
Neural Machine Translation using
the RNNPB model with PB binding

July 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Daniel Strømme Solberg

2019
Daniel Strøm

m
e Solberg

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce

Neural Machine Translation using the
RNNPB model with PB binding

Daniel Strømme Solberg

Computer Science
Submission date: July 2019
Supervisor: Keith L. Downing

Norwegian University of Science and Technology
Department of Computer Science

Abstract

This thesis considers the Recurrent Neural Network with Parametric Biases (RN-
NPB) model and applies it to the task of machine translation. The RNNPB model
allows encoding multiple sequences in a single RNN by associating each sequence
with a particular activation of the parametric bias nodes, which are placed in
the input layer. Essentially, the parametric biases can be considered as sequence
embeddings. Thus, a bidirectional mapping is achieved where parametric biases
map to the complete sequences, as well as the inverse mapping where parametric
biases are computed from a provided sequence.

One of the applications of this model has been with binding together the
parametric biases of two separate models. By coupling the sequence represen-
tations of the two models, sequence to sequence mapping can be achieved. The
concept is similar to the Encoder-Decoder model which has enjoyed much success
in the Neural Machine Translation field. In order to make a translation, first a
representation of the source sentence is computed in the encoder, and secondly,
the decoder decodes this representation into the target sequence.

Traditionally, the RNNPB model has been used in robotic applications to
represent motor programs, and the application in machine translation is therefore
new. One of the interesting properties of this work, which essentially entails
binding two language models together, is that the two models can theoretically
benefit from monolingual data, which is a desirable trait in the NMT field. The
present work takes a simple model, traditionally used in small-scale experiments,
and refurnishes it with modern machine learning advances, such as LSTM layers
and regularization, and applies it to large-scale tasks. Through experiments
with autoencoding in English, the present work shows that the RNNPB model
can model language and learn to autoencode on a large scale. However, for
experiments with translation from English to German, the present work is not
able to achieve high translation performance.

ii

Preface

This thesis was written during the spring semester of the author’s fifth year of
a computer science master’s degree. The degree includes two introductory years
and a three-year specialization in artificial intelligence. The thesis was completed
at the Gløshaugen campus of Norway’s University of Science and Technology
(NTNU), with the guidance of Professor Keith L. Downing.

Daniel Strømme Solberg
Trondheim, July 17, 2019

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 4
1.3 Research Method . 5
1.4 Contributions . 5
1.5 Thesis Structure . 6

2 Background Theory 7
2.1 Recurrent Neural Networks . 7

2.1.1 Backpropagation Through Time 10
2.1.2 Teacher forcing . 12

2.2 RNN architectures . 13
2.2.1 Time-Delay Neural Networks 14
2.2.2 The Jordan RNN . 15
2.2.3 The Elman RNN . 16
2.2.4 Input-output relationships 16
2.2.5 Training difficulties and the LSTM 21

2.3 Language models . 22
2.3.1 RNN language models . 24
2.3.2 Generating sentences . 25

2.4 Evaluation metrics for translation 26
2.4.1 BLEU . 28
2.4.2 Perplexity . 29

2.5 Summary . 30

3 Motivation 31
3.1 Structured Literature Review Protocol 32

3.1.1 Generating a set of candidate literature 32
3.1.2 Literature selection . 33

3.2 The RNNPB model . 36

iii

iv CONTENTS

3.2.1 Definition and motivation 36
3.2.2 Dynamic object handling 38
3.2.3 PB Binding . 42
3.2.4 Recent work with the RNNPB 43

3.3 Machine translation . 44
3.3.1 Early approaches . 44
3.3.2 The Encoder-Decoder Architecture 46
3.3.3 Attention . 48
3.3.4 Solving the out-of-vocabulary problem 49
3.3.5 Using a monolingual corpus 52

3.4 Summary . 54

4 Model 57
4.1 Architecture . 57
4.2 Training . 59

4.2.1 Binding . 60
4.2.2 Hard binding . 62
4.2.3 Training with monolingual data 63
4.2.4 Regularization . 63

4.3 Translation . 64
4.4 Implementation . 65

5 Experiments and Results 67
5.1 Experimental Plan . 67

5.1.1 Baseline models . 68
5.1.2 Experiments . 68

5.2 Experimental Setup . 72
5.2.1 Datasets . 72
5.2.2 Preprocessing and evaluation 74
5.2.3 Training . 75
5.2.4 Parameters . 76

5.3 Results . 78
5.3.1 Experiment I . 78
5.3.2 Experiment II . 79
5.3.3 Experiment III . 92
5.3.4 Experiment IV . 94

6 Evaluation and Conclusion 99
6.1 Evaluation . 99
6.2 Discussion . 105
6.3 Contributions . 108
6.4 Future Work . 108

CONTENTS v

Bibliography 111

Appendices 117
.1 Implementation details . 117
.2 Excerpts . 119

vi CONTENTS

List of Figures

2.1 A simple RNN with one input unit, one recurrent hidden unit and
one output unit. Since RNNs are used for sequences, the units are
subscripted with t to denote time. 9

2.2 An RNN with multiple units in each layer. Here, the recurrence is
shown from the hidden layer to itself and denotes that the recur-
rent connections are fully-connected within the hidden layer. The
different layers are also typically fully-connected. 9

2.3 Unrolling a computation graph, here with a sequence of three in-
puts, x1, x2, x3, before unrolling and after unrolling on the left
and right respectively. Note that h0 must be given. 11

2.4 The Jordan RNN. The dashed lines indicate arcs going to the next
time step. For the Jordan RNN, the context layer is updated as
a function of the previous network outputs and their own previ-
ous values (notice the self-loops). The goal is to give the network
the means to remember its previous outputs. Noticeably, the Jor-
dan RNN is not able to remember previous inputs or hidden layer
activations. The figure uses sparse layers only for readability. . . . 17

2.5 The Elman RNN. The dashed lines indicate arcs going to the next
time step, and here the hidden layer values are simply copied with-
out modification to the context units. The network is considered
to be more expressive than the Jordan RNN, because the basis for
the context is the hidden units, which are not constrained in the
same manner as the output units. 17

2.6 Two many-to-many types of RNN architectures, unrolled over time.
a) For each input that is presented, an output is immediately gen-
erated. b) All inputs are presented first, and then a sequence of
outputs are generated. 18

vii

viii LIST OF FIGURES

2.7 Two one-to-many types of RNN architectures, unrolled over time.
a) A single input vector x is provided as input at each time step.
b) An adaptation of the many-to-many architecture in figure 2.6-a
where an initial vector x is used as the first input, and then the
computation proceeds in closed-loop mode. 20

2.8 A many-to-one type of RNN, unrolled over time. In this architec-
ture the outputs are removed altogether, and the outputs can be
computed as a function of the final hidden state. 20

2.9 A high-level view of an LSTM memory cell with input, output
and forget gates. The s node is the internal state, which, with
its self-loop, implements the constant error carousel. Dashed lines
go forward in time. Here, the forget gate is inserted into the self-
loop to allow forgetting state when necessary. The I node is the
input node and describes some input transformation. The three
gates take the input signal and output a value between 0 and
1, corresponding to a closed and open gate, respectively. The
input signal includes both the inputs to the LSTM layer and fully-
connected recurrent connections between all the LSTM cells within
the LSTM layer (see figure 2.2). 23

2.10 A possible architecture for an RNN language model, unrolled over
time. Each word is substituted with a word embedding in the
embedding layer. An LSTM layer is often used to implement the
recurrent layer. The softmax outputs are the probability distribu-
tion over the set of words in the vocabulary. 24

2.11 Beam search: the final beam upon completion of the search, where
B = 5. Each node corresponds to a partial sentence, consisting
of the words along the path from the root node to the node. The
likelihood of the partial sentences are given in parentheses. Leaf
nodes must be <end>-nodes, meaning that only viable, complete
sentences are considered as final candidates. Note that this is not
a complete search tree: other nodes would have been considered
during the search, but discarded due to lower probabilities than the
nodes included here. This is also why the sum of the likelihoods
of child nodes do not add up to the likelihood of the parent nodes
in the figure. The result of this beam search would have been the
sentence ”She ran”, which has the highest likelihood of all complete
sentences. 27

LIST OF FIGURES ix

3.1 The original RNNPB architecture. Two parametric bias nodes
have been placed in the input layer and encode the specific tempo-
ral pattern that should be produced. The values of the PB nodes
remain fixed over time for a given pattern. The recurrence is im-
plemented with arcs from the output layer to the input layer, using
context units. The layers are normally densely connected, and the
number of input, output, parametric bias and context units can
be chosen (mutually) independently. By operating the network in
closed-loop mode (feeding the outputs back in as inputs), an entire
sequence can be generated from only the PB values and an initial
input. 39

3.2 Generation mode. The figure shows an RNN language model, as
presented in figure 2.10, adapted with PB nodes. In the generation
mode, the network takes only a PB vector as input. The PB
vector encodes a sentence fully, and the model can thus generate
the sentence from the PB vector. 40

3.3 Recognition mode. A sentence is provided as input to the network,
and is then used as teacher signal (at the top). The gradients
(red) flow from the loss blocks to the PB block. The PB nodes are
then regressed over a number of recognition iterations, until they
sufficiently represent the provided sentence. 40

3.4 Translation. Two models, model A and model B, are bound.
Binding entails that the PB vectors for corresponding sentences in
model A and model B are linked during training, so that a common
sentence representation emerges in the two models. Translation
can then be achieved by doing recognition in model A and sub-
sequently using the computed PB vectors for generation in model
B. 41

3.5 Seq-to-seq: The architecture employed by Sutskever et al. [2014].
Here, only one recurrent layer (R) is shown, instead of four. The
subscripts differentiate the encoder and decoder, belonging to source
language, x, and target language, y, respectively. It is apparent
that the encoder and decoder form a single neural neural network
that can be trained end-to-end. The inputs use an embedding
layer, E, and the outputs a softmax layer, S. The dashed arcs
denote the non-differentiable operation of choosing an output to
be used for the next input. 48

x LIST OF FIGURES

3.6 RNNSEARCH. The attention architecture employed by Bahdanau
et al. [2014]. The encoder and decoder are connected through
the contexts, ci, and the dotted lines indicate the components in-
volved in their computation. The attention mechanism enables the
decoder to soft-search for relevant source words when it’s translat-
ing a given word. The encoder is a bidirectional RNN, hence the
bidirectional connections (a simplified illustration is shown here; a
BRNN normally has two unconnected recurrent layers, processing
in opposite directions, where the final hidden state is taken as the
concatenation of the two directional hidden states). 50

3.7 The technique used by Cheng et al. [2016] to incorporate monolin-
gual corpus training. When the two translation models are stacked,
the intermediate French translation can be considered as latent,
and the models can be trained as an autoencoder on only mono-
lingual data. The models are additionally trained on a parallel
corpus. 54

4.1 The Bound RNNPB model. The model consists of two RNNPB
models that are bound, indicated by the dotted line between the
PB blocks. Each RNNPB model can be recognized as a conven-
tional RNN language model with two LSTM layers, but with the
addition of PB nodes. Both the emb block and PB block are im-
plemented as embedding layers, where the former look up word
embeddings and the latter look up PB vectors. In the figure, A
and B denote the two languages involved. (Ai, Bi) then denotes
the i’th training pair in the corpus of parallel sentences. Each sen-
tence Ai corresponds to a particular PB vector pAi, and likewise
for B. The PB blocks take the sequence index, i, and looks up
the PB vector, pAi or pBi, which is responsible for encoding the
sequence. 58

LIST OF FIGURES xi

4.2 Training is performed using teacher forcing. Shown here is a single
RNNPB model unrolled over four time steps. The sentence at the
top is the teacher signal, which is additionally used as the inputs
during training instead of the network prediction (in accordance
with the teacher forcing technique). The PB vector, p, is dupli-
cated across the time steps in the figure. The training goal here is
for p to adequately represent the given sentence so that it can be
regenerated fully, and to this end both p and the network weights
are updated. The superscripts on the LSTM layers merely denote
the current time step; the layers and all their weights are shared

across time (e.g. LSTM
(1)
1 = LSTM

(2)
1 = ... = LSTM

(4)
1). The

binding is not shown in this figure. 61

5.1 Experiment I – part 2: Comparison of PB vectors obtained dur-
ing training and PB vectors recognized from the same sentences
after training. To make this plot, the 64-dimensional PB vectors
have been reduced to two dimensions using Principal Component
Analysis (PCA). The sentences used were arbitrarily chosen as
the first ten sentences in the training set for the easy20000 sub-
set. The correspondences between trained and recognized PBs are
color coded. The sentences could be generated with near perfect
confidence with both sets of PB vectors, with average perplexities
of 1.023 for training PBs and 1.001 for recognized PBs. This im-
plies that multiple points in PB space may serve to encode the
sentences. 81

5.2 Experiment II – part 1: Perplexities of training and validation sets
during training for different binding strengths. The plot is from
the same results as table 5.4. The y = 1 line is the asymptote
describing the best attainable perplexity. 84

5.3 Experiment II – part 1: Plots of PB Binding with different binding
strengths. As earlier, the PB vectors have been mapped to two
dimensions using PCA, and the first ten training examples have
been used. The final weights at the end of training were used, see
table 5.4. The binding can be seen to be most consistent in figure
5.3e. A plot of hard binding is included for completeness, although
it is mostly trivial. 86

xii LIST OF FIGURES

5.4 Experiment II – part 4: Perplexity of the translation as a function
of the number of recognition iterations. Since binding is employed
here, more recognition iterations is not necessarily better. Op-
timally, the recognition would be stopped at the minima in the
figure, but these are not known a priori. The figure shows the first
five examples in the test set. 90

5.5 Experiment II – part 4: Perplexity of the translation as a function
of the number of recognition iterations, with corresponding L2 gra-
dient norms included. The examples are the same as in figure 5.4.
The flat segments for the gradient norms at the beginning is due to
the gradient clipping. The plot investigates whether the gradient
norms reveal when the recognition has reached a global minimum
in terms of translation perplexity. No absolute relationship is im-
mediately apparent, although the points where the gradient norms
go below 1 could be a good heuristic. This approach is tested in
table 5.9. 91

5.6 Experiment IV – part 2: The perplexity of training and validation
sets during training on the easy50000 dataset, when training is
continued for 150 epochs despite making no improvement. 98

List of Tables

3.1 Keyword groupings used for the three sets of search questions,
covering the domains of machine translation and the RNNPB model. 34

3.2 Inclusion and quality criteria for the SLR protocol. The table
specifies which domain the criteria pertains to, given that the SLR
searches both the domain of machine translation and of the RN-
NPB model. 35

5.1 The easy English-German dataset and the subsets that have been
created from it. 73

5.2 The WMT English-German datasets that are used for training,
validation and testing. 74

5.3 Experiment I – part 1: Autoencoding with a single RNNPB model
on three datasets, compared to the seq-to-seq model. The final
train perplexity denotes the perplexity of the training set at the
last training epoch, while the best validation perplexity denotes
the best perplexity achieved on the validation set at any epoch
during training. Test time is the time elapsed processing the test
set, which yields the test BLEU score. The tests are done with the
network weights corresponding to the best validation perplexity.
Lower perplexities scores and higher BLEU scores are better. . . . 80

5.4 Experiment II – part 1: Autoencoding with different binding strengths.
In the last row, hard binding is employed. The epoch that achieved
the best validation perplexity is given in the second to last col-
umn. This column shows that training did not succeed for half of
the configurations; after the first epoch, the validation perplexities
deteriorate. Since early stopping is employed, the number of train-
ing epochs exceed the best epochs by 20, as seen in the last two
columns. The BLEU score was not measured for the configurations
that were deemed failures. 83

xiii

xiv LIST OF TABLES

5.5 Experiment II – part 1: Distances between bound and unbound
PB vectors for different binding strengths. The mean distance
between bound PB pairs versus the mean distance between all
PBs, for different binding strengths. The rightmost column gives
the ratio between column two and three, and can be considered
as a measure for how good the binding is. *Because of high time
complexity, the mean distance is sampled as the mean distance
between N = 10000 samples from model A and N samples from
model B. 83

5.6 Experiment II – part 2: Number of PB nodes and the effect on
autoencoding quality. Since the PB nodes are tasked with encoding
whole sentences, a higher number of nodes may be beneficial. All
configurations use hard binding, and the second row with 128 PB
nodes is copied from table 5.4. All configurations achieved their
best validation perplexity in their ninth training epoch, and hence
the training was terminated after 29 epochs. 84

5.7 Experiment II – part 3: Three regularization techniques. All tech-
niques are only enabled during training and turned off during in-
ference. The first row of each table is copied from the 1024 PB
configuration in table 5.6. 88

5.8 Experiment II – part 3: Combined regularization with dropout and
intermittent PB reset. These regularization techniques performed
best individually and the table shows that they complement each
other very well. 89

5.9 Experiment II – part 4: Comparison of termination criteria for
recognition. The first configuration is used in the prior experiments
in this section and is copied from table 5.8. The difference between
the first case of early stopping and the last is that the former
terminates when the loss ceases to decrease significantly over a few
steps, while the latter terminates immediately when the gradient
norm drops below 1. 91

5.10 Experiment II – part 5: Autoencoding with the easy subsets, us-
ing the best combinations of parameters that were found for the
RNNPB model in experiment II. The seq-to-seq and RNNPB (I)
results are copied from table 5.3 for experiment I, and the RN-
NPB (II) results for easy50000 are copied from the appropriate
row in table 5.8. To summarize, the configuration used for the
RNNPB model is 1) Hard binding 2) 1024 PB units 3) recognition
with early stopping and max 100 epochs 4) preset = 0.10 and 5)
dropout = 0.40. 93

LIST OF TABLES xv

5.11 Experiment III – part 1: Translation results for the easy subsets,
for the RNNPB model as well as the two baseline models. 95

5.12 Experiment III – part 2: Translation results for the WMT dataset,
for the RNNPB model as well as the two baseline models. The
RNNPB and seq-to-seq model test a large configuration (L) as
well, with much larger networks, as specified in section 5.2. As is
evident from the BLEU scores, only Moses can be said to learn to
translate meaningfully with this dataset. *The large configuration
of the RNNPB was so exorbitantly expensive to test on the CPU,
it was tested on the GPU instead. 96

5.13 Experiment IV – part 1: Autoencoding results for the easy50000
subset, using non-overlapping English sentences from easy-full for
additional training on monolingual data, with different values for
pmono. The results show that most of the configurations benefit
from the additional monolingual data, with lower validation per-
plexities and higher BLEU scores. *The training was manually
stopped at 165 epochs due to time constraints and stagnating (al-
beit non-zero) progress. 96

5.14 Experiment IV: Translation results for the easy50000 subset with
incorporated training on monolingual data, using the RNNPB
model as well as Moses. The monolingual data used is non-overlapping
sentences from easy-full. The RNNPB model uses both English
and German sentences for monolingual training, while Moses uses
only German sentences. This experiment uses pmono = 0.40 for the
RNNPB model. The corresponding BLEU scores without training
on monolingual data are in parentheses. 97

5.15 Experiment IV: Translation results for the WMT dataset with in-
corporated training on monolingual data, using the RNNPB model
as well as Moses. Only the dataset is different here compared to
table 5.14. 97

A1 The LSTM layer implementation used for the RNNPB model and
the seq-to-seq model. In Tensorflow V2.0, this layer automatically
uses the CuDNNLSTM implementation when it is available. �
Dropout is used where stated in some of the experiments. 118

xvi LIST OF TABLES

A2 The optimizer used in all experiments. LazyAdam implements the
Adam optimization algorithm, but applies weight updates sparsely.
That is, only the weights that are active for a current training
batch are updated. This distinction is useful when the network
includes embeddings; training may be drastically sped up as only
relevant embeddings are updated for a given training batch. The
semantics of the weight updates are also affected: with the nor-
mal Adam algorithm, momentum would be applied to all embed-
dings for each batch, even when their gradients are zero, effectively
changing all embeddings. Similarly, the momentum terms would
be updated to reflect the zero gradients, which may be inaccurate. 118

A3 Experiment I - easy20000, autoencoding with (R) RNNPB model
and (S) seq-to-seq model. T denotes the true sentence. The
”'” tokens arise from the tokenization behavior of Moses. . . 122

A4 Experiment I - easy50000, autoencoding with (R) RNNPB model
and (S) seq-to-seq model. T denotes the true sentence. 123

A5 Experiment I - easyfull, autoencoding with (R) RNNPB model
and (S) seq-to-seq model. T denotes the true sentence. 124

A6 Experiment II – part 1 with hard binding, easy50000. Autoencod-
ing with (R) RNNPB model and (S) seq-to-seq model. T denotes
the true sentence. The seq-to-seq sentences are the same as in ta-
ble A4. This table is included to show the evolution of the Bound
RNNPB’s performance with autoencoding in experiment II. 126

A7 Experiment II – part 5, easy20000. Autoencoding with (R) RN-
NPB model and (S) seq-to-seq model. T denotes the true sentence.
The seq-to-seq sentences are the same as in table A3. 128

A8 Experiment II – part 5, easy50000. Autoencoding with (R) RN-
NPB model and (S) seq-to-seq model. T denotes the true sentence.
The seq-to-seq sentences are the same as in table A4. 129

A9 Experiment II – part 5, easyfull. Autoencoding with (R) RNNPB
model and (S) seq-to-seq model. T denotes the true sentence. The
seq-to-seq sentences are the same as in table A5. 130

A10 Experiment III - easy20000, translation with (R) RNNPB model
and (S) seq-to-seq model. TE and TG denotes the true sentences
in English and German, respectively. 134

A11 Experiment III - easy50000, translation with (R) RNNPB model
and (S) seq-to-seq model. TE and TG denotes the true sentences
in English and German, respectively. 136

A12 Experiment III - easyfull, translation with (R) RNNPB model and
(S) seq-to-seq model. TE and TG denotes the true sentences in
English and German, respectively. 138

LIST OF TABLES xvii

A13 Experiment III - WMT, translation with (R) RNNPB model and
(S) seq-to-seq model. TE and TG denotes the true sentences in
English and German, respectively. 141

A14 Experiment IV. Autoencoding with (R) RNNPB model and (S)
seq-to-seq model, using monolingual data for the RNNPB model.
T denotes the true sentence. The seq-to-seq sentences are the same
as in table A4. 143

xviii LIST OF TABLES

Chapter 1

Introduction

The field of Neural Machine Translation (NMT) has enjoyed much progress the
last few years. State-of-the-art translation systems have gradually moved from
typical statistical approaches to machine learning solutions. Machine translation
is particularly fruitful as a machine learning field due to several important quali-
ties. There exists an abundance of both parallel, bilingual data and monolingual
data to train the models on. The results can be evaluated easily by humans, as
well as objectively using common performance metrics. Furthermore, the task is
a member of a much broader category of sequence-to-sequence learning tasks, and
as such, solutions often lend themselves easily to other tasks in this category. It is
therefore unsurprising that important machine learning advances have arisen in
this field, such as the Encoder-Decoder architecture and attention mechanisms.

This thesis examines the effectiveness of a particular model for the task of
machine translation: the Recurrent Neural Network with Parametric Biases (RN-
NPB). The next section expands on this application. In the remainder of this first
chapter, research goals and questions are stated, the research method utilized is
described, contributions are summarized and an outline is given for the thesis.

1.1 Background and Motivation

Recurrent Neural Networks (RNNs) are neural networks used to process sequen-
tial data, such as time series. Contrary to feed forward networks, recurrent
networks can take advantage of state information. The state arises from feed-
back loops in the network architecture and is simply defined as the activation
of these feedback connections from the preceding round of inputs. This allows
information to be carried forward from one round to the next. Typically, the
network starts with some initial state and then processes a sequence of inputs,

1

2 CHAPTER 1. INTRODUCTION

each of which augments the state. As such, the output at any given step depends
not only on the current input, but also all preceding inputs in the sequence. If a
new sequence should be processed, the state can simply be reset. RNNs have re-
cently been used in state-of-the-art systems, in areas such as machine translation,
handwriting recognition and natural language processing [Lipton, 2015].

A common use case for the RNN is generative tasks, where the network takes
some input vector x(t) and outputs its prediction of the vector at the next time
step, x(t+1). These architectures enable learning a sequence and then making
predictions for future values. If the network is allowed to operate in a closed-loop
mode, predictions far into the future can be made. In this mode, the output
prediction from the network at one time step is fed back in as the input for the
next time step. By repeating this process for several time steps, a look-ahead
prediction of an arbitrary number of steps can be generated.

One such generative task of importance is language modeling. A language
model often estimates the probability distribution of the words in a vocabulary,
conditioned on a partial sentence. It can for instance predict the continuation of
a partial sentence by repeatedly appending the current most likely word. This
method of text generation has been used for novel tasks, such as generating text
in the style of Shakespeare [Karpathy, 2015], but also closely relates to how neural
machine translation is usually achieved.

In the approach suggested in this thesis, two language models are used to
achieve translation. The models target two different languages and together
they allow for bidirectional translation. This is achieved by linking the models
together, so that the representations of corresponding sentence-pairs are bound.
Both of the language models are implemented as RNNPB models, which provide
the particular mechanism used for binding the representations.

The suggested approach has several advantages, the most important of which
is that monolingual data can be utilized inherently. While a parallel corpus is
required to facilitate the binding of representations, monolingual data can be
used to train the language accuracy of each model individually. This mitigates a
problem which is well-recognized within the field of neural machine translation:
while models typically excel with language pairs for which a vast parallel corpus
exists, most language pairs do not have such a vast parallel corpus. Practically
every language, however, has a vast amount of available monolingual data.

The RNNPB model is an RNN with multiple parametric bias (PB) nodes in
the input layer, proposed in Tani [2002]. Here, parametric means that the values
of these bias nodes are exchangeable and will be given as an extra input to the
model, as opposed to simply having fixed values after training. The model learns
to associate each sequence with a particular set of PB values through training.
This facilitates two main operations: generation and recognition. Generation
denotes the forward operation where a sequence is generated from a vector of PB

1.1. BACKGROUND AND MOTIVATION 3

values, i.e.:

p→ x1, x2, ..., xN (1.1)

Here, p is a real-valued vector with a fixed dimensionality corresponding to
the number of PB nodes. Recognition denotes the inverse operation, where PB
values are computed from a given sequence, i.e.:

x1, x2, ..., xN → p (1.2)

By binding the PB nodes of two models, generation and recognition can be
used in conjunction to achieve translation. To translate from a source language
to a target language, recognition can be used for the source model to compute
the PB values, p, which can then be used in the target model to generate a corre-
sponding sentence. This can be characterized as an Encoder-Decoder approach,
as proposed by Sutskever et al. [2014]. In this framework, the encoder computes a
fixed-size representation of the source sentence, which the decoder decompresses
into the predicted translation. The architecture is however very different from the
one suggested in Sutskever et al. [2014], as reflected by the ability of the two RN-
NPB models to function interchangeably as both encoder and decoder, enabling
bilingual translation, as well as the ability to utilize monolingual corpora.

Sugita and Tani [2005] introduce the idea of binding two RNNPB models
together, using the PB Binding Method. They use the approach to perform
sequence-to-sequence learning, in the same manner as the current work, although
the two domains which are bound are different. In the work of Sugita and Tani,
the domains are language and behavior. As such, they are able to provide a
sentence to a physical robot and have it generate the corresponding behavior.
The authors show that this is possible even when a sentence is not learned; the
model is able to generalize to understand unlearned mappings. Effectively, they’re
able to command the robot using natural language.

The work done by Sugita and Tani shows that the suggested approach is
indeed able to model language and do sequence-to-sequence translation, but the
scale of the stated results is rather small. The language model that they employ
uses a vocabulary of nine words and sentences consisting of only two words. It is
therefore of interest to ascertain the effectiveness of the model in a larger-scale
task such as machine translation, which typically involves tens of thousands of
words and millions of sentences. Should the model prove to scale well, it could
offer a valuable contribution to machine translation for low-resource language
pairs. This summarizes the goal of the current thesis. The experiments done
here permit themselves to take advantage of recent advances in deep learning
and language modeling and thus aim to apply the RNNPB model to a task of
much larger scale.

4 CHAPTER 1. INTRODUCTION

1.2 Goals and Research Questions

The rest of this thesis is written with the following goals and research questions
in mind. The main goal of this research can be stated as follows:

Goal Apply the RNNPB model to the task of machine translation on a large
scale.

In trying to reach this goal, this thesis will carry out experiments in order
to determine whether this application of the RNNPB is feasible. Along the way,
whether the feasibility of the model for this task is affirmed or refuted, this thesis
aims to contribute to advancing the work with the RNNPB model by developing
the model further. Ideally, this work also contributes to the field of machine
translation, but this goal is secondary as the choice of model is made ahead of time
and is not based on the maximum likelihood of advancing machine translation.
The work can therefore be said to be model-centric rather than task-centric.

Subsequent chapters will attempt to answer the following research questions:

Research question 1 Can the RNNPB model be used to learn a large-scale
language model?

Since the suggested translation scheme involves binding two language mod-
els, one for each of the two languages, successful translation is contingent on the
language models being successful separately. Here, a successful language model
means that the model can represent sentences in its respective language. Specif-
ically, this means that the model must be able to compute PB values which
corresponds to a provided sentence after training, and particularly, it must be
able to do this for sentences that do not occur in the training set. Existing work
has already proved that this is achievable with small-scale language tasks, but
for a translation task the capability must be asserted on a larger scale.

Research question 2 Can the proposed method achieve accurate machine trans-
lation?

This research question examines whether PB binding of two separately work-
ing language models yields an accurate translation model. In order to evaluate
the accuracy, the BLEU metric will be calculated and presented, and compared
to baseline models. The BLEU metric is well-established within the field of ma-
chine translation, allowing for accuracy comparisons across different works. Still,
a baseline model is often used to ensure fair comparisons under the exact same
conditions.1

1Some factors that may impact results are training time and hardware, preprocessing steps
and choice of data.

1.3. RESEARCH METHOD 5

Research question 3 Can the Bound RNNPB model additionally benefit from
training on monolingual data, for the task of machine translation?

With this question, the current work seeks to answer whether the RNNPB
model indeed possesses this desired trait. From a technical perspective, it is ap-
parent that the RNNPB models can be trained additionally on monolingual data.
However, since these sentences are not bound between the models, in contrast
with sentence pairs from the parallel corpus, it is not known whether using these
additional sentences are detrimental or beneficial for translation. Experiments
are carried out to answer this question.

1.3 Research Method

The research method applied in this thesis is the empirical method. Experi-
ments are designed and carried out in order to yield quantitative results, which
will provide answers to the research questions. This choice is sensible given the
suggested approach; the model itself is already tried and tested, and here, it is
merely applied to a different well-defined task, at a larger scale. The task of ma-
chine translation is also one where the results can be relatively easily evaluated
and judged, which further encourages an empirical method. The research can be
said to be technique-driven rather than problem-driven; the primary focus of the
research is applying the RNNPB model to a suitable task, not necessarily finding
the best solution to the problem of machine translation.

1.4 Contributions

The main contributions of this thesis are mainly regarding applications with the
RNNPB model. The key contribution is that the experiments here show that
the RNNPB can model language well, and that it can model autoencoding as a
sequence-to-sequence task. Further contributions can be stated as:

1. The original RNNPB model, which used a simple Jordan RNN architecture,
is updated with LSTM recurrence, and the learning capability of this model
is ascertained through experiments.

2. The experiments show that the proposed model is able to represent language
very well. That is, the model is able to compute PB vectors corresponding
to both seen (trained) and unseen sentences, and achieves a high score when
the sentences are regenerated in comparison with the original sentences.

6 CHAPTER 1. INTRODUCTION

3. The concept of hard binding is proposed as an alternative to the soft binding
originally used by Sugita and Tani, and the experiments show hard binding
gives superior results for this task.

4. The model’s capability to generalize is increased significantly by using the
regularization techniques dropout and intermittent PB reset, where the
latter is a technique that is proposed here.

5. The bound RNNPB model is shown to be capable of functioning as an
encoder-decoder system and achieves a decent score for autoencoding.

1.5 Thesis Structure

The remainder of this thesis proceeds as follows. Chapter 2 first introduces the
relevant background theory in its first section. This chapter mainly concerns
itself with recurrent neural networks and language modeling. Chapter 3 puts the
current work in context with regard to related work. The chapter first presents
a Structured Literature Review (SLR) protocol, which defines the scope of the
related work. The related work is then presented in section 3.2 and 3.3, where
the former reviews machine translation literature and the latter reviews literature
relating to the RNNPB model. In chapter 4, more details are given regarding
the RNNPB model and the specific architecture implemented here. Chapter 5
applies the proposed model with four experiments, where the first two focus
on autoencoding and the latter two on translation. Lastly, chapter 6 offers an
evaluation of the results and a discussion of the work.

Chapter 2

Background Theory

The RNNPB model, as well as many state-of-the-art Neural Machine Translation
(NMT) models, are based on recurrent neural networks. This chapter therefore
starts by introducing these thoroughly. Some familiarity with neural networks
and machine learning techniques is presumed, but no such presumptions are
made regarding recurrent neural networks. In section 2.2, a few important RNN
architectures are described. The relevant background on language models is
presented in subsection 2.3, before this chapter concludes with a definition of two
evaluation metrics for machine translation, BLEU and perplexity.

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) describe an alternative to conventional feed-
forward neural networks, with the addition of feedback loops in the network
architecture. Such feedback loops are not permitted in feed-forward networks,
which must satisfy the property that all nodes can be arranged into layers, so
that no nodes are dependent on nodes in the same or lower layers. For RNNs,
the feedback loops are used to provide nodes in the network with information
about previous inputs, thus making the network stateful and endowing it with
the ability to remember its history. It is this feature that makes recurrent nets
suitable for processing sequential data, i.e. sequences of points that are not
independent [Lipton, 2015].

For the forward propagation, the computation differs very little from that of
feed-forward networks. One input is presented to the network at a time, and
computation proceeds in a feed-forward manner. The only difference from feed-
forward networks is that some neurons will also depend on the current network
state. The neurons which have inbound recurrent arcs receive the relevant acti-

7

8 CHAPTER 2. BACKGROUND THEORY

vation from the previous round of computation, and typically multiplies it with
some weight. As a result, the neuron’s output will depend on the state of the
network. It is the activation of the neurons with outbound recurrent arcs that is
referred to as the state of the recurrent network. The state of a given recurrent
network has fixed dimensionality and thus cannot grow to accommodate a larger
history even if needed.

A simple recurrent network is shown in figure 2.1. The forward propagation
of this simple network can be computed according to the following equations:

ht = ah(w1xt + w2ht−1) (2.1)

ot = ao(w3ht) (2.2)

Here, there’s a total of three weights, wi, one for each of the three network
arcs. ah and ao are activation functions for the hidden unit and output unit,
respectively. A common choice for ah is the tanh activation function, while ao
can for instance be chosen as the softmax function for classification tasks. xt
describes the input at time t; for instance the t′th word in a sentence. The initial
state, h0, must be decided upon; often it is simply 0. The equations generalize
easily to a network with multiple nodes in each layer, as depicted in figure 2.2.
Here, the scalar weights, wi, can simply be replaced with weight matrices, U , V
and W :

ht = ah(Uxt + V ht−1) (2.3)

ot = ao(Wht) (2.4)

The backpropagation step for RNNs differs considerably more compared to for
feed-forward networks. The increased complexity occurs because not only must
the network learn how to take the state into account, which standard backpropa-
gation achieves inherently, it must also learn how the state should be augmented
for each iteration. Intuitively, the network must learn to compress the most im-
portant parts of the history into the state. The nodes with outbound recurrent
arcs are responsible for this task, and thus, their activations affect not only the
current output, but also future outputs. Therefore, given that the training loss
is computed depending on these outputs, the gradient calculation must typically
consider network activations from all earlier time steps.

An RNN can be described as a dynamical system,

s(t) = f(s(t−1), x(t); θ) (2.5)

2.1. RECURRENT NEURAL NETWORKS 9

Figure 2.1: A simple RNN with one input unit, one recurrent hidden unit and
one output unit. Since RNNs are used for sequences, the units are subscripted
with t to denote time.

Figure 2.2: An RNN with multiple units in each layer. Here, the recurrence is
shown from the hidden layer to itself and denotes that the recurrent connections
are fully-connected within the hidden layer. The different layers are also typically
fully-connected.

10 CHAPTER 2. BACKGROUND THEORY

where s(t) denotes the state of the system at time t, x(t) the input to the system
at time t and θ the parameters associated with the system. The literature often
describes the properties of RNNs in terms of classic dynamical systems theory.
In this framework, training the network can be regarded as learning to follow the
intended trajectory through state space [Jordan, 1997]. Typically, these trajecto-
ries are attractors; in the presence of noise, the trajectories attract nearby states,
ensuring that the system still transitions from state to state in the intended order,
as given by the learned sequences.

Importantly, the dynamical system recurrence in equation 2.5 can be removed
through recurrent expansion of the equation, so that s(t) can be computed from
some initial state s(0) and inputs x(1), x(2), ..., x(t). This expansion is equivalent
to unrolling a recurrent neural network, which is the procedure that enables back-
propagation. It is used to expand the network through time so that backpropa-
gation can be carried out the same way as for standard feed-forward networks.
This procedure is referred to as Backpropagation Through Time and is explained
more thoroughly in the next subsection.

2.1.1 Backpropagation Through Time

Figure 2.3 shows the process of unrolling a computational graph that’s used in
the Backpropagation Through Time (BPTT) algorithm. The figure shows how
feedback loops are eliminated from the graph, so that both forward propagation
and backpropagation can be carried out in the conventional manner, utilizing
some provided initial hidden state, h0. Rumelhart et al. [1986] provide details
regarding how the weight changes can be calculated in a straight-forward manner
for all steps in time. Namely, given an error signal, the effects of the weights,
W , on the error at each time step are calculated, which give rise to one weight
change, ∆W , per time step. Since the recurrent weights are shared over time
steps in this unrolled graph, all the weight changes are summed before applying
the total weight change at completion.

The BPTT algorithm computes the gradients by first doing a forward-pass
through the unrolled graph, followed by a backwards-pass, exactly as the standard
backpropagation algorithm. A notable difference is, however, the effect of time.
For BPTT, the size of the computational graph grows linearly in terms of the
length of the sequence. The activation values for each time step of all nodes must
be saved in the forward pass. Thus, the BPTT algorithm has both time and
space complexity of O(T) for a sequence of length T [Goodfellow et al., 2016]. It
is also noteworthy that this computation cannot be computed in parallel, due to
the dependencies on prior hidden states in the forward-pass.

Furthermore, under these conditions, some of the gradients will be computed
as a long chain of products, which make them vulnerable to the vanishing gra-

2.1. RECURRENT NEURAL NETWORKS 11

Figure 2.3: Unrolling a computation graph, here with a sequence of three inputs,
x1, x2, x3, before unrolling and after unrolling on the left and right respectively.
Note that h0 must be given.

dient or exploding gradient problems. In essence, gradients may vanish when
the weights are less than one in magnitude, and explode when larger than one.
The problem is particularly prevalent with recurrent neural networks compared
to deep feed-forward networks due to weight sharing across time steps. Instead
of the gradient calculation consisting of a chain of different factors, as for feed-
forward networks, the chain will include several duplicates of the same weight,
due to all network weights being identical across time steps. Given an expression
wNi where N is an exponent that increases with the length of the sequence, the
expression converges to zero if abs(wi) < 1 and diverges if abs(wi) > 1. Two com-
mon strategies that mitigate these problems are Truncated BPTT and teacher
forcing.

The Truncated BPTT (TBPTT) algorithm is a small and commonly used
adaptation of BPTT where sequences are divided into smaller chunks, to be
computed separately. The strategy used is to compute a finite, fixed number
of time steps for each inference and training step. This fragmentation does not
directly affect the inference procedure, as the final state of a given round can be
used as the initial state for the next computation. One can picture computing
a finite, unrolled computational graph, and then ”wrapping back around” to the
beginning. It does, however, affect the training procedure; gradients cannot prop-
agate across different ”chunks”, and the ability to learn long-term dependencies
may thus be sacrificed. The number of time steps in each chunk must be chosen

12 CHAPTER 2. BACKGROUND THEORY

carefully, so that all the time-dependencies that should be learned are contained
within the size of one single chunk. For example, if the sequence is divided into
chunks consisting of 10 time steps, and a given output is dependent on informa-
tion from 11 or more time steps back, the network cannot learn to include this
information in the state.

2.1.2 Teacher forcing

The concept of teacher forcing offers an alternative approach altogether to the
BPTT algorithm, but the methods are also commonly combined in practice.
Teacher forcing is applicable whenever an RNN contains feedback loops from the
outputs back into the network. If these feedback loops are the only recurrent
loops, the different time steps of the unrolled computational graph can be de-
coupled completely. The output for a given time step can be substituted with
the ground truth value for that time step as the input to the next step. With
complete teacher forcing, this means that gradients do not propagate over time,
as the effect of the weights of the last time step on the current hidden state is
removed; i.e.:

∂H(t)

∂W (t− i)
= 0 ∀i = 1, 2, ..., t− 1 (2.6)

where W (t) denote the same weight W at different points in time. With
teacher forcing, all time steps can be computed in parallel and learning can thus
be considerably sped up.

For generative tasks1, teacher forcing is often used in conjunction with BPTT.
These typically employ feedback-loops in the hidden layer, while, at the same
time, they may need to feed their outputs back as inputs. The output-to-input
recurrence is then often removed during training by using teacher forcing. Bengio
et al. [2015] justify this decision and show that training without teacher forcing
may yield slow convergence, model instability and poor accuracy. On the other
hand, Goodfellow et al. note that teacher forcing may be problematic whenever
the network will be used in a closed-loop mode (during inference), with its own
outputs fed back in as inputs, because it will be sensitive to errors in the outputs
of earlier time steps. In this situation, small errors tend to propagate and amplify
quickly. The RNN may derail from the patterns it has learned and may easily
find itself in a part of state space that it has never encountered during training.

The balance between these factors depend on the learning task at hand. Two
relevant factors that affect the choice of whether to use teacher forcing is the
accumulation of noise and propagation of gradients from the outputs. These

1I.e. tasks that aim to predict xt given xt−1, xt−2, ...x1.

2.2. RNN ARCHITECTURES 13

factors imply that recurrent classification learning tasks are more suitable for
teacher forcing than recurrent regression learning tasks.

In regression tasks, the outputs are real values, that is, quantities. They
can for instance be actuator parameters if the task is to learn a motor program.
When the network must be used in the closed-loop mode during inference, and
noisy outputs are fed back in as the next inputs, the noise will likely accumulate
over time. Training without teacher forcing may thus be useful to condition the
network to manage this noise. Furthermore, feeding back the outputs can be
regarded as yet another recurrent arc, and can be treated as such during the
BPTT procedure. Therefore, foregoing teacher forcing enables the network to
take into account how the output at a given step affects future outputs as well.

In classification tasks, such as language modeling, the outputs are categorical
values, e.g. words or characters. The output can for instance be chosen as the
most likely class given the prediction of the network. If this output is fed back in
as input for the next step – in the case of no teacher forcing – gradients cannot
propagate over this recurrent arc, because extracting the most likely class is a
non-differentiable operation. Therefore, the network is not able to adjust its
outputs based on how it affects its future predictions, which implies that training
without teacher forcing is less effective. Furthermore, noise is removed when a
discrete value is chosen from the probability outputs of the network, and therefore
does not accumulate over multiple time steps, which implies that training without
teacher forcing is not as necessary. For example, say that the most likely class
has only 5 % certainty. Then, by letting the next input be merely this word itself,
the lack of confidence is not propagated to the future. Teacher forcing therefore
typically works well for categorical tasks and is nearly always used with language
modeling.

This trade-off is well recognized in the literature, and work has been done to
find suitable compromises between the two learning approaches. Bengio et al.
[2015] propose making the decision of whether to use teacher forcing on a per-
batch basis. The choice is made stochastically according to a schedule where the
likelihood decreases as a function of the training iteration. Thus, training starts
in a strongly forced manner, before gradually switching to closed-loop training.
The authors argue that the scheme provides the benefits of training without
teacher forcing, without increasing training time or sacrificing training stability.

2.2 RNN architectures

RNNs are a rich family of architectures. The Jordan-type and Elman-type RNNs
are two architectures that differ in how the feedback loops are implemented.
These two variations are discussed in the next two subsections. Furthermore,
different machine learning tasks require different, more specific architectures.

14 CHAPTER 2. BACKGROUND THEORY

The specific architectures to be used for a given task depends on which inputs the
system should accept and which outputs it should emit. Tasks such as machine
translation requires accepting a sequence of inputs (words in the source language)
and then emitting another sequence of outputs (the translation). The RNNPB on
the other hand, requires an architecture that accepts a single vector x as input and
then emits a sequence of vectors y(1), y(2), ..., y(n) as outputs. Some of the most
typical variations are elaborated on at the end of this section. For completeness,
the next section first presents how non-recurrent, feed-forward neural networks
can, to some degree, be made context-aware, using a Time-Delay Neural Network.

2.2.1 Time-Delay Neural Networks

The feed-forward network has proved to be immensely powerful as a machine
learning tool. One of its most significant assets is its ability to self-organize
raw inputs into meaningful representations, in a hierarchical manner [Lipton,
2015]. Thus, whereas other machine learning models require the features to be
extracted from the raw data prior to learning, neural networks can extract these
features automatically as an inherent part of its learning procedure. It is therefore
interesting to consider if simple feed-forward networks can be directly applied to
sequences as well, with only minor modifications.

Originally, the feed-forward network assumes that the inputs are indepen-
dent: no explicit state is maintained from one run of the network to the next,
and the system can be described by a deterministic mapping Y = f(X). This
doesn’t however mean that it’s impossible for the feed-forward network to learn
a sequence consisting of dependent inputs. Indeed, the network is theoretically
capable of learning any sequence where a point x(t) is a strict function of the pre-
ceding point x(t−1). 2 After all, these are deterministic mappings, x(t−1) → x(t),
or equivalently, Y = f(X). The problem with this idea becomes apparent when
two distinct points, x(t1) and x(t2), can be succeeded by the same point, i.e.
x(t1+1) = x(t2+1). In terms of dynamical systems theory, the states are said to be
degenerate; a single state can be preceded by two or more distinct states. In Tani
and Ito [2003], this issue is referred to in terms of sensory aliasing, and illustrated
with the problem of drawing a figure eight: proceeding from the middle point,
a longer history of states must be known to determine the next position3. The
feed-forward network described here uses a history, or context, window of size
one. This leads naturally to the generalization to larger context windows: the
network can trivially be adapted to take an arbitrary context size, L, into account
and learn the mapping X(t−L), X(t−L+1), ..., X(t−1) → X(t). The idea of using a
feed-forward net with a context window summarizes the concept of Time-Delay

2Although in practice it would likely be beneficial to leverage a larger context of inputs.
3Two or more states could suffice.

2.2. RNN ARCHITECTURES 15

nets.
While Time-Delay nets successfully incorporate history, they are generally

inferior to RNNs. One drawback of the architecture is that the size of the in-
put layer is directly proportional to the context size. Therefore, the number of
weights that needs to be trained increases with the size of the context window. In
terms of language modeling, it is evident that, combinatorially, the number of dif-
ferent (possibly malformed) sentences increases exponentially with the sentence
length, which implies that the necessary data required to learn correct sentences
also increases exponentially. This makes large context windows impractical for
time-delay nets. RNNs, on the other hand, utilizes weight-sharing across time
steps, and are therefore much more easily trained. Instead of requiring additional
neurons for processing long sentences, it simply reuses the ones it has. Accord-
ing to Goodfellow et al., this feature allows RNNs to generalize to new sequence
lengths and capture statistical properties across different positions in time.

2.2.2 The Jordan RNN

The Jordan RNN is a variant where the feedback loops are implemented from
the output layer, as shown in figure 2.4 [Jordan, 1997]. Compared to other im-
plementations, such as the Elman RNN, this is a constraint on the expressive
power of the network. The output nodes must serve a dual function: both emit
the output of the system and update the network’s state. The network is ap-
propriate whenever the current output is a function of the current input and all
previous outputs. It can, however, not consider previous inputs, contrary to the
Elman RNN. Both the Jordan RNN and Elman RNN have been employed for a
wide set of tasks.

In the Jordan RNN, the output units feed back into a context layer4 of units.
The context units are implemented with self-loops, thus enabling the network to
remember all previous outputs, as opposed to merely the immediately preceding
output.

Jordan proposes that the context units be updated using a simple exponential
average over earlier outputs,

cn+1 = µcn + on (2.7)

as opposed to a learnable, weighted average,

cn+1 = Ucn + V on (2.8)

Here, cn denotes the context layer and on the output layer values; µ is a expo-
nential average coefficient and U and V are network weights. Jordan argues that

4Jordan refers to the layer as a state layer while Elman uses the term context layer. Here,
context layer is used to describe both types of stateful layers.

16 CHAPTER 2. BACKGROUND THEORY

more immediately preceding outputs are more important than outputs further
away in time, which is reflected in the nature of an exponential average. Natu-
rally, this approach assumes that vectors close in output space are similar. This
doesn’t necessarily hold for e.g. classification tasks, which often utilize sparse,
one-hot output values. Using the learnable, weighted average in equation 2.8 is
more flexible and more common today. The latter approach densely connects the
output layer to the context layer, and the context layer to itself, while the former
approach uses sparse connections as shown in figure 2.4.

The Jordan RNN is often informally used to describe an architecture in which
the self-loops in the context layer are omitted. In this variant only the immedi-
ately preceding output is provided as the state. Thus, this architecture is less
expressive than the original Jordan RNN. As Goodfellow et al. notes, unless the
output layer is very high-dimensional, information about the past will usually be
lost. When the network is used for an appropriate problem, however, it can be
trained more efficiently with parallel training over time steps, using strict teacher
forcing instead of the BPTT algorithm, as discussed in 2.1.2. This is not possi-
ble with the original Jordan RNN, because the context layer is dependent on all
previous inputs, requiring that the time steps be computed sequentially.

2.2.3 The Elman RNN

Whereas the Jordan RNN’s feedback loops originate from the output layer, Elman
RNNs implement the feedback loop from the hidden layer back to itself [Elman,
1990]. In figure 2.5, this is illustrated by copying the hidden layer activations into
the context layer to be used for the next time step. Normally, the context layer is
densely connected to the hidden layer; or equivalently, the hidden layer is densely
connected to itself. Elman RNNs are more expressive than Jordan RNNs, and
have been proved to be Turing complete [Goodfellow et al., 2016]. While Jordan
RNNs implement a mechanism to remember earlier outputs, the Elman RNN can
embed rich, important historical information in the hidden activation, and will at
each time step map the hidden activation to the current output. Importantly, the
network can utilize all previous inputs for the current output. The higher degree
of expressiveness comes at the cost of being harder to train however, and the
BPTT algorithm must always be used for Elman RNNs. Still, the Elman-type
RNN recurrence (from the hidden layer) is the de facto choice today.

2.2.4 Input-output relationships

Several architectures and strategies exist for implementing RNNs with different
input and output characteristics. Some possible choices for the inputs include no
inputs at all, a single vector as input and a sequence of vectors. Likewise, the

2.2. RNN ARCHITECTURES 17

Figure 2.4: The Jordan RNN. The dashed lines indicate arcs going to the next
time step. For the Jordan RNN, the context layer is updated as a function of the
previous network outputs and their own previous values (notice the self-loops).
The goal is to give the network the means to remember its previous outputs.
Noticeably, the Jordan RNN is not able to remember previous inputs or hidden
layer activations. The figure uses sparse layers only for readability.

Figure 2.5: The Elman RNN. The dashed lines indicate arcs going to the next
time step, and here the hidden layer values are simply copied without modification
to the context units. The network is considered to be more expressive than the
Jordan RNN, because the basis for the context is the hidden units, which are not
constrained in the same manner as the output units.

18 CHAPTER 2. BACKGROUND THEORY

RNN can output a single vector, sequences of vectors, and even variable-length
sequences of vectors. Some of the most relevant variations are discussed below.

(a)

(b)

Figure 2.6: Two many-to-many types of RNN architectures, unrolled over time.
a) For each input that is presented, an output is immediately generated. b) All
inputs are presented first, and then a sequence of outputs are generated.

Many to many The many to many architecture denotes the case when both
the inputs and the outputs are sequences. Two examples of this type are shown
in figure 2.6. Figure 2.6-a shows perhaps the most commonly used architecture:
given a sequence of inputs xt, produce an output sequence yt of the same length.
The architecture here implies a causal relation between the inputs and outputs
where an output yt only depends on the inputs at the same time or preceding it,
x1, x2, ..., xt. This is often a realistic assumption: a common task is to predict
the continuation of a sequence. For such tasks, the future is not available for

2.2. RNN ARCHITECTURES 19

inquiry.

One task for which this assumption does not hold is machine translation.
When translating a sentence, the entirety of the sentence must be taken into
account; one cannot simply greedily translate from the beginning 5. For this task,
the architecture shown in figure 2.6-b may be appropriate. This architecture has
been used for precisely this task, with the recurrent cells replaced with LSTM
cells [Sutskever et al., 2014]. In this case, the first part of the graph learns to
encode the sentence in the origin language into some fixed-size representation,
and the last part of the graph learns to decode the representation into the target
language.

One to many The one-to-many type of RNN denotes the case where the input
is a single vector and the outputs a sequence of vectors. Figure 2.6-a shows an
architecture where the input vector is duplicated across all time steps. This
strategy can for example be used for image captioning, where the input vector
is a representation of the image and the output caption consists of a sequence of
words [Goodfellow et al., 2016]. Another common strategy is to utilize no inputs,
and use the input vector, x, as the initial hidden state. The approaches can also
be combined.

The architecture in figure 2.7-b shows how a standard many-to-many archi-
tecture can be adapted for the one-to-many case. A single input is given to start
off the computation, which then proceeds in closed loop mode. This is often how
language models are implemented; a special <start> token is used to kick off
generation, after which predictions are fed back as inputs. Note that these two
architectures, shown in figure 2.6-a and figure 2.7-b, can be seen as equivalent
RNNs differing only in whether teacher forcing is applied or not. That is, figure
2.7-b shows the computational graph of a generative RNN, which with teacher
forcing can be trained as the many-to-many architecture in figure 2.6-a. As sec-
tion 2.1.2 explains, one can choose either approach for learning the RNN, or a
combination.

Many to one The last case that will be described is the case with a sequence of
inputs and a single output vector. This type of RNN is applicable for classification
tasks: given a set of sequences, learn to classify them into categories. Figure 2.8
shows one such approach where the final state is either taken directly as the
output classification or mapped to it.

5As an example, consider how, in German, operative verbs often occur at the end of a
sentence, while this is not the case in English.

20 CHAPTER 2. BACKGROUND THEORY

(a)

(b)

Figure 2.7: Two one-to-many types of RNN architectures, unrolled over time. a)
A single input vector x is provided as input at each time step. b) An adaptation
of the many-to-many architecture in figure 2.6-a where an initial vector x is used
as the first input, and then the computation proceeds in closed-loop mode.

Figure 2.8: A many-to-one type of RNN, unrolled over time. In this architec-
ture the outputs are removed altogether, and the outputs can be computed as a
function of the final hidden state.

2.2. RNN ARCHITECTURES 21

2.2.5 Training difficulties and the LSTM

While RNNs have been proven to be Turing complete in theory and should there-
fore be able to calculate anything a computer can calculate, they have been noto-
riously difficult to train in practice. The size of the unrolled graph corresponding
to a long sequence simply has difficult properties, among them shared weights
and repeated non-linearities. As briefly discussed in section 2.1.1, two problems
often arise: vanishing gradients and exploding gradients. Both problems affect
the gradients exponentially as the sequence length grows large. Exploding gra-
dients describe how gradients can grow extremely large over large time spans,
making learning unstable. Vanishing gradients describe the opposite problem,
where the gradients become exponentially small, making the network unable to
capture long-term dependencies.

The exploding gradient problem can normally be managed rather well. Pas-
canu et al. [2013] propose gradient clipping which has proven essential in training
RNNs. The idea is rather simple: if the gradient exceeds a threshold value, clip
it so that it equals the threshold. Specifically, it is the aggregated gradient (com-
puted as the sum of each time-step gradient), g, that is clipped. Let τ denote
the threshold, then use the clipping rule:

g =

{
τ g
‖g‖ , if ‖g‖ > τ

g, otherwise
(2.9)

One of the most significant advances of the RNN architecture is the Long
Short-Term Memory (LSTM) architecture [Hochreiter and Schmidhuber, 1997],
which offers a solution to the vanishing gradient problem. Hochreiter and Schmid-
huber show that the LSTM is much more capable of learning long-term dependen-
cies. In an LSTM model, the basic recurrent units are substituted with memory
cells, see figure 2.9. The memory cell implements a node, referred to as the inter-
nal state, which has a self-loop with weight fixed at 1. This self-loop is referred
to as the constant error carousel : since it always has weight equal to 1, it assures
that gradients can propagate across time steps without vanishing. In addition,
the memory cell includes gates to control its state and its output. The input gate
determines which part of the inputs to the cell will be added to the cell state, and
the output gate determines whether the cell will emit an output. Effectively, the
cell is able to ignore certain inputs, and learn when it should emit an output. If
both these gates are closed, the cell state remains unchanged and does not affect
the network’s output; the cell is effectively dormant. Additionally, a forget gate
is often included and determines if the state should be forgotten.

The LSTM is particularly desirable because it’s easily combined with existing
recurrent architectures. One can simply exchange the fundamental recurrent unit,
without making any large further changes, and reap the benefits of the LSTM.

22 CHAPTER 2. BACKGROUND THEORY

For most state-of-the-art work, the LSTM or other gated RNNs have become the
standard.

2.3 Language models

A language model assigns a probability to a sequence of words. Such models play
an important role in numerous fields that deal with language. Consider for in-
stance machine translation, speech recognition or handwriting recognition: when
a set of possible candidate sentences are considered, it’s useful to have a model
that evaluates the likelihood of each sentence occurring in the language. Intu-
itively, malformed sentences should be assigned a low likelihood, while sentences
that frequently occur6 should be assigned a higher likelihood. Developing an
accurate language model is therefore an important task that has received much
attention.

Let the probability distribution over sentences in a given language be de-
scribed as P (wT1), where wT1 denotes a sequence of words, w1, w2, ..., wT . Then,
it is often useful to decompose P (wT1) in the following manner:

P (wT1) =

T∏
t=1

P (wt|wt−11) (2.10)

Instead of learning P (wT1) directly, a specific language model typically learns
P (wi|wi−11); the probability distribution over the vocabulary, conditioned on the
preceding words in the sentence. The likelihood of the complete sentence, P (wT1),
can then be computed from the conditional probabilities using equation 2.10.

Some of the simplest language models are n-gram models, which are simple
statistical models. Prior to neural models, most state-of-the-art language models
utilized n-grams. These models approximate P (wi|wi−11) using a shorter condi-
tional context. For instance, a trigram model (n = 3), would learn P (wi|wi−2, wi−1);
the likelihood of wi given the two prior words. These conditional probabilities
would simply be calculated by considering all possible trigrams in a large text
corpus, and then counting the relative occurrences of trigrams:

P (wi|wi−2, wi−1) ≈ N(wi−2wi−1wi)

N(wi−2wi−1w∗)
(2.11)

where N is a function describing the count of a particular trigram and w∗ de-
scribes a ”wild card” word.

Despite the extensive use of n-gram models historically, they have certain
drawbacks [Bengio et al., 2003]. Most noteworthy, the context taken into account

6According to some reference dataset.

2.3. LANGUAGE MODELS 23

Figure 2.9: A high-level view of an LSTM memory cell with input, output and
forget gates. The s node is the internal state, which, with its self-loop, implements
the constant error carousel. Dashed lines go forward in time. Here, the forget
gate is inserted into the self-loop to allow forgetting state when necessary. The I
node is the input node and describes some input transformation. The three gates
take the input signal and output a value between 0 and 1, corresponding to a
closed and open gate, respectively. The input signal includes both the inputs to
the LSTM layer and fully-connected recurrent connections between all the LSTM
cells within the LSTM layer (see figure 2.2).

24 CHAPTER 2. BACKGROUND THEORY

Figure 2.10: A possible architecture for an RNN language model, unrolled over
time. Each word is substituted with a word embedding in the embedding layer.
An LSTM layer is often used to implement the recurrent layer. The softmax
outputs are the probability distribution over the set of words in the vocabulary.

is limited in size. N-gram models with n > 3 are seldom used, because the number
of possible n-grams grows exponentially as a function of n, requiring exponentially
more data. Furthermore, the models do not exploit semantic similarities between
different words. In the next section, an RNN language model is presented, offering
a solution to these two problems; the former through the RNN’s theoretically
unlimited context, and the latter through word embeddings.

2.3.1 RNN language models

A common RNN architecture for language modeling is shown in figure 2.10.
The model takes a word, x(t), and outputs a probability distribution over the
vocabulary, estimating P (wt+1|wt1). The learning objective is to maximize the
joint probability over the sentences in the training set, τ , which is achieved by
finding the network weights, θ, that maximize the log-likelihood:

maxθ
∑
s∈τ

logP̂ (s; θ) (2.12)

The softmax activation function is used in the output layer, which ensures
that the probability distribution sum to 1. It should be noted that the use of

2.3. LANGUAGE MODELS 25

the softmax output layer in this context is very expensive. The dimension of
the output layer is equal to the size of the vocabulary, which can be hundreds of
thousands of words. Thus, the size of the output layer can exceed the size of the
other layers by orders of magnitude and become a bottleneck. Most applications
therefore limit the vocabulary to e.g. the top 30K most frequent words, calculated
based on the number of occurrences in the training set. With this approach, the
words in the training set which are not included in the vocabulary are replaced
with a special Out Of Vocabulary (OOV) token. This is a trade-off: OOV tokens
cause ”holes” in the sentences and too many of them are detrimental to their
quality, while a vocabulary that’s too large will make training infeasibly slow.

The example in figure 2.10 also uses word embeddings, which has become a
standard technique for neural language modeling. The technique is motivated
by several drawbacks of the traditional one-hot7 categorical input encoding. The
one-hot encoding is sparse, while neural networks normally prefer dense input
vectors, and all vectors have uniform distance in vector space, regardless of se-
mantic meaning. Furthermore, a one-hot encoding would impose upon the input
layer the same level of complexity which torments the output layer. Word em-
beddings solve all these issues. When embeddings are used, all input words are
substituted by real-valued vectors, IRN , of some embedding dimension, N . The
embedding vectors are typically stored in a |V | ×N matrix, for a vocabulary V ,
and typically N � |V |, with for instance N = 500. The vectors are regarded as
normal network weights during training and are gradually updated so that their
organization in vector space reflect their semantic meaning. This encourages gen-
eralization: if the network has learned a particular sentence involving the word
”dog”, it will be able to infer that an alternative sentence where ”dog” has been
replaced by ”cat” is nearly as likely, because the word embeddings for ”dog” and
”cat” are likely similar [Bengio et al., 2003].

2.3.2 Generating sentences

A language model can be used to generate text, which, as the reader might recall,
is how the current thesis intends to do machine translation. Numerous models
utilize language models that are conditioned on some extra piece of information:
for machine translation, the decoder can be viewed as a language model condi-
tioned on an encoding of the source sentence, and likewise for image captioning,
only conditioned on an encoding of an image instead of a sentence. Particu-
larly, the current work will use a language model conditioned on the values of
parametric bias nodes.

7The one-hot encoding describes using vectors with dimension equal to the number of pos-
sible classes, where only one entry in the vector is equal to one, corresponding to the particular
class, and the rest are equal to zero.

26 CHAPTER 2. BACKGROUND THEORY

An unfortunate hurdle is, however, that language models do not provide an
explicit solution for text generation. Of course, in theory one could compute

ŝ = arg max
s∈S

P̂ (s) (2.13)

for some finite set S containing all sentences of a sufficient length. While this
would yield an optimal solution, it quickly becomes infeasible for sentence lengths
longer than a few words. Two common approaches which provide acceptable,
albeit non-optimal solutions, are greedy generation and beam search.

Greedy generation entails simply building the sentence iteratively left to right
and choosing the most likely word at each step:

ŵt = arg max
w∈V

P̂ (w|ŵt−11) (2.14)

Typically, the generation ends when the most likely word is an end-of-sentence
token. Since this problem does not possess the greedy property, a series of such
locally optimal choices does not necessarily provide a globally optimal solution,
i.e. ŵT1 6= ŝ. The main argument for this approach is its simplicity.

Beam search is often used in practice and is almost always the algorithm of
choice for the decoding step of neural machine translation. Beam search considers
a larger set of possible sentences and selects the best solution from this set,
thereby increasing the likelihood of finding an optimal or near-optimal solution.
Specifically, the search maintains a set of the B best partial sentences found so
far, where B is the beam size. At each step, generating left-to-right, each of the
B partial sentences are expanded with the corresponding B most likely words,
for a total of B2 candidate sentences. These candidate sentences are then pruned
again to the B most likely sentences before moving to the next step. Due to the
nature of the RNN language model, the network’s hidden states must be saved
along with each candidate sentence to allow for extending the sentence further. A
typical choice is B = 10. When B = 1, beam search defaults to greedy generation.
Beam search is illustrated in figure 2.11.

2.4 Evaluation metrics for translation

The experiments conducted here utilize two evaluation metrics, BLEU and per-
plexity. The BLEU metric was proposed in Papineni et al. [2002] as a quick, in-
expensive and language-independent way to automatically evaluate translations,
that correlates highly with human evaluation. In the current experiments, it is
used to report the final scores that are achieved in comparison with other models.
Given the importance of the BLEU metric in this work, it is defined thoroughly
below. Perplexity is a metric that stems from information theory and has been

2.4. EVALUATION METRICS FOR TRANSLATION 27

Figure 2.11: Beam search: the final beam upon completion of the search, where
B = 5. Each node corresponds to a partial sentence, consisting of the words along
the path from the root node to the node. The likelihood of the partial sentences
are given in parentheses. Leaf nodes must be <end>-nodes, meaning that only
viable, complete sentences are considered as final candidates. Note that this is
not a complete search tree: other nodes would have been considered during the
search, but discarded due to lower probabilities than the nodes included here.
This is also why the sum of the likelihoods of child nodes do not add up to the
likelihood of the parent nodes in the figure. The result of this beam search would
have been the sentence ”She ran”, which has the highest likelihood of all complete
sentences.

28 CHAPTER 2. BACKGROUND THEORY

used extensively in work with language models and machine translation. In the
current experiments, perplexity is used to evaluate the progress of training by
measuring the perplexity on the training set and validation set.

2.4.1 BLEU

The BLEU (Bilingual Evaluation Understudy) metric is the de facto metric used
in machine translation literature to evaluate the performance of proposed ma-
chine translation models. When multiple sources report the BLEU score on the
same test dataset, the performance of their respective models can be directly com-
pared. The motivation for the metric is due to how a given sentence typically has
numerous possible good translations, and the metric must therefore be flexible
enough to allow for variations. A test dataset contains sentences along with one
or more corresponding reference translations. A machine translation model then
generates candidate translations of the sentences in the dataset, which are scored
against the reference translations using the BLEU metric.

The BLEU score is a statistical approach based on comparing n-gram counts
from a candidate translation to corresponding counts in the reference translations.
N-grams of multiple sizes are compared, starting from n = 1 (unigrams) to an
upper limit, typically n = 4. A score is computed for each n-gram size, and the
geometric mean of these scores are taken.

The score for a given n-gram size n, pn, is computed over the entire test
dataset as such [Papineni et al., 2002]:

pn =

∑
C∈Candidates

∑
n-gram∈C

Countclip(n-gram)∑
C∈Candidates

∑
n-gram∈C

Count(n-gram)
(2.15)

where Countclip(n-gram) is a function that counts the occurrences of the n-gram
in the candidate, but clips the value at the maximum occurrence count of the
n-gram among the references.

The BLEU score is then computed as

BLEU = BP · exp(
1

N

N∑
n=1

log pn) (2.16)

where BP is a Brevity Penalty that penalizes too short translations. Again, a
typical choice for the maximum degree of the n-grams is N = 4. The brevity
penalty is computed globally over the set of candidate translations as

BP =

{
1 if c > r

e1−r/c if c ≤ r
(2.17)

2.4. EVALUATION METRICS FOR TRANSLATION 29

Here, c is the sum of lengths of the candidate translations, and r the sum of
lengths of the corresponding reference translations. For r, if a given sentence has
several reference translations, the one that is closest in length to the candidate
translation is used in the sum. Equation 2.16 gives a score in the interval [0, 1.0],
but the score is conventionally multiplied by 100. Therefore, a BLEU score of
100 describes perfect translations.

2.4.2 Perplexity

The perplexity of some sample, given a probability model, measures how well
the probability model predicts the sample. A low perplexity implies that the
probability model evaluates the sample as likely. Language models can typically
be evaluated by calculating the perplexity of some test set. If the test set is
representative for the language, and if the language model is accurate, a low
perplexity will be calculated.

When perplexity is used in the language domain, the average perplexity per
word is normally used, as opposed to perplexity per sentence. In this case, the
perplexity describes the number of bits that are optimally required to code each
word, with respect to the language model. For instance, if the language model
would require on average 10 bits to code each of the words in a sentence, the
perplexity of the sentence would be calculated as 210 = 1024. Then, imagine a
”dumb” language model, which considers any arrangement of words to be equally
likely. Such a language model could not code each word in a sentence any more
optimally than the naive coding (which affords the same number of bits to all
words), which would require log(|V |) bits, for a vocabulary, V . In this case,
the perplexity, 2log(|V |) = |V |, would be equal to the size of the vocabulary. In
the other extreme, consider a hypothetical language with only a single possible
sentence. With such a language, an accurate language model would need zero
bits to code each word in this single sentence, yielding a perplexity of 20 = 1,
which is the lowest possible attainable perplexity.

In general, the average perplexity of a test set, D, with regard to some lan-
guage model can be computed as such:

perplexity(D) =
1

|D|
∑
x∈D

2
1
T

T∑
t=1
−log(p̂(xt))

(2.18)

where xt is the t’th word in the sentence x, and p̂(xt) is the probability that
the language model estimates for the word, xt. Since the language model consid-
ers the previous words in the sentence, p̂(xt) is taken to mean p̂(xt|xt−11). Fur-
thermore, −log(p̂(xt)) can be recognized as the cross-entropy function normally

30 CHAPTER 2. BACKGROUND THEORY

used as a loss function for sparse classification8. The experiments conducted here
therefore calculate the perplexity as

perplexity(D) =
1

|D|
∑
x∈D

2
1
T Lc (2.19)

where Lc is the cross-entropy loss summed over time steps and T is still the
length of sentence x. Due to implementation details, the perplexity is calculated
using base e instead of 2 in the current experiments, which doesn’t affect the
result. Lastly, it is noted that perplexity is calculated in the exact same manner
for a translation model compared to a language model. The only difference is
that, since the decoder in an NMT model is conditioned on a representation of
the source sentence, the perplexity is much lower. Ideally, a decoder needs only
differentiate between possible legal, translations, and therefore a perplexity of 1
like the hypothetical example above is theoretically possible if only one possible
translation exists.

2.5 Summary

This chapter defined Recurrent Neural Networks and provided motivation for
their use. A few different architectures have been described, such as the Jordan
and Elman RNN, and the LSTM. As the next chapter explains, the RNNPB is
originally proposed as an adaptation of the Jordan-RNN, however it has also been
implemented as an Elman-RNN. In this thesis, it is implemented as an LSTM
network, in order to overcome the vanishing gradients problem and ease train-
ing. This chapter has discussed the BPTT algorithm and teacher forcing, two
techniques which are combined in the current experiments. Different relation-
ships between the inputs and outputs of an RNN were described. For subsequent
chapters, the one-to-many relationship, which includes the RNNPB model, is
particularly important. Language models were defined, and both n-gram and
RNN implementations were discussed. These concepts are also important in the
next chapters. Lastly, the BLEU and perplexity metrics for machine translation
were introduced thoroughly. These play important roles in the experiments to
come.

8I.e. where the targets are one-hot vectors, or in other words, where the classes are mutually
exclusive.

Chapter 3

Motivation

The problem of machine translation is, without a doubt, important to solve. Few
problems benefit more socially and on a global scale from good solutions. Al-
lowing people otherwise unable to communicate with each other to do so could
remove language barriers, unite different nationalities and deter xenophobia. Per-
haps even more importantly, solutions to machine translation enable free flow of
information across country borders. The advent of the Internet has connected
the world and revolutionized information sharing, but the language barrier re-
mains. It is vital for the development of countries with few knowledge resources
that they can partake in the wealth of knowledge available on the Internet, just
as freely available information is vital as a counterweight to the censorship and
oppression many countries face.

”Knowledge is power. Information is liberating. Education is the
premise of progress, in every society, in every family.”

– Kofi Annan

This chapter presents related work for machine translation and the RNNPB
model and puts the current work in context. In section 3.1, a Structured Litera-
ture Review protocol (SLR) is defined, which describes how the search for related
work will be carried out. The results are then presented in section 3.2 and 3.3,
for the RNNPB model and machine translation, respectively.

31

32 CHAPTER 3. MOTIVATION

3.1 Structured Literature Review Protocol

This chapter is the result of executing a Structured Literature Review (SLR). An
SLR defines a formal way of searching for and filtering the information relevant
to a set of search questions. By formalizing this process, one can hopefully avoid
biases in the selected material and assure that the scope of the considered material
is sufficient. Furthermore, by making the process more transparent, the reader is
better equipped to determine what related work has been considered, and which
therefore underlie the arguments in the current work.

It is necessary to define a twofold SLR protocol given the nature of this thesis.
Should one attempt to define a search for the intersection of the RNNPB model
and machine translation, the resulting set of material would be empty.1 The
search must be included in the protocol for completeness, nevertheless. The SLR
will thus cover the two domains separately. The next sections respectively define
how the search will be conducted and how the results will be filtered.

3.1.1 Generating a set of candidate literature

In this step, all the literature that will be considered for selection is found. Here,
the protocol must specify exactly what will be searched for and which sources
will be searched. An important part of the SLR is to form search questions as
the basis for the review. While the research questions stated in section 1.2 define
the purpose of the current thesis, the search questions will define the scope of the
related work inquiry. The following sets of questions will be used:

Machine translation

• What is the state-of-the-art in neural machine translation?

• What are the main challenges in the neural machine translation field?

• Which models are suitable to use as baselines to compare results against?

RNNPB model

• What work has been done with the RNNPB model?

• How has the PB binding method been used in prior work?

RNNPB for machine translation

• Has the RNNPB model or a similar model been applied to the task of
machine translation in any prior work?

1At least at the time of writing, during the spring of 2019.

3.1. STRUCTURED LITERATURE REVIEW PROTOCOL 33

Since search engines normally perform better with keywords as opposed to
complete questions, keywords are commonly derived from the search questions.
Here, the notion of keyword groups is used. Groups are formed of keywords with
interchangeable meaning to ensure that the scope of each group is complete. The
three groupings are presented in table 3.1. A search query is then constructed
using logical operators: ”OR” between keywords within a group and ”AND”
between different groups. A subset of the first grouping could look like:

(Machine translation) AND (RNN OR LSTM) AND (State-of-the-art)

The three groupings produce three search queries. Furthermore, the following
sources will be searched for each of the three queries:

• ACM digital library

• IEEE Xplore

• ISI web of knowledge

• ScienceDirect

• Springer Link

• Wiley Inter Science

3.1.2 Literature selection

This section dictates how the search results are distilled into a manageable size.
Some of the search queries are rather general, so all results cannot be considered.
A two-pass selection is used: first the primary studies are selected, and secondly,
the primary studies are subject to a screening based on inclusion and quality
criteria. A potential study will be discarded if it meets any of the following
removal criteria:

R1. It is a duplicate of another primary study.

R2. The study is not published in English.

R3. The study is not situated in the computer science field.

Similarly, a study will be considered further only if it meets the following
inclusion criterion:

I1. The study’s primary concern is either machine translation for natural lan-
guage, or the RNNPB model.

34 CHAPTER 3. MOTIVATION

Group 1 Group 2 Group 3

Term 1 Machine translation Encoder-Decoder State-of-the-art
Term 2 Sequence to sequence

(a) Keywords for the machine translation domain.

Group 1 Group 2

Term 1 RNNPB Language
Term 2 Forwarding Forward model Language modeling
Term 3 RNNPB PB Binding Linguistic
Term 4 Big data
Term 5 Large dataset
Term 6 Deep learning

(b) Keywords for the RNNPB model domain. In early works, the RNNPB model was
referred to as the Forwarding Forward model.

Group 1 Group 2

Term 1 RNNPB Machine translation
Term 2 Forwarding Forward model
Term 3 Parametric bias
Term 4 Mirror neuron
Term 5 Mirror system

(c) Keywords for the intersection of the two domains. The RNNPB model can be
characterized as a mirror system, which describes systems capable of simultaneously
offering forward and inverse modes of computation (generation and recognition). With
broadening the scope in mind, the present approach requires two mirror models and a
mechanism for binding them.

Table 3.1: Keyword groupings used for the three sets of search questions, covering
the domains of machine translation and the RNNPB model.

3.1. STRUCTURED LITERATURE REVIEW PROTOCOL 35

Domain Criteria
I2 Both The study is a primary study that presents empirical results.
I3 Both The suggested machine learning strategy is fully supervised.
I4 MT The proposed solution is based on recurrent neural networks.
I5 MT The data utilized in learning consists only of written lan-

guage.
I6 RNNPB The task investigated has either a language aspect or makes

a technical contribution to the model.
Q1 Both The study clearly states the aim of the research.
Q2 Both The study adequately places the work in context of related

research.
Q3 Both The algorithm/model is reproducible.
Q4 Both The data is publicly available.
Q5 Both The experimental set-up, including choice of hyperparame-

ters, is adequately described.
Q6 Both The performance metric is reproducible.
Q7 MT For performance metric, the BLEU score is used.
Q8 MT The suggested model beats established records.

Table 3.2: Inclusion and quality criteria for the SLR protocol. The table specifies
which domain the criteria pertains to, given that the SLR searches both the
domain of machine translation and of the RNNPB model.

If necessary, the size of the resulting set is restricted to 30 in the following
manner: Sorted by the number of citations, select the top 10 articles published
after 2015, and subsequently the top 10 non-overlapping articles published af-
ter 2010. Select the remaining 10 articles as the top non-overlapping articles
after sorting by relevancy. With three search queries and seven sources, this will
produce a set of primary studies of size at most 630.

The final selection is made using further inclusion criteria and quality criteria
as shown in table 3.2. The included studies are assigned a score based on the
quality criteria: for each of the criteria, 1p is given if the criteria is met, 0.5p if it
is partially met, and otherwise 0p is given. The topmost 15 machine translation
studies and 15 RNNPB studies by quality score are then chosen as the final basis
for the related work. It is necessary to restrict the scope in this manner due to
the limited time frame of the current work.

In the remainder of this chapter, the results of this search is now presented.

36 CHAPTER 3. MOTIVATION

3.2 The RNNPB model

The RNNPB model [Tani, 2002] [Tani and Ito, 2003] has been employed within
fields such as robotics, cognitive science and neuroscience. Within these different
disciplines, the model itself largely remains the same, while the interpretations
and goals of the experiments vary. This section now proceeds with a description
of the RNNPB model as proposed in Tani and Ito [2003], before presenting more
specific related work.

3.2.1 Definition and motivation

The model is originally motivated by the task of learning multiple temporal pat-
terns in a single model. A standard RNN can easily be employed to learn a
single temporal pattern; simply train it on the sequence or sequences exemplify-
ing the temporal pattern, and the RNN can learn to generate the sequence in a
closed-loop manner. Specifically, as illustrated in figure 2.7-b in the background
chapter, the RNN can learn the mapping

(x0, h0)
θ→ x1, x2, ..., xT (3.1)

where θ describes the network parameters, and x0 and h0 describe the initial

input and hidden state which are fixed at some specific values, e.g. (
→
0 ,
→
0).

Typically, what is achieved here is that the RNN has approximately learned the
underlying temporal pattern from the examples, in a way that is robust against
perturbations and noise. As such, the RNN may for instance generalize and
predict the extension of the pattern. The benefits of this approach become clear
with respect to the application in robotic experiments, which is described later
in this section.

The question to which the RNNPB model offers a solution then becomes:
how can multiple temporal patterns be learned at the same time? Two main
strategies can be differentiated here as the localist and the distributed approach.
In the former, each temporal pattern is learned in its own module – e.g. in
its own network – and some control mechanism is employed to select the right
module. In the distributed strategy, to which the RNNPB model belongs, all the
patterns are embedded within a single module, here a single RNN. The latter has
the generalization advantage of neural networks: having all the patterns share
resources encourages generalization. However, the patterns must be differentiated
in some manner. Section 2.2.4 describes two ways to achieve a one-to-many
mapping with RNNs, using either x0 or h0 or both (from the mapping above) to
encode an input vector. Such an input vector can be used to key the different
temporal patterns. In this vein, Tani and Ito proposed a similar approach with

3.2. THE RNNPB MODEL 37

the mapping

(x0, h0, p)
θ→ x1, x2, ..., xT (3.2)

where p denotes the parametric biases. More specifically, there is a one-to-one
mapping between parametric biases and temporal patterns, so if Si denotes the
i’th pattern, the mapping can be written as

(x0, h0, pi)
θ→ Si (3.3)

The complete RNNPB architecture is shown in figure 3.1. Tani and Ito de-
scribe the architecture as a Jordan-type RNN with the addition of parametric bias
nodes in the input layer. This classification arises from the output-to-input-layer
recurrence, but isn’t fully accurate with regard to the conventional definition of
the Jordan RNN. The difference is that the RNNPB embeds dedicated context
units in the output layer as well as in the input layer, and importantly, the output
context units are not subject to a teacher signal. The context units are therefore
free to take on any suitable representation, and are thus just as expressive as in
the Elman-type RNN.

An important quality of the RNNPB model is that the PB values are self-
organized during training. In common with word embeddings, the pi vectors are
regarded in much the same manner as standard network weights and updated
iteratively during training, starting from some initial values. Therefore, just as
for word embeddings, the PB space eventually becomes organized in a regular
manner, so that similar temporal patterns correspond to similar PB vectors. This
quality encourages generalization, where even untrained points in PB space may
correspond to useful temporal patterns. The exact procedure and equations used
for training are given in detail in the next chapter, but differ from standard BPTT
in only minor ways.

After training is completed, the model offers two modes of operation: genera-
tion and recognition. Generation describes the forward operation of generating
a complete sequence from a PB vector, p. On the other hand, recognition de-
scribes the inverse operation where a PB vector, p, is computed from a (possibly
untrained) sequence. Recognition is achieved by iteratively searching for the PB
vector that generates the given sequence with the smallest error. This is merely
a special case of the network training procedure; recognition is achieved by up-
dating only the PB nodes with the BPTT procedure and the given sequence as
teacher signal, while keeping the network weights fixed. Since recognition is a
rather computationally expensive iterative operation, it may not be suitable for
all real-time tasks.

Generation and recognition are illustrated in figure 3.2 and 3.3, respectively.
In this thesis, the original RNNPB architecture from figure 3.1 is updated. The

38 CHAPTER 3. MOTIVATION

Jordan-type recurrence is replaced with the more powerful Elman-type recurrence
(hidden-layer to hidden-layer), using LSTM memory cells. Since the RNNPB is
used to model language, embedding layers and softmax layers are furthermore
added to the architecture. Using two such RNNPB models, one for the source
language and one for the target language, this thesis intends to achieve machine
translation as illustrated in figure 3.4. The concept of binding is described further
in section 3.2.3.

In the next subsections, the most relevant applications of the RNNPB model
are presented.

3.2.2 Dynamic object handling

In Ito et al. [2006], the RNNPB model is utilized in a dynamic object handling
experiment with a robot. The goal is to execute learned behaviors while respond-
ing appropriately to the environment. Here, the temporal patterns correspond
to behaviors and are represented as sensorimotor sequences, (st,mt), of sensory
features and motor parameters. This enables the robot to perform a suitable
action at the next time step by predicting and effectuating motor parameters,
mt+1. Since sensory features are incorporated in the sequences as well, the robot
also learns to consider its sensory inputs when it decides upon an action, thus
responding to its environment.

In order to dynamically switch between behaviors in real-time, the RNNPB
system continuously recognizes, by updating the PB values, a window of the
immediate past. As such, if the robot’s sensorimotor stream suddenly changes
in nature, the PB values will be regressed to reflect the new behavior. Thus, the
system continuously alternates between the generation operation, in which the
next action is generated, and the recognition operation.

The experiment tests a humanoid robot’s ability to handle a ball on a table
with its hands in terms of two different behaviors. With the first behavior, the
robot rolls the ball back and forth between its left arm and its right. With
the second behavior, it grasps the ball with both arms, lifts it up and drops it
down. The sensors include a camera to enable the robot to see the ball’s location.
After training these two behaviors, the robot was able to stably reproduce them
and furthermore switch between them appropriately. For instance, if a human
observer intervened to initiate the opposite ball handling behavior by manually
moving the ball, the system experiences a mismatch between its sensory values
and its internal prediction, starts adjusting its PB values, and eventually switches
to executing the opposite behavior.

Thus, this experiment confirmed that 1) the behaviors could be successfully
learned and associated with PB values, 2) the robot could successfully take the
environment (e.g. the ball’s position) into account, and 3) the system could

3.2. THE RNNPB MODEL 39

Figure 3.1: The original RNNPB architecture. Two parametric bias nodes have
been placed in the input layer and encode the specific temporal pattern that
should be produced. The values of the PB nodes remain fixed over time for a
given pattern. The recurrence is implemented with arcs from the output layer to
the input layer, using context units. The layers are normally densely connected,
and the number of input, output, parametric bias and context units can be chosen
(mutually) independently. By operating the network in closed-loop mode (feeding
the outputs back in as inputs), an entire sequence can be generated from only
the PB values and an initial input.

40 CHAPTER 3. MOTIVATION

Figure 3.2: Generation mode. The figure shows an RNN language model, as
presented in figure 2.10, adapted with PB nodes. In the generation mode, the
network takes only a PB vector as input. The PB vector encodes a sentence fully,
and the model can thus generate the sentence from the PB vector.

Figure 3.3: Recognition mode. A sentence is provided as input to the network,
and is then used as teacher signal (at the top). The gradients (red) flow from the
loss blocks to the PB block. The PB nodes are then regressed over a number of
recognition iterations, until they sufficiently represent the provided sentence.

3.2. THE RNNPB MODEL 41

Figure 3.4: Translation. Two models, model A and model B, are bound. Binding
entails that the PB vectors for corresponding sentences in model A and model B
are linked during training, so that a common sentence representation emerges in
the two models. Translation can then be achieved by doing recognition in model
A and subsequently using the computed PB vectors for generation in model B.

42 CHAPTER 3. MOTIVATION

automatically switch between behaviors, or in other words, achieve automatic
context switching. In order to achieve real-time generation and recognition, the
robot had to be connected to a remote cluster to carry out computation.

3.2.3 PB Binding

The experiment which this thesis is inspired by is presented in Sugita and Tani
[2003] and Sugita and Tani [2005], wherein two RNNPB models are bound to-
gether. In this case, a system is built to facilitate translations between the do-
mains of language and behavior. One RNNPB model is trained on sentences
and the other is trained on sensorimotor sequences representing behaviors, in the
same manner as the above experiment. The motivation here is obvious: it is
appealing to be able to dictate the behavior of a robot flexibly by using natural
language. Here, corresponding sentence-behavior pairs are bound using the PB
binding method. Given a sentence-behavior pair, (si, bi), the corresponding PB
units, (psi , pbi), are bound. The training objective is now twofold: 1) as before,
the two RNNPB models should update the values of psi and pbi in the direction
of generating si and bi respectively, and 2) psi and pbi should be updated in the
direction of each other. The exact equations are given in the next chapter. After
training, translation of arbitrary sequences can be done by doing recognition in
one module and subsequently generation in the other model using the obtained
PB values. Note however that the two models can still be operated individually
as well.

In the experiment, simple two-word sentences were associated with novel be-
haviors involving a mobile robot with wheels and a movable arm, in addition
to visual sensors. The robot was placed with three objects in front of it: one
object to the left, one center and one to the right. The robot was taught three
actions: to push an object with its body, to point towards it with its arm but
not touch it, and to hit it with its arm. In addition, the objects had different
colors, with the left object always being red, the center blue and the right green.
With three actions and three objects, there was a total of 9 behaviors for the
robot to learn. The linguistic model learned sentences with the format ”<verb>
<noun>”, for instance ”hit blue” or ”push right”, corresponding to the different
behaviors. This gives 18 possible sentences, where each behavior is described by
two different but equivalent sentences.

In order to test generalization, four sentences, corresponding to two behav-
iors, were not trained at all. The two corresponding behaviors were trained but
not bound. It was demonstrated that the system could both regenerate all se-
quences successfully, both linguistic and behavioral. More importantly, the robot
could generate the correct corresponding behavior for all sentences, including
the unlearned sentences. Sugita and Tani show that the PB vectors of equiva-

3.2. THE RNNPB MODEL 43

lent sentences converge near each other in PB-space. Likewise, the PB vectors
of sentence-behavior pairs converge towards becoming equal. The experiments
showed that it’s possible to translate between the two domains, but on a small
scale. In the current experiment, the binding will be done between two language
domains on a much larger scale.

The experiment is extended in Arie et al. [2010], where the RNNPB models
are replaced with two Multiple Timescale RNN (MTRNN) models. PB nodes
from the language and behavior models were still bound. In this experiment,
two groups of sentences are trained. The first group has the format ”Hold Red”,
similar to the original experiment, while the second group contains more complex
sentences of the format ”Put Red on Blue”. In this case, all pairs were bound,
and the model did learn to recognize all sentences and execute the corresponding
behavior. However, the goal here was mainly to investigate how the PB space
became organized in response to the two groups of sentences. The authors found
that for the first group, the PB space exhibited a compositional structure that
is necessary for generalization, which was lacking for the second group. One
possible explanation for this was identified as too few training examples, and as
future work, the authors describe a need to repeat the experiment on a larger
scale with a higher number of words and a larger diversity of grammar. To this
end, this thesis can be considered a direct contribution.

Ogata and Okuno [2013] conducted a very similar experiment with bound
MTRNN language-behavior models, although they employed a more complex ar-
chitecture that incorporated a Self-Organized Map (SOM) and trained sentences
on the character-level. They too achieve successful language-behavior translation,
and mention scaling of word vocabulary in future work.

3.2.4 Recent work with the RNNPB

Park et al. [2017] investigates the RNNPB model’s ability to learn to imitate
goal-directed actions. The study aims to analyze the developmental dynamics
of the model; that is, how the performance develops as the model trains. Using
the original RNNPB model without alterations, they test a robot arm’s ability
to move from an initial position to one of two different goal positions on a 2-D
plane. For each of the two goals, they define three different means, i.e. types of
trajectories for reaching the goal. They find that the model’s ability to repro-
duce the actions gradually increase with training, and more importantly, that the
model learns the goals of the actions before the means. Only in the later training
iterations are the exact trajectories learned. In Park et al. [2014] the same au-
thors compare similar findings with the developmental dynamics of infants; when
infants learn actions through imitation, they first learn to copy the goal of the
action and later the means. The authors therefore conjecture that the RNNPB

44 CHAPTER 3. MOTIVATION

model may shed light on the mechanism of infant goal-directed action learning.

Zhong and Canamero [2014] and Li et al. [2018] are two studies that in-
vestigate learning to recognize and generate emotion-aroused human behaviors
with the RNNPB model. The studies model the human differently, using three-
dimensional skeleton motion capture and Microsoft Kinect respectively, but both
studies have humans executing a behavior while expressing different emotions,
such as joy, pride, anger and sadness. Both studies have the model learn a dou-
ble of each emotion-behavior to examine if the system recognizes the similarity
of each pair. Based on euclidean distance between the PB-vectors, the studies
show that the model clusters the same emotions together in PB space. They
report the full distance matrix between emotions, which for instance shows that
joy is closer in PB space to pride than it is to fear and sadness. Zhong and
Canamero [2014] also tested generation by reconstructing the human skeleton in
an avatar. Here, they discovered interesting generalization capabilities, where
PB values corresponding to different emotions could be interpolated to generate
novel emotion-behaviors situated somewhere between the two emotions. Both
studies utilize an Elman-type RNNPB, instead of a Jordan-type, an adaptation
which is also used in Zhong et al. [2011], where it’s referred to as a Simple Re-
current Network with Parametric Biases (SRNPB). The latter motivate this by
a greater ease of learning and claims that the backpropagated error is smaller.

3.3 Machine translation

This section presents some of the most relevant work in the field of machine
translation and describes some of the most significant challenges. In the first
section, a brief summary of the field’s history is given, where the most significant
approach, Statistical Machine Translation, is still relevant today. In section 3.3.2
and 3.3.3, important neural models are presented, while section 3.3.4 and 3.3.5
describe attempts at solving two important challenges: the Out-Of-Vocabulary
problem and how to utilize monolingual corpora.

3.3.1 Early approaches

Machine translation has been studied since the 1950s [Costa-Jussà and Farrús,
2014] and the field has undergone a journey of different paradigms. The first sys-
tems were rule-based: they utilized bilingual dictionaries to translate word-for-
word and used simple rules to correct the word order. These systems faced prob-
lems with translating context-dependent words and struggled to achieve proper
word ordering; the rules for ordering the words were recognized as too ad hoc
and complex [Hutchins, 2005]. A major shift occurred in the 90s with the rise

3.3. MACHINE TRANSLATION 45

of statistical machine translation (SMT). This marked the beginning of the tran-
sition from rule-based translation to example-based translation, i.e. learning to
translate from parallel corpora. At this point, the problem of machine translation
was formulated as finding the most likely target sentence ŷ among all possible
target sentences, given a source sentence, x. This formulation is referred to as
the noisy channel approach [Costa-Jussà and Farrús, 2014] and required building
a translation model, P (ŷ|x). A common technique used was to decompose this
probability model using Bayes theorem,

P (ŷ|x) ∝ P (x|ŷ) · P (ŷ) (3.4)

While this decomposition still requires a translation model, P (x|ŷ), it also
successfully incorporates a language model for the target language, P (ŷ), which
can be trained much more thoroughly using monolingual data. The language
models have typically been implemented as n-gram models, see section 2.3. So
called phrase-based translation [Koehn et al., 2003] offers a method to build the
translation model, whose impacts on the state-of-the-art translation models have
lasted until recently. Here, phrase tables are generated from word-aligned par-
allel corpus2 and the likelihood of the translation is calculated based on relative
phrase occurrences [Costa-Jussà and Farrús, 2014]. This approach was then ex-
tended to incorporate and weigh additional models, such as lexical models and
reordering models, by utilizing the log-linear framework [Och and Ney, 2002].
This framework allows combining several models, which are referred to as fea-
tures, and compute the final conditional likelihood P (x|ŷ) as a weighted average
over features,

P (x|ŷ) =
∑
i

wiPi(x|ŷ) (3.5)

In this framework, one can typically learn the translation model directly with-
out decomposition, P (ŷ|x), and instead incorporate the monolingual language
model as one of the features. The models are developed independently, but the
weights wi are learned to maximize translation performance, typically using a
minimum error rate optimizing procedure directly on the BLEU metric.

From 2014 till present, the field of machine translation has seen several ad-
vancements of the state-of-the-art from neural approaches. In the remainder of
this section, the most important and relevant work for neural machine translation
is presented.

2A parallel corpus where each source word is matched with its corresponding target word or
words.

46 CHAPTER 3. MOTIVATION

3.3.2 The Encoder-Decoder Architecture

The Encoder-Decoder architecture [Kalchbrenner and Blunsom, 2013][Cho et al.,
2014b][Sutskever et al., 2014] describes a framework for machine translation with
end-to-end training that’s been shown to perform as well or better than conven-
tional SMT systems. The architecture replaces the multiple, separately-tuned
models common in SMT systems with a single system that models P (y|x) directly.
With this approach, the encoder encodes a source sentence, x, into a fixed-size
continuous representation, call it c. The decoder then learns a language model
conditioned on this representation, P (yt|yt−11 , c), or more intuitively: it learns to
decompress this representation into a new sequence in the target language. The
encoder and decoder are jointly trained to maximize the joint likelihood over the
parallel corpus. The exact architecture employed and the exact use of the model
vary. Three defining works are presented next.

Kalchbrenner and Blunsom [2013] were the first to employ the encoder-decoder
for machine translation with the Recurrent Continuous Translation Model (RCTM).
The work is motivated by certain disadvantages of SMT approaches: by modeling
language in terms of discrete phrases, neither syntactic nor semantic similarities
between similar phrases are captured. A model must be able to generalize better
in order to overcome sparsity issues; as n-grams grow larger, they are less likely
to have been seen before in the training data. Inspired by word embeddings,
which have been shown to successfully capture syntactic and semantic similarity
to aid generalization, the authors propose to encode the source sentence into a
continuous space. In the spirit of comparison, the idea can be viewed as a sen-
tence embedding, where sentences are mapped to a continuous meaning space.
Special to this work is that the encoder is implemented using a convolutional
neural network instead of a recurrent neural network. Thus, the source sentence
is considered to belong to the spatial dimension instead of the temporal dimen-
sion. This is possible due to extra flexibility with source sentences: since the
entire sentence can be assumed to be available at once, encoders can benefit from
considering both past and future context. A large disadvantage is that some
word-ordering information is lost with a convolutional approach. A maximum
sentence length must also be imposed, to which all sentences must be padded.
The decoder is a simple RNN without gates. The experiments test only qualita-
tively how well the model translates on its own, noting that significant syntactic
and semantic information in English is transferred onto the French translation.
They also evaluate their model quantitatively by reranking the candidate transla-
tions of an SMT system and concludes that the model has learned the translation
distribution, although the baseline is not defeated in terms of BLUE score.

Cho et al. [2014b] advances the work of Kalchbrenner and Blunsom by propos-
ing the RNN Encoder-Decoder. Here, the convolutional encoder has been re-
placed by a recurrent encoder. For the sentence representation, c, the encoder’s

3.3. MACHINE TRANSLATION 47

final hidden state is used. Another important contribution here is that a memory
cell is used to replace the basic RNN unit. The memory cell is inspired by the
LSTM, but is simpler, implementing only a reset and update gate. This mem-
ory cell has since become known as the Gated Recurrent Unit (GRU) and has
earned popularity matching the LSTM cell. Similar to Kalchbrenner and Blun-
som [2013], the model is not tested for generating translations on its own, but
instead incorporated into an SMT system. In this case, the model is used to eval-
uate the probability of phrase pairs, (px, py), by computing P (py|px), replacing
the estimated probability based on phrase-counts. This time, the experiments
show the SMT system is improved, increasing its BLUE score.

Finally, Sutskever et al. [2014] add the last remaining piece and shows that
an encoder-decoder model can indeed generate state-of-art translations on its
own. The overall architecture is mostly the same as for Cho et al. [2014b],
with a few differences. The architecture is shown in figure 3.5. The simplified
memory cell is replaced by a complete LSTM memory cell. The authors utilize
deep LSTMs with four layers for both encoder and decoder, finding that they
significantly outperform shallow LSTMs, which they hypothesize is due to the
increased dimensionality of the encoding, c. Lastly, the authors find that simply
reversing all the source sentences is extremely valuable, increasing BLUE score
from 25.9 to 30.6 on one task. The latter is contributed to introducing several
short-term dependencies; if the source sentence is reversed, the last word the
encoder sees is the first word of the original source sentence, which is then followed
by the first word of the translation and so on, effectively decreasing the minimum
distance between all dependencies. This is thought to aid the LSTM’s learning
ability. Beam search is subsequently used to generate translations, using a beam
size of B = 12. Using an ensemble of encoder-decoder models, they achieved
a BLUE score of 34.8 on the WMT-14 English-French dataset, beating several
phrase-based models, and when using their ensemble for reranking translations
from a phrase-based model, they achieved a score of 36.5, which is close to the
37.0 state-of-the-art for this task.

This shows that within a few years of their invention, these models are al-
ready on the verge of beating decades old translation systems. Several challenges
have however been recognized. Cho et al. [2014a] tested the ability of the RNN
Encoder-Decoder to do translation using beam search, inspired by Sutskever et al.
[2014], and showed that the model suffers significantly from increasing sentence
length. They hypothesize that this is due to the representation used for the
source sentence, c, which is fixed-sized. Intuitively, the context must have some
capacity limit for representing syntactic and semantic information. The authors
identified a second large problem as the need to scale the architecture, specifically
by increasing the vocabulary sizes. In short, translations suffer in the presence of
long source sentences and unknown words. Sutskever et al. [2014] showed the op-

48 CHAPTER 3. MOTIVATION

Figure 3.5: Seq-to-seq: The architecture employed by Sutskever et al. [2014].
Here, only one recurrent layer (R) is shown, instead of four. The subscripts
differentiate the encoder and decoder, belonging to source language, x, and target
language, y, respectively. It is apparent that the encoder and decoder form a
single neural neural network that can be trained end-to-end. The inputs use an
embedding layer, E, and the outputs a softmax layer, S. The dashed arcs denote
the non-differentiable operation of choosing an output to be used for the next
input.

posite in regard to sentence length, however: they concluded that the model did
not in fact have difficulty on long sentences after investigating BLUE scores as a
function of sentence length. Nevertheless, the search for a solution which scales to
accommodate arbitrary sentence lengths bore fruits. The concept of attention as
an alternative to the encoder-decoder models described above is presented next.

3.3.3 Attention

In the architecture suggested in Bahdanau et al. [2014] the whole source sentence
is made available to the decoder, as opposed to just a summary, c. At each step of
decoding, the decoder proceeds to calculate dynamically a context based on the
most relevant words in the source sentence. On a high level, the mechanism can
be described as attention: only the relevant source words are considered when a
given target word is produced. The alignment between source words and target
words is learned automatically. Some specifics are presented next. Notably, the
calculation of the i-th target word, yi, is now dependent on ci as opposed to c.

3.3. MACHINE TRANSLATION 49

The calculation proceeds as follows:

ci =

Tx∑
j=1

αijhj (3.6)

That is, the context is computed as a weighted average over the hidden states
belonging to the encoder. In this context, the hidden states, hj , are referred to as
annotations. The weights, αij , are then computed as the softmax-normalization
of a similarity function between each hidden state, hj , and the previous hidden
state in the decoder, si−1:

eij = a(hj , si−1) (3.7)

The normalization is not shown here. The similarity function, a, is typically
implemented as a feedforward network, trained as a component of the full archi-
tecture. Note that each prediction still leverages a fixed-size context, ci. The
new contribution here is simply that each prediction utilizes a separate context,
and therefore the scheme does not require that any one context vector encode
the entire source sentence. Additionally, the encoder here is implemented as a
Bidirectional RNN, and each annotation vector therefore summarize both past
and future context.

Bahdanau et al. find that the model significantly outperforms the baseline
encoder-decoder model, and that it is much more robust to sentence length. In-
deed, the performance is reported to be comparable to existing phrase-based SMT
models. The contribution has had a tremendous impact on the field of Neural
Machine Translation, and most state-of-the-art NMT systems as of writing are
attention-based. More recently, Vaswani et al. [2017] took this to the extreme and
proposed an encoder-decoder model based solely on attention, without any recur-
rence or convolution. The proposed model used only self-attention to compute
representations of its inputs. The proposal is revolutionary, surpassing state-of-
the-art on the WMT 2014 English-to-German task while consuming much less
training resources. The technique is not pursued any further here, as the method
proposed in this thesis does not utilize attention.

3.3.4 Solving the out-of-vocabulary problem

Much work has been devoted towards finding solutions for the out-of-vocabulary
(OOV) problem. As it stands, most approaches still limit the size of the vo-
cabulary due to time constraints for training and decoding, leaving the models
unable to translate very rare words. Conventional SMT systems do not suffer
from vocabulary limitations: the only limitation here is the space the model oc-

50 CHAPTER 3. MOTIVATION

Figure 3.6: RNNSEARCH. The attention architecture employed by Bahdanau
et al. [2014]. The encoder and decoder are connected through the contexts, ci,
and the dotted lines indicate the components involved in their computation. The
attention mechanism enables the decoder to soft-search for relevant source words
when it’s translating a given word. The encoder is a bidirectional RNN, hence
the bidirectional connections (a simplified illustration is shown here; a BRNN
normally has two unconnected recurrent layers, processing in opposite directions,
where the final hidden state is taken as the concatenation of the two directional
hidden states).

3.3. MACHINE TRANSLATION 51

cupies, which often exceeds gigabytes. To bridge this gap, both minor and major
alterations have been proposed to the popular architectures.

Luong et al. [2015b] propose to simply patch in the translations of OOV words
in a post-processing step. This method is appealing since it’s simple and agnostic
to the particular NMT model used. The challenge here is to learn the alignment
between OOV words in the target sentence to the correct source words. The
authors propose three schemes to learn this alignment, the most successful of
which they call PosUnk. This scheme involves augmenting all the training data
where the target sentence contains an OOV word by inserting an alignment token
after each such OOV word. The alignment tokens, ad where d = −7,−6, ..., 6, 7,
are added to the dictionary and used to signal the relative index of the aligned
source word. Thus, every time the decoder produces an UNK (unknown) token,
it subsequently produces an alignment token signaling the corresponding source
word. The scheme requires that alignment information be known for the training
data, which can be produced using an unsupervised aligner algorithm (specifically
they use the Berkeley aligner). Luong et al. notes that a technique to handle
OOV words is necessary to achieve state-of-the-art, and proceeds to do so as the
first NMT system to surpass all general MT systems for the WMT’14 English-
to-French task.

More significant departures from established methods involve rethinking the
basic unit of language. Chung et al. [2016] and Luong and Manning [2016] ap-
proach language on the character-level. The former utilize a standard encoder,
but generate translations character-by-character. This reduces the size of the
target-side ”vocabulary” to the number of characters in the language, as op-
posed to words, effectively eliminating the vocabulary problem. Although this
yields target sequences that are many times as long, the authors achieve strong
results, outperforming non-neural approaches on three language pairs. Luong
and Manning [2016] suggests a hybrid system that only falls back on character-
modeling in the presence of OOV words. Their main model is thus a word-level
encoder-decoder, with character-level models as a fallback. Their reasoning for
using a hybrid system is that a pure character-level system is extremely slow to
train3. On the encoder side, a character-level model computes word embeddings
for words not in the source vocabulary, and on the target side, a character-level
model is used to output a word character-by-character when a UNK-token is
generated. The authors tested their model on the WMT’15 English-to-Czech
translation task and achieved a new state-of-the-art.

He et al. [2016] also tries to handle the OOV problem, along with two other
problems with NMT that they identify. The two other problems are (1) the

3Although the cost of a large softmax layer is avoided, the target sequences are many times
longer. As mentioned in section 2.1, BPTT cannot be parallelized, which means long sequences
are very ineffective to process.

52 CHAPTER 3. MOTIVATION

problem of adequacy – that NMT lacks a mechanism to guarantee that all source
words are translated – and (2) the problem of utilizing monolingual corpus. (1)
describes a bias common in NMT towards shorter translated sentences, where
pieces of information may be missing. (2) is especially relevant here, because
it is the same problem to which the proposed model in this thesis could offer a
solution. Their proposed solution pays homage to traditional MT models: they
incorporate standard SMT models into their NMT model, under the log-linear
framework. Treating their NMT model as one of four features, they additionally
incorporate a word-translation model, an n-gram language model, and a word
reward feature that rewards longer sentences. The word-translation model is
able to offer translations even when the NMT model produces an UNK token.
They find that OOV words are reduced by 82 %, and that incorporating the
language model increases the fluency of the target language, thus increasing the
BLEU score further. It is also worth noting that the proposed model in this thesis
offers a solution for (1), since it ensures that the source sentence representation,
c, is able to regenerate the source sentence fully before it’s used to generate the
target sentence. This is similar to Tu et al. [2016], who added a reconstruction
component to their NMT system. The reconstructor takes the decoder hidden
states and tries to reconstruct the source sentence, where the training objective
was a weighing between translation accuracy and reconstruction accuracy. They
commented that this improves adequacy, because it ensures that all information
is transferred from the source side, similar to what the proposed RNNPB model
could achieve.

The next section now proceeds to expand upon problem (2) of incorporating
a monolingual corpus.

3.3.5 Using a monolingual corpus

As Gulcehre et al. [2017] note, much of recent successes with NMT is owed to large
amounts of high quality parallel corpora. Such corpora are not always available,
and many language pairs with few resources in terms of parallel corpora exist.
Translation for these language pairs could therefore likely benefit strongly from
utilizing monolingual corpora as well as parallel corpora. There has been a broad
tradition for using monolingual data in SMT, but less so in NMT, as the previous
section notes.

Gulcehre et al. [2017] propose two means of incorporating a (target-side)
neural language model (RNNLM) into an NMT system, which they refer to as
shallow fusion and deep fusion. The former weakly incorporates the language
model: during the decoding process, both the NMT model and LM model are
used to rank candidate translations in a weighted manner. With deep fusion, the
hidden activations of the NMT model and language model are concatenated, and

3.3. MACHINE TRANSLATION 53

the output layer is used to map from the resulting vector. In both cases, the LM
and NMT models are trained separately, but in the latter case the output layer
is fine-tuned to learn to consider the LM activation additionally. Deep fusion
proved superior to shallow fusion because the information from the LM could
be selectively incorporated. The authors reported beating state-of-the-art on a
low-resource pair, Turkish-to-English, and improving on the NMT baseline on
high-resource pairs, Czech-to-English and German-to-English. They found that
the improvement of utilizing monolingual data depends strongly on the similarity
between the two sets of corpora, and that corpora from vastly different domains,
e.g. SMS and articles, may not complement each other. The approach differs
from what the proposed RNNPB method offers by utilizing monolingual language
on only one side, while the RNNPB can utilize it on both. This could aid the
model in learning more meaningful representations on the source side as well.
Additionally, the approaches differ in the number of models that must be trained;
with the RNNPB method, the translation model and language models are the
same, and both corpora can be used to train at the same time.

Luong et al. [2015a] explore NMT in the multi-task framework. Using a stan-
dard encoder-decoder without attention, they show that it’s possible to use many
source and target languages. Furthermore, they show that it’s possible to add
monolingual translation paths to the model. For instance, given an English-to-
French encoder/decoder, the encoder can also be intermittently connected to an
English decoder to do English-to-English translation (i.e. autoencoding) with
monolingual data. Similar to the current approach, monolingual data in both
languages can be utilized, but requires two additional models (one extra encoder
and one extra decoder). The NMT system with two autoencoders improves trans-
lation quality by 0.5 BLEU points on German-English. In common with the
RNNPB approach is the drawback that attention mechanisms cannot be used.

Cheng et al. [2016] also incorporate autoencoders to make use of monolingual
data to achieve semi-supervised NMT. Similar to Tu et al. [2016], mentioned in
the previous section, they add a reconstruction term to the training objective,
although the details and goal differ. Here, two NMT systems are trained, one
source-to-target and one target-to-source. No constraint is placed on the choice
of NMT system employed and attention can therefore be applied. In addition
to training the NMT systems on a parallel corpus in both directions, they also
train the pair together on both sets of monolingual corpora. The intuition is
simple: through the transitive property, combining the two directions A → B
and B → A allows for autoencoding, A → Â, by stacking the two models. The
proposed approach has three advantages: (1) it can be combined with any NMT
system, (2) monolingual data in both languages can be used and (3) it offers
bidirectional translation. The current proposed approach fulfills points (2) and
(3), but not (1). Using this approach with RNNSEARCH NMT models, they

54 CHAPTER 3. MOTIVATION

Figure 3.7: The technique used by Cheng et al. [2016] to incorporate monolingual
corpus training. When the two translation models are stacked, the intermediate
French translation can be considered as latent, and the models can be trained as
an autoencoder on only monolingual data. The models are additionally trained
on a parallel corpus.

surpass RNNSEARCH trained only on parallel sentences by 4.7 BLEU points on
Chinese-English, which is a considerable improvement.

Lastly, Lample et al. [2017] also has strong resemblance with the current
work, although they approach NMT with fully unsupervised learning. Just like
the current approach, they train one autoencoder for each language, learning
to map a sentence to a latent space and then back to itself. They too then
bind these latent spaces together (with the RNNPB these are the PB spaces),
but the binding mechanism is different. Here, they achieve binding by training
the autoencoders to fool a discriminator that tries to guess which language an
encoding belongs to. The approach suffers heavily from not using any parallel
corpora, although it remains impressive that it achieves effective translation at
all using only monolingual datasets.

3.4 Summary

This chapter has given an introduction to the scientific literature surrounding
the RNNPB model and the field of machine translation. The RNNPB model was
presented as a model that is able to learn multiple temporal patterns simulta-
neously by associating each with a PB vector. The model’s forward and inverse
operations were defined in terms of generation and recognition, respectively, and
binding was described as a means of aligning the PB vectors of two different
RNNPB models. Furthermore, the extension to machine translation where gen-

3.4. SUMMARY 55

eration and recognition are used in conjunction for two bound RNNPB models
was illustrated. The related work demonstrated some applications of the model,
described some adaptations of it, and provided a few examples of how it has been
applied recently.

For machine translation, a few classical approaches to machine translation and
some modern neural models were described. Three early attempts at encoder-
decoder architectures were presented, where the sequence-to-sequence model by
Sutskever et al. [2014] is the most significant in this thesis. Attention was defined
as an extension of the encoder-decoder framework, where the source sentence no
longer needed to be compressed into a single context vector, c, allowing instead
for the decoder to choose among the source words at each step of decoding. Al-
though this technique is powerful, the RNNPB model cannot benefit from it. The
remainder of the related work revolved around attempts at solving specific chal-
lenges with NMT models, such as the out-of-vocabulary problem, the problem of
adequacy and the challenge of utilizing monolingual data. The present approach
may be well-suited for solving the latter two problems, but does not attempt to
solve the former, although the techniques presented here could be applicable.

56 CHAPTER 3. MOTIVATION

Chapter 4

Model

This chapter documents the exact model that is proposed in this thesis. The
model follows rather directly from the related work in the previous chapter, al-
though the RNNPB is updated to utilize LSTM memory cells instead of basic
RNN units. This adaptation is motivated by the NMT work which has found
gated units to be instrumental in learning to model language on a large scale.
Furthermore, details are given for training, particularly in regard to the PB units.

4.1 Architecture

The choice of network architecture is inspired by the sequence-to-sequence NMT
architecture proposed in Sutskever et al. [2014]. Particularly, multiple LSTM
layers are used in each RNNPB model, which Sutskever et al. found to greatly
increase translation performance. Each RNNPB model is equal to the decoder
LSTM used by Sutskever et al., but with the addition of PB nodes. The archi-
tecture is shown in figure 4.1.

The forward activations of the two RNNPB networks are computed individu-
ally with respect to the following equations. The two RNNPB networks are fully
independent, apart from the PB binding, and share no weights. The equations
below describe the forward propagation of a single RNNPB model. Below, H1

and H2 describe the outputs of the two LSTM layers.

H
(t)
1 = LSTM1([emb(X

(t)
i); PB(i)], c

(t−1)
1) (4.1)

H
(t)
2 = LSTM2(H

(t)
1 , c

(t−1)
2) (4.2)

57

58 CHAPTER 4. MODEL

Figure 4.1: The Bound RNNPB model. The model consists of two RNNPB
models that are bound, indicated by the dotted line between the PB blocks.
Each RNNPB model can be recognized as a conventional RNN language model
with two LSTM layers, but with the addition of PB nodes. Both the emb block
and PB block are implemented as embedding layers, where the former look up
word embeddings and the latter look up PB vectors. In the figure, A and B
denote the two languages involved. (Ai, Bi) then denotes the i’th training pair
in the corpus of parallel sentences. Each sentence Ai corresponds to a particular
PB vector pAi, and likewise for B. The PB blocks take the sequence index, i,
and looks up the PB vector, pAi or pBi, which is responsible for encoding the
sequence.

4.2. TRAINING 59

O(t) = softmax(H
(t)
2) (4.3)

Here, X
(t)
i describes the t′th word of sentence i. emb and PB are embedding

functions that look up word embeddings and PB vectors, respectively. The word
embedding and PB vector are concatenated for the input to the first LSTM layer.
Each LSTM layer has a trainable function, LSTMi, that takes the layer inputs

and the layer state from the previous time step, c
(t−1)
i . The initial state of the

network is a zero matrix, [c
(0)
1 ; c

(0)
2] = [

→
0 ;
→
0]. Finally, O(t) denotes the output of

the network, which is the probability distribution over the vocabulary.

The definitions for the RNNPB model’s three modes of operation are restated
below.

Training The training procedure tries to find optimal values for both the net-
work weights and PB vectors. The goal for the network weights is to capture
the common dynamics of all the training examples, while the PB vectors special-
ize further and learn to encode each and every training sample in a one-to-one
manner. At a given training iteration, when one training example – or several
training examples in the case of mini-batches – are provided to the network, only
the PB vector(s) corresponding to these examples are updated, along with the
network weights.

Recognition After training is completed, the recognition operation can be used
to compute a PB vector from an arbitrary sentence. This operation is exactly
equal to the training operation, except that the network weights are not updated.
Only the PB nodes are regressed, until the loss is minimized, after which the PB
nodes now contain a representation for the sentence.

Generation Generation produces a sentence from a PB vector. As figure 4.2
shows, the PB vector is given to the network at each time step along with the
current input. For the first step, the special <start> token is given to kick off
the computation. Then, at each step the RNNPB model estimates the likely next
word. In the experiments done here, beam search is used to search for the most
likely sentence, given a PB vector.

4.2 Training

Training is done with teacher forcing for each RNNPB model, as shown in figure
4.2. During training, both the network weights and the current PB vectors are

60 CHAPTER 4. MODEL

updated. As loss function, the cross-entropy loss between outputs and targets is
used, call it Lc.

4.2.1 Binding

Originally, the PB nodes use a custom training rule to incorporate binding. For
each training iteration, with a training example (Ai, Bi), model A is trained with
example Ai and model B is trained with example Bi. For each of the models,
the loss gradients are computed using the BPTT algorithm with regard to all
network weights and relevant PB vectors. The network weights are updated
normally, using for instance the ordinary gradient descent weight update rule.
The PB values are updated using the following update rule, which facilitates
binding:

pi = poldi − ηp
∂Lc
∂pi

+ λ · (poldi opposite − poldi) (4.4)

poldi denotes the PB values at the previous training iteration and pi opposite

denotes the PB-vector that pi is bound to; that is, if pi = pAi, then pi opposite =
pBi. λ is a hyperparameter that determines the strength of the PB binding.
A separate learning rate is used for the normal network weights and the PB
nodes, and ηp describes the learning rate for the PB nodes. The last term in
the update equation is responsible for moving the PB vector slightly towards
its paired PB vector in the opposite model. Meanwhile, the middle term is
responsible for updating the PB vector in the direction of generating the sequence
more accurately. After successful training, the update equations should have
ensured that the PB vectors fully represent their corresponding sentences, and
that each PB vector pair, (pAi, pBi), has become approximately equal.

The experiments in this thesis exploit the fact that this update equation can
be rewritten in a simpler way, in order to train the whole model jointly without
implementing custom weight update rules. The binding term of equation 4.4 is
equivalent to adding an L2 normalization term to the loss function between the
two PB vectors. The joint loss can thus be defined as

L = LAc + LBc + α(pAi − pBi)2 (4.5)

The equivalency is apparent from the following calculation. The first equation

4.2. TRAINING 61

Figure 4.2: Training is performed using teacher forcing. Shown here is a single
RNNPB model unrolled over four time steps. The sentence at the top is the
teacher signal, which is additionally used as the inputs during training instead of
the network prediction (in accordance with the teacher forcing technique). The
PB vector, p, is duplicated across the time steps in the figure. The training
goal here is for p to adequately represent the given sentence so that it can be
regenerated fully, and to this end both p and the network weights are updated.
The superscripts on the LSTM layers merely denote the current time step; the

layers and all their weights are shared across time (e.g. LSTM
(1)
1 = LSTM

(2)
1 =

... = LSTM
(4)
1). The binding is not shown in this figure.

62 CHAPTER 4. MODEL

is the default weight update equation used for gradient descent.

pAi = poldAi − ηp
∂L

∂pAi

= poldAi − ηp
∂

∂pAi
[LAc + LBc + α(poldAi − poldBi)2]

= poldAi − ηp
∂

∂pAi
LAc + η

∂

∂pAi
LBc + η

∂

∂pAi
α(poldAi − poldBi)2

= poldAi − ηp
∂

∂pAi
LAc − 2ηα(poldBi − poldAi)

(4.6)

which is identical to equation 4.4 when

α =
λ

2ηp
(4.7)

The loss function in equation 4.5 is therefore used in the experiments. Not
only is this more intuitive and less error-prone, it allows for the use of more
advanced optimizers such as Adagrad or Adam. Hereafter, whenever the term
”binding strength” is used, it refers to the value of the α parameter in the L2
loss.

Finally, a note should be made regarding the nature of the one-to-one relation
between training examples and PB vectors, which may imply a very high number
of PB vectors. All the PB vectors must be saved during training, yielding a
space complexity that is linear in the number of training examples. Importantly,
the PB vectors can be discarded after training is complete and are no longer
necessary during translation. The space complexity of the model itself post-
training is therefore not affected by the number of training examples. The goal of
training can be considered to shape the PB space, so that the space can represent
all sentences. After training is complete, the recognition operation is used to
compute a particular PB vector from a sentence. Nevertheless, to achieve this,
each and every PB vector must be sufficiently regressed during training, which
implies that the complexity of successful convergence likely increases linearly in
the number of training examples. This may be a drawback with the proposed
model.

4.2.2 Hard binding

As an alternative to the binding mechanism with L2 loss described above, the
experiments done here also pursue hard binding. That is, a common set of PB
units are used for model A and B (∀i pAi = pBi). This eliminates the need for the

4.2. TRAINING 63

L2 loss and the binding strength parameter altogether, and the loss can instead
be taken simply as L = LAc + LBc.

4.2.3 Training with monolingual data

RNNPB model A and B can be trained individually on monolingual data without
binding by directly optimizing LAc and LBc, respectively. When training the
Bound RNNPB model for translation while utilizing monolingual data, a simple
scheme is employed with alternating between bound and unbound training. On a
per-batch basis, with probability pmono, train both model A and B as unbound,
and else train them as bound by optimizing L. Here, pmono is treated as a
hyperparameter.

4.2.4 Regularization

Regularization proves to be instrumental for achieving proper binding and trans-
lation in the experiments. Three regularization techniques are investigated.
Training with PB noise and intermittently resetting the PB vectors during train-
ing are two techniques that are proposed here. The last technique, dropout, is
a general machine learning technique that is particularly powerful with sparse
datasets. The techniques are described below.

Adding PB noise

This technique investigates adding noise to the sentence representations – the
PB vectors – during training. The motivation here is twofold. First, by adding
noise, each RNNPB model could learn to associate a larger region in PB space
with a given sentence, thus easing recognition. Second, it could make the RNNPB
models less sensitive to inaccuracies in the PB vectors, which could aid translating
between them. The idea can be expressed as follows:

p+N (0, σ)→ x1, x2, ..., xT (4.8)

Here, N (0, σ) describes sampling a Gaussian distribution with zero mean and
with σ standard deviation. The noise is randomly generated for each step of
training, and σ is treated as a hyperparameter. Table 5.7a shows the result of
tests using multiple values for the noise standard deviation.

Intermittent PB reset

Recognition can be viewed as a dynamical process where the PB vectors follow
a trajectory through PB space over a number of iterations. It is no help if the
training procedure ensures that a given sentence can be represented by some

64 CHAPTER 4. MODEL

point in PB space, if the recognition procedure cannot find it. Motivated by this
idea, intermittent PB reset is proposed to incorporate the recognition dynamic
into the training procedure. By resetting PB vectors stochastically, the vectors
must be regressed anew from the starting point, just as with recognition. This
forces the RNNPB model to reevaluate the position of the PB vectors, hopefully
so that it readjusts the position to the currently most representative part in space,
thus improving the organization of the space as a whole.

The scheme is implemented so that each PB vector is reset with probability
preset at the end of each training epoch, where preset is regarded as a hyperpa-
rameter as usual.

Dropout

Dropout is a common, simple and powerful regularization technique that is often
used to reduce overfitting. The technique involves stochastically turning off a
subset of the nodes in a given layer at each training step; each node is switched
off with a given probability. When dropout is used, it is employed for all of the
LSTM layers with a dropout probability given as a hyperparameter.

4.3 Translation

After successful training with binding, translation can be achieved by combining
recognition and generation in the two bound models. Define generation as

RNNPBM (p)→ x (4.9)

for a PB vector, p, sentence, x, and RNNPB model, M . Define the inverse
operation of recognition as

RNNPB−1M (x)→ p (4.10)

Then, translation of a given sentence, a, in language A can be computed as

b̂ = RNNPBB(RNNPB−1A (a)) (4.11)

In this sense, autoencoding of the same sentence, a, can be considered a special
case of translation, using the equation

â = RNNPBA(RNNPB−1A (a)) (4.12)

This form of autoencoding is investigated in experiment I in chapter 5. Ex-
periment II will investigate a second form of autoencoding using equation 4.11,
but where both RNNPBA and RNNPBB model the same language. Beam search

4.4. IMPLEMENTATION 65

is always used for RNNPBM (p), but not for RNNPB−1M (x) which uses teacher
forcing.

4.4 Implementation

The RNNPB model and the seq-to-seq model, which is used as a baseline, are
implemented in Tensorflow 2.0 beta with python. The new version of Tensorflow
is used because it allows writing models imperatively, which makes experimen-
tation easier. It also includes new useful features for processing variable-length
sequences (such as sentences) with LSTM layers on the GPU.

The models are implemented in an object-oriented manner, where the RNNPB
model and the seq-to-seq model derive from a common NMT base class. This
makes it possible to place most of the training, evaluation and translation code in
the base class, and only implement the necessary model-specific functions in the
sub-classes. This is furthermore useful for comparing the two models as fairly as
possible, because most of the code is shared between them. It also makes it very
easy to extend the system with a third or fourth model.

An NMT system with a command-line interface has been implemented to al-
low for easy training and testing of the models. All hyperparameters, datasets
and configurations, including the choice of model, are given as command-line
arguments, to maximize the quality and reproducibility of the results. Inspired
by the Moses SMT system, three different operations are supported. Training is
used by specifying the argument --do training, together with the training and
validation sets, all the hyperparameters, and a working directory. The model pa-
rameters, vocabulary and model weights are then saved to the working directory
to ensure that the model can be restored at a later time for testing and querying,
which are the two remaining supported operations. Testing and querying of a
trained model can then be done very easily, e.g.:

Testing: python nmt.py --do testing --working dir=./rnnpbnmt \
--test set=test.en

Querying: python nmt.py --query="How are you?" \
--working dir=./rnnpbnmt

All the training jobs for the results given in chapter 5 use run scripts that
contain the exact commands that were used, which are published in the Github
repository1, along with the source code, test translations and datasets.

1https://github.com/daniesso/master/

66 CHAPTER 4. MODEL

Chapter 5

Experiments and Results

This chapter describes the experiments that are conducted and their results. The
experiments described here will aim to provide answers to the research questions
given in chapter 1.2. Empirically, the feasibility and performance of the model
presented in the previous chapter is tested. In the first section, a plan for the
experiments is given. The second section provides all details about how the
experiments are set up, such as datasets and network hyperparameters. Lastly,
the results of the experiments are presented in the third section.

5.1 Experimental Plan

Following directly from the research questions, four experiments will be conducted
to answer the following questions:

1. Can the RNNPB model successfully represent language on a large scale?

2. Can the Bound RNNPB model efficiently be employed as an encoder-
decoder model for the task of autoencoding?

3. Can the Bound RNNPB model be used for large-scale machine translation?

4. Can the Bound RNNPB model, for the task of large-scale machine trans-
lation, benefit from additionally training on monolingual data?

Each of these questions correspond to a separate experiment. Experiment I and
II can be seen as stepping stones for achieving large-scale translation. They
describe easier yet necessary milestones on the road towards experiment III and
IV.

67

68 CHAPTER 5. EXPERIMENTS AND RESULTS

5.1.1 Baseline models

In order to put the results achieved in this chapter into context, a few baseline
models have been carefully chosen.

The first baseline model is Moses1, which is an open source SMT system that
is often used as a baseline in NMT literature. Moses can easily and quickly
be trained from scratch by providing it with data. Since Moses can be used
as is, the results are more objective and not affected by implementation choices
made here. The comparison with Moses is especially motivated by the fact that
Moses permits training on both parallel datasets and monolingual, and therefore
provides a baseline also for experiment IV.

The second baseline model is the seq-to-seq NMT model from Sutskever et al.
[2014], which most closely resembles the RNNPB architecture used here. Both
the seq-to-seq model and RNNPB have in common that they encode a source
sentence into a fixed-size representation, which is then later decompressed into
a target sentence. Neither incorporate attention. The configurations of the two
models are kept as similar as possible, in order to compare the models accurately.

In addition to providing context for the results, the baseline models play
important roles in the development of the RNNPB system. Prior to starting
development, Moses is used to evaluate the suitability of the data, including the
preprocessing step, by testing whether it’s able to learn to translate well using
the data. Thus, possible data-related causes for failures are eliminated early on.
Secondly, the seq-to-seq model is implemented and verified prior to implementing
the RNNPB system. This ensures that the end-to-end NMT system – with
preprocessing, translation and testing – is working properly, so as to differentiate
problems with the RNNPB model with other implementation errors.

5.1.2 Experiments

The four experiments are now described in detail. One or more goals are defined
for each of the experiments, embodying specifically what the experiments try to
achieve. For the sake of structure, each experiment is also divided into parts.
Each part either trains a new model from scratch (this is the default case), or
investigates some property of a previously trained model.

Experiment I

For the Bound RNNPB model to be used for translation, a single RNNPB model
must be able to compute representations for both seen (trained) and unseen sen-
tences. A single RRNPB model is therefore trained on a monolingual dataset

1Moses is documented at http://www.statmt.org/moses/ and can be downloaded from
https://github.com/moses-smt/mosesdecoder.

5.1. EXPERIMENTAL PLAN 69

in this experiment. In this context, learning to compute these sentence repre-
sentations can be viewed as a form of autoencoding where the same model both
produces the representation (encoding) and regenerates the sentence from it (de-
coding). In general, autoencoding can be viewed as a simpler version of the
task of translation; in both cases the model learns to compute a fixed-size vector
representation of the semantics of a source sentence, and subsequently produces
a target sentence from it. Therefore, the work here considers the autoencod-
ing performance as an upper bound for the translation performance that could
theoretically be achieved, and thus examines the autoencoding performance in
two different configurations in experiment I and II. In the spirit of considering
autoencoding as a special case of translation, the autoencoding quality will be
tested in terms of BLEU score in the exact same manner as for later translation.

The goals of this experiment can be stated as:

G11. Ascertain whether a single RNNPB model can successfully be trained on a
large scale.

G12. Ascertain whether a single RNNPB model can successfully generalize to
achieve autoencoding for untrained sentences.

For goal G11, a high accuracy for trained sentences should eventually be
achieved. Goal G12 tests the properties of generation and recognition for un-
trained sentences. It is a nontrivial question whether recognition is able to com-
pute PB vectors for such sentences. Since the recognition operation continuously
examines the model’s own forward operation, and since the same RNNPB model
is used for encoding and decoding in this experiment, successful recognition en-
tails successful autoencoding. For this goal, the autoencoding BLEU score on a
test set will be reported.

Experiment I has two parts. In part 1, the RNNPB and the seq-to-seq models
are trained on the easy subsets, and BLEU scores for the test sets are reported.
Part 2 offers a qualitative examination into how recognized PB vectors relate to
PB vectors obtained during training for the same training sentences.

For both experiment I and II, only the seq-to-seq model is used as a baseline.
Moses is not used at this point, seeing as it is trivial for a SMT system to achieve
autoencoding (it could simply copy the source sentence).

Experiment II

This experiment extends the autoencoding task in the previous experiment, using
a separate RNNPB model for encoding and decoding. To facilitate this operation,
binding of the two models must now be employed. The goals of this experiment
are stated as follows.

70 CHAPTER 5. EXPERIMENTS AND RESULTS

G21. Ascertain whether the training PB vectors of the two bound models can be
successfully aligned during training.

G22. Ascertain whether autoencoding can be achieved for untrained sentences
when the recognition and generation operations are used in opposite models.

G23. Develop the model in terms of training techniques and model hyperparam-
eters as to maximize autoencoding performance.

Goals one and two investigate how well the semantic spaces – i.e. the PB
spaces – of the two models are aligned during training. The training objective
aims to align the spaces at the locations of the training examples (G21), and
so it is additionally necessary to examine the properties of the space for unseen
sentences (G22). In this experiment, there are two independent models func-
tioning as encoder and decoder, and thus in contrast to experiment I, successful
recognition does not automatically entail successful autoencoding.

Goal G23 captures the necessary development of the model in order to achieve
good autoencoding performance. This experiment investigates numerous tech-
niques and parameters, while evaluating the performance empirically at each
step. The work done in this experiment tries to justify all the major choices
that are done in adapting the model. Subsequently, the best configuration of the
model found in experiment II is used in experiment III and IV.

Experiment II has five parts, where the first four each investigate an aspect
of the RNNPB model and the fifth reports final autoencoding results. Each part
builds on the previous, using the best configuration that was found.

Part 1 In this part, the effect of the binding strength parameter, α, is investi-
gated. Hard binding is also tested as an alternative to the soft binding with L2
loss. The part focuses on how the strength of the binding affects the quality of
autoencoding and how the PB spaces are affected by the binding.

Part 2 In the second part, different numbers of PB units are tested. One no-
table difference between the seq-to-seq model and the RNNPB model used in
part 1 is the size of the representation space. For the seq-to-seq model, the repre-
sentation dimensionality is 2 · units-per-LSTM-layer · number-of-LSTM-layers =
2 · 256 · 2 = 1024, while the Bound RNNPB models have representation dimen-
sionality equal to the number of PB nodes (128 in part 1). The reader might
recall that Sutskever et al. hypothesized that the increased performance of their
deep LSTMs in the seq-to-seq model was owed to a larger size of the represen-
tation space. Therefore, different numbers of PB nodes are tested in this part
to determine whether the RNNPB too can benefit from a larger representation
space.

5.1. EXPERIMENTAL PLAN 71

Part 3 This part examines the three regularization techniques introduced in
chapter 4 and investigates whether they can improve the quality of the autoen-
coding. The techniques are used individually first, then intermittent PB reset
and dropout are combined.

Part 4 Part four studies the effect of the number of recognition iterations.
When two bound models are employed, it is not necessarily beneficial to continue
recognition until the loss is as small as possible. For instance, if the gradients
become very small, recognition may move the PB vectors by a large amount
into a part of PB space that is poorly bound between the two models. Even
if the recognition loss is decreasing, too many iterations may be detrimental for
translation. Three schemes are tested, based on either a fixed amount of iterations
or a form of early stopping.

Part 5 In the last part, the autoencoding results are reported for all the easy
subsets, using the best configuration from the preceding parts.

Experiment III

This experiment tests the performance of the proposed model for translation,
compared to Moses and seq-to-seq. The goal of this experiment is stated as

G31. Investigate and measure the translation performance of the RNNPB model.

In the first of two parts, experiment III picks up where experiment II left off,
with the same configurations and datasets, but with English-to-German trans-
lation instead of autoencoding. The goal here is to ascertain whether the use
of the model can be extended from autoencoding to translation. Then, in the
second part, translation is tested with the much more difficult WMT dataset.
In both parts, results are given for all three models: RNNPB, seq-to-seq and
Moses. Since the WMT dataset is more complex, a larger configuration in terms
of network size is also tested for the RNNPB and seq-to-seq models.

Experiment IV

In this experiment, the RNNPB model and Moses are tested with monolingual
training. This is done as described in section 4.2.3, with a mixing parameter,
pmono. The goal of this experiment is stated as follows:

G41. Determine and measure if and to which degree the Bound RNNPB model
can benefit from monolingual data for machine translation.

72 CHAPTER 5. EXPERIMENTS AND RESULTS

This experiment also has two parts. First, the final autoencoding configura-
tion from experiment II is used to find a good value for the pmono parameter,
and to investigate the feasibility of adding monolingual training for the RNNPB
model. In common with experiment II, the Bound RNNPB model is trained for
autoencoding with the easy50000 subset. In addition, non-overlapping sentences
from easy-full is used for monolingual training. In part two, the Bound RNNPB
model and Moses is trained for English to German translation, using easy50000
and the WMT dataset, with additional monolingual training. Since the seq-to-seq
model cannot utilize monolingual data, it will not be used in this experiment.

5.2 Experimental Setup

The NMT models will be trained using early stopping. With this scheme, training
is only stopped when improvement on a validation set ceases. This ensures that
the models generalize as well as possible, as opposed to overfitting on the training
data. The decision to use early stopping means that the models may be trained
for a different number of steps. This is a conscious choice that’s been made to
ensure the models are judged by their optimal performance. In order to nuance
the results with the amount of computation used, the training times are reported
and compared.

All models will be trained, developed and tested utilizing the standard dataset
partitioning scheme with a training set, validation set and test set. The validation
set is used for early stopping for the RNNPB and seq-to-seq models, and for Moses
it’s used for tuning. The same data is used for all models, as described below.

The next subsections now proceed to describe the datasets, preprocessing and
evaluation, and model parameters used in the experiments. The subsections give
all the details that are necessary to carry out these experiments.

5.2.1 Datasets

The first dataset is a parallel English-to-German dataset2 that was originally
intended for learning a foreign language (English or German). As a result, many
of the sentences are simple and regular. For instance, the names Tom and Mary
are consistently used as proxies for male and female persons, while few other
names are used. This dataset is ideal for these experiments, where an NMT
model that isn’t guaranteed to work well is developed, because the dataset isn’t
too challenging. At the same time, the dataset contains thousands of sentences
and unique words, as summarized in table 5.1. The dataset is thus sufficient

2It can be downloaded from http://www.manythings.org/anki/. It is also provided along
with the source code.

5.2. EXPERIMENTAL SETUP 73

Dataset Sentences
Unique Unique Average words

English words German words per sentence
Easy20000 20 000 1290 514 8.9
Easy50000 50 000 2562 1132 9.3
Easy-full 190 624 17 745 36 706 9.8

Table 5.1: The easy English-German dataset and the subsets that have been
created from it.

to ascertain the RNNPB model’s capability of doing machine translation. This
dataset is hereafter referred to as ”easy”.

Furthermore, a data selection technique is used to create subsets of the dataset
that limit the size of the vocabularies. Since large vocabularies are demand-
ing, both with regard to translation performance and training time, the subsets
easy20000 and easy50000 were created, containing 20000 and 50000 sentences
respectively. The subsets are selected as follows. First, the frequency of each
word in the complete dataset is calculated. Then, the sentences are ranked ac-
cording to their least frequent word. The subsets are then created by greedily
selecting the topmost 20000 and 50000 sentences (containing the sentences with
the most frequent words). The subsets are chosen based on only the target-side
word frequencies. The full dataset is referred to as easy-full.

Experiment I and II use only the English sentences when doing autoencod-
ing. In this case, duplicate English sentences are removed before the subsets are
created to avoid any overlap between training, validation and test sets.

Each of the three sets (easy-full, easy20000 and easy50000) are further divided
into training, validation and test sets. The validation sets and test sets have sizes
of 256 and 2000, respectively. The reason for using such a small validation set
is that inference is very expensive for the RNNPB model, because it requires
recognition, and a large validation set would therefore slow down training.

In experiment III and IV, a second set of datasets are used. These are taken
from the WMT18 translation task3. From this task, the parallel News Commen-
tary and monolingual News Commentary datasets are selected for training. From
this data, a parallel corpus of 200 000 sentences and two independent monolin-
gual corpora of 140 000 sentences are selected. The default WMT dataset for
testing is used, News-test 2018, while News-test 2017 is used as validation set.
The characteristics of this data are given in table 5.2. As the table shows, this
data contains substantially longer sentences and includes a much larger vocabu-
lary. The maximum vocabulary sizes that are used for the different experiments
are given in subsection 5.2.4.

3The datasets can be downloaded from here http://statmt.org/wmt18/translation-task.html.

74 CHAPTER 5. EXPERIMENTS AND RESULTS

Dataset Sentences
Unique Unique Average words

English words German words per sentence
Parallel N.C. 200 000 74 575 156 992 27.3
Monol. N.C. 140 000 65 108 127 841 26.7
News-test 17 3004 9742 13 029 22.9
News-test 18 2998 10 374 13 342 23.9

Table 5.2: The WMT English-German datasets that are used for training, vali-
dation and testing.

5.2.2 Preprocessing and evaluation

The only preprocessing of the data is tokenization, using the standard Moses tok-
enizer4, in accordance with Sutskever et al. [2014]. This mainly entails separating
words and special characters with a space. The sentences retain their casing, even
though this potentially doubles the vocabulary size. With this choice, the NMT
models automatically learn proper capitalization. The tokenized data is used to
train all the models.

Four special symbols are defined for the NMT models: <start>, <end>, <unk>
and <pad>. Each sentence is prefixed with <start> and suffixed with <end>. If
maximum limits are placed on the size of the vocabularies, the least frequent
words that exceed the vocabulary limit are replaced with <unk>. Lastly, since
stochastic gradient descent with mini-batches is used, all sentences in a batch
must have equal length, and therefore the sentences are padded with <pad> to
the length of the longest sentence in the batch. During training, the loss values
corresponding to this padding are disregarded.

During training, the perplexity is used to evaluate the validation set after
each epoch. The same mini-batch size as for training is used for the perplexity
evaluation, for efficiency. The perplexity is only calculated in one direction,
from source to target language, i.e. from model A to model B, even though the
RNNPB is capable of bidirectional translation. First, PB vectors are computed
through recognition in model A, then the perplexity is calculated in model B
using the acquired PB vectors, by assessing the likelihood of the ground-truth
target sentence.

Actual translations, such as for testing, use mini-batches of size 1 and do
generation in model B using beam search. It should be noted that testing could
be significantly sped up by doing recognition in parallel, using a larger mini-
batch size. Even though beam search can only translate one sentence at the
time, the majority of the time it takes to compute a translation is incurred by
the recognition procedure. This optimization was however not pursued here. The

4The tokenizer.perl script is used.

5.2. EXPERIMENTAL SETUP 75

results are evaluated after training by calculating the translation BLEU score on
a test set. Here, the appropriate script, multi-bleu.pl, from Moses is used,
also in accordance with Sutskever et al. [2014]. The BLEU score is measured on
tokenized predictions and reference translations.

5.2.3 Training

Stochastic gradient descent with mini-batches is used for training. The cross-
entropy loss for a given sentence is summed over time steps, i.e. for all words in
the sentence. The sum was chosen instead of the mean because the mean isn’t
calculated properly when padding is used5. Then, the final training loss is taken
as the mean of the cross-entropy losses in the batch. Here, using the mean is a
popular choice because it ensures that the size of the loss is independent from
the size of the mini-batches.

The network weights are initialized from a uniform distribution on some in-
terval, where this interval is chosen with respect to the Glorot (a.k.a Xavier)
initialization method. This is the default Tensorflow behavior. However, all PB
vectors are specifically initialized to the zero-vector. This choice is partly moti-
vated by ensuring that the PB vectors self-organize in space with respect to their
semantic meaning only, without the initialization having any bearing. It is also
likely beneficial that the recognition procedure starts with PB vectors equal to
zero, so that the starting point is in the center of the space, thus avoiding bias.

The seq-to-seq model is implemented using the same values for the mutual
parameters. For this model, the source sentences are reversed, which was found
beneficial in the original work. Special care was taken to ensure that the hidden
states computed by the Encoder model corresponds to the end of the sentences,
not including the padding. Otherwise, the length of the padding would affect
the final representation. It was not possible to achieve this efficiently with GPU
computation prior to Tensorflow 2.0, which was a major motivator for adopting
the new version, even though it was in alpha during the spring of 2019.

Adam optimization is used for both NMT models, and for the RNPPB model,
it’s used for both training and recognition. Adam was chosen because it yielded
superior results and faster training for the RNNPB model. An important note
should be made regarding this optimizer. While it’s not in the scope of this the-
sis to describe different optimization algorithms, the fact that Adam maintains
individual momentum terms for each network weight significantly affects the ex-
periments conducted here. The reason for this is that all network weights are
updated for each step of training, regardless of whether the weights are active

5The mean would be calculated by summing the loss over time steps and then dividing by
the sentence length, including padding. If a mini-batch contains a long sentence, the mean loss
would become very small.

76 CHAPTER 5. EXPERIMENTS AND RESULTS

with the current training batch. Therefore, all of the word embeddings and all
of the PB vectors would be updated even though most have gradients equal to
zero for a given batch. The first time these experiments were conducted, training
took up to ten times as long due to this behavior. The experiments were then
repeated with an implementation of Adam (the LazyAdam optimizer) that only
updates the word embeddings and PB vectors that are active for the current
training batch.

Some implementation details, such as the Adam and LSTM implementation,
are given in the appendix. Lastly, training is done on a single Tesla V100 GPU,
while inference (testing) is done on the CPU. Moses is trained on the author’s
laptop on the CPU.

5.2.4 Parameters

The values used for all parameters in the experiments are now presented. For even
more detail, many of the run scripts that define each experiment are given in the
appendix. While the experiments test different values for some parameters, some
baseline parameters can be described that are the basis for all the configurations.
These parameters are:

• LSTM layers: 2

• LSTM units: 256

• Embedding size: 128

• Learning rate: 0.001

• PB learning rate*: 0.01

• Batch size: 64

• Translation ratio: 1.5

• Gradient clip: 1.0

• Beam size: 10

• Num. PB units*: 128 / 1024

• Recognition max. iterations*: 500 / 100

• Recognition early stopping steps*: 3

• Recognition epsilon*: 0.0001

• Dropout*: 0

• σ*: 0

• preset*: 0

5.2. EXPERIMENTAL SETUP 77

The parameters marked with an asterisk are only relevant for the RNNPB
model and not for the seq-to-seq model. Parameters without an asterisk have
equal values for both models. The number of PB units is 128 for experiment I
and parts of experiment II, then 1024 for the remainder of the experiments. The
maximum iterations for recognition uses 500 iterations for experiment I then 100
for experiment II-IV.

The translation ratio describes an often-used heuristic for the maximum length
of a translation with respect to the length of the source sentence. In order to
avoid incurring too large a BLEU penalty, unrealistically long translations should
be avoided, and the translation is therefore cut off at a certain length, even if
<end> hasn’t been emitted by the model.

Recognition has three parameters here that dictate how many iterations of
computation are used. In order to avoid computations that don’t converge, a
maximum limit of iterations is imposed. Furthermore, early stopping is used so
that recognition terminates when the loss ceases to decrease significantly. With
the scheme used here, recognition is stopped after k steps where the loss hasn’t
decreased by at least ε.

The configurations for each experiment is now described further.

Experiment I The baseline configuration is used as is. As stated, 128 PB
units and 500 recognition iterations are used. In addition, the number of early
stopping steps for training is 10. That is, training is terminated if the validation
perplexity does not improve after 10 steps.

Experiment II This experiment investigates multiple parameters to find val-
ues that perform well. The experiment states which values are used for the
relevant parameters at each step. At the beginning of the experiment, the pa-
rameters that deserve mention are:

• Num. PB units: 128

• Recognition max. iterations: 100

• Early stopping steps: 20

• Choice of binding mechanism: not chosen yet

At the end of experiment II, these parameters are:

• Num. PB units: 1024

• Recognition max. iterations: 100

• Early stopping steps: 20

• Choice of binding mechanism: Hard binding

78 CHAPTER 5. EXPERIMENTS AND RESULTS

• Dropout: 0.40

• preset: 0.10

Experiment III Experiment III uses the same parameters as for the end of
experiment II. However, since the vocabulary sizes for this experiment are larger,
limits on the size of the vocabularies are now imposed. These limits are, for both
part 1 and 2:

• English vocabulary limit: 30 000

• German vocabulary limit: 30 000

In addition, since the WMT datasets are much larger, these use only 10 early
stopping steps for training instead of 20.

For the WMT dataset, a large configuration of the RNNPB and seq-to-
seq models is additionally tested. This large configuration makes the following
changes:

• Embedding size: 512

• LSTM units: 1024

• LSTM layers: 4

Experiment IV Experiment IV uses the same parameters as experiment III,
using its standard, non-large configuration. In part 1, experiment IV investigates
different values for the pmono parameter, which dictates the ratio with which
monolingual training should be incorporated in the RNNPB model. In part 2,
pmono = 0.40 is used.

5.3 Results

In this section, the results for the four experiments are presented. In accordance
with the plan given in section 5.1, experiment I and II test autoencoding in
English, before experiment III and IV attempt translation. The experiments are
exploratory in nature, investigating some property of the RNNPB model and
building on prior results at each step. This section comments on the results as
they are presented, though a full evaluation is reserved for chapter 6.

5.3.1 Experiment I

In this experiment, autoencoding is tested with a single RNNPB model. With the
formalism introduced in chapter 4, this can be expressed as learning to compute

â = RNNPBA(RNNPB−1A (a)) (5.1)

5.3. RESULTS 79

where the goal is for â to be equal to a. Only the English sentences from the
easy subsets are used here.

Part 1: Autoencoding with the easy subsets

The autoencoding results for the seq-to-seq model and the RNNPB model are
shown in table 5.3. These results summarize both testing and training of the two
models. The results show that both models are able to autoencode very well.
This is apparent from the high BLEU score; a score of 100 describes identical
autoencoding (or translation), to which these results are close. The results show
that the RNNPB achieves consistently better BLEU scores compared to the seq-
to-seq model, for the experiment conducted here.

The models are trained for a similar number of epochs for the first two subsets,
while the RNNPB model is trained for 2.8 times as many epochs for the easy-full
dataset compared to the seq-to-seq model. The models have largely comparable
training times, apart from for easy20000. Since this dataset is so small, the
overhead caused by the RNNPB’s recognition operation – which is used for testing
the validation perplexity – has a large impact. For the same reason, the testing
time is in total 55.4 times longer for the RNNPB model compared to the seq-to-
seq model.

Part 2: Comparing trained and recognized PBs

Figure 5.1 shows a comparison between learned PB vectors and PB vectors rec-
ognized from the same sentences. The plot shows apparent correlation between
trained and recognized PB vectors, although the distances between correspond-
ing points are rather large. For instance, for many of the points in the plot, the
closest neighboring point is not the one with the same color. Any such deviation
between the recognized and trained PB vectors may become problematic when
translations should be generated using two bound RNNPB models, because the
learning objective with binding only attempts to align the semantics of the two
models at the points corresponding to the training PB vectors.

5.3.2 Experiment II

This experiment tests autoencoding with the Bound RNNPB model. This can
be expressed as learning to compute

â = RNNPBÂ(RNNPB−1A (a)) (5.2)

where the goal is for â to be equal to a, and A and Â are two separate RNNPB
models that model the same language. In common with experiment I, English
sentences from the easy dataset are used.

80 CHAPTER 5. EXPERIMENTS AND RESULTS

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 1.01 1.01 99.43 41 2745 s 62 438 s

Seq-to-seq 1.01 1.08 93.51 31 432.5 s 889.4 s

(a) Using the easy20000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 1.02 1.01 98.77 43 4287 s 63 016 s

Seq-to-seq 1.00 1.04 95.36 37 2026 s 1143 s

(b) Using the easy50000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 1.05 1.09 94.44 47 10 935 s 67 527 s

Seq-to-seq 1.02 2.61 84.96 17 4085 s 1452 s

(c) Using the complete dataset.

Table 5.3: Experiment I – part 1: Autoencoding with a single RNNPB model
on three datasets, compared to the seq-to-seq model. The final train perplexity
denotes the perplexity of the training set at the last training epoch, while the
best validation perplexity denotes the best perplexity achieved on the validation
set at any epoch during training. Test time is the time elapsed processing the
test set, which yields the test BLEU score. The tests are done with the network
weights corresponding to the best validation perplexity. Lower perplexities scores
and higher BLEU scores are better.

5.3. RESULTS 81

Figure 5.1: Experiment I – part 2: Comparison of PB vectors obtained dur-
ing training and PB vectors recognized from the same sentences after training.
To make this plot, the 64-dimensional PB vectors have been reduced to two di-
mensions using Principal Component Analysis (PCA). The sentences used were
arbitrarily chosen as the first ten sentences in the training set for the easy20000
subset. The correspondences between trained and recognized PBs are color coded.
The sentences could be generated with near perfect confidence with both sets of
PB vectors, with average perplexities of 1.023 for training PBs and 1.001 for rec-
ognized PBs. This implies that multiple points in PB space may serve to encode
the sentences.

82 CHAPTER 5. EXPERIMENTS AND RESULTS

Part 1 to 4 use the easy50000 subset to investigate the properties of the
Bound RNNPB. This choice is motivated by the dataset having a significant
number of sentences, while still limiting the size of the vocabulary, which enables
carrying out multiple experiments much faster. In part 5, after concluding with
the optimal configurations, results are also given for the easy20000 and easy-full
sets.

Part 1: Binding strength

Table 5.4 shows the result of training with different values for the binding strength
parameter, α. Additionally, hard binding is tested, where the two RNNPB mod-
els share PB vectors during training as an alternative to soft binding. The table
shows that all configurations train successfully, which is apparent from the low
final training perplexity. The progress of the training is further illustrated in fig-
ure 5.2. However, all but four configurations fail at improving on the validation
perplexities after the first epoch. Note that this is the first validation measure-
ment, and therefore it is apparent that these configurations fail completely at
generalizing for autoencoding. Among the four configurations that improve on
the initial validation perplexity, there seems to be a trend where stronger binding
gives both better validation perplexities and test BLEU scores. Since hard bind-
ing gives the best BLEU score by a large margin, it is adopted in the remainder
of these experiments.

Figure 5.3 examines how well binding has been achieved for the different
binding strengths. The plots shows only sporadic binding for α = 0.0001 and
α = 0.001, while for α ∈ [0.01, 100], the plot shows consistent binding. The
results from the plots are reinforced numerically in table 5.5, which compares
euclidean distances between bound and unbound PB vectors. Disregarding hard
binding, the configuration with α = 10.0 has the lowest bound-unbound ratio,
which indicates a better binding. This configuration also has the highest test
BLEU score, second to hard binding.

Part 2: Number of PB nodes

Table 5.6 shows the results of using different numbers of PB nodes. The table
shows a monotonically increasing BLEU score with respect to the number of PB
nodes. The best validation perplexity is also decreasing. In the remainder of
the experiments, 1024 PB nodes are therefore used. All the configurations reach
their best validation perplexity in the ninth epoch. At the final training epoch,
the validation perplexity has become very large despite a decreasing training
perplexity, which is indicative of overfitting.

5.3. RESULTS 83

α
Final train Final val. Best val. Test Best Train
perplexity perplexity perplexity BLEU epoch epochs

0.0001 1.48 631 599 34.26 - 1 21
0.001 1.50 41 712 36.06 - 1 21
0.01 1.47 807.6 35.77 - 1 21
0.1 1.03 388.43 22.41 8.00 13 33
1.0 1.10 172.2 31.88 5.97 9 29
10.0 1.14 49.95 13.42 12.52 15 35
100.0 2.96 103.2 35.07 - 1 21
hard 1.05 429.3 5.56 23.49 9 29

Table 5.4: Experiment II – part 1: Autoencoding with different binding strengths.
In the last row, hard binding is employed. The epoch that achieved the best
validation perplexity is given in the second to last column. This column shows
that training did not succeed for half of the configurations; after the first epoch,
the validation perplexities deteriorate. Since early stopping is employed, the
number of training epochs exceed the best epochs by 20, as seen in the last two
columns. The BLEU score was not measured for the configurations that were
deemed failures.

α Mean bound distance Mean distance* Ratio
0.0001 5.16 5.16 100 %
0.001 4.56 4.91 93 %
0.01 2.08 4.00 52 %
0.1 0.365 4.40 8.2 %
1.0 0.144 2.89 5.0 %
10.0 0.0607 1.33 4.6 %
100.0 0.106 0.453 23 %
hard 0.000 10.4 0 %

Table 5.5: Experiment II – part 1: Distances between bound and unbound PB
vectors for different binding strengths. The mean distance between bound PB
pairs versus the mean distance between all PBs, for different binding strengths.
The rightmost column gives the ratio between column two and three, and can
be considered as a measure for how good the binding is. *Because of high time
complexity, the mean distance is sampled as the mean distance between N =
10000 samples from model A and N samples from model B.

84 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.2: Experiment II – part 1: Perplexities of training and validation sets
during training for different binding strengths. The plot is from the same results
as table 5.4. The y = 1 line is the asymptote describing the best attainable
perplexity.

Num Final train Final val. Best val. Test Train
PB perplexity perplexity perplexity BLEU epochs
64 1.17 98.63 6.21 19.83 29
128 1.05 429.3 5.56 23.49 29
256 1.02 216.4 5.53 27.87 29
512 1.01 378.9 4.96 29.90 29
1024 1.01 428.2 5.00 30.45 29

Table 5.6: Experiment II – part 2: Number of PB nodes and the effect on autoen-
coding quality. Since the PB nodes are tasked with encoding whole sentences, a
higher number of nodes may be beneficial. All configurations use hard binding,
and the second row with 128 PB nodes is copied from table 5.4. All configura-
tions achieved their best validation perplexity in their ninth training epoch, and
hence the training was terminated after 29 epochs.

5.3. RESULTS 85

(a) α = 0.0001 (b) α = 0.001

(c) α = 0.01 (d) α = 0.1

86 CHAPTER 5. EXPERIMENTS AND RESULTS

(e) α = 1 (f) α = 10

(g) α = 100 (h) Hard binding

Figure 5.3: Experiment II – part 1: Plots of PB Binding with different binding
strengths. As earlier, the PB vectors have been mapped to two dimensions using
PCA, and the first ten training examples have been used. The final weights at
the end of training were used, see table 5.4. The binding can be seen to be most
consistent in figure 5.3e. A plot of hard binding is included for completeness,
although it is mostly trivial.

5.3. RESULTS 87

Part 3: Regularization

The three regularization techniques are tested in table 5.7. The best results for
PB noise, intermittent PB reset and dropout differ from the baseline BLEU score
of 30.45 with -0.48, 28.11 and 5.25 points, respectively. Thus, intermittent PB
reset gives the best results by a large margin, where the baseline score is nearly
doubled. PB noise decreases the BLEU score with all the configurations that are
tested and is therefore not considered any further in these experiments. It can also
be seen that PB reset increases the final training perplexity drastically. Dropout
has the same effect, but to a lesser extent. Both techniques also increase the
number of training epochs, where PB reset is the most aggressive in this regard
as well.

The two techniques are combined in table 5.8. These results show that the
techniques complement each other well, increasing the BLEU score by an addi-
tional 20.83 points at the most, for a new best for the RNNPB model of 79.38
BLEU points. This score was achieved by the preset = 0.10, dropout = 0.40
configuration, which is used in the subsequent experiments6. The increased score
now comes at a cost of the number of training epochs exceeding 100.

Part 4: Recognition iterations

Figure 5.4 shows the effect of the number of recognition iterations on the transla-
tion perplexity. That is, for each step of recognition in model A, the current PB
vector is evaluated in model B compared to the reference translation, in terms
of perplexity. This provides a means of evaluating the quality of the PB vectors
during the progression of recognition. In this context, translation is used in the
technical sense to denote the mechanism of combined recognition and genera-
tion in two separate RNNPB models, even though this experiment focuses on
autoencoding. The plot shows that both too many and too few iterations can
be suboptimal. Naturally, the perplexity of the computed translation is not nor-
mally available, so one cannot simply terminate the recognition upon reaching
the minima in the figure. It is therefore useful to consider different schemes for
determining the right number of iterations. Figure 5.5 examines whether the
size of the gradients imply anything about when recognition has reached a min-
imum in the perplexity landscape. One visible trend in the figure is that the
intersections between the gradients and the y = 1 line seem to correlate with the
perplexity minima. A scheme where recognition is terminated when the L2 norm
of the gradients decreases below 1 is therefore considered next.

The recognition procedure is tested with three different schemes in table 5.9,
using the trained model from table 5.8 with preset = 0.20 and dropout = 0.30.

6Apart from the next section, which for circumstantial reasons uses preset = 0.20, dropout =
0.30, which looked like the most promising configuration at the time.

88 CHAPTER 5. EXPERIMENTS AND RESULTS

σ
Final train Final val. Best val. Test Train
perplexity perplexity perplexity BLEU epochs

0 1.01 428.2 5.00 30.45 29
0.00001 1.01 1289 5.02 29.97 29
0.0001 1.01 2009 5.23 28.12 29
0.001 1.01 3253 5.76 21.10 27
0.01 1.01 876.5 5.31 29.22 29

(a) Adding noise to the PB vector during training.

preset
Final train Final val. Best val. Test Train
perplexity perplexity perplexity BLEU epochs

0 1.01 428.2 5.00 30.45 29
0.005 2.13 32.72 5.06 25.93 27
0.01 1.57 13.46 5.21 25.63 27
0.05 2.23 6.11 5.08 30.07 29
0.10 2.53 6.10 4.61 50.69 43
0.20 3.23 5.82 3.73 58.56 43
0.30 3.81 7.42 3.44 57.16 45
0.40 4.31 5.23 3.68 51.48 45
0.50 4.96 7.92 4.72 43.89 41

(b) Resetting the PB vectors intermittently during training.

Dropout
Final train Final val. Best val. Test Train
perplexity perplexity perplexity BLEU epochs

0 1.01 428.2 5.00 30.45 29
0.05 1.04 81.07 4.65 32.34 29
0.10 1.08 61.76 4.92 26.19 27
0.15 1.16 35.14 5.20 35.70 29
0.20 1.16 35.14 5.19 30.21 29
0.30 1.30 26.26 4.75 33.30 31
0.40 1.55 32.93 4.23 32.33 31
0.50 2.03 8.37 5.42 28.75 33

(c) Adding dropout in all LSTM layers during training.

Table 5.7: Experiment II – part 3: Three regularization techniques. All tech-
niques are only enabled during training and turned off during inference. The
first row of each table is copied from the 1024 PB configuration in table 5.6.

5.3. RESULTS 89

preset Dropout
Final train Final val. Best val. Test Train
perplexity perplexity perplexity BLEU epochs

0.10 0.10 2.48 2.56 2.42 67.83 63
0.10 0.20 2.50 2.52 2.02 72.86 87
0.10 0.30 2.83 2.64 2.04 73.51 69
0.10 0.40 2.90 3.92 2.14 79.39 109
0.10 0.50 3.12 2.15 1.86 75.88 119
0.20 0.10 3.26 3.79 2.70 69.29 61
0.20 0.20 3.72 2.06 1.91 70.80 55
0.20 0.30 3.60 2.05 1.85 77.53 91
0.20 0.40 3.73 2.24 1.85 78.70 113
0.20 0.50 4.06 2.14 2.09 74.73 117
0.30 0.10 4.13 2.94 2.40 66.28 51
0.30 0.20 4.12 2.83 2.26 71.99 75
0.30 0.30 4.50 2.67 2.10 72.43 71
0.30 0.40 4.47 3.54 2.36 75.50 107
0.30 0.50 4.99 2.86 2.33 68.69 95

Table 5.8: Experiment II – part 3: Combined regularization with dropout and in-
termittent PB reset. These regularization techniques performed best individually
and the table shows that they complement each other very well.

90 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.4: Experiment II – part 4: Perplexity of the translation as a function
of the number of recognition iterations. Since binding is employed here, more
recognition iterations is not necessarily better. Optimally, the recognition would
be stopped at the minima in the figure, but these are not known a priori. The
figure shows the first five examples in the test set.

While recognition also affects training with regard to measuring validation per-
plexity, only the testing step is repeated here. The schemes are: 1) Simply always
use 100 recognition iterations, 2) Calculate the number of iterations that mini-
mize the average perplexity on the validation set and then use this fixed value
for the testing step, and 3) terminate recognition only when the L2 norm of
the gradients decreases below 1. The first row in the table corresponds to the
scheme that has been used in the experiments so far, with early stopping based
on recognition loss and a maximum epoch limit, as described in section 5.2.4.
The results show that there is little to gain by switching to one of the proposed
recognition schemes. Scheme 1) and 2) increase the BLEU score by less than 0.1
%. However, they also increase testing time by 114 % and 53 % (not included in
the table), respectively. Scheme 3) performs significantly worse. Experiment III
and IV therefore continue with the original scheme with early stopping based on
recognition loss.

5.3. RESULTS 91

Figure 5.5: Experiment II – part 4: Perplexity of the translation as a function
of the number of recognition iterations, with corresponding L2 gradient norms
included. The examples are the same as in figure 5.4. The flat segments for
the gradient norms at the beginning is due to the gradient clipping. The plot
investigates whether the gradient norms reveal when the recognition has reached
a global minimum in terms of translation perplexity. No absolute relationship is
immediately apparent, although the points where the gradient norms go below 1
could be a good heuristic. This approach is tested in table 5.9.

Scheme BLEU score
Early stopping, max 100 iterations 77.53
Constant 100 iterations 77.56
Deducing iterations from validation set: 83 iterations 77.57
Early stopping based on gradient norm 72.24

Table 5.9: Experiment II – part 4: Comparison of termination criteria for recog-
nition. The first configuration is used in the prior experiments in this section
and is copied from table 5.8. The difference between the first case of early stop-
ping and the last is that the former terminates when the loss ceases to decrease
significantly over a few steps, while the latter terminates immediately when the
gradient norm drops below 1.

92 CHAPTER 5. EXPERIMENTS AND RESULTS

Part 5: Autoencoding with the easy subsets

The final results for experiment II are shown in table 5.10 for the three easy
subsets, in comparison with the RNNPB and seq-to-seq results from experiment
I. There is no reason to repeat the seq-to-seq tests here, as they are equal to the
ones in experiment I. The results show that the Bound RNNPB model is 13.16,
15.97 and 74.71 BLEU points below the seq-to-seq model for the easy20000,
easy50000 and easy-full sets. Compared to the single RNNPB model, it falls
behind by 19.08, 19.38 and 84.19 points on the same datasets. The differences
for the first two subsets contrast substantially with the third subset and may
indicate a problem with training the Bound RNNPB model with a large dataset.
Also visible in the table is an increase in training times for the RNNPB model
compared to experiment I, and a decrease in testing times.

5.3.3 Experiment III

Experiment III now attempts to extend the use of the RNNPB model from au-
toencoding in the previous experiment to English-to-German translation. Finally,
this experiment now uses the bound RNNPB in the final mode, where the goal
is to learn to compute

b = RNNPBB(RNNPB−1A (a)) (5.3)

where A and B are two separate RNNPB models, and A models English
and B models German. In both parts of this experiment, the best configuration
from experiment II is used. Part 2 also tests a larger configuration of both the
seq-to-seq model and RNNPB model to accommodate the more complex WMT
dataset.

Part 1: Translation with the easy dataset

Table 5.11 shows the translation results for the three models – the Bound RNNPB
model, seq-to-seq and Moses – on the three easy datasets. The results show that
the RNNPB model achieves poor results for translation, with BLEU scores of only
18.8 %, 12.8 % and 9.57 % of what the seq-to-seq model achieves on the three
datasets. Moses can furthermore be seen to achieve better BLEU scores than the
seq-to-seq model for all subsets. It can be seen that the RNNPB model achieves
its best scores after 7, 7 and 5 epochs, where previous experiments have shown
that it needs many more epochs to give good results. Due to early stopping,
training is stopped after progress has not been made for 20 epochs, similar to
previous experiments. Some tests were carried out where the key configurations
found in experiment II were reevaluated for English-to-German translation, using
the easy20000 dataset. However, none of them improved significantly on the

5.3. RESULTS 93

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB (I) 1.01 1.01 99.43 41 2745 s 62 438 s

RNNPB (II) 2.19 1.65 80.35 119 6414 s 10 049 s

Seq-to-seq 1.01 1.08 93.51 31 432.5 s 889.4 s

(a) Using the easy20000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB (I) 1.02 1.01 98.77 43 4287 s 63 016 s

RNNPB (II) 2.90 2.14 79.39 109 88 841 s 7145 s

Seq-to-seq 1.00 1.04 95.36 37 2026 s 1143 s

(b) Using the easy50000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB (I) 1.05 1.09 94.44 47 10 935 s 67 527 s

RNNPB (II) 7.31 30.19 10.25 27 13 310 s 20 825 s

Seq-to-seq 1.02 2.61 84.96 17 4085 s 1452 s

(c) Using easy-full.

Table 5.10: Experiment II – part 5: Autoencoding with the easy subsets, using
the best combinations of parameters that were found for the RNNPB model in
experiment II. The seq-to-seq and RNNPB (I) results are copied from table 5.3
for experiment I, and the RNNPB (II) results for easy50000 are copied from
the appropriate row in table 5.8. To summarize, the configuration used for the
RNNPB model is 1) Hard binding 2) 1024 PB units 3) recognition with early
stopping and max 100 epochs 4) preset = 0.10 and 5) dropout = 0.40.

94 CHAPTER 5. EXPERIMENTS AND RESULTS

results achieved in table 5.11, and therefore this exploration is not documented
here.

Part 2: Translation with the WMT dataset

Translation results for the WMT dataset for all three models are shown in figure
5.12. Here, both the NMT models struggle with learning to translate, with less
than 2 in BLEU scores. The large configurations of the RNNPB model and
seq-to-seq model perform worse than their smaller counterparts. Moses achieves
a much higher BLEU score of 18.03. Since the large configurations offer no
improvements, the original configurations are used in experiment IV as well.

5.3.4 Experiment IV

In this last experiment, the idea of incorporating monolingual training for the
Bound RNNPB model is tested. Part 1 first tries autoencoding in English just
as experiment II, but with additional monolingual training. In this case, some
English sentences are trained in a bound manner for the two RNNPB models and
some English sentences are trained in an unbound manner in each of the models
individually. These sets of sentences do not overlap. Since translation with the
bound RNNPB model was mostly unsuccessful in experiment III, autoencoding
may be better suited for testing the feasibility of this idea. Additionally, part
1 concludes with a value for the pmono parameter. In part 2, translation with
monolingual training is tested for the easy50000 and WMT datasets.

Part 1: Autoencoding with monolingual training

Table 5.13 shows that the Bound RNNPB model can benefit from monolingual
training for autoencoding. The validation perplexities is decreased dramatically,
and the BLEU score is increased by 7.56 points at the most, for pmono = 0.40. The
addition of monolingual training also increased the training epochs substantially,
to the point where training had to be manually terminated. It is therefore possible
that further improvements could have been achieved. Here, the number of epochs
is counted the same way as earlier, as full rounds of the primary training dataset.
Training on the monolingual dataset is simply done intermittently with respect
to the pmono parameter without affecting the bookkeeping. This implies that, for
higher values of pmono, more training steps are carried out in total each epoch.
For part 2, pmono = 0.40 is used.

5.3. RESULTS 95

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 3.76 18.26 5.31 27 1115 s 19 911 s

Seq-to-seq 1.16 8.89 28.22 27 407.2 s 887.1 s

Moses - - 53.56 - 465.6 s 208.8

(a) Using the easy20000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 4.43 24.40 4.78 27 3020 s 20 210 s

Seq-to-seq 1.16 5.84 37.28 29 1134 s 910.7 s

Moses - - 51.16 - 420.3 175.7 s

(b) Using the easy50000 subset.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 8.06 87.88 2.39 25 16 491 s 22 416 s

Seq-to-seq 1.45 16.65 24.96 25 4672 s 1579 s

Moses - - 38.95 - 687.3 s 226.5

(c) Using the easy-full subset.

Table 5.11: Experiment III – part 1: Translation results for the easy subsets, for
the RNNPB model as well as the two baseline models.

96 CHAPTER 5. EXPERIMENTS AND RESULTS

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 76.03 217.05 0.17 15 8734 s 62 871 s

RNNPB (L) 29.22 178.7 0.11 13 18 611 s 47 469 s*

Seq-to-seq 17.64 72.23 1.59 17 9973 s 8219 s

Seq-to-seq (L) 14.13 149.3 0.87 15 14 382 s 35 932 s

Moses - - 18.03 - 4483.8 s 788.6 s

Table 5.12: Experiment III – part 2: Translation results for the WMT dataset,
for the RNNPB model as well as the two baseline models. The RNNPB and seq-
to-seq model test a large configuration (L) as well, with much larger networks, as
specified in section 5.2. As is evident from the BLEU scores, only Moses can be
said to learn to translate meaningfully with this dataset. *The large configuration
of the RNNPB was so exorbitantly expensive to test on the CPU, it was tested
on the GPU instead.

pmono
Final train Final val. Best val. Test Train
perplexity perplexity perplexity BLEU epochs

0 2.90 3.92 2.14 79.39 109
0.10 2.89 2.29 2.09 75.89 109
0.20 3.12 1.54 1.51 80.46 125
0.30 3.24 1.62 1.44 81.73 127
0.40 3.07 1.27 1.23 86.95 165*
0.50 3.15 1.42 1.32 83.04 165*
0.60 3.07 1.45 1.45 78.68 165*

Table 5.13: Experiment IV – part 1: Autoencoding results for the easy50000 sub-
set, using non-overlapping English sentences from easy-full for additional training
on monolingual data, with different values for pmono. The results show that most
of the configurations benefit from the additional monolingual data, with lower
validation perplexities and higher BLEU scores. *The training was manually
stopped at 165 epochs due to time constraints and stagnating (albeit non-zero)
progress.

5.3. RESULTS 97

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 5.62 29.43 2.68 (4.78) 25 4478 s 16 221 s

Moses - - 49.51 (51.16) - 317.3 s 181.8 s

Table 5.14: Experiment IV: Translation results for the easy50000 subset with
incorporated training on monolingual data, using the RNNPB model as well as
Moses. The monolingual data used is non-overlapping sentences from easy-full.
The RNNPB model uses both English and German sentences for monolingual
training, while Moses uses only German sentences. This experiment uses pmono =
0.40 for the RNNPB model. The corresponding BLEU scores without training
on monolingual data are in parentheses.

Model
Final train Best val. Test

Epochs
Training Test

perplexity perplexity BLEU Time Time
RNNPB 87.03 229.1 0.12 (0.17) 13 16 146 s 60 608 s

Moses - - 18.54 (18.03) - 7620 s 764.5 s

Table 5.15: Experiment IV: Translation results for the WMT dataset with incor-
porated training on monolingual data, using the RNNPB model as well as Moses.
Only the dataset is different here compared to table 5.14.

Part 2: Translation with monolingual training

Table 5.14 and 5.15 show translation results with monolingual training for the
easy50000 and WMT datasets, in comparison with Moses, which also can utilize
monolingual data. In this case, monolingual training provides no benefit for
the RNNPB model. For easy50000, the extra monolingual data can be seen to
be detrimental to Moses, while for the WMT dataset, Moses’ BLEU score is
increased by 0.51 points.

An additional test was done for the easy50000 dataset, where training was
continued for 150 training epochs despite making no improvement. The training
progress is illustrated in figure 5.6. This test shows that the problem is not simply
a difficult start; the additional training epochs do not offer any improvement.

98 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.6: Experiment IV – part 2: The perplexity of training and validation
sets during training on the easy50000 dataset, when training is continued for 150
epochs despite making no improvement.

Chapter 6

Evaluation and Conclusion

The previous chapter posed four questions and then carried out four experiments
in order to answer these questions. Starting with simple autoencoding with only
one RNNPB model in experiment I, the model’s ability to represent language
was tested. Autoencoding was then taken a step further in experiment II, where
the Bound RNNPB model’s ability to function as an encoder-decoder pair was
investigated, with a focus on finding a good configuration for increasing the au-
toencoding BLEU score. In experiment III and IV, this configuration was tested
on translation tasks, where the latter experiment also incorporated learning on
monolingual corpora. This chapter first evaluates the results from these exper-
iments in order in section 6.1. Section 6.2 discusses the implications of these
findings and offers a conclusion, and section 6.3 summarizes the contributions of
the present work. Lastly, section 6.4 gives some ideas for future work that would
be interesting to pursue.

6.1 Evaluation

In regard to the three research questions posed in chapter 1, the results only
affirm research question 1: the RNNPB model can be used to learn a large-
scale language model. The second research question asked whether the Bound
RNNPB model can achieve translation. The results presented here are not able to
answer this question positively, although the results showed much improvement
and promise with autoencoding. Lastly, the addition of monolingual data did
not improve the quality of the translation in these results, failing also to affirm
research question 3. However, the results still shed light on several important
properties of the RNNPB model and offer contributions for its applications. The
results of the experiments are now evaluated.

99

100 CHAPTER 6. EVALUATION AND CONCLUSION

Experiment I

Table 5.3 gave results for autoencoding with a single RNNPB model on the easy
subsets, in comparison with the seq-to-seq model. The results showed that both
models were able to autoencode well.

For all three subsets, the RNNPB model achieves both better validation set
perplexities and test BLEU scores by a decent margin compared to the seq-to-seq
model. This is a reassuring result, although this achievement is not necessarily
useful or surprising in itself. In this experiment, the two models achieve autoen-
coding in fundamentally different ways. The RNNPB model actively optimizes
its own forward pass during recognition, and in this case, it suffices to find an
arbitrary PB activation which modulates its forward pass in the best way with
regard to the target sentence. For the seq-to-seq model, on the other hand, the
encoder does not have access to the internals of the decoder, and it must compute
the most likely representation with only a single try.

The significant result here is instead that the RNNPB is indeed able to ex-
press language well. The model is able to generalize and compute PB vectors –
representations – corresponding to unlearned sentences. This is evident from its
ability to regenerate the sentences from the representations with a high accuracy,
as reflected by the test BLEU score. This ability is necessary for the subsequent
experiments. That the model is able to achieve this on such a large scale is also a
significant result of this experiment, and answers the first question posed at the
beginning of chapter 5 positively.

Some observations can be made regarding the results in table 5.3. The test
BLEU score can be seen to decrease for easy-full for both models. Often, it is
expected that more data gives better results. However, the subsetting technique
used to create easy20000 and easy50000 not only gives smaller vocabularies but
is also biased towards shorter sentences. Larger vocabularies require a stronger
ability to discriminate in the decoder (or during generation in the RNNPB),
and longer sentences are notoriously more difficult to compress into a fixed size
space. It can also be observed that the RNNPB is much slower for testing. This
is, as mentioned, because testing for the RNNPB model requires recognition,
which is more akin to training than inference. It may also seem odd that the
RNNPB model here achieves better validation perplexity than training perplexity
for easy50000. This is however to be expected: the training perplexity tests the
training PB vectors, which are only regressed once per training epoch. When the
validation set is tested, recognition is used with possibly many more iterations,
here up to 500.

In figure 5.1, the relation between recognized PB vectors and PB vectors
obtained during training from the same sentences was investigated. The plot
shows a sporadic clustering of corresponding PB vectors, where the distances
between corresponding points are relatively large. This plot likely explains why

6.1. EVALUATION 101

experiment II yields poor autoencoding results at the beginning, and provides
motivation for why intermittent PB reset is so effective. It may be of little
help if the binding aligns the semantics of the two models at one point in PB
space, if recognition produces a PB vector at an entirely different point in PB
space. The motivation for intermittent PB reset was stated as bringing the
recognition dynamic into the training procedure. It is possible that it increases
the performance by bridging the gap between training PB vectors and those
produced by recognition.

Experiment II

In experiment II, the Bound RNNPB model is tested with autoencoding. In the
first part, the binding mechanism that link the two RNNPB models is inves-
tigated. Here, the results chapter concluded that hard binding was preferable.
Hard binding achieved the highest BLEU score with a large margin, where several
of the configurations with soft binding fail completely.

The effect of soft binding was studied both qualitatively and numerically, in
figure 5.3 and table 5.5. It was important to ascertain whether binding had indeed
been successfully achieved in order to judge the performance of soft binding. The
results showed that particularly binding strengths of 0.1, 1.0 and 10.0 exhibited
successful binding. For binding strength α = 100.0, table 5.5 shows that the
trend turns with a decreasing binding quality, as evident from the bound-unbound
distance ratio, which is likely explained by the training becoming unstable with
the large binding L2 loss. It should be observed that all the configurations that
achieve low distance ratios of less than 10 %, and only these configurations, are
successfully able to learn autoencoding in table 5.4. This implies that the distance
ratio is a meaningful metric for the quality of the binding.

The last observation made in relation to the binding is for the anomaly seen
in table 5.4, where the binding strength seems to correlate significantly with the
average distance between arbitrary PB vectors. Higher binding strengths seem
to severely inhibit the PB vectors’ dispersion through PB space. Since binding
is only implemented on pairs of points, it is a bit surprising that the whole space
is shrunk in this manner. A possible reason for this might be that the prediction
gradients often point in opposite directions in the two models, where binding
effectively achieves an averaging of the gradients. It should also be noted that
the distances between PB vectors for hard binding are very large, with a mean
of 10.4. This shows that the PB vectors occupy a very large part of PB space.
These large distances could be attributing to slow and ineffective recognition.

In the second part of the experiment, the results show that a higher number of
PB nodes is beneficial. The BLEU score increase from 23.49 by 6.96 points. The
training perplexity also decreases with more PB nodes, which indicates greater

102 CHAPTER 6. EVALUATION AND CONCLUSION

ease of training. It is possible that the original configuration with 128 nodes
struggled to represent all the training examples within such a small space. It’s
an important result that the model benefits from more PB nodes. For there to be
any potential for the Bound RNNPB to work as a sequence to sequence system,
the model must be able to utilize large representation spaces. One could also
worry that more PB nodes would have the opposite effect by making recognition
harder, due to the curse of dimensionality, which doesn’t seem to be the case
here.

Regularization is studied in part 3. Intermittent PB reset and dropout are
showed to be effective, while training with PB noise is not. Intermittent PB reset
is the most effective by far, nearly doubling the baseline score. These results
may imply that this technique is essential for training the Bound RNNPB model.
Although not pursued here, it would be interesting to study exactly which effect
the technique has on the PB spaces and what the causal link is for the increased
performance. Does it ease recognition and unite recognition trajectories between
the two models, or is the mechanism simpler? One possible explanation is that
intermittent reset simply shrinks the PB space by limiting the maximum distance
a PB vector can travel during training. As such, it may simply constitute a
regularizer on the size of the space, similar to an L2 loss (which would also have
been interesting to test as a fourth technique). Likely, it’s a combination of
mechanisms. Nearly definitely, both dropout and intermittent PB reset inhibit
overfitting, thus aiding generalization. This effect is likely instrumental for such
a small dataset.

In the fourth part of the experiment, the effect of the number of recognition
iterations is tested. Up until this point, the recognition scheme used has not been
justified. The motivation for this inquiry was the possible risk that too many
iterations were used, to the detriment of the test scores. Intuitively, recognized
PB vectors should reside in the same region of PB space as the training PB
vectors, to maximize the likelihood of proper binding between the two models at
these points in space. Thus it could be problematic if the number of recognition
iterations outnumber the training epochs, causing the recognized PB vectors
to end up further away from the starting point. However, none of the proposed
schemes improve the results significantly. It is possible that the two schemes with
early stopping are effectively equivalent, but with different interpretations of the
parameters. After all, a large gradient typically indicates that the loss changes
by a lot, and vise versa1. Early stopping based on the gradient norm tested only
a single threshold value of 1.0, while early stopping based on the recognition
loss has seen some more offline testing for its epsilon value. Nevertheless, this
experiment shows that the default approach is acceptable.

1This notion may be complicated somewhat when an adaptive optimizer (such as Adam) is
used.

6.1. EVALUATION 103

In the fifth and final part of the experiment, results are presented for autoen-
coding with the easy subsets, in comparison with the results from experiment I.
The results show that the Bound RNNPB model can autoencode relatively well
for the easy20000 and easy50000 datasets, at 86 % and 83 % of the BLEU points
of the seq-to-seq model. However, a fundamental change occurs for the easy-full
subset, where the score for the RNNPB model is reduced by 87 % to a meager
10.25 points. Where the seq-to-seq model too scores a little bit lower on this
dataset, likely due to the larger vocabularies and longer sentences, the decline
in performance for the RNNPB model is disproportionate. Consider for instance
that the easyfull and easy50000 overlap by 50000 sentences, and that if the model
only scored the same for the easy50000 sentences and 0 for the remaining 140
624 of the easy-full sentences, the average BLEU score would be 20.8. Instead it
struggles to train successfully, reaching its best validation perplexity after only 7
epochs. This may be symptomatic of a larger problem that the RNNPB model
has with large datasets. Furthermore, there’s a considerable gap between the
performance of the single RNNPB model with autoencoding from experiment I
and the Bound RNNPB model in experiment II. Theoretically, if perfect binding
was achieved, the scores would be equal. Instead, the binding must be described
as incomplete. It is noteworthy that better binding is not achieved for the task
of autoencoding, where the aligning of the two semantic spaces is subject to very
little strain, which may offer foreshadowing for the subsequent disappointing
translation results.

Before the evaluation of experiment II is ended, a comment regarding the
methodology is due. The comparison between the Bound RNNPB model and the
seq-to-seq model in this experiment cannot be interpreted as implying that the
RNNPB model is almost as good as the seq-to-seq model (disregarding the easy-
full results). Such an interpretation was not the intention of the experiment and
would not be a fair conclusion. The results here are biased towards the RNNPB
model, which has seen much more attention to optimization, development and
regularization. The seq-to-seq model would for instance likely have benefited from
dropout too. Indeed, the work done here could be accused of indirectly training
on the test set, as it has at each step been used as justification for subsequent
choices regarding the training configuration. Instead, these results should be
interpreted as showing that the Bound RNNPB model is able to function as an
encoder-decoder architecture, almost as well as a non-optimized seq-to-seq model.
These results are therefore a testament to the Bound RNNPB model’s maximal
performance, and not to the expected performance of the two models. Thus, to
conclude, these results show that the question which this experiment set out to
answer is answered positively: the Bound RNNPB model can be employed as an
encoder-decoder for the task of autoencoding.

104 CHAPTER 6. EVALUATION AND CONCLUSION

Experiment III

Experiment III tested the Bound RNNPB model on English-to-German trans-
lation. In part 1, the easy subsets are tested. Here, the results show that the
model largely struggles with learning to translate. Compared to the seq-to-seq
model, which achieves acceptable test scores, the RNNPB model performs poorly
on all the easy subsets. It is possible that the Bound RNNPB model is not flexi-
ble enough to utilize a common representation space for two different languages.
Table 5.11 shows that the RNNPB model struggles with achieving a low training
perplexity as well, even after 25-27 training epochs.

Part two shows that the BLEU scores are even worse for the WMT dataset.
However, these results have less implications, seeing as the seq-to-seq model per-
forms almost equally poorly. Most likely, these results are indicative of too little
training data compared to the complex sentence structure and vocabularies. The
number of training sentences here is only 5 % of the volume used in the the orig-
inal work with the seq-to-seq model by Sutskever et al., who achieved a BLEU
score of 30.69 (albeit on English-to-French). The easy dataset was indeed chosen
to constitute a low bar for learning to translate, and upon failing for this dataset,
it is unsurprising that the RNNPB model sees less success with the WMT dataset.

Experiment IV

Experiment IV shows that the RNNPB model can benefit from additional training
on monolingual data, for autoencoding. In part 1, both validation perplexity and
BLEU score is improved by adding monolingual training. It is again unclear
what the exact causal mechanism is. Ideally, the increased scores would be due
to each of the RNNPB models learning to model language better separately.
Indeed, adding additional training examples could improve the organization of
the PB space in this manner. However, given the unpredictable convergence
of the training procedure observed in the experiments, it is just as likely that
the monolingual training serves as a regularizer. Autoencoding for the easy-full
dataset in experiment II showed that training is a global process, and that adding
more training examples can have large impacts on the convergence. These global
dependencies are inherent with the RNNPB model: consider for instance that if
more examples are added, a given PB vector much wait for many more training
steps between each time it’s updated, and the changes in network weights that
it sees between each time may be larger. This time around, the exact same
sentences are trained, albeit 74 % without binding. This distinction causes a
76.6 point difference in BLEU scores, where the former experiment is deemed a
failure and the latter a success. This goes to show that the factors dictating the
convergence of the Bound RNNPB model are not well known.

Part two tests English-to-German translation with monolingual training. Here,

6.2. DISCUSSION 105

adding monolingual training decreases the score for the RNNPB model for both
easy50000 and the WMT dataset. It is interesting, although not surprising, that
adding monolingual training is beneficial in part 1 of experiment IV, while it
is detrimental in part 2. Also interesting is that the performance of Moses is
decreased for easy50000 by adding monolingual training. This is however likely
explained by the large statistical differences between the monolingual data and
the easy50000 subset. This effect was described in Gulcehre et al. [2017], and
reiterated in section 3.3 of this thesis. In contrast, the monolingual data used
with the WMT dataset does not have such differences, and in this case Moses
improves its score when monolingual data is added.

6.2 Discussion

This thesis has applied the RNNPB model to language modeling and transla-
tion at a large scale. The architecture of the RNNPB model used here replaces
the original simple Jordan-type RNN with more powerful LSTM layers, which
have been instrumental in recent advances with recurrent networks. Using the
modern regularization technique, dropout, as well as the original regularization
technique, intermittent reset of the PB vectors, the ability of the RNNPB model
to express language is improved. Through four experiments, the model is tested
for autoencoding, translation and for combining bound and unbound training in
order to utilize monolingual data. The experiments show that the RNNPB can
model language very well, and that it can achieve autoencoding with high qual-
ity when two models are bound. Furthermore, the quality of the autoencoding
is increased when monolingual training is employed. However, the model fails to
achieve successful translation from English to German, and for this task, mono-
lingual training was not shown to be beneficial. The results also showed that the
model may have issues training on large datasets, even for autoencoding.

The experiments have shown that the single RNNPB model can be trained
with great ease. No additional modifications were required for it to learn to model
the training examples well and to generalize for unseen sentences. Naturally
however, two bound RNNPBs are required when translation should be achieved
between two different languages. When two models were bound here, learning
became much more difficult. Now, the learning objective has additionally become
that all points in PB space that are meaningful for one model should have equal
semantic meaning for the opposite model. The training PB vectors are responsible
for aligning the semantics at some set of points. Beyond that, generalization
requires that a common, regular structure emerges, so that the semantics are
aligned even between these points. Ideally, more training examples would help
with developing this structure, although in the current experiments, the RNNPB
model isn’t able to make use of such larger datasets. For the English-to-German

106 CHAPTER 6. EVALUATION AND CONCLUSION

translation, it is also possible that it’s difficult to achieve a common regular
structure when the two models model very different sequences.

This raises a more fundamental, philosophical question. Can two instantia-
tions of the same sentence, in two different languages, be represented perfectly
by a common representation? In theory, it’s tempting to view the representation
space as a semantic space where any particular sentence meaning can be repre-
sented as a point in space. A network should subsequently be able to express
this meaning as a syntactically correct sentence in its respective language. This
notion is appealing: if a perfect semantic space could be achieved, it could serve
as a a lingua franca for all languages and enable powerful multi-language trans-
lation. The notion can be seen as the underlying concept behind the current
application of the RNNPB model.

Language is however not a very precise matter. Sentences are often ambigu-
ous, and particularly so without proper context. Their flexibility is not unlimited;
a given sentence meaning can often be expressed better in one language than an-
other. These properties of language could make learning such shared semantic
spaces a very difficult machine learning task. Even in an ideal setting, a pair
of corresponding English and German sentences are likely noisy in terms of am-
biguity and not perfectly equivalent due to the constraints of the languages. It
is therefore likely difficult to capture the true underlying meaning, although not
necessarily impossible. With the RNNPB approach, any such inaccuracies in
the model’s interpretation of the sentence meaning could severely inhibit proper
organization of the fragile, regular structure of the PB spaces.

This begs the question: how does this approach differ from the seq-to-seq
model and similar NMT architectures? The major distinction here is that these
explicitly model translation. These networks learn to effectively map a represen-
tation on the source side to a representation on the target side, in an end-to-end
manner. This is likely a simpler learning task: the networks need not concern
themselves to the same extent with the semantic meaning of the sentences and
instead learn to map between the two syntactical manifestations of the latent
semantic meaning. For the Bound RNNPB model, translation only exists as a
constraint on and interpretation of the PB spaces. Individually, each model only
knows about its own language, and in no way do the models learn to explicitly
map from one to the other2. Indeed, translation is not reflected at all in the
model’s learning objective.

That the Bound RNNPB model struggles with learning to autoencode with
the larger easy-full dataset is however more surprising than its difficulty with

2This could be a very interesting experiment in its own regard as an alternative to binding:
Train two single RNNPB models individually, and then train a network to explicitly map from
one PB space to the other. While this doesn’t achieve a common semantic space, it could
provide better translation results than what these experiments did.

6.2. DISCUSSION 107

translation. It is an unfortunate characteristic that the learning procedure for
the RNNPB model depends directly on the number of training examples. When
more training examples are added, each PB vector is updated relatively less
frequently compared to the network weights. Particularly, this means that the
choice of hyperparameters and the very convergence of the training depends on
the size of the dataset, which is an undesirable trait in machine learning. It’s
possible that if the PB vectors ”lag behind” by too much, the training procedure
fails to converge. It may therefore by necessary for the future development of
the model to study whether training of PB vectors and network weights can be
decoupled. This would achieve a normalization of the training procedure with
respect to the size of the dataset, or equivalently, the number of PB vectors. One
possible scheme could be to regress all the PB vectors every N training steps
and otherwise update only the network weights. Since all the PB vectors are
mutually independent with respect to their gradients (δ

δpj
δL
δpi

= 0, ∀j 6= i), the

gradients are not dependent on the batch size, and so a very large batch size
could be chosen for the PB vectors. This would allow for a small value of N
without sacrificing training efficiency. In any event, it would seem necessary to
achieve successful autoencoding on large datasets before one takes aim towards
achieving translation. Then, it would be very interesting to study the effect of
very large datasets, with millions of sentences, on the convergence of the Bound
RNNPB model, where the PB spaces would be aligned in many more locations.

Experiment I likely gave the most promising results. It is interesting to con-
sider whether this use of the single RNNPB model has practical applications in
its own regard. The results showed that the model could find representations for
language in order to autoencode better than the seq-to-seq model could. The
practical usefulness depends on the properties of the PB vectors. Are semantic
similarities captured in terms of spatial proximity? Do they offer insight into
a sentence’s structure and the concepts it contains, or are they mere arbitrary
activations? Zhong and Canamero [2014] and Li et al. [2018] showed that the or-
ganization of PB vectors in space could reflect the similarities of emotion-aroused
behaviors, which would imply the former. To this end, the current architecture
and training techniques could offer a valuable contribution. As an extension of
the aforementioned application, it would be interesting to consider whether PB
vectors could learn to represent emotion-aroused language. Could they be used
to recognize or generate hateful versus supportive utterances, or to recognize sar-
casm? Here, the architecture could for instance dedicate part of the PB nodes for
an emotion embedding and have the rest be free PB nodes to encode the specifics
of the sentences.

As for the potential for translation, it is difficult to speak to the merit of
the Bound RNNPB model. This thesis has shed light on some challenges that
definitely must be solved before high-quality translation can be achieved. Even

108 CHAPTER 6. EVALUATION AND CONCLUSION

then, the theoretical foundation of the current approach could very well be inferior
to the architectures that currently enjoy the most success. On the other hand,
perhaps this approach – with shared semantic spaces – encourages translation on
a deeper level. Should it prove to be effective, its potential for utilizing language
resources across languages is definitely enticing. Although inspiring translation
results could not be achieved in this thesis, the current work has taken important
steps towards advancing the RNNPB model.

6.3 Contributions

This thesis’ most important results is the contributions to the RNNPB model and
its training procedure. Where the SLR could not find applications of the RNNPB
with more powerful recurrent networks than the Elman net (i.e. Simple Recurrent
Network), this thesis has demonstrated the benefits of using LSTM layers and
word embeddings, as well as the Adam optimization algorithm. Experiment
I and II furthermore showed that the model can be applied to problems with
much larger amounts of data than what related work has done. Experiment
II showed that binding of two RNNPB model can be successfully applied to
achieve autoencoding for datasets up to a certain size. This experiment further
contributed the techniques of hard binding and intermittent PB reset.

This use of the RNNPB model is immature in nature. It is to the best of the
author’s knowledge the first work that applies the RNNPB model or a similar
model to the task of machine translation. As such, the mere application can
be considered a contribution as well. This thesis lays an important foundation,
although more work is needed to see whether there’s merit for this use of the
RNNPB model.

6.4 Future Work

The most pressing matter which requires future work has already been described:
the Bound RNNPB model must be able to train on large datasets, and ideally,
the network and training configuration should not depend on the size of the
dataset. Solving these challenges are necessary to apply this model to tasks of
even larger scale. Second to that, there are a few considerations that could not
be included in this thesis due to its limited time frame. One of the benefits of
the Bound RNNPB model that was described was the potential for bidirectional
translation. The Bound RNNPB model is symmetrical and it should be able to
operate in either direction. Experiments are needed to demonstrate this ability.
Such an experiment will of course be more rewarding upon a successful applica-
tion to actual translation. Additionally, an inquiry is due into the specific effect

6.4. FUTURE WORK 109

that intermittent PB reset and training with monolingual data have on the PB
space. Through which mechanism is the performance improved? Better under-
standing of the convergence of the Bound RNNPB model is key to improving its
performance and convergence.

A technique that was not attempted here that could be beneficial is the con-
cept of joint recognition. Due to the nature of the Bound RNNPB model, model
B could also be consulted when model A performs recognition. This achieves a
similar effect as when Gulcehre et al. [2017] integrated a language model into their
translation model to evaluate the quality of each translation candidate. After all,
model B can at each step of recognition in model A provide commentary as to
how likely it evaluates the translation corresponding to the current PB vector.
Thus, once model A finds that the PB vector accurately represents the sentence
in its language, it can consult model B for subsequent iterations to determine
for which PB vector model B is the most confident. Such a technique where
both source and target side models can participate in computing the sentence
representation would be a unique feature of the RNNPB model. The resulting
model would then encourage translations with both high adequacy and fluency.
Perhaps it would also take steps towards bridging the gap created by imperfect
binding that was observed here.

110 CHAPTER 6. EVALUATION AND CONCLUSION

Bibliography

Arie, H., Endo, T., Jeong, S., Lee, M., Sugano, S., and Tani, J. (2010). Inte-
grative learning between language and action: A neuro-robotics experiment.
In Diamantaras, K., Duch, W., and Iliadis, L. S., editors, Artificial Neural
Networks – ICANN 2010, pages 256–265, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv e-prints, abs/1409.0473.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for
sequence prediction with recurrent neural networks. In Proceedings of the 28th
International Conference on Neural Information Processing Systems - Volume
1, NIPS’15, pages 1171–1179, Cambridge, MA, USA. MIT Press.

Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural proba-
bilistic language model. J. Mach. Learn. Res., 3:1137–1155.

Cheng, Y., Xu, W., He, Z., He, W., Wu, H., Sun, M., and Liu, Y. (2016). Semi-
supervised learning for neural machine translation. CoRR, abs/1606.04596.

Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014a). On the
properties of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259.

Cho, K., van Merriënboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014b). Learning phrase representations us-
ing rnn encoder–decoder for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational
Linguistics.

Chung, J., Cho, K., and Bengio, Y. (2016). A character-level decoder without
explicit segmentation for neural machine translation. CoRR, abs/1603.06147.

111

112 BIBLIOGRAPHY

Costa-Jussà, M. R. and Farrús, M. (2014). Statistical machine translation
enhancements through linguistic levels: A survey. ACM Comput. Surv.,
46(3):42:1–42:28.

Elman, J. L. (1990). Finding structure in time. COGNITIVE SCIENCE,
14(2):179–211.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Gulcehre, C., Firat, O., Xu, K., Cho, K., and Bengio, Y. (2017). On integrating a
language model into neural machine translation. Computer Speech & Language,
45:137 – 148.

He, W., He, Z., Wu, H., and Wang, H. (2016). Improved neural machine trans-
lation with smt features. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, AAAI’16, pages 151–157. AAAI Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput., 9(8):1735–1780.

Hutchins, J. (2005). The history of machine translation in a nutshell. http:

//www.hutchinsweb.me.uk/publications.htm.

Ito, M., Noda, K., Hoshino, Y., and Tani, J. (2006). 2006 special issue: Dynamic
and interactive generation of object handling behaviors by a small humanoid
robot using a dynamic neural network model. Neural Netw., 19(3):323–337.

Jordan, M. I. (1997). Chapter 25 - serial order: A parallel distributed processing
approach. In Donahoe, J. W. and Dorsel, V. P., editors, Neural-Network Models
of Cognition, volume 121 of Advances in Psychology, pages 471 – 495. North-
Holland.

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent continuous translation mod-
els. Seattle. Association for Computational Linguistics.

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Net-
works. http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-based translation.
In Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology -
Volume 1, NAACL ’03, pages 48–54, Stroudsburg, PA, USA. Association for
Computational Linguistics.

http://www.deeplearningbook.org
http://www.hutchinsweb.me.uk/publications.htm
http://www.hutchinsweb.me.uk/publications.htm
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BIBLIOGRAPHY 113

Lample, G., Denoyer, L., and Ranzato, M. (2017). Unsupervised machine trans-
lation using monolingual corpora only. CoRR, abs/1711.00043.

Li, J., Yang, C., Zhong, J., and Dai, S. (2018). Emotion-aroused human behaviors
perception using rnnpb. In 2018 10th International Conference on Modelling,
Identification and Control (ICMIC), pages 1–6.

Lipton, Z. (2015). A critical review of recurrent neural networks for sequence
learning.

Luong, M. and Manning, C. D. (2016). Achieving open vocabulary neural ma-
chine translation with hybrid word-character models. CoRR, abs/1604.00788.

Luong, M.-T., V. Le, Q., Sutskever, I., Vinyals, O., and Kaiser, L. (2015a). Multi-
task sequence to sequence learning. Proceedings of ICLR, San Juan, Puerto
Rico.

Luong, T., Sutskever, I., Le, Q., Vinyals, O., and Zaremba, W. (2015b). Address-
ing the rare word problem in neural machine translation. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 11–19, Beijing, China. Association for Computational
Linguistics.

Och, F. J. and Ney, H. (2002). Discriminative training and maximum entropy
models for statistical machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ACL ’02, pages 295–
302, Stroudsburg, PA, USA. Association for Computational Linguistics.

Ogata, T. and Okuno, H. G. (2013). Integration of behaviors and languages with
a hierarchal structure self-organized in a neuro-dynamical model. 2013 IEEE
Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS),
pages 89–95.

Papineni, K., Roukos, S., Ward, T., and jing Zhu, W. (2002). Bleu: a method
for automatic evaluation of machine translation. pages 311–318.

Park, J.-C., Kim, D.-S., and Nagai, Y. (2014). Developmental dynamics of rnnpb:
New insight about infant action development. In del Pobil, A. P., Chinellato,
E., Martinez-Martin, E., Hallam, J., Cervera, E., and Morales, A., editors,
From Animals to Animats 13, pages 144–153, Cham. Springer International
Publishing.

Park, J.-C., Kim, D.-S., and Nagai, Y. (2017). Learning for goal-directed actions
using rnnpb: Developmental change of ’what to imitate’. IEEE Transactions
on Cognitive and Developmental Systems, PP:1–1.

114 BIBLIOGRAPHY

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training re-
current neural networks. In Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML’13, pages
III–1310–III–1318. JMLR.org.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation. Parallel Distributed Processing, MIT
Press.

Sugita, Y. and Tani, J. (2003). A holistic approach to compositional semantics:
a connectionst model and robot experiments. Advances in neural information
processing systems, Cambridge, MA: MIT Press, 17.

Sugita, Y. and Tani, J. (2005). Learning semantics combinatoriality from the
interaction between linguistic and behavioral processes. Adaptive Behav.,
13(1):33–52.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning
with neural networks. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in Neural Information Pro-
cessing Systems 27, pages 3104–3112. Curran Associates, Inc.

Tani, J. (2002). Learning to generate articulated behavior through the bottom-up
and the top-down interaction process. Neural Netw., 16:11–23.

Tani, J. and Ito, M. (2003). Self-organization of behavioral primitives as multiple
attractor dynamics: A robot experiment. Trans. Sys. Man Cyber. Part A,
33(4):481–488.

Tu, Z., Liu, Y., Shang, L., Liu, X., and Li, H. (2016). Neural machine translation
with reconstruction. CoRR, abs/1611.01874.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and
Garnett, R., editors, Advances in Neural Information Processing Systems 30,
pages 5998–6008. Curran Associates, Inc.

Zhong, J. and Canamero, L. (2014). From continuous affective space to contin-
uous expression space: Non-verbal behaviour recognition and generation. In
4th International Conference on Development and Learning and on Epigenetic
Robotics, pages 75–80.

Zhong, J., Weber, C., and Wermter, S. (2011). Robot trajectory prediction and
recognition based on a computational mirror neurons model. In Honkela, T.,

BIBLIOGRAPHY 115

Duch, W., Girolami, M., and Kaski, S., editors, Artificial Neural Networks and
Machine Learning – ICANN 2011, pages 333–340, Berlin, Heidelberg. Springer
Berlin Heidelberg.

116 BIBLIOGRAPHY

Appendices

This appendix offers some further implementation details and examples of trans-
lations and run scripts. Section .1 provides parameters for the implementations
of the LSTM layer and the Adam optimizer. Section .2 provides the excerpts.

.1 Implementation details

Table A1 and A2 gives the specifics of the LSTM and Adam implementation, re-
spectively. The parameters for both, except for dropout for the LSTM layer, use
the default Tensorflow values. They are provided nevertheless since they often
vary between different implementations and machine learning frameworks. The
LazyAdam optimizer was previously provided together with the default package
of Tensorflow, but was separated into the tensorflow addons package for Ten-
sorflow V2.0. The Adamax optimization algorithm was considered as an alter-
native, being closely related to the Adam algorithm and performing well with
sparse gradient updates. However, a bug in the GPU implementation for this
Tensorflow optimizer yielded NAN convergence, excluding it from consideration.
Several other optimizers were tried with little success. Optimizers which are not
adaptive, such as SGD, struggled to move the PB vectors from their zero-vector
starting point, indicating that this may be a saddle point where the PB vectors
have near-zero gradients.

117

118 APPENDICES

Parameter Value
Implementation tensorflow.keras.layers.LSTM
Output activation Tanh
Recurrent activation Sigmoid
Dropout �
Recurrent dropout 0
Kernel initialization Glorot uniform
Recurrent initialization Orthogonal

Table A1: The LSTM layer implementation used for the RNNPB model and the
seq-to-seq model. In Tensorflow V2.0, this layer automatically uses the CuD-
NNLSTM implementation when it is available. � Dropout is used where stated
in some of the experiments.

Parameter Value
Implementation tensorflow addons.optimizers.LazyAdam
β1 0.9
β2 0.999
ε 10−7

Table A2: The optimizer used in all experiments. LazyAdam implements the
Adam optimization algorithm, but applies weight updates sparsely. That is,
only the weights that are active for a current training batch are updated. This
distinction is useful when the network includes embeddings; training may be
drastically sped up as only relevant embeddings are updated for a given training
batch. The semantics of the weight updates are also affected: with the normal
Adam algorithm, momentum would be applied to all embeddings for each batch,
even when their gradients are zero, effectively changing all embeddings. Similarly,
the momentum terms would be updated to reflect the zero gradients, which may
be inaccurate.

.2. EXCERPTS 119

.2 Excerpts

Some example translations and run scripts are given here. The next section give
excerpts for experiment I, from the first and final configuration of experiment
II, from experiment III for all datasets, and from experiment IV only for au-
toencoding from its part 1. The excerpts from the run scripts have some minor
modifications for brevity and formatting. The first 10 sentences from the test set
are used as examples in all the subsequent tables.

120 APPENDICES

Listing 1: The run script used for experiment I (part 1). The first half defines
variables describing datasets and parameters, and the latter half initiates six
rounds of training and testing. Encdec refers to the seq-to-seq model in the
implementation. The binding strength and bind-hard parameters are given, but
neither are relevant here: the autoencode flag specifies that only a single RNNPB
model should be used, and therefore there is no binding. The code that has been
written consists of 6 source files, where nmt.py is the entry point. The files
contain 1482 lines of code in total. Excerpts from the test results are given in
table A3-A5.

#!/bin/bash

mkdir rnnpb20000

mkdir rnnpb50000

mkdir rnnpbfull

mkdir encdec20000

mkdir encdec50000

mkdir encdecfull

easy20000=../../data/autoenc/easy20000

easy50000=../../data/autoenc/easy50000

full=../../data/autoenc/easy-full

train_easy20000="--train_set1=$easy20000/train.en --train_set2=$easy20000/train.en \

--dev_set1=$easy20000/dev.en --dev_set2=$easy20000/dev.en"

train_easy50000="--train_set1=$easy50000/train.en --train_set2=$easy50000/train.en \

--dev_set1=$easy50000/dev.en --dev_set2=$easy50000/dev.en"

train_full="--train_set1=$full/train.en --train_set2=$full/train.en \

--dev_set1=$full/dev.en --dev_set2=$full/dev.en"

test_easy20000="--test_set=$easy20000/test.en"

test_easy50000="--test_set=$easy50000/test.en"

test_full="--test_set=$full/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --embedding_size=128 --units=256 --num_layers=2 \

--learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 --gradient_clip=1.0 \

--beam_size=10 --early_stopping_steps=10'

testing='--do_testing --device=cpu'

rnnpb_training='--num_PB=128 --pb_learning_rate=0.01 --max_recog_epochs=500 \

--model=rnnpbnmt --autoencode --bind_hard --binding_strength=1.0'

encdec_training='--reverse_source --model=encdec'

train_encdec="$run $training $encdec_training"

train_rnnpb="$run $training $rnnpb_training"

easy20000

$train_encdec $train_easy20000 --working_dir=encdec20000 &> encdec20000/train_log.txt

.2. EXCERPTS 121

$train_rnnpb $train_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/train_log.txt

easy50000

$train_encdec $train_easy50000 --working_dir=encdec50000 &> encdec50000/train_log.txt

$train_rnnpb $train_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/train_log.txt

full

$train_encdec $train_full --working_dir=encdecfull &> encdecfull/train_log.txt

$train_rnnpb $train_full --working_dir=rnnpbfull &> rnnpbfull/train_log.txt

$run $testing $test_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/test_log.txt

$run $testing $test_easy20000 --working_dir=encdec20000 &> encdec20000/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/test_log.txt

$run $testing $test_easy50000 --working_dir=encdec50000 &> encdec50000/test_log.txt

$run $testing $test_full --working_dir=rnnpbfull &> rnnpbfull/test_log.txt

$run $testing $test_full --working_dir=encdecfull &> encdecfull/test_log.txt

122 APPENDICES

M Sentence
T Tom told me he hasn 't done that yet .
R Tom told me he hasn 't done that yet .
S Tom told me he asked something done that yesterday .
T I want to see Tom again .
R I want to see Tom again .
S I want to see Tom again .
T He was very busy all day .
R He was very busy all day .
S He was very busy all day .
T We were at school together .
R We were at school together .
S We were at school together .
T I 'm sorry for this .
R I 'm sorry for this .
S I 'm sorry for this .
T Her hair is long .
R Her hair is long .
S Her hair is long .
T Tom and Mary were alone in the park .
R Tom and Mary were alone in the park .
S Tom and Mary were alone in the park .
T How long do I have to stay ?
R How long do I have to stay ?
S How long do I have to stay ?
T You want me to go , don 't you ?
R You want me to go , don 't you ?
S You want me to go , don 't you ?
T It can 't be that bad .
R It can 't be that bad .
S It can 't be that bad .

Table A3: Experiment I - easy20000, autoencoding with (R) RNNPB model and
(S) seq-to-seq model. T denotes the true sentence. The ”'” tokens arise
from the tokenization behavior of Moses.

.2. EXCERPTS 123

M Sentence
T Be nice to her .
R Be nice to her .
S Be nice to her .
T How come you know so much ?
R How come you know so much ?
S How come you know so much ?
T There 's something that I want to do before I leave .
R There 's something that I want to do before I leave .
S There 's something that I want to do before I leave .
T I can 't think of anything I 'd want from you .
R I can 't think of anything I 'd want from you .
S I can 't think or say I 'd want from you .
T I think it 's better not to try it .
R I think it 's better not to try it .
S I think it 's better not not try it .
T This isn 't so difficult .
R This isn 't so difficult .
S This isn 't so difficult .
T I 've looked all over for Tom , but I can 't find him .
R I 've looked all over for Tom , but I can 't find him .
S I 've almost came until for Tom , but I can 't find him .
T Is he going to make it ?
R Is he going to make it ?
S Is he going to make it ?
T That hurts ! Stop it !
R That loves him first night .
S That happened dangerous chair up !
T Tom and Mary both know how to swim .
R Tom and Mary both know how to swim .
S Tom and Mary both know how to swim .

Table A4: Experiment I - easy50000, autoencoding with (R) RNNPB model and
(S) seq-to-seq model. T denotes the true sentence.

124 APPENDICES

M Sentence
T Use the manual override .
R Use the manual <UNK> .
S Use the White anthem .
T The new tunnel will link Britain and France .
R The new tunnel will link Britain and France .
S The new clients will commit Britain and France .
T I don 't think Tom speaks French .
R I don 't think Tom speaks French .
S I don 't think Tom speaks French .
T He sometimes goes to Tokyo on business .
R He sometimes goes to Tokyo on business .
S He sometimes goes to Tokyo on his
T Tom 's fingerprints were on the gun .
R Tom 's fingerprints were on the gun .
S Tom 's graduation were on the gun .
T I want to go to the zoo with Tom .
R I want to go to the zoo with Tom .
S I want to go to the zoo with Tom .
T There 's no chance that he 'll recover .
R There 's no chance that he 'll recover .
S There 's no chance that he 'll recover .
T This colony was founded in 1700 .
R This colony was founded in undergrad .
S This wonders was founded in 1843 .
T That was different .
R That was different .
S That was different .
T Tom doesn 't like you very much either .
R Tom doesn 't like you very much either .
S Tom doesn 't like you very much either .

Table A5: Experiment I - easyfull, autoencoding with (R) RNNPB model and
(S) seq-to-seq model. T denotes the true sentence.

.2. EXCERPTS 125

Listing 2: The run script used for experiment II, part 1. In this experiment,
different binding strengths were used. An additional flag is used to specify hard
binding. When this flag is given, the binding strength value is not used. Excerpts
from the test results for hard binding are given in table A6.

mkdir rnnpb-hard

mkdir rnnpb-100

mkdir rnnpb-10

mkdir rnnpb-1

mkdir rnnpb-0.1

mkdir rnnpb-0.01

mkdir rnnpb-0.001

mkdir rnnpb-0.0001

easy50000=../../data/autoenc/easy50000

train_easy50000="--train_set1=$easy50000/train.en --train_set2=$easy50000/train.en \

--dev_set1=$easy50000/dev.en --dev_set2=$easy50000/dev.en"

test_easy50000="--test_set=$easy50000/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --embedding_size=128 --units=256 --num_layers=2 \

--learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 --gradient_clip=1.0 \

--beam_size=10 --early_stopping_steps=20'

testing='--do_testing --device=cpu'

rnnpb_training='--num_PB=128 --pb_learning_rate=0.01 --max_recog_epochs=100 \

--model=rnnpbnmt'

train="$run $training $train_easy50000 $rnnpb_training"

easy50000

$train --binding_strength=1.0 --working_dir=rnnpb-hard \

--bind_hard &> rnnpb-hard/train_log.txt

$train --binding_strength=100 --working_dir=rnnpb-100 &> rnnpb-100/train_log.txt

$train --binding_strength=10 --working_dir=rnnpb-10 &> rnnpb-10/train_log.txt

$train --binding_strength=1 --working_dir=rnnpb-1 &> rnnpb-1/train_log.txt

$train --binding_strength=0.1 --working_dir=rnnpb-0.1 &> rnnpb-0.1/train_log.txt

$train --binding_strength=0.01 --working_dir=rnnpb-0.01 &> rnnpb-0.01/train_log.txt

$train --binding_strength=0.001 --working_dir=rnnpb-0.001 &> rnnpb-0.001/train_log.txt

$train --binding_strength=0.0001 --working_dir=rnnpb-0.0001 &> rnnpb-0.0001/train_log.txt

The training configurations that failed were removed from testing below.

$run $testing $test_easy50000 --working_dir=rnnpb-hard &> rnnpb-hard/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-10 &> rnnpb-10/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-1 &> rnnpb-1/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.1 &> rnnpb-0.1/test_log.txt

126 APPENDICES

M Sentence
T Be nice to her .
R Bring me to the hospital .
S Be nice to her .
T How come you know so much ?
R How do you have a beer ?
S How come you know so much ?
T There 's something that I want to do before I leave .
R It 's too difficult to do .
S There 's something that I want to do before I leave .
T I can 't think of anything I 'd want from you .
R I can 't know where Tom is or not .
S I can 't think or say I 'd want from you .
T I think it 's better not to try it .
R I 'm looking for it to Tom .
S I think it 's better not not try it .
T This isn 't so difficult .
R This isn 't going on .
S This isn 't so difficult .
T I 've looked all over for Tom , but I can 't find him .
R I 've been waiting for that for him .
S I 've almost came until for Tom , but I can 't find him .
T Is he going to make it ?
R Is it OK to do that ?
S Is he going to make it ?
T That hurts ! Stop it !
R That car is !
S That happened dangerous chair up !
T Tom and Mary both know how to swim .
R Tom and Mary have nothing enough .
S Tom and Mary both know how to swim .

Table A6: Experiment II – part 1 with hard binding, easy50000. Autoencoding
with (R) RNNPB model and (S) seq-to-seq model. T denotes the true sentence.
The seq-to-seq sentences are the same as in table A4. This table is included to
show the evolution of the Bound RNNPB’s performance with autoencoding in
experiment II.

.2. EXCERPTS 127

Listing 3: The run script used for experiment II, part 5. Here, the final autoen-
oding results are computed for the easy subsets. Excerpts from the test results
are given in table A7-A9.

mkdir rnnpb20000

mkdir rnnpb50000

mkdir rnnpbfull

easy20000=../../data/autoenc/easy20000

easy50000=../../data/autoenc/easy50000

easyfull=../../data/autoenc/easy-full

train_easy20000="--train_set1=$easy20000/train.en --train_set2=$easy20000/train.en \

--dev_set1=$easy20000/dev.en --dev_set2=$easy20000/dev.en"

train_easy50000="--train_set1=$easy50000/train.en --train_set2=$easy50000/train.en \

--dev_set1=$easy50000/dev.en --dev_set2=$easy50000/dev.en"

train_easyfull="--train_set1=$easyfull/train.en --train_set2=$easyfull/train.en \

--dev_set1=$easyfull/dev.en --dev_set2=$easyfull/dev.en"

test_easy20000="--test_set=$easy20000/test.en"

test_easy50000="--test_set=$easy50000/test.en"

test_easyfull="--test_set=$easyfull/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --embedding_size=128 --units=256 --num_layers=2 \

--learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 --gradient_clip=1.0 \

--beam_size=10 --early_stopping_steps=20'

testing='--do_testing --device=cpu'

rnnpb_training='--pb_learning_rate=0.01 --binding_strength=1.0 --bind_hard \

--max_recog_epochs=100 --num_PB=1024 --model=rnnpbnmt --p_reset=0.10 \

--dropout=0.40'

train="$run $training $rnnpb_training"

easy50000

$train $train_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/train_log.txt

$train $train_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/train_log.txt

$train $train_easyfull --working_dir=rnnpbfull &> rnnpbfull/train_log.txt

$run $testing $test_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/test_log.txt

$run $testing $test_easyfull --working_dir=rnnpbfull &> rnnpbfull/test_log.txt

128 APPENDICES

M Sentence
T Tom told me he hasn 't done that yet .
R Tom told me he hasn 't done that yet .
S Tom told me he asked something done that yesterday .
T I want to see Tom again .
R I want to see Tom again .
S I want to see Tom again .
T He was very busy all day .
R He was very busy all day .
S He was very busy all day .
T We were at school together .
R We were able to swim .
S We were at school together .
T I 'm sorry for this .
R I 'm sorry for this .
S I 'm sorry for this .
T Her hair is long .
R Her dinner is long .
S Her hair is long .
T Tom and Mary were alone in the park .
R Tom and Mary were alone .
S Tom and Mary were alone in the park .
T How long do I have to stay ?
R How long do I have to stay ?
S How long do I have to stay ?
T You want me to go , don 't you ?
R You want me to have , not we do it .
S You want me to go , don 't you ?
T It can 't be that bad .
R It can 't be that bad .
S It can 't be that bad .

Table A7: Experiment II – part 5, easy20000. Autoencoding with (R) RNNPB
model and (S) seq-to-seq model. T denotes the true sentence. The seq-to-seq
sentences are the same as in table A3.

.2. EXCERPTS 129

M Sentence
T Be nice to her .
R Be nice to her .
S Be nice to her .
T How come you know so much ?
R How come you know so much ?
S How come you know so much ?
T There 's something that I want to do before I leave .
R There 's something that that I want to do before .
S There 's something that I want to do before I leave .
T I can 't think of anything I 'd want from you .
R I can 't think of that I was supposed from you .
S I can 't think or say I 'd want from you .
T I think it 's better not to try it .
R I think it 's better not to do this .
S I think it 's better not not try it .
T This isn 't so difficult .
R This isn 't so difficult .
S This isn 't so difficult .
T I 've looked all over for Tom , but I can 't find him .
R I 've lost my watch , but I can 't find him .
S I 've almost came until for Tom , but I can 't find him .
T Is he going to make it ?
R Is he going to make it ?
S Is he going to make it ?
T That hurts ! Stop it !
R That hurts !
S That happened dangerous chair up !
T Tom and Mary both know how to swim .
R Tom and Mary both know how to swim .
S Tom and Mary both know how to swim .

Table A8: Experiment II – part 5, easy50000. Autoencoding with (R) RNNPB
model and (S) seq-to-seq model. T denotes the true sentence. The seq-to-seq
sentences are the same as in table A4.

130 APPENDICES

M Sentence
T Use the manual override .
R Open your hands unattended .
S Use the White anthem .
T The new tunnel will link Britain and France .
R I 'm tired of the world .
S The new clients will commit Britain and France .
T I don 't think Tom speaks French .
R I don 't understand Tom anymore .
S I don 't think Tom speaks French .
T He sometimes goes to Tokyo on business .
R Tom often goes to school on Sundays .
S He sometimes goes to Tokyo on his
T Tom 's fingerprints were on the gun .
R Tom seems to be in the hospital .
S Tom 's graduation were on the gun .
T I want to go to the zoo with Tom .
R I want to go to Boston with Tom .
S I want to go to the zoo with Tom .
T There 's no chance that he 'll recover .
R There 's no time that you need .
S There 's no chance that he 'll recover .
T This colony was founded in 1700 .
R This rule belongs out .
S This wonders was founded in 1843 .
T That was different .
R They were young .
S That was different .
T Tom doesn 't like you very much either .
R Tom doesn 't know Mary anymore .
S Tom doesn 't like you very much either .

Table A9: Experiment II – part 5, easyfull. Autoencoding with (R) RNNPB
model and (S) seq-to-seq model. T denotes the true sentence. The seq-to-seq
sentences are the same as in table A5.

.2. EXCERPTS 131

Listing 4: The run script used for experiment III, part 1, testing English-to-
German translation with the easy subsets. Excerpts from the test results are
given in table A7-A9.

mkdir rnnpb20000

mkdir rnnpb50000

mkdir rnnpbfull

mkdir encdec20000

mkdir encdec50000

mkdir encdecfull

easy20000=../../data/easy/easy20000

easy50000=../../data/easy/easy50000

easyfull=../../data/easy/easy-full

train_easy20000="--train_set1=$easy20000/train.en --train_set2=$easy20000/train.de \

--dev_set1=$easy20000/dev.en --dev_set2=$easy20000/dev.de"

train_easy50000="--train_set1=$easy50000/train.en --train_set2=$easy50000/train.de \

--dev_set1=$easy50000/dev.en --dev_set2=$easy50000/dev.de"

train_easyfull="--train_set1=$easyfull/train.en --train_set2=$easyfull/train.de \

--dev_set1=$easyfull/dev.en --dev_set2=$easyfull/dev.de"

test_easy20000="--test_set=$easy20000/test.en"

test_easy50000="--test_set=$easy50000/test.en"

test_easyfull="--test_set=$easyfull/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --embedding_size=128 --units=256 --num_layers=2 \

--learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 --gradient_clip=1.0 \

--beam_size=10 --early_stopping_steps=20 --vocab1_max=30000 --vocab2_max=30000'

testing='--do_testing --device=cpu'

rnnpb_training='--pb_learning_rate=0.01 --binding_strength=1.0 --bind_hard \

--max_recog_epochs=100 --num_PB=1024 --p_reset=0.10 --dropout=0.40 \

--model=rnnpbnmt'

encdec_training='--reverse_source --model=encdec'

train_rnnpb="$run $training $rnnpb_training"

train_encdec="$run $training $encdec_training"

easy20000

$train_encdec $train_easy20000 --working_dir=encdec20000 &> encdec20000/train_log.txt

$train_rnnpb $train_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/train_log.txt

easy50000

$train_encdec $train_easy50000 --working_dir=encdec50000 &> encdec50000/train_log.txt

$train_rnnpb $train_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/train_log.txt

132 APPENDICES

easyfull

$train_encdec $train_easyfull --working_dir=encdecfull &> encdecfull/train_log.txt

$train_rnnpb $train_easyfull --working_dir=rnnpbfull &> rnnpbfull/train_log.txt

Test

$run $testing $test_easy20000 --working_dir=encdec20000 &> encdec20000/test_log.txt

$run $testing $test_easy20000 --working_dir=rnnpb20000 &> rnnpb20000/test_log.txt

$run $testing $test_easy50000 --working_dir=encdec50000 &> encdec50000/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb50000 &> rnnpb50000/test_log.txt

$run $testing $test_easyfull --working_dir=encdecfull &> encdecfull/test_log.txt

$run $testing $test_easyfull --working_dir=rnnpbfull &> rnnpbfull/test_log.txt

.2. EXCERPTS 133

M Sentence
TE I was at home .
TG Ich war zu Hause .
R Ich war nach Boston .
S Ich war zu Hause .
M Ich war zu Hause .
TE We 'll wait .
TG Wir werden warten .
R Wir müssen gehen .
S Wir werden warten .
M Wir werden warten .
TE Did you like Boston ?
TG Hat es Ihnen in Boston gefallen ?
R Hast du das helfen ?
S Bist du in Boston ?
M Hast du in Boston gefallen ?
TE I 'm really sorry about that .
TG Das tut mir wirklich leid .
R Das kann mir leid .
S Es tut mir leid .
M Es tut mir wirklich leid .
TE Tom is happy again .
TG Tom ist wieder glücklich .
R Tom ist nicht da .
S Tom ist sehr glücklich .
M Tom ist wieder glücklich .
TE You can 't buy anything if you have no money .
TG Man kann nichts kaufen , wenn man kein Geld hat .
R Du bist nicht mehr Zeit sein .
S Du kannst mich besser besser , wenn du nicht war .
M Du kannst , wenn du nichts gekauft habe kein Geld .
TE You are not a child any more .
TG Du bist kein Kind mehr .
R Es ist nicht so groß .
S Du bist nicht viel mehr .
M Du bist kein Kind mehr .
TE We 're still very busy .
TG Wir haben noch immer viel zu tun .
R Es ist sehr groß .
S Wir sind keine Angst .
M Wir sind noch sehr beschäftigt .

134 APPENDICES

TE Did you see it ?
TG Haben Sie es gesehen ?
R Hast du das machen ?
S Hast du es gesehen ?
M Hast du das gesehen ?
TE Tom is a dear friend .
TG Tom ist ein lieber Freund .
R Tom ist krank .
S Tom ist ein Bruder .
M Tom ist ein dear Freund .

Table A10: Experiment III - easy20000, translation with (R) RNNPB model and
(S) seq-to-seq model. TE and TG denotes the true sentences in English and
German, respectively.

.2. EXCERPTS 135

M Sentence
TE I think I know what you need .
TG Ich glaube , ich weiß , was du brauchst .
R Ich weiß genau , was ich gesagt hat .
S Ich glaube , du weißt , was du willst .
M Ich denke , ich weiß , was du brauchst .
TE I met Tom for the first time three days ago .
TG Ich habe Tom zum ersten Mal vor drei Tagen getroffen .
R Ich habe Tom gefunden .
S Ich habe Tom das letzte Woche verpasst .
M Ich traf Tom zum ersten Mal vor drei Tagen .
TE When they 're happy , we 're happy .
TG Wenn sie glücklich sind , sind wir glücklich .
R Es ist schwierig .
S Wenn sie glücklich wäre , ist glücklich .
M Wann Sie sind glücklich , wir sind glücklich .
TE I don 't understand what she wants me to do .
TG Ich verstehe nicht , was sie will , dass ich tue .
R Ich glaube nicht , dass ich das getan hat .
S Ich verstehe nicht , was ich will .
M Ich verstehe nicht , was sie will mich zu tun .
TE I can 't be something I 'm not .
TG Ich kann nichts sein , was ich nicht bin .
R Ich weiß nicht , was ich bin .
S Ich kann nicht tun , nicht .
M Ich kann nicht bin ich nicht etwas sein .
TE " What 's your name ? " I asked .
TG " Wie ist Ihr Name ? " , fragte ich .
R Es ist gefährlich , oder ?
S Mein Vater ist das erste erste Mal .
M Wie ist Ihr Name ? ” - ” Ich gefragt .
TE What are you doing here so early ?
TG Was macht ihr hier so früh ?
R Bist du noch böse ?
S Was machst du hier so früh ?
M Was machst du hier so früh ?
TE Where can I find Tom ?
TG Wo kann ich Tom finden ?
R Wo hat Tom gefunden ?
S Wo kann ich Tom finden ?
M Wo kann ich Tom gefunden ?

136 APPENDICES

TE Tom stopped reading for a moment .
TG Tom hörte für einen Moment auf zu lesen .
R Tom geht ein guter Freund .
S Tom hörte zu warten .
M Tom hörte auf zu lesen für einen Moment .
TE I hope you know that .
TG Ich hoffe , Sie wissen das .
R Ich frage mich , was ich will .
S Ich hoffe , du weißt das .
M Ich hoffe , du weißt das .

Table A11: Experiment III - easy50000, translation with (R) RNNPB model and
(S) seq-to-seq model. TE and TG denotes the true sentences in English and
German, respectively.

.2. EXCERPTS 137

M Sentence
TE They set to work at once .
TG Sie machten sich sogleich ans Werk .
R Tom und Maria sind zusammen .
S Sie weigerten sich um die Arbeit .
M Sie machten sich umgehend an die Arbeit .
TE He 's a gambler .
TG Er ist ein Spieler .
R Er war ein <UNK> .
S Er ist ein <UNK> .
M Er ist ein Spieler .
TE Where can I find an ATM ?
TG Wo finde ich einen Geldautomat ?
R Was hast du angefangen ?
S Wo kann ich das kaufen ?
M Wo ist der nächste Geldautomat ?
TE She has a daughter whose name is Mary .
TG Sie hat eine Tochter , die Maria heißt .
R Tom hatte ein <UNK> .
S Sie hat einen Freund , die Maria heißt .
M Sie hat eine Tochter , dessen Name ist Maria .
TE Everyone on the bus was asleep except the driver .
TG Außer dem Fahrer schliefen alle im Bus .
R Danke für mich .
S Alle auf dem Fenster kam eingeschlafen .
M Jeder in den Bus ein schlief , bis der Fahrer .
TE You still owe me one .
TG Du bist mir noch etwas schuldig .
R Du hast mir ein paar Fragen gekauft .
S Ihr habt mir noch immer einen Dummkopf .
M Du schuldest mir noch einen .
TE I won 't be coming back .
TG Ich werde nicht wiederkommen .
R Ich habe Tom gesehen .
S Ich werde nicht zurückkommen .
M Ich werde nicht wiederkommen .
TE Even though he apologized , I 'm still furious .
TG Obwohl er sich entschuldigt hat , bin ich immer noch wütend .
R Der Mann war sehr groß .
S Obwohl ich wütend bin , bin ich nicht böse .
M Obwohl er entschuldigte sich , ich bin immer noch wütend .

138 APPENDICES

TE Did I interrupt something ?
TG Habe ich dich bei etwas gestört ?
R Kann ich dir helfen ?
S Habe ich etwas mitgebracht ?
M Habe ich etwas unterbrechen ?
TE According to the paper , it will snow tomorrow .
TG Der Zeitung zufolge soll es morgen schneien .
R Meine Mutter ist ein <UNK> .
S Am folgenden Uhr wird es morgen schneien .
M In der Zeitung steht , es wird morgen schneien .

Table A12: Experiment III - easyfull, translation with (R) RNNPB model and
(S) seq-to-seq model. TE and TG denotes the true sentences in English and
German, respectively.

.2. EXCERPTS 139

Listing 5: The run script used for experiment III, part 2, testing English-to-
German translation with the WMT dataset. Excerpts from the test results with
the small RNNPB and seq-to-seq models are given in table A13.

mkdir encdec-large

mkdir rnnpb-large

mkdir encdec

mkdir rnnpb

wmt=../../data/wmt

train_wmt="--train_set1=$wmt/train.en --train_set2=$wmt/train.de \

--dev_set1=$wmt/dev_short.en --dev_set2=$wmt/dev_short.de"

test_wmt="--test_set=$wmt/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 \

--gradient_clip=1.0 --beam_size=10 --early_stopping_steps=10 --vocab1_max=30000 \

--vocab2_max=30000'

testing='--do_testing --device=cpu'

rnnpb_training='--pb_learning_rate=0.01 --binding_strength=1.0 --bind_hard \

--max_recog_epochs=100 --num_PB=1024 --p_reset=0.10 --dropout=0.40 \

--model=rnnpbnmt'

encdec_training='--reverse_source --model=encdec'

train_encdec="$run $training $encdec_training $train_wmt"

train_rnnpb="$run $training $rnnpb_training $train_wmt"

$train_encdec --working_dir=encdec-large --embedding_size=512 --units=1024 \

--num_layers=4 &> encdec-large/train_log.txt

$train_rnnpb --working_dir=rnnpb-large --embedding_size=512 --units=1024 \

--num_layers=4 &> rnnpb-large/train_log.txt

$train_encdec --working_dir=encdec --embedding_size=128 --units=256 \

--num_layers=2 &> encdec/train_log.txt

$train_rnnpb --working_dir=rnnpb --embedding_size=128 --units=256 \

--num_layers=2 &> rnnpb/train_log.txt

$run $testing $test_wmt --working_dir=encdec-large &> encdec-large/test_log.txt

$run $testing $test_wmt --working_dir=rnnpb-large &> rnnpb-large/test_log.txt

$run $testing $test_wmt --working_dir=encdec &> encdec/test_log.txt

$run $testing $test_wmt --working_dir=rnnpb &> rnnpb/test_log.txt

140 APPENDICES

M Sentence
TE Munich 1856 : Four maps that will change your view of the city
TG München 1856 : Vier Karten , die Ihren Blick auf die Stadt verändern
R <UNK> <UNK>

S <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK>

M München 1856 unternommene : Vier Karten , die Veränderung Ihrer
Meinung nach der Stadt

TE A mental asylum , where today young people are said to meet .
TG Eine Irren-Anstalt , wo sich heute Jugendliche begegnen sollen .
R <UNK> <UNK> , vor allem in den USA , in denen die <UNK> in den

letzten Jahren in den letzten zehn
S Ein <UNK> , in dem die Menschen leben , so wie sie leben .
M Eine psychische Asyl , wo junge Menschen sind heute zu erfüllen .
TE A crypt chapel , where they are now digging tunnels for the S-Bahn .
TG Eine Gruftkapelle , wo nun für den S-Bahn-Tunnel gegraben wird .
R Das <UNK> ist ein <UNK> für das <UNK> .
S Eine <UNK> , die sich <UNK> , <UNK> , <UNK> <UNK> .
M Eine crypt Chapel , wo sie jetzt gräbt Tunnel für die S-Bahn .
TE Allotment holders cultivate the soil of former farmers .
TG Kleingärtner bewirtschaften den einstigen Grund von Bauern .
R Eine <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> .
S <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> .
M Die Inhaber kultivieren allotment der Boden des ehemaligen Bauern .
TE The oldest official map of Munich brings captivating stories to light .
TG Die älteste offizielle Karte Münchens fördert spannende Geschichten zu

Tage .
R Der <UNK> <UNK> <UNK> <UNK> ist in der Lage .
S Der <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> .
M Die älteste offizielle Landkarte von München bringt captivating

Geschichten ans Licht .
TE It is annoying when geographical maps are not up-to-date .
TG Es nervt , wenn Landkarten nicht aktuell sind .
R Es ist kein Zufall , warum es darum geht , dass es darum geht .
S <UNK> <UNK> <UNK> <UNK> <UNK> <UNK> .
M Ist es nervig als geographische Karten sind nicht aktuellen .

.2. EXCERPTS 141

TE Anyone who has ever got worked up because the car 's sat-nav is
showing a green field instead of a bypass knows that .

TG Das kennt jeder , der sich schon mal aufregen musste , weil das
Auto-Navi statt einer Umgehungsstraße eine grüne Wiese anzeigte .

R Es gibt keinen Grund , warum es darum geht , dass es darum geht ,
dass es darum geht , einen <UNK> zu verhindern .

S Wer behauptet , ist , dass die <UNK> das <UNK> <UNK> , das die
Menschen <UNK> , wenn sie <UNK> .

M Jeder , der je hat funktioniert , weil das Auto der sat-nav zeigt eine
grüne Feld statt weiß , dass ein umgehen .

TE The historical maps of the digital BayernAtlas , an offering from the
State Government 's Geoportal Bayern , are anything but

up-to-date - and yet it is precisely for this reason that they are so
informative .

TG Die historischen Landkarten des digitalen Bayern-Atlases , ein
Angebot des Geoportals Bayern der Staatsregierung , sind alles andere

als aktuell - doch gerade deshalb sehr aufschlussreich .
R Die <UNK> der <UNK> von <UNK> und <UNK>

S Die größten <UNK> der <UNK> , die <UNK> <UNK> , <UNK> <UNK> , ist
nicht so gut wie möglich .

M Die historische Landkarten der digitalen BayernAtlas , ein , von der
Regierung die Geoportal Bayern , sind alles andere als aktuelle - und

dennoch ist es genau aus diesem Grund , dass sie so informative .
TE Especially when one compares them with current online maps .
TG Besonders wenn man sie mit aktuellen Online-Karten vergleicht .
R Angesichts der Tatsache , dass sie in der Lage sind , sich in der Lage

sind
S Im Gegensatz zu einem gewissen Grad an den <UNK> .
M Insbesondere , wenn man sie mit aktuellen online Karten vergleicht .
TE Then it becomes clear how the towns and municipalities in the

distribution area of Munich 's Merkur newspaper have changed
since the 19th century .

TG Dann wird deutlich , wie sich Städte und Gemeinden im
Verbreitungsgebiet des Münchner Merkur seit dem 19. Jahrhundert

verändert haben .
R Zunächst ist der Ansicht , dass die <UNK> <UNK> und <UNK> <UNK>

<UNK> <UNK> .
S Dann ist es wichtig , dass die <UNK> und <UNK> in den späten 1970er

Jahren in der Geschichte des 20. Jahrhunderts <UNK> .
M Dann wird es klar , wie die Städte und Gemeinden in der Verteilung

von München Bereich der Merkur Zeitung geändert haben seit dem 19.
Jahrhundert .

Table A13: Experiment III - WMT, translation with (R) RNNPB model and (S)
seq-to-seq model. TE and TG denotes the true sentences in English and German,
respectively.

142 APPENDICES

Listing 6: The run script used for experiment IV, part 1, autoencoding with
monolingual training with the easy50000 dataset. Excerpts from the test results
are given in table A14.

mkdir rnnpb-0.60

mkdir rnnpb-0.50

mkdir rnnpb-0.40

mkdir rnnpb-0.30

mkdir rnnpb-0.20

mkdir rnnpb-0.10

easy50000=../../data/autoenc/easy50000

train_easy50000="--train_set1=$easy50000/train.en --train_set2=$easy50000/train.en \

--dev_set1=$easy50000/dev.en --dev_set2=$easy50000/dev.en"

train_easymono="--mono_set1=$easy50000/mono.en --mono_set2=$easy50000/mono.en"

test_easy50000="--test_set=$easy50000/test.en"

run='python3 -u ../../nmt.py'

training='--do_training --embedding_size=128 --units=256 --num_layers=2 \

--learning_rate=0.001 --batch_size=64 --max_trans_ratio=1.5 --gradient_clip=1.0 \

--beam_size=10 --early_stopping_steps=20 --vocab1_max=30000 --vocab2_max=30000'

testing='--do_testing --device=cpu'

rnnpb_training='--pb_learning_rate=0.01 --binding_strength=1.0 --bind_hard \

--max_recog_epochs=100 --num_PB=1024 --p_reset=0.10 --dropout=0.40 \

--model=rnnpbnmt'

train="$run $training $rnnpb_training $train_easy50000 $train_easymono"

$train --working_dir=rnnpb-0.60 --p_mono=0.60 &> rnnpb-0.60/train_log.txt

$train --working_dir=rnnpb-0.50 --p_mono=0.50 &> rnnpb-0.50/train_log.txt

$train --working_dir=rnnpb-0.40 --p_mono=0.40 &> rnnpb-0.40/train_log.txt

$train --working_dir=rnnpb-0.30 --p_mono=0.30 &> rnnpb-0.30/train_log.txt

$train --working_dir=rnnpb-0.20 --p_mono=0.20 &> rnnpb-0.20/train_log.txt

$train --working_dir=rnnpb-0.10 --p_mono=0.10 &> rnnpb-0.10/train_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.60 &> rnnpb-0.60/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.50 &> rnnpb-0.50/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.40 &> rnnpb-0.40/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.30 &> rnnpb-0.30/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.20 &> rnnpb-0.20/test_log.txt

$run $testing $test_easy50000 --working_dir=rnnpb-0.10 &> rnnpb-0.10/test_log.txt

.2. EXCERPTS 143

M Sentence
T Be nice to her .
R Be nice to her .
S Be nice to her .
T How come you know so much ?
R How come you know so much ?
S How come you know so much ?
T There 's something that I want to do before I leave .
R There 's that that I want to do before I leave .
S There 's something that I want to do before I leave .
T I can 't think of anything I 'd want from you .
R I can 't think I 'd want to say in you .
S I can 't think or say I 'd want from you .
T I think it 's better not to try it .
R I think it 's better not to try it .
S I think it 's better not not try it .
T This isn 't so difficult .
R This isn 't so difficult .
S This isn 't so difficult .
T I 've looked all over for Tom , but I can 't find him .
R I 've looked all over for Tom , but I can 't find him .
S I 've almost came until for Tom , but I can 't find him .
T Is he going to make it ?
R Is he going to make it ?
S Is he going to make it ?
T That hurts ! Stop it !
R That is coming !
S That happened dangerous chair up !
T Tom and Mary both know how to swim .
R Tom and Mary both know how to swim .
S Tom and Mary both know how to swim .

Table A14: Experiment IV. Autoencoding with (R) RNNPB model and (S) seq-
to-seq model, using monolingual data for the RNNPB model. T denotes the true
sentence. The seq-to-seq sentences are the same as in table A4.

