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Abstract—We present a Model-Driven method to
develop collaborative systems. In our method, we
use UML collaborations to capture the requirements
and architecture of such a system. The system be-
havior is specified by two choreography models:
an abstract flow-global and a more detailed flow-
localized choreography. These choreography models
are both described by UML activity diagrams. A
graph-based transformation approach carrying out
the transformation from the flow-global to the flow-
local choreography is the core contribution of this
paper. Our approach is illustrated using a case study
of the European Rail Traffic Management System
(ERTMS).

Keywords-Choreography Model; Model Transfor-
mation; Graph Transformation; Collaborative Service

I. INTRODUCTION

Model-Driven Development (MDD) is an approach
supporting the software development process by creating
models on different levels of abstraction and platform
independence. First, one develops more abstract models
specifying the pure functionality of a particular solution
or an application domain but hiding aspects of the later
realization. These models can be transformed into mod-
els incorporating more implementation details. Based on
the refined models, application code can be generated
ranging from system skeletons to complete, deployable
products for different platforms. MDD is considered
effective when the transformation from the abstract to
the detailed models can be done with a high degree
of automation. This makes it easy to keep consistency
between the two model levels. In addition, the developer
can utilize the comprehensibility and the generality of
the platform-independent more abstract model as well
as the fine-grained semantics and the mature structuring
mechanisms of the more detailed one.
In this paper we discuss a model-driven development

method for distributed, reactive and collaborative ser-
vices. A collaborative service is defined as a partial
system functionality in which two or more components
collaborate to achieve a common goal [4], [11]. UML

2.x collaborations are used to describe the structure of
participants cooperating with each other, while UML
activities specify the corresponding behavior. According
to the objectives of MDD, we consider the behavior
models (called choreography models in the following) at
two levels of detail and use graph-based model trans-
formation to derive detailed implementable models from
more global abstract ones.

Figure 1 delineates the overall MDD approach:

• A flow-global choreography model (label 1 in Fig-
ure 1) seeks to specify the desired global behavior in
terms as close to the problem domain as possible. It
is intended to be understandable by end-users and
experts of a specific domain. Thus, the flow-global
choreography focuses on the global interaction while
the details and resolutions of coordination problems
that may occur at the level of a distributed realiza-
tion are not modeled. We express flow-global chore-
ographies by a special kind of UML 2.x activities [7].

• A flow-localized choreography (label 5 in Figure 1)
is used to define global behavior in sufficient de-
tail that coordination problems arising in a dis-
tributed system can be resolved. Further, the level
of detail shall allow extensive analysis, synthesis
of the behavior in the distributed system parts,
and automatic generation of the application code.
In particular, we apply the system engineering ap-
proach SPACE [8] and the corresponding tool-set
Arctis [9] that also uses UML 2.x activities to model
behavior. The models created in Arctis can fully
automatically transformed to Java code running on
several platforms [11].

• Flow-global choreographies can be transformed to
flow-localized choreographies using graph transfor-
mation techniques. The localization policies are im-
plemented by applying graph transformation rules
(label 3 in Figure 1) to a host-graph representing
a flow-global choreography model (label 2) to de-
rive a post-graph of a flow-localized choreography
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Figure 1. Overall Approach.
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Figure 2. Structure Model of the Train Control System.

specification (label 4).

The focus of this paper is on the model transformation
using a graph transformation engine. This provides for
the following advantages: First, the flow-global models,
which can be re-used in different system scenarios, are
stored in domain-specific repositories [7]. In a similar
way, we can predefine graph transformation rules for cer-
tain refinements which are stored in repositories as well
and can be used for different kinds of transformations.
Second, it is not necessary that the full flow-global model
must already be available in order to be transformed to
a flow-localized model. This is due to the possibility to
transform partial flow-global choreography models.

We introduce the structure and choreography models
by a train control system scenario in Section II. A survey
of the task for the model transformation is provided
in Section III. Model transformation using the graph
transformation approach is presented in Section IV.
Section V discusses the related work and is followed by
concluding remarks in Section VI.

II. ARCHITECTURE AND CHOREOGRAPHY

In this section, we discuss the related models con-
tributing to our MDD approach:

• The collaboration model that defines service par-
ticipants as roles and sub-services as collaboration
uses.

• The flow-global choreography model specifying the
high-level global behavior including the ordering
and causality among sub-services and service roles
in a composite service.

• The flow-localized choreography model defining de-
tailed behavior so that application code can be
generated.

We present a summary of these models using an exam-
ple of the European Rail Traffic Management System
(ERTMS).

A. Collaboration

UML collaborations are used to specify the structure
(i.e., roles and interactions) of distributed collabora-
tive entities and collaboration uses representing sub-
collaborations. Figure 2 (a) shows an example of a
train control service which is described as following: A
train must always be supervised by a radio block center
(RBC ). The RBC ’s responsibility is to monitor and con-
trol all train movements in a particular region. Guided
by its current RBC, the train keeps on moving and sends
its position reports to the RBC and the RBC validates
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Figure 3. Flow-Global model and Flow-Localized model (derived as Arctis model).

the received position information of the train. Moreover,
the RBC issues successive movement authorities (MA)
to the train, which specifies a safe distance the train
may travel. In addition, the train may also travel across
several regions covered by different RBC s. This means,
the supervision of the train movement can be handled
by more than one RBC. When the train crosses a border
between two regions, the RBC of the current region will
hand over the control to another one by executing a
handover process. The train control service is modelled
as a UML collaboration as shown in Figure 2 (b).

The TrainControlService system has two main partic-
ipants,Train and RBC, represented as roles. In Figure 2
(b), the Train and the RBC participate in three col-
laborative sub-services: PositionReport, MoveAuthority,
and HandoverSupervision which perform the following
activities:

1) PositionReport reports the current train position
to the RBC.

2) MoveAuthority sends the safe travel distance from
the RBC to the train.

3) HandoverSupervision transfers the train control
supervision to the new RBC if the train travels
to a different region.

B. Flow-global choreography models

The flow-global choreography shown in Figure 3 (a)
is defined by UML activities connecting actions (in
particular, call behavior actions, i.e., actions including
own behavioral models) by flows that are not assigned
to any particular role in the collaboration. Actions may
either specify the behavior of a collaboration or a local
activity. Collaborative actions contain references to their

participants in the form of roles. Further, we indicate ini-
tiating and terminating roles by dots respective squares.
Note that the pins are not localized to the roles in this
model type.

Flows may contain intermediate control nodes (e.g.
start, stop, choice, merge, fork and join) defining the
ordering and causality among the actions. Like the pins,
the control nodes are not assigned to any particular
component, too.

Thus, the flow-global choreography model abstracts
from several design issues that need to be addressed
when transforming it to a flow-localized choreography
model. We believe that this is the right level of ab-
straction to discuss the intended behavior with end-
users and other stake holders since global choreography
models specify the global action order without describing
detailed interactions as in interaction diagrams. They
hide details needed in a distributed realization such as
the location of decisions and other control nodes, and
coordination details ensuring that the global ordering
is satisfied. This pure focus on the functional behavior
of a system allows to gain a better understanding of the
system behavior and to find potential development errors
early. Further, the constriction on functionality reduces
the state space produced by model checkers verifying
certain system properties which eases the use of these
automatic analysis tools also for more complex systems.
All-in-all, a flow-global choreography model is a useful
first step in the formalization of the requirements of a
system.

Figure 3 (a) depicts the flow-global choreography be-
havior of the train control service. A train on its journey
reports its current position in intervals to the RBC
which is responsible for the region the train operates



in. This operation is specified by the collaboration Posi-
tionReport. Thereafter, the RBC validates the received
position information of the train via the local activity
SupervisionLogic. If the information about the location
of the train is correct, the RBC issues successive move-
ment authorities (MA) to the train which is modeled
by the collaboration MoveAuthority. Finally, if the train
crosses the border between two regions, the collaboration
HandoverSupervision is invoked.

C. Flow-localized choreography models

As already mentioned, the flow-localized choreogra-
phies are modeled in Arctis [9], our tool-set to develop
component based collaborative systems which specifies
behavior using UML activities as well. Also here, actions
representing the behavior of a collaboration or a local
activity are connected by flows and intermediate control
nodes. In contrast to the activities introduced above,
however, all nodes and pins are each localized to a role
specifying a participating distributed entity. The roles
are represented in an activity by partitions. Flows that
cross partition boundaries thereby imply communication
and transfer delays.

This location information allows to analyze the flow-
localized choreography for realization problems like for
instance mixed initiatives in which two different physi-
cal components concurrently initiate cooperations which
due to the transmission lag are not properly detected and
may lead to unpredicted erroneous behavior.

In Arctis, the activities are provided with a formal
semantics [10] which allows for the application of model
checkers to detect design errors [11]. Further, application
code for different platforms such as Standard Java,
Android and Sun Spots can be automatically generated
from the Arctis building blocks. In the train control sce-
nario, this is the code for the train and RBC components.

A screen shot of the Arctis model of the train control
system is shown in Figure 3 (b). The collaborative
and the local actions are represented as Arctis building
blocks (the dark gray respectively blue boxes with pins).
Control nodes are localized to components represented
by the Activity partitions. The extra gray border of
the collaborative actions (pr, ma and h) at the RBC
part denotes that the service roles bond to this part
are multiple-session. This specifies that an RBC may
cooperate with several trains at the same time.

III. FLOW LOCALIZATION

Given the two choreography models, we outline the
overall transformation process. First, we define the
causal relationship between sequential collaborative ac-
tivities. Second, we introduce a localization policy based
on the causal properties.

A. Causality relationship

In order to localize the flows and control nodes be-
tween actions in a flow-global choreography, we first
need to classify the causality among actions that follows
directly from the flow-global choreography. As described
in [4], [7], the following causal relationships between any
two sequential connected actions C1 and C2 can be:

• Strong flows: The terminating role of C1 and the
initiating role of C2 belong to the same system
component. In this case, the flow between C1 and
C2 can be executed locally by this component.

• Non-causal flows: The initiating role of C2 belongs
to a component that does not participate in C1. This
means that local ordering between actions of C1 and
C2 cannot be achieved by a local flow. Here, we need
communication between different components.

• Weak flows: The initiating role of C2 belongs to
the same component as a non-terminating role in
C1. Here, the non-terminating role of C1 and the
initiating role of C2 can be ordered by a local
flow, but one has to be aware that other roles in
C1 may not be finished when C2 starts, and both
collaborations run in parallel for a while.

B. Localization policy

In the simplest case where there are no intermediate
control nodes between actions (i.e., direct-flows), a global
flow from C1 to C2 is localized as follows:

• Localize strong flows to the role that initiates C2

and terminates C1.
• Non-causal flows can only be maintained using send

and receive events realizing communication between
the role terminating C1 and the one initiating C2.
In Arctis, this is modeled by flows passing partition
borders. We call this procedure enforced strong
sequencing [7].

• In the case of weak flows we have two alternatives.
We can either use enforced strong sequencing as
well or add an extra streaming pin to C1 which,
however, changes the internal behavior of this action
slightly. For this modification we prepared a set
of transformation rules for weaving extra behavior
into building blocks without effecting the original
functional design. This will not be addressed in this
paper due to the space limitation.

If there are one or more intermediate control nodes
between actions C1 and C2, one must consider all pos-
sible flow-paths passing through them. This means that
each control node can be part of several paths. We use
the following notation to represent the paths and path
property:

Path ::= (sourceNode)
causality→ (targetNode)
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where sourceNode and targetNode are either pseudo
nodes (such as an initial node or an activity final node
which are represented by �) or collaboration role identi-
fiers (represented by collaborationId.roleId). The arrows
show the flow direction between those collaborative ac-
tivities and contains a mark for the causality relation on
top. In the flow-global choreography model in Figure 3
(a), there are in total eight paths:

• P0 : �
na→ pr.Train;

• P1 : pr.RBC
strong→ s.RBC;

• P2 : s.RBC
strong→ ma.RBC;

• P3 : ma.Train
strong→ pr.Train;

• P4 : ma.Train
na→ �;

• P5 : ma.Train
weak→ h.RBC;

• P6 : h.Train
strong→ pr.Train;

• P7 : s.RBC
na→ �;

The abbreviation na means that there is no causality
relationship available since the start or end of the flow is
a pseudo node. P0, P4 and P7 are such dangling paths in
which the pseudo state and the control nodes along the
path will be localized to the activity linked to the path.
For instance, since the initial node occurs only in P0, it
will be localized to the role Train. In order to localize
the remaining control nodes M1, D1 and F1 and paths
P1, P2, P3, P5 and P6, we need to consider the path
properties that each control node is involved in:

• M1: P6(strong), P3(strong);
• F1: P3(strong), P5(weak);
• D1: P5(weak).

M1 fulfills strong causality for both involved paths and
is therefore localized to Train. In contrast, F1 and D1

contain weak causal paths such that we need to find
suitable breaking points along the involved paths, i.e.,
P5 containing both F1 and D1. To achieve that, we
assign a breaking priority level to all the nodes on the
path. The priority level is defined by the combination of
causality properties in Table I. Here, the columns and

rows represent the causality property of a path through
a node. Altogether, we define seven breaking priority
levels of which 1 refers to the lowest and 7 to the highest
priority.

Table I
Localization priority order and policy matrix for

control node.

property strong weak non-causal all

strong 1 2 3 -
weak - 5 6 -

non-causal - - 7 -
all - - - 4

In the TrainControlSystem specification, D1 is in-
volved in P5(weak) and has priority level 5 according
to Table I. Similarly, F1 is involved in P3(strong) and
P5(weak) and has priority level 2. According to our
policy, D1 is selected as breaking node as it has the
higher breaking priority level. In this case D1 is broken
at the incoming edge, i.e., if we decide to resolve the weak
flow by enforced strong sequencing, the communication
is provided at the edge between F1 and D1. However,
in the succeeding refinement steps, we decide to add a
streaming pin to ma.MovementAuthority on the side of
the RBC from which the edge to D1 begins. Then, the
fork F1 has only one outgoing edge remaining and will
therefore be removed. After finishing the various trans-
formation steps, the constituted flow-localized graph
model is transferred to the Arctis specification shown
in Figure 3 (b).

IV. Graph-based Model Transformation

This section discusses in which way graph transforma-
tion techniques can be used for model transformation
from the flow-global choreography model to the flow-
localized model. In the following, we describe the defini-
tion of the graph models, the graph transformation rules
and implementation aspects.



Figure 5. Graph model of the part of choreography graph model of Train control scenario
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A. Graph model definition

The meta-model for the choreography graph model
(also called type graph in the following) is shown in
Figure 4 in terms of UML class diagrams. A choreog-
raphy type graph depicted by the class Chor has three
main entities: Actions, Connectors, and Flows. An action
can be either a local activity performed by only one
specific role or a collaborative activity carried out by the
cooperation of at least two roles. Connectors represent
the mechanism to connect Actions, i.e., how collabora-
tions connect to other collaborations or local activities.
There are three types of connectors: Pin, Control Node
and Pseudo State. Pins are connection points which are
associated with either Roles (in the flow-localized form)
or Actions (in the flow-global form). Control Nodes
include join, fork, merge and decision nodes. Pseudo
Nodes include initial nodes, activity final nodes and flow
final nodes. Connectors can also be message operators
(MSg Op), i.e., send message actions (sMsg) or receive
message actions (rMsg).

Moreover, there are three types of graph edges: own
specifies that one node is owned by another which is
described by aggregations in the meta-model. Further,
fSrc models the source node of the flow while fTar
specifies the flow target.

Based on this type graph, two kinds of graph models
can be defined corresponding to the flow-global and

flow-localized choreography models. Figure 5 illustrates
a flow-global graph representation of the train control
system in Figure 3 (a) without the Handover activity.
Note that there are two dangling edges in the graph
model: fTar to a merge node and fSrc to a role node.
These edges will eventually be connected to the Han-
dover activity.

B. Graph models of the transformation rules

Transformation rules can be visualized and are mainly
composed of two graph parts: the pre-pattern subgraph,
expressing what to replace, and the post-pattern sub-
graph describing the replacement. A transformation con-
dition can also be used to define conditions or constraints
describing how and under which conditions the graph
production can be applied (such as a negative applica-
tion condition NAC introduced in [16]). In the following,
we introduce the graph model transformation rules and
the policies through some representative rules: the pin
location rule and the direct flow localization rule.
1) Graph models of the pin localization rule: Figure 6

depicts the graph transformation rule for pin allocation.
Pins in the pre-pattern of the graph model are owned by
collaboration nodes as shown on the left side of Figure 6.
They are localized, i.e., connected to roles in the post-
pattern of the graph as depicted on the center and
right sides of Figure 6. Note that attributes and their
values attached to the graph nodes can be used, checked,
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or modified. For example, the attributes roleType and
pinType are checked in the nodes role and pin in the
pre-pattern of the graph model. Similarly, the attribute
inPartition of the pin node is modified (or assigned a
value) in the post-pattern of the graph.
2) Graph models of direct flow localization rules:

Figure 7 shows the pre-pattern and post pattern of the
rules which localize the direct flow having weak causality
and non-causal causality properties. Figure 7 (a) depicts
the pre-pattern graph model of the direct flow in which
pin allocation rules have been performed. If the flow is
weak causal, the corresponding post-pattern is shown in
Figure 7 (b). In this case, a new output streaming pin is
added to a collaborative activity Ci. An example of this
type is P5 in the case study. In the case that a direct
flow-path is non-causal, the flow-path is resolved using
send and receive message nodes as shown by the post-
pattern graph model in Figure 7 (c).

C. Implementation

An Eclipse plug-in has been developed to create
graph models of flow-global choreography models and
to import the post-graph (as a result of transformation)
into Arctis. As graph transformation engine, we use the
Attributed Graph Grammar System (AGG) [16]. AGG
offers high flexibility in creating the visual definition of
graph models. Further, it provides Java APIs facilitating
its integration to the Arctis tool which is also Java-based.
AGG has also a facility to enable the verification and
correctness of models during transformation.
The AGG graph transformation engine takes the

graph model of a flow-global choreography as well as
the rules introduced in Section IV-B as inputs and
produces the post-graph model which corresponds to a
flow-localized choreography.

V. RELATED WORK

A comparison of approaches and tools that use graph
transformation techniques for model transformations is
provided in [2]. In [3], Kerkouchea et al. propose an

approach for transforming UML state-chart and collabo-
ration diagrams to Colored Petri nets using graph trans-
formation techniques. In contrast, the authors of [1], [2]
suggest to map activity diagrams into communicating
sequential processes (CSP).

Unlike these approaches, both our abstract and de-
tailed models are based on UML activity diagrams.
Moreover, our approach envisages collaborative building
blocks encapsulating the interaction between different
components. UML activities can be defined hierarchi-
cally by means of call behavior actions. We use AGG
as our graph transformation engine and our post graphs
can be directly imported to the Arctis tool for further
analysis, synthesis and code generation.

In contrast to [6], [15], we currently miss the for-
mal proof that our graph-based transformation is
correctness-preserving. Due to the formal semantics of
Arctis [10], however, which can also be used for the flow-
global choreography models, the correctness verification
can be provided as temporal logic-based refinement
proofs [13] which is intended to be done for the close
future.

Ideally, one can choose any graph transformation tool
to validate or implement our approach. Some candidates
other than AGG are ATOM3 [12], VTMS [14] and C-
SAW [17]. As mentioned above, we chose AGG due to
its high flexibility and its Java-compliance.

VI. CONCLUDING REMARKS

In this paper, we presented a Model-Driven Devel-
opment approach to support the engineering process of
distributed collaborative services. The global behavior
and distributed realization are captured by two dif-
ferent types of choreography models: flow-global and
flow-localized, which are specified using UML activity
diagrams. The transformation between these two chore-
ography models are performed with the support of graph
transformation techniques. The approach is used within
the EU-funded project CESAR for the cost-effective
development of safety-relevant embedded systems [5]. As



future work, we plan to refine the model transformation
policies and test them with larger and more complex
system models. As mentioned above, we will further
prove the correctness of the graph transformation rules
formally.
Graph transformation is also useful for automatic

collaborative building block refinement. We currently
developed a set of graph transformation rules to detect
and correct mixed initiatives in distributed systems.
As mentioned earlier, in this often occurring but not
corrected class of errors, two system components may
concurrently start cooperations which might lead to un-
predictable system errors. Altogether, we are convinced
that graph transformation is a highly promising exten-
sion to MDD which, essentially, consists of the stepwise
refinement of graphical notations. Here, the flexibility of
this rule-based approach may facilitate the refinement
steps significantly.
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