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Abstract

In this thesis, we consider distributed, reactive and collaborative services. In
such services, two or more entities (components) interact in order to achieve
their objectives. The primary goal of this thesis is to provide a methodol-
ogy comprising abstract notations and tools that support the domain and
enable rapid development of situated collaborative services. The following
challenges have been identified.

• Finding generic architectural concepts and services.

• Finding suitable methods for specification and design of services and
components.

• Defining mechanisms for composing smaller unit of specifications into
composite units.

• Defining mechanisms for transforming abstract service specifications
into more detailed specifications until application code can be auto-
matically generated.

The proposed methodology consists of three types of models:

• Structural models that specify the structure of collaborating entities
in a service. UML collaboration and collaboration uses are used for
this purpose.

• Service behavioral models, also called choreography, that specify the
global behavior among collaborating entities in a service. UML activ-
ity diagram are used for that purpose.

• Orchestration models, also called component behaviors, that specify
the local behavior of each collaborating entity in a service. Orches-
tration models are also specified using UML activity diagrams.
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We distinguish between flow-global choreography and flow-localized chore-
ography. The flow-global choreography is intended to be used together with
domain experts to define and validate the desired global behavior of services.
Mechanisms are proposed to automatically transform flow-global specifica-
tions into the more detailed flow-localized choreography that considers coor-
dination details needed for distributed realization and also helps to analyze
the realizability of choreography models.

Methods to synthesize reusable components and their orchestrations
from choreography models are proposed. The proposed methodology also
consists of the methods to compose these reusable components together via
their local interfaces or external interfaces (also called semantic interfaces)
in order to design composite components and systems. The concepts of se-
mantic interfaces facilitates dynamic lookup and binding to heterogeneous
components.

From a service or a system model, one can automatically generate ap-
plication code using existing tools and techniques.

The evaluation of the proposed methodology is performed by developing
proof of concept applications, by analyzing use cases, and by using logical
reasonings.
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Chapter 1

Introduction

The work presented in this thesis is performed within the context of FAB-
ULA project which is part of a multidisciplinary effort among the Depart-
ment of Telematics, the Department of Information and Computer Science,
and the Program for Learning with ICT at the Norwegian University of Sci-
ence and Technology. The principal objective of the FABULA project was
to develop novel principles and solutions for situated collaborative learn-
ing services [Fab]. The work presented here contributed to the project by
providing a set of methods and mechanisms to design and develop situated
collaborative learning services rapidly and flexibly.

A well known principle in system development and in the design sci-
ence (c.f. Section 1.2) research method is to start by analyzing a problem
domain rather than directly creating an artifact for a particular purpose.
Analysis of the domain (c.f. Section 1.1) revealed that it is hard to pinpoint
any characteristics that sets situated collaborative learning services (SCLS)
apart from situated collaborative services (SCS) in general from a develop-
ment and delivery point of view. The main distinction is the content and the
application context of the service, not the fundamental nature. Although
motivated by the situated collaborative learning services (SCLS) domain,
the problems and solutions discussed in this thesis apply to SCS in general.
Therefore the learning aspect itself will not be elaborated in this thesis.

In the following, we start by introducing the domain. Research problems
are then formulated. Thereafter the research method is explained including
the design and development of artifacts and their evaluation. Finally a
summary of scientific publications is given.
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1.1 Motivating Domain Example

To illustrate the notion of SCLS, we consider city-wide collaborative learn-
ing [CD09, KB09]. In city-wide collaborative learning, users learn by engag-
ing in informal collaborative activities that are enabled by mobile devices
and location technologies, unlike in traditional learning where learning im-
plies sitting in a classroom or reading a book. Users work together on
collaborative tasks outside the classroom, contributing their fair share to
the learning activities. They perform activities and access learning objects
depending on their situation in terms of location and state.

We foresee that situatedness enabled by location technologies and col-
laborative activities is playing an important role in changing the way that
learners learn, leading to a paradigm shift in learning processes. The fol-
lowing are some indicators [Fab, KB09]:

• Users are being more mobile and at the same time connected, enabled
by mobile technologies.

• Learning materials are being digitized and supported by computers
and a wide range of handheld devices. Therefore learning material is
becoming available anytime and anywhere.

• Networking has enabled distance education and collaboration among
geographically distributed people.

• Social networking has enabled communities and awareness.

• Mobile and location technologies allow location and context to be
considered in learning activities.

The technological challenge is to develop appropriate means allowing
users to interact with other people and learning resources, supporting dif-
ferent social structures and collaborative knowledge creation, supporting
the informal nature of learning rather than traditional class-room based
settings, and engaging in exploratory activities and serendipitous incidents.
Services and systems should also allow the users to be able to ask, argue,
identify and solve problems; search for and utilize resources; share expertise
and learning experiences. On one hand domain users such as learners need
to be able to dynamically access situation specific services and learning ob-
jects. On the other hand domain experts such as teachers need mechanisms
that allows them to easily and rapidly develop services that support sit-
uated collaborative learning activities. This thesis addresses in particular
challenges from the perspective of service design and development.
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The domain consists of passive as well as active objects. Passive objects
respond to requests while active objects can take independent initiatives
on their own to interact in a peer-to-peer fashion. This means that service
providers not only provide services that respond to request from requestors
but also services that are able to take situation specific initiatives providing
for instance a recommendation service. The domain objects may be log-
ically and physically separated, autonomous and heterogeneous, and may
concurrently interact with each other and with their environments.

Services provided for this domain should allow learners to interact not
only with other learners and groups of learners, but also with situation
specific learning objects and other resources such as maps. Due to the
dynamic nature of learning situations in city-wide collaborative learning,
accessible learning resources are continuously changing. Learning activities
are not static but changing depending on the topic at hand, the chosen
pedagogical approach and available learning resources. This means that
the need for supporting services will vary. Therefore it is important to
have mechanisms to compose and develop services easily and flexibly. It
is desirable that service composition can be performed by end-users such
as teachers or learners themself. Therefore it is important that service
composition can be performed in terms close to the domain, rather than
in technical terms. This thesis has not addressed end-user aspects fully
however it only provides a sound basis that can enable this in the future.

The services are distributed and reactive in nature and the development
of such distributed reactive services is complex and error-prone process.
Therefore being able to flexibly and rapidly develop such services is certainly
a big challenge.

1.1.1 Domain Entities

The core domain entities in the case of city-wide collaborative learning are
illustrated in Figure 1.1 and considered to be the following:

• Users are those who use the system. They can be learners who dy-
namically access and use services to achieve their learning goals. Users
are mobile and at the same time connected to each other, and play-
ing active roles in learning activities. Users can be composers such as
teachers and administrators who compose learning services for learn-
ers. There is a challenge to provide proper notations and tools for
service composers in order to enable rapid and flexible composition of
services.
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Figure 1.1: Overview of the domain

• Social configurations represent sets of users such as groups and meet-
ing places, c.f. [KB09]. The social configurations enable users to par-
ticipate in collaborative activities and contribute their fair share.

• Learning objects (LO) represent any digital or non-digital entity that
can be used for learning. Learning objects can be classified as active
and passive, and also situated and general. Active learning objects
represent learning objects that can take a proactive role (i.e. take
initiatives on their own) towards users in learning activities. Such
learning objects are different from traditional passive objects such as
web pages. Situatedness means that learning objects are accessible
depending on and/or adapting to user situation.

• Enablers such as mobile devices that enable users to access basic ser-
vices (such as SMS, chat, etc) and situation specific application ser-
vices.

• Platforms where services and components are deployed and executed.
The purpose of a platform is normally to provide runtime support
for service execution, typically communication and scheduling. The
platform should allow flexible and dynamic composition of services
based on existing ones.

1.1.2 Services and Characteristics

A service is considered as “an identified functionality aiming to establish
some desired goals/effects among collaborating entities” [BCLR10, KLB12].
In the case of city-wide collaborative learning, services support learning
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Figure 1.2: Cross-cutting nature of collaborative services

activities that typically cross-cut several domain entities such as users, social
configurations, and learning objects. Services can be basic functionalities
such as chat, SMS, and document sharing that can be reused in different
situation specific applications. Services can also be specific applications
involving other smaller services and activities.

Regardless of the particular learning objects and learning objectives, the
city-wide collaborative learning domain is about collaboration, mobility and
localization. Two or more entities in the domain collaborate and interact
with each other in order to achieve some learning objectives. In general, a
service to support this can be classified as a situated collaborative service.

The cross-cutting nature of collaborative services is illustrated in Fig-
ure 1.2. On one hand a service cross-cuts a set of components and on the
other hand a component may participate in more than one service. For
example, the Position Service is spanning over the User and Group compo-
nents; and the User component contains two inner components (also called
roles in the following) userpos and userquiz thus providing behaviors and
interfaces for the Position Service and the Quiz Service respectively.

As the city-wide collaborative learning domain is dynamic, the compris-
ing SCS services may come and go, appear and disappear, or be instantiated
and destroyed. However, relatively stable domain entities such as users and
social configurations are always there. Use of stable domain entities pro-
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vides an architectural basis that remains stable and can accommodate a
wide range of services and situations adding flexibility and extensibility to
a system or platform. Therefore finding generic and stable components is a
very important step in system engineering. At the same time it is necessary
and challenging to incrementally add cross-cutting service behaviors to the
stable entities while avoiding undesired interactions with already existing
services.

1.1.3 Service Development Paradigm

Traditionally, software developers or programmers develop systems (con-
sisting of software components) as per the specific user requirements. Now
the software development paradigm is gradually changing allowing the end
users and domain experts to participate more actively in development.

Domain experts such as teachers may need to compose services (or ap-
plications) on their own as per their requirements. Proper notations, mech-
anisms and tool support is then needed to support the process from the
specification and composition of services to application code generation. It
is desirable to provide reusable pieces of functionalities encapsulated in ab-
stract building blocks so that non-technical service composers can compose
them together by drag-drop. The whole process needs to be as automatic
as possible.

The result of this thesis provides a step in this direction by providing
abstract notations and tools that support the domain and hide technical
details as much as possible.

In this thesis we have taken as a hypothesis that previous work on col-
laboration based development [SCKB05, Cas08, Kra08] provides a suitable
foundation for the specification of collaborative services. This was confirmed
by the early demonstrators, and thus we have set out to contribute to its
improvement.

1.2 Research Method

The research method is based on the guidelines from design science re-
search [HMPR04]. Design science is a problem solving process [HMPR04].
It requires the creation of an innovative, purposeful artifact for a special
problem domain. In IT systems, such artifacts may include models, meth-
ods, and instantiations. The artifact must be rigorously defined, formally
represented, coherent, and internally consistent [HMPR04]. The artifact
must be evaluated in order to ensure its utility for the specified problem. In
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order to form a novel research contribution, the artifact must either solve
an unsolved problem, or provide a more effective or efficient solution to a
known problem. Both the construction and evaluation of the artifact must
be done rigorously, and the results of the research must be communicated
effectively to appropriate audiences.

Considering insights from Peffers et al., 2007 [PTRC08], the research
presented in this thesis is organized around five major activities as illus-
trated in Figure 1.3. These activities are briefly discussed in the following:

Problem 
Identification

Design 
& 

Development

Evaluation

Demonstration

Communication

[iterate]

[communicate]

Figure 1.3: Research method based on design science

Problem identification and motivation: This is the beginning where the
domain is analyzed and problems are identified. This gives an indication of
the type of the artifact to be developed for example services, components
and platform in order to effectively provide a solution. Problem specification
is given in Section 1.3.

Design and development : This activity is about the design and develop-
ment of artifacts for providing effective solution to a problem. The artifacts
may include services and component models, methods to develop them, and
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their instantiations. We determine and identify the desired functionalities
of artifacts, their architecture, and we discuss a method creating the artifact
itself. The method to develop services and components is the main focus of
this thesis and is briefly outlined in Section 1.4 and explained in Chapter 2.

Demonstration: This activity demonstrates the uses of artifacts to solve
a given problem. We have used experiments and case studies that are briefly
outlined in Section 1.5 and explained in Chapter 3.

Evaluation: This activity measures how well the artifact provides a so-
lution to the problem. A comparison can be done with existing solutions or
artifacts in terms of functionalities, performance metrics, budgets, result of
satisfaction surveys, empirical evidences, logical proofs, etc. After evalua-
tion one can decide whether to iterate back to improve the effectiveness of
an artifact or to communicate the results. In our case, evaluation is based
on proof of concept demonstrators, evaluation of case studies and using log-
ical reasonings. This is briefly introduced in Section 1.5 and explained in
Chapter 3.

Communication: This activity comprises communication in terms of sci-
entific publications. In each publication one needs to communicate to other
researchers and audiences the problem and its importance; the artifact, its
utility and its novelty, rigor of its design, and its effectiveness. The list of
scientific publications included in this thesis is briefly outlined in Section 1.6
and explained in Part II.

1.3 Research Questions

The main problem addressed is formulated as the following main research
question (RQ): how to rapidly and flexibly design and develop situated, col-
laborative services and components?. This research question is further di-
vided into following sub-questions:

• RQ #1: What basic architectural components (elements) are needed
to provide situated collaborative services?

• RQ #2: How can the specification and design of situated collabo-
rative services be simplified1 from the perspective of a higher-level
service composer?

• RQ #3: How can services be flexibly composed from basic services
to satisfy specific needs?

1In terms of flexibility, heterogeneity, dynamicity, intuitivity and automatic synthesis.
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• RQ #4: How can abstract composite service specifications (also
called choreography specifications) be mapped to distributed realiza-
tions?

• RQ #5: How can composite components and systems be composed
from smaller components?

RQ 1 is about analyzing the domain. Design and development of ser-
vices and components from a composers perspective is addressed in RQ 2
and RQ 5. Composition of services and components from smaller units are
addressed in with RQ 3 and RQ 5. Synthesis of components from choreog-
raphy models is dealt with in RQ 4. Note that service developers design and
realize services and components. Users such as learners use services, and
situated learning objects (a kind of components). Services and components
are deployed on a delivery platform.

1.4 Design and Development Methodology

In order to answer the research questions mentioned above, a methodology,
i.e. a set of methods to develop services and components is investigated
assuming that services are reactive in nature and components participate
and adapt in situation specific services and may take initiatives on their
own.

The methodology is based on the principles of model-driven develop-
ment (MDD). MDD supports the software development process by creating
models on different levels of abstraction and platform independence. Devel-
opers first develop more abstract models specifying the pure functionality
of a particular solution but hiding aspects of the later realization. These
models are then transformed into more detailed and implementation specific
models. Based on the refined models, application code can be generated for
different platforms. Using MDD, one can thus support a higher degree of
automation allowing the service developer to focus on the service behavior
rather than the implementation detail.

The term choreography is used to denote global behavior involving two
or more participants, and the term orchestration is used to denote the local
behavior of each participant. Choreography is needed to define and analyze
the global service behavior, whereas the orchestration is needed to com-
pletely define local component behaviors for implementation. Ideally the
choreography should be sufficiently precise and complete that component
behaviors can be automatically synthesized.
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Choreography is provided at two levels of abstraction: flow-global chore-
ography and flow-localized choreography. The flow-global choreography de-
fines the intended global behavior on a high level of abstraction avoiding
details of localization and resolution of coordination problems needed in
distributed realization. Flow-localized choreography defines a more detailed
global behavior that allows extensive analysis and to automatically synthe-
size orchestrations. Using code generation techniques, implementation code
can then be generated.

UML collaborations and collaboration uses are used to specify the struc-
ture of collaborating entities in a service. UML activity diagrams are used
for choreography and orchestration models. The service and component
models can be put into a repository for later reuse when composing larger
components and systems. Details of the design and development method-
ology is explained in Chapter 2.

1.5 Evaluations and Demonstration

The following aspects are considered important results:

• Platform architecture concepts, their identification and implementa-
tion.

• Notations and mechanisms for the specification and design of services.

• Service composition mechanisms from the perspective of domain ex-
perts.

• Model transformation techniques from flow-global choreography to
flow-localized models.

• Component synthesis techniques from choreography models

• Composition of components to make composite components and sys-
tem design models

These aspects are evaluated using: (1) Proof of concept demonstrators
in [KB09, KKB11, HKLB11], (2) Case studies for the analysis and design
in [KB10, KB11b, KLB11, KLB10], and (3) Logical justifications in [KB10]
and [KB11a]. Some existing tools, such as Ramses [Kra07] and Arctis [KSH09]
are used for modeling, model-checking, composition and code generation
purposes. ActorFrame [BHM02] is used as a middleware platform on top
of Java SE, J2ME and Android for execution and testing purposes. The
details of the evaluation is given in Chapter 3
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1.6 Scientific Contributions

The main contributions from this research are the following.

• C1: Identification of a set of basic components and services for se-
lected cases: city-wide collaborative learning in [KB09, KKB11, KB11b]
and European Rail Traffic Management System (ERTMS) in [KLB10,
KLB11, HKLB11].

• C2: Architectural platform concepts for situated collaborative learn-
ing in [KB09].

• C3: Methodology for flow-global choreography specification and de-
sign in [KB10, KB11b, KLB10].

• C4: Principles and rules for analyzing the realizability of flow-global
choreography specifications in [KB11a].

• C5: Principles and rules for mapping flow-global specification to flow-
localized specification in [KB10, HKLB11].

• C6: Mechanism for enabling component synthesis from choreography
specifications in [KLB10, KB10].

• C7: Mechanisms for composing components from smaller compo-
nents, and to perform system design by composing components to-
gether in [KLB11, KLB12].

The papers included in this thesis are the following:

P1: Surya Bahadur Kathayat and Rolv Bræk: Platform support for situ-
ated collaborative learning. In 1st International Conference on E-Learning,
Mobile Learning and Hybrid Learning (eLmL), Cancun, Mexico, 2009, 53-
60. IEEE Computer Society.
Relevance to this thesis: This paper identifies some of the platform
components and services and the variability needed for the situated collab-
orative learning. The paper partially answers research question RQ 1 and
provides foundation for C1 and C2.

P2: Frank Alexander Kraemer, Surya Bahadur Kathayat and Rolv Bræk:
Unified Modeling of Services Logic with User Interfaces. In International
Journal of Cooperative Information Systems, 20(2), 2011. World Scientific
Publishing.
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Relevance to this thesis: This paper presents our initial findings for
modeling and then composing user interfaces and service logic in a unified
way. The service logic is platform independent, while, user interface issues
are more dependent on the platform and device being used by the end users.
The paper partially answers research question RQ 2 and provides the input
to contribution C2.

P3: Surya Bahadur Kathayat and Rolv Bræk: From flow-global choreogra-
phy to component types. In System Analysis and Modeling (SAM), Oslo,
Norway, 2011. Lecture Notes in Computer Science, vol 6586, pp. 36-55.
Springer.

Relevance to this thesis: This paper identifies two levels of choreography
models. A set of transformation rules are proposed to transform from the
more abstract choreography models to the more detailed design models,
and to do the realizability check of abstract choreography models. Such
choreography models provides possibilities to derive reusable component
models. This paper partly answers research questions RQ 2 and RQ 4, and
provides input to contributions C3, C4 and C5.

P4: Surya Bahadur Kathayat, Hien Nam Le and Rolv Bræk: Automatic
Derivation of Components Using Choreographies - A Case Study. In Inter-
national Conference on Software Engineering (SE), Phuket, Thailand, 2010.
GSTF Digital Library.

Relevance to this thesis: This paper focuses on the detailed algorithm of
deriving component models from choreography models, in particular from
flow-localized choreography models. This paper partly answers research
question RQ 4, and provides input to contribution C6.

P5: Surya Bahadur Kathayat and Rolv Bræk: Modeling Collaborative Learn-
ing Services - A Case Study. In International Conference in Collaboration
Technologies and Systems (CTS), Philadelphia, USA, 2011, 326-333. IEEE
Computer Society

Relevance to this thesis: This paper presents an approach to model
collaborative learning services using UML collaboration and activity dia-
grams. A work-flow of learning activities is specified by ordering learning
services. Using such activity-flow models, one can design a learning activity
by applying various collaborative learning patterns such as the Jigsaw and
Pyramid pattern [ADH+04]. This paper partly answers research question
RQ 3, and provides input to contribution C3.
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P6: Surya Bahadur Kathayat, Hien Nam Le and Rolv Bræk: A Model-
driven Framework for Component-based Development. In 15th International
Conference on System Design Languages of the SDL Forum Society - In-
tegrating system and software modeling, Toulouse, France, 2011. Lecture
Notes in Computer Science, vol 7083, pp. 152-165. Springer.

Relevance to this thesis: This paper presents issues of the component
composition and system design. Two types of component interfaces are
considered: local interface and semantic interface. Mechanisms to design a
composite component by smaller reusable components are discussed ensur-
ing their compatibility via local interfaces. A system design is considered
as a composition of components where components interact via semantic
interfaces. This paper partly answers research question RQ 5, and provides
input to C7.

P7: Fenglin Han, Surya Bahadur Kathayat, Hien Nam Le, Rolv Bræk, and
Peter Herrmann: Towards Choreography Model Transformation via Graph
Transformation. In 2nd IEEE International Conference on Software En-
gineering and Service Sciences (ICSESS), Beijing, China, 2011, 508-515.
IEEE Computer Society.

Relevance to this thesis: This paper presents possibilities of using graph
transformation techniques to implement proposed model transformation
rules presented in this thesis. The model transformation rules transform
flow-global specification to flow-localized specification. This paper partly
answers research question RQ 4, and provides input to contribution C5.

P8: Surya Bahadur Kathayat, Hien Nam Le and Rolv Bræk: A Collab-
oration Based Model-Driven Approach for Business Service Composition.
In Handbook on Research of E-Business Standards and Protocols: Docu-
ments, Data and Advanced Web Technologies, chapter 27, pages 594-617.
Published in January 2012 by IGI Global.

Relevance to this thesis: This book chapter presents how the proposed
service engineering method can be used in the business service domain, as a
framework for composing business services. It discusses two complementing
dimension of compositions: service composition where a system is designed
as a composition of services, and component composition where a system is
composed from reusable components. Reusable components can be synthe-
sized from service models. Service composition models can also provide use-
ful information during compatibility check among composing components in
component composition. This paper partly answers research question RQ 3
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and RQ 5, and provides input to contributions C3 and C7.

P9: Surya Bahadur Kathayat and Rolv Bræk: Analyzing Realizability of
Choreographies Using Initiating and Responding Flows. In Model-Driven
Engineering, Verification, and Validation (MoDeVVA), Wellington, New
Zealand, 2011. ACM Digital Library.
Relevance to this thesis: This paper presents details of the realizability
and composition issues that needs to be solved when realizing the flow-global
choreography models. Mechanisms to detect problems and their resolutions
are proposed in terms of propositions and logical reasoning, and explained
using a case study. This paper partly answers research question RQ 4, and
provides input to contribution C4.

In a nutshell, the relationship between the contributions, research ques-
tions and published papers is shown in the Table 1.1.

Research Question Contribution Papers

RQ 1 C1, C2 P1

RQ 2 C3 P2, P3

RQ 3 C3, C7 P5, P8

RQ 4 C4, C5, C6 P4, P7, P9

RQ 5 C7 P6, P8

Table 1.1: Relationship between research questions and contributions

1.7 Outline of the Thesis

The thesis is organized into two main parts. The main body of the thesis is
presented in Part II as a collection of papers. Part I presents an overview
of the work in Part II, and is further structured as following:

• Chapter 1 (this chapter) presents the domain as motivation for the
service engineering method investigated in this thesis. Research ques-
tions are identified, and the research method is explained. An outline
of the proposed service engineering methodology, evaluation aspects,
scientific contributions and a summary of each selected papers is given.

• Chapter 2 provides a more detailed introduction to the proposed ser-
vice engineering method.

• Chapter 3 discusses evaluation of the various aspects of the service
engineering method presented in this thesis.
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• Chapter 4 gives a summary of related work.

• Chapter 5 provides a discussion and concluding remarks.
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Chapter 2

Service Engineering

The proposed model-driven service engineering approach is illustrated in
Figure 2.1. It consists of mainly three types of models - structural models,
choreography models and orchestration models.

• Structural models specify the structure of roles played by components
collaborating in a service.

• Choreography models specify the global service behavior in terms of
the ordering of sub-services and local actions.

• Orchestration models specify the local behavior of each role and com-
ponent.

The approach aims to provide support for abstract choreography mod-
els that are sufficiently precise and complete that component behaviors can
be automatically synthesized. A service composer (for example a domain
expert rather than a software developer or programmer) specifies service
behavior using high-level choreography models, called flow-global choreog-
raphy models. Flow-global choreography models can be transformed into
more detailed choreography models called flow-localized choreography mod-
els. The flow-localized choreography models allow extensive analysis and
to automatically synthesize component models, called orchestrators that
correspond to the roles. Orchestrators can then be composed together in
different ways in order to compose larger components and systems.

In the following sections, a detailed description of the overall approach
illustrated in Figure 2.1 is given.
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Figure 2.1: Overall approach - service design and development

2.1 Structural Models

UML collaborations are well suited to specify structural service models
[OMG09, Cas08, Kra08]. Collaborating entities in a service are represented
as collaboration roles, and lines between collaboration roles specify that the
roles interact with each other. When a service is composed from smaller
services, the sub-services are specified using the concept of collaboration use
where the roles of a collaboration use are bound to the roles of a composite
collaboration.

Services are classified as either elementary or composite services. El-
ementary services are not decomposed further into sub-services whereas a
composite service is composed from pre-defined services that are either el-
ementary or composite. Such pre-defined services are re-usable pieces of
functionality that may be used in different application settings or contexts.
Each service can be used as a building block that has associated structure
and behavior (c.f. Section 2.2).

A City Guide scenario is used in the following to illustrate a composite
service specification [KLB12]. Tourists in a city make use of their mobile
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devices to connect to a city guide server, download the City Guide service,
and learn about different places of interest around the city. The city guide
service provides different guided tours to tourists. During a guided tour, a
tourist may communicate with other tourist or groups of tourists who are
co-located or having similar interests. Based on the situation, user prefer-
ences and requests from the tourists, the system may also provide different
recommendation services for example recommending nearby restaurants and
museums.

WalkingTour Service

1

2

3

user

user

user

server

poi

poi

Information
Service

Location Service

Quiz Service Server
User

serveruser

Location Service

poiuser

Quiz Service

act WalkingTour Service

act Location Service act Quiz Service

Figure 2.2: Structural model of a walking tour service

The city guide service uses several pre-defined services, for example a
location service and a quiz service, that has been identified in a Treasure
Hunt Game [KB09] developed previously. The structural model of a Walking
Tour service (a part of the City Guide service described above) is shown in
Figure 2.2 where the numeric digits associated with collaboration uses are
just for simple referencing in this thesis.

• The Location Service allows users to continuously update their posi-
tion to the server.

• The Quiz Service establishes and manages a quiz service concerning
point-of-interests in a city.

• The Info Service allows users to retrieve or add additional information
about different points-of-interests.

One can see in Figure 2.2 that the roles of a collaboration use are bound
to the roles of an enclosing collaboration for instance that the user role and
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server role of the Location Service are bound to the User and the Server
of the Walking Tour service respectively. Similarly the roles user and poi
of the Quiz Service are bound to the roles User and Server of the Walking
Tour service.

A structural model also contains reference to the activity diagram defin-
ing the choreography given as (act “service name”) in a compartment below
the title. For example the choreography of the Walking Tour service is pro-
vided in the diagram referenced as act “Walking Tour Service” in Figure 2.2.

2.2 Choreography Models

The global service behavior is specified using UML activity diagrams. It is
assumed that the behavior of collaboration uses representing sub-services is
defined by an activity diagram having the same name as the collaboration.
The choreography is specified by connecting actions together by flows and
control elements such as join, fork, decision and merge. The actions call the
activity associated with the corresponding sub-services. This means that
sub-service behavior is invoked by Call Behavior Actions in the choreogra-
phy of a composite service [OMG09].

As mentioned in Section 1.4, two-levels of choreography models are pro-
vided. The flows and control elements in flow-global specification are not
localized to any service roles, whereas the flows and control elements in flow-
localized specification are localized to particular service roles. The details
are discussed in the following sections.

2.2.1 Flow-global Choreography Models

Flow-global choreography specifies the intended global ordering of compos-
ite collaborations on a high level of abstraction avoiding details of localiza-
tion and resolution of coordination problems that may occur at the level
of orchestration. We assume that this is the right level for discussing the
intended behavior with end-users and other stakeholders. It is also a useful
early step in the formalization of requirements [KB10].

The flow-global choreography of a composite service is specified using
normal UML activity diagrams and their semantics [KB10, KLB12]. The
intended global behavior is defined by connecting actions i.e. Call Behavior
Actions by flows that are not localized to any particular role. For example
in the flow-global choreography of a Walking Tour service in Figure 2.3, the
flow from the end pin of the Quiz Service to the start pin of the Information
Service is global i.e. not localized to any of the roles user and poi.
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Figure 2.3: Flow-global choreography model of a walking tour service

The actions of a choreography may either represent the behavior of a
collaboration or a local activity. The behavior of such actions is defined
separately and may be available in a repository in the form of building
blocks as mentioned previously.

The notation for the actions symbols as shown in Figure 2.3 originates
from [CBvB07]. Compared to those we also allow streaming and interrup-
tion. The action symbols, illustrated in Figure 2.4 for the location service,
provides the following information:

• Roles participating in a collaboration are indicated by partitions of
the action symbol defined by solid lines. Note that UML does not
specify a particular notation for partitions and therefore this form
is considered to be compliant with UML. For example the user and
server are the participating roles in the Location Service illustrated
in Figure 2.4.

• Action pins are owned by the actions itself rather than specific ser-
vice roles. An action may contain different types of pins: initiating
pins, terminating pins, and streaming pins. Initiating pins initiate
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(b) Abstract Representation

public class Position {

        private String xLoc;

        private String yLoc;

    }

Position.java

Figure 2.4: Action notation for the location service

the action and is represented by unfilled incoming pins with incoming
arrows, for example the start pin in the Location Service in Figure 2.4.
Terminating pins indicate the termination of the action and is rep-
resented by unfilled outgoing pins with outgoing arrows, for example
the end pin in the Location Service in Figure 2.4. Streaming pins can
pass tokens while the action is being active and is represented by filled
incoming and outgoing pins, for example the stop and position pin in
the Location Service in Figure 2.4.

• Initiating and terminating roles of an activity is indicated by filled cir-
cles and square boxes respectively. For example user is the initiating
role and the server is the terminating role in the Location Service in
Figure 2.4. This is not part of standard UML, but may be provided
by additional profiling [KLB12].

To define and use data in flow-global models, the normal way defined
for UML activity diagrams is used:

• A pin can carry certain types of data. The position streaming pin of
the Location Service as illustrated in Figure 2.4 carries values of the
Position data type consisting of GPS coordinates xLoc and yLoc.
Similarly the quiz pin of the Tour Planner carries values of Quiz
datatype consisting of questions and sets of answers pertaining to
a particular point-of-interest. In Figure 2.3, data types associated
with pins and flows are omitted. A city exploration service (i.e. vari-
ant of the city guide service) is illustrated with complete data types
in [KKB11].

• Global variables may be used within the scope of a given flow-global
choreography model. Such variables can be used for example in de-
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cision nodes in the flow-global specification, and be modified by call
operation actions.

Participating roles in a choreography may take independent initiatives
to start a collaboration. The situation where there is a choice between
collaborations that are initiated independently by different roles is called
initiative choices [CBvB07, KB10, KSH09]. The case of initiative choices
can be modeled in flow-global choreography specification using the notions
of interruptible regions and interrupting flows in UML activity diagram.
The Group Quiz service (a variant of Quiz service) from [KB10] serves as
an illustration as shown in Figure 2.5. In the group quiz service, the group
grp first forwards a question to the group leader and all group members.
The group members may independently suggest answers or the leader may
submit an answer. The intension in the flow-global specification may be to
choose either one or the other option, but in a distributed realization there
may arise a situation where a user is suggesting an answer at the same
time the leader is submitting. This means that independent initiatives may
collide and require additional coordination to resolve which initiative to
select. Resolution mechanisms are discussed in Section 2.3.4.
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Figure 2.6: Flow-localized choreography model of a walking tour service

2.2.2 Flow-localized Choreography Models

In a distributed realization the global flows of flow-global choreography must
be enforced by local flows. The purpose of the flow-localized choreography
is to define the local flows and to specify coordination details needed in a
distributed realization such as resolution of mixed initiatives. Flow-localized
choreography is intended to allow extensive analysis and to support auto-
matic synthesis of component types or orchestrators. The flow-localized
choreography also uses UML activity diagrams to specify global behavior.
The behavior is defined by connecting actions, that either represent the be-
havior of a collaboration or a local activity, by flows that are localized to
the roles. This means that flow-localized choreography defines the ordering
provided by local flows. Figure 2.6 shows the flow-localized choreography of
the walking tour service. It is different from the flow-global choreography
in the following respects:

• In the flow-localized model, every pin must be assigned to a particular
role. This means that at this level of modeling, one can precisely
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specify how a service is started, terminated or being triggered in a
distributed system.

• In the flow-localized model, non-collaborative (local) activities and
control nodes such as fork, join, merge or decision must also be lo-
calized, i.e., assigned to one role. This may involve mapping global
choices onto one or more local choices and additional interactions.

• Control flows in the flow-localized model are derived from the flow-
global model. However, the distributed localized flows have semantic
differences compared to the global control flows that reflects the na-
ture of distributed systems. Flow-localized models consider: (1) the
possibility of message reordering by a communication medium, (2)
sharing of communication medium and sharing input buffer at the
receiving end. The analysis at this level helps to detect the poten-
tial realizability problems, sometimes referred to as implied scenar-
ios [CBvB07], that may occur when a flow-global choreography is
mapped to distributed orchestrations. This is discussed in Section
2.3, and papers [KB10, KB11a].

Details of transformation rules to transform flow-global choreography
into flow-localized choreography are discussed in Section 2.4.

The Arctis tool [KSH09] supports flow-localized choreography models
where partitions representing roles are indicated by “swin-lanes” in UML
activity diagrams. Arctis also uses Call Behavior Actions to represent col-
laborative building blocks involving two or more participants. The collab-
orative building blocks spans several partitions. In contrast, local building
blocks specify Call Operation Actions which involve only one participant
and are therefore local to one partition. Arctis can further be used to find
several types of errors using model checking techniques, and to automati-
cally generate application code for different platforms for example Java SE,
Android, etc.

2.2.3 Elementary Service Choreography

Collaborative behavior of elementary services can be specified using UML
activity diagrams. A workflow among activities performed by service par-
ticipants is specified by connecting actions by flows (that are either local
to a partition or crossing partition borders) and control nodes (that are
localized to roles) such as decision, fork, merge and join [OMG09]. Other
possibilities for specifying elementary service behavior is to use sequence
diagrams or message sequence charts (MSC) [CBvB07].
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An example of the Location Service choreography using UML activity
diagram in the swim-lane form is illustrated in Figure 2.7. Collaborating
roles in the service are represented as partitions in the UML activity dia-
gram. Activities performed locally by service roles are represented as local
actions i.e. assigned to a particular partition.

2.3 Realizability of Choreography Models

In a distributed realization, a flow-global choreography will be mapped to
possibly distributed components or orchestrators. Mapping of a choreogra-
phy model aC with roles Pj(j=1,...n) to a corresponding set of orchestrators
O(Pj) is discussed in Section 2.5.

Ideally the composition of orchestrators shall lead to the same behavior
that has been specified in the global choreography. If this is not the case,
we consider that there is a realizability problem. In other words, if any role
orchestrator O(Pj) needs to handle behavior that has not been specified for
the corresponding role Pj in aC, this is considered a realizability problem.

In a choreography, the activity flows that cross partition boundaries does
not model the possibility that messages may be reordered by the medium,
nor that all flows between a pair of components may share a common input
buffer at the receiving end, which normally is the case in distributed real-
izations [KB11a]. In orchestration models we assume an arbitrary transfer
delay, and a shared buffer for each component. This models the delays that
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are inevitable in a distributed realization using an underlying communica-
tion medium such as an asynchronous message bus. If this buffer is a FIFO
queue, messages will be taken from the queue in strictly the same order as
they arrive. If this arrival order is same as the reception order specified
by the activity flows, everything is fine. But it may happen that the ar-
rival order differs from the specified reception order either due to different
sending orders or due to reordering by the communication medium, which
means that the distributed realization will generate reception orders that
differ from the order specified in the choreography. This is the fundamental
cause of many realization problems.

In choreography we make a distinction between initiating roles and re-
sponding roles. In orchestration, it is necessary that responding roles are
locally enabled when the roles should be ready to respond. This can be done
by mapping flows external to a component to “responding flows” within the
component. Thus in orchestration, we distinguish between initiating flows
and responding flows which are defined as follows:

• An initiating flow is a local flow and represents the initiation of the
next action. In case of an elementary service, an initiating flow initi-
ates the next action that may either be Call Operation Action (which
is a local action) or Call Behavior Action. For example, the initiating
flow corresponding to the global flow from aC1 to aC2 is the flow that
is localized to the initiating role of aC2. In Figure 2.9(b), the flow
that is localized to role A is the initiating flow corresponding to the
global flow in Figure 2.9(a).

• A responding flow represents that a responding role in the next ac-
tion should be ready to respond to interactions from other roles in a
collaboration. Responding flows are represented as dotted lines with
an arrow. In case of an elementary service the next action is a Call
Operation Action. The responding flow from the send event action m1
to the receive event action m2 in Figure 2.8 represents that the User
component should be ready to respond to m2 after m1 is sent. In case
of a composite service the next action is a Call Behavior Action. The
responding flow corresponding to the global flow from action aC1 to
aC2 in Figure 2.9(a) is the flow which is localized to the responding
role of aC2.

In the following, first the notion of direct realization is defined and
then the realizability of flow-global choreography is discussed using flow-
analysis [KB11a, KB10]. The flow-analysis is found to be useful to detect
potential realization problems and resolve them early in the design phase.
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2.3.1 Direct Realization

A direct realization of an elementary choreography aCi with partitions
ri,1, ri,2, . . . ri,n is obtained by directly projecting aCi to local orchestrations
Od(ri,j) for each partition. For example the direct realization of the Loca-
tion Service (given in Figure 2.7) is illustrated in Figure 2.8. The projection
mechanism involves the following steps [KB11a]:

• Make of copy of the global flow.

• Insert a send event action on all outgoing flows towards a partition
boundary.

• Insert a receive event action on all incoming flows from a partition
boundary.

• Replace all actions not performed by partition ri,j by no-operation.

• Mark all the control nodes (decision, merge, fork, join) and flows that
are not local to ri,j as responding nodes and flows

• Simplify the responding nodes, flows, and no-operation nodes [KLB10]

• Make the simplified external flows internal to ri,j as responding flows,
for example the flow from m1 to m2 in the User component in Fig-
ure 2.8.

The given projection mechanism not only elaborates the notion of direct
realization but also gives a clue about the synthesis of components from ele-
mentary service models. The details of component synthesis from composite
services is explained in Section 2.5.
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If the direct realization of the choreography aC results in the set of
orchestrators O(Pj) then the possible temporal ordering of actions in O(Pj)
is exactly same as the temporal ordering of actions in the corresponding
role Pj in aC and without any of the following design errors [KB11a]:

• deadlocks - a component waits for the message in non-final state that
will never be sent,

• unspecified receptions - a component receives a message for which there
is no transition to consume it in its current state, and

• orphan messages - a special kind of unspecified reception where the
execution context for which this message was intended does not exist
anymore.

Direct realizability means that O(Pj) can be synthesized without adding
any additional interactions. This means that it must be possible to localize
pins, control nodes and flows without adding interactions.

In the following the realizability of a composite choreography is discussed
assuming that each elementary collaboration used as a Call Behavior Action
in the global choreography is directly realizable.

2.3.2 Realizability of Direct Object and Control Flows

A flow in a flow-global choreography from action aC1 to action aC2 is called
a direct flow if the flow contains no intermediate control nodes between aC1

and aC2. A direct flow from aC1 to aC2 is represented as aC1;aC2. The se-
mantics of aC1;aC2 in the flow-global choreography is that aC1 is completely
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finished before aC2 is started. In a distributed realization the ordering be-
tween aC1 and aC2 will be determined by the causality enforced by local
initiating flows. A direct initiating flow in a flow-localized choreography
can provide the following causalities [CBvB07]:

• Localized causality - when the terminating role of aC1 and the initi-
ating role of aC2 are localized to the same component. In this case all
the roles in aC1 will be completely finished before aC2 is started, and
so it corresponds to the strong sequencing of the global flow aC1;aC2.
A strong sequencing flow is indicated with the {strong} property.

• Weak causality - when the terminating role of aC1 and the initiating
role of aC2 are bound to different components, but the initiating role of
aC2 is participating in aC1. In this case the collaborations are ordered
on a per role basis and there is a possible overlapping between aC1

and aC2. A weak flow is indicated with the {weak} property. This
causality enforces so called weak sequencing. Weak sequencing can be
used instead of strong sequencing under the circumstances explained
in Section 2.4, and papers [KB10, KB11a].

• Non casual - when the initiating role in aC2 is not participating in aC1.
This means that no ordering between aC1 and aC2 will be enforced
by the local flow. This is normally not acceptable and needs to be
resolved as discussed in Section 2.4. Such flows are indicated with the
{non-causal} property.

In orchestration, there will be no overlap between roles linked by {strong}
and {weak} initiating flows. Hence such initiating flows are always directly
realizable locally, while {non-causal} initiating flows never are. Considering
the responding flows we have the following cases.

• For {strong} responding flows there will be no overlapping of the ser-
vice roles in aCi and aCj i.e. {strong} responding flows are directly
realizable. This case is shown in Figure 2.9.

• For {weak} responding flows, there is a possibility of message over-
lapping between aCi and aCj . This is shown in Figure 2.10(c) and
explained detail in paper [KB10]. Such flows are directly realizable
if: (1) all non-initiating roles in aCj and the terminating role in aCi

are localized to different components i.e. X and B in Figure 2.10 are
localized to different components, thus avoiding message overlapping;
or (2) the participating roles in aCi and aCj are communicating over
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a FIFO medium. For instance if the communication medium between
A and B in Figure 2.10(c) is FIFO then there will be no reordering
of message receptions. In general there is a possibility of realization
problems in the case of {weak} responding flows.
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Figure 2.10: Realizability of weak sequencing flow

• {non-causal} responding flows are not directly realizable as they sig-
nify that the specified ordering between aCi and aCj is not possible.
The initiating roles are linked by {non-causal} initiating flows and the
participating roles in aCi and aCj are linked by {non-causal} respond-
ing flows and may overlap arbitrarily.

If sequential ordering is the intention, one needs (1) to add at least
one interaction to ensure at least {weak} causality, as for instance in
Figure 2.15(b) and 2.15(c), or (2) to change either aCi or aCj or both
so that the flow at least ensures {weak} causality.

There is a possibility of message overlapping in the case of both {weak}
and {non-causal} flows. The amount of overlap is determined by how much
of a role ri,k (represents the role in the ith collaboration and played by
the kth component) in aCi may remain when a role rj,k in aCj is started,
called remainder of ri,k and how much of rj,k that may execute before ri,k
is finished, called beginning of rj,k. Weak responding flows are directly
realizable if the ordering of events in the remainder of ri,k and beginning of
rj,k can be enforced by the communication medium [KB11a].

When sequential flows consisting of several sequential composition steps
aC1; aC2;. . . ; aCn are considered, there is a possibility of indirect responding
flows occurring if there is one or more collaborations or local actions in which
a component does not participate (represented as no-op actions) between
collaborations where it participates. This case is shown in Figure 2.11.

If we generalize responding flows to include no-op actions, one can say
that an indirect responding flow is a responding flow with one or more no-op
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actions, a general responding flow is a responding flow with zero or more
no-op actions.

The first step of a general responding flow determines whether the flow
as a whole has property {non-causal}, {weak} or {strong}. A general re-
sponding flow that starts with a {non-causal} step remains {non-causal}. A
general responding flow that starts with a {strong} step remains strong re-
gardless how many {weak} or {strong} (no-op) steps that follows. A general
responding flow that starts with a {weak} step remains {weak}, regardless
how many {strong} or {weak} (no-op) steps that follows.

It is found that {non-causal} ordering can never be directly realized,
and that {strong} ordering can always be directly realized. When using
{weak} ordering there may be problems. Note that problems in sequential
composition may only occur between role orchestrations linked by {weak}
responding flows. Note also that a sequence of responding flows, as shown in
Figure 2.12, may extend the overlaps so that A1, A2, and A3 in Figure 2.12
may overlap.

In a nutshell, the following propositions hold [KB11a].

Proposition 1 (realizability of general weak responding flow): A gen-
eral {weak} responding flow between roles ri,j and rk,j is directly realizable
only if the remainder of ri,j and beginning of rk,j can be ordered by the
underlying communication medium.

Proposition 2 (realizability of sequential composition): A sequential
composition aC1; aC2; ...; aCn is directly realizable iff no initiating flows
are {non-causal} and all general {weak} responding flows resulting from a
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Figure 2.12: Sequence of responding flows

direct realization are directly realizable.

2.3.3 Realizability of Paths and Control Nodes

In a direct realization all the flow-steps and intermediate control nodes
should be localized to one component [KB10]. However there may be cases
where intermediate flow-steps and control nodes may be part of several
flow-paths that are localized to different components. This is an indication
of a realizability problem [CBvB07, KB10] and needs to be resolved. The
following propositions hold [KB11a].

Proposition 3 (flow-path localization): An initiating flow-path from
collaboration action aC1 to collaboration action aC2 is directly realizable iff
the entire path with all intermediate control nodes can be localized to the
role initiating aC2 and the path is either {strong} or is {weak} with all its
responding flow-paths realizable according to Proposition 1.

Proposition 4 (control node localization): If all initiating flow-paths
through a control node is directly realizable and the node is localized to one
role then the node is directly realizable.

For instance all the flow-paths through the fork node in Figure 2.13
are directly realizable according Proposition 3. All the flow-paths through
the fork node are not localized to a same role, therefore the fork node in
Figure 2.13 is not directly realizable according Proposition 4. The resolution
strategy is: (1) change/replace aCi or aCj or aCk so that the fork node is
directly realizable and can be localized to a single component; or (2) localize
the fork node to the initiating role of the strongest path and resolve other
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paths according to the rules in Section 2.4 i.e. this case is not directly
realizable.

B
aCiA

aCjA B

«service»

«service»
aCkA C

«service»

at  A or B{strong} {weak}

Figure 2.13: Realizability of fork node

If the paths through a choice node are local to different roles, we have
a case of non-local choice [Kra08, BF04, Cas08]. In the cases of non-local
choices, autonomous components may take choice independently and possi-
bly simultaneously, resulting in a conflict and possibly a collision that needs
to be resolved. Non-local choices have been extensively studied in the liter-
ature, and are normally not directly realizable. It is only when a non-local
decision can be performed locally by each component based on local infor-
mation, in a way that guarantee that the components choose corresponding
branches that non-local choice is directly realizable. Some resolution tech-
niques are presented in the paper [KB10].

2.3.4 Realizability of Interruptible Activity Regions

Interruptible activity regions involve interrupting events. If the interrupting
events are from two or more different components, as shown in Figure 2.14,
there is a possibility of having mixed initiatives which are not directly re-
alizable. In such mixed initiatives cases, different components may take in-
dependent initiatives to generate interrupting events nearly simultaneously.
Hence the events may collide. An additional coordination is then needed to
resolve which initiative to select. The resolution strategy depends on the
problem at hand and is difficult to solve in a general way. In stead one
may develop a library of alternative solutions to select from. One way to
handle such situations is to assign primary and secondary priorities to the
conflicting partners and let an initiative from the primary side be accepted
in all cases. The secondary side must be prepared to receive a primary
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initiative even after it has issued an initiative itself, and obey the primary
one [KSH09, KB10].

aCiB A
«service»

aCjB C
«service»

Ev1 Ev2

@A @C

Figure 2.14: Realizability of interruptible activity regions

2.4 Flow-global to Flow-localized Choreography

A Flow-global choreography can be transformed to a flow-localized choreog-
raphy using a set of transformation rules [KB10], called localization rules.
These localization rules can be classified into the following three categories:
1) Pin localization, 2) Direct flow localization, and 3) Indirect flow localiza-
tion with intermediate control nodes.

Note that we here are talking about localization in flow-localized chore-
ography, not orchestration. Therefore responding flows are not discussed
here.

2.4.1 Pins Localization

In a top-down approach (flow-global to flow-localized) pins are localized
from the flow-global choreography actions. The pins in a flow-global chore-
ography model are localized such that starting pins are localized to initiating
roles, terminating pins are localized to terminating roles. Streaming pins
must be assigned to roles such that output pins are assigned to the role that
generates the output token, and input pins assigned to the role that receives
the input token.

In a bottom-up approach, pins are already given in flow-localized chore-
ography of elementary collaborations and only reflected in the flow-global
choreography.
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2.4.2 Direct Flow Localization

One assumes that causality has been determined on the global-flow (c.f.
Section 2.3.2).

In the case of direct global flow aC1;aC2, the general rule is to localize
the flow to the initiating role of aC2.

If the direct-flow has the {strong} causality property, localize the flow
to the initiating role of aC2 and the terminating role of aC1 (both roles
are local to the same component). A {strong} flow from the q.Quiz Service
to the i.Information Service in the walking tour service in Figure 2.6 will
therefore be localized to poi role which is the initiating role of q.Quiz Service
and the terminating role of i.Information Service.

If the direct-flow has the {non-causal} property, it can be localized: (1)
using interaction flows as shown in Figure 2.15(b); or (2) using coordinating
collaborations, as shown in Figure 2.15(c), so that flows can be assured to
have at least weak causality; or (3) by modifying the flow-global specifica-
tion so that the flow can be localized.

If the direct-flow has the {weak} causality property, there are two pos-
sibilities for localization: (1 ) if the flow is directly realizable according to
Propositions 1 and 2 then the flow can be localized to the initiating role of
aC2 and the non-terminating role of aC1; or (2 ) if the flow is not directly
realizable according to Propositions 1 and 2 then insert interactions for
enforced strong sequencing [KB10].

B
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aC2C X

(b) non-causal resolution 
using send/receive events

B
aC1A

aC2C X

{non-causal}

(a) Flow-global

B
aC1A

aC2A X

(b) non-causal resolution
 using coordinating collaboration

A coordinating
collaboration B

mm

«service»

«service»

«service»

«service» «service» «service»

Figure 2.15: Non-causal sequencing flow and localization

2.4.3 Control Nodes and Path Localization

In the case of indirect flows, one needs to localize all the intermediate control
nodes between action nodes aCi and aCj . We say that two action nodes
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aCi and aCj are linked by a flow-path from aCi to aCj through a number
of intermediate control nodes each linked by direct flow-steps.

In the following, we represent a flow-path as follows:
path ::= {* | srcId}→causalityClass→{* | tarId},
where * represents a pseudo node such as an initial node, or activity final

node; causalityClass:={strong | weak | non-causal | non-applicable(na)};
and srcId, tarId::= collaborationUseId.roleUseId.

In the walking tour service, shown in Figure 2.6, there are three flow-
paths through control nodes F1 and D1:

P4:= i.user→weak→p.server; (through D1)
P5:= i.user→na→*; (through D1)
P6:= *→na→l.user; (through F1)
P7:= *→na→p.server. (through F1)

Localization of intermediate control nodes and indirect flow-paths is per-
formed as follows:

1. Each flow-path from aCi to aCj is first localized to the initiating role
of aCj.

For example P4 and P7 may be localized to the server and similarly,
P6 may be localized to the user. This rule does not apply to the
flow-paths ending on ∗, such as P5.

2. Find all the flow-paths through each intermediate control node.

In the given example, there are two flow-paths at F1 i.e., paths P6 and
P7; and there is one flow-path at D1 i.e., paths P4.

3. If all paths through a node are local to the same component, localize
the node to that component.

In the given example, D1 can be localized to server as the only path
through it i.e. P4 is local to server.

4. If the paths through a node are local to different component, the con-
trol node may not be directly realized in either component. This is the
indication of potential realization problems, and is discussed in Sec-
tion 2.3 and papers [KB10, HKLB11, KB11a]. The composer may be
asked to re-check and modify the choreography model if necessary. If
the choreography model is as intended, chose a {strong} path for the
node localization if possible.

As a consequence, one needs to resolve associated {weak} or {non-
causal} paths or flow-steps using interactions as explained in Sec-
tion 2.4.2.
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In the cases where all the paths through a node have the same causality
properties, the node can be localized to either path ( i.e. target role
of the path) and the remaining paths or flow-steps are resolved using
interactions explained in Section 2.4.2. For example, in the given
scenario, one can localize F1 to the user and use an interaction flow
from F1 to p.Tour Planner or the other way around.

5. If the node is a choice node, it must be localized to the target compo-
nent of the path and it must be possible to make the choice based on
information local to that component.

In the given example, the decision node D1 is localized to the server. If
there are two or more flow-paths through a decision node that should
be localized to different components, then that becomes a non-local
choice and a proper resolution strategy should be applied (some are
discussed in Section 2.3).

6. If some flow-steps are {non-causal}, the flow-step can be made {strong}
or {weak} using interaction flows, as discussed in Section 2.4.2.

In the given example, D1 is localized to the server and the flow-step
between the i.Information Service and the decision node D1 can be
resolved using {weak} sequence localization as this will lead to no
message overlapping.

7. If localization according to steps 3, 4, 5 and 6 above is impossible, then
there is a realization problem to resolve.

In any case, a control node should be localized to only one role, oth-
erwise this means an indication of realizability problem, according to the
Proposition 1. . . 4 presented in Section 2.3.

2.4.4 Localization of Other Elements

A choreography model also contains other model elements such as local
actions, initial nodes, final nodes, interruptible regions and interruptible
events. These elements are localized as following:

• Local actions should be assigned (by composer) to a particular role in
a flow-localized model. In the example in Figure 2.6, the local action
p.Tour Planner is assigned to the server.

• Initial nodes will be localized to the role where the immediate target
control node or pin is localized. In the example in Figure 2.6, the
initial node is localized to the user where the fork node F1 is localized.
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• Activity final nodes and flow final nodes will be localized to the role
where the immediate source control node or pin is localized. In the
given example, both activity final nodes are localized to server : one
is connected by a flow-step to the terminating pin of server role in
Location Service, and the other is connected by a flow-step to the
decision node D1 that is localized to server.

• Interrupting events in the interruptible activity regions should be as-
signed to the initiating component.

If interrupting events in an interruptible region are localized to more
than one component, there may arise a situation of mixed-initiatives
that needs to be resolved.

2.5 Orchestration Models

The components or orchestrators are objects that have complete local be-
havior and run locally on a physical device while services involve interactions
among components. Components may therefore participate (providing, re-
quiring or just participating) in different services in different contexts. Or-
chestrators are based on collaborative services and contains:

• Local activity flows describing their local behavior.

• Interfaces by which a component interact with other components or
the environment. Two types of interfaces are considered: local in-
terfaces and semantic interfaces. Local interfaces are token passing
interfaces represented by pins at the component boundary. Seman-
tic interfaces correspond to the collaborations a component partici-
pates in, and describes the observable behavior at the external inter-
faces [KLB11].

2.5.1 Component Synthesis from Elementary Services

A direct realization as discussed in Section 2.3.1 results in local role orches-
trations corresponding to the services where a component participates. The
synthesized role orchestrations have local interfaces in terms of pins, internal
behavior described by activity flows, and semantic interfaces that encapsu-
late interactions with other role orchestrations as illustrated in Figure 2.16
for the location service.
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user_loc server_loc location 
service

Figure 2.16: Semantic interface representation of location service

2.5.2 Component Synthesis from Composite Services

We first assume that the composite service is defined by one collaboration
and choreography. We synthesize each of the composite roles (also called
component types) of a composite service separately using the direct real-
ization principles. The synthesis involves the following steps [KLB10]: (1)
mark the roles of a component type defined by the enclosing collaboration;
(2) keep collaboration roles, local actions, control nodes and the flows that
are local to the component; (3) resolve interaction flows; (4) derive external
dependencies in terms of responding flows; and (5) apply composition pat-
tern to the services if necessary. In the following, each of these steps will be
briefly discussed:

1. Mark the roles CTR of a component type CT .

A component type contains a set of roles which are selected from
sub-collaborations Ci in such a way that each role in Ci is bound to
a component type CT defined by the enclosing collaboration. For
example in a component type user walkingtour in a Walking Tour
service, CTR = {user loc, user q, user inf}. Note that collaborations
associated with selected roles are used as semantic interfaces.

2. Keep the local actions and local flows associated with the component
type CT .

(a) Keep each local actions LAi and control nodes CNi which are
localized to CT . This is straight forward because in the flow-
localized choreography these entities are bound to specific roles.

(b) Keep each localized control flow FL(x−y)i where the source and
target nodes, i.e., x and y, of a flow are localized to CT , i.e., x,y
∈ CTR.

The resulting user walkingtour after this step is shown in Figure 2.17
where one can see incomplete or inconsistent places in the component
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model. Note that the fork node (F1) contains only one outgoing leg,
and there are no flows between the service roles.

«Orchestrator»
user_walkingtour

q.Quiz serviceuser_q poi_q

start
l.Location 
Service

i.Information
Service

user_
loc

user_
inf

server_
loc

server_
inf

end

F1

2

1

3

Figure 2.17: Component synthesis of a walking tour service after step 2

3. Resolve the interaction (or cross-partition) flows.

For each interaction flows FL(x− y)i in the flow-localized choreogra-
phy where the target of the flow is bound to Ri∈CTR, there are the
following possibilities:

(a) If the flow is not directly realizable according to [KB10] enforce
strong sequence using coordination messages for example using
send and receive events as explained in Section 2.4.2. Note that
such send and receive messages can be extended to the compo-
nent boundary and represented as incoming streaming pin (for
receive event) and outgoing streaming pin (for send events) as
local interfaces to a component.

(b) If the flow is directly realizable traverse backward until there is a
collaboration Cj where a role of the collaboration Rj∈CTR, then
replace the flow with FL(Rj−Ri) and mark the property of this
flow as {weak}.

The resulting component model for user walkingtour after this step is
shown in Figure 2.18 where two interaction flows are resolved: from
fork node (F1) to start.Tour Planner streaming output pin; from ter-
minating pin of i.Information Service to next.poi streaming output
pin. These pins are used as local interfaces to a component.



44 Service Engineering

«Orchestrator»
user_walkingtour

q.Quiz serviceuser_q poi_q

start
l.Location 
Service

i.Information
Service

user_
loc

user_
inf

server_
loc

server_
inf

start.TourPlanner

next.poi end

F1

2

1

3

Figure 2.18: Component synthesis of a walking tour service after step 3

4. Derive the external dependencies in terms of responding flows.

For each collaborations Ci selected in step 1 where a collaboration role
Ri ∈ CTR is playing as non-initiating role (a responding role), identify
the responding flows as following: In the flow-global choreography,
traverse backward from Ri(consider all the possible backward flows
if there are nodes like merge or join along the flow) to a preceded
collaboration that has a role Rj belonging to component type CT ,
i.e., Rj∈CTR. Then in the component type, add a responding flow
from Rj to Ri, i.e., FL(Rj − Ri). If Rj can not be found, add a
responding flow from the initial node to Ri, i.e., FL(Ninit − Ri). If
there are several such paths, use the path what allows earliest possible
enable of Ri.

The resulting user walkingtour is shown in Figure 2.19 where respond-
ing flows are represented as dashed lines. The responding flow, for ex-
ample from l.Location Service to q.Quiz Service specifies that the user
component in the walking tour service should be ready to participate
in quiz as soon as it finished playing its role in location service.

5. Apply composition pattern to the services.

Not all of the service roles in a collaborative service, after step 4, may
have the capacity to initiate or terminate the service via initiating or
terminating pins. For example in Figure 2.19 there is no information
about the termination of user loc, initiation and termination of user q
and initiation of user inf. This means, the user q component will have
no clue when the component should start and terminate. This creates
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Figure 2.19: Component synthesis of a walking tour service after step 4

a problem, especially when a component is to be composed with other
components (in this case with user loc and user inf ). In order to solve
these kinds of problems, we introduce a general composition enabling
pattern that ensures that each service role has pins to coordinate
enabling, start and termination of collaborative actions [KLB12].

The pattern added to the location service is illustrated Figure 2.20(a)
with red colored bold flows. An abstract representation of the result-
ing semantic interface of the corresponding location service is given
in Figure 2.20(b). This pattern provides the following benefits:

• The pre-defined functional behavior of the service is unchanged
so that it can be used in other contexts where the pattern is not
needed.

• The pattern can be applied whenever it is needed and the need
to apply the pattern can be automatically detected during the
composition of components.

• The pattern enables the typical object-oriented mechanism regis-
tering to events where components can register to the start and
terminate events of other components.

• The pattern provides connection points for responding flows dur-
ing component synthesis and composition.

The resulting user walkingtour after this step is shown in Figure 2.21.
Note that the applied pattern properly connects the responding flows
by pins. For example the responding flow from the Location Service
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Figure 2.20: Adding composition pattern to location service

to Quiz Service is connected by the started and enable pins that are
introduced after the pattern is applied.
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Figure 2.21: Component synthesis of a walking tour service after step 5

Similarly the resulting server component of the Walking Tour service is
shown in Figure 2.22.

2.5.3 Component Representation

An abstract representation of a component (exemplified by the user compo-
nent of the Walking Tour service) is shown in Figure 2.23. In Figure 2.23,
the semantic interfaces are abstractly represented by a set {ns} where n is
a numeric type corresponding to an interface and s is a character having
values: i representing that component plays initiating role; t representing
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Figure 2.22: Server component of walking tour service

that component plays terminating role; and p representing that component
plays participating role in a component.
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next.poi

Figure 2.23: Abstract representation of user component of walking tour
service

2.6 Component Composition

Sometimes, there is a library of components, and it is desirable that a
composite component be composed from set of existing components. An
additional motivation for this is that choreography is normally used to define
services separately. Many systems can provide several services that will
be invoked dynamically without an enclosing choreography to define their
ordering. Service invocations may rather be controlled by user interactions.
In these cases one need to compose components from service roles.
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Figure 2.24: City guide user component as a composition of user walking
tour and user restaurant service components

For example given the user components for the Walking Tour and
Restaurant services, one may design a composite component that can play
part in both services. This is done by composing parts of a component
together via local interfaces i.e., pins at the component boundary. The
following steps are suggested for this process in paper [KLB11].

1. Specify the roles to be provided by a component and their part structure.
In this example, a user component will need the walking tour and
restaurant services roles, and their part structure is specified as shown
in Figure 2.24(a).

2. Find components providing the roles in a component library. This can
be done manually by the composer based on the requirements at hand
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or recommended/selected based on the information in a choreography
model (if available) from which the roles have been synthesized.

3. Compose the selected components together using the pins i.e., the local
interfaces of the selected roles. Pins may be connected automatically
based on the data type that the pin owns or they can be connected
manually. Some additional control nodes may be added to link the
selected roles together such as the fork node F1 in Figure 2.24(c). Pins
that are not connected to any other pins within the boundary of the
component are extended to the component boundary. For example the
next.poi and start.Tour Planner pins in the user cityguide component
in Figure 2.24(c) are extended to the component border.

It is important to note that the composed component can be put back
into the library and potentially be reused in the another composition.

2.7 System Design

In system composition, systems are defined by composing components to-
gether to satisfy the specified requirements of the users. System composition
differs from component composition in the following ways:

• System composition is the last composition step. This means that a
system can not not be reused (or composed) in another system (or
system composition)

• In system composition components are composed together via both
local and semantic interfaces

• In system design, components are composed together not to make a
new composite component but to make an executable system.

In simple cases where a system provides just an elementary service, the
system design may be defined by a simple service model. In more complex
cases one needs a separate system design activity where components are
composed together, and the compatibility among the composed components
are ensured by the following steps [KLB11]:

• By analyzing each semantic interface separately for internal consis-
tency.

• By analyzing each component separately to make sure it is consistent
with all its semantic interfaces.
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• When two components are linked one need to check that the linked
roles are complementing roles of the same semantic interface. This
assures that the link is consistent, but not that the ordering of roles
using different links are compatible.

• Ensuring compatibility in the ordering of roles by considering either
the local ordering within each component against a global choreogra-
phy, or by considering the responding flows of a component against
the initiating flows of linked components.

{1t, 2it, 3i}

«Orchestrator»
s[*]:Server

{1i, 2p, 3t}

«Orchestrator»
u[*]:User

message bus

«system»
WalkingTourSystem

Figure 2.25: Walking tour system

A system design model of the Walking Tour system is shown in Fig-
ure 2.25. In a system there may be many instances of the same service
running concurrently with roles assigned to different system components.
There may also be many different types of services provided by the system.
In general, the system components may play roles in different services, and
different components may be able to play different combinations of roles.
Consequently there is a difference between system design and service mod-
eling. In system design one need to develop components that can play
different combinations of roles, and one need to design the overall system as
a composition of such components. If necessary the resulting system design
will enable a dynamic structure where services are combined in ways that
are not easily described in service models.

A system model also includes information about multiplicity and dynam-
icity i.e., information about the instances of components, how the services
can be looked up, and service role instances can be created and managed.
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Figure 2.26: Lookup and session support in system design

For illustration purpose, we assume that many users use the Walking
Tour service simultaneously. This means that there will be many sessions
of server roles of the Walking Tour service at the server side, as shown in
Figure 2.26. The figure also shows the mechanism for creating and manag-
ing instances of a service roles. Before requesting for a session setup, the
requester component i.e., user walkingtour should know whom to request
for the session. We may use a generic Lookup service for that purpose. The
generic Registry component contains the information about the registered
services, associated roles, and relationship among the services. In this case,
we assume that the Registry will return the address of a Server component
that contains the requested role server walkingtour. The User will then do
session request using the Session Initiation service. Once a session setup
is confirmed, the Walking Tour can be started and the role instances in
the Walking Tour service will interact with each other. Figure 2.26 also
shows how the service roles of the Lookup and Session Initiation services
can be composed with a other service roles within the User and Server
components.
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Chapter 3

Results and Evaluation

The proposed methodology in Chapter 2 provides proper notations, mech-
anisms and tool support that are close to the domain and that hides tricky
and detailed technical issues. It provides a basis where the building blocks
correspond to collaborative activities understandable by non-technical peo-
ple and therefore is closer to the mind of of domain experts such as teachers.
In a nutshell, the summary of the results in this thesis is the following.

• Platform architecture concepts, their identification and implementa-
tion. This is indicated by numeric character “1” in Figure 3.1.

• Notations and mechanisms for the specification and design of services.
This is indicated by numeric character “2” in Figure 3.1.

• Service composition mechanisms from the perspective of domain ex-
perts. This is indicated by numeric character “3” in Figure 3.1.

• Model transformation techniques from flow-global choreography to
flow-localized models. This is indicated by numeric character “4” in
Figure 3.1.

• Component synthesis techniques from choreography models. This is
indicated by numeric character “5” in Figure 3.1.

• Composition of components to make composite components and sys-
tem design models.

Using the above results, a domain expert can incrementally compose a
composite service or a component from the smaller reusable services and
components that are available in the library. The composer can then au-
tomatically generate components and application code. Note that a newly

53
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Figure 3.1: Evaluation context

designed service and component can also be put back into the library for
later reuse in other applications.

The discussion and evaluation of each of these results is elaborated in
the following sections.

3.1 Platform Architectural Concepts

As a first case study of a situated collaborative learning application a trea-
sure hunt system was developed in paper 1 [KB09]. The innovative approach
was to analyze the domain and identify stable domain concepts, and their
variability. Stable domain concepts were mapped into active objects that
jointly performed collaborative services, as explained in Chapter 1.

The active objects were modeled as state machines communicating using
asynchronous message passing running on a Java platform that provided
state machine and messaging support [BHM02]. The state machines were
designed manually using the Ramses tool [Kra07].

The initial design was given as an assignment to about 20 student groups
that developed their individual versions within a timeframe of approxi-
mately 40-100 hours using the same architectural principles. The system
were later refined and implemented using Android for the mobile units.

As far as can be judged the architectural principles have proved satis-
factory both regarding flexibility and ease of design. However the service
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and component development at that level was found to be not well suited
for high-level service composers such as teachers and end users. This is
mainly because the components were designed using state-machines which,
we assume, are too technical for the end users. This triggered our quest for
better service engineering methods

3.2 Notations and Mechanisms for Service Speci-
fication and Composition

The initial treasure hunt system used the idea of collaborations, but did not
apply choreographies for global service behavior. We have found (in previ-
ous works [Cas08, Kra08]) that UML activity diagrams provides a simplified
way of modeling global service behaviors. As a first experiment in this di-
rection the treasure hunt choreography was modeled in flow-localized form
using the Arctis tool [KSH09] as reported in paper 2 [KKB11]. Arctis pro-
vides support for specification of flow-localized models where collaborative
service specification are specified using the swim-lane form of UML activity
diagrams.

We have also found that the user-interfaces concerns of a system can
be specified in a unified way [KKB11]. Note however that layouts of user-
interfaces has to be defined using GUI editors such as the jFormDesigner
for Java Swings and DroidDraw for Android devices.

The results were very promising, a city guide system was modeled and
working application code were generated based on Android and the J2SE
platform. This experiment inspired us to look for the ways: (a) to improve
layout restrictions in the swim-lane form of UML activity diagram based
service models, and (b) to add an abstraction layer on top of the service
models supported in Arctis. Besides that we found that support for reusable
component models was lacking in the Arctis tool since Arctis generates the
full application system code directly from service models. These issues have
been addressed in paper 3 [KB10], 4 [KLB10] and 6 [KLB11].

3.3 UML Profile and Flow-global Choreography

In order to support the proposed notations for flow-global choreography,
a UML profile was implemented as explained in paper 8 [KLB12]. The
UML profile was developed using standard meta-modeling tools as Eclipse
plugins in order to facilitate integration with many UML tools including
Arctis [Kra07].
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Currently only the tree-view model of flow-global choreography is sup-
ported by the tool. This experiment shows the feasibility of flow-global
choreography models. However, improvement is necessary in order to pro-
vide graphical editors for flow-global choreography notations so that domain
experts or end users will really get the flavor of composing services in an
abstract way.

This experiment also motivated us to look after the mechanisms for
transforming flow-global choreography into Arctis models so that one can
reuse the existing Arctis tool and its functionalities for model checking and
code generation. This is addressed in paper 7 [HKLB11] and briefly dis-
cussed in the following.

3.4 Model Transformation Algorithm

Proof of concept demonstrator for model transformation algorithms has
been partly implemented as an extension to Arctis [Kra07] using graph
transformation techniques, as explained in paper 7 [HKLB11]. The proposed
model transformation techniques transform flow-global choreography mod-
els into flow-localized choreography models. The transformed flow-localized
models can be imported into the Arctis tool for further analysis, model
checking and code generation.

It is also considered useful that the realizability of flow-global chore-
ography (refer Section 2.3) can be checked during model transformations.
This checking has been partly implemented as well - potential realizability
problem can be detected and indicated to the composer so that suitable res-
olution strategy can be applied. Implementation is in a preliminary state,
and therefore needs to be thoroughly tested and validated with more com-
plex scenarios.

3.5 Proof of Concept Applications

Several case studies have been used to analyze and to validate various as-
pects of the service engineering approach:

1. Treasure Hunt Game: This case study was implemented for the eval-
uation of the architectural concepts and platform as mentioned in
Section 3.1. The scenario is analyzed, and the basic and application
specific services and components identified. Mechanisms are proposed
to design and develop them. Implemented components are available
in a repository for later reuse in other applications.
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2. City Guide Application: This is in fact an extended form of the Trea-
sure Hunt Game. The services and components identified in the trea-
sure hunt game are reused. This case study is used for the following
purposes:

• To study and analyze the feasibility of developing user interface
concerns using a similar approach as for service design, as explain
in paper 2 [KKB11].

• To illustrate the specification of choreography models, and model
transformation from flow-global to flow-localized models as ex-
plained in paper 3 [KB10].

• To partially illustrate the synthesis of components from flow-
localized choreography as explained in paper 3 [KB10].

• To analyze interrupting events and flows, streaming pins and
flows, and cases of mixed-initiatives at the flow-global choreog-
raphy models, as explained in paper 3 [KB10].

• To study and design collaborative learning activities and collab-
orative learning patterns, as explain in paper 5 [KB11b].

• To study and illustrate business service composition frameworks
using the proposed method, as explained in paper 8 [KLB12].

3. European Railway Traffic Management System (ERTMS): This sce-
nario is used:

• To identify basic and application specific services and compo-
nents in [KLB10, KLB11].

• To explain a component synthesis algorithm from choreography
models, as explained in paper 4 [KLB10].

• To discuss the mechanisms for composition of components from
inner components and a system design as a composition of com-
ponents, as explained in paper 6 [KLB11].

4. Teleconsultation System: This case study is mainly used to discuss and
analyze realizability issues of the choreography models, as explain in
paper 9 [KB11a]. Realizability is discussed in terms of propositions
and logical reasoning for problem identification and problem resolu-
tion.
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3.6 Existing Tools and Further Directions

Various tools have been used for various purposes to analyze and implement
techniques proposed in this thesis. The summary is given in the Table 3.1.
According to our best knowledge, there is no existing tool that supports
flow-global choreography specification, realizability analysis, and synthesis
of reusable components and their composition.

In the Ramses tool, there is no explicit support of services. It provides a
very convenient way of modeling components that are state-machine based,
however the Arctis tool has support for flow-localized choreography spec-
ification and provides model checking and code generation. However it is
intended for the domain experts who knows UML and system design as it is
necessary to resolve realizability and coordination problems in these models.

Table 3.1: Existing tools used
Ramses [Kra07] Arctis [KSH09]

Service Modeling no yes

Component
Modeling

state-machine based no

F-G Chor Support no no

F-L Chor Support no yes (equivalent)

Realizability no no

Component
Synthesis

no yes (but not reusable)

Component
Composition

no no

Model
Transformation

no yes (from F-L to
Orchestration)

Code Generation yes (from component
models)

yes (from F-L chor
models)

Who is it for developers who knows
state-machines

domain experts who
knows UML

Component composition mechanisms presented in this thesis are found
to be implementable in the Arctis tool [KSH09]. Each service role or compo-
nent can be modeled as a local building block that is composed in the usual
Arctis way i.e. by connecting pins of Arctis building blocks. Given a manual
mapping from flow-localized choreography to local orchestrations defined in
this way using Arctis, existing techniques can be used for transforming such
UML activity diagrams for orchestration into state machine based models
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and from there to application code. The Walking Tour service components
(and their compositions) have been modeled and implemented in this way
with application code automatically generated for Android platform. The
generated application called The City Guider is publicly available in the
Android marketplace.

Note that while implementing service roles as local building blocks in
Arctis, cross-cutting service interactions are not directly visible in com-
ponent models. They are hidden within Call Operation Actions and im-
plemented in Java code and the implementation is based on asynchronous
messaging. For distributed routing of messages, the Actor Routing Pro-
tocol [BHM02] is encapsulated in an Actor Router local building block in
Arctis. In the present implementation, each local orchestration system con-
tain an Actor Router building block along with other service roles. A generic
Registry system is also implemented in order to support service registration,
de-registration, and service lookup.

There is no existing tool support and no proof-of-concept demonstrators
have been developed so far for the following:

• Component synthesis mechanisms presented in this thesis.

• Realizability check based on initiating and responding flows.

It is believed that tool support could be implemented with reasonable
effort and time. Implementation of the component synthesis algorithm will
be fairly straightforward as both choreography and component models are
represented by UML activity diagrams.

Realizability check can be done during model transformation (from flow-
global to flow-localized specifications). This means that the existing graph
transformation based implementation can be extended to include realizabil-
ity check based on initiating and responding flows.

Finally, in order to fully evaluate the proposed service engineering ap-
proach, the pieces of implemented tool demonstrators (as proof of concept
applications) can be integrated together. We found that it is worthwhile to
use or reuse functionalities of existing tools like Arctis whenever applicable
while developing the proof-of-concept demonstrators discussed above. We
are now considering to extend the Arctis tool by integrating all the proof
concept applications that has been developed.



60 Results and Evaluation



Chapter 4

Related Work

This chapter presents related research, technologies and platforms. The
presentation is structured into four parts: (1) services and choreography
modeling, (2) component synthesis, (3) realizability, and (4) platform and
architectures.

4.1 Work on Service Modeling and Choreogra-
phies

4.1.1 Reactive Service Domain

In the domain of reactive systems it has been common to use interaction
diagrams in one form or another to define interactions among components
or participating entities in a service, for instance Sequence Diagrams (SD)
and Message Sequence Charts (MSC). UML activity diagrams and interac-
tions diagrams, both are well suited to capture the cross-cutting interaction
pattern of services. Typically interaction diagrams specify partial or frag-
mented behaviors in a system. They show how objects communicate with
each other in terms of a sequence of messages. On the other hand, UML ac-
tivity diagrams are more complete with object flows and workflows without
naming messages and use token flow semantics for the behavior specification
(c.f. [KB10]). Thus UML activity diagrams seems better suited for complete
behaviors and may be considered to be more high level than SD/MSC.

UML interaction overview diagrams (IOD), or high level MSC diagrams
are used to define global behaviors in terms of references to interactions
defined using SD or MSC [Dec09] and therefore may be used to specify
flow-global choreography. As discussed in [KB10], UML activity diagram
provides the following benefits:
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• Compared to the IODs, activity diagrams allow the representation
of roles as partitions of activities which is useful information that
helps to understand and analyze the global behavior at the level of
choreography.

• IODs excludes rich modeling constructs available in activity diagram
such as interruptible regions, flow final nodes, and streaming nodes
[Whi10].

• Streaming pins, available only in UML activity diagrams, are useful
to model interactions among concurrent actions at a high level (c.f.
[KB10, KLB10]).

In principle it is possible to use sequence diagrams for elementary collab-
orations and activity diagrams for choreography, since call behavior actions
can call behavior defined by interactions. This has been done in [CBvB07],
but exactly how to combine the two forms is not fully defined in UML. We
have found activities to provide a good combination of readability, complete-
ness, and automation potential. This combined with the benefit of staying
within one notation are the main reasons for our decision to use activity
diagrams throughout. Moreover, our choreography models are intended to
be understandable to domain experts rather than programmers or software
developers. We found that UML activity diagrams provide suitable abstract
notations and mechanisms for composition compared to other approaches
based on Use Case Maps [Buh98, Cas05] and state machines.

[Kra08] has been concentrated on choreography where all flows are lo-
calized to participating roles which is supported in the Arctis tool [KSH09].
Thus it supports flow-localized choreography. Therefore Arctis can provide
a tool basis for analysis and state machine synthesis based on flow-localized
choreography. Arctis uses the “swim-lane” form of UML activity diagrams
to specify choreography and it currently generates complete systems and not
component types that may be used in subsequent component based system
composition at the modeling level. The flow-global choreography avoids the
layout restriction of the swim-lane notation by representing the participat-
ing roles inside the actions [KB10, Cas08]. Our flow-localized choreography
notation also overcomes the layout constraints imposed by swin-lanes, but
is semantically equivalent.

4.1.2 Web Service Domain

Services in web service domain are considered to be provided by service
providers upon the request from service consumers. Unlike web services, we
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consider general notion of service where two or more entities collaborate to
achieve their goals. Collaborating entities are more proactive and may take
their initiatives on their own.

There is a large body of work in the web service domain that deals
with choreographies, their realizability and their mapping to orchestra-
tions [BO05]. Some visual languages to mention are BPMN, BPEL, and
WS-CDL.

BPMN is a non-executable, flow-chart based notation for defining busi-
ness processes. BPEL and WS-CDL are XML-based languages for orchestra-
tion (i.e. focuses on the view of one business participant) and choreography
(i.e. focus on global behavior) models. BPEL is executable while WS-CDL
is not. There are some works for mapping BPMN, BPEL to UML and vice-
versa using UML profiles. Note that UML Activity diagrams provide many
of the workflow modeling constructs used in BPMN and other languages.
UML provides rich constructs for specifying software-intensive systems and
provides flexibility in modeling reactive software systems.

Emerging semantic web technologies use languages such as OWL-S,
DAML-OIL and WSDL-S to add semantics (in the form of properties, con-
straints, meanings, policies, rules, or goals) to the services and their com-
position specifications. Most of these languages are text-based.

There are some formal approaches to choreography for service speci-
fications, for instance labeled transition system in [KP06], activity traces
in [QZCY07], set of conversations in [BGG+06]. There is a body of work
based on AI planning where composing services is seen as a planning prob-
lem and a sequence of services can be composed together to reach a business
or service goal. Initial states and goal states are specified in the require-
ments by a service requester. A composition plan can then be formalized
using finite state machines (FSM), situation calculus and Petri nets.

In general, service composition strategies in the literature are classified
as static composition, semi-static and dynamic compositions depending on
the time of composition and service binding. Static composition is also
called design time composition as a service composer discovers, binds and
assembles services during service development. In dynamic service composi-
tion, a composition plan is generated at runtime based on a service request.
Our framework is concerned with design-time composition. However, we
provide mechanisms to support dynamic discovery and linking as explained
in Section 2.7. Our approach is based on model-driven development where a
work-flow of business services and the behavior of each orchestrator is spec-
ified in a model using UML notations, in particular UML activities. We use
collaborations to specify service structure. A web-service can be considered
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as a special case, a two-party collaboration in which is one is playing a
requester (initiating) role and the other is responding (participating) role.

4.1.3 Graphical User Interface Aspects

Most service engineering approaches either ignore user interfaces concerns
completely or treat them as secondary. Our approach allows both ser-
vice logic and user interface(UI) concerns to be modeled in a unified way,
c.f. [KKB11].

There is a body of work in a literature that discusses model-driven
development of UI concerns in an application, for example UWE [BE08,
KBHM00], WebML [CFB00], OO-H [GCP01], and MIDAS [CMV04]. A
common and interesting feature of these methods is the modeling of the
application in different orthogonal levels and aspects such as content, hy-
pertext, composition and presentation modeling. Normally they use UML
class diagrams for domain (content or data models) and presentation model
are specified in terms of task models specifying the activity-flow model of
the user actions. Most of this work either ignore service concerns or do
not separate service logic from UI concerns. which means to limit their
reusability.

Our models are focused on the event-driven behavior of user interfaces
and allows code generation from these models using Arctis. The internal
details of the services and UI blocks are encapsulated with their external
behavior specified using external state machines (ESM). The ESM allows
replacement of internal details while keeping the external behavior [Kra08].
Moreover, our building blocks are composed together by using different
types of pins such as initiating, terminating and streaming pins linked to-
gether by arbitrary synchronizing logic.

We separate user interface and service concerns but compose in a unified
way such that their composition can be verified and validated (automati-
cally) early at the design time. Note that the layouts for graphical user
interfaces need to be designed by hand, using for instance App Inventor for
Android devices and Swing UI editors for normal Java platforms. Their
association with corresponding functionality blocks is done manually using
normal activity diagram flows.

4.2 Work on Component Synthesis

Unlike traditional approaches, we consider service models as partial models
specifying the cross-cutting concerns where as component models are more
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complete behaviors from the perspective of a particular entity. Traditionally
in the reactive systems domain, component models are defined using state-
machines or some logical formulas. Our component models are based on
UML activity diagrams and can be automatically synthesized from service
models. Thus we adopt a unified approach for both service and component
modeling.

Compared to earlier works on protocol synthesis from service models
such as in [GvB90], we consider strong, weak and non-causality flows prop-
erties while only strong sequencing is considered in their work.

There is a body of work in the literature to synthesize components from
service models [QZCY07, SB09, MH05]. They use the projection mecha-
nisms similar to our approach. However there are differences:

• A part of a component behavior may depend on (or be enabled by)
some external behaviors. This is considered in terms of “responding
flows” in our component models whereas most of the existing work do
not consider this.

• Most of the existing work assume manual derivation of components
while we synthesize components where interfaces comes there with
little or no extra cost (refer Section 2.5). We consider two types of
interfaces to the components: local and semantic interfaces. Local
interfaces are token passing interfaces. Semantic interfaces involve
external message passing and can be considered as contracts among
the collaborating entities. They also encapsulate observable behavior
across the interface. Semantic interfaces can be reused as building
blocks while composing heterogeneous components and be used to
ensure that linked components are compatible.

• We generate reusable components composable in both the service and
component dimension as discussed in Section 2.5 and 2.6.

4.3 Work on Realizability

The realizability of reactive system specifications, in general terms, was
studied in [ALW89]. In the context of interaction diagrams and MSCs, the
notion of realizability has been related to the notion of implied scenario, in
[AHP96, AEY01, MFEH07]. [BBJ+05] discusses automatic detection and
resolution of semantic errors such as blocking, non-local pathologies, non-
local ordering, and false-underspecification associated with scenario based
requirements captured in the form of UML/MSC sequence diagrams.
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In [CBvB07] the authors provide a classification of realizability problems
and give some criteria for detecting them at the level of flow-global chore-
ographies. They use an earlier version of the activity diagrams (AD) to de-
fine and analyze flow-global choreography. However in [CBB11, CBvB07],
sequence diagrams (SD) are used to specify elementary collaborations. Com-
pared to their work, our work, 1. use AD throughout, 2. allow streaming
and interrupting flows, 3. introduce the concept of responding flows and
role integrity for realizability analysis, 4. defines orchestrations in a way
that enable subsequent composition in the system dimension as well as the
service dimension.

To our best knowledge there is no other work that uses responding flows
to systematically analyze realization problems. Nor is there any work that
uses UML activity diagrams and includes both streaming and interrupting
flows in choreography specifications. We use the concept of initiating and
responding flows for realizability analysis. We believe the concept of re-
sponding flows is novel and that {weak} responding flows provides a new
way to identify potential realization problem.

There are different techniques in the literature to check the realizability
of choreography. In [SB09] behavioral equivalence between the LTS of a
choreography and the LTS of a parallel composition of orchestrations is
used. [BGG+06, KP06] uses the bi-simulation equivalence for this. Trace
equivalence is used by the authors in [QZCY07]. In our work we do not
explore global state spaces, but provide rules for analyzing the choreography
directly.

In nutshell, a summary of the related works presented above is given
Table 4.1.

4.4 Architectures and Platforms for SL

The E-Learning Framework (ELF), the Open Knowledge Initiative (OKI),
the IMS Abstract Framework (IAF), and the Open Mobile Abstract Frame-
work (OMAF) are all defining service-oriented specifications and guidelines
for the e/m-learning platforms and frameworks [DOL+07]. They define
the abstract representation of the services and component descriptions that
comprise e/m-learning systems in the broadest sense. A major limitation
in these specifications (and research initiatives like MOBIlearn [Web08]) is
that they do not address the collaborative and social services to support
situated collaborative learning activities.

IMS Learning Design [IMSa, IMSb] provides a framework to specify
choreography of learning activities in terms of a work-flow of learning ac-
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Table 4.1: Summary of the related works
[KP06] [BGG+06] [MH05] [QZCY07] [SB09] Our

Work

Partici-
pant

roles roles services roles peers roles

Partici-
pant

struc-
ture

set of
roles

set of
roles

set of
roles

UML
comm.

dia.

UML
coll.
dia.

F-L
nota-
tion

UML
AD

UML
comm.

dia.

UML
AD

Chor.
seman-

tic

LTS set of
conver-
sation

activity
traces

LTS UML
AD,

[KH10]

Orches.
nota-
tion

process
traces

UML
AD,

BEPL

UML
AD

Orhes.
seman-

tics

LTS process UML
AD,

BEPL

activity
traces

LOTOS
process

UML
AD

seman.

Synthe-
sis

no no no yes yes yes

Confor-
mance

bi-
simula-

tion

trace
equiva-
lence

behavior
equiva-
lence

by syn-
thesis

Impl-
menta-

tion

no yes no no yes

Comm-
unica-
tion

async sync,
async

async sync,
async

async

Mixed
Init-
iative

yes no no no no yes

Data yes no yes no no yes
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tivities. It is an XML based specification. The creation of unit-of-learning
(UoL) involves (besides the flow of activities) the bundling of all associated
resources such as files, web references, learning materials, learning service
configurations, etc.

Several authors have pointed out that IMS LD is insufficient to model
collaborative learning activities, and accordingly proposed extensions to
IMS LD, for example in [RRN04, HLVFAP+06, MHHH05]. A major
limitation of IMS LD is that it is not particularly well suited to model
social groups, complicated control flows and various forms of social inter-
actions. There are some IMS LD editors such as: RELOAD [rel], Cop-
perAuthor [cop], CoSMoS [Mia05], and MOT+ editor [mot]. These editors
provide text-based and graphical user interfaces to facilitate the specification
of IMS LD based learning designs. Most of them presume that a learning
designer has sufficient knowledge about IMS learning design constructs and
specifications. Unlike most of these approaches, we use UML activity di-
agram which has intuitive and rich flow-constructs for modeling activities.
For modeling collaborative learning activities, we encapsulate interaction
among collaborating entities in collaborative building block and later these
blocks can be composed together. This gives potential reusability compared
to existing IMS LD based techniques, specially in composing collaborative
activities together. Our approach also allows multiple individuals to inter-
act together in collaborative activities. Summary of the comparison of our
work and IMS learning design related works is shown in Table 4.2.

Unlike IMS LD based learning design, our approach provides the reusabil-
ity of activity-flow models and units of learning. We also support the model-
ing of user-interfaces in a similar ways as services or activities. We provide
intuitive graphical notations for services and their compositions as learn-
ing activity work-flow [KB11b]. This means that educational practitioners
need to have the bases of workflows but need not be trained with formal
semantics of IMS LD.

Various applications have been proposed and developed to support learn-
ing based on technologies such as agents, peer-to-peer communication, web
services, and grid technologies. Some examples are: EMASPEL [ANA05],
I-MINDS [SJA04], XESOP [MBB04], HYDRA [Zua05], Apple [JYY+04],
[TY08], MobiLP [CLWC03] and COLLAGE [HLVFAP+06]. A discussion
is given in [KB09]. Our approach is different from these approaches in the
following aspects:

• Automation - In most of the applications mentioned above, compo-
nents are manually designed from the given requirements. In our ap-
proach, platform components can be automatically synthesized from
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Table 4.2: Comparative summary of our work and IMS learning design
IMS Learning

Design
Our Approach

Development
Approach

Top down Bottom up

Formal Semantics no Semi-formal

Notation XML UML activity diagram

Learning Activities Local activities Local and
collaborative

User Interfaces No Yes

Reusability No Yes

Workflow Design Sequencing of local
activities

Sequencing of local
and collaborative

activities

Who is it for Developers/Teachers
trained to IMD LD

Teachers knowing
basics of work flows

service models.

• Resuability - Unlike in most of the applications mentioned above, syn-
thesized components in our approach are reusable i.e. they can be
possibly reused in different applications.

• Collaboration and situatedness - Unlike our approach, collaboration
and situation issues are not particularly in focus in the applications
mentioned above.

• Ontologies and intelligence support - Unlike some of the approaches
mentioned above, ontologies and intelligent reasoning capabilities are
not supported in our components. It will be interesting to consider
these issues in the future as a supplement to our approach.
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Chapter 5

Concluding Remarks

5.1 Concluding Remark

This thesis answers the main research question “how to rapidly and flexi-
bly design and develop situated, collaborative services and components”, by
presenting a methodology for the development of distributed collaborative
services. The proposed methodology consists of mainly three types of mod-
els:

• Structure models which specify the structure of collaborating entities
in services and systems. The structural models are specified using
UML collaborations.

• Choreography models which specify the global behavior among col-
laborating entities in services and systems. Choreography is speci-
fied using UML activity diagrams with some extension via profiles.
The choreography is provided at two levels of abstraction: flow-global
choreography and flow-localized choreography.

• Orchestration models which specify the local behavior of each col-
laborating participant in a service or system. The orchestration is
specified using UML activity diagrams. The orchestration (or compo-
nent) models can be synthesized from choreography models and/or it
can be composed manually from smaller building blocks.

The proposed methodology provides the following:

• It allows the specification and use of abstract service notations and
provides flexible composition mechanisms by mapping stable domain
concepts to active objects and cross-cutting behavior to services.
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• It provides a notation for flow-global choreography specification and
design.

• It provides principles and rules for analyzing the realizability of flow-
global choreography specifications using the concepts of initiating flows
and responding flows.

• It provides principles and rules for mapping flow-global specification
to flow-localized specification.

• It provides mechanism for enabling component synthesis from chore-
ography specifications.

• It provides mechanisms for composing components from smaller roles
and components, and system design by composing components to-
gether.

Using these methods and mechanisms, domain experts can: (1) specify
services and put them into a library, (2) design a composite service by com-
posing reusable services from a library, (3) synthesize reusable components,
(4) compose components together to make a composite component and sys-
tem design, and (5) generate application code from service or system models
using existing techniques. The evaluation of the proposed methodology is
done using: (1) proof-of-concept demonstrators, (2) analysis of selected case
studies, and (3) logical reasonings.

5.2 Future Works

The following issues are considered important in the further development,
refinement and extension of the proposed service development methodology.

• Refinement of transformation rules.

Model transformation rules should be implemented and analyzed in
few scenarios. Experimentation with other case studies is needed for
more extensive evaluation.

• Realizability of choreographies.

The proposed mechanisms for realizability analysis of choreography
models are not fully implemented yet. Further work is needed for
their implementation.

Realizability of streaming flows in flow-global choreography is not ex-
plored in this thesis. Inherently streaming flows implies concurrency
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between the connected service roles and it will be interesting to see
how streaming flows effect the realizability of choreographies.

• Graphical editors for flow-global choreography models.

A UML profile for flow-global choreography is implemented and tested
only with tree-based UML editors. Implementation of the sophis-
ticated graphical editors for flow-global choreography is planned in
order to provide the full advantages of flow-global models to the com-
posers i.e. easy and flexible composition mechanisms.

• Implementation of component composition mechanisms.

The preliminary implementation of component composition mecha-
nisms presented in this thesis is done using the Arctis tool. The im-
plementation approach may be validated more extensively by imple-
menting more use cases and scenarios.

• On the evaluation and validations of the methodology.

Implementations and case studies of the methods proposed in this the-
sis demonstrate the potential and applicability rather than providing
rigorous proof of the applicability. Some proof of concept applications
and analysis on selected cases have been done. Realization and vali-
dation of the complete methodology with full tool support remains.
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Abstract

In this paper, we consider the situated and collaborative learning domain,
where students (as members of groups) go around the city and collaborate
to learn. They are dependent on each other and need to collaborate to
accomplish tasks. A treasure hunt game has been developed as a case study
to help analyzing the domain and designing generic and flexible platform
support for situate collaborative learning. The resulting platform seeks to
support the domain as directly as possible by using agents to represent
domain entities and providing services as collaboration among roles played
by agents. The paper identifies stable and variable parts and explains how
the necessary flexibility can be provided.

6.1 Introduction

The ongoing rapid change and development of technologies (Internet, mo-
bile) is also changing the way learners learn. Learners are becoming more
mobile, more distributed, community-oriented and are increasingly using
technology to communicate, collaborate and acquire information. This cre-
ates new opportunities and challenges for learning platforms and learning
technologies.

Mobile devices combined with location technologies enable what we call
situated collaborative learning (SCL). In SCL learners work together on
collaborative tasks outside the classroom, contributing their fair share and
accessing situated learning objects i.e. depending on location and state.
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It can be argued that better learning comes from collaborative inter-
action and situated exploration [PG00]. Emphasis is therefore given to
supporting collaborative processes of knowledge construction and sharing
enabled by seamless mobile networks and location awareness within a city.
This work is motivated by key elements of situated and collaborative learn-
ing [JJH98] which are: positive interdependence among the learners, pro-
motive interaction, individual accountability, interpersonal and social skills,
situatedness, and group processing.

Our aim is to investigate platform solutions that can support the general
needs of SCL and enable flexibility in adaptation and ease of introducing
new learning services. To support SCL one needs something else than a
traditional LMS. One needs a platform than can support mobile, situated
and collaborative learning services. We have asked ourself how to best
support SCL? We used a treasure hunt game to help answer this. Using
domain analysis (Section 6.2), we have identified two types of services - basic
support services and application specific services. Basic support services can
be reused in many application specific services.

Several solutions have been proposed in the SCL area. We don’t claim
that our work is completely innovative in terms of the services it offers.
Our main concerns have been innovative ideas and principles that makes
the proposed platform more flexible and adaptable compared to several
existing solutions discussed in Section 7.9. The work presented here aims
towards next-[DOL+07] or third-[LK01] generation of learning platforms
which considers communities, collaboration, and social context as a center
of attention.

The rest of the paper is organized as following. Description and analysis
of the selected scenario is given in Section 6.2. Section 6.3 discusses the
domain of SCL. Section 6.4 describes our agent based platform in detail.
Experiments and evaluation of the platform are discussed in Section 6.5.
Related works are described in Section 7.9 and followed by discussion in
Section 6.7.

6.2 Case study - a treasure hunt game

As a case study of SCL we used a treasure hunt game.

Players logs on to the system using their handheld terminals and go
around in the city. Players will be able to participate in several social/group
activities. When the game starts each player will receive a clue to identify
a ”treasure”, which can be any historical place, museum, or location within
the city. They have to figure out which location and where it is by using
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knowledge they should have acquired. When they arrive at the right place,
this is sensed by means of location technology (or alternatively participants
will signal the system with a response which is dependent on their being
at the correct location). A question-answer session is then established be-
tween the treasure and the player where players are asked questions about
the treasure, something they can find out at location. Players can collabo-
ratively answer the questions by interacting with group members during the
question-answer session. When they (the group) have answered correctly,
they are given another clue pointing to the next treasure. This continues
until a group of players correctly finds all the treasures, answers all questions
and arrives at the end of the game.

The game can be played in several modes. One possible way of playing
is that all group members receive the same clues and questions at the same
time and try to identify the same treasure. Another possible way is that
group members receive different clues and try to identify different treasures,
but may communicate to help each other. In either cases, players may track
the position of other members of the group and may collaborate to find out
the location and to answer the questions using group support functionalities
(like collaborative interaction, group chat, instant messaging or discussion
threads).

The main objective of the player is learning through participation, prob-
lem solving, and fun rather than defeating someone. Using situated learn-
ing material and making the stronger feeling of connectedness (with fellow
learners), it motivates the players/students to learn by engaging them in a
learning activity and immersing them into the material so that they learn
more effectively. It also encourages the students to learn from their mis-
takes.

6.3 Problem Domain

A well known principle in system engineering is to start by analyzing the
problem domain, rather than starting from specific technological solutions.

6.3.1 Domain concepts

In the SCL domain, one has the following stable domain concepts.

User - is one who uses a system. User can further be classified as
Teachers and Learners. Users can have different profiles, privileges and
data.
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Group - is a set of Users. Groups can be classified as Workgroups,
Socialgroups, etc. A group may contain other group(s).

MeetingPlace - provides functionalities to support group activities
such as group chat, group discussion, etc. It is associated with a group
sharing some common interest. It may be associated with a physical or
virtual location.

LeaningObjects - any entity (digital or non-digital) that can be used
for learning. A learning object may contain other learning objects. It can
be classified as Active, or Passive. Active LearningObjects are objects with
behavior for gaming, questioning, etc. Passive LearningObjects are some
kind of documents which can be accessed and used by Learners for example
web pages, pictures, videos, etc.

Locations - a location is a place having geographic boundaries and
associated LearningObjects.

Class - class is a special kind of Group and may have associated Meet-
ingPlaces. It has a teacher and manages the overall learning activities.

In the treasure hunt game, we use a configuration of these concepts and
add few additional game specific ones.

Players - another name for Learners.
Treasures - kind of LearningObjects with associated Locations.
QuestionAnswerObject - kind of active LearningObjects. It contains

information (questions and answers) about Treasures. Players can link to
it and dynamically interact with it when they are in the vicinity of the
Treasures.

GameManager - kind of LearningObjects which manages the flow of
learning activities and associated learning objects (Treasures, QuestionAn-
swerObject).

6.3.2 Domain services

We have identified a number of services categorized into basic and appli-
cation specific services listed in Table 10.1. A detailed description about
the agents and roles associated with these services is given in Section 6.4.2.
Several of these services are classified as active services according to [SB08].
They are not merely responding to user initiatives but takes initiatives to-
wards the users as well. Information pushed when a user (or group member)
reaches the location of specific Treasures, message from one user to another,
time dependent notification etc are example of such initiatives.

Such services are not merely interfaces (like web services), but involve
collaboration among several objects playing roles [BHM02] as illustrated in
Figure 6.1. The IM service for instance is a collaboration among two users.
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Table 6.1: Collaborative services and associated roles
Service description Roles Type

Group chat GCp, GCg Basic
IM IMp Basic
Group discussion GDg, GDp Basic
Basic awareness PA, GA, GmA, CA Basic
Location awareness PosA, POp, GA Basic
Clue GmA, TrA, GGg, PGp App
Scoring GmA, GGg, QasA App
Interactive QA GGg, QasA, PGp App
Configuration TeA, CfA, CA, GmA App

Figure 6.1: Cross cutting nature of services
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Thus, a service may involve several domain objects and a domain object
may participate in several services as shown in Figure 6.1. This is called
the cross cutting nature of services by several authors. Domain objects
normally have a much longer lifespan than individual service execution.
Service sessions come and go while the domain objects stay. Domain objects
are more persistent, have identities, associated data and profiles/preferences
that services must relate and adapt to.

6.3.3 Variability

We may now classify the domain concepts and services into those that are
general and independent of learning activities (users, groups, class, etc)
and those that are specific to learning activities (treasures, question-answer
objects, etc). There are two main dimensions of variability as shown in
Table 6.2:

Configurating general concepts and services: There is need for a
more or less constant adaptation to users and groups (their preferences and
privileges). Therefore there must be powerful and user friendly means to
adapt and setup new users (their preferences and privileges), groups, and
meeting places. This is done by configuring the general domain entities such
as users (number of users, their profiles), groups, meeting places and etc.

Developing new learning objects and services: A teacher should
be able to easily create and configure new learning activities. In the general
case this requires creating new learning objects with associated services and
corresponding roles. In the treasure hunt case, a teacher can configure the
new game with clues, treasures, and question-answers.

Table 6.2: Variability of domain concepts
Domain objects General Learning specific

Users profiles, group roles (from LO)
membership

Groups members, MP roles (from LO)
Meeting place(MP) IM, group chat,

discussion
Class users, groups, LO, loc

MP LO, loc
Location (loc) MP LO
Learning objects(LO) loc, services
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6.4 Distributed Agent based platform

6.4.1 Design principles

A well-known principle supported by much experience is to design systems
in a way that closely models/reflects the domain they are serving. Thus we
have chosen a platform design based on the following:

• representing the individual domain entities (introduced in section 6.3.1)
by agents i.e. user agents, treasure agents, group agents, etc.

• representing services by roles played by agents.

• using a P2P communication architecture with asynchronous message
passing which effectively handles active service and distribution.

• ensuring distribution transparency through logical addresses and flex-
ible routing.

• supporting dynamic linking and dynamic deployment of agents/applications.

In [BF04], we have found agent orientation useful because it is cen-
tered around relatively stable domain concepts (users, groups, etc) and can
support active, collaborative services. Most of the contemporary service-
oriented and client-server learning platforms (found in the literature) are
made for passive services and do not support active services very well. In
many cases they are structured according to technology choices such as web
services and not by domain reflection. Agent orientation also contributes
to the clarity of modeling of stateful behaviors (where as server oriented
architecture works best for truly stateless behavior) [BF04]. Agent and role
behaviors are described using state machines. Agents may contain inner
agents.

6.4.2 Outline of the platform

By analyzing the domain concepts and services that we have identified in
Section 6.3.2, we identified the agent structure and the roles shown in Figure
6.2. A summary of services and roles is also listed in Table 10.1. The
platform uses library of reusable agents and roles. Roles can be dynamically
bound to the corresponding agents.

Player Agent (PA): A player (Learner) is represented by this agent.
A GUI attached to this agent allows it to interact with the player. When
the player logs on to the system, it register itself to the class (meeting
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Figure 6.2: Overview of distributed agent based learning platform



6.4. Distributed Agent based platform 95

place) and gets the references of available groups, games, other players in
the class. Currently 5 reusable roles have been implemented: PGp(to play
game), IMp(for instant messaging), PDg(to participate in group discussion),
POp(for positioning), GCp(to participate in group chat). All of these roles
are implemented independently and can be combined. Players for example
can play the IM role during the game as well as participate in social groups
and social activities. The player agent is associated with a position agent
to get the position transparently to location technologies. Currently, only
GPS positioning role is implemented in the position agent to read a GPS
data. But it is easily extensible to incorporate other kinds of technologies
like RFID, WLAN etc.

Group agent (GA): The group agent supports group related activities
such as group chatting, group discussions, interactive question-answer, etc.
It also keeps tracks the location and group related information of each play-
ers in a group. Currently three reusable roles have been implemented for
the group agent. The GCg role supports group chat and the GDg supports
group discussion. The GGg role supports players in a group to play the
game. For instance it forwards clues and questions (about treasures) to the
players. It creates and maintains a question-answer session with QA session
agent (QasA). It also supports collaborative interaction within a question-
answer session where each player selects their answer option with a certain
confidence level that that is shared with other group members.

Teacher agent (TeA): A teacher agent can configure (add, modify,
remove) players, groups, treasures, and questions in a game. A teacher
agent cooperates with the configuration agent to configure different games
and system components dynamically.

Class agent (CA): Class agent (CA) manages the groups and players
within a class. It creates the group agents and associated the player agents
(when it receives the registration signal after a successful login of a player)
with groups.

Configuration agent (CfA): Configuration agent is used to configure
all the system agents and their corresponding roles. Currently, two roles
have been implemented - to configure a game manager (CGM) and to con-
figure a class (CCA). A teacher agent uses this agent to configure system
components (agents, roles, etc).

GameManager agent (GmA): The game manager agent is specific
to an application, in this case the treasure hunt. It provides registry and
management functionality for the dynamic associations in the game. When
a new game starts, the game manager reads game configuration and creates
necessary treasure agents and provide them with the questions and answers.
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It sends join game invitation to the associated groups and members.

During the game, the game manager issues clues to the group agents
which forward the clues to associated players. The game manager tracks
the location of the the players and if a treasure is within a given distance,
it returns a reference to the treasure agent to the player. The player agent
will then set up a QA session (by sending a role request message to the
treasure agent e.g IM session in Figure 6.3). During QA session, players
collaboratively interact with the QA agent and group agent, and solve the
learning problem (questions about treasure). When player(s) successfully
have answered all the questions then QA agent will notify the game man-
ager agent and terminate the QA session. The game manager then checks
whether there are other treasures to be identified by the player (or group)
and if so it will send the next clue to the players and next QA session will
be established and so on. When all players in a group collaboratively have
found all treasures answering all questions correctly, the game is finished
and ranking information is sent to the group and corresponding players.

Treasure agent (TrA): The treasure agent is specific to the treasure
hunt game and represents a treasure. It contains QA session agents, that will
be dynamically created when a player is at the correct locations. QA agent
will first load the set of questions and send these questions to the players. It
will then receive the answers and verify the correctness of answers. When the
group (players collaborating) correctly answers all questions, it will notify
the game manager.

6.4.3 Development Process

For active and collaborative services, we use a service-oriented approach.
We call it service-oriented because service models expressed using UML 2
collaborations are the primary artifacts. From the service models we derive
the design models (agents and roles), expressed using state machines. The
implementation code ready for deployment (in the form of OSGi bundles)
is then derived using automatic code generation techniques, using our rapid
service engineering tool - Ramses [Kra07].

6.4.3.1 Role creation and role binding

In order to manage dynamic links, we have used the role creation pattern as
shown in Figure 6.3. A requester agent sends a RoleRequest message to the
requested agent to play the requested role. If requested agent can play the
role, the requested role is created and a RoleConfirm message is send back
to the requester. This is shown for the IM service in Figure 6.3. Otherwise
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Figure 6.3: Role creations IM service

a RoleDenied message is send back to the requester. We assume that both
players (p1 and p2) can play IM role. When the session is completed, user
sends the RoleRelease message (not shown in Figure 6.3) to terminate the
role. The role then terminates and the parent agent is informed with the
RolePlayEnded signal. This mechanism also supports coordinating different
roles being played by an agent.

6.4.3.2 Collaborative services and agents design

In order to explain the collaborative services and agent design principles,
we consider the interactive QA service as described in Figure 6.4. The
structure of the service is defined using the UML 2 collaboration diagram,
identifying the roles. The behavior of each role is described using state
machine diagrams. The goal (collaboratively answering questions about a
treasure) of this service is achieved by the collaboration among 3 agents
namely a player agent, a group agent and a QA session agent. More specif-
ically in this service, the player agent plays a PGp role, the group agent
plays GGg and the QA session agent plays QasA. This is a composite col-
laborative service as it includes two elementary collaborations - one between
PGp role and GGg, and another between GGg and QasA.

The collaboration between QA session agent and the group agent is
as following. When the session is established (between GGg and QasA),
the session agent send the first question signal (qsn signal in Figure 6.4)
to the group agent and enters into waitForAns state. When it receives a
answer from the group agent (smtAns signal), it will check the correctness
of the answer. If the answer is not correct, game info is updated (score
will be deducted) and the same or another question will be send again. If
the submitted answer is correct, some game information (like scoring, time
taken, etc) is updated and it will check whether there is a next question
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Figure 6.4: Overview of interactive QA service

available to be answered by a group. If next question is available it is
then forwarded to the group. Otherwise a final score for this QA session
is calculated and the game manager will be informed about it. The session
then will be terminated.

Collaboration between group agent (GGg) and player agent (PGp) is as
following. When the group agent received a question signal (qsn in Figure
6.4), it is forwarded to all the players within that group. When a player
agent receives qsn signal, it will update the GUI and wait in the ready state.
When a player selects an answer option with some confidence level (lockOpt
signal), the player agent send the statistics (stat signal) to group agent. The
player can also distribute the statistics to other group members (distStat
signal). When group agent receives statistics (stat signal), it calculates
the group statistics for this answer-option and broadcast back to all group
members (distStat signal). The player (group leader) can see the statistics
and submit the answer (smtOpt signal) to the group agent and wait in the
idle state.

6.4.4 Execution and deployment

ActorFrame [BHM02] is a Java based framework that provides the support
for agents, roles, sessions, p2p messaging, state machines, routing mech-
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anisms, etc and is therefore used as a basic support. For the dynamic
deployment support of agents (bundles and applications), the knopflerfish
OSGi framework is used.

As shown in Figure 6.2, agents are grouped in to three types of OSGi
application bundles, and can be dynamically deployed at distributed loca-
tions. Player agents and position agents are bundled into player system
bundle. The server system bundle contains most of the server side agents
like class agents, group agents, configuration agents, treasure agents, QA
session agents, etc. Teacher system bundle consists of teacher agent. XML
repository is used for storing player, group, game configurations.

6.5 Experiment and Evaluation

The platform has been tested both in distributed and centralized configura-
tions using both fixed and mobile (laptops) terminals within NTNU campus
network to run player and teacher agents. HOLUX GPSlim240 Gps receiver
and Google Maps (as interface) are used for the positioning.

Sample screen shots for the player and teacher agents are shown in Figure
6.5. Players can set their status, see the information about their group
and other online players, and be aware of class activities. Players can even
configure their awareness level. Players can flexibly collaborate using general
meeting place functionalities like instant messaging, group chat, and group
discussion. Basic meeting place functionalities can be combined with other
collaborative services e.g. interactive QA service, clue services.

A teacher can flexibly setup and configure new learning objects; for in-
stance assign clues and question-answers to treasures. A teacher can flexibly
setup the game configuration. Players can flexibly join and play the game at
the same time being part of other social groups. The players can have inter-
active clues and QA sessions during the game. When the game is started,
players get a clue and try to identify the location of treasures. A player
can see its location and the location of other players in Google map. When
the players find the location of a treasure, they receive the questions. They
can select an answer option with some confidence level, can see the group
statistics, and can submit the answer.

The preliminary results are very promising. Despite a short develop-
ment time (2 months) the system has sufficient functionalities to serve as
demonstrator and proof of concept. We are now focusing on various issues
(discussed in Section 6.7) in order to make it more robust and more flexible.
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Figure 6.5: Sample screen shots

6.6 Related work

E-Learning Framework (ELF), Open Knowledge Initiative (OKI), IMS Ab-
stract Framework (IAF), Open Mobile Abstract Framework (OMAF) are
defining service-oriented based specifications and guidelines for the e/m-
learning platforms and frameworks [DOL+07]. MOBIlearn [Web08], Akog-
rimo [Web] are some service-oriented research initiatives. They define the
abstract representation of the services and component descriptions that
comprise e/m-learning systems in the broadest sense. We have considered
their ideas of having basic (reusable) and application specific services in SOA
based elearning platforms. A major limitation with such specifications (and
research initiatives like MOBIlearn [Web08]) is that they don’t address the
collaborative and social services to support situated collaborative learning
activities.

Various learning platforms based on agents, peer-to-peer communica-
tion, web services, grid technologies, etc have been proposed e.g. [ANA05],
[SK04], [SJA04], [XYS03], [PBQH04], [MBB04], [Zua05], [JYY+04], [TY08],
[CLWC03] and [HLVFAP+06]. I-MINDS [SJA04] has the support of two
types of agents (teacher agent and student agent), however, this platform is
inflexible and focused on a point solution for classroom based learning. Au-
thors in [PBQH04] proposed an agent based learning platform where agents
are represented as avatars corresponding to objects in the real world. Col-
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laboration and situation issues are not addressed. An interesting point that
can be considered from this system is that agents uses action planning mech-
anism in order to fulfill their objectives and goals. XESOP [MBB04], is a
web-service and agent based learning platform. Course content is stored in
XML databases and propagated via web services with the help of Helper
agent (the only agent in the system). Limitation lies in its inflexibility.
There is only one centralized agent that manages almost everything. There
is no cooperation issues included among the learners.

HYDRA [Zua05] is a P2P based platform that facilitates searching, pub-
lishing, and downloading services for SCORM based learning objects. It
does not address the collaboration issues. SCORM based learning object
support may be considered for our future work. EMASPEL [ANA05] con-
tains agents like interface agent, emotional agent, curriculum agent, tutor
agent and etc. Agents in this case are intelligent agents (having reasoning
capability) and communication among the agents is based of FIPA ACL.
This system is able to recognize the current emotion of the learner based on
the facial expressions and accordingly adapt the learning materials. This
idea is promising to see and test in our situated collaborative learning sce-
narios.

6.7 Discussions and future improvements

We define collaborative services as collaborations among several agents
where each agent can play several roles to achieve the service goal. Most
of the learning services supported by existing learning platforms are based
on single initiatives from the clients. Services are requested by client and a
server respond to these requests and provides services or required informa-
tion to the clients. This client-server technology is based on synchronous
communication (such as J2EE, HTTP servers etc) and works well in many
situation. However, there are fundamental limitations as well as scaling and
capacity problems when the service is to support users that are collabora-
tive on an equal basis and learning objects that take initiatives towards the
user. Our proposed platform handles and supports the above mentioned
issues well.

Most of the existing solutions are point solutions with limited support for
situated, social and collaborative learning aspects. Our innovative approach
has been to analyze the domain and identify stable domain concepts (as
agents), and their variability. With the concepts of agents playing different
roles in services, we provide the mechanisms to support active, situated and
collaborative services based on asynchronous message passing. We have
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identified basic support services which can be reused in different contexts
and applications. The treasure hunt is a first case we have chosen and
implemented.

Based on the existing services/components, we believe, new SCL services
like a city learning guide, or learning in museums can be easily developed
and supported with our platform. In case of a city learning guide, different
locations within a city (historical buildings, statues, etc) can be consid-
ered as learning objects. Learners will go around the city with positioning
devices. Based on their location, a learning activity (some kind of question-
answer) session will be established. The learners can collaboratively solve
learning problems and share the knowledge interacting with collocated or
distributed learners. In a museum learning case, different objects within
a museum (e.g. tagged with RFID) can be considered as learning objects.
Learners will visit the museum with RFID positioning device. When the
learner reaches the vicinity of any learning object, new nearing services will
be available and corresponding learning sessions will be established. Learn-
ers can interact and share their experience with other colocated/distributed
learners within a group.

Our platform is in active development. We aim to refine and extend
it considering the following issues: designing new SCL applications reusing
existing basic services (components) and identifying new services and com-
ponents; deployment of such services in handheld devices; adaptation and
self-configuration of available or newly arrived components in the system;
interfacing to some existing LMS, adding more intelligence to our agents for
example negotiation, and reasoning capabilities.
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Abstract

We describe a method based on UML activities for the unified specification
of collaborative service behavior and local user interfaces. The method en-
ables a model-driven development process, which effectively combines the
need to express service collaborations involving several components with the
need to provide detailed operations for user interfaces. Our service models
use activities as the primary building blocks that encapsulate self-contained
functionalities. We show, how a complete distributed system can be de-
composed into such building blocks, how this decomposition leads to a sep-
aration of user interface concerns from service collaboration concerns, and
how they may be combined with an event-driven composition mechanism
based on activity parameter nodes. We also demonstrate how different UI
frameworks can be supported, and illustrate the method with a case study
of a situated collaborative learning service.

Keywords: Model-Driven Development; Service-Oriented Architecture;
User Interfaces; UML Activities; UML Collaborations.

7.1 Introduction

During the development of mobile services for end-users, a major challenge is
the difference of perspective that some parts of the system demand. On the
one hand, cross-cutting service behaviors need to be specified so that each
component of the system may interact consistently with the other parts.
A challenge here is the complexity that arises from the coordination of dis-
tributed behavior in general and asynchronous, multi-initiative peer-to-peer
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interaction in particular. On the other hand, end-users expect highly so-
phisticated and responsive user interfaces. Not only do these depend on
the availability of certain libraries for user interfaces, like for instance Java
Swing or Android, but they should also fit perfectly with the device they
are executed on, to match screen size and input methods, for example. This
implies a level of details that, using conventional modeling and program-
ming techniques, is hard to combine with the cross-cutting view on service
interactions needed to get the overall system right.

What unites these two perspective is their reactive nature; both user
interfaces as well as distributed communication must react on events from
an environment, that means user input or the reception of signals. Fur-
thermore, they are tightly coupled by such events: User inputs may trigger
communication with other devices, and, vice versa, the arrival of signals
triggers changes in the user interface.

Our method, first described in [KH06] and complemented in [Kra08],
therefore focuses on the specification of reactive behavior, how it may be
encapsulated in the form of special building blocks, and how it may be
composed effectively to achieve the desired overall system functionality. In
this paper, we focus on the combination of collaborative behavior with local
user interfaces, and introduce a separation between two kinds of building
blocks:

• Collaborative Service Blocks model cross-cutting behavior among
several components. The major concern with these building blocks
is the specification of the coordination necessary to accomplish dis-
tributed tasks and communicate data.

• User Interface Blocks are executed locally on a device, and encap-
sulate all interactions from and to the users, as well as the detailed
operations on user interface elements, like windows or buttons.

Both kinds of building blocks are equipped with parameter nodes that can
be used to compose them together, either to pass data or to notify a block
about an event detected by another block. Due to this composition style,
the construction of system specifications resembles that of wiring together
blocks. Further, we observed that the data types and events needed for
composing blocks together, usually correspond to concepts from the prob-
lem domain, which makes specifications easier to understand by application
developers familiar with a certain domain. The encapsulation of building
blocks makes it possible that applications refer to abstract tasks (for exam-
ple to provide user credentials), and that dedicated implementations may
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Figure 7.1: Mapping of domain objects to system entities and collaborations

realize this task in the best way for the corresponding platform. To ex-
emplify this, we show two implementations of a UI building block realized
for both Java Swing and Android. For the latter we detail a step-by-step
method that integrates with the layout editor for user interfaces of the An-
droid SDK.

The novelty of our approach is the way in which collaborative service
logic is represented together with the local user interfaces: On the one hand,
these concerns are separated into different specification units (the blocks),
but on the other hand their events can be composed on the necessary level of
detail to build responsive applications. Moreover, the use of building blocks
leads to an incremental working process, since they can be developed and
analyzed in isolation, and serve as interfaces between experts of different
domains. These benefits are further discussed in Sect. 7.10. The rest of
the paper is organized as follows: We describe the system that is subject
of our case study in Sect. 7.2 and continue with a brief introduction to our
engineering method in Sect. 7.3. Then, we describe how the system can be
decomposed into subordinate building blocks in Sect. 7.4. The modeling of
collaborative services by means of UML collaborations and activities is pre-
sented in Sect. 7.5, followed by the encapsulation of user interfaces in UML
activities explained in Sect. 7.6. After that, Sect. 7.7 and 7.8 outline the au-
tomated verification and implementation of the specifications. In Sect. 7.9,
we summarize and discuss related approaches and close in Sect. 7.10 with
concluding remarks.

7.2 Case Study: Exploring the City

As an example, we specify a service for students to learn about different
historical places in a city using mobile devices. It is based on the situated
learning service introduced in [KB09]. The system tracks the position of
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Figure 7.2: User interfaces for the individual services

the students and responds when students with similar interests are closely
located. Based on this feedback, users may create groups to cooperate.
When a user comes close to a point of interest, a location-specific service
can be started. Such a service can simply provide information and also
engage students in learning activities. For our example, we realized an
interactive quiz. During a quiz session, users are asked questions related
to the particular point of interest. Users can interact with each other to
answer the questions.

As illustrated in Fig. 7.1, the system is composed of objects reflecting
domain entities, such as users, user groups, and different types of point of
interests like museums. Between these objects, we identified the following
services:

• A social matching service helps to create groups based on user inter-
ests.

• A position update service tracks the location of a user and makes it
available to other users, for instance other members of the same group.

• A chat service allows the users to interact.

• A number of learning services associated with a particular point of
interest are used to support the actual learning, in our case the quiz
service.

Figure 7.2 shows two of the user interfaces involved in the realized sys-
tem. For our application, we have built user interfaces in Java Swing for
laptop computers, as well as user interfaces running on Android for mobile
devices. There are considerable differences between these user interfaces,
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but the service logic is the same. Therefore it is desirable to separate these
two concerns of the system such that they may later be composed. In the
following sections, we describe our service engineering approach that enables
a controlled composition of these concerns.

7.3 The SPACE Engineering Method

The main specification units in our engineering method are special building
blocks that are expressed as UML models combined with Java code covering
the details of operations. Building blocks may describe the local behavior
executed by only one component, but they may also span across several
components and describe collaborations among them. This flexibility is
the key to the approach presented in this paper, since we will later use
building blocks to encapsulate both local user interface behavior (as single-
component blocks) as well as the collaborative service behavior involving
several components (as collaborative blocks). Our building blocks have
previously proven to enable a high degree of reuse (see [KH09] for a survey).
Therefore, the development of a system starts with the consideration of
libraries of reusable building blocks for different domains, as illustrated in
Fig. 7.3. This leads to a drag-and-drop-like specification style, in which
building blocks are composed to more comprehensive ones, until a complete
system specification is obtained. Functionality not yet available is provided
by new building blocks that may be stored for later reuse. Due to the
formal semantics underlying our specification style, building blocks can be
analyzed by means of model checking, which we explain further in Sect. 7.7.
Once a system specification is complete and sound, it may be implemented
in an automated process detailed in Sect. 7.8.

Transformation and Code Generation

Analysis
Collaborations

Activities

JJJ
Executable Java Code and
Runtime Support System

Group-Based
Services

Learning
Services

Location-Based 
Services

User Interface
Blocks

Composition

Figure 7.3: The SPACE engineering method
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To capture behavior involving several components, we use collaborations
as major specification units. Fig. 7.4 shows the city exploration system on
its highest decomposition level in the form of a UML collaboration. It
consists of a number of users connected to a central server, represented
by the rectangular collaboration roles. The ellipses between them refer to
subordinate collaboration uses, namely l to a login service and s to the
actual city exploration service. The latter is defined as a composition of
collaboration uses, as shown in Fig. 7.5. The server is partitioned into four
collaboration roles: a separate chat server, a user server, a position server
and a point-of-interest server. The interactions of these servers with the
users are in turn described by collaboration uses c1...c4 for chat, social
matching, group positioning and the quiz service. The labels on the lines
that connect collaboration uses to collaboration roles are role bindings.

While the UML collaborations in Fig. 7.4 and 7.5 already document
some aspects of the system structure and the distribution of responsibilities
among the components, they do not specify any detailed behavior. The
behavior of each UML collaboration is defined by a corresponding UML
activity, shown in Fig. 7.6 for System. The activity contains one partition for
each collaboration role, (i.e., user and server for the top-level system), which
are usually assigned to different executable components. Each subordinate
collaboration is represented by a call behavior action. For example, the login
service l and the city exploration service s in Fig. 7.4 are represented by the
call behavior actions l and s in Fig. 7.6. Note that they cross the partition
borders since they are executed by users as well as a server. Lighter shaded
blocks, such as u: Login UI refer to local building blocks, which are only
represented in the activity perspective. Building blocks defined as UML
activities have pins labeled by detailed events. These refer to the externally
visible events that can be used to link blocks together, possibly inserting
some control logic between them. The additional shadow at the server side
of the login service indicates that the server handles several instances of
them, as we detail later.

Users start their services by activating the user interface for the login,
represented by block u that is started via initial pin start following the
initial node. On this level, we are not interested in the internal details of
the login user interface. Instead, it is sufficient to consider the external
view provided by the special state machine in Fig. 7.7. It is a so-called
external state machine (ESM), that defines the allowed sequences of tokens
passing through pins. From this ESM we read that, after the login block
has been started, it will emit a token via pin login. This pin is drawn
filled, denoting that it is a streaming pin, which can pass tokens while
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7.4. System Decomposition 117

an activity is active. The provided login data is used to start the actual
login service as a collaboration with the server. As shown in Fig. 7.6, this
collaborative building block has no streaming pins, and may only terminate
in two alternative ways, represented by the two pins granted and denied.
(These are mutually exclusive and belong to different parameter sets, noted
by the additional box around them.) The corresponding result is fed back
to the login user interface block, which will either forward a successful login
via ok or eventually cancel. In the latter case, the flow simply ends in the
flow final node. In case of success, the actual city exploration service is
started via its pin start.

The decomposition of the login phase into a Login UI and a Login Service
from Fig. 7.6 is a typical example for the general pattern that we ise for the
separation of service logic from user interface logic. The local block Login
UI encapsulates all logic specific for user interfaces, and the Login Service
block models the collaborative behavior. We explain the internals of these
blocks in Sect. 5 and 6.

7.4 System Decomposition

The decomposition of the city exploration service into its sub-services was
already introduced in Fig. 7.5 with respect to the collaborations between
the entities; Fig. 7.8 shows the corresponding decomposition in the activity
diagram view, which also adds details about the coupling of events between
the sub-services, and, as the main focus in this paper, the detailed user
interface blocks. Each user interface part as the ones illustrated in Fig. 7.2
is represented by a separate UI block in the activity for the city exploration.
In the Java Swing UI framework, these correspond to separate windows.
For Android applications running on mobile phones, these correspond to
different application screens, as we shall later see.

When a user successfully logs into the system, a user component of the
city exploration service is started via starting node start, which activates the
life-cycle controller of the city explore service m: Main, from which the other
UI elements are controlled. At the beginning, the position module l1 and
the UI block for the position update UI are activated. The position module
is continuously forwarding the position of the user to the UI via pin position.
The group positioning service receives position updates from every user and
forwards them to the other members of the group via the othersPosition
streaming output pin. The Position Update UI then refreshes the position
information of the user and other group members on the map.

The position server checks with operation checkPosition if any member
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of a group is close to a point of interest. In such a case, it informs the point
of interest server to start the quiz service. The Quiz service then forwards
the question via its streaming outpin question to all members of the group
(detailed in Sect. 7.5). During the quiz service, all the user can suggest an
answer via mySuggestion streaming output pin of the quiz UI block which is
connected to the streaming input pin mySuggestion of the quiz service. This
suggestion is then forwarded to the other members of the group and group
suggestions are updated to the quiz UI. One group member is assigned to
be the group leader and submits the final answer via output pin submission
of the quiz UI.

In parallel with the quiz and positioning services runs the social match-
ing service. Users specify their interests and create profiles via User Info UI.
The social matching service then returns the list of matched users through
its output streaming pin matchingUsers. A list of matched users is also
made available to the chat user interface component Chat UI, so that users
can communicate with each other using chat service c1.

7.5 Collaborative Service Blocks

Fig. 7.9 shows the activity for the Login Service. It is activated by pro-
viding the login credentials via pin start, which are forwarded to the server
role. There, the login data is checked, whereupon the service eventually
terminates at the client side by either granted or denied.

The Quiz Service is shown in Fig. 7.10. Within one execution of the
service, one learning object and one group object participate, as well as any
number of users in a group, here emphasized by the multiplicity [0..∗]. Note
that due to the role binding in Fig. 7.5, the groups and learning objects are
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Figure 7.11: Realizations of Login UI for Swing and Android

provided by the partition poiServer in Fig. 7.8. The question handler service
c0 is responsible for providing the questions and evaluating the answers.
Once a question is provided, it is sent to the answering session service. As
indicated by the shadow, this collaboration is executed separately for each
participating user and the group therefore handles multiple instances of it.
The question is provided to all users, declared by the operator select all.
The question is then forwarded within the answering session. Suggestions by
the users are picked up via pin mySugg, internally forwarded to pin suggOut
within the group partition. From there, they are distributed to all other
users, declared by operator select all/self. These selection operators work
as symbolic address filters and are further explained in [KBH07].

7.6 User Interface Blocks

Just as the behavior of the distributed services, the behavior of user inter-
faces is triggered by distinct events. In addition to the triggers from signal
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receptions and timeouts, also direct actions from users (like the tap on a
button) must be taken into account. In contrast to the distributed service
behavior, however, the internal behavior for user interfaces is highly de-
pendent on the specific devices they are executed on: Not only do different
platforms (like Java Swing or Android) offer different user interface elements
and layouts, they also assume different life cycles of these elements which
has influence on their overall behavior. Interestingly, we observe that the
external events often are the same so that these differences may be encapsu-
lated. User interface blocks may therefore have the same pins and the same
ESMs while having very different internal realizations. For this reason, user
interfaces may in the first place be described by an abstract block that only
defines their external behavior such as the one from Fig. 7.7. Other build-
ing blocks may implement this external behavior, expressed in UML as the
realization dependencies depicted in Fig. 7.11. This means that an appli-
cation can be ported to different devices by exchanging only the internals
of the specific building blocks, while the overall composition and especially
the coupling to the service logic can stay unchanged. Our transformation
tool therefore selects implementations of the Login UI block depending on
the desired target platform. (The actual selection mechanism is part of the
deployment and not detailed here.) Since the ESMs are identical, the overall
applications will behave equivalent.

In the following, we will start in Sect. 7.6.1 by presenting one such
implementation of Login UI with a simple building block for Java Swing,
which introduces the mechanisms for the coupling to user interface elements.
In Sect. 7.6.2 we extend our method and design another implementation of
Login UI, specific for Android, which makes use of the layout editor of the
Android SDK and takes care of the particularities of mobile devices.
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7.6.1 Simple User Interface Block for Java Swing

Figure 7.12 shows the Login UI building block specific to Java Swing. It
contains two buttons, one for sending the login data and one for canceling,
each represented by a corresponding building block. The internals of the
buttons are presented to the right. Once a button is started, it registers a
listener to the graphical element. When this listener is activated, it sends
an internal signal BUTTON PUSHED to the underlying runtime scheduler.
The behavior triggered by this signal follows after the accept signal action
for BUTTON PUSHED : The listener is removed and the button block ter-
minates via pushed. To deactivate a button, a token may be sent via stop,
upon which the block is terminated. The text field is created together with
the window and the other elements, but since it does not trigger any events,
no further elements are necessary for it in the model.

The external behavior of Login UI is defined by the ESM given in
Fig. 7.7. After its start, it shows the window illustrated at the right hand
side of Fig. 7.12, with the login button activated. When the user presses
login, a token leaves block login via pushed, whereupon the login data is cre-
ated from the user name and password provided and sent out. From then
on, the block awaits the arrival of either denied or granted. In the denied
case, users may select to retry or to cancel using the then activated cancel
button. In the granted case, the Login UI block terminates via ok.2

A similar approach works for all the other user interface blocks as well,
for instance the Quiz UI. Its external behavior is shown in Fig. 7.13. Once it
is started, it goes to the idle state and changes into active once it receives a
question. In this state, users may suggest the answer to the question while
they receive suggestions from the group members. Once the final answer
is submitted, the quiz UI enters into the submitted state and waits for the
result. The internals of the block are similar to the ones from the Login UI
in Fig. 7.12. Operations are used to update the state of the UI elements and
register listeners to them, which send events back to the building block.

7.6.2 User Interface Blocks for Android

Figure 7.14 shows the login user interface on Android. Screen layouts as
the one illustrated are called activities. (To distinguish them from UML
activities, we always refer to them as Android activities in the following.)

2The ESM from Fig. 7.7 demands that parameters granted and ok are part of separate
execution steps, for instance to leave time for releasing resources. Since the operation to
hide a window in Fig. 7.12 is executed within one step, an intermediate delay element is
added.
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In addition, a progress dialog is shown during the login, and the result is
displayed with an Android-specific user notification, called toast. While the
different user interface elements may look similar to those for Java Swing,
there are some important differences:

• Only a single Android activity can be displayed on the screen at once.
This means in particular that displaying several windows as on desk-
tops is not possible.

• Since applications may be interrupted by other tasks, for instance an
incoming call, any Android activity must be prepared to be moved
into the background. In case the memory gets low, Android activities
also have to be prepared to store their state and wait for a later re-
activation.

• The appearance of user interfaces is determined by rather general
layout files, which are created by graphical tools like the ones provided
by the Android SDK. The instantiation of the user interfaces in terms
of an object structure is done by the operating system based on this
file, taking into account the current device configuration, regarding
screen size and orientation, for instance.
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For a modeling approach, this imposes several challenges, since the lifecycle
of Android activities has to be taken into account, and the layout files
somehow have to be connected to the building blocks in UML. To meet
these additional challenges, we use the method depicted in Fig. 7.15, which
first produces a building block to encapsulate the Android activity and then
composes this block further.

1. The layout file is created with a graphical editor. In the example, this
file arranges the text fields and buttons shown in Fig. 7.14.

2. Events are identified that originate at the user interface and that trig-
ger service logic (such as the activation of the button OK ). Vice-versa,
events are identified that update the user interface, such as the arrival
of a login denial.

3. With an ESM, constrains on the sequence of the events identified
above are described. In the example, the ESM is similar to the one in
Fig. 7.7.

The result of these steps is the external shell of a layout control block that
encapsulates the user interface elements of the Android activity, in our ex-
ample called Login Activity Control. Since all steps are focused on the
visible part of user interfaces and in which sequence users should interact
with them, they can be accomplished by a user interface designer without
specific programming skills. In the following, a programmer adds the inter-
nals to this block and composes it with other blocks to form the final UI
block:

4. The internals are added to the layout control block. These are meth-
ods and listeners that interact with the elements defined in the layout
file, similar to how the listeners and operations work in the block of
Fig. 7.12.

5. The contents of the methods is edited to update the user interface
elements upon events (for incoming events) and listeners are registered
to catch events originating at the user interface.

6. In a final step, the layout control block is combined with other user
interface elements such as dialogs from a UI library to create a compre-
hensive Android UI block. A special block taking care of the lifecycle
of an Android activity is added as well.

As a result of this method, we obtain the Login UI block for Android
shown in Fig. 7.16. From an external view, it behaves as described by Login
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UI from Fig. 7.7. Internally, it is composed from several blocks and adheres
to Android’s particularities:

• Block ALC (for Android Lifecycle Controller) creates the Android
activity for the login screen. Since the creation must be done by the
operating system, only the class is passed to it. The instance is re-
turned via the pin onCreate. Furthermore, ALC monitors the lifecycle
of the activity. If another application is coming to the foreground, the
pins onPause and onResume trigger an event upon which data can
be persisted. (Not shown here.) Eventually, the Android activity can
be terminated via finish, or is destroyed by the operating system via
onDestroy.

• Block Login Activity Control makes the user interface elements of the
Android activity available, as described above. Input pins update the
text fields and output pins forward events that originate from the
buttons.

• Block Progress Dialog displays a dialog while the login credentials are
evaluated by the server. The user may also cancel the login process
using this dialog, which is expressed by the corresponding pin.

• Block Toast displays a message in case the login was denied.

The blocks Gate and Crossover are taken from our standard library and
are used to intercept two alternative flows that arrive to them via in1 and
in2. Crossover terminates the progress dialog upon the arrival of either
denied or ok via flow, and Gate forwards ok or cancel to the termination
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but intercepts this forwarding by a termination of the Android activity via
block ALC.

7.7 Validation and Automatic Verification

Due to the formal semantics [KH10], the specifications expressed by the
UML activities can be analyzed by the model checking tools described
in [KSH09], [KBH09]. The encapsulation of building blocks in their ESMs
leads to a compositional verification style, in which each building block can
be analyzed separately. When a specification is composed of several blocks,
for instance several services and UI blocks as in Fig. 7.8, then all its subor-
dinate blocks are abstracted by their ESMs. This keeps the state space of
the analysis rather small, as shown in [KSH09]. In addition, it is possible
to study design solutions that are not completely finished yet. For instance,
the block for the login on Android in Fig. 7.16 can be validated even if the
internals of Login UI Control are not yet finished. This can provide feedback
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at earlier stages of the development, which reduces costs for changes.

As a means of validation, i.e., whether a behavior is suitable to solve
a certain problem, the behavior of a building block may be simulated by
means of a graphical animation, as shown in [KBH09]. In such a simulation,
designers can step through possible behaviors by looking at the sequences
of actions and states. The actions are triggered by events and the states
are defined by the ESM states of the inner blocks and other elements of the
UML activities.

In addition to the validation that relies on the judgement of the designer
examining selected paths through the state space implied by a specification,
a thorough and automatic verification is possible that takes the entire state
space into account. Such an analysis reveals errors in the interactions within
collaborations, for example unbounded queues, deadlocks, race conditions
and inconsistent terminations, i.e., situations that are generally undesired
and that are most likely design flaws. (This means the given specification
is verified against a set of desirable properties.) With respect to the user
interface blocks proposed here, two properties deserve special attention:

• A building block must obey its own ESM description. For instance,
the Login UI block may push a token through ok if (and only if)
it received a granted, since its ESM allows these events only in that
order.

• A composition of building blocks must obey the ESMs of all the blocks.
For instance, the login gui block may only be composed in such a way
that, once it has emitted a login, it will eventually receive either a
denied or granted (but not both of them). This is very useful for user
interfaces that maintain a certain state (for example if a UI element is
enabled or not) and relieves the developer of ensuring these conditions
manually.

Once errors are detected, the model is annotated and may be animated to
help the designer to understand the error situation and correct it, as shown
in [KBH09].

7.8 Automatic Implementation

To implement the specifications given in terms of UML activities and the
complementing Java methods for the call operation actions, we developed
a two-step process. In a first step, the activities are transformed into UML
state machines. Each partition of the system activity in Fig. 7.6 denotes a
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separate component, for which we generate a UML class. The transforma-
tion considers which collaboration roles are bound to the respective com-
ponents and generates state machines for the respective activity partitions.
This transformation is detailed in [Kra08].

In a second step, code is generated from the UML state machines. The
state machine logic is translated to special transition methods that exe-
cute the state machine transition actions, such as sending signals to other
machines, setting timers or executing the Java operations that have been
copied directly from the building blocks. Our code generators produce code
for different platforms, such as standard Java [Bje09], embedded Sun SPOT
devices [KSH09a], as well as Android [Hau09].

7.9 Related Work

In general, we observe that some service engineering approaches ignore the
details of user interfaces completely and leave such aspects to the imple-
mentations. Other approaches have user interfaces as their primary focus,
but treat the service logic as secondary.

The possibilities of model-driven user-interface development have been
explored for instance in [AJI05, LSHA08, SP00]. Most of these approaches
focus on web applications. In [AJI05], user interface behavior is modeled
with UML use case diagrams which are detailed with activity diagrams
showing the interactions between users and the system. User interface com-
ponents such as Java applets are then generated. Link et. al [LSHA08] use
extended UML activity diagrams to capture UI aspects both from the user
and the system perspective. UI models are used to specify the assembly of
user interfaces components, from which code can be generated. In [SP00],
user interfaces are modeled using several types of UML diagrams. Class
diagrams are used for the domain model representing domain entities and
their relationships, while activity diagrams are used for task modeling. In
contrast to these approaches, we do not try to automate UI development
as such, but provide a way to factor out and encapsulate UI elements from
services and use them in application composition at the modeling level.

UWE [BE08, KBHM00], WebML [CFB00], OO-H [GCP01], and MI-
DAS [CMV04] are model-driven approaches for the domain of web-based
systems. In [BE08], user interfaces are modeled and implemented by code
generation. This approach considers only web services which are mapped
to Java methods. UI components just invoke a web service and wait for the
result in order to present it. In UWE, information aspects are specified by
content models using UML class diagrams. Nodes and links of the hypertext
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structure are specified in a navigation model using UML class diagrams.
Composition of the presentation elements are specified in a presentation
model using stereotyped UML class and interaction diagrams. Behavior is
specified by the process flow model using UML activity diagrams. Similar
to UWE, WebML also has the concepts of structural model for data model-
ing, composition model for the page contents, and personalization model for
the customizing features. All the concepts of WebML are associated with a
graphic notation and WebML specifications can also be translated into web
pages. In OO-H, structural domain information is captured using UML class
diagrams. From there, different navigation models are created for each user
type. Then, using different mapping steps, a default web-interface is gen-
erated. Presentation models based on templates are combined with the aid
of a set of patterns to improve the quality of the generated interfaces. A
model compiler is used to generate the user-interfaces for internet applica-
tions. The MIDAS approach has a system core that defines domain and
business models. Over this central core, it defines structural and behavioral
dimensions of the web-application using conceptual and platform-specific
models for content, hypertext and presentation. A common and interest-
ing feature of these methods is the modeling of the application in different
orthogonal levels and aspects such as content, hypertext, composition and
presentation modeling. One limitation of these approaches is that they con-
sider only web applications and client-server type of services. In contrast,
we provide an approach for reactive services in general without technology
bindings. Our service models are collaborative and encapsulate the details
of interactions and distribution. We also treat UI elements in the same way
as service behavior.

SoaML [Gro08] is a UML profile for the structural aspects of the service.
Services contracts are modeled in a way similar to your approach of specify-
ing collaborative services. UML4SOA [KMH+07] is a profile for specifying
behavioral aspects of services. It contains specialized elements for modeling
service interactions, compensation, event and exception handling. Neither
of these UML profiles, however, deal with details of user-interfaces.

Since UML in general does not provide any dedicated concepts or di-
agrams for developing user interfaces, some approaches use profiles specif-
ically for user interface design. For instance, [Lie04] presents how UML
activity diagrams can be used to show the flow of windows and other UI
elements, by representing actions that a user can invoke while working with
the user interface. The approach introduces stereotypes to further catego-
rize these actions. In comparison to our work the focus lies on the navigation
between local windows, but no connection to service logic or its coupling
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with events. Van den Berg and Coninx [VdBC05] propose a UML profile for
the description of user interfaces in relation to context models that represent
the situations and environment in which the interface is used. Similar to our
approach is the use of UML activity diagrams, but the emphasis on what
they represent differs. Our models are focused on the technicalities of user
interfaces and are very detailed with respect to the event-driven behavior, to
an extend that allows code generation from these models. In contrast, their
models pay more attention to the relations between the system, the user
and the environment by representing the latter explicitly in the diagrams.

App Inventor [Weba] is a visual programming environment for creating
mobile applications by connecting visual boxes like puzzle pieces. Instead
of writing code, the programmer specifies application logic using boxes for
specific functionalities along with control constructs that realize program-
ming structures like conditions and loops. Its development environment is
similar to StarLogo TNG [WMWK06], and Lego Mindstorms [Webb] but
targeting mobile applications for Android. The diagrams of App Inventor re-
semble Nassi-Shneiderman diagrams known from structured programming,
while the activity diagrams underlying our approach model general data
flows, which also offer synchronizing elements like join nodes. It is therefore
not clear to us how more general reactive behaviors, in which reactions on
events depend on complex states, can be expressed, especially if more than
one event need to be synchronized. In our approach, the internal details
of the services and UI blocks are encapsulated with their external behav-
ior specified using ESM. This allows replacement of internal details while
keeping the external behavior. Moreover, our building blocks are composed
together by using different types of pins such as initiating, terminating and
streaming pins linked together by arbitrary synchronizing logic. We also
separate user interface and service concerns but compose in a unified way
such that their composition can be verified and validated (automatically)
early at the design time. As in our approach, the layouts for graphical user
interfaces need to be designed by hand in App Inventor, and their associa-
tion with corresponding functionality blocks is done manually.

7.10 Concluding Remarks

We proposed a method to integrate collaborative service behavior with the
local control of user interfaces using building blocks based on UML activi-
ties. We observe that the demonstrated specification style leads to a system
decomposition in which user interface elements are represented by separate,
self-contained building blocks that may be developed by UI experts. These
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may be combined with collaborative service blocks to form the complete
system specification, which can then be analyzed and implemented in au-
tomated processes. Since the proposed specification style is an extension
of our existing method for reactive system engineering, it inherits several
properties that we consider as beneficial for the development of services in
general:

• The decomposition into collaborative building blocks based on activ-
ities models systems in reasonably compact but readable form. Our
case study involves multiple users and mobile devices communicating
with each other using a variety of services each involving several sys-
tem participants. The complexity of the system therefore goes beyond
that of simple toy examples. However, we are still able to present its
overall specifications on a few pages, as shown by Fig. 7.6 and 7.8.

• Interactions and coordination of collaborative behavior is handled ex-
plicitly on the service model level, with activities that provide an
overview of the cross-cutting behavior executed by several compo-
nents.

• The automated and incremental verification encourages developers to
formally analyze their specifications often and from the beginning,
block by block.

• The automated implementation makes the service specifications the
canonical description from which everything else is derived. This
avoids inconsistencies.

With respect to the integration of user interface behavior, our approach has
several important properties:

• Encapsulation of UI details. The building blocks encapsulate de-
tailed operations on user interfaces, which would otherwise obstruct
the overall specification and which would make it difficult to under-
stand the cross-cutting services.

• Separation of expertise. Due to the separation of concerns enabled
by the decomposition into building blocks, developers with different
fields of expertise may work largely independently from each other.

• Protection of operation call sequences. The above mentioned
separation could also be achieved by object-oriented techniques with
classes separated by interfaces. But by using building blocks, we also
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ensure that operations are called in the right order, secured by the
ESMs. Furthermore, since building blocks are at the service model
level, the analysis of the overall behavior is easier than at the code
level.

• Application-Oriented Composition. The coupling by means of
activity flows is application-oriented: Data types and events corre-
spond to concepts of the domain, like the types Position and User in
Fig. 7.8. This makes specifications easier to understand.

• Interchangeability of UI Frameworks. Since operations and re-
sources belonging to a certain UI are encapsulated as building blocks,
they can be exchanged easily so that a system may use different UI
frameworks. If the new building blocks adhere to the same ESMs,
they will behave consistently.

So far, we encapsulate user interfaces into building blocks in a manual, al-
though highly structured method as outlined in Fig. 7.15. Since this invokes
recurring patterns, we see potential for the automation of this process and
think of solutions that encapsulates artifacts produced by GUI builders for
different UI frameworks automatically. Especially the creation of building
blocks controlling the Android activities can be automated further, taking
the layout files created by the Android SDK as input.
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[GCP01] Jaime Gómez, Cristina Cachero, and Oscar Pastor. Concep-
tual modeling of device-independent web applications. IEEE
MultiMedia, 8:26–39, April 2001.

133



134 References

[Gro08] Object Management Group. Service oriented architecture
modeling language (soaml) - specification for the uml profile
and metamodel for services., November 2008.

[Hau09] Stephan. Haugsrud. Developing android applications with arc-
tis. Master’s thesis, Norwegian University of Science and Tech-
nology., 2009.

[KB09] Surya Bahadur Kathayat and Rolv Bræk. Platform support for
situated collaborative learning. In International Conference on
Mobile, Hybrid, and On-line Learning, 2009. ELML’09. IEEE
Press, 2009.

[KBH07] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann.
Synthesizing components with sessions from collaboration-
oriented service specifications. In Proceedings of the 13th in-
ternational SDL Forum conference on Design for dependable
systems, SDL’07, pages 166–185. Springer-Verlag, 2007.

[KBH09] Frank Alexander Kraemer, Rolv Bræk, and Peter Herrmann.
Compositional service engineering with arctis. Telektronikk,
105(2009.1), 2009.

[KBHM00] Nora Koch, Hubert Baumeister, Rolf Hennicker, and Luis M.
Extending uml for modeling navigation and presentation in
web applications. In Proc. of the Workshop Modeling Web
Applications in the UML, 2000.

[KH06] Frank Alexander Kraemer and Peter Herrmann. Service speci-
fication by composition of collaborations–an example. In Pro-
ceedings of the 2006 IEEE/WIC/ACM international confer-
ence on Web Intelligence and Intelligent Agent Technology,
WI-IATW ’06, pages 129–133, Washington, DC, USA, 2006.
IEEE Computer Society.

[KH09] Frank Alexander Kraemer and Peter Herrmann. Automated
encapsulation of uml activities for incremental development
and verification. In Proceedings of the 12th International Con-
ference on Model Driven Engineering Languages and Systems,
MODELS ’09, pages 571–585. Springer-Verlag, 2009.

[KH10] Frank Kraemer and Peter Herrmann. Reactive semantics for
distributed uml activities. In John Hatcliff and Elena Zucca,



References 135

editors, Formal Techniques for Distributed Systems, volume
6117 of Lecture Notes in Computer Science, pages 17–31.
Springer Berlin / Heidelberg, 2010.

[KMH+07] Nora Koch, Philip Mayer, Reiko Heckel, L. Gönczy, and
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Abstract

The need for global behavior definitions is well established both in the do-
main of embedded reactive systems and service-oriented (business) systems.
The problem has been to define the global behavior with sufficient, rigor
and completeness to fully cover the intended behavior and not just some
scenarios, and to enable automatic synthesis of component behaviors in
practical systems and service development. In this paper we build on pre-
vious work where UML collaborations are used to structure systems and
services into reusable building blocks, and UML activities to model global
behavior, called choreography in the following. We identify two forms of
choreography: one where all flows are localized to the roles participating in
collaborations and another where the flows are not localized and thus more
abstract. We propose a novel approach to map the flow-global choreogra-
phy to a flow-localized choreography and further to distributed component
behaviors (orchestrations) with well defined interfaces from which imple-
mentation code can be generated using existing techniques. The overall
approach combines the merits of global choreographies and collaborative
building blocks with the flexibility of component oriented designs. The ap-
proach is illustrated using a city guiding system as case study.

keywords: Service choreography, component design, model-driven devel-
opment.
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8.1 Introduction

In reactive systems as well as in business systems there is a need to define
global collaborative behavior as well as local component behavior. We use
the term choreography to denote global collaborative behavior involving two
or more participants, in contrast to orchestration that denotes the local be-
havior of each participant. Choreography is needed to define and analyze
the overall service behavior, whereas the orchestration is needed to com-
pletely define component behaviors for implementation. These terms come
from the domain of business services and SOA and are in accordance with
common use in that domain, see e.g. [Erl07].

Ideally the choreography should be sufficiently precise and complete that
component behaviors can be automatically synthesized. This would enable
the service engineer to work mainly on the level of choreography, focusing on
the intended global behavior, and not the detailed component behavior. For
this to be possible one needs suitable building blocks and composition mech-
anisms for defining the intended global behavior completely and precisely,
and one needs a systematic way to go from global behavior to distributed
local behaviors such that all the coordination problems of distributed re-
alizations are properly handled. UML collaborations provides a structural
framework to do this. They define a structure of participating roles where
collaborations taking place among the roles may be represented as collab-
oration uses referring to separately defined collaborations with associated
behavior. We distinguish between elementary collaborations that are not
further decomposed into collaboration uses, and composite collaborations.
In this paper we use UML activity diagrams for the choreography of both
elementary collaborations and composite collaborations as well as for or-
chestration. Motivation for this choice and comparison with alternatives
such as sequence diagrams and interaction overview diagrams is given in
Sect. 8.6. Notation and semantics are in accordance with the UML defi-
nition except for a small notational addition that will be explained. The
overall approach we address in this paper is illustrated in Fig. 8.1.

• Flow-global choreography is used to define the intended global behavior
of composite collaborations on a high level of abstraction avoiding
details of localization and resolution of coordination problems that
may occur at the level of orchestration. The behavior is defined by
an activity diagram connecting actions by flows that are not localized
to any particular role. Actions may either represent the behavior of a
collaboration or a local activity. This is the right level for discussing
the intended behavior with end-users and other stake holders. It is



8.1. Introduction 141

act  City guide service  

«ComponentType»
Group

u 3.s3 g g 4.s4 c

g 5.s5 p«ComponentType»
User

u 1:S1 g

u 2:s2 c

:serve
r

:lead
er 

Re-plan

:grp

:svr

:usr

Start tour

:grp

:serve
r

:lead
er 

Re-plan

:grp

:svr

:usr

Start tour

:grp

«system»
City Guide System

u[*]:
User

g[+]:
Group

p[+]:
POI

c[1]:
CGS

City Guide Service

:grp
usr

usr grp

grp

grp poi

City guide serviceact

pu:Position 
update

grp grp poi
usr nm:Next move

q:Quiz

:user 
:poi

cp:Connect poist:Start tour

Analyze Analyze

Analyze,
Resolve

Analyze

Compose

Compose

Compose

Localize

Synthesize

Localize

ARCTIS SUPPORT

Flow-Localized
Choreography

Orchestration

Synthesize

Service Library

Component Library

Global
Structure

&
Flow-Global

Choreography

user
leader grpqs:Question

user grpsg:Sugg

user
leader grpss:Show 

sugg

grpsb:Submitleader

submitsugg

Group quizact

{leader}{user}

PMISSS

s.init p.init

p.wins p.winss.wins

Figure 8.1: Overview of the proposed approach

also a useful first step in the formalization of requirements.

• Flow-localized choreography is used to define global behavior in suffi-
cient detail to allow extensive analysis and to automatically synthesize
the behavior of component types providing orchestration. The behav-
ior is defined by an activity diagram connecting actions, that either
represent the behavior of a collaboration or a local activity, by flows
that are localized to the roles.

• Component types define the local activity flow, the orchestration, of
each component. They are derived using a projection of the flow-
localized choreography to include only local actions performed by the
component. Information about the collaborations it participates in
and the ordering imposed by external activity flows are retained in
order to support automatic realization as well as compatibility checks
during subsequent composition of components into working systems.
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Tool support for part of this approach is provided by the Arctis toolset
[KSH09], as indicated by the grey area in Figure 1. It enables a composi-
tional development of reactive systems where building blocks representing
collaborative behavior are defined separately using a “swim-lane” like no-
tation for UML activity diagrams, put into libraries, and then composed
in different ways. The Arctis tool provides extensive support on the flow-
localized choreography level. It supports model checking and can synthesize
complete system behavior in the form of communicating state machines that
are automatically realized using code generation techniques.

In this paper we elaborate on the parts not supported by Arctis, i.e.
the flow-global choreography, the mapping to a flow-localized choreography
and the derivation of component types that may be used in subsequent sys-
tem composition. When deriving component types it is necessary to detect
and resolve the realizability problems that may occur. When a choreogra-
phy is mapped to a composition of component behaviors and the global
behavior emerging from the composition differs from the global behavior
specified in the choreography we say there is a realizability problem. It may
for instance happen that messages are received in a different order than
specified or that additional messages are needed to ensure the specified or-
dering. Realizability problems have been extensively studied in the context
of interaction diagrams where they sometimes are referred to as implied sce-
narios or races. Similar realization problems may also occur when activity
diagrams are used, and therefore are discussed in this paper.

In the domain of embedded, reactive systems components will often be
linked to physical objects like users with autonomous behavior that may
take independent initiatives needing to be coordinated and resolved. In
business systems it is more common that services are provided by passive
components that only respond to requests, and never take autonomous ini-
tiatives. This is however, gradually changing with services becoming more
pro-active and “pushing”. Dealing with mixed initiatives is therefore one
of the fundamental coordination problems to be addressed in distributed
reactive service systems. We therefore consider the case where components
in general may be active and take independent initiatives either triggered
by user actions, time or other events. In our approach we seek to identify
all such problems and to resolve them either in the choreography or the
orchestration.

The rest of the paper is structured as follows: A case study is introduced
in Sect. 8.2 and used throughout the paper to illustrate our approach. Sec-
tion 8.3,8.4, and 8.5 describes our proposed approach for the choreography
representation, flow-localization and component design. Related work are
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discussed in Sect. 8.6. Finally, concluding remark are given in section 8.7.

8.2 Service Structure

We illustrate our approach using a city guide service example, which has
been implemented in our previous work [KB09, KKB11]. It is a complex
and challenging example, and therefore provides a realistic basis for evalu-
ation. The users are students that have just arrived in a city and want to
learn about different places of interest. They use GPS enabled hand held
devices and may create profiles specifying their preferences and interests.
Based on their locations and profile information, the users participate in
different groups and social activities. For instance, when a user is trying to
find a particular point of interest (e.g. a historic building), the user may
interact with other users having similar interests. Users may have a peer-
to-peer chat, group chat and discussions. When users are in the vicinity of
a point-of-interest (POI), they may participate in a group quiz provided by
a particular POI.

Fig. 8.2 shows the city guide service as a UML collaboration with four
different roles that will map to corresponding component types: the user
role that represents a user of the system; the group role that represent a
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group of users and support group functionalities; the poi role that repre-
sents a point-of-interest and provide quizzes and finally, the cgs role (city
guide manager) that provides a guided tour to the users. A number of
collaborations uses represent sub-services that are defined separately:

• Start tour performs the tour initiation triggered by the lead user. It
has two roles: leadr that is bound to user and grp bound to group.

• Get plan fetches a plan which is a list of points of interests.

• Re-planning is a composite activity that stores the plan and allows
the lead user to re-plan for the group (details are not discussed in this
paper).

• Position update is used to continuously update the current position
as users are moving.

• Connect poi will inform the POI to initiate a Quiz session with the
group.

• Group quiz performs a quiz session where each group member may
suggest answers and the lead user may submit an answer.

• Tour manager manages the city guide tour. It holds a plan in the
form of a list of POIs. It provides the next POI to be located when a
current POI is finished.

• Proximity detector checks if the users (using their positions) in a group
are within a defined proximity of a POI and initiate Connect poi when
this is the case.

We assume that the behavior of each of these collaborations is defined
by an activity diagram having the same name as the collaboration. For ex-
ample, the activity diagram for the Position update collaboration is shown
in Fig. 8.3(a) using flow-localized choreography. Such diagrams are easily
derived from corresponding sequence diagrams, if one is starting from a set
of sequence diagrams rather than activity diagrams. Each collaboration en-
capsulate interactions across an interface between two or more participating
roles and is used as a collaborative building block in the following. They
are referenced by the actions nodes in a choreography model (discussed in
Sect. 8.3) according to the notation given in Fig. 8.3(b).
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8.3 Flow-Global Choreography Models

The flow-global choreography defines the desired global execution ordering
of collaboration uses in a composite collaboration. For example the flow-
global choreography of the City Guide service is shown in Fig. 8.4 using a
UML activity diagrams.

All actions in the diagram call activities defined separately. The called
activities are either local to a role called local activities (here the prox. de-
tector and tour manager) or defining the choreography of a collaboration
(the rest). For example, the start tour action st.Start tour and the position
update action pu.Position update in Fig. 8.4 call the activity given for the
st:Start tour and pu:Position update collaborations in Fig. 8.2 respectively.
In this way the diagram defines the choreography of, possibly nested, collab-
oration behaviors. The gq.Group quiz call behavior action calls the group
quiz activity represented in Fig. 8.5.

Note that the participating roles of collaborations are indicated by par-
titions defined by solid lines in the action symbols. The initiating and
terminating roles of the collaborations are indicated using dots and squares,
respectively. This (dot and square) notation is not part of UML, but may
be provided by additional profiling. An action can have all the different
types of pins that UML allows, such as initiating, streaming and terminat-
ing pins. An initiating pin will start the called activity if it is not started
yet. Terminating pins will terminate the called activity. Streaming pins
can pass tokens while the called activity is active, i.e. a flow between two
actions connected by streaming pins allows the called activities to interact
without being stopped. For example the streaming flow from quiz to group
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quiz in Fig. 8.4 means that the quiz action, without being terminated, may
interact with the group quiz i.e. they overlap. A question is sent from the
quiz service via the streaming pin to the group quiz service (quiz is still ac-
tive and group quiz is started). Using the group quiz service, the members
of the group may discuss the possible answers and agree on one solution
before a leader submits the answer.

Note that variables and data are omitted in Fig. 8.4. However, it is
possible to define and use data in the normal way defined for UML activity
diagrams.

The particular case of initiative choices are modeled using interruptible
regions (denoted by dotted box) and interrupting flows as shown in Fig. 8.5.
In a group quiz service, there may arise a situation where a user is proposing
an answer at the same time as the leader is submitting an answer. What
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we want is to choose either one or the other as specified in Fig. 8.5, but in
a distributed realization they may occur nearly simultaneously and require
additional coordination to resolve which initiative to select. More on this
is in Sect. 8.4.5. Optional behavior triggered by external events may be
modeled in a similar way. A leader may for example opt to re-plan while
the other users are using a current plan, triggered by the replan event in
Fig. 8.4.

We note that there is a certain amount of concurrency in the choreogra-
phy in Fig. 8.4, that follows explicitly from the parallel fork and implicitly
from the streaming pins. It is important to note here that this concurrency
reflects the nature of the problem and is not imposed by the notation as
such. In simpler cases, activities have only starting and terminating pins.
Connecting such pins will result in a normal sequential ordering. We use
streaming pins where we want activities to interact without being stopped.

8.4 Flow Localization

At the flow-global level we define the intended ordering including streaming
pins, interruptible regions and initiative choices. At the flow-localized level
we need to ensure the ordering in terms of local flows. In Sect. 8.4.1 and
8.4.2, we first consider direct flows with no control elements between the
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action nodes. In Sect. 8.4.3, the localization of the control nodes and notion
of path is introduced. Streaming, and interruptions are then discussed in
the following sections.

8.4.1 Strong Sequence Localization

In this step we ensure the strong sequencing semantics of UML AD, i.e. that
leaving an activity through an activity final node terminates the entire activ-
ity. It means that there will be no overlap or concurrency among activities
that follow each other sequentially according to the flow-global choreogra-
phy, and hence realization problems caused by overlaps are avoided.

We now assume that the collaborations on the lowest level of decompo-
sition have only one initiating role and one terminating role, with a starting
input pin assigned to the initiating role and a terminating output pin to the
terminating role. In the case of parameter sets, all alternative pins need to
be assigned to the same role. This is summarized in Fig. 8.6(a). The global
flows are then localized in the following way:

• A global edge directly from collaboration action C1 to C2 is attached
to the corresponding terminating output pin or parameter output pin
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of C1 and the starting pin or parameter input pin of C2.

• Every external event is localized to a single role, as illustrated in Fig.
8.6(e). For example the replan event within the interruptible region
in Fig. 8.4 is assigned to a lead user.

Two cases are possible after this:

• Natural strong sequence: the flow between two collaborations C1 and
C2 is completely localized to one role, as shown in Fig. 8.7(a). This
means that strong sequence is ensured by the global flow directly.
In the city guide choreography (Fig. 8.4) there is a natural strong
sequence between most activities.

• Enforced strong sequence: the flow between two collaborations C1
and C2 is not completely localized to one role and therefore implies
a coordination message being passed to enforce the strong sequence.
This is shown in Fig. 8.7(b) where the terminating pin of service
C1 is connected to the initiating pin of C2. Flows linking pins on
different roles imply interaction using send and receiving events at the
terminating and initiating roles respectively. Although this ensures a
strong sequence, it adds a communication overhead.

8.4.2 Weak Sequence Localization

Flows with enforced strong sequence require additional communication that
sometimes is neither desirable for performance reasons nor necessary for
realizability reasons. In such cases we consider using weak sequencing in
stead. Weak sequencing is the normal semantics of Sequence diagrams, and
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distributed system in general. This means that a component may initiate
C2 as soon as it is finished with its role in C1, even if messages may still
be in transfer so that all roles of C1 are not completely finished. It means
that there may be some overlaps between collaborations that potentially
may cause realizability problems such as races. In order to model the weak
sequencing we attach a local terminating pin to the role in C1 that initiates
C2. This is modeled as a streaming pin with the property {weak}, as
indicated in Fig. 8.7 and 8.8. So far we have considered flows that connect
to the initiating role of the next collaboration, what we call initiating flows.
For the non-initiating roles the implication of these flows is that they must
be ready to respond as indicated by the dashed lines in Fig. 8.8(a). This
represents what we call responding flows, to be elaborated in Sect. 8.5.
Interestingly the presence of a weak responding flow implies overlap between
role behaviors, and thus it serves to indicate a potential realization problem.
The problem is that events in overlapping roles may interleave in ways not
specified in the choreography. Whether this is possible or not depends on
the underlying communication medium linking the roles.

As we can see in Fig. 8.8(b), since A initiates C2 only after it finishes its
role in C1, m2 is always sent after m1. However, if the communication link
between components A and B may reorder the messages, the messages m1
and m2 may arrive in any order at B. This is a realizability problem that
must be resolved. In order to resolve this kind of realizability problems we
have three options:

• Resolve the problem on the level of orchestration (component design),
i.e. deal with overlapping behavior in the component design, or use a
communication medium that conserves the sending order.

• Modify the choreography to ensure natural strong sequence.
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• Enforce the strong sequence by additional communication.

In general according to [CBvB07], when a composite role participates in
two consecutive collaborations that are not strongly sequenced and plays a
non-initiating sub-role in the second one there will be overlap and potential
message ordering problems like in Fig. 8.9(a) and 8.9(b). If, for example
the component B in C2 in Fig. 8.8 is replaced with another component D
then there will be no message ordering problem due to overlapping roles in
C1 and C2.

In the choreography of the city guide given in Fig. 8.4, there is no case
of weak sequence localization.

8.4.3 Control nodes and paths localization

Flows connecting a source action node C1 and target action node C2 may
contain intermediate control nodes such as decisions, merges, forks and joins.
In such cases, we say that two action nodes C1 and C2 are linked by a
flow-path through a number of intermediate control nodes linked by direct
flow-steps. Each intermediate flow-step and control node may be part of
several flow-paths. The intermediate control nodes are localized according
to the following rule:

1. Each flow-path from Ci to Cj is first localized to the initiating role of
Cj.

2. Find all the flow-paths through each intermediate control node.

3. If all paths through a node are local to the same component, localize
the node to that component.

4. If some paths involve an interaction to enforce strong sequencing, the
node can be localized to either the source component or the target
component of the path as long as all paths through the node can be
localized to the same component.

5. If the node is a choice node, it must be localized to the target compo-
nent of the path and it must be possible to make the choice based on
information local to that component

6. If localization according to steps 3, 4 and 5 above is impossible, then
there is a realization problem to resolve.
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Figure 8.9: Message ordering problems due to the overlapping of services

Fig. 8.6(b), 8.6(c) and 8.6(f), illustrate cases where the control nodes
can be localized to component B. In 8.6(g), there is a non-local choice which
is not directly realizable and must be resolved as explained in Sect. 8.4.5.
In the case in Fig. 8.6(d), the flow-paths though the fork node may be
localized to either B or C if the additional communication also is needed to
enforce strong sequencing. The fork node may either be localized to B with
an interaction flow to C or the other way around. In more complex cases
having more than one intermediate node, as in Fig. 8.6(h), we can use the
same approach. For example the fork node may either be localized to A or
B. However, in this case we also need to make sure that all the nodes in a
path should be localized to the same component, and if that is not the case
a interaction flow is needed. When the fork node in Fig. 8.6(h) is localized
to A, then we may need to use an interaction flow from the fork node to the
choice node.

8.4.4 Streaming Flow Localization

Streaming pins must be assigned to roles such that output pins are assigned
to the role that generates the output token, and input pins assigned to
the role that receives the input token. Once the streaming pins have been
localized, the flows and intermediate control nodes are localized in the same
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general manner as control flows, explained above. We now classify flows
initiating from and/or ending on streaming pins as streaming flows. The
following cases are possible:

• Streaming output to starting input: This kind of situation exists, for
example, between the quiz and group quiz services in Fig. 8.4. Due
to the streaming pins, we may have overlapping service roles, and this
may cause problems as illustrated in Fig. 8.9(a). This kind of flow is
akin to the weak sequencing discussed above and is indicated by the
{stream} property on the corresponding responding flow.

• Streaming output to streaming input: This means that both activities
will be running in parallel and that streaming inputs may interleave
with other events. This may lead to overlapping roles, like in Fig.
8.9(b), causing realizability problem. As we can see, m1 is the last
message from B to A in C1. However, B may send m3 to A before
m1 provided that C2 has been already started by some service other
than C1. Therefore there is a possibility that B may send messages
m1, m2 and m3 in any order and eventually that A receives them in
any order also. This may or may not be what the composer want to
specify.

• Terminating output to streaming input: This type of flow causes no
overlaps and is directly realizable as long as C2 is ready to accept the
token from C1.

For streaming flows we distinguish two main cases:

• Local streaming: the flows are entirely within one component (com-
posite role). This can be coordinated within the component and will
be unproblematic in most of the cases. We note here that it is desirable
that streaming flows are local to one role.

• Global streaming: a flow that implies communication. This may be
problematic and needs careful consideration.

As a method guideline global streaming flows should preferably be en-
capsulated in collaborations.

8.4.5 Initiative Choice Localization

Fig. 8.5 defines the intended behavior of an initiative choice. There is
no way to prevent the initiatives from happening simultaneously, so-called
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Figure 8.10: Mixed initiatives resolution in flow-localized choreography

mixed initiatives. This requires additional resolution behavior and therefore
initiative choices are not directly realizable. The resolution strategy will
depend on the problem at hand and is difficult to solve in a general way. In
stead one may develop a library of alternative solutions to select from. One
way to handle such situations is to assign primary and secondary priorities
to the conflicting partners and let an initiative from the primary side be
accepted in all cases. For the secondary side, this means that it must be
prepared to receive a primary initiative even after it has issued an initiative
itself, and obey the primary one; the secondary is in this case discarded.
This feature can be modeled in a flow-localized choreography using a mixed
initiative resolution building block, called MISS in [KSH09].

The MISS building block is used in the group quiz service as shown in
Fig. 8.10 (in terms of flow-localized choreography). Fig. 8.11 illustrates the
same using the swim-lane style of Arctis. In the cases of conflicts, a priority
is given to the leader. In the Arctis style choreography, we have chosen to
represent the lead-user and ordinary users as distinct roles in order to show
the difference, we have also included user interface blocks [KKB11] where
the sugg and submit events are captured. The group quiz service is started
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Figure 8.11: Arctis style modeling of the Group quiz service

when a group receives a question via the ques starting pin. The question
is then forwarded via the question service to all users (shown by multi-
session in Fig. 8.11) and also to the leader. When users start suggesting
answers to the question via the suggestion service, the group forwards the
suggestions to the other users (shown by session select statement, for detail
refer [Kra08]) and to the leader. In the case of conflicting initiatives, i.e. the
user is suggesting an answer at the same time as the leader is submitting,
priority is given to the submitted answer (the group is given a primary role
in the MISS service) and the user role is prevented from suggesting any
further answers via the p.wins pin at the user role.

8.5 Deriving Components

Given a flow-localized choreography the next step is to derive a local ac-
tivity flow for each component type, the so-called orchestration, consisting
of the actions and control nodes that are local to the component, i.e. the
collaborative actions and local action as well as the fork, join, decisions
and merge nodes. This is done by making a projection of the flow-localized
choreography onto the components in the following way:

• For each component make a copy of the flow-localized choreography

• Replace each collaboration action and local action where the compo-
nent is not participating by a no-operation node, and keep all the
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Figure 8.12: The city guide group component models

collaborations and local actions where it participates.

• Include all the flows that are completely localized to the component
type. These types of flows are called local flows (local initiating and
local streaming flows). Note that local actions and control nodes will
be associated with such flows.

• Flows that cross the component boundary and therefore involve com-
munication, are called interaction flows. Such flows map to send event
actions on the sending side and accept event actions on the receiving
end.

• Flows that are completely external to the component, are marked as
responding flows. The responding flows determine when the compo-
nent must be ready to participate in collaborations initiated by other
components, i.e. collaborations where the component plays a non-
initiating role.

The resulting component types for group and leader are shown in Fig.
8.12 and Fig. 8.13 respectively. Note that we have kept reference to the
external collaborations for later use during composition. Inside the role
actions there will be send actions and receive actions for the interaction
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flows of the collaborations. The component models have local flows repre-
senting local control flows and responding flows (denoted by dashed lines)
representing flows external to the component. Note that a responding flow
may be a simple edge or a complex flow involving external control nodes as
well as no-op nodes representing collaborations and local actions where the
component is not participating.

Responding flows in the group component type are mostly simple re-
sponding flows. A responding flow between cp.grp and q.grp specifies that
the group should be ready to participate in a quiz session with a POI once
the group has initiated a connect poi collaboration. A responding flow be-
tween nm.grp and pu.grp represents the case where the group informs the
user about a next move, and then should be ready to participate in position
update collaborations.

There are several responding flows in the Leader component type in Fig.
8.13 representing flows involving external control nodes as well as no-op
nodes that have been removed from the diagram. For example a responding
flow between pu.Pos update and gq.Group quiz involves three no-operation
nodes (pd.Prox detector, cp.Connect poi and q.Quiz, c.f. Fig. 8.4) and one
external fork.

Responding flows that have {weak} or {streaming} properties needs spe-
cial attention since they may cause activity overlaps and thus potential race
situations, that must be resolved. Note that there may be several possible
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responding flows ending on a collaboration activity. This means that tokens
can arrive along the different paths in different order. Each responding path
may be shortened and simplified into the shortest and most direct path rep-
resenting the earliest situations when a token may arrive. For the detailed
algorithm on simplifying a responding path, c.f. [KLB10].

The resulting component models may now be used to compose more
composite components and systems. They may also be translated separately
into equivalent UML state machines from which corresponding application
code can be generated using existing tools such as Arctis.

8.6 Discussion and Related Work

In the domain of reactive systems it has been common to use interaction di-
agrams in one form or another to define global behaviors. UML interaction
overview diagrams (IOD), or high level MSC diagrams may then be used
for flow-global choreography [Dec09]. Compared to the IODs, ADs allow
the representation of roles as partitions of activities which is useful informa-
tion that helps to understand and analyze the global behavior at the level of
choreography. According to the UML specifications in [OMG, p. 512], IODs
are specialization of AD that show control flow between set of interactions.
IODs can define sequential and parallel composition of interactions, as well
as loops and alternatives. However, IODs excludes many rich modeling con-
structs available in activity diagram such as interruptible regions, flow final
nodes, and streaming nodes [Whi10]. Interruptible regions of activities are
useful for modeling initiative choices, exception handling and external prior-
ity interrupts. Note that there is an interaction operator break in UML, but
it can only be applied in a sequence diagram not at the interaction overview
level. Streaming pins are useful to model interactions among concurrent ac-
tions at a high level (as discussed in Sect. 8.3 between quiz and group quiz ).
In principle it is possible to use sequence diagrams for elementary collabo-
rations and activity diagrams for choreography, since call behavior actions
can call behavior defined by interactions. This has been done in [CBvB07],
but but exactly how to combine the two forms is not fully defined in UML.
The realizability problems associated with weak sequencing and initiative
choices we have discussed here are the same as those identified in [CBvB07]
and therefore not particular to activity diagrams. We have found activities
to provide a good combination of readability, completeness, and automation
potential. This combined with the benefit of staying within one notation
are the main reasons for our decision to use activity diagrams throughout.

Authors in [RGG03] identify the needs to encapsulate the interaction be-
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havior of distributed components by so-called collaboration modules. They
have suggested collaboration based design with a tighter integration between
interaction and state diagram models, and created a specific language called
CoSDL to define collaborations. The global behavior specified by the com-
position of such collaborations modules in CoSDL is at the flow-localized
level. The CoSDL is aligned to SDL [SDL].

Use Case Maps can be used for both flow-global and flow-localized chore-
ography [Cas05, Buh98]. Related work in the embedded systems and web-
services domains [KP06, BGG+06, QZCY07, SB09, MH05] has concentrated
on flow-localized choreography using interactions and activity diagrams.
Most of this work assumes a manual derivation of components. Unlike most
approaches [BO05, MH05, SB09, WRS+09], we encapsulate interactions in
collaborative building blocks. Most of the approaches are only control flow
oriented, except [KP06] which considers data as well. Initiative choices,
called mixed initiatives in [BF04], which are normal and unavoidable cases
in many reactive systems are handled only by us and [KP06]. There are
different techniques to check the conformance between choreography and
orchestration. In [SB09], behavioral equivalence is used. The equivalence is
checked between the labeled transition system (LTS) for the parallel com-
position of orchestrators and the LTS of the choreography. The authors in
[BGG+06, KP06] use the notion of bisimulation [Mil89] for the conformance
and trace equivalence is used in [QZCY07].

Some of our previous work has been concentrated on choreography where
all flows are localized to participating roles [Kra08] which is supported in
the Arctis tool [KSH09]. Note that our flow-localized choreography is se-
mantically equivalent to Arctis models, and therefore Arctis can provide a
tool basis for further analysis and state machine synthesis. However, the
Arctis tool currently generates complete systems and not component types
that may be used in subsequent component based system composition at
the modeling level.

The flow-global choreography avoids the layout restriction of Arctis (and
the swim-lane notation) by representing the participating roles inside the
actions as proposed in [Cas08]. In [CBvB07], the authors suggested a classi-
fication of realizability problems and some criteria for detecting them at the
flow-global level. In this paper we elaborate on localization i.e. how flow-
global choreography is mapped to flow-localized choreography and further to
orchestration of distributed component types with external interfaces. We
believe the concept of responding flows is novel and that {weak} responding
flows provides a new way to identify potential realization problem. This will
be addressed in a forthcoming paper.
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8.7 Conclusion

A general approach for the definition of flow-global choreography of services
is presented where the global behavior of a service is specified by linking
together actions representing collaborative and local behavior. From the
flow-global choreography we derive flow-localized choreography models that
may be extensively analyzed using existing tools such as Arctis. Distributed
component implementations may then be automatically generated. Our
work is unique in its combination of: 1) the development trajectory it covers;
2) the use of the full power of AD; 3) the support for reusable building blocks
both on the level of collaborations and on the level of components.

Responding flows are introduced to represent flows external to a com-
ponent. This makes it possible to synthesize state machines and implemen-
tations for each component separately, and also provides a key to identify
a class of realization problems. Components may be stored in libraries
and reused in subsequent system composition. Component types provide
information about their interface collaborations that may be utilized for
compatibility checks, dynamic linking and binding of component instances.
In this way our approach supports reuse and composition both on the level
of collaborative building blocks and on the level of components. Further
work is planned to provide full tool support and to elaborate on component
composition.

Although we have not discussed web service in this paper, we can com-
pose them using the same general approach by encapsulating web services
in collaborations. Related works on encapsulating web services in Arctis
building blocks is described in [KSB09].
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Abstract

In this paper we use a model driven development approach for the derivation
of the component behaviors from choreography models. We consider the
reactive system domain where services are collaborative in nature involving
one or more active components that may take initiatives on their own. Two
different forms of choreography models having different level of details are
used. An algorithm is proposed to automatically derive reusable component
types utilizing these choreography models. The approach is illustrated with
a case study - the European Rail Traffic Management System.

9.1 Introduction

Choreography defines observable behavior from a global perspective. This
is normally a kind of work-flow with a desired ordering of activities (ser-
vices). Component behavior on the other hand defines the local behavior of
a component. The choreography models are needed to define and analyze
the overall service behavior, whereas the component models are is needed
to completely define component behaviors for implementation.

Ideally the choreography should be sufficiently precise and complete that
component behaviors can be automatically synthesized. This would enable
a choreographer to work mainly on the level of choreography, focusing on
the intended global behavior, and not the detailed component behavior. For
this to be possible one needs suitable building blocks representing reusable
functionalities and composition mechanisms for defining the intended global
behavior completely and precisely, and one needs a systematic way to go
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from global behavior and enable automatic synthesis of component behav-
iors in practical systems and service development. The situation is even
more complex in reactive systems domain where a service behavior nor-
mally cross-cuts the distributed components and involve a collaboration
among components. In stead of requesting or providing a service like in
web-services, participating components are active entities that may take
initiatives on their own [BF04] and play their part in order to achieve a
service goal.

In this paper, we use the combination of UML collaborations and activity
diagrams to specify the global behavior [Kra08]. We consider choreographies
with different level of details [CBvB07, KB09]. One is called flow-global
choreography where all the variables, control constructs, and flows connect-
ing activities are not-localized to any participating roles and thus are more
abstract. The other is called flow-localized choreography where such flows
are localized to particular roles and thus are more detailed. The flow-global
specification is less detailed but still complete in terms of the intended be-
havior seen from a choreographers or end-users point of view while the
flow-localized specification is sufficiently detailed to allow extensive anal-
ysis and to automatically synthesize the dynamic behavior of component
types [KB09]. In this paper, we elaborate a case study showing on how the
dynamic behavior of each of the system components can be derived from
flow-global choreography models.

The structure of the paper is as following. Sect. 9.2 describes the case
study. Choreography models are described in Sect 9.3. Methods of com-
ponent derivation from choreography models are illustrated in Sect. 9.4.
Related work is given in Sect. 10.6 and conclusion in Sect. 10.7.

9.2 A Case Study

We illustrate our approach using the specification for the European Rail
Traffic Management System (ERTMS) [ert].

While moving in a physical geographical region, a train must always
be supervised by a radio block controller (RBC) whose responsibilities are
to monitor and control all train movements within its region. When a
train starts its journey, the train will first contact a RBC to register its
movement and repeatedly report its current position to the RBC. The RBC
will continue issuing movement authority (MA) to the train, which specifies
a safe distance that the train can travel. During its predefined journey,
the train may travels across more than one RBC regions; this means the
supervision of the train movement is handled by more than one RBCs.
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Figure 9.1: Roles and Sub-collaborations in Normal Train Control

When the train crosses a border between two regions, the RBC of the current
region will handover its control to the next RBC.

We identify two main control states of a train: normal control state and
handover control state. When in a normal control state the train will report
its position to the RBC and receive the MA from the RBC. The new MA
should be send to the train before the current MA expires. The train control
state will change to handover control state when the train is about to exit
the current geographical region controlled by the current RBC and entering
the ad-junction region controlled by the neighbor RBC.

During the handover process, the current RBC plays a handing over
role (H RBC) and the neighbor RBC where the train is approaching plays
accepting role (A RBC). In this paper, we will assume that at any mo-
ment, the train only has the capacity to communication with one RBC (as
described in the ERTMS specification, a train may have the capacity to
handle two communication channel with two RBCs concurrently [ert]). The
detailed handover process is the following:

• Pre-announcement handover. When the RBC detects that the train is
approaching the border, the RBC will change role to H RBC and send
notification to both the train and the A RBC to initiate a handover
process.

• MA generation. After the pre-announcement handover, the H RBC
will contact the A RBC to negotiate a cross border movement author-
ity. The result of a successful negotiation is that a cross border MA is
send to the train so that the train can travel safety to the next region.
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• Handover announcement: when the train front-end reaches the border,
the H RBC initiates the handover process by forwarding the train
position to the A RBC.

• Termination of communication session. When the train rear-end crosses
the border, the H RBC will issue a termination communication ses-
sion order to the train. When the train receives this order, it will
disconnect from the H RBC.

• Establish new communication session. After terminating communica-
tion with the H RBC, the train will try to establish a new communi-
cation session with the A RBC. After this, the train will start sending
its position report to the A RBC.

• Handover supervision. When the A RBC receives the position report
from the train, it will contact the H RBC to inform that the handover
process is completed.

When the handover process is completed, the train will switch back to
normal control state (i.e., the train will now be under supervised by the new
RBC).

9.2.1 Describing Service Structure

A UML collaboration diagram is well suited to model role structures and
identify collaborations among the roles. For example Fig. 9.1 illustrates
the global structure of train control system. An elementary collaboration
(which can not be decomposed further) can be expressed as

C =< cname > {Ri}
where cname represents the name of the collaboration and Ri represents

the set of roles involved. A composite collaboration can be decomposed
into smaller collaborations. The train control system in Fig. 9.1(a) i.e.
< Traincontrolsystem > {Train,RBC} contains two sub-collaborations
Train Supervision and Handover Process. These sub-collaborations are fur-
ther decomposed into smaller sub-collaborations as shown in Fig. 9.1(b)
and 9.1(c) respectively. The handover process as shown in Fig. 9.1(c) is
a complex process involving several collaborations. During this process a
RBC plays either h rbc or a rbc role:

The behavior of a composite collaboration is defined in an activity dia-
gram which is referenced as act < cname > for example the behavior of train
control system collaboration is referenced to act < Traincontrolsystem >
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Figure 9.2: Flow-Global Choreography of Train Control System

in Fig. 9.1(a). The behavior of the elementary collaboration can be de-
scribed using UML activity diagrams or sequence diagrams, however we
have found activities to provide a better combination of readability, com-
pleteness, and automation potential [Kra08, KB10]. In this paper, it is
assumed that the behavior of each elementary collaborations is given and
are available in the library.

9.3 Choreography models

Given a library of collaborative (service) building blocks, the next problem
is to define the global behavior in terms of the ordering and causality among
the collaboration activities. This can be defined by linking service building
blocks together, called choreography. We use UML activity diagrams for
that purpose. We use choreography models having different level of details
as following:
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9.3.1 Flow-global choreography

Flow-global choreography defines the intended global execution ordering by
connecting actions, that either represent the behavior of a collaboration
or a local activity, by flows that are not localized to any particular role.
They are more abstract avoiding details of localization and resolution of
coordination problems. The flow-global choreography specification of the
train control system corresponding to its structures Fig. 9.1(a), 9.1(b) and
9.1(c) is shown in Fig. 9.2(a), 9.2(b) and 9.2(c) respectively. For simplicity
variables and data are omitted in Fig. 9.2.

In Fig. 9.2, the participating roles of a collaborations are indicated
by partitions indicated by using solid lines in each action symbols. The
initiating and terminating roles of a collaborations are indicated using dots
and squares respectively. Actions are connected via different types of pin 1

and control elements such as forks and joins. Note that pins to an action
and control elements in flow-global specification are not localized to any
participating roles. The details of flow-global specification can be found in
[KB10].

9.3.2 Flow-localized choreography

The flow-localized choreography is sufficiently detailed to allow extensive
analysis and to automatically synthesize the behavior of component types.
The flow-localized choreography of the handover process is shown in Fig.
9.3 which is derived from flow-global choreography of the handover process
in Fig. 9.2(c) by applying the localization rules defined in [KB10]. In the
flow-localized specification, we may see the following:

• pseudo states N such as initial and final nodes, and control nodes CN
such as fork and join are localized to particular roles.

• actions A representing tasks such as local activities LA and collabo-
rative activities C. Local activities are assigned to particular roles.
Service pins in collaborative activities are localized to particular role.

• parameter nodes PN i.e. pins at boundary, giving a possibility to
interact with other activities.

1 An initiating pin, represented as unfilled incoming pin, will start the called activity.
Terminating pins, represented as unfilled outgoing pin, will terminate the called activity.
Streaming pin, represented as filled incoming and outgoing pins, can pass tokens while
the called activity is active i.e., a flow between two actions connected by streaming pins
allows the called activities to interact without being stopped.
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• control flow lines FL(x − y) connecting x to y where x, y represents
any of localized N,CN,A and PN .

During the localization process one may also detect different realizability
problems that may occur in a distributed realization that must be resolved.
Different resolution strategies may be followed: either modify the flow-global
specification, resolve in the flow-localized choreography or resolve during
component design [KB10].

9.3.3 Strong, Weak, and Responding flows

The control flows can be classified into three different types: strong, weak
and responding [KB10]. A strong control flow from C1 to C2 specifies that
C1 will be completely finished before starting C2. In Fig. 9.2(c), actions
are connected by strong control flows. A weak control flow from C1 to C2
is used if C2 has been initiated by a non-terminating role r1 in C1 while
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another role r2 in C1 has not been completed i.e., weak flows imply some
overlap between C1 and C2.

When the flows are localized to participating roles, there are at least two
possibilities. In a first case, initiating flow of C2 is local to a component
performing the terminating role of C1 (i.e. performing the last action).
This flow is tagged with a property {strong}. In a second case, the flow
between C1 and C2 are not completely localized to one component (called
interaction flows [KB10]), and the initiating role of C2 either terminates
C1 or sends the last message in C1. In this case, a coordination messages
may be needed to ensure strong sequencing semantics. Use of coordination
messages may however add a communication overhead. Such flows may be
replaced as {weak} flows by connecting service roles that participates in C1
and initiates C2.

A completely localized control flow to a component for example from r1
in C1 to r1 in C2, may have corresponding external flows for example from
r2 in C1 to r2 in C2. These external flow are called responding flows and
a flow from r1 in C1 to r1 in C2 imply that r2 in C2 must be ready to
respond once r2 has finished its part in C1.

9.4 Deriving Component Models

In general, component is defined as a unit of computation which is developed
to be composed with other component [Szy02]. Component development is
a process to produce a component, that includes both internal behavior
and interfaces, to perform specific functionality. In this section, we will
discuss our algorithm to derive the component based on both flow-global
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and flow-localized choreography. The functionality of a component is iden-
tified via the roles that this component will perform. The internal behavior
and interfaces of the component will be derived based on the flow-localized
choreography. If the behavior of the component functionality is dependent
on other components, the interaction and responding flows will be used to
capture these dependencies. The component type derivation algorithm is
described in following steps: (1) identifying the roles that the component
will have; (2) keeping the feature entities of the component type such as col-
laboration roles, local actions, control nodes and the flows that are local to
the component; (3) deriving the component dependencies by adding local-
ized interaction flows and responding flows; and (4) deriving the interfaces
of the component type. The detailed discussion is in the following:

1. Identifying the roles CTR of a component type CT .

A component type contains set of roles assigned to it. For example in
a component type RBC in a train control system in Fig. 9.1(a) CTR

= {rbc, h rbc, a rbc}, and in a component h rbc in Fig. 9.1(c) CTR =
{H}.

2. Keeping the feature entities associated with the component type CT .

(a) Mark each local actions LAi and control nodes CNi which are
localized to CT . This is straight forward because in the flow-
localized choreography these entities are bound to specific roles.

(b) Mark each collaborations Ci in a flow-localized choreography
where a role in Ci ∈ CTR.

(c) Mark each localized control flow FL(x − y)i where source and
target, i.e., x and y, of a flow are localized to CT .

(d) For each flows in step 2c containing a parameter node PN i.e
flows like FL(PN−y)i or FL(x−PN)i: replacing incoming PN
i.e. PN in FL(PN − y)i with a receiving event, and replacing
outgoing PN i.e. PN in FL(x− PN)i with a sending event.

The resulting H RBC after this step is shown in Fig. 9.4(a) where “?”
symbols indicate inconsistent places.

3. Deriving component dependencies by adding localized interaction flows
and responding flows.

(a) For each interaction flows FL(x− y)i in the flow-localized chore-
ography where target of the flow is bound to Ri∈CTR: if the
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flow is not directly realizable according to [KB10] keep enforced
strong sequence using coordination messages, otherwise traverse
backward until there is a collaboration Cj where a role of the
collaboration Rj∈CTR, then replace the flow with FL(Rj − Ri)
and mark the property of this flow as {weak}.

(b) For each collaborations Ci selected in step 2b where a collabo-
ration role Ri ∈ CTR is playing as non-initiating role (marked
as a non-filled eclipse with a number in Fig. 9.4), identify the
responding flows as following: In the flow-global choreography
identify the equivalent role of Ri, traverse backward (consider
all the possible backward flows if there are nodes like merge or
join along the flow) to a preceded collaboration that has a role
Rj belonging to component type CT , i.e., Rj∈CTR. Then in
the component type, add a responding flow from Rj to Ri, i.e.,
FL(Rj−Ri). If Rj can not be found, add a responding flow from
the initial node to Ri, i.e., FL(Ninit −Ri).

The resulting H RBC is shown in Fig. 9.4(b) where responding flows
are represented as dashed lines.

4. Deriving the interfaces: The interfaces of component can be cate-
gorized into two different types: interface behavior associated with
collaborations (called semantic interface [JFS08]), and message pass-
ing interface associated with sending and receiving events. Due to the
space limitation, details is not explained further.

9.5 Discussion and Related Work

Notations and semantics. Various notations have been proposed in the
literature for specifying global requirements. Some examples are UML ac-
tivity diagrams and interaction overview diagrams, Use Case Maps (UCM),
the Process Definition Language (XPDL), the Business Process Modeling
Notations (BPMN), and the Web Services Choreography Description Lan-
guage (WS-CDL). The common concepts in most of these is that applica-
tion behavior can be decomposed into several activities, and further into
sub-activities. Different mathematical approaches has also been used to
represent choreography as well as components behaviors, for example la-
beled transition system in [KP06], set of conversations in [BGG+06], and
activity traces in [QZCY07]. Derivation of components from global specifi-
cation have been addressed by some works in [QZCY07, SB09, MH05]. Most
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work assume a manual derivation of components. Mixed initiatives [BF04],
which is normal and unavoidable case in reactive system are not considered
in most existing work. Most of these works also assume that the primitive
activities are allocated to a single system component for example in terms
of sending and receiving events. However we consider collaborations that
encapsulate interactions as the basic building block of the behavior.

Flow-Global (F-G) and Flow-Localized (F-L). There are interaction mod-
els such as WS-CDL, and interconnection models such as BPMN for describ-
ing a choreography [Dec09]. Interaction models show interaction among
the services, and interconnection models show the activities belonging to
some role and interconnection to other roles specifying communication and
dependencies. Our F-G choreography is like a interaction model where in-
teraction among the services is specified and F-L choreography is like a mix
of interaction and interconnection models.

Realizability issues. When a choreography is mapped to a set of compo-
nents, the global behavior emerging from the composition of components
should conform to the behavior specified in global choreography. Tra-
ditionally different equivalence mechanisms are used: behavioral equiva-
lence in [SB09], bisimulation in [BGG+06, KP06], and trace equivalence
in [QZCY07]. Such techniques may also be used in our models. However we
do the realizability checks during the localization process, in [KB10]. Inter-
estingly we observe that the presence of {weak} responding flows indicate
a potential realization problem, and should be resolved.

9.6 Conclusion

This paper has illustrated through a case study how UML activity diagram
can be used to specify the choreographies of collaborative reactive services.
Flow-global choreography are intended to be easily understandable by an
end users or domain experts. Realizability problems are checked and re-
solved using in [KB10] during the mapping process from flow-global to flow-
localized choreography. The flow-localized choreography is more detailed.
An component derivation algorithm is proposed and elaborated through the
case study - ERTMS. The derived components may then be stored in library
and then be composed during systems design.

We plan to explore in detail how the derived component types can be
reused and composed in a system design. Since the derived components
contain information about external collaborations that may be used as con-
tracts during composition, we believe that the resulting components can be
composed with a high degree of interface compatibility.



178 Paper 4



References

[BF04] R. Bræk and J. Floch. Ict convergence: Modeling issues. In In
System Analysis and Modeling (SAM), 4th International SDL
and MSC Workshop, pages 237–256, Ottawa, Canada., 2004.

[BGG+06] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi,
and Gianluigi Zavattaro. Choreography and orchestration con-
formance for system design. In COORDINATION, volume 4038
of LNCS, pages 63–81. Springer, 2006.

[CBvB07] Humberto Nicolás Castejón, Rolv Bræk, and Gregor von
Bochmann. Realizability of collaboration-based service speci-
fications. In Proceedings of the 14th Asia-Pacific Software Engi-
neering Conference, pages 73–80, Washington, DC, USA, 2007.
IEEE Computer Society.

[Dec09] Gero Decker. Realizability of interaction models. In 1st Central-
European Workshop on Services and their Composition, 2009.

[ert] FIS for the RBC/RBC Handover. http://www.era.europa.eu/
Document-Register/Documents/SUBSET-039v2.3.0.pdf, Ac-
cessed November 2010.

[JFS08] S. Jiang, J. Floch, and R. Sanders. Modeling and validating ser-
vice choreography with semantic interfaces and goals. In IEEE
International Symposium on Service-Oriented System Engineer-
ing, 2008, pages 73 –78. IEEE Computer Society, 2008.

[KB09] Surya Bahadur Kathayat and Rolv Bræk. Platform support for
situated collaborative learning. In International Conference on
Mobile, Hybrid, and On-line Learning, 2009. ELML’09. IEEE
Press, 2009.

179



180 References

[KB10] Surya Bahadur Kathayat and Rolv Bræk. From flow-global
choreography to component types. In System Analysis and Mod-
eling (SAM), volume 6598 of Lecture Notes in Computer Science.
Springer, 2010.

[KP06] Raman Kazhamiakin and Marco Pistore. Choreography confor-
mance analysis: Asynchronous communications and information
alignment. In Proceedings of the 3rd International Workshop on
Web Services and Formal Methods., volume 4184 of LNCS, pages
227–241. Springer, 2006.

[Kra08] Frank Alexander Kraemer. Engineering Reactive Systems: A
Compositional and Model-Driven Method Based on Collaborative
Building Blocks. PhD thesis, Norwegian University of Science
and Technology, 2008.

[MH05] Jan Mendling and Michael Hafner. From inter-organizational
workflows to process execution: Generating bpel from ws-cdl.
In OTM 2005, LNCS 3762, pages 506–515. Springer, 2005.

[QZCY07] Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. To-
wards the theoretical foundation of choreography. In Proceedings
of the 16th international conference on World Wide Web, pages
973–982. ACM, 2007.

[SB09] Gwen Salaün and Tevfik Bultan. Realizability of choreographies
using process algebra encodings. In Proceedings of the 7th In-
ternational Conference on Integrated Formal Methods, IFM ’09,
pages 167–182, Berlin, Heidelberg, 2009. Springer-Verlag.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.



Chapter 10

Paper 5

Title: Modeling Collaborative Learning Services - A Case Study

In: Proceeding of the 2011 International Conference on Collaboration Tech-
nologies and Systems (CTS 2011), May 23-27, 2011. Philadelphia, USA.

Publisher: IEEE Computer Society

181



182 Paper 5



10.1. Introduction 183

Modeling Collaborative Learning Services -
A Case Study
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Abstract

This paper presents an approach to model collaborative learning activities.
Interactions among collaborating participants in a collaborative activity are
encapsulated in a special kind of building block. Such building blocks are
then composed together in order to specify the ordering and causality among
them resulting a learning activity-flow model. Using such activity-flow mod-
els, one can design a learning activity by applying various collaborative
learning patterns such as Jigsaw and Pyramid. Our approach is illustrated
using a case study of a city learning activity.

keywords: Collaborative Learning Services, Modeling, Patterns.

10.1 Introduction

Emerging information and communication technologies are supporting teaching-
learning process in various ways. Learners are becoming more mobile and at
the same time they are interacting and collaborating more with co-located or
distributed learners having similar interests or learning objectives. Emerg-
ing technology is also opening opportunities for informal learning activities
besides traditional class-room based learning. Technology is being accessi-
ble to more and more users and educational practitioners such as learners
are becoming more active in creating or customizing technological solutions
on their own according to their needs. However the challenge is to provide
proper notations and tools supporting flexible, reusable and customizable
collaborative learning activities designs.
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Table 10.1: Collaborative services and associated roles
Service Collaborating Description
identified entities

Login User, Server users to login to the system
Social User, Server find the matched users
Matching
P2P Chat User, User peer to peer chat between users
Group Chat User, Group chat among group members
Group User, Group discussion among group members
Discussion
Quiz User, Group, POI quiz about a point-on-interest
Positioning User, Group sharing location info to a group
Configuration Teacher, Server allows to configure a system

In this paper, we take the perspective that learning comes, not only
from sitting at a desk and consuming content such as books, web pages
and other materials, but also comes from being active and participating in
collaborative activities with other learners and learning objects. Learning
areas may be informal - such as in city wide collaborative learning as dis-
cussed in [CD09] where learners learn about a city by being in the city,
and by interacting with other co-located or distributed learners. In such
situations, learners collaborate and learn in social settings using groupware
to support their activities.

We look into the ways to simplify the design and development of such
collaborative learning activities (or interchangeably will be called services).
In particular, we focus on modeling collaborative learning services and to au-
tomatically produce executables from there. Currently, IMS learning design
specification [IMSa] can formally describe any design of learning activities
i.e., teaching learning processes for wide range of pedagogical approaches.
There are some editors and tools supporting IMS learning design specifica-
tion, however several authors have pointed out that IMS learning design is
insufficient (discussed in Sect. 10.6) in modeling group based and collabora-
tive learning activities. We use UML [OMG09] for modeling such learning
services.

By using the concepts of UML 2.x collaborations, it is possible to model
the structure of collaborating entities in a service. UML activity diagram
can then be used to specify their collaborative behavior i.e., how they in-
teract with each other. Detailed interactions among interacting entities
can be encapsulated into collaborative building blocks and such building
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blocks can then be put into a library and reused to compose a new and
larger learning service. Note that some of the services in a system runs
in the background while others may interact with users. This means that
user-interface concerns (the behavior of a user while interacting with a ser-
vice via graphical user interfaces) plays significant role while designing a
complete system specifications. Interestingly, using a similar approach as
services, it is also possible to model and compose user-interface concerns on
a high level of abstraction. From such models, service can be implemented
in an automated way using code generation techniques.

The modeling style has a number of interesting properties for the devel-
opment of the collaborative learning services. The building blocks lead to
an incremental specification style, since they can be developed and analyzed
in isolation, and serve as interfaces between experts of different domains.
For example an user-interface expert may design the UI blocks and put
into the library. Similarly, a service developer may develop service blocks
and put into the library. Educational practitioners such as teachers may
then compose a new service according to their needs putting together the
available services and UI blocks in the library. Note that educational prac-
titioners may use different collaborative learning patterns (c.f., Sect. 10.4)
as guidelines while composing learning activities together.

The structure of the paper is following. Sect. 2 discusses a case study
that will be used to illustrate the approach. Designing learning activities
and user-interface concerns is discussed in Sect. 3. Design of collaborative
learning patterns is discussed in Sect. 4. Implementation issues are dis-
cussed in Sect. 5. Related work is discussed in Sect. 6 and conclusion is
given in Sect. 7.
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10.2 A Case Study

City learning activity : New students, called users in the following, are just
arrived in a city and are interested to collaboratively learn about different
POIs in the city.

Detailed description: The Users log in to the system (optionally con-
figured by a teacher or an instructor) using their GPS enabled handheld
devices. Users may create their profiles specifying their preferences and in-
terests. Based on their locations and profile information, the users may be
able to participate in different groups and social activities and learn about
different POI around the city. The user may also opt to learn individually
and share the knowledge with other users thereafter. When a user is trying
to find a particular point of interest (e.g., historic building in a city), a
user may interact and collaborate with co-located or distributed other users
having similar interests. During the collaboration, users may for instance
chat, have a group discussion and may participate in a quiz about a par-
ticular point of interest. Table 10.1 shows some services that collaborating
users may use during a learning activity [KB09]. Note that collaborating
entities represent domain entities which play part in the service. They are
also called roles in a service.

Some learning activities may be implemented by a elementary service
i.e., those which can not be decomposed further, whereas some learning
activities may be implemented as a composite service where a service is
composed from smaller services. Some of the services shown in Table 10.1
are elementary, while some are composite. In the following section, we
discuss the design and composition of elementary and composite services.

10.3 Designing Learning Activities

In this section, we start discussing the modeling of elementary collaborative
activities (services) and then we discuss the modeling of associated UI con-
cerns and the composition of UI and service models. We take a quiz service
as an representative example in the following.

We use UML 2.x activity diagram [OMG09] to formally encapsulate the
interactions among the collaborating entities in learning activity. Participat-
ing entities are represented as UML ActivityPartition elements and shown
as swim-lanes for example in Figure 10.1. A collaborative activity is repre-
sented as special kind of building blocks having different types of input and
output pins for instance streaming, starting and terminating types.1 These

1An Initiating pin will start the called activity if it is not started yet. An Terminating
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pins are used to connect the building blocks together.

10.3.1 Designing Elementary Learning Activities

A quiz service is a composite service: it consists of two elementary services
called QuestionHandler and Quiz Session. In a Question Handler service, a
group and a learning object (LO) collaborate. A specification of a question
handler service using UML 2.x activity diagram is shown in Figure 10.1(a).

pin will terminate the called activity. An Streaming pin can pass tokens while the called
activity is active, i.e. a flow between two activities connected by streaming pins allows
the called activities to interact without being stopped.
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A QuestionHandler service is started with a start starting pin. Questions
are then initialized in LO and sent to the group. These questions will
be forwarded to the group members via streaming pin ques. When the
group receives an answer via submission streaming pin, the group forwards
it to LO. The correctness of the received answer is checked at LO and
then accordingly either next question is sent to the group or completion of
question-answer is indicated via end terminating pin.

Note that building block representations of QuestionHandler service are
shown in Figure 10.1(b) and 10.1(c). Detailed interactions among collab-
orating entities are hidden in building blocks and they have pins at the
boundaries which will act as interfaces or connecting points while compos-
ing two or more services together. The building blocks of type in Figure
10.1(b) are supported in our service engineering tool Arctis [KSH09] where
one can see that the service pins are local to particular role (or collaborating
entity). Building blocks of type in Figure 10.1(c) are more abstract repre-
sentation (an extension to Arctis, proposed in [HKLB11]) where pins are
not local to any participating entities, but are owned globally by a service
itself. Starting and terminating service roles are represented by black filled
circle and square box respectively.

Another sub-service of a quiz service is Quiz Session between group and
users. The specification of this service is given in Figure 10.2(a) and the
building block representation is in Figure 10.2(b). The service starts when
a question is received at the group via ques starting pin. The received
question is then forwarded to a user. The user may then suggest an answer
to the group (via mySuggestion to suggOut pins) or receive suggestions from
other members of the group (via suggIn to groupSuggestions pins). Finally
the user may submit an answer (via sumbission to ans pins).
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Figure 10.6: Jigsaw Collaborative Pattern and City Learning Activity

10.3.2 Designing User Interfaces Concerns

Note that users interact with Quiz Session service via graphical user-interfaces
for example view the questions, submit suggestions and answers as shown
in Figure 10.3(a). Such user-interface concerns can be encapsulated in a
building block using UML activity diagram, using a same approach as we
model services. Figure 10.3(b) shows the user-interface model that cap-
tures the user-interfaces concerns of a Quiz Session service. One can see in
Figure 10.3(c) that there is only one activity partition (unlike in a service
model where there are more than one partitions) representing that it is a
local block.

10.3.3 Composing UI Concerns with Service Models

As shown in Figure 10.4(a), user-interface (UI) block u.Quiz UI and ser-
vice block q1.Quiz Session are composed together by connecting their pins
together. The pins can be connected together either manually or semi-
automatically based on their name and associated data type. Refer [KKB11]
for more details on designing comprehensive UI blocks for Java J2SE and
Android platforms and composing UI blocks with service blocks.

Figure 10.4(b) shows the abstract representation of the composite block
i.e., service and UI blocks composed together. In the following section, we
assume that such abstract blocks are in the library and will be used to
compose composite collaborative learning services.
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10.3.4 Composing Learning Activities

Services building blocks can be composed together by connecting their pins
together by specifying a flow between them. For example a composition
of a QuizService which is composed from two elementary services Ques-
tionHandler and QuizSessionWithUI is shown in Figure 10.5. Structural
model, representing structure of the collaborating participants and the ser-
vices they involved in, is shown in Figure 10.5(a). The service behavior
model is shown in Figure 10.5(b). It starts from a starting pin start and a
flow then goes to the starting pin of QuestionHandler. The question han-
dler service will send the question via ques streaming pin to the starting pin
of QuizSessionWithUI service. Users collaborate in the QuizSessionWithUI
service, solve the problem and submit an answer. When QuizSessionWithUI
service terminates, which is indicated by a terminating pin, a flow goes to
incoming streaming pin of QuestionHandler service. As discussed in Sect.
3.1, the QuestionHandler service then checks the correctness of the answer
and accordingly either send the new question or terminate the service which
is represented by the flow line from terminating pin of QuestionHandler to
terminating pin of a composite QuizService.

10.4 Learning Patterns

Collaborative learning patterns are defined as the formalization of good
practices in structuring the sequence of collaborative (or not) learning ac-
tivities or services [LPD04]. We therefore take them as guidelines while
describing the composition i.e., the activity-flow of learning activities. In
the following, we discuss Jigsaw and Pyramid collaborative learning pat-
terns while composing a city learning activity.

10.4.1 City Learning Activity with Jigsaw CLP

A Jigsaw collaborative learning pattern [ADH+04] is shown in Figure 10.6(a).
In Jigsaw collaborative learning pattern, individuals initially join expert
groups where they collaborate and become experts on a particular subject
or topic. (Note that different colored Jigsaw pieces represent individuals
having different pieces of knowledge.) Thereafter, experts from different ex-
pert groups form a new group called Jigsaw groups where they share their
knowledge to each other. In this way, all the users learn about all the topics
to be learned.

A city learning activity based on the Jigsaw pattern can be organized
as following: First, students will be divided into expert groups where group
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Figure 10.7: Pyramid Collaborative Pattern and City Learning Activity

members learn about particular POI and become experts i.e., knowing de-
tailed information about it. In each expert group, students collaboratively
learn together - identify the location of the POI, solve the quizzes about
that particular POI, make presentation and report together. Once students
in a expert group solved their assigned tasks, they become experts and then
they will be reassigned to Jigsaw groups. In Jigsaw groups, each member
are experts on some particular POI as they come from their original expert
groups. The task of each expert in Jigsaw group is to share their knowledge
about the POI of which that they are experts and to learn about other POI
from other experts. Once all the experts have shared their knowledge, all
the students will have learned about all the POI in a city.

Figure 10.6(b) shows the learning activity-flow model as the composi-
tion of services supporting the city learning activity based on Jigsaw col-
laborative learning pattern. The users join in a group using j.JoinGroup
service. Group members then collaborate, for example using q.QuizService
and find a common solution about a particular POI and document it using
d.DocumentSolution service. Thereafter, members in a group depart from
their original expert group and join to a Jigsaw group using j.JoinGroup and
group members collaborate and know about the point-of-interests shared by
each members of the Jigsaw group. (It is assumed that nature of the quiz
service will be the same in jigsaw groups and expert groups.) The process
may continue until all the students know about all the point-of-interests to
be learned which is indicated by last decision node D1 in Figure 10.6(b).
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10.4.2 City Learning Activity with Pyramid CLP

Pyramid collaborative learning pattern [ADH+04] is shown in Figure 10.7(a)
where each each student initially studies the problem individually. There-
after they join to the larger group and share their knowledge. The smaller
groups join to the bigger one and share their knowledge until all the users
are in the same larger group and develop a shared knowledge.

A city learning activity based on the Pyramid pattern can be organized
as following: Each individual student studies the problem i.e. locate and ac-
quire more detail information about a particular point-of-interest(s). There-
after some students form a group and share the knowledge about the POIs
they have learned, compare their solutions and develop a common shared
knowledge. After that, those smaller groups join in larger groups, collab-
orate and acquire the knowledge about the new POIs that other groups
have initially learned. In this way, at the end all the students will de-
velop a shared knowledge about all the point-of-interests to be learned in a
city. Figure 10.7(b) shows the learning activity-flow model of a city learn-
ing activity as the composition of the services based Pyramid collaborative
learning pattern. User individually learn themselves about a particular
POI using i.Individual Learning service. Thereafter they join in a group
using j.JoinGroup service and collaboratively learn about any POI using
q.QuizService and document common shared solution using d.DocumentSolution
service. At the same time, they can use other services such as p.PositionService
which is shown in Figure 10.7(b), chat service and etc. The process may
continue (i.e., groups may join to the another group and the collaborate)
until all students are in a same group.

10.5 Implementations

We use a model-driven development (MDD) [Cas08, Kra08, BH93] approach
for the development of collaborative learning services. Our development ap-
proach starts from abstract models which are close to the problem domain
and are understandable by end users or domain experts. Such abstract
models are transformed into more detailed models and so on until one can
automatically generate application code. Our learning activity-flow models,
which are described as the composition of services, represent models with
highest level of abstraction. They represent the work-flow of learning activ-
ities. Such models uses the semantics of UML activity diagram with small
notational extension which is provided through UML profile in [HKLB11].
These learning activity-flow models are platform independent and specify
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the pure functionality of a particular solution or an applications. Such mod-
els however may contain different types of design faults leading so called re-
alizability problems in [KB10]. Therefore learning activity-flow models can
be model-checked for such errors, identified errors can be resolved (if resolv-
able for example rules in [KB10]) or informed to the learning activity-flow
designer about the potential point of problems which need to be manually
resolved. After that the abstract learning activity-flow models can be auto-
matically transformed into more detailed models using the rules in [KB10].
The resulting models can then be imported in to Arctis tool-suit [KSH09].
The Arctis tool can then be used to model-check for other realizability prob-
lems, and to generate application code for different platforms such as Java
and Androids [KKB11, KSH07]

10.6 Related Works

Various standards and specifications for learning design are proposed and
being used in the area of computer supported learning, in particular e-
learning, mobile learning, and computer supported collaborative learning.
IMS learning design [IMSa, IMSb] (grounded on EML [HMTK04]) is rele-
vant work in the context of this paper i.e., modeling the work flow of learning
activities. IMS learning design (LD) provides a framework to specify the
ordering and work-flow among the learning activities in the form of unit
of learning (UOL) which specifies who does what, when and with which
facilities in order to reach the learning objectives. Note that creation of
unit-of-learning also involves (besides the flow of activities) the bundling
of all associated resources such as files, web references, learning materials,
learning service configurations and etc.

Several authors have pointed out that IMD LD is insufficient to model
collaborative learning activities, and accordingly propose extensions to IMS
LD. Caeiro et. al. [RRN04] proposed the extension to meta-model of IMS
LD by introducing the concepts of community to support collaborative ac-
tivity. The community has local activities within it to support collaboration
for multiple individuals. Hernandez et al in [HLVFAP+06] proposed an ex-
tension to the IMS LD service descriptions defining a special type of service
called group service. Authors in [YC07] however pointed the some of the
limitations of the proposed preliminary concept of group service such as
on the limited awareness and on the specification of privileged roles. Miao
et. al. [MHHH05] also discussed some of the limitations of IMS learning
design, in particular on modeling groups, complicated control flows and
various forms of social interactions. There are some learning design editors
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Table 10.2: Comparative summary of our work and IMS LD
IMS LD Our Approach

Development Approach Top down Bottom up
Semantics formal (XML) Semi-formal (graphical)
Notation None UML activity diagram
Learning Activities Local activities Local and collaborative

activities
User Interfaces No Yes
Reusability No Yes
Workflow Design Sequencing of Sequencing of local

local activities and collaborative act.
Who is it for Developers/Teachers Teachers knowing

trained to IMD LD bases of work flows

such as: RELOAD [rel], CopperAuthor [cop], CoSMoS [Mia05], and MOT+
editor [mot]. RELOAD, CopperAutor and CoSMoS presumes that learn-
ing designer have sufficient knowledge about IMS learning design constructs
and specifications. Collage tool [HLVFAP+06] is a graphical tool, based on
RELOAD, for authoring collaborative learning activities. MOT+ editor in
addition provides some graphical representations for facilitating authoring
tasks to some extent. LAMS editor [lam] uses a set of predefined (learn-
ing) activities in the library and a new activity is designed just by dragging
and dropping such activities and connecting them together. It is however
not compliant to IMS LD. Unlike most of the approaches, we use UML
activity diagram which has intuitive and rich flow-constructs for modeling
activities. For modeling collaborative learning activities, we encapsulate
interaction among collaborating entities in collaborative building block and
later these blocks can be composed together. This gives more flexibility
compared to existing IMS LD based techniques, specially in composing col-
laborative activities together.

Our approach also allows multiple individuals to interact together in
collaborative activities using a concept of session [Kra08]. Summary of the
comparison of our work and IMS learning design related works is shown in
Table 10.2. Unlike IMS LD based learning design, our approach provides
the reusability of learning activity-flow models or unit of learning. We
also support the modeling of user-interfaces in a similar ways as services
or activities. Due to the graphical/visual nature of notations, we believe
that our approach is intuitive for educational practitioners who has bases
of workflows but need not be trained with formal semantics of IMS LD.
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10.7 Concluding Remarks

We use UML activity diagram to model a work-flow of learning activities.
With this, we aim to implement the concept of learning design which are
not specifically intended for IMS learning design specifications. Such learn-
ing activities flow models capture requirements of educational practitioners
and then one can go all the way down to the automatic generation of ap-
plication code. Reusability and flexibility are the major benefits of our
approach where services are designed and put into the library and can be
reused, flexibly composed in other contexts while making a composite ser-
vice. With the proposed approach, one can model (and then compose)
user-interfaces and service concerns in a unified way. Our notations are in-
tuitive for representing collaborative activities as well as UI blocks as one
can see the information about the participating entities, their roles (starting
or terminating or participating) and the interfaces (as connecting points)
in a abstract service notation. Our approach is partially tool supported as
well.

In the future work, we aim to transform our learning activity-flow mod-
els to IMS learning design (LD) compliant models. Since our models use
UML semantics, there may be straight forward way to transform such UML
models into IMS LD scripts, some related works are [IMSb, YC07]. For that
extensions in IMS learning design may be necessary in order to support the
concept of collaborative activities.
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Abstract

In this paper, we present a Model-Driven framework to support development
of components. The framework addresses the following important issues: (1)
how to reduce the cost of making component reusable, (2) how to efficiently
ensure compatibility among components in a composition, (3) how to relate
service composition to system composition The framework has three main
models: (1) Service Models specifying the global cross-cutting functional-
ities; (2) Component Models, can be synthesized from service models or
developed by composing existing components together, specifying the inter-
faces and behaviors of both elementary and composite component; and (3)
System Design for developing system by composing components.

keywords:

11.1 Introduction

Traditionally component-based development is considered as an approach
for software development in which software solutions are developed by as-
sembling software parts defined as reusable components such that the de-
sired system behavior is achieved through the collaboration of those parts
[Szy02, CCL06, Lau06]. However, there are many different definitions of
what a component is depending on the context in which a component per-
forms. For example, [Szy02] defines a software component as a unit of
composition with contractually specified interfaces and explicit context de-
pendencies that can be deployed independently and be composed by third
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parties. On the other hand, in [CLM05], a component is defined as a run-
time software component which is a dynamically bind-able package of one
or more programs managed as a unit and accessed through documented
interfaces that can be discovered at run-time. These definitions focus on
the development or the execution of individual component without detail-
ing how components are combined with others [CCL06]. In general, soft-
ware components can be defined as reusable and composable software units
which can be composed together with other software components to form
new, more composite structures [Szy02, Lau06].

Component-based development, on one hand has potential to reduce cost
and time to market. On the other hand, there is additional cost associated
with making components reusable that must be justified by cost reductions
in later re-use. Central issues are the granularity of components, how to
efficiently define and specify component interfaces so that components can
be connected and deployed together, and how to specify the behaviors of
composite components [CCL06, Jis04].

In this paper, we present a service-oriented development approach lead-
ing to components with behaviored interface contracts derived directly from
service models, at little or no extra additional costs. The approach helps
to overcome some serious problems that have plagued component oriented
development by:

• Reducing the cost of developing component interfaces for reuse.

• Improving the quality of interfaces by including a precise description
of interface behaviors.

• Defining interfaces as reusable entities (contracts) that can be vali-
dated separately.

• Reducing compatibility checks on links between components to static
contract checks.

• Supporting a granularity of components ranging from a few actions to
complex sub-systems.

• Supporting composition of distributed components as well as local
components.

Our approach is based on collaborative services [KB10]. We use the
term service as a partial system functionality where two or more entities,
i.e., components, collaborate and achieve some goal [BCLR10]. A compo-
nent may participate in several services in different contexts. A service can
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involve roles played by different components. Thus there is a need for com-
position both in the service dimension and in the system dimension. Our
development approach leads to components with interfaces for composition
in both dimensions.

The rest of the paper is as following. In Section 11.2, we present our
Model-Driven framework for component development which is illustrated by
a Train Control System (ERTMS) [ert]. Section 11.3 discusses the compo-
sition of component. How a system is developed by composing components
is discussed in Section 11.4. Section 11.5 discusses the related work. Con-
clusions are is given in Section 11.6.

11.2 Model-Driven Framework for Component De-
velopment

In this section, we give an overview of our collaboration-based Model-Driven
framework that supports the developments of components. The framework
is shown in Figure 11.1 and has three main models: (1) Service Models for
specifying the structure and behavior of cross-cutting services and interfaces;
(2) Component Models for specifying the interfaces and local behaviors of
both elementary and composite component; and (3) System Design for de-
veloping system by composing components. The details of the framework
are described below and illustrated by a case study called a Train Con-
trol System - based on the new European Rail Traffic Management System
(ERTMS) [KLB10, ert].

11.2.1 Service models

We consider services as partial system functionality where two or more enti-
ties collaborate and achieve some goals. We distinguish between elementary
services and composite services. Elementary services can not be decomposed
further while composite service is composed from smaller services. We use
UML 2.x collaborations to specify the structure of collaborating entities in
a service and activity diagram to specify their behavior. Figure 11.2 de-
fines the structure of the Train Control System (ERTMS) using UML 2.x
collaborations.

While moving in a physical geographical region, a Train must always be
supervised by a Radio Block Center (RBC) whose responsibility is to mon-
itor and control all train movements within its region. The Train Control
System is decomposed into three collaboration uses that refer to separately
defined collaborations each having an associated activity diagram:
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Figure 11.1: The Collaboration Based Framework

• Movement supervision: this composite collaboration monitors the lo-
cation of the Train via the PositionReport service, and controls the
safe traveling distance of the Train via the MoveAuthority service.

• Communication Supervision: this collaboration monitors and man-
ages the communication between the Train and the RBC. The Com-
munication Supervision is a composite service which is composed from
collaboration uses referring to smaller collaborations that are defined
separately, i.e., the elementary services EstSess and TermSess, which
represents the establishment and termination of communication ses-
sions between a Train and a RBC, respectively. The roles of the
collaboration uses are bound to the roles of the enclosing collabora-
tions. For example the roles train, and rbc of the EstSess collaboration
are bound to the role cT and cR of the Communication Supervision
collaboration uses. Note that the numeric identifiers associated with
collaborations uses are used just for ease of referencing within this
paper.

• Handover supervision: during its journey, the Train may travel across
more than one geographical region; this means the supervision of the
Train movement is handled by more than one RBC. The handover is
performed by the collaborative activity HandoverSupervision. When
the handover supervision is completed, the Train will switch back
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Figure 11.2: Structural Model of Train Control System

to normal movement supervision (i.e., the Train will now be under
supervised by the new RBC). During the handover process, the current
RBC plays a handing over role (h rbc) and the neighbor RBC where
the train is approaching plays accepting role (a rbc).

The collaboration structure only describe a structure of the roles of com-
ponents, e.g., train and rbc; but not how these interact with each other in
a system. The interaction behavior of elementary service roles can be spec-
ified using the token flow semantics of UML activity diagrams, for example
using the swim-lane notation of [KKB11]. In this paper, we assume that
elementary services are available in the repository as building blocks. They
can be reused in the behavior specification (called choreography models) of
a composite service.

For composite services, the choreography is very useful for discussion
with end-users and to capture requirements in a very abstract way and to
specify the intended global behavior [KLB10, KB10]. The choreography
of a collaboration is specified using UML activity diagrams, illustrated in
Figure 11.3 for the collaborations represented in Figure 11.2. One can see
that the choreography of a composite service specifies an ordering of the
behaviors defined by the collaborations referenced by the collaboration uses.
Note that sub-collaborations in Handover Supervision in Figure 11.3(c) are
composite collaborations with choreography defined in Figure 11.4. The
choreography models specify the following aspects:
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Figure 11.3: Choreography of the Train Control System

• Participating roles. The participating roles are represented as parti-
tions of collaborative actions.

• Initiation and termination. The initiating and terminating roles in
a collaboration are indicated by black filled circle and square boxes
respectively. Note that this notation is not the part of standard UML,
but needed for analysis and may be provided by additional profiling.
For example, in Figure 11.3(a), the Train will initiate and terminate
the Communication Supervision collaboration with the RBC, while
in the Movement Supervision collaboration, the initiating role is the
Train and the terminating role is the RBC.

• Execution order of collaborations. As shown in Figure 11.3(a), the
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Figure 11.4: Choreography of the Handover Supervision Collaboration in
the Train Control System

Movement Supervision is only started when the communication be-
tween the train and the RBC has been established and a token is
emitted on the start ms pin.

• Collaboration interactions. The choreography model also has the ca-
pacity to specify how collaboration activities interact while they are
active by means of streaming pins. For example when the Train
reaches the region border, the movement supervision will issue a token
via the end streaming output pin to the communication supervision
to terminate the communication session.

• Local actions. As shown in Figure 11.3(d), the interaction between
collaborations PositionReport and MoveAuthority can also be affected
by some local activity supervisionlogic performed by the rbc.

The choreography model does not explicitly specify the behavior of in-
dividual components, for example, the train or rbc. However, based on
this level of specification, the behavior of components as well as their in-
terfaces can be synthesized using a projection technique as explained in
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Figure 11.5: The RBC Component in Communication Supervision Service

[KLB10, KB10, BCLR10]. Elementary services may result in elementary
components while composite service models result in composite components.
The next section explains the resulting component models.

11.2.2 Component models

In this section, the component model is presented with focus on defining
the component interfaces and the internal behaviors of the components.

Figure 11.5 shows the communication supervision component rbc cs of
the RBC derived from the choreography. Another component the train cs
is shown in Figure 11.6. These component models have the following prop-
erties:

• Interfaces: Components have two types of interfaces: (1) semantic in-
terfaces for inter-component interaction and, (2) local interfaces pins
for intra-component interactions. We use the term semantic inter-
face differently from [BF04, JFS08] where semantic interfaces have
been defined using state-machines defining the observable behavior
at the service interface. A novelty introduced here is to directly use
the collaboration and activity diagram to define the semantic inter-
faces both statically and dynamically. In this way, the semantic in-
terfaces become reusable building blocks with pins for local composi-
tion. For example, in Figure 11.5(a), rbc cs component has two se-
mantic interfaces defined by the collaborations EstSess and TermSess
responsible for establishing and terminating communication session
with the Train. While monitoring the communication session, the
rbc cs component may interact with other local components using the
streaming pins. The rbc cs component has two input streaming pins
SRE x border and end ; and one output pin start ms.
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• Internal behavior: The internal behavior of a component is represented
by the flows which link actions performed by the component. There
are two different types of flows: initiating flows and responding flows.
Initiating flows in Figure 11.5(a) are directly projected from the chore-
ography models shown in Figure 11.3(b) using techniques presented in
[KLB10, KB10]. The responding flows capture the global flows that
are external to the component (c.f [KLB10] for details). Responding
flows in a component specify when a particular role should be ready
to respond to the external initiating role in a particular collaboration.
Responding flows are represented by dashed lines. In Figure 11.5(a),
there is a responding flow from the service role rbc in ts.TermSess to
the role rbc in es.EstdSess to represent that when the rbc cs compo-
nent is finished playing its role in ts.TermSess service, it should be
ready to respond in the es.EstdSess service in order to be ready to
handle the handover activity.

Such component models can be represented externally as black boxes
by hiding the internal details and showing just the information about in-
terfaces as in Figure 11.5(b) and 11.6(b). The name and type of the pins
corresponding to local interfaces is retained. The semantic interfaces are
abstractly represented by a set {ns} where n is a reference 1 to an interface
and s is a character having values of (1) i representing that component plays
initiating role; (2) t representing that component plays a terminating role;
and (3) p representing that the component plays a participating role in a
collaboration.

Semantic Interfaces of a component define virtual sockets, plugs and
cables for wiring components together. As long as the plugs and sockets

1In this paper we simply use numeric references.



212 Paper 6

h_rbc_hov

h_rbc_
hov_t-h

h_rbc_
hov_a-h

«ComponentType»
h_rbc_hov

«ComponentType»
h_rbc_hov_a-h

x_border_MA

SFE_x_border

«ComponentType»
h_rbc_hov_t-h

hovhov

hov

x_border_MA SFE_x_border

{5i,6it,7i,8t}
{5i}

(c)

(a)

Repository

(b)

Lookup

Compose

Figure 11.7: Handingover RBC Component

of a cable are compatible with the plugs and sockets of the components it
links, we can rest assured that the wiring is valid.

11.3 Component Composition

This section discusses how to define a composite components locally. For
illustration purposes, we select a RBC component from the Train Control
System [ert]. We assume that the inner parts of a composite component are
in a repository and can be connected together via pins (as local interfaces)
at their boundary. A component composition involves the following steps:

• Specify the roles to be provided. For example, the roles to be pro-
vided by the handing over RBC component h rbc hov in the Train
Control System can be specified as in Figure 11.7(a) to consist of two
elementary roles representing handover interactions with the Train
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(h rbc hov t-h) and the accepting RBC (h rbc hov a-h).

• Find components providing the roles in a component library. This
can be done manually by the composer based on the requirements at
hand or recommended/selected based on the information available in
the service choreography models from which the roles (or components)
have been synthesized. Selected components to provide the roles for
handing over RBC (h rbc hov) are shown in Figure 11.7(b).

• Compose the selected components together using the pins at the bound-
ary of the selected components. The composition can be done man-
ually by the composer or based on the information available in the
service choreography. Pins may also be connected based on the data
types that they use. Pins that are not connected to any other pins are
made transparent to the boundary of a composite component. For
example composition of inner components in h rbc hov is shown in
Figure 11.7(c). This is done according to the choreography model of
the handover supervision service in Figure 11.3(c). Note that pins
x border MA and SFE x border are made available to the component
(h rbc hov) boundary as local interfaces.

In similar way as the h rbc hov, a RBC component can be composed as
shown in Figure 11.8. The role structure is shown in Figure 11.8(a). Note
that inner role of a component may itself be composite i.e. may be composed
from other inner-inner roles. For example the h rbc hov and a rbc hov roles
of the handing over RBC component are composed together to make a
composite handing over RBC role (rbc hov). Finally the rbc hov, rbc cs
and rbc ms are composed together to make a composite RBC component,
as shown in Figure 11.8(c).

In a similar way, the other components of the Train in a Train Con-
trol System can be composed. Note that the composed components can be
placed back into the repository so that they can be reused in other compo-
sitions.

11.4 System Design

This is the last composition step where system level components (i.e. not
the inner roles of a component) are composed together in order to make
a system. In this step, components are composed together mainly using
semantic interfaces.
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Figure 11.9 shows a system design model for the Train Control System.
Note that the Train and RBC component types interact via collaborations
(shown by dotted eclipse symbol with associated semantic interfaces) and
pins (shown by solid line connecting local interface pins). In the cases
where collaborating components have pins at the interfaces, such pins will
be replaced by send and receive events. For example in Figure 11.9, there
will be a start-ms sending event at the RBC component and corresponding
receive event at the Train component.

Compatibility among components across semantic interfaces are ensured by
the following steps:
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• Each semantic interface is analyzed separately for internal consistency.

• Each component is analyzed separately to make sure it is consistent
with all its semantic interfaces.

• When two components are linked we check that the linked roles are
complementing roles of the same semantic interface; this assures that
the link is consistent, but not that the ordering of roles using different
links are compatible.

• We ensure compatibility in the ordering of roles by considering either
the local ordering within each component against a global choreogra-
phy, or by considering the responding flows of a component against
the initiating flows of linked components.

The local interfaces are currently represented just as pins, and thus as a
kind of static interface. The concept of external state machine, esm, used in
the Arctis tool [KSH09] may be used to define the external behavior across
local interfaces, but this has not be elaborated here.

In a system, there may be many instances of the same service run-
ning concurrently with roles assigned to different system components. Each
system component may play roles in different services, and different com-
ponents may be able to play different combinations of the roles. This vari-
ability is provided through the component and system composition steps.

11.5 Related Works

A large body of work on component based development is based on the
approach that first components (and their internal details) are designed
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and then static interfaces are defined. For example IDL based interfaces
in CORBA and WSDL based interfaces in web-services. This means that
additional work is needed to make interfaces to the components. In our
approach, we start from the collaborative service models and derive compo-
nents with external interface contracts. Since we produce interface contracts
and components from the same source, reusability comes almost for free.
Moreover the interface contracts have behavior that can be validated once
and for all without considering particular components. Given the validated
interfaces, checking the consistency of links among components is a matter
of simple static matching.

There are many related works focusing on the issues of component com-
position [Lau06, AIJQ06, PKBGS08]. In these approach, existing compo-
nents are usually assumed to be compatible and connectable as long as
their static interfaces match. There is however no standard way of defining
semantic interfaces. For example, in [Lau06], composite components are cre-
ated by connecting existing components via a connector. In their approach,
existing components, which are assumed to be compatible, are connected
together either in sequential or parallel patterns. In our approach, we pro-
vide two types of interfaces to a component: local interfaces and semantic
interfaces. The semantic interfaces define a behavior contract among col-
laborating components by encapsulating the collaborative behavior.

In our approach, components (along with their semantic interfaces) may
be automatically synthesized from collaboration or service models [KLB10,
KB10, LK11]. External dependencies to a component are maintained by a
special kind of flows called responding flows [KB10]. The responding flows
are also useful to detect any problems with emergent behavior, also called
realizability problems, as briefly described in [KB10]. More details on the
realizability of choreographies can be found in [CBvB07]. Another body
of related work [BGG+06, QZCY07, SB09] deals with the relation between
choreographies and their realization in terms of distributed components, so
called orchestrations. Several of these use a similar projection technique as
we do, but without mapping external flows to responding flows within the
components. The idea to keep collaborations as interface contracts in the
derived components seems to be original in our work.

Moreover, new composite components can be designed by composing
existing components from a repository. A system can be designed in a
similar approach i.e. by composing components together. Components can
also be dynamically linked at run-time with efficient runtime checks on the
compatibility in terms of semantic interfaces.
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11.6 Concluding Remarks

In this paper, we have presented and discussed a Model-Driven framework,
which is based on the concept of collaborative services, to support the de-
velopment and composition of components. We use UML collaborations to
model the structure of collaborating entities in a service. Global behavior,
called choreography, is specified using UML activity diagrams. From col-
laborations with choreography we get semantic interfaces that are building
blocks and can be put into a library for reuse. We are also able to synthe-
size components equipped with semantic interfaces ready to be put into a
repository. Given a library of semantic interfaces and components one can
design a new component and eventually a system, according to the require-
ments at hand, by composing existing components together. Two types of
interfaces, semantic interface and local interfaces, are used to compose the
components together.
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Abstract

This paper presents a Model-Driven method to develop collaborative sys-
tems. We use UML collaborations to capture the system requirements and
architecture of collaborative system. The system behaviors are specified by
two choreography models: an abstract flow-global and a detailed flow- local-
ized choreography. These choreography models are both described by UML
activity diagrams. A graph-based transformation approach for carrying out
the transformation from the flow-global to the flow-local choreography is
the core contribution of this paper. Our approach is illustrated using a case
study of the European Rail Traffic Management System.

keywords: Choreography Model; Model Transformation; Graph Trans-
formation; Collaborative Service.

12.1 Introduction

Model-Driven Development (MDD) is an approach supporting the software
development process by creating models on different levels of abstraction
and platform independence. First, one develops more abstract models spec-
ifying the pure functionality of a particular solution or an application do-
main but hiding aspects of the later realization. These models can be trans-
formed into models incorporating more implementation details. Based on
the refined models, application code can be generated ranging from system
skeletons to complete, deployable products for different platforms. MDD is



226 Paper 7

flow-global chor. model

host-graph (pre graph) Graph transformation  
engine

transformed graph (post-graph)

Arctis 
Model

111fdfdsffsdfsfsfdsafs
afsafafafafafafafafafaf
afafafafafafafafafafaf

dfdsfsf
fsdfsdfsfsfsfsfsfsfsfsfs

fsfsfsfsf

fsfsdfsfsfsfsfsfsfsfsfsfs
fsf

fsfsdfsffsdfdsfsfsfsdfsf
afafafafafas

flow-localized chor. model

rules

1

2

3

4

5
localization 

policies

Figure 12.1: Overall Approach

considered effective when the transformation from the abstract to the de-
tailed models can be done with a high degree of automation. This makes
it easy to keep consistency between the two models. In addition, the devel-
oper can utilize the comprehensibility and the generality of the platform-
independent more abstract model as well as the fine-grained semantics and
the mature structuring mechanisms of the more detailed one.

In this paper we discuss a model-driven development method for dis-
tributed, reactive and collaborative services. A collaborative service is de-
fined as a partial system functionality in which two or more components
collaborate to achieve a common goal [KSH09, CBvB07]. UML 2.x col-
laborations are used to describe the structure of collaborating participants,
while UML activities specify the collaborative behavior of interacting par-
ticipants. We consider the behavior models (called choreography models)
at two levels of details and use graph-based model transformation to derive
detailed implementable models from global abstract models.

There are other model transformation techniques that connect different
abstract levels of models. However, either the two levels of models are not
associated effectively or the more abstract model is not giving enough infor-
mation for the more detailed model which makes the model transformation
not a necessarity. Further, Model transformation also needs to be flexible,
extensible and as understandable for composers as possible. We believe
that we fulfill the above requirements of models and model transformation.
Figure 12.1 delineates the overall MDD approach:

• A flow-global choreography model (label 1 in Figure 12.1) abstracts
from most technical issues of a distributed system seeking to specify
the desired global behavior in terms as close to the problem domain
as possible. It is intended to be understandable by end-users and ex-
perts of a specific domain. Thus, the flow-global choreography focuses
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on the global interaction, i.e., avoiding the details and resolutions of
coordination problems that may occur at the level of a distributed
realization.

• A flow-localized choreography specification (label 5 in Figure 12.1)
is used to define global behavior in sufficient detail to allow exten-
sive analysis and to automatically synthesize the behavior of isolated
system parts and to generate the application code. The flow-global
choreography can be transformed to the flow-localized choreography
by using a set of transformation rules and policies (see label 3 in Fig-
ure 12.1). From flow-localized choreography models, implementation
code can be generated using existing tools like Arctis [KSH09].

• The focus of this paper is on the model transformation from a flow-
global to a flow-localized choreography using graph transformation
techniques. The localization policies are implemented by applying
graph transformation rules (label 3 in Figure 12.1) to the host-graph
model of a flow-global choreography model (label 2) which is then con-
verted to a post-graph model of a flow-localized choreography specifi-
cation (label 4).

There are several advantages of using graph transformation to sup-
port the choreography model transformation. First, the flow-global models,
which can be re-used in different system scenarios, are generally designed
and stored in a repository [KB10]. Thus, the associated graph models of
the flow-global choreography models are also pre-defined and can be re-
used. Second, it is not necessary that the full flow-global model and the
flow-global graph model must be available in order to be transformed to
flow-localized model. This is due to the possibility to transform partial
flow-global choreography models.

In the following, we introduce the structure and choreography models
by a train control system scenario in Section 12.2. A survey of the task for
the model transformation is provided in Section 12.3. Model transformation
using the graph transformation approach is presented in Section 12.4. Sec-
tion 12.5 discusses the related work and is followed by concluding remarks
in Section 12.6.

12.2 Architecture and Choreography Models

In this section, we discuss the related models contributing to our MDD
approach: 1) The architecture model to capture the system requirements
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Figure 12.2: Structure Model of the Train Control System.

and to structure the system architecture; 2) the flow-global choreography
model to specify the high-level global behavior including the ordering and
causality among sub-services and service roles in a composite service; and
3) the flow-localized choreography model to specify detailed behavior so
that application code can be generated. We present a summary of these
models using an example of the European Rail Traffic Management System
(ERTMS).

12.2.1 Architecture model

The UML collaboration composite structure are used to specify the struc-
ture (i.e., roles and interactions) of distributed collaborative entities and
the architecture of the system. Figure 12.2 (a) shows an example of a train
control scenario which is described as following:

A train must always be supervised by a radio block center (RBC ). The
RBC ’s responsibility is to monitor and control all train movements in a
particular region. Guided by its current RBC, the train keeps on moving and
sends its position reports to the RBC and the RBC validates the received
position information of the train. Moreover, the RBC issues successive
movement authorities (MA) to the train, which specifies a safe distance
that the train can travel. In addition, in some situations, the train may
also travel across several regions covered by different RBC s. This means
the supervision of the train movement can be handled by more than one
RBC. When the train crosses a border between two regions, the RBC of
the current region will hand over the control to another one, i.e., Handover
process.

The train control scenario descriptions and requirements are captured
and presented by our structural model as shown in Figure 12.2 (b) which is
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a UML collaboration structure.

The TrainControlService system has two main parts Train and RBC
which take part in different collaborative sub-activities. In Figure 12.2(b),
the Train and RBC participate in three collaborative sub-activities: Posi-
tionReport, MoveAuthority, and HandoverSupervision which take responsi-
bility for the activities: (1) PositionReport reports the current train position
to the RBC; (2) MoveAuthority sends the safe travel distance from the RBC
to the train; and (3) HandoverSupervision transfers the train control super-
vision to the new RBC if the train travels to a different region.

12.2.2 Choreography models

The choreography specification of a train control service is given in Fig-
ure 12.3.

12.2.2.1 Flow-global choreography model

The flow-global specification shown in Figure 12.3 (a) is defined by UML
activities connecting actions (in particular, call behavior actions) by flows
that are not assigned to any particular role in the collaboration. Actions
may either specify the behavior of a collaboration or a local activity. Flows
may contain intermediate control nodes (e.g. start, stop, choice, merge,
fork and join) defining the ordering and causality among the actions. The
control nodes are not assigned to any particular component as well.

We believe that this is the right level of abstraction to discuss the in-
tended behavior with end-users and other stake holders since global chore-
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ography models specify the global behavior more clearly than interaction
diagrams or other diagrams. This is the case as they not only give an object-
oriented view of collaborative services and depict their interactions, but also
show the causality and execution order of collaborative services. They also
hide implementation details of distributed systems like the location of com-
ponents. A flow-global choreography model is also a useful first step in the
formalization of the requirements of a system.

Figure 12.3 (a) specifies the flow-global choreography behavior of the
train control service. When the train starts its journey, it will first contact
the RBC which is in charge of its current region. Afterwards, the train
reports its current position to the RBC. This operation is specified by the
PositionReport collaboration. Thereafter, the RBC validates the received
position information of the train via the SupervisionLogic local activity. If
the information about the location of the train is correct, the RBC will
issue successive movement authorities (MA) to the train, i.e., by MoveAu-
thority collaboration. If the train is crossing regions, the HandoverSuper-
vision collaboration will be invoked. From such an abstract choreography
specification, we want to derive a flow-localized choreography model from
which deployable application code can be generated.

12.2.2.2 Flow-Localized choreography model

The flow-localized specification is also defined by UML activities connect-
ing actions, that either represent the behavior of a collaboration or a local
activity, by flows and intermediate control nodes that are localized to the
participating distributed entities represented by roles. Flows between nodes
which are not localized to the same system parts thereby imply communi-
cation and transfer delays. This means that the flow-global choreography
model abstracts from several design issues that needs to be addressed when
transforming it to a flow-localized choreography model. Note that the pins
in flow-global choreography model are owned by collaborations itself. In
the flow-localized model, these pins need to be bound to a particular ser-
vice roles. This is done in the way defined in Section 12.3.

The flow-localized choreographies are modeled by UML activities using
Arctis [Kra08, KBH09], our tool-set to develop component based collabo-
rative systems. The activities are provided with a formal semantics [KH10]
which allows for the application of model checkers to detect design er-
rors [KSH09]. Further, application code for different platforms such as
Standard Java, Android and Sun Spots can be automatically generated
from the Arctis building blocks. In the train control scenario, this is the
code for the train and RBC components.
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A screen shot of the Arctis model of the train control system is shown in
Figure 12.3(b). There, the collaborative and the local activities are mapped
to Arctis building blocks (the dark gray respective blue boxes with pins).
Control nodes are localized to components represented by Activity parti-
tions. The extra gray border of the collaborative actions (pr, ma and h)
at the RBC part represent that the service roles bond to this part are
multiple-session.

12.3 Flow Localization

Based on the model provided above, we outline the overall transformation
process and our design intent. First, we recall the causal relationship be-
tween sequential collaborative activities. Second, we define a localization
policy based on the causal properties.

12.3.1 Causality Relationship

In order to localize the flows and control nodes between actions in a flow
global choreography, we first need to find out the causality relationship. As
described in [CBvB07, KB10], the following causal relationships between
any two sequential connected actions C1 and C2 can occur:

• Strong causality: The terminating role of C1 and the initiating role
of C2 belong to the same system component. Then the coordination
between C1 and C2 can be executed locally in this component.

• Non-causal causality: The terminating role of C1 and the initiating
role of C2 belong to different components and also none of the non-
terminating roles in C1 participates in the component of the initiating
role of C2. This means that local ordering between actions of C1 and
C2 is not possible.

• Weak causality: The terminating role of C1 and the initiating role of
C2 belong to different components but there is a non-terminating role
in C1 and an initiating role in C2 which are in the same component.
Here, one can coordinate the non-terminating role of C1 and the ini-
tiating role of C2 locally but has to be aware that both collaborations
run in parallel for a while.
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12.3.2 Localization Policy

In the simplest case where there are no control nodes between actions
(direct-flow), the flow between C1 and C2 (C2 comes after C1) are local-
ized as following:

• Localize strong flows to the role that initiates C2 and terminates C1.

• In case of weak flows, in which the terminating component in C1 is
different from the initiating component in C2, localize the weak flow
to the role that initiates C2 by adding a streaming pin to the non-
terminating role in C1. Otherwise use send and receive messages to
resolve the flow, which we also call enforced strong sequencing [KB10].
Adding an extra streaming pin to a building block in the flow-localized
level will change the internal behaviors of the actions. For the modifi-
cation of internal behavior, we prepared a set of transformation rules
for waving extra behavior into building blocks without effecting the
original functional design. This will not be addressed in this paper
due to the space limitation.

• Non− causal flows can only be maintained by using enforced strong
sequencing using send and receive events (cf. Section 12.4).

If there are one or more intermediate control nodes between actions C1

and C2, one must consider all possible flow-paths passing them. This means
that each control node can be part of several paths. We use the following
notation to represent the path and path property for a control node:

Path ::= (sourceNode)
causality→ (targetNode)

where sourceNode and targetNode are either pseudo nodes (such as an
initial node or an activity final node which are represented by ?) or collab-
oration role identifiers (represented by collaborationId.roleId). The arrows
show the flow direction between those collaborative activities with a causal-
ity relation above. In the flow-global choreography model in Figure 12.3
(a), there are totally eight paths:

• P0 : ?
na→ pr.Train;

• P1 : pr.RBC
strong→ s.RBC;

• P2 : s.RBC
strong→ ma.RBC;
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Figure 12.4: Meta-model for the choreography graph models.

• P3 : ma.Train
strong→ pr.Train;

• P4 : ma.Train
na→ ?;

• P5 : ma.Train
weak→ h.RBC;

• P6 : h.Train
strong→ pr.Train;

• P7 : s.RBC
na→ ?;

The abbreviation na means that there is no causality relationship avail-
able. P0, P4 and P7 are dangling paths where one end of the path is a
pseudo state node, the pseudo state and control nodes along the path will
be localized to the component of the activity node, e.g., the initial node
and decision node D1 will be localized to Train. In order to localize the
remaining control nodes M1, D1 and F1 and paths P1, P2, P3, P5 and P6,
we need to consider the path properties that each control node is involved
in:

• M1: P6(strong), P3(strong);

• F1: P3(strong), P5(weak);

• D1: P5(weak);

M1 fulfills strong causality for both involved paths and is therefore local-
ized to Train. In contrast, F1 and D1 contain weak causal paths such that
we need to find suitable breaking points along the involved paths, i.e., P5

containing both F1 and D1. To achieve that, we have to assign a breaking
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priority level to all the nodes on the path. The priority level is defined by
the combination of causality properties in Table 12.1. Here, the columns
and rows are the causal relationship of a path through a node and based on
that we define the priority order for selecting breaking point as follows:

6 > 5 > 4 > 7 > 3 > 2 > 1

Table 12.1: Localization priority order and policy matrix for control node.

property strong weak non-causal all

strong 1 2 3 -
weak - 4 5 -
non-causal - - 6 -
all - - - 7

In the TrainControlSystem specification, D1 is involved in P5(weak)
and has priority level 4 according to Table 12.1. Similarly, F1 is involved
in P3(strong) and P5(weak) and has priority level 2. According to our
policy, D1 is selected as breaking node as it has higher breaking priority
level than F1. In this case D1 is broken at the incoming edge. In the
subsequent refinement steps, F1 in Train is not necessary as D1 is linked
by a streaming pin from the ma.MovementAuthority service (according to
the weak causality localization) and one can ignore a fork node if it has only
one outgoing leg. After the transformation and refinement the flow-localized
graph model is exported in the form of Arctis building blocks as shown in
Figure 12.3 (b).

12.4 Graph-based Model Transformation

This section discusses how graph transformation techniques can be used in
order to perform model transformation from the flow-global choreography
model to the flow-localized model. We will tailor the graph models, graph
transformation rules and implementation in the following parts.

12.4.1 Graph model definition

The meta-model for the choreography graph model (also called type graph
in the following) is shown in Figure 12.4 in terms of UML class diagrams.
A choreography meta-graph model has three main entities: Actions, Con-
nectors, and Flows. An action can be either a local activity, i.e., an activity
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Figure 12.5: Graph model of the part of choreography graph model of Train
control scenario

which is performed by one specific role; or a collaborative activity, i.e., an
activity which is carried out by more than one roles. Connectors represent
the mechanism to connect Actions, e.g., how collaborations connect to other
collaborations or local activities There are also three types of connectors:
Pin, Control Node and Pseudo State: Pins are connection points which are
associated with Roles or Actions. Control Nodes include join, fork, merge
and decision nodes. Pseudo Nodes include initial nodes, activity final nodes
and flow final nodes. Connectors can also send message nodes (sMsg) or
receiving message nodes (rMsg). There are three types of graph edges: own
specifying that one node is owned by another; fSrc modeling the source
node of the flow; and fTar specifying the flow target.

Based on this type graph, two types of graph models can be defined
corresponding to the flow-global and flow-localized choreography models.
Figure 12.5 illustrates a flow-global graph model of the corresponding flow-
global choreography model of the train control system in Figure 12.3(a)
without the Handover activity. Note that there are two dangling edges in
the graph model: fTar to merge node and fSrc to role node. These edges
are connected to the Handover activity if required.

12.4.2 Graph Models of Transformation rules

Transformation rules can be visualized and are mainly composed of two
graph parts: the pre-pattern subgraph, expressing what to replace, and the
post-pattern subgraph describing the replacement. A transformation con-
dition can also be used to define conditions or constraints describing how
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and under which condition the graph production can be applied (such as a
negative application condition NAC introduced in [Tae04]). In the follow-
ing, we introduce the graph models of transformation rules and policies by
selecting some representative rules: graph models of the pin location rule
and the direct flow localization rule.

Graph Models of Pin Localization Rule: Figure 12.6 illustrates the
graph transformation rule for pin allocation. Pins in the pre-pattern of the
graph model are owned by collaboration nodes (shown in Figure 12.6(a)).
They are localized, i.e., connected to roles in the post-pattern of the graph
(shown in Figure 12.6(b)). Note that attributes and their values to the
graph nodes can be used, checked, or modified. For example in Figure 12.6,
roleType and pinType attributes are checked in the role and pin node in the
pre-pattern of the graph model. Similarly, the inPartition attribute of the
pin node is modified (or assigned a value) in the post-pattern of the graph.

Graph Models of Direct flow localization rules: Figure 12.7 shows
the pre-pattern and post pattern of the rules which localize the direct flow
having weak causality and non-causal causality properties. Figure 12.7(a)
shows the pre-pattern graph model of the direct flow in which pin allocation
rules have been performed. If the flow has weak causal property, then the
corresponding post-pattern is shown in Figure 12.7(b). In this case, a new
output streaming pin is added to a collaborative activity Ci. An example
of this type is P5 in the case study. In the case where a direct flow-path
has a non-causal property, the flow-path is resolved using send and receive
message nodes as shown by the post-pattern graph model in Figure 12.7(c).

12.4.3 Implementations

An Eclipse plug-in has been developed to create graph models of flow-global
choreography models and to import the post-graph (as a result of transfor-
mation) into Arctis (a service engineering tool developed in our research
group) [KSH09]. As a system for graph transformation engine, we use the
Attributed Graph Grammar System (AGG) [Tae04]. AGG offers a high flex-
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ibility in creating the visual definition of graph models. Further, it provides
Java APIs facilitating its integration to the Arctis tool which is also Java-
based. AGG has also a facility to enable the verification and correctness of
models during transformation.

The AGG graph transformation engine takes the graph model of a flow-
global choreography (partly depicted in Figure 12.5) as well as the rules
introduced in Section 12.4.2 as inputs and produces the post-graph model
which corresponds to a flow-localized choreography of the train control sys-
tem.

12.5 Related Work

A comparison of approaches and tools that use graph transformation tech-
niques as intuitive mechanisms for capturing model transformations is pro-
vided in [VAB+08]. In [KCBL10], Kerkouchea et al. propose an approach
for transforming UML state-chart and collaboration diagrams to Colored
Petri nets using graph transformation techniques. In contrast, the authors
of [REC11, VAB+08] suggested to map activity diagrams into communicat-
ing sequential processes (CSP) processes.

Unlike these approaches, both our abstract and detailed models are
based on UML activity diagrams. Moreover, our approach envisages col-
laborative building blocks encapsulating the interaction between different
components. In addition, UML activities can be defined hierarchically by
hiding an activity as a call behavior action of another one. We use AGG as
graph transformation engine and our post graphs can be directly imported
to the Arctis tool for further analysis, synthesis and code generation.

Unlike [RR09, JWEG07], we currently miss the formal proof that our
graph-based transformation is correctness-preserving. Due to the formal
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semantics of Arctis [KH10], however, which can also be used for the flow-
global choreography models, the correctness verification can be provided as
temporal logic-based refinement proofs [Lam94] which is intended for the
close future.

Ideally, one can choose any graph transformation tool to validate or im-
plement our approach. Some candidates besides AGG were ATOM3 [LV02],
VTMS [LLMC06] and C-SAW [ZLG05]. As mentioned above, we chose
AGG due to its high flexibility and its Java-compliance.

12.6 Concluding Remarks

In this paper, we presented a Model-Driven Development approach to sup-
port the engineering process of distributed collaborative systems. The global
behavior and realization of the distributed systems are captured and syn-
thesized by two different types of choreography models: flow-global and
flow-localized, which are specified by UML activity diagrams. The trans-
formation between these two choreography models are performed with the
support of graph transformation techniques. The approach is used within
the EU-funded project CESAR for the cost-effective development of safety-
relevant embedded system [Ces11]. As future work, we plan to refine model
transformation policies and test them with larger and more complex system
models. As mentioned above, we will further prove the correctness of the
graph transformation rules formally.
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Abstract

We argue that business processes can be modeled in the same way as collab-
orative business services and therefore use an approach developed for such
services. We consider business services that are collaborative and crosscut-
ting in nature: several participants may collaborate in a business service to
achieve its goal and a participant may take part in several different business
services, playing different roles in each. A framework to support the devel-
opment and composition of such business services is the main focus of this
Chapter. We use UML collaborations for modeling the structure of roles
involved in a business service/process, and activity diagrams for specifying
the global behavior performed by the roles. From these models, reusable
components realizing the roles can be automatically synthesized and such
components can then be composed together in order to make different sys-
tems that meet the requirements of business services.

keywords: Service, Service Composition, UML Collaboration, UML
Activity Diagrams, Chorepgraphy, Orchestration, Semantic Interface.

13.1 Introduction

A business process is commonly defined as an ordered execution of a com-
bination of related activities whose goal is to achieve a desired effect for
customers [OCK+11, vdAHW03, CST10].
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A business process may have active and/or passive participants. These
participants can be people, computer systems, devices or tools [CST10].
Passive participants only respond to external requests and never take in-
dependent initiatives on their own. Active participants can take initiatives
to perform actions and send requests to other participants. Often each
participant takes part in several different business processes, so in general,
the behavior of business processes are composed and combined from partial
participant behaviors. This is sometimes referred to as the crosscutting na-
ture of business processes [BKM07]. Due to the heterogeneous and dynamic
nature of business processes, there are many challenges related to business
process modeling and analysis [vdAHW03].

We consider that business processes are collaborative and crosscutting
in nature, i.e., several participants may collaborate in a business process to
achieve its goal; and a participant may take part in several different business
processes, playing different roles in each. We will use a general definition
of service which defines a service as “an identified functionality aiming to
establish some desired goals/effects among collaborating entities” [BCLR10].
On a suitable level of abstraction, we see that business services and business
processes are very similar. Therefore we assume that business processes and
business services can be modeled in the same general framework.

Our approach is based on model-driven development where a workflow
of business services is specified using UML notations, in particular UML
collaborations and activities. We use collaborations to specify service struc-
ture and consider a web-service as two-party collaboration in which one part
is playing a requester (initiating) role and the other is playing a responder
(participating) role.

The framework constitutes a systematic approach to specify, analyze
and compose collaborative business services, with automatic synthesis of
components that realize services and service roles. Component types that
are synthesized from service models [BCLR10] can be stored into a reposi-
tory and re-used to compose systems having different capabilities. In some
situations it may be desirable that components (or component types) can
first be composed into composite components and then into systems. In
this case the complete system behavior emerges from the composition of
the components.

In summary, the proposed approach provides the following novel contri-
butions:

1. Modeling and designing business services on a global level in such a
way they can be easily analyzed and re-used.
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2. A method to compose existing business services to create new business
services that not only meet customers requirements but also have the
capacity to deal with the dynamic situations of services or users.

3. A method to synthesize components from service models and to com-
pose them in order to provide different system design models. Com-
ponents may be encapsulated and retained for later reuse.

Using this approach, we aim to provide the following benefits to the business
service developer:

• Abstraction and reusability: Business process design normally oc-
curs at early state of system development. Business process developers
need to work with customer requirements. We provide abstract nota-
tions and mechanisms for services and their composition. We encapsu-
late collaborative interactions among service participants in reusable
building blocks so that they can be reused in different contexts with
little or no additional cost.

• Flexibility: Business process developers may compose new composite
services just by dragging/dropping and connecting service building
blocks together.

• Correctness by construction: Individual and composite services
can be model-checked once and reused without having to recheck in-
ternal correctness. Correctness of links between components is ensured
by checking compliance to contracts defined as collaborations.

• Automation and cost-reduction: We provide automation for the
proper technical implementation of business processes. We provide
mechanisms to automatically synthesize components and their im-
plementation from choreography models. This helps towards cost-
reduction and speed of system development.

The rest of the chapter is organized as following. The next section State
of the Art describes the comparison with related works and motivation for
the chapter. The Background Concepts section summaries the basic con-
cepts of the business service composition framework. Thereafter the compo-
sition of services and components in the framework are explained in section
Composing Business Services and Orchestration Models. The Component
Composition Pattern and System Design sections address how existing ser-
vice components are composed into service systems. The Implementation
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section discusses the implementation issues of the proposed approach. Fi-
nally Conclusions are given. A City Guide service will be used to illustrate
concepts and techniques of the framework throughout this chapter.

13.2 State of the Art

Unlike web-services where a service provider provides available services upon
request from the service requester, we consider that individual service par-
ticipants may take initiatives on their own. Sometimes such independent
initiatives may be initiated simultaneously and collide. This is called mixed-
initiative problem [BF04], which is normal and unavoidable case in complex
reactive system but largely ignored in most existing works on business ser-
vices. Our work provides mechanisms to detect and resolve such problems
early in the service design and composition.

There is a large body of work in the design (modeling and composition)
of business services [PTDL08, DS05, Jis04]. Most of this assumes that
the business services are provided by a single system component as a local
activity. However we consider business services as collaborative activities
and encapsulate collaborative interactions in reusable building blocks so
that a service developer can reuse such building blocks in different contexts.
This provides flexibility in composition and potentially reduces the cost.

In the web services domain, different languages such as BPMN, BPEL,
WS-CDL, and UML activity diagrams are used for the composition of busi-
ness processes. BPMN provides graphical notations for specifying business
process workflows. BPEL and WS-CDL are XML-based languages for or-
chestration and choreography respectively. They have different semantics:
BPEL is focusing on the local view of one business participant; WS-CDL is
focusing on global behavior specifications. According to [BO10, PBA+08],
UML activity diagrams and BPMN have almost equal expressive power for
the business process specification. There is a body of work for mapping
BPMN to UML and vice versa using UML profiles. We use UML collabo-
rations to specify the structure of roles participating in a service. We use
UML activity diagrams (AD) to specify the global behavior associated with
a collaboration, the so-called choreography, as well as the local behavior of
roles, the so-called orchestration. We use UML activity diagrams to model
both orchestration and choreography specifications in a unified way.

In the domain of semantic-web technologies, concepts like ontologies
are being used to compose or assist the composition of services where ser-
vices (and their composition) are specified using languages such as such as
OWL-S, DAML-OIL and WSDL-S. These are text-based approaches and in-
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tended to add semantics to the services in terms of constraints, properties,
policies, goals and etc. Our approach of service composition is intended for
the higher-level service composers who can just drag, drop and connect the
services together in order to make a composite service. The service devel-
oper need not be a technical expert but rather a domain expert. There is
also a body of work on business process composition based on AI planning
where composition of services is seen as a planning problem and the plan is
generated from a set of services in order to reach a business process goal.

In general, service composition strategies are classified as static com-
position, semi-static and dynamic composition depending on the time of
composition and service binding time [Lau06]. Static composition is also
called design time composition where a service composer discovers, binds
and assembles services during service development. In dynamic service com-
position, a composition plan is generated at runtime based on the requesters
service request. Our framework is concerned with design time composition.
However, we provide mechanisms to support dynamic discovery and linking.

Some related approaches are summarized in Table 13.1. Most of these
describe choreography where activities are localized to service participants [MH05].
We call these flow-localized models. We also provide support for more ab-
stract choreography models that are closer to the problem domain called
flow-global choreography models. Furthermore we automatically synthe-
size the component types from the abstract choreography specifications.
Most of the approaches do not really take into account the structure of
collaborating entities in a service. They are just considered as set of roles
in [KP06, BGG+06, QZCY07]. We define the structural model of a ser-
vice using UML collaboration diagrams that provides specific information
such as which participant uses which service and interacts with which other
participants, etc. They also support service composition by means of col-
laboration uses and role bindings.

In the reactive system domain, languages such are MSC, UCM, and In-
teraction Overview Diagrams are used for choreography specification. There
is also a large body of work based on formal approaches such as labeled
transition system (LTS) in [KP06], set of conversations in [BGG+06], and
activity traces in [QZCY07]. We use UML activity diagrams and their se-
mantics [OMG09, KH10] for specification and composition of services. This
enables us to define complete behavior that can be directly realized, unlike
the partial or fragmented scenarios normally provided by sequence diagrams
and MSCs. Compared to these approaches, specification using UML activity
diagram is more abstract and complete, as discussed in [KB10].

Different techniques have been used to check realizability of choreogra-
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phy specifications. In [SB09] behavioral equivalence between the LTS of
choreography and a LTS of a parallel composition of orchestrations is used.
[BGG+06, KP06] uses the bi-simulation equivalence for this. Trace equiv-
alence is used in [QZCY07]. In our work we do not explore global state
spaces, but provide rules for analyzing the choreography directly based on
flow-analysis.

The main features that distinguish our approach from the other ap-
proaches discussed above are the following:

• It is an engineering approach indented for practical service and system
development.

• It uses the same notations, UML collaborations and activity diagrams,
for choreographies as well as orchestration.

• It supports compositional development of collaborative services in-
volving active objects and mixed initiatives.

• It supports automatic synthesis of the orchestrators with interface
contracts.

13.3 Background Concepts

The proposed Business Service Composition Framework is shown in Fig-
ure 13.1. The framework has two main model categories: service models and
design models. The service models include structural models and choreog-
raphy models. Structural models specify the structure of roles participating
in a service as well as the involved sub-services represented by collaboration
uses. Choreography models specify the global behavior including the order-
ing and causality among sub-services and local actions. The design models
define design solutions as structures of inter-connected parts. The behavior
of parts is called orchestration.

13.3.1 Structural Models

At the early service modeling stages it makes little sense to identify the
implementation level components that will participate in providing the ser-
vice. One should rather focus on identifying components representing do-
main entities, such as users and user groups that are involved in the ser-
vice [BH93]. It is important to identify the properties and behavior that
those components shall have, and specify these as service roles. UML 2.x
collaborations are well suited to describe the structures of collaborating
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Table 13.1: Summary of the related works
[KP06] [BGG+06][MH05] [QZCY07] [SB09] Our
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Figure 13.1: Business Service Composition Framework
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Figure 13.2: Structural and behavioral models of the Location Service

entities (as service roles) and to provide a container for service behav-
ior [BCLR10, KKB11, KLB10].

We distinguish between elementary and composite services. Elemen-
tary services cannot be decomposed further, while composite services are
composed from other smaller services. When services are composed into a
composite service, roles of the sub-services are bound to roles of the com-
posite service.

We consider an elementary service called LocationService as a represen-
tative example for illustration purpose. The LocationService is shown in
Figure 13.2 and the desired goal of the service is to allow a user to continu-
ously update the current location information to the server. How this service
is modeled and how it will be composed with other services is discussed in
the following.

Figure 13.2(a) shows the structural model of the LocationService defin-
ing the service roles user and server. Being an elementary service, it is not
further decomposed into collaboration uses.

13.3.2 Choreography Models

UML Activity Diagrams are well suited to represent the global behavior i.e.,
the choreography of a composite service. The execution ordering of elemen-
tary sub-collaborations can be described using activity diagrams where ac-
tions are CallBehaviorActions that invoke the activity defining the behavior
of a collaboration use. One can specify the choreography or global ordering
of the collaboration uses of a composite collaboration without localizing all
control flows to roles [CBvB07]. This is called a flow-global choreography.
This allows to specify the ordering intended by users without needing to
handle the details of localization and the resolution of coordination prob-
lems that must be handled in a distributed realization. Such flow-global
choreography can be transformed into more detailed choreography called
flow-localized choreography where all control flows are localized to parti-
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tions representing service roles and all coordination problems are resolved.
Therefore the specification is sufficiently detailed to allow extensive analysis
and to automatically synthesize the behavior of component types providing
orchestration.

The choreography of the LocationService is defined in flow-localized form
in Figure 13.2(b). The participating roles user and server are represented as
partitions in the diagram using a swim-lane notation. A service may inter-
act with other services or the environment via different types of pins. The
LocationService is initiated by a triggering token entering via the start pin
in the user partition. Each participant may also have local operations (also
called local actions) and interactions with other participants. For example,
in the user partition, there is one local operation named getPos that period-
ically reads the geographical coordinates of the user. This information will
be send to the server partition via the flow to the updatePos local action.
The LocationService can be terminated at the server side via a streaming
pin stop. Emitting an output token at the stopped pin indicates termination
of the LocationService. This service model can be stored in the repository
as a reusable building block that encapsulates the interactions [KSH09].

Figure 13.2(c) shows the abstract representation of the LocationService
building block behavior as an action. This representation is used in flow-
global choreography models (discussed in Composing Business Services sec-
tion). Note that in Figure 13.2(c), the pins start, end, stop, and position
are not localized or associated to any partition (unlike the pins in Fig-
ure 13.2(b)). In addition, the initiating and terminating roles in a global
service building block are indicated by black filled circle and square boxes
respectively. For example, in this case, the user is an initiating role and the
server is a terminating role. This provides useful information for analysis
and ordering purposes.

13.3.3 Component Orchestration

Orchestration models can be synthesized from the choreography models
using projection techniques. Orchestration denotes the local behavior of
each participant and is needed to completely define component behaviors
for implementation. An orchestrator may have well defined interfaces and
internal behavior including the information about the services it participates
in and their ordering. This means that the internal behavior may consists
of sub-service role behaviors.

Orchestrators (alternatively called components in the following) can be
represented as reusable components and be composed together to make a
system design, as shown in Figure 13.1. System design models contain
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Figure 13.3: Component models and semantic interface corresponding to
the Location Service

information like multiplicity of the orchestrator types and other system
specific information.

In the case of elementary services, we have used a simple projection
technique for component orchestration. That means orchestration models
are derived by tearing apart partitions, and replacing flows crossing parti-
tion boundaries by streaming output pins and streaming input pins. For
example Figure 13.3(a) shows the user loc and server loc components that
are generated from the LocationService model in Figure 13.2(b). The pins
owned by the user and server partitions in the flow-localized choreogra-
phy remain mapped to the user loc and server loc components respectively.
The interactions across the partition boundary are replaced with input and
output-streaming pins linked by a queue that models a communication
medium. Note that all such interactions among the service components
can also be encapsulated in a special type of interface called semantic in-
terfaces. The semantic interface has been defined in [JFS08] using state
machines defining the observable behaviors at the component interfaces. It
is refined in [KLB11] where a collaboration with associated activity diagram
is directly used to define a semantic interface. In this way a semantic inter-
face becomes a reusable building block with associated pins for composition.
Note that semantic interfaces may also be stored in a repository for future
re-use.

Similar to the abstract representation of services, we also make use of
an abstract representation of the semantic interfaces. For example, the
LocationService defines a semantic interface as shown in Figure 13.3(b).
Each of the roles will be bound to different system components as illustrated
in Figure 13.1.
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13.4 Composing Business Services

This section will discuss how to reuse and compose existing business services
to create new business services to meet the demand of users. To illustrate
our approach a CityGuide service is used as a representative example. The
CityGuide service is a composite service i.e. it is composed from a set of sub-
services. This service will be deployed at the tourist office server in a city to
provide services for tourists visiting the city. The tourists make use of their
mobile devices to connect to the server and download the CityGuide service
for their visits. The CityGuide service is composed from the following three
groups of services:

• Core services. These services may be running all the time in a system.
All other services may depend on core services. A LocationService
is an example of a core service and when the LocationService ends,
depended services cannot be provided.

• Supporting services. These services help the tourists when they walk
around the city. They are built on top of core services. A typical
example of a supporting service is a WalkingTour service. Based on
the situation, preferences and interests of tourists, the WalkingTour
service recommends the best walking route through a list of points
of interest (POI) in the city such as historical buildings, museums,
temples and churches. Note that while tourists walk around the city,
the LocationService is running in the background.

• Added-value services. Based on the situation, preferences and requests
from the tourists, the system may provide different recommendation
services such as recommendation about close-by restaurants via a
RestaurantService. Such recommendation services can be composed
with the Supporting services such as the WalkingTour service to en-
hance the quality of the CityGuide service to the users. (This will
be discussed to illustrate component composition in System Design
Section).

13.4.1 Structural Model of a Composite Service

The structural model of composite services is represented using UML col-
laborations. Sub-services in a composite service are represented as collabo-
ration uses where roles of the collaboration uses are bound to the roles of
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Figure 13.4: Structure and choreography models of the Walking Tour service

the enclosing collaboration. For example, Figure 13.4(a) shows the struc-
tural model of a WalkingTour service where one can see that the user and
server roles in the LocationService are bound to the User and Server roles
of the WalkingTour service respectively. Similarly the user and poi roles of
the QuizService and Information service are bound to the User and Server
roles of the WalkingTour service.

13.4.2 Choreography Model of a Composite Service

The choreography of a composite service specifies the ordering of actions
that are either calling the behavior of sub-service, or are local actions. As
the behaviors of sub-services are represented as actions, connecting actions
together specifies the ordering and causality among them.

The purpose of the flow-global choreography is to define the intended
global execution ordering on a high level. It avoids the detail of localiza-
tion and also resolution of coordination problems that must be handled in
a distributed realization. Note that pins that connect to building blocks
or control element in a flow-global choreography are not localized to any
participating roles. Figure 13.4(b) shows the flow-global specification of the
WalkingTour service. When it starts, the LocationService and TourPlanner
services start concurrently. Once a TourPlanner receives the location infor-
mation of a user via the LocationService, it is checked whether the user is
close enough to any particular point of interest (POI). If so, a QuizService
is started where the user participates in a quiz with that particular POI.
After a tourist has answered all the questions, a report along with other rel-
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evant information is given to the tourist via the Information service. The
user continues until the end of the walking tour. Note that pins that con-
nect to a service building block or a control elements such as F1 and D1 in
Figure 13.4(b) are not localized to any participating roles.

The purpose of the flow-localized choreography is to allow extensive anal-
ysis and to support automatic synthesis of component types. Figure 13.5
shows the flow-localized choreography model of the WalkingTour service.
It is different from the flow-global choreography in the following respects:

• In the flow-localized model, every connected pin associated with a
service building block must be assigned to a particular role. This
means that at this level of modeling, one can precisely specify how
a service is started, terminated or being triggered in a distributed
system.

• In the flow-localized model, non-collaborative (local) activities and
control nodes such as fork, join, merge or decision must also be lo-
calized, i.e., assigned to one service role. This may involve mapping
global choices onto one or more local choices and communication de-
pending on the composite situation of business processes.

• Control flows in the flow-localized model are derived from the flow-
global model. However, the distributed localized flows may have se-
mantic differences compared to the global control flows [KB10] (ex-
plained in next section).

In the flow-localized specification of the WalkingTour in Figure 13.5,
fork node F1 and decision node D1 are localized to the user. This means
that the flows: (a) from D1 to the input streaming pin next of p.TourP lanner
building block (which is localized to the server), and (b) from F1 to the
starting pin start of p.TourP lanner building block are interaction flows,
i.e. not localized to the same role.

In general, a flow-localized model helps to make the flow-global spec-
ification complete in terms of the distributed realization. The rules for
transforming flow-global choreography models into flow-localized models are
summarized in the next section.

13.4.3 Summary of Choreography Model Transformation Rules

The flow-global choreography can be transformed to the flow-localized chore-
ography by using a set of transformation rules, called localization rules [KB10,
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Figure 13.5: Flow-localized choreography model of Walking Tour Service

HKLB11]. Interestingly one can also check for errors or flaws in the flow-
global choreography model during the localization process. Such flaws may
result not only in profit loss in a business services but also lead to system
failure. Therefore it is essential to detect possible problems and resolve
them early during the design of choreography models.

The localization rules can be classified into the following three cate-
gories: (1) Pin localization, (2) Direct flow localization, and (3) Indirect
flow localization with intermediate control nodes. These are discussed in
the following:

Service pins in a flow-global choreography model are localized in such a
way that starting pins are localized to initiating roles; terminating pins are
localized to terminating roles. For example the start and end pins of the
LocationService are localized to the user and server roles respectively.

Direct flows means that there are no intermediate control nodes between
services C1 and C2. For example a flow from QuizService to Information
service in Figure 13.4 is a direct flow. In general, direct flows can have
following possibilities:

• Strong sequence localization: this is a case where the terminating role
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of C1 and the initiating role of C2 are localized to the same component.
It implies that all the roles in C1 will be completely finished before
C2 is started.

• Weak sequence localization: this is a case where the terminating role
of C1 and the initiating role of C2 are bound to different components
but the initiating role of C2 is participating in C1. In this case there
is a possible overlapping between C1 and C2 and the flow is indicated
with the weak property.

• Enforced strong sequence localization: in this case the initiating role
in C2 and the terminating role in C1 are not localized to the same
component. Strong sequencing can then be enforced by introducing
an interaction between the terminating role of C1 and the initiating
role of C2 using send and receive events. This type of flow is indicated
with enforced property.

In the case of indirect flows one needs to localize all the intermedi-
ate control nodes that are present between action nodes Ci and Cj. We
say that two actions Ci and Cj are linked by a flow-path from Ci to Cj
through a number of intermediate control nodes each linked by direct flow-
steps. Flow-steps and the intermediate control nodes are localized according
to the rules defined in [KB10, HKLB11]. Normally all the flow-steps and
intermediate control nodes in a flow-path should be localized to one com-
ponent. However there may be cases where intermediate flow-steps and
control nodes may be part of several flow-paths i.e. localized to different
components. This is an indication of a realizability problem and needs to
be resolved [CBvB07, KB10]. For example if a decision node is not localized
to one single component (this represents a non-local choice) then there may
be a mixed-initiative problem [KSH09, KB10]. In mixed-initiative cases,
autonomous components may take initiatives independently and nearly si-
multaneously, resulting in a collision. Mixed initiatives may also be ex-
plicitly modeled in flow-global choreography using interruptible regions and
interrupting events. Therefore interruptible regions and interrupting events
in flow-global choreography models need special attention, especially when
all interrupting events are not local to the same component. In such cases,
additional coordination will be needed to resolve which initiative to select.
The resolution strategy will depend on the problem at hand and is difficult
to solve in a general way. In stead one may develop a library of alternative
solutions to select from. One way to handle such situations is to assign pri-
mary and secondary priorities to the conflicting partners and let an initiative
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from the primary side be accepted in all cases. For the secondary side, this
means that it must be prepared to receive a primary initiative even after it
has issued an initiative itself, and obey the primary one [KSH09, KB10].

13.5 Orchestration Models

Given a flow-localized choreography model, the next step is to synthesize
orchestration models for each service component. Orchestration models are
derived using a projection of the flow-localized choreography to include only
local actions performed by the component, c.f. [KLB10]. Information about
the collaborations it participates in and the ordering imposed by external
activity flows are retained in order to support automatic realization as well
as compatibility checks during subsequent composition of components into
working systems.

Figure 13.6 shows the orchestration models of two components, user walkingtour
and server walkingtour used in the WalkingTour service. The orchestrators
or component models specify the following aspects:

• A component is a container that contains orchestration of the service
roles it performs. The component type user walkingtour for example
orchestrates the service roles user loc, user q, and user inf. Similarly
the server walkingtour component orchestrates activities associated
with the service roles server loc, poi q, and server inf.

• A component contains the pins, local activities and control nodes that
are associated with the contained service roles. For example, in Fig-
ure 13.5, the fork nodes F1 and D1 are assigned to the user role,
therefore, F1 and D1 nodes are placed in the in the orchestration
model of user walkingtour component. Similarly the p.TourPlanner
local activity is placed in the server walkingtour component.

• Interaction flows that are either needed because of the localization
of control nodes or to enforce strong sequencing are mapped to local
flows and pins. In the user walkingtour component, there are two
interaction flows that are mapped to local flows: (1) from the fork
node F1 to the start.TourPlanner streaming pin; and (2) from decision
node D1 to the next.poi output streaming pin. We call the pins at
the component boundary as local interfaces.

• Pins and local flows may also be added to link actions using a weak
sequencing semantics [CBvB07, KB10]. Such cases are not present in
the given example.
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Figure 13.6: Service components of the Walking Tour Service

• The component also has a special type of flows, called responding
flows, which capture the external flows that will initiate collabora-
tion where the component is participating, but not initiating. In Fig-
ure 13.6, the responding flows are marked by the symbol ?. In the
following section, we will discuss the composition of components and
inner-components within a component and the use of responding flows.

• A component interacts with other components via collaborations that
the component participates in. For example, the user walkingtour
component participates in three different collaborations: LocationSer-
vice, QuizService and Information service. Each of these collabora-
tions defines semantic interfaces to a component [KLB11].

13.6 Component Component Patterns

Not all of the service roles in a collaborative service may have the capacity
to initiate or terminate the service, e.g., via initiating or terminating pins.
This means that if there is no initiating pin in a role, the component will
have no clue when the component should start the role. Similarly if there
is no terminating pin, we do not know when the role will terminate. This
creates a problem, especially when a role is to be composed with other roles.
For example, when one wants to make a user component user walkingtour
by composing a location user role user loc with quiz user role user q as
shown in Figure 13.6, one needs a way to connect them together since there
is no terminating pin in the user loc role and no initiating pin in user q role.
For this reason the responding flows are marked with a question mark in
Figure 13.6.

In order to solve this kind of problems, we introduce a general composi-
tion pattern that ensures that each service role will have pins to coordinate
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Figure 13.7: Service composition pattern

the enabling, start and termination of collaborative actions. The main nov-
elty of this composition pattern is that, the pre-designed functional behavior
of the service is unchanged and additional co-ordination can be added in
an enclosing activity indicated by dashed flows in Figure 13.7. The added
coordination information includes the following:

• In the initiating role, add a fork before the start pin and send a token
to non-initiating roles to indicate that the service activity have been
started (in user loc component in Figure 13.7(a)).

• In the terminating role, add a fork after the terminating pin and send
token to non-terminating roles to indicate that the service have been
stopped (in server loc component in Figure 13.7(a)).

• In the participating role, add a pin to enable the role in responding
flows. This is used for the responding flows in the user q, user inf and
server loc roles in Figure 13.8.

These adjustments introduce additional interactions between the ser-
vice roles, especially for coordination purposes. The corresponding abstract
view representation the LocationService is shown in Figure 13.7(b). The
service roles within a composite component can be composed by using pins,
and the interaction flows needed to enforce strong sequencing are in place.
Figure 13.8 shows the user walkingtour and server walkingtour component
models. A responding flow from the started pin of the user loc role to the
enable pin of the user q role represents the possibility of some overlapping
behavior between the service roles. A responding flow from the end pin to
the enable pin can be used to specify that the succeeding role is enabled
only after the preceding role is ended. A responding flow from the initial
node (for example in server walkingtour component in Figure 13.8) specifies
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Figure 13.8: Orchestration models of service components of Walking Tour
Service

that services are initially enabled when a composite component starts i.e.
they can accept the messages in the succeeding services.

There are other benefits of this component composition pattern. A
component can for example register itself to the events, such as start or
termination, of other components. This type of mechanism (listening to
different events) is very useful in object-oriented programming and in gen-
eral software-engineering discipline.

Note that the component models can be represented as abstract build-
ing blocks by hiding the internal details and showing just the information
about interfaces. For example the abstract building block representation for
the user component of the WalkingTour service in Figure 13.9(a) is shown
in Figure 13.9(b). The name and type of the pins corresponding to local
interfaces is retained. The semantic interfaces are abstractly represented
by a set ns where n is a reference to an interface (in this chapter we simple
use numeric references) and s is a character type whose has values of (1)
i representing that component plays initiating role; (2) t representing that
component plays terminating role; and (3) p representing that component
plays participating role in a component.

13.7 System Design

In order to enable precise and complete definition of service behavior, a ser-
vice model will normally only consider the roles and behavior involved in a
single service. In a system there may be many instances of the same service
running concurrently with roles assigned to different system components.
There may also be many different types of services provided by the system.
In general the system components may play roles in different services, and
different components may be able to play different combinations of roles.
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Figure 13.9: Detailed and Black box representation of user component of
Walking Tour Service

Consequently there is a difference between system design and service mod-
eling. In system design one needs to develop components that can play
different combinations of roles, and one needs to design the overall system
as a composition of such components. If necessary the resulting system will
enable a dynamic structure where services are combined in ways that are
not easily described in service models.

In this section, we demonstrate how our framework can support sys-
tem design. For illustration purposes, we consider a CityGuide service in
which a tourist (in a WalkingTour service discussed above) wants to sub-
scribe to a RestaurantService while he is using a WalkingTour service. We
assume that user and server components for the WalkingTour service and
RestaurantService are available in the repository.

13.7.1 Component Composition during System Design

During system design, one need not specify a complete system behavior. In
stead the complete system behavior emerges from the composition of the
components themselves. This means that smaller components can be com-
posed together into larger and composite ones. We now assume a library of
component types including user walkingtour, user restaurant, server walkingtour,
and server restaurant. The following steps are used:

• Define the part structure i.e., inner structure of a component. For
example part structures for the composite user component is shown
in Figure 13.10(a).

• Identify the roles (inner roles) to be composed from a component li-
brary. In this example, the user uses the WalkingTour and Restaurant
services; therefore corresponding service roles will be selected as shown
in Figure 13.10(b).
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• Compose the selected roles together using the pins of the selected roles.
Pins may be connected based on the data type that the pin owns or
they can be connected manually. Some additional control nodes may
be added to compose the selected roles together such as fork nodes
F1 in Figure 13.10(c). Pins that are not connected to any other pins
within the boundary of the component are made transparent to the
component boundary as local interfaces. For example the next.poi and
the start.TourPlanner pins in the user cityguide component are made
transparent to the component border.

Using these steps, the resulting composition of the user cityguide com-
ponent is shown in the Figure 13.10. In a similar way, the server cityguide
component can be composed. Note that composed composite component
type can also be represented as building block and put into the library and
reused.

13.7.2 Completeness of System Design

In simple cases where a system provides just one service the system de-
sign may be defined by a single service model. In more complex cases one
need a separate system design activity. For example, a top-level system
composition model of a city guide service is shown in Figure 13.11. Note
that the User and Server component types (corresponding to user cityguide
and server cityguide respectively) interact via collaborations. In the cases
where collaborating component has input or output pins at the interfaces,
such pins will be represented by a local interface. Moreover, system compo-
sition model may specify multiplicity of the parts. For instance, u[*]:User
implies multiple instances of a User component (and its inner parts) in a
system.

A system model consisting of all the service component types is shown in
Figure 13.11. In this particular example, we have a Server component that
provides WalkingTour service: it plays the initiating role in the Location-
Service, the participating role in the QuizService and the Session services,
and the terminating role in the Information service. A registry component
is participating in the Lookup service. In a similar way, one can see that
an user component is playing the initiating role in the LocationService, the
participating role in the QuizService, the terminating role in the Informa-
tion service, both the initiating and the terminating role in the Lookup and
the Session services. (c.f. Appendix for detailed information about Lookup
and Session services).
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Figure 13.10: Composition of components at system design level

Figure 13.11: System design model of the CityGuide service
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13.8 Implementations

We discuss four aspects of the implementation of the approach discussed so
far: (1) support for flow-global choreographies, (2) implementation of model
transformation rules, (3) support for flow-localized choreographies, and (4)
component synthesis and component composition issues.

13.8.1 Flow-global Choreography and UML Profile

The flow-global choreography model uses two features that are not sup-
ported in the standard UML 2.x activity specification [OMG09]: assign-
ment of pins to a service itself instead of to participating roles, and the dots
and square used to indicate initiating and terminating roles. Those features
can be defined using an UML profile as shown in Figure 13.12. The core
element in this profile is the service stereotype which extends the UML 2.x
action elements. A service contains one or more parts (extending the UML
ActivityPartition element) and has one or more input pins (extending the
UML InputPin element) as well as output pins (extending the UML Output-
Pin element). Parts are specified with the Part stereotype, input pins with
InputPin and output pins with OutputPin. The type of a part is defined
by a ActivationType enumeration that uses the literals INITIATING, TER-
MINATING and PARTICIPATING. Here, INITIATING expresses that the
role initiates the service, TERMINATING couches that the role terminates
the service, while PARTICIPATING refers to roles that neither initiate nor
terminate the service. The types of input and output pins are defined by
the InputPinType and OutputPinType enumerations having various literals.
The literals INPUT and OUTPUT represent starting or terminating pins
of an action (i.e., a service in our case). The literals INPUT STREAM
and OUTPUT STREAM typify that an action may receive or send tokens
via those pins without starting or stopping the action. Finally, the literal
types INPUT MULTIPLE and OUTPUT MULTIPLE denominate one of
multiple starting or terminating pins of an action.

The proposed UML profile can be defined using any standard UML
tool or model editor. We used the Eclipse plug-in of the Papyrus UML tool.
There is no graphical editor yet fully supporting the modeling of flow-global
choreography models, however one can use the tree view based UML model
editor for example the UML editor of the Eclipse UML project MDT.
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Figure 13.12: UML Profile for supporting flow-global choreography service
notations

13.8.2 Model Transformation

The proposed model transformation rules are implemented using graph
transformation techniques. Implementation details can be found in [HKLB11].
Flow-global choreography models are represented as pre-graph models. Trans-
formation rules are also represented as graph models. A graph transfor-
mation engine takes pre-graph models as inputs and applies rules (graph
models) and produces post-graph models corresponding to flow-localized
choreography models.

13.8.3 Flow-localized Choreography Model and Arctis Tool

We can import flow-localized graph models in to the Arctis tool [KSH09].
Arctis is a tool for engineering reactive distributed software systems from
choreography models and these models are semantically equivalent to our
flow-localized choreography models. In particular, Arctis supports a high
degree of reuse by offering domain specific libraries of building blocks. Such
a building block specifies a sub-functionality that often can be reused in
several applications.

Arctis also uses UML collaborations and activities to model the structure
and behavior of a system. Arctis uses the same swim-lane based notation of
UML activities where service roles are represented as partitions. Note that
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the service roles of the flow-global choreography model are bound to the cor-
responding partitions in the Arctis collaboration. Arctis also allows system
analysis by means of model checking. Furthermore, application code for dif-
ferent platforms such as Standard Java, Android and Sun Spots [KSH09a]
can be generated from the Arctis models.

13.8.4 Component Synthesis and Composition

A complete component synthesis algorithm and component composition
techniques are not implemented yet and planned as further works. We
do not see any fundamental problems preventing their implementation. Im-
plementation of the synthesis algorithm will be fairly straightforward as
both choreography and component models are represented by UML activity
diagram. Furthermore, existing techniques [KH07, KSH09a] can be used
for transforming UML activity diagrams (of component models) into state
machine based models and from there to application code.

13.9 Concluding Remarks

In this chapter, we have presented and discussed a framework to support the
development and composition of business services. We use UML collabora-
tions and activity diagrams to specify the structures of collaborating entities
of business services and their global behaviors (called choreography models)
respectively. In the case of elementary services, the interactions among par-
ticipating roles in a service are specified using the swim-lane based form of
UML activity diagrams. In case of composite services, choreography models
are specified by connecting existing building blocks together by specifying
their ordering and causality.

The choreography models are used to capture the global collaborative
business service behavior involving two or more participants, while the or-
chestration models are used to define individual components behaviors for
implementation. Given a library of orchestration models, i.e. component
types, we discuss their composition. We discuss a component pattern that
supports the local composition of components.

Finally, we address system design as composition of existing components
to handle different requirements from users. At the system design level, the
multiplicity of service instances, and components is also taken into account.
Depending on the situation and requirements at hand, a service/system
composer may decide the balance between service composition and system
composition.



13.9. Concluding Remarks 271

Figure 13.13: Lookup and session support in system design

Appendix

Service Lookup and Session Management

In the following, we outline how the instances can be created and managed
in a framework. For illustration purposes, we assume that many users may
use the WalkingTour service simultaneously. This means that there will be
many sessions of WalkingTour service roles at the server side, as shown in
Figure 13.13.

Before requesting a session setup, the requester component i.e., the
user walkingtour should know whom to request for the session. We may
use a generic Lookup service for that as shown in Figure 13.13. The registry
contains information about the services, associated roles, and relationship
among the services. In our case we assume that a Registry will return
the identity of a Server component that contains the requested role i.e.
server walkingtour. The User will then do session request using the Ses-
sion service. Once a session setup is confirmed, the WalkingTour can be
started and the role instances in the WalkingTour service will interact with
each other. Figure 13.13 also shows how the service roles of Lookup and
Session services can be composed with other service roles within the User
and Server components.
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Key Terms and Definitions

Service: Service is partial system functionality where two or more entities
collaborate to achieve a goal.
Service Composition: the composition of smaller services in order to
make a composite service.
UML Collaboration: UML collaborations define a structure of roles and
collaboration uses. They support service composition in terms of collabo-
ration uses and role bindings.
UML Activity Diagrams: UML activity diagrams define behavior in
terms of actions that are linked by token flows.
Choreography: Global behavior is called choreography. Choreography is
specified using UML activity diagrams. We have used two levels of chore-
ography models: flow-global and flow-localized.
Orchestration: Orchestration defines the local behavior of a component.
We use UML activity diagrams to specify orchestration models.
Semantic Interface: A two party collaboration defining interface behav-
ior.
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Abstract

Choreographies are used to define and analyze the global collaborative be-
havior of reactive systems while orchestration are used to define local be-
havior of components for realization. A number of realizability problems
need to be addressed when going from a global choreography to distributed
realization. This paper focuses on the analysis of choreographies in order
to detect and resolve such realizability problems. UML activity diagram
are used for choreography specification as well as for distributed realiza-
tions using a distinction between initiating flows local to a component and
responding flows that represent flows external to a component. These con-
cepts provide a new, simpler, and computationally efficient way to detect
and to some extent resolve most known realizability problems.

keywords: Choreography, Realizability, Collaborative Services.

14.1 Introduction

The work presented here considers the relationship between global service
behavior models (called choreography models in the following) and their
realization in terms of distributed components behaviors (called orchestra-
tions in the following). It is desirable that service engineers (or domain
experts who are not service developers or programmers) can work mainly
on the level of choreography, focusing on the intended collaborative behavior
rather than on the detailed orchestration. A choreography should therefore
fully define the global behavior so that component orchestrations may be
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Figure 14.1: Overall Approach

automatically synthesized thereby enhancing the correctness of the realiza-
tion. The overall approach addressed in this paper illustrated in Fig. 14.1,
seeks to enable this.

Most approaches to choreography assume that basic activities are allo-
cated to one component. However in many cases the basic building blocks
are actually collaborations involving several participants. Therefore we al-
low collaborations as building blocks in choreography. Collaborations en-
capsulate interactions and allow to define choreography on a higher level of
abstraction than interactions. The corresponding orchestrations will there-
fore be a temporal ordering of role behaviors as illustrated in Fig. 14.1(d).

Our work rests on two key enablers: (1) The use of UML 2.x collabora-
tions to structure the service dimension and to identify the roles to be used
in composition, as shown in Fig. 14.1(a); (2) The use of UML 2.x activity
diagrams to completely define and analyze the cross-cutting service behav-
ior i.e. choreography illustrated in Fig. 14.1(c) as well as orchestration in
Fig. 14.1(d).

The choreography uses model elements of standard UML 2.x activity
diagrams with associated semantics. Semantically these diagrams define
behavior as a temporal ordering of actions, where an action either may
be local to a role or represent a collaborative behavior involving several
roles. In the following it is assumed that the choreography of a composite
service C is defined by activity aC as illustrated in Fig. 14.1(c), similarly the
choreography of an elementary service C1 is defined by aC1 as illustrated in
Fig. 14.1(b).

Each role in a choreography is mapped to a corresponding role orchestra-
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tion that is linked within the orchestration of a component by local initiating
flows (indicated by solid lines) and responding flows (indicated by dotted
lines in Fig. 14.1(d)).

When a global choreography is mapped to distributed role orchestrations
and any of the role orchestrations need to handle behavior that has not been
specified for the corresponding role in the choreography specification, this
is considered a realizability problem.

In a choreography, the activity flows that cross partition boundaries
does not model the possibility that messages may be reordered by the
medium, nor that all flows between a pair of components may share a
common medium and input buffer at the receiving end, which normally
is the case in distributed realizations. In orchestration models we assume
an arbitrary transfer delay, and a shared buffer for each component. This
models the delays that are inevitable in a distributed realization using an
underlying communication medium such as an asynchronous message bus.
If this buffer is a FIFO queue, messages will be taken from the queue in
strictly the same order as they arrive. If this arrival order is the same as
the reception order specified by the activity flows, everything is fine. But it
may happen that the arrival order differs from the specified reception order
either due to different sending orders or due to reordering by the communi-
cation medium, which means that the distributed realization will generate
reception orders that differ from the order specified in the choreography.
This is the fundamental cause of many realization-problems.

We note here that the same kind of problems may occur when other
types of diagrams such as interaction diagrams are used for choreography
specification. Such unspecified behavior is sometimes referred to as implied
scenarios. Implied scenarios and other realizability problems have been
extensively studied in numerous publications (c.f. Sect. 14.5). In this paper
we use a novel approach to the identification of such problems and how they
may be resolved based on flow analysis of the choreography models using
the concepts of initiating and responding flows. This enables a simple,
efficient, and general detection mechanism that is easily integrated with the
orchestration synthesis.

The rest of the paper is organized as following. Direct realization and
realizability problems are discussed in Sect. 14.2. Realizability of control
and object flows, and control nodes and paths is discussed in Sect. 14.3 and
Sec. 14.4. Related works and conclusion is given in Sect. 14.5.
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14.2 Realization and Realizability
Problems

14.2.1 Notational Conventions

In order to simplify and clarity the presentation, the following notations
and conventions will be used in the following:

• The composite service structure is represented as a UML collabora-
tion where participating entities are represented as roles. Sub-services
in a composite service are represented as collaboration uses. We use
the term role uses for the roles of collaboration uses in order to dis-
tinguish them from the roles of a composite collaboration. The roles
of a composite collaboration are in turn considered as role uses in the
following composition steps when uses of the composite collaboration
are composed.

• Each collaboration use Ci has a structure of role uses ri,j . The sub-
scripts of the role uses ri,j are used to identify collaboration uses in di-
mension i and roles (parts) in dimension j. For example in Fig. 14.1(c)
and Fig. 14.1(d), the role use ri,j represents the role in Ci that is played
by part Pj .

• A collaboration use Ci will have role uses ri,1, ri,2, . . . ri,n and a chore-
ography defined by aCi. These role uses will be bound to roles P1, P2, . . . Pn

of the enclosing collaboration and finally to the components of a sys-
tem. In a distributed realization the behavior specified for each role
use must be realized by a local role use orchestration denoted O(ri,j).
A role orchestration O(Pj) is composed from the role use orchestra-
tions O(ri,j) bound to it.

• In the choreography for a collaboration C, the action aCi refers to the
behavior of collaboration use Ci. The action1 has partitions (indicated
by solid lines) representing the roles, as shown in Fig. 14.1(c). This
notation was first proposed in a slightly different form in [CBvB07]
and in its current form in [KB10]. The initiating and terminating roles
are indicated using dots and squares attached to the partition. This

1An action can have different types of pins: input pins, represented by an unfilled
pin with incoming arrow and the flows ending on input pins are called initiating flows;
output pins, represented by an unfilled pin with outgoing arrow, will terminate the called
activity; streaming pins, represented by filled incoming and outgoing pins, can pass tokens
while the called activity is active.
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Figure 14.2: Role Orchestrations with Responding Flows

information is not part of UML, but needed for analysis on the level of
choreography and can be provided by additional profiling [HKLB11].

14.2.2 Direct Realization

A direct realization of an elementary service choreography aCi with par-
titions ri,1, ri,2, . . . ri,n is obtained by directly projecting the aCi to local
orchestrations Od(ri,j) for each partition in the following way:

• insert a send event action on all outgoing flows towards a partition
boundary,

• insert a receive event action on all incoming flows from a partition
boundary,

• replace all actions not performed by partition ri,j by no-operation,

• mark all flows not local to ri,j as responding flows. In Fig. 14.2(a), the
responding flow from m1 to m2 specifies that the component Od(r1,1)
must be ready to the receive message m2 after the message m1 is sent.

• mark all control nodes (decision, merge, fork, join) not local to ri,j as
responding nodes

Using projection to derive orchestration is a common technique used by
several authors [QZCY07]. As far as we know, the idea to classify exter-
nal flows as responding flows, and to use them for realizability analysis is
novel in our approach. Responding flows are necessary in the orchestrations
to ensure that a responding role is enabled and ready to participate in a
collaboration activity whenever the collaboration activity may be started.

The orchestration for choreography aC1 from Fig. 14.1, is two elementary
role orchestrations that are connected by an asynchronous communication
medium and an input buffer for each role as shown in Fig. 14.2(a). Observe
that in Od(r1,2) there is a responding flow to enable the orchestration and
the receive event action m1. In Od(r1,1), there is a responding flow from
sending event m1 to receive event m2. Note that these orchestrations have
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inter-role interfaces represented by send and receive actions, and intra-role
interfaces represented by pins.

A direct realization of a composite service choreography aC defined over
CallBehaviorActions aCi(i=1,...n) is then derived in the same general way,
but now the local orchestration Od(Pj) of a role Pj will include actions
representing local orchestrations Od(ri,j), such as represented in Fig. 14.2(b)
for role orchestration P2 in Fig. 14.1.

We now define direct realizability of a global choreography aCi in terms
of a relation between the behavior of roles ri,j in aCi and the behavior of
directly realized orchestrations Od(ri,j) in a direct realization Rd(aCi) =
Od(ri,1) ‖ Od(ri,2) ‖ . . . ‖ Od(ri,n).

Definition 1: Direct realizability: If the temporal ordering of actions in
ri,j in aCi is exactly the same as the possible temporal ordering of actions in
Od(ri,j) when composed in Rd(aCi) ignoring the inserted send and receive
actions, we say that ri,j is directly realizable in aCi. If all roles in aCi are
directly realizable, we say that aCi is directly realizable.

Some authors [KP06, BGG+06, QZCY07] define realizability in terms of
trace equivalence or global state space equivalence. We have chosen to define
it as a relationship between roles and composition of role orchestrations in
order to allow for the additional orderings caused by looser coupling as long
as the result is stuck-free and achieves the same effects.

We assume now that each collaboration use in the global choreography
is internally correct and stuck-free, and demand that the composition of role
orchestrations is stuck-free too. The notion of being stuck-free eliminates
the following design errors: 1. deadlocks - a component waits for the mes-
sage in non-final state that will never be sent, 2. unspecified receptions - a
component receives a message for which there is no transition to consume it
in its current state, and 3. orphan messages - a special kind of unspecified
reception where the execution context for which this message was intended
does not exist anymore.

It follows from this that if aCi is stuck-free and directly realizable then
Rd(aCi) is stuck-free.

This can now be extended to the next level of composition in a straight
forward way. We assume that each activity aCi defining the choreography
of an elementary collaboration Ci is directly realizable and consider the
activity aC defining the choreography of the composite collaboration C.
Then if the action ordering of Pj in aC is exactly the same as the action
ordering possible in Od(Pj) when composed in Rd(aC) ignoring the inserted
send and receive actions, we say that Pj is directly realizable in aC. If all
roles in aC are directly realizable, we say that aC is directly realizable.
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It follows from this that if aC is stuck-free and directly realizable, then
Rd(aC) is stuck-free.

14.2.3 Realization Problems

Realization problems occur because of additional action orderings intro-
duced or allowed by the looser coupling in the orchestration compared to
the choreography. This is not problematic as long as all the action orderings
specified in the choreography can be performed (ignoring the queue actions)
and no role orchestration O(Pj) need to handle behavior that has not been
specified for the corresponding role Pj in aC.

One necessary condition for direct realizability is that the internal or-
dering of each role orchestration Od(ri,j) can remain unchanged in the role
orchestrations Od(Pj). There shall be no side-effects of the composition
that will require that one Od(ri,j) must be modified to handle interactions
belonging to another Od(rk,j). This accords with sound principles of mod-
ularity and compositionality. We say that each Od(ri,j) keeps its integrity
under the composition. As we shall see later, it may happen that the in-
tegrity of some Od(ri,j) is violated by a global flow, which means the global
flow is not directly realizable. This does not necessarily mean it cannot be
realized, it only means that a realization must provide a solution, normally
by means of some additional behavior.

Another necessary condition is that no additional interactions are needed
in the orchestration. This means that it must be possible to localize pins
and control nodes, such as decisions, forks and joins, without adding in-
teractions. It also means that interruptible activity regions involving more
than one role cannot be directly realized.

Rather than generating the global behaviors of Rd(aC) and aC and
comparing them role-wise to check if aC is directly realizable we shall seek
to identify necessary and sufficient conditions for direct realizability that can
be determined by analyzing initiating and responding flows directly. These
results builds on earlier work in [CBvB07], but enables different analysis
technique and covers more cases than in [CBvB07].

It is important to note that whether a choreography is directly realizable
or not depends not only on the ordering defined by the choreography, but
also on the characteristics of the underlying communication channel and also
the type of input buffering at each component. We consider the following
types of communication channels: (a) out-of-order delivery channel where
where message sent from a source to a given destination may be received
in different order than they were sent, (b) in-order delivery channel where
messages are received in the same order they were sent. In both cases, it
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is assumed that there is no message loss. Regarding the input buffering
at each component, we distinguish three cases: 1. no-reordering - where
each component has a single FIFO buffer, 2. reordering between sources
- where each component has a separate FIFO buffer for each source and
locally determine from which source the next message should be consumed,
3. full reordering - where the component may reorder the messages freely.

14.3 Realizability of Control and
Object Flows

We first consider just one sequential composition step, written: aC1; aC2.
We then discuss the realizability of sequential flows.

In aC1; aC2, according to the activity diagram semantics, aC1 shall be
completely finished before aC2 is started. In a distributed realization the
global ordering must be provided by means of local flows. In the following
we discuss the different causality properties that local flows can provide.
This classification based on [CBvB07].

Localized causality: This causality is ensured when the role Pj that
terminates aC1 is the role that also initiates aC2. Localized causality has
the property that it satisfies the strong sequencing specified in the activity
diagram for the global choreography. We mark the initiating flow in this
case as {strong} to indicate that the strong sequencing property holds. All
roles Pk that play a responding role r2,k in aC2 and also participate in aC1

with a role r1,k will have a local responding flow linking r1,k to r2,k. These
responding flows are also marked as {strong}.

We note that no overlap is possible between two roles directly linked by
{strong} flows. Strong flows imply that the linked role orchestrations keep
their integrity and therefore a {strong} flow from aC1 to aC2 is directly
realizable. An example of localized causality is the flow between the aC1

and aC2 collaborations in Fig. 14.3(a). Localized causality is ensured in this
case when the flow is localized to the P1 role.

No causality: If the role that initiates aC2 is not participating in
aC1, the sequential ordering specified in the global choreography cannot be
realized, since there is no way to ensure a sequential ordering between aC1

and aC2. The global flow as well as the local initiating flow to aC2 is marked
as {non-causal} in this case. This means that the roles r1,j and r2,j of any
role Pj participating in both aC1 and aC2 will be linked by {non-causal}
responding flows and may overlap arbitrarily.

A {non-causal} flow between role orchestrations implies a possible over-
lap that may violate the integrity of both role orchestrations, and therefore



14.3. Realizability of Control and
Object Flows 289

aC1P1

P2aC2

P2

P1

aC1P1

P2aC2

P2

P1

{strong}{strong}

P2aC1P1

aC2P1 P3

{weak}

P2aC1P1

aC2P1 P2

{weak}

aC1P1

P3aC2

P2

P2

P3aC3P1

aC1

aC2

aC3

{strong}

{weak}

{strong}

no-op 
for P1

P1 P2

P2 P3

P1 P3

(c) General responding flow and a no-op node(b) Weak causality

(a) Localized causality

Figure 14.3: Causality Properties and Responding flows examples

is not directly realizable.
If it is the intention that the events in aC1 and aC2 should be arbitrar-

ily interleaved, the solution is to change the global choreography to use a
parallel fork instead of using a sequence between aC1 and aC2. If sequential
ordering is the intention, one needs to add at least one interaction to ensure
at least weak causality (see below) or to change either aC1 or aC2 or both
so that the flow at least ensures weak causality.

Weak causality: Weak causality means that the role Pj playing the
initiating role r2,j in aC2 participates with a non-terminating role r1,j in
aC1. This means that r1,j is completely finished when r2,j and hence aC2

starts, but other roles participating in aC1 need not be finished. This corre-
sponds to the weak sequencing normally assumed in interaction diagrams,
but deviates from the strong sequencing of UML activity diagrams. There
are two possible options:

• Enforced strong sequence. This means to add at least one interaction
from the terminating role r1,i of aC1 to the initiating role r2,j of aC2,
or to modify either aC1 or aC2 to include this interaction. This will
make the composition directly realizable, but it will introduce the
additional message overhead. This strategy has been used in earlier
work on protocol synthesis, such as [KHB96].

• Weak sequencing. This means to allow partial overlap between events
in aC1 and aC2. As long as this does not harm the integrity of any
roles, it may be fully acceptable and considered as a direct realization
option. In this case the initiating flow and the corresponding respond-
ing flows are marked {weak}. An example can be seen in Fig. 14.3(b)
between aC1 and aC2.

If some role Pk participates with a role r1,k in aC1 and a responding role
r2,k in aC2, there will be a {weak} responding flow from r1,k to r2,k in Pk.
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This means that messages may be sent to r2,k (by another role in aC2) before
r1,k is completely finished. If there is any possibility that these messages
may be received before r1,k is completely finished, they may interleave with
remaining events in r1,k, causing unspecified ordering between send/receive
events in r1,k and r2,k, and damage the integrity of r1,k and r2,k. Note that
apart from {non-casual} flows role integrity can be damaged only between
roles linked by a {weak} responding flow. We also note that the amount of
possible overlap depends on the underlying communication medium. The
amount of overlap is determined by how much of r1,k may remain when
r2,k is started, called the remainder of r1,k and how much of r2,k that may
execute before r1,k is finished, called the beginning of r2,k.

Note that in the special case when the composed collaborations are two-
party (binary), with roles P1 and P2 and there is a {weak} responding flow
from r1,2 in aC1 to r2,2 in aC2, the remainder of r1,2 may only be message
receptions, and the beginning of r2,2 may only be message reception and so
if no message reordering is possible on the link between P1 and P2 there will
be no problem.

If no responding roles in aC2 is played by a role that also participates
in aC1, there will be no responding flows local to a role that participates
in both aC1 and aC2, and therefore no overlaps are possible between roles
in aC1 and aC2. There may however be indirect {weak} flows as will be
explained later in this section.

Send causality: This is a special case of {weak} causality where there
is a total ordering of sending events. The initiating flow of aC2 is local to
a role that either terminates aC1 (i.e., strong sequencing) or sends the last
message in aC1. If aC1 is internally send causal, only message reception on
a terminating role may remain in aC1 when aC2 is started. A possible role
overlap will show up as a {weak} responding flow local to a role playing
a terminating role in aC1 and a non-initiating role in aC2. If message
reordering is possible between the last message this role receives in aC1 and
the first messages it receives in aC2, unspecified reception orders may result.
If these messages are exchanged between the same two components over a
FIFO medium, there will be no problems.

In general, one must consider sequential flows consisting of several se-
quential composition steps aC1; aC2; ...; aCn and consider the causality
of each initiating and responding flow. It is now possible that a role in
aCi may overlap with a responding role in aCj (i<j) if there is an indirect
{weak} responding flow within a role k from a role ri,k in aCi to a role rj,k
in aCj . Indirect responding flows occur when there may be one or more
collaborations or local actions in which a component does not participate
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between collaboration actions where it participates. When a component is
not participating in a collaboration action aCi, there will be a no-op ac-
tion (an action where a role does not participate) in the responding flow.
For example a component P1 is not participating in aC2 therefore aC2 is
a no-op action in a responding flow from aC1 to aC3 for component P1 in
Fig. 14.3(c).

We now generalize responding flows to include no-op actions: An indi-
rect responding flow is a responding flow with one or more no-op actions,
a general responding flow is a responding flow with zero or more no-op ac-
tions. The first step of a general responding flow determines whether the
flow as a whole has property {non-causal}, {weak} or {strong}. A general
responding flow that starts with a {non-causal} step remains {non-causal}.
A general responding flow that starts with a {strong} step remains strong re-
gardless how many {weak} or {strong} (no-op) steps that follows. A general
responding flow that starts with a {weak} step remains {weak}, regardless
how many {strong} or {weak} (no-op) steps that follows.

We conclude from the above that {non-causal} ordering can never be
directly realized, and that {strong} ordering always can be directly realized.
When using {weak} ordering there may be problems. The reasoning above
justifies the following propositions:

Proposition 1 (realizability of general weak responding flow): A gen-
eral {weak} responding flow between roles ri,j and rk,j is directly realizable
only iff the remainder of ri,j and beginning of rk,j can be ordered by the
underlying communication medium.

Proposition 2 (realizability of sequential composition): A sequential
composition aC1; aC2; ...; aCn is directly realizable iff no initiating flows
are {non-causal} and all general {weak} responding flows resulting from a
direct realization are directly realizable.

Proofs are omitted due to space limitation.

We note that it is possible to identify the presence of {non-causal} ini-
tiating flows and {weak} responding flows directly in the global choreog-
raphy and thereby pinpoint where realizability problems may occur. One
may then investigate each {weak} responding flow separately to see if any
overlap (message interleaving) is possible.

In the following circumstances the ordering between events in the re-
mainder ri,j and beginning rk,j can be ensured: When the remainder of ri,j
and the beginning of rk,j are message receptions and local actions only, and
the medium globally conserves the sending order, or when the remainder
of ri,j and the beginning of rk,j are message receptions and local actions
only and the remaining messages are sent by the same part, and the com-
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munication link between the two roles locally conserve the sending order (is
FIFO) or by reordering messages for consumption such that the remainder
of ri,j is always processed before the beginning of rk,j . This may require
that messages are tagged with the role invocations they belong to.

We note that the above propositions will apply also in the case where
elementary collaborations are specified using sequence diagrams. All the
realization problems and conditions associated with sequential composition
identified in previous work [CBvB07] are covered and generalized by the
propositions and conditions given above. The concept of responding flows
needed in orchestrations therefore provides a new, simpler and more gen-
eral indicator of these problems. In the following section, we consider the
realizability analysis of control nodes on a flow-path.

14.4 Realizability of Control Nodes and Paths

When control nodes are present, two action nodes may be linked by a flow-
path through a number of intermediate control nodes linked by direct flow-
edges. Each intermediate flow-edge and control node in a choreography
may be part of several flow-paths. For each flow-path linking a pair of
collaboration actions aC1 and aC2 (or local actions) one can determine
which causality property that holds, i.e. {non-causal}, {weak}, {strong}.
The propositions and conditions given in Sect. 14.3 apply to each such flow-
path. In order to be directly realizable, as explained in Sect. 14.3, it is
necessary that every initiating flow-path linking two collaboration actions
aC1 and aC2 (or local actions) is either {strong} or {weak} and local to the
role initiating aC2. (Enforcing strong sequencing by adding interactions is
not considered as direct realization due to the interactions that are added).
Initiating paths that can not be localized this way are considered as {non-
causal} and hence, as not directly realizable as explained in Sect. 14.3.

For each {weak} flow-path, one may derive responding paths and check
for realizability in a similar way as explained in Sect. 14.3. Note that control
nodes that are external to a role are represented as responding control nodes
on the responding flows of that role.

Proposition 3 (flow-path localization): An initiating flow-path from
collaboration action aC1 to collaboration action aC2 is directly realizable iff
the entire path with all intermediate control nodes can be localized to the
role initiating aC2 and the path is either {strong} or is {weak} with all its
responding flow-paths realizable according to Proposition 1.

Each control node can be part of several paths. In order to be directly
realizable all initiating flow-paths through a node should be local to the
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same role. If this is not possible, additional interaction flows will be needed,
which means the flows through the nodes are not directly realizable.

Proposition 4 (control node localization): If all initiating flow-paths
through a control node is directly realizable and the node is localized to one
role then the node is directly realizable.

Whenever the paths through a choice node need to be local to different
roles in order to satisfy causality, we have a case of non-local choice [Kra08,
BF04]. Non-local choices have been extensively studied in the literature,
and are normally not directly realizable. It is only when a non-local decision
can be performed locally by each component based on local information, in
a way that guarantee that the components choose corresponding branches
that non-local choice is directly realizable. Some resolution techniques are
presented in [KB10].

Let us now consider the Teleconsultation service, first described in [CBvB07],
and its choreography specification shown in Fig. 14.4. In Fig. 14.4, pt, dt,
dl, and vr represent patient, doctor, data logger, and virtual receptionist
respectively. Will it be directly realizable or not? We assume that we are
not applying enforced strong sequencing, but try to localize each path to
the role use initiating the next collaboration use. In other words we explore
the natural ordering properties of the choreography. We use the following
notation for paths in the following: path ::= roleId→causalityClass→roleId,
where
roleId ::= collaborationUseId.roleUseId. We first identify all flow paths and
their associated causalities, and then consider all flow paths through each
node. We note that a node may be part of several flow-paths, each having
different properties, e.g:

• M1 is part of the following flow paths:
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d.pt→strong→rd.pt; c.pt→ strong →rd.pt. In this case all initiating
flow-paths through the merge M1 may be localized to pt and therefore
M1 be directly realizable. Similarly M2, . . . M4 are directly realizable.

• J1 is part of the following flow paths:
w.vr→strong→as.vr; rd.vr→weak→as.vr; and
av.vr→weak→ as.vr. All initiating flows through J1 may be localized
to vr. The paths w.vr→strong→as.vr; rd.vr→weak→as.vr are directly
realizable. There will be no problem in av.vr→weak→as.vr if the
communication between vr and dt conserves the sending order.

• F1 is part of the following flow paths:
c.pt→strong→rd.pt; c.dt→strong→av.dt. These paths are local to
two roles, dt and role pt, and therefore the fork F1 is not directly
realizable. However, in this case, this flow can be replaced by two
local flows, one within each terminating role, to achieve the same
effect.

• D1 is a part of the following flow paths:
av.vr→weak→as.vr; av.dt→strong→u.dt. These paths are local to
two roles, dt and role vr, and therefore the decision D1 represents a
non-local choice and is not directly realizable. If the decision node is
localized to the {strong} path i.e. at dt, there will also be a {weak}
responding flow through D1 at dt indicating a realizability problem.

Responding flows demand special consideration in the presence of choices.
The decision making should be taken on the initiating flows, but the deci-
sions must be reflected in responding flows allowing the responding role
to choose among two or more collaborations based on the first messages
received in them. This is called choice propagation in [CBvB07] and re-
quires that the first messages are unique so that the choice is determined
by the first message received. If this is not the case, the choice propaga-
tion is said to be ambiguous according to [CBvB07]. {weak} responding
flows through responding decision nodes may cause choice propagation to
become ambiguous because of message reordering, called race propagation
in [CBvB07]. This may lead to the wrong choice being taken.

By introducing choices and merges, we have also introduced the pos-
sibility to make loops with repeated actions linked by {strong} or {weak}
flows (as illustrated in Fig. 14.4). Since each iteration of a loop involves the
same set of components, {weak} flows will cause problems unless the com-
munication medium conserves the sending order. As a method guideline,
{strong} sequencing should be preferred between loops iterations to be sure
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that one iteration is completely finished before the next one starts. Loops
may also cause so-called process divergence, characterized by a role sending
an unbounded number of messages ahead of the receiving role. This may
happen where iterations of a loop is weakly sequenced and the loop body
contains uni-directional interactions between a pair of roles. This may also
give rise to so-called orphan messages, i.e. messages sent in one iteration
and received in a later iteration.

Note that a tool may obtain all the diagnostic information discussed
above directly from the choreography without needing to look into the be-
havior detail of any of the composed collaborations.

14.5 Related Work and Conclusion

There is a large body of work addressing realizability of choreography de-
fined using MSC, UML sequence diagrams, interaction overview diagrams,
use case maps, UML activity diagrams, BPEL, WS-CDL and related nota-
tions. It is interesting to observe that similar realization problems manifest
themselves regardless of which particular notation is used to define choreog-
raphy. This suggests that the core of the problem is a fundamental difference
in the nature of global choreography v.s. distributed orchestration, rather
than notation. To our best knowledge there is no other work that uses a
flow analysis similar to the one presented here, to systematically deal with
realization problems.

The realizability of specifications of reactive systems, in general terms,
was studied in [ALW89]. In the context of interaction diagrams, the no-
tion of realizability has been related to the notion of implied scenario, first
in [AHP96], where the authors propose two notions of realizability, depend-
ing on whether the realization is required to be deadlock-free (safe realizabil-
ity) or not (weak realizability). This work was later extended in [AEY01]
to consider realizability of bounded HMSCs. In [MFEH07] the authors
discuss the notion of safe realizability and causes of implied scenarios for
MSC based Specifications. [BBJ+05] discusses automatic detection and
resolution of semantic errors such as blocking, non-local pathologies, non-
local ordering, and false-underspecification associated with scenario based
requirements captured in the form of UML/MSC sequence diagrams.

In [CBvB07] the authors provide a classification of realizability problems
and give some criteria for detecting them at the level of choreographies.
They use an earlier version of the activity diagrams (AD) presented in this
paper to define and analyze global choreography. However in [CBvB07], se-
quence diagrams (SD) are used to specify elementary collaborations. Com-
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pared to their work, our work, 1. use AD throughout, 2. allow streaming
and interrupting flows (not discussed in this paper), 3. introduce the con-
cept of responding flows and role integrity that simplifies and generalizes
realizability analysis. 4. defines orchestrations as modules for subsequent
composition into systems. Compared to our previous work in [KB10], we
have here elaborated on the responding flows for realizability analysis.

The SPACE method supported by the Arctis tool enables specification
and model checking of collaborative behavior by composing collaborative
building blocks together using a swim-lane like notation for UML activity
diagrams [Kra08]. In the work presented here we use a more abstract chore-
ography model [KB10] to define the complete behavior. Such models can
be translated into Arctis equivalent (or similar) models for further design
synthesis and code generation.

Most of the work in the business and web-services domain describe chore-
ography in terms of interactions [ZBDtH06, MH05, Dec09]. Some use UML
communication or interaction overview diagrams [SB09]. Some use the
swim-lane notations of UML activity diagrams to define choreographies.
Interaction diagrams require that interactions are named, while activity di-
agrams represent the purpose of interactions as flows, and therefore are
more high level and abstract. Moreover the concept of collaboration enable
complex interaction behavior to be separately modeled, encapsulated and
reused as building blocks in their own right. Thus, using our approach the
resulting choreography tends to be on a higher level, closer to the problem
domain, than choreography expressed in terms of detailed interactions.

The semantics of choreography is represented as labelled transition sys-
tem (LTS) in [KP06], set of conversations in [BGG+06] or activity traces
in [QZCY07]. We use UML activity diagrams and their semantics [KH10].
This enable us to define complete behavior that can be directly realized,
unlike the partial or fragment scenarios normally provided by sequence di-
agrams. There are different techniques to check the realizability between
choreography and orchestration. In [SB09] behavioral equivalence between
the LTS of a choreography and a the LTS of a parallel composition of or-
chestrations is used. [KP06, BGG+06] uses the bi-simulation for this. Trace
equivalence is used by the authors in [QZCY07]. In our work we do not ex-
plore global state spaces, but provide rules for analyzing the choreography
directly.

In conclusion, we have here presented a constructive approach to derive
orchestrations from choreography that also provides means to analyze re-
alizability using the new concepts of initiating and responding flows. The
approach provides the following benefits:
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• Automation and cost-reduction: initiating and responding flows
are derived as part of normal component realization and does not
require additional effort.

• Efficient: checking realizability of choreographies by analyzing flows
avoids the exponential growth of state-space involved in traditional
state-space analysis approach.

• Simplification: realizability problems can be spotted simply by check-
ing initiating and responding flow-paths and their causality properties.
There is no requirements that choreography graphs be well-structured.

• Correctness by construction: correctness of the choreographies
can be checked early during requirement specificatoin, in many cases
without going into the detailed behavior of collaborations.

• Modularity: ensuring integrity of the role orchestrations provides
modules suitable for later reuse and composition.
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