BEV production phase for the main scenario. This did not change the optimal fleet 

composition but led to a 12 % increase in the total greenhouse gas emissions over the whole period.  

5.1.2 Carbon intensity of the electricity 

The parameters for the carbon intensity of the electricity in the UK, Europe, Norway, and Asian countries, 

were based on the study by Itten et al. (2014). The study assessed the carbon intensity of electricity 

produced and consumed in different countries based on data from 2008. This study was chosen since all 

countries relevant to this thesis were included. Also, it was seen as beneficial that the carbon intensities are 

based on the same modeling framework and method. Itten et al. (2014) present the carbon intensity for 

electricity at different voltage levels, where the electricity at high voltage has a lower carbon intensity than 

electricity at low voltage, which is due to transmission losses in the grid. All electricity used in this thesis 

were assumed to be consumed at low voltage.  

From the carbon intensities stated by Itten et al. (2014) it was found that the carbon intensity of the 

electricity at low voltage was 4 to 6 % higher than for the electricity at medium voltage for Europe and the 

Asian countries. For Norway the low voltage electricity had an 18 % higher carbon intensity. It should be 

noted that the absolute difference in the Norwegian carbon intensity at various voltages is significantly 

smaller than for the other countries, and the high percentage difference is caused by the values being low. 
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From the cases in the production location scenario, it was clear that the change in the carbon intensity 

affected the total climate change mitigation potential from the fleet electrification. The use of a different 

voltage level in the parameter modeling could therefore have led to a change in the emission reduction 

potentials.  

The BEV can be charged from a regular wall outlet of 120 to 240 volts, depending on country. Fast chargers 

and superchargers are also available, providing charging up to 500 volts (Collin et al., 2019; Tesla Motors, 

2019). The assumption regarding BEVs being charged at low voltage electricity is, therefore, seen as 

reasonable. In automotive industry, the manufacturing plant may take in electricity at higher voltage from 

the grid. The electricity used in the machines, however, is likely to be at a lower voltage, transformed via 

internal transformers in the factory (EATON, 2011; Moeller GmbH, n.d.). The overall assumption regarding 

use low voltage electricity in all parameters applied to the model is, therefore, seen as reasonable.  

5.1.3 Vehicle fleet characteristics 

The parameters linked to the UK vehicle fleet characteristics were mainly based on statistical data from the 

government and are therefore deemed certain. This comprises the historical and current size of the 

passenger car fleet, annual driving distance, and vehicle age distribution. Since the statistical data was only 

available for the UK over a timeframe of four years, it was assumed that the data for GB, with some 

adjustments, were representative for the UK vehicle fleet. This is not something that is seen to affect the 

optimal fleet composition substantially. In the sustainable transport scenario, where both the vehicle fleet 

size and annual operating distance were changed, one could see that the transition from ICEVs to BEVs was 

the same as in the main scenario. The fleet size and operating distance will, however, affect the total 

greenhouse gas emissions from the fleet, and potentially wrong estimates would be visible here. 

The average vehicle age was set to 14 years based on statistics (DfT, 2018f), and the maximum age was set 

to 20 years. The assumed vehicle lifetime is linked to the vehicle fleet turnover rate through the share of 

vehicles scrapped at given ages. The trend in statistics showed that the vehicles in the current decade were 

used longer compared to the previous decade. Increasing the average vehicle age in the model would lead 

to a slower fleet turnover, and potentially delay the BEV introduction. On the contrary, a lower vehicle age 

would accelerate the fleet turnover, and hence be beneficial since newer and more energy efficient vehicles 

are introduced at a faster rate. This would though probably lead to a higher share of the total emissions 

coming from the vehicle production phase since more vehicles are added to the fleet to meet the total vehicle 

demand.  
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5.1.4  BEV introduction rate 

The environmental superiority of the BEV found in this thesis is consistent with findings from literature, 

where multiple researchers state that the BEV would be the preferable option over a fossil fueled car if 

charged with low-carbon electricity (Casals et al., 2016; Ellingsen et al., 2016; Hawkins et al., 2013). 

Ellingsen et al. (2016) found that the BEV had a 20 to 27 % lower impact than the ICEV when comparing 

equally sized cars. Hawkins et al. (2013) found that the BEV had a 10 to 14 % higher emission reduction 

potential, depending on the battery chemistry. In this thesis, it was found that the impact from a BEV was 

12 and 28 % lower than for an ICEV, for the cars produced in 2010 and 2020, respectively. This is in the 

range of what was found in the literature. One can here see that the gap between the BEV and ICEV in the 

year 2020, which is when the BEVs are being introduced in the UK, is rather big. This indicates that even 

though some of the parameters might be slightly off, it would most likely not affect the ranking of the vehicle 

technologies in terms of total environmental burden. It would, however, have been visible on the total 

emission from the vehicle fleet.   

Existing studies often include the economic aspect of vehicle acquisition, operation, and maintenance, when 

assessing future optimal fleet compositions. BEVs usually have a higher purchasing cost than ICEVs (BEIS, 

2018), which could affect the uptake rate of BEVs. When taking into account the economic dimension, it is 

often found that the ICEV will be the preferred option, unless fiscal incentives are implemented to bridge 

the financial gap between the two drivetrain technologies (Figliozzi et al., 2012; Kwon et al., 2013; Lemme 

et al., 2019). The results from this thesis are therefore highly BEV positive compared to other studies due 

to the focus on the environmental dimension only.  

If the costs were taken into account in this thesis, the optimal timing of BEV introduction would likely be 

later than what is found, due to the BEV currently being more costly to obtain. This is, however, outside the 

scope of this thesis, where the focus has been on minimizing the total emissions from the fleet. The costs 

could though be included as a factor to model the constraint on the maximum annual BEV uptake, and in 

this way provide some additional detail to the model. It is expected that the BEV and ICEV will reach cost 

parity in the mid-2020s (CCC, 2019), which may accelerate the BEV sales. Until this point is reached, there 

is a need for financial incentives. Aside from costs, BEV uptake is also dependent on other factors such as 

consumer preferences, for instance how the consumers perceive electric vehicles compared to conventional 

vehicles with regard to range and availability of charging points.  

Some studies also include other drivetrain technologies than what is included in this thesis. Comparing the 

fleet transition from the main scenario to the BLUE Map trajectory by the IEA (2011), it is clear that the 

results from this thesis show a faster transition to electric vehicles. Alternative drivetrains, meaning hybrid, 

plug-in hybrid, electric and fuel cell vehicles, are predicted to constitute 80 % of the light-duty vehicle sales 
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in 2050 according to the IEA. Whereas in this thesis, the electric market share was found to 100 % in 2050. 

It should though be mentioned that the scenario modeled by the IEA includes global car sales, which may 

lead to differences because of differences in development level among the various countries. Some of the 

same patterns can, however, be seen in the study by Fridstrøm et al. (2016), which only consider the 

Norwegian vehicle fleet. The study modelled the fleet transition in a low-carbon scenario, considering fiscal 

policy measures, and the fleet is predicted to contain 25 % BEVs in 2050. This is a much lower share than 

what is found to be environmentally optimal in this thesis, and it is especially surprising considering the 

current high market share of BEVs in Norway.  

It can then be argued that the fleet electrification pathways proposed or estimated by other authors are not 

optimal from an environmental perspective. More effort should, therefore, be put into increasing the 

introduction rate of BEVs, since this is one way to reduce the greenhouse gas emissions from the transport 

sector, given a low-carbon electricity mix. From the comparison to other trajectories based on current 

policies, one can also argue that established policies are too weak to facilitate the required BEV uptake.  

5.2 Implications  

Since climate change is a complex problem, successfully mitigating this is also very complex. The drivers for 

climate change are numerous, and the drivers should be seen together in an interlinked system, and not as 

individual black boxes. This thesis exemplifies how the decarbonization of the transport sector is dependent 

on the decarbonization of the power sector, both locally and in the manufacturing countries.  

5.2.1 Emission goals and mitigation potential 

Through the Climate Change Act, the UK has committed to reducing the annual emissions by 80 % relative 

to 1990 levels. Emission reduction goals are usually set on a national scale as a given percentage relative to 

the emissions level in a previous year. However, there are usually not set specific targets on a sectoral basis, 

nor defined what pathway that should be pursued. It can then be debated whether this is the best way to 

promote climate change mitigation or not. Essentially, this could mean that the UK can continue polluting 

for many years, as long as the final emission level is reached in the end. This can, due to the lack of initial 

mitigation efforts, lead to the cumulative emission burden over the period being high, contributing to 

further greenhouse gas accumulation in the atmosphere. 

From the comparison of the ICEV and BEV life cycle emissions in Figure 4.1, it was found that the BEVs had 

a lower climate change impact, regardless of production year. This indicates that the electricity mix in the 

UK is currently clean enough for BEVs to have an emission reduction potential if implemented on a large 

scale. Reaching the emission level as found in the main scenario in this thesis, would mean the direct annual 
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emissions from the passenger cars in the UK will be reduced by 92 %, relative to 2017 levels (Jones et al., 

2019). This is, however, given that the carbon intensity of the electricity mix in the UK will see a significant 

reduction towards 2050.  

In the scenario that included the least positive trajectory of the carbon intensity, the total annual emissions 

would be reduced by 42 %, also relative to 2017 levels. This reflects the importance of focusing on low-

carbon technologies in the power sector in parallel with the introduction of BEVs. The government have set 

goals to decarbonize the electricity system, intending to increase the share of renewable energy sources 

substantially, as well as implementing carbon capture and storage technologies on existing fossil-fueled 

plants (DECC, 2011). The UK is currently deemed one of the global leaders in decarbonization, both in terms 

of actual reduced emissions and ambitions set in their carbon budget plan (IEA, 2019a).  The power sector 

has been the most significant contributor to the national emission reduction in the past years (BEIS, 2019), 

where the reduction mainly is a result of the switch from coal to natural gas, as well as the implementation 

of renewables. If the UK’s goal of decarbonizing the power sector is achieved, there is a higher chance that 

the decarbonization of the transport sector will be successful. 

As pointed out by Hill et al. (2019), the UK’s emission reduction target only considers direct emissions. This 

is insufficient when assessing BEVs due to the production phase constituting a significant share of the total 

embodied emissions. This was seen in Figure 4.5, where the majority of the annual emissions in 2050 came 

from the production of BEVs. Only considering direct emissions, or emissions embodied in the electricity 

used, will lead to an underestimation of the total environmental burden caused by the BEVs. The use of LCA 

is therefore important when assessing different vehicle technologies. The method provides some additional 

insight regarding the environmental performance of the technologies compared to only considering direct 

emissions during vehicle operation, which is often the case (IEA, 2019c). Considering the total life cycle 

emissions in emission targets should, therefore, be encouraged. This could also put additional pressure on 

manufacturers to improve and streamline their production processes.  

This also relates to the need for understanding where the emissions occur on a spatial scale. The direct 

emissions linked to the operation of the vehicles will take place in the UK. However, it is not certain that the 

production of the battery pack and the rest of the vehicle will happen within the UK. In the main scenario in 

this thesis, the production of the battery was assumed to happen in Asia, meaning the emission burden of 

this activity is assigned to countries in this region, and therefore most likely not accounted for in the UK 

emission target. This is also true for the emissions linked to the vehicle production, which in this thesis was 

assumed to occur in Europe. It may be especially problematic when manufacture is happening in the less 

developed countries, since these may have less strict regulations considering the environmental aspect of 

the production phase.  
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In addition to emissions of greenhouse gases, other impact categories and potential trade-offs of fleet 

electrification should also be assessed. Trade-offs might be the increased demand for raw materials such as 

cobalt, nickel or lithium (CCC, 2019), or increased levels of terrestrial acidification, freshwater or marine 

eutrophication and human toxicity related to the production of the lithium-ion battery (Hawkins et al., 

2013). These factors were not explored in detail in this thesis, nor included in the optimization model, but 

are relevant in terms of decision making to capture the full picture of the benefits and drawbacks of an 

electrified fleet, as well as for mapping out potential material scarcity concerns. 

5.2.2 Consumer behavior and policies 

The optimal solution from an environmental perspective is to introduce as many BEVs as possible, and 

preferably switch all car sales from ICEV to BEV in the beginning of the optimization period. This is, 

however, not seen as a realistic path since policies and infrastructure facilitating this transition are 

currently not in place (CCC, 2019). The question is then how the government can facilitate the required 

changes to promote BEVs. Today, the uptake of electric vehicles is still largely dependent on policy measures 

(IEA, 2018c), meaning that even stronger incentives from the UK government could contribute to increasing 

the BEV market share.  

Even though it was found that the deployment of BEVs starts in 2020, and the goal of a 50 % electric market 

share by 2030 is met in the main scenario, ICEVs will still dominate the fleet until 2035. This is consistent 

with what is found by Fridstrøm (2017), which identifies a lag between the time new vehicle technology is 

introduced until they constitute a substantial share of the total fleet. This demonstrates the importance of 

addressing the fleet dynamics and understanding the drivers behind the in- and outflow of vehicles. This 

was seen in the battery electric-success and delayed action scenarios, where the change in BEV introduction 

rate shifted the timing of BEV fleet domination. One could see in the delayed action scenario, where the BEV 

introduction was slower than in the main scenario, that the fleet did not end up as fully electrified in 2050. 

In the battery-electric success scenario, however, the whole fleet was electrified before 2050. Due to the 

dynamics of the vehicle fleet, the BEVs will have a limited mitigation potential in the short-term, but on the 

contrary be beneficial in the longer term when they start dominating the vehicle fleet. This reflects the need 

for facilitating a high BEV uptake as soon as possible through targeted policies to avoid a further lag in the 

emission reduction benefits the BEVs can provide.  

In the UK, the lack of infrastructure in terms of charging stations is seen as one of the barriers to mass 

introduction of BEVs. Therefore, affordable home chargers and access to publicly available chargers play an 

important role in how the consumers perceive the BEV. The availability of fast chargers also needs to be 

addressed, since this is important to decrease the charging time and make BEVs competitive with the ICEVs. 

Consumers state that the accessibility to frequent charging points, as well as fast chargers, are especially 
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important for long-distance trips (OLEV, 2015). Thus, there is also a need for understanding how the 

consumers use their vehicles, and the driving distance or type of trips the BEVs are used for might be 

different compared to the ICEV (OLEV, 2015). This barrier is linked to the range anxiety expressed by 

potential BEV owners (OLEV, 2015), and the consumers can perceive the range as a problem because they 

might need to plan their trips to a larger extent. Thus, a wide-reaching charging network is essential to 

mitigate the range-anxiety (BEIS, 2018). 

Another barrier to BEV uptake is the higher acquisition cost when compared to an ICEV (BEIS, 2018). The 

initial cost is stated by consumers as the most important characterisitc when buying a new vehicle (OLEV, 

2015). Looking to Norway, which is currently the country with the highest market share of electric vehicles 

(IEA, 2018c), financial incentives such as tax exemptions and no fares through toll roads have helped boost 

the BEV sales. Some financial incentives targeting low-emission vehicles are currently in place in the UK 

(UK Government, 2019). However, considering the low share of BEVs in the fleet of 0.15 %, one could argue 

that more ambitious policies are needed to encourage a higher BEV uptake by the consumers. This could 

be, for instance, increasing the current grant on low-emission vehicles.  

On the contrary, financial incentives such as subsidies and tax exemptions are costly and may place a heavy 

burden on national budgets (Fearnley et al., 2015). Nevertheless, financial incentives target the whole 

population regardless of local conditions, and can have a larger effect on the BEV uptake than local 

measures. The lack of climate change mitigation measures may induce high costs for societies in the future, 

due to damages caused by, for instance, sea-level rise, more frequent extreme weather events and wildfires 

(UNFCC, 2014). Besides, the more the action of mitigating climate change is delayed, the less are we able to 

limit the damage, while the costs of doing so will increase. Since financial issues and budgeting often are 

emphasized by governments, it could be relevant to assess the budget implications of financial policies 

together with the potentially saved costs of emission mitigation from the fleet electrification.   

The second most important characteristic for consumers when buying a vehicle are the fuel costs (OLEV, 

2015). Due to the price difference of electricity and conventional fuels, the BEV is cheaper to operate  (IEA, 

2018c). This would then lead to reducing the costs for the consumers in the long term. If financial incentives 

for vehicle acquisition are in place, the benefit of low-cost operation could be used to further promote the 

BEVs. It should, though, be addressed that the lower operation costs could lead to a rebound effect (Sims et 

al., 2014). This implies that the BEV owners, due to the saved costs, drive more and longer distances than 

they usually would. Even though operating the BEVs is less emission intensive compared to the ICEV, this 

could lead to additional emissions.   

Fearnley et al. (2015) also point out access to bus lanes as a successful measure that was highly valued by 

the current and potential BEV owners in Norway. This is an almost free incentive that may make the BEV 
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more attractive to consumers. This could be successful especially in regions where traffic in rush hour is 

high. However, it implies that the number of BEVs in the bus lane must not exceed the lane capacity, which 

then would delay public transport. Besides, this incentive will only have local effects in areas where bus 

lanes exist, which mostly are in urban or suburban areas.  

In this subsection, some successful incentives applied in Norway were given as examples of how the uptake 

of BEV generally can be promoted to consumers. It should, however, be noted that policies deemed 

successful in one country might not have the same effect in another. This calls for assessments on a national 

scale to tailor policies and incentives to the local conditions. Also, the effectiveness of policies should be 

researched and evaluated to assure they have the desired effect.   

5.3 Further work  

The optimization model used in this study has the potential of becoming more detailed, and there is room 

for improving some of the data and assumptions. Also, other aspects aside from greenhouse gas emissions 

could be included. Some suggestions for future work are described below. 

• Data improvement: There is room to improve the data and assumptions in the model. This should 

though be focused on improving the parameter values in the current period since the gap between the 

total life cycle emissions of the BEV and ICEV is smaller here.  

• Economic dimension: The economic dimension could be included in the model since this is one of the 

significant drivers for change. This could, for instance, be done through using a multi-objective 

optimization model or defining the objective function as a sum of weighted scores regarding the 

environmental and economic dimensions. The economic dimension could also be included by linking 

the economic parameters to the constraint on the uptake rate of BEVs, to reflect the consumers in the 

market. It could also be relevant to include other factors affecting the uptake, such as technology 

acceptance or the level of technology-specific infrastructure availability.  

• Additional drivetrain technologies: Instead of only including BEVs and ICEVs, it could be relevant to 

also include plug-in hybrid electric vehicles (PHEVs) in the model. The PHEVs are seen as a technology 

that can play an essential role in the transition from an ICEV based to an electrified fleet (DfT, 2018c).  

• Additional countries: The optimization model used in this thesis is applicable to other countries. It 

could be especially relevant to apply the model in countries where the carbon intensity of the electricity 

mix is high, hence timing of BEV introduction more critical from an environmental perspective. 

• Electricity grid impact: Electrifying the vehicle fleet also has some consequences for the national 

electricity grid. This concerns, for instance, peak power demand and overall electricity supply. There 

might therefore be a need of updating the grid to meet the increased load and electricity consumption 

posed by the BEVs. This was not discussed in this thesis, but is important for governments to consider.   
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6 Conclusion 

The optimal timing of vehicle fleet electrification in the UK was investigated in this thesis. This implied 

finding the combination of conventional diesel vehicles (ICEVs) and battery-electric vehicles (BEVs) in the 

fleet, subject to minimizing the total vehicle fleet emissions in the period 2020 to 2050. It was found that 

the deployment of BEVs in the UK is beneficial in terms of mitigating climate change, even though the 

electricity mix is not yet fully renewable. Since the life cycle emissions of BEVs is lower than for ICEVs, the 

optimal solution would be to deploy the BEVs as fast as possible.  

In the short-term, meaning the next decade, it was found that the deployment of BEVs led to an increase in 

the annual fleet emissions, due to the higher embodied emissions in the production phase. In the remaining 

years towards 2050, the large scale BEV deployment will contribute to reducing the national emissions 

compared to a fleet consisting of only ICEVs. In 2050, the annual direct emissions from the fleet will be 

reduced by 92 %, relative to 2017 levels, given a BEV deployment rate as in the main scenario. From the 

scenario analysis, it was clear that the mitigation potential is reduced if the deployment of electric vehicles 

is delayed or the UK fails to decarbonize the power sector. Other benefits, aside from reduced emissions, 

could come from electrification of the vehicle fleet. This might be an improvement of local air quality due to 

less emissions of particles, which can affect human health, or less noise pollution.  

Through the analysis of the results, it was shown that the constraint on the BEV uptake was the main factor 

affecting the rate of BEV introduction. The question is then how the UK government can facilitate the 

required rate of BEV uptake to obtain an environmentally optimal vehicle fleet. Various barriers linked to 

consumer behavior and vehicle costs were identified, where the lack of suited policies may further delay 

the fleet electrification. Incentives such as tax exemptions, no fares through toll roads and access to bus 

lanes have had good effect in some countries. Also, providing the necessary infrastructure is important for 

BEVs to be competitive to ICEVs. This implies that the UK government must establish a wide-reaching and 

publicly accessible charging network, to mitigate the range anxiety expressed by potential BEV owners.  

In sum there is a potential for climate change mitigation through the electrification of the UK’s passenger 

car fleet. To achieve this, it is crucial that the UK continue decarbonizing the power sector and facilitate the 

BEV uptake through implementing policies and incentives. This calls for national scale assessments to tailor 

policies and incentives to local condition, as well as understanding consumer behavior and potential 

barriers for large scale BEV uptake.   
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A Statistical data: Vehicles in the UK 

Table A.1 – Statistical data showing the number of  passenger cars* and the total vehicle movements in the 
UK from 1997 to 2017. Annual driving distance is calculated from these columns. 1: DfT (2018f), 2: DfT 
(2018d), 3: ONS (2018). 

 

Passenger 

vehicles1 

[thousand cars] 

Total vehicle 

movements2  

[billion vkm] 

Annual driving 

distance 

[vkm/year] 

Population3 

[million] 

Cars per 

1000 

capita 

1997 23 832 365.8 16 022 58.3 409 

1998 24 293 370.6 15 910 58.5 415 

1999 24 975 377.4 15 741 58.7 426 

2000 25 406 376.0 15 406 58.9 431 

2001 26 126 381.2 15 172 59.3 442 

2002 26 782 390.6 15 150 59.4 451 

2003 27 240 390.0 14 863 59.6 457 

2004 28 028 394.2 14 585 60.0 468 

2005 28 520 392.7 14 269 60.4 472 

2006 28 609 397.4 14 394 60.8 470 

2007 29 000 397.9 14 211 61.3 473 

2008 29 161 395.0 14 027 61.8 472 

2009 29 247 394.0 13 949 62.3 470 

2010 29 421 385.9 13 578 62.8 469 

2011 29 467 387.4 13 609 63.3 466 

2012 29 723 386.7 13 463 63.7 467 

2013 30 141 386.2 13 253 64.1 470 

2014 30 612 394.2 13 312 64.6 474 

2015 31 250 398.6 13 177 65.1 480 

2016 31 850 405.0 13 128 65.6 485 

2017 32 200 409.4 13 122 66.0 488 

Average 

change 
1.6 % 0.6 % -1.0 % 0.6 % 0.9 %  

 

*  Refers to the fact that data on the vehicle fleet size only was available for UK from 2014 to 201,7, and the 

size is therefore estimated with basis in the size of the vehicle fleet in GB.  

 



  

 

II 

B Logistic function variables and corresponding values 

Table B.1 – Values used for the different parameters for the logistic functions in the main scenario.  

Parameter Variable Value Unit Based on 

Vehicle fleet size in 
the UK 

A 25.4 106 veh DfT (2018f) 
B 41.2 106 veh DfT (2018f); (DfT, 2018f); ONS (2018) 
r 0.10   
τ 2020   

Annual driving 
distance per 
vehicle 

A 15 700 km/veh DfT (2018d) 
B 11 300 km/veh 

DfT (2018d); DfT (2018a) 
r 0.10  
τ 2015   

Carbon intensity of 
electricity in the 
UK 
 

A 690 gCO2-eq/kWh Itten et al. (2014) 
B 110  gCO2-eq/kWh Hammond, Howard & O’Grady (2013) 
r 0.20   
τ 2025   

Carbon intensity of 
electricity in 
Europe 
 

A 550 gCO2-eq/kWh Itten et al. (2014) 
B 110 gCO2-eq/kWh European Commission (2018) 
r 0.15   
τ 2025   

Carbon intensity of 
electricity in Asia 

A 870 gCO2-eq/kWh Itten et al. (2014) 
B 370 gCO2-eq/kWh CNREC (2018); MOTIE (2017); METI (2015) 
r 0.15   
Τ 2030   

Carbon intensity of 
low-carbon 
electricity 

A 50 gCO2-eq/kWh Itten et al. (2014) 
B 30 gCO2-eq/kWh Ecoinvent Centre (2010) 
r 0.10   
Τ 2035   

Electricity 
requirement for 
ICEV production 

A 2000  kWh/veh Volkswagen AG (2018); (Nissan Motor Corporation, 
2014, 2018b); BMW Group (2018); Daimler AG (2017). B 900  kWh/veh 

r 0.10   
τ 2025   

Constant emission 
term for ICEV 
production 
 

A 4000  kgCO2-eq/veh Ellingsen et al. (2016) 
B 3400 kgCO2-eq/veh Ellingsen (2016); Bauer et al. (2015) 
r 0.10   
τ 2025   

Emission intensity 
of ICEV operation 

A 0.16 kgCO2-eq/km Edwards et al. (2014) 
B 0.11 kgCO2-eq/km Edwards et al. (2014) 
r 0.10   
τ 2020   

Emission intensity 
for ICEV EOL 

A 550  kgCO2-eq/veh Ellingsen et al. (2016) 
B 350 kgCO2-eq/veh Ellingsen et al. (2016); Own Assumption 
r 0.10   
τ 2025   

Electricity 
requirement for 
BEV production 

A 2000   kWh/veh Ellingsen et al. (2016) 
B 900  kWh/veh Own assumption 
r 0.15   
τ 2030   

Constant emission 
term for BEV 
production 
 

A 5800 kgCO2-eq/veh Ellingsen et al. (2016) 
B  4670 kgCO2-eq/veh Own assumption 
r 0.15   
τ 2030   
    



  

 

III 

Electricity 
requirement for 
battery production 
 

A 3700 kWh/batt Ellingsen et al. (2018) 
B 2900  kWh/batt Own assumption 
r 0.10   
τ 2030   

Constant emission 
term for battery 
production 

A  2000 kgCO2-eq/batt Ellingsen et al. (2016) 
B 1700 kgCO2-eq/batt Own assumption 
r 0.10   
τ 2030   

Energy 
consumption BEV 
operation 

A 0.15 kWh/km Edwards et al. (2014) 
B 0.11 kWh/km Edwards et al. (2014) 
r 0.15   
τ 2030   

Emission intensity 
for BEV EOL 

A 750  kgCO2-eq/veh Ellingsen et al. (2016) 
B 400  kgCO2-eq/veh Ellingsen et al. (2016) 
r 0.10   
τ 2030   

  



  

 

IV 

C Overview of LCA literature and BEV models 

Table C.1 – Life cycle assessment results for ICEVs from literature, given in kg CO2-eqivalents 

Production Use EOL Weight Lifetime Vehicle type Source 

5400 26900 300 1500 180 000 Medium car (C segment) Ellingsen et al. (2016) 

7390 52320 n.a. 1550 240 000 Medium car Bauer et al. (2015) 

6600 27150 450 1350 150 000 Small car Hawkins et al. (2013) 

4950 25650 n.a. 1357 150 000 n.a. Pero et al. (2018) 

9450 30900 n.a. n.a. 150 000 n.a. Bicer et al. (2018) 

6100 23400 300 1370 160 000 Mercedes-Benz A 180 D Daimler AG (2018) 

5900 26100 500 1400 160 000 Mercedes-Benz B 180 CDI Daimler AG (2011) 

5800 16155 450 1318 150 000 Golf VI TDI BlueMotion Volkswagen AG (2010) 

 
 
Table C.2 – Life cycle assessment results for BEVs from literature, given in kg CO2-eqivalents.  

Production Use  EOL Weight Lifetime Comment Source 

9600 15900 700 1500 180000 Medium car (24,4 kWh) Ellingsen et al. (2016) 

11900 11900 700 1759 180000 Large car (42,1 kWh) Ellingsen et al. (2016) 

12275 36000 n.a. 1900 240000 Large car (50 kWh) Bauer et al. (2015) 

13200 15450 465 1400 150000 Small car (24 kWh) Hawkins et al. (2013)  

9000 10350 n.a. 1595 150000 Medium car (n.a) Pero et al. (2018)  

7350 16650 n.a. n.a.  150000 n.a. Bicer et al. (2018) 

11100 8250 150 1567 150000 VW e-Golf (24,2 kWh) Volkswagen AG (2012) 
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Table C.3 – Overview of battery-electric models on the market, year launched and battery capacity.  

Manufacturer Model Launched Battery [kWh] 

Mitsubishi  iMiev 2010 16 

Nissan Leaf 2011 24 

Tesla Motors Model S 2012 60/90 

Ford Focus Electric 2013 23 

BMW i3 2014 22 

Volkswagen e-Golf 2014 24,2 

Kia Soul Electric 2014 27 

Renault  Zoe 2014 22 

Tesla Motors Model X 2015 60/90 

Mercedes B-Class Electric drive 2015 28/32 

BMW i3 2016 33 

Opel Ampera E 2016 60 

Hyundai Ioniq 2016 28 

Kia Soul Electric 2017 30 

Tesla Motors Model 3 2017 50/62/75 

Nissan Leaf 2018 40 
 

 


