
Voltage Control for Distribution
Systems using Chance
Constrained Linear AC OPF

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Martin Festøy

2019
M

artin Festøy

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f E

le
ct

ric
 P

ow
er

 E
ng

in
ee

rin
g





Voltage Control for Distribution Systems
using Chance Constrained Linear AC OPF

Martin Festøy

Energy and Environmental Engineering
Submission date: June 2019
Supervisor: Hossein Farahmand
Co-supervisor: Jamshid Aghaei

Norwegian University of Science and Technology
Department of Electric Power Engineering





Voltage Control for Distribution Systems using Chance Constrained Linear AC OPF

Preface

This document is a master’s thesis written at the Department of Electric Power Engineering within
the Norwegian University of Science and Technology (NTNU). The thesis has been written during the
spring of 2019, and is the conclusion of a five year master’s degree within Energy and Environmental
Engineering.

This thesis is a continuation of the project Distributed Voltage Control in Smart Distribution systems,
which was written during the fall of 2018. This thesis is however to be considered as an independent
publication, and thus some parts of the project have been rewritten. As a consequence, there are
some similarities in sections 1.5, 1.6 and 1.7

The reader is presented with most of the basic theory required to understand the thesis, and thus
only fundamental knowledge about electrical power and statistics is required to read this document.

12-06-2019
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Abstract

The global energy market is rapidly evolving. Ever-rising demand for distributed renewable energy,
as well as changing habits of consumption require new ways to regulate voltage to enable maximum
renewable penetration in the power system, and at the same time ensure security of supply. To that
end, this thesis will present an optimization model that combines the voltage regulating efforts
of tap changers and distributed photovoltaic (PV) inverters to improve the voltage profile of the
distribution system.

At the same time, a key challenge of solar PV is the uncertain, intermittent behavior. To account
for the uncertainty in both generation and demand, a chance constrained framework will be im-
plemented in the optimization model. The chance constrained framework will help quantify the
uncertainty of the problem without depending on any historical data from the system. In fact, the
method only relies on a forecast and a maximum forecast error.

The optimization model is implemented on the IEEE 33-bus distribution test system, and then
tested for multiple variations of the system, including: No distributed renewables, 1 MW PV at
bus 30, different size variations of the PV and inverter, introduction of energy storage, and lastly
decentralizing PV and storage to multiple buses. Additionally, the forecast error is adjusted, and the
impact on the constraints of the optimization is presented.

The conclusion of the different optimization scenarios showed a clear improvement in overall volt-
age profile at all buses when the distributed PV was installed. Furthermore there was some im-
provement in the voltage for increased inverter size, increased PV capacity, and for the introduction
of energy storage. The results showed a significant improvement in overall bus voltage when the
PV and storage were decentralized.

The constraints of the optimization problem were shown to tighten with a higher relative forecast
error, and consequently, a better voltage profile means that the solution to the optimization problem
is viable for higher forecast errors. Thus, the cost of upgrading the distributed system can be seen
as the cost of certainty.
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Sammendrag

Det globale energimarkedet er i rask utvikling. Den stadig økende etterspørselen etter distribuert
fornybar energi, samt endring av forbruksvaner, krever nye måter å regulere spenning for å mulig-
gjøre maksimal fornybar penetrasjon i kraftsystemet, samtidig som forsyningssikkerheten bevares.
Av den grunn vil denne avhandlingen presentere en optimaliseringsmodell som kombinerer den
spenningsregulerende kapasiteten til distribusjonstransformatorer og vekselrettere tilkoblet dis-
tribuerte solceller, for å forbedre spenningsprofilen til distribusjonssystemet.

Samtidig er en stor utfordring med solceller den usikre, intermittente oppførelsen. For å ta hensyn
til usikkerheten i både generering og etterspørsel, vil et sannsynlighets-avgrenset rammeverk bli
implementert i optimaliseringsmodellen. Dette gir mulighet til å kvantifisere usikkerheten, uten å
avhenge av historiske data fra systemet. Faktisk er metoden bare avhengig av en prognose og en
maksimal prognosefeil.

Optimaliseringsmodellen er implementert i IEEE sitt 33-buss testsystem, og testet for flere vari-
asjoner av systemet, inkludert: Ingen distribuert fornybar energi, 1 MW solceller ved buss 30,
forskjellige størrelsesvarianter av solceller og vekselretter, innføring av energilagring og til slutt
desentraliserte solceller og energilagring til flere busser. I tillegg blir prognosefeilen justert, og ef-
fekten på optimaliseringsproblemets begrensninger presenteres.

Resultatene fra de ulike optimaliseringsscenariene viste en klar forbedring i total spenningsprofil
på alle busser da distribuert PV ble installert. Videre var det noen forbedringer i spenningen for
økt størrelse på vekselretter, økt størrelse på solceller og for innføring av energilagring. Resultatene
viste en signifikant forbedring i busspenning når solceller og energilagring ble desentralisert.

Begrensningene til optimaliseringsproblemet ble strengere for høyere relativ prognosefeil, og føl-
gelig betyr en bedre spenningsprofil at optimaliseringsproblemet har en potensiell løsning for
høyere prognosefeil. Dermed kan kostnadene ved å oppgradere distribusjonssystemet betraktes som
kostnaden for sikkerhet.
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1 Introduction

This chapter will start by outlining the problem description and motivation behind the thesis, as
well as the specific contribution of this thesis and the scope. The general structure of the thesis
is then presented, followed by the relevant background theory that is required to understand the
thesis.

1.1 Problem description & motivation

Currently, distribution networks are experiencing a significant share of photovoltaic (PV) integra-
tion. The PV systems can provide reactive power control as vital means to provide voltage support.
However, widespread use of local reactive power control by PV systems can interfere with existing
voltage regulation schemes by the distribution system operators. To enable a higher penetration of
renewables in the distribution system, it is therefore necessary to address this challenge.

At the same time the generation from PV is at all times subject to the irradiation, and this can be
hard to forecast precisely. Thus a model that deals with generation from PV should also consider
the uncertainty involved when simulating the system. PV generation is also purely limited to the
time of day the sun shines. To better utilize and further enable high PV penetration distribution
grids, some form of energy storage is highly desirable.

1.2 Contribution

In this thesis, a coordinated operation of distributed voltage controllers/reactive power compen-
sators is modeled that reveals an appropriate operation that brings the performance of the tap-
changer and distributed generation sources together.

The suggested method will take into account the impact of the forecast error of power demand and
PV generation, and thus adopt the chance constrained framework to consider uncertainty without
requiring the historical data of the system.

For testing the method, a linearized optimization problem will be implemented on the standard

1
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Institute of Electrical and Electronics Engineers (IEEE) 33-bus network. After the initial simulation,
basic sensitivity analysis will be performed on the system, with specific focus on how changes to
the system impacts the voltage profile and chance constraints.

1.3 Scope

To narrow down the scope of this massive problem, this thesis will do a couple of simplifications,
as well as some general assumptions:

• Most importantly, the system will be linearized to increase computational efficiency. As such,
this thesis will also be an example of the viability of a linearized AC power flow model.

• The tap changer as well as the energy storage will be modeled as “black-boxes” with somewhat
simplified equations describing them

• The model will not consider constraints on line flow
• The optimization is done with 1 hour time increments. Thus the behavior of the system is

assumed stationary during each hour.
• The relative forecast error of load and generation will be assumed equal
• Economic profitability is primarily overlooked. Instead the thesis focuses on technical limita-

tions.

The implications of these points will be thoroughly discussed in chapter 4

1.4 Structure

The remainder of chapter 1 will provide the required theoretical insight into general distribution
level voltage generation and scheduling, as well as background on chance constrained modeling
and linear optimization. Therefore, only a basic understanding of electrical power and statistics is
necessary prior to reading this thesis.

Chapter 2, Method, will in depth explain the mathematical formulation of the model, and the details
about how it is implemented as an optimization problem.

Chapter 3, Results and analysis, will present and explain the results from the implementation of the
basic model, as well as all relevant results gained from the sensitivity analysis.

Chapter 4, Discussion, will first discuss the implications of the results at length, before discussing
the validity and strengths / weaknesses of the model.

2
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Chapter 5, Conclusion and further work, will draw conclusions from the discussion presented in
chapter 4, and provide suggestions for further improvements on the work.

1.5 Theoretical background

1.5.1 Current energy situation

The global energy market is changing towards more renewable sources, and an increasing amount
of these renewables are distributed renewables. That is: renewable energy sources connected di-
rectly to the distribution grid. One such renewable source is photovoltaics(PV), showing an increase
in worldwide installed capacity from about 1.2 GW in year 2000, to approximately 303 GW by the
end of 2016. China alone installed 34.5 GW in 2016, and consequently became the country with
the highest cumulative installed capacity at 78 GW [3].

As a whole, PV technology has several advantageous properties. It is renewable, practically mainte-
nance free, and completely silent. It is also well suited for installation on areas that would otherwise
be unused, like rooftops. The two latter properties are what makes PV ideal for distributed installa-
tion. PV technology has also rapidly fallen in price in recent years. 2016 marked a milestone in PV
price development, as large PV investments became cheaper than on-shore wind power [4]

Distributed PV offers a lot of promising possibilities to the system. Most prominently, placing the
generation close to the consumer may decrease the total transmission losses. Additionally there may
be less severe voltage drops on heavy load in weak distribution grids. Due to the low maintenance
and nonexistent need for fuel, PV generation has a marginal cost of practically zero. That means
that when first installed, there is no added cost to producing full power over leaving the system
idle. This is in stark contrast to most dispatchable generation types like coal or gas. These types of
generation often have a cost attributed to both starting and increasing generation, as well as much
higher maintenance costs.

However, there are several difficulties with large-scale implementation of distributed renewables.
Several of these difficulties are consequences of the unreliable output of PV modules, as rapid
changes in generation may lead to both over-voltages as well as faster degradation of traditional
voltage regulation devices like on load tap changers(OLTCs). Additionally, if more power is pro-
duced than consumed at the distribution level, power might start flowing in the wrong direction.
This is a fundamentally challenging problem, since the traditional power system is explicitly de-
signed for unidirectional power flow.

While wind power may have its generation decrease due to low wind speed at night and in the

3



Voltage Control for Distribution Systems using Chance Constrained Linear AC OPF

early morning, solar PV is unique in its clear discrepancy between when the bulk of the power is
generated, and when the load is at its peak. This phenomena has been labeled the “duck curve”,
due to the graph of the net load looking somewhat like a duck[1]. Counteracting the duck curve is
one of the most pressing challenges in networks with high PV-penetration.

Figure 1: An example of the duck curve on a spring day in California. Figure from [1].

An uncomplicated method to avoid over-voltages from intermittent PV-generation, is to curtail ex-
cess generation. Generation curtailment, in the broad sense of the word, is to use less power than
is potentially available at a given time. However, the world as a whole wants to cut emissions, so
curtailment of a cheap renewable energy source is generally undesirable.

While curtailment may sometimes be necessary to avoid back-feeding of power into the OLTC,
the owners of the curtailed energy are not always reimbursed for the loss of income, and thus
frequent curtailment could decrease overall incentive to invest in non-dispatchable renewables like
PV [5],[6]. Additionally, curtailment of excess energy does not address the “duck curve” problem.
The obvious solution is the introduction of some type of energy storage.

1.5.2 Energy storage systems

For most of power system history there has been widespread agreement that electric energy cannot
be stored in large quantities. This fact is, however, becoming gradually less true, as progress in
storage systems has increased in recent years. Energy storage is often presented as the only solution
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to widespread installation of non-dispatchable renewables like solar and wind. Both as a way of
providing ancillary services, and as a way of counteracting the “duck curve" [7].

Several different technologies are now becoming available for storing electrical energy. In terms of
total stored energy, pumped hydro storage is by far the most widespread technology, accounting
for over 95% of global storage capacity[8]. For obvious reasons, however, pumped hydro storage is
unsuited for distribution level storage.

One increasingly used option is grid connected batteries, which has seen a rise in recent years. Cur-
rently electro-chemical storage (i.e batteries) represents some 2% of the total worldwide storage
capacity and almost 62% of active storage projects[8]. Additionally, battery technology has skyrock-
eted in recent years, driven partly by the fast increasing popularity of electric vehicles (EVs) and
consumer electronics.

Among the electro-chemical storage technologies, the Lithium-ion battery has become one of the
most researched and commonly used. This is mainly because the Lithium-ion batteries have a rel-
atively high specific energy and specific power, which makes them particularly suitable when used
in portable storage like electric vehicles and small electronics. An overview of specific power and
energy for some storage solutions can be seen in figure 2. While the specific energy and power is
less important for stationary appliances, the fast development of Lithium-ion batteries may benefit
the industry as a whole.

One drawback of most types of electro-chemical storage, is that it degrades over time. While bat-
tery degradation is less dramatic in stationary appliances than in mobile ones like EVs, the batteries
will still have to be replaced from time to time. As with most energy conversion processes, electro-
chemical storage also has losses involved. The relatively cheap lead-acid battery can typically have
an efficiency of 85%, while the significantly more expensive lithium-ion batteries may have signifi-
cantly higher efficiencies [2].
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Figure 2: Specific power and energy of some storage solutions. Figure from [2].

1.5.3 Reactive power control

Another solution to voltage fluctuations from intermittent PV generation, is to use the inverters
connected to each PV panel to provide reactive power control. Reactive power control is already
the preferred way to control voltage in the transmission network, but in the distribution network it
is less so. In the transmission system, power flow between adjacent buses is often simplified as:

Ps =
Vs · Vr
X

· sin(δs − δr) (1.1)

Qs =
V 2
s

X
− Vs · Vr

X
· cos(δs − δr) (1.2)

Where subscripts s and r represent sending and receiving end values respectively. Additionally, P
and Q is the Active and reactive power flow respectively, V and δ is the voltage magnitude and
angle at the bus respectively, and X is the reactance of the connecting line. Thus it is clear to see
that there is a strong relation between reactive power and voltage when δs − δr ≈ 0. However
resistance values are negated in these equations, due to X >> R in the transmission network.

In the distribution system, however, the R
X ratio is significantly higher than in the transmission

system. The result is that while still feasible, reactive power control will lead to much higher real
losses when used for voltage regulation. Another common issue is the difficulty of installing and
maintaining switched capacitors in the distribution system.
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The latter is one of the reasons why it is favorable using the inverters for reactive power control,
as they are already a necessity for installing solar power. Additionally, most installations will not
produce power at full capacity all the time due to insufficient irradiation. That means that the
inverters don’t necessarily need to be oversized to be able to contribute to voltage regulation.

Local reactive power control based on inverters used in distributed generation has been thoroughly
researched in the last 15 years, and numerous scientific articles have been released on the subject.
Among these are [9],[10],[11],[12],[13] and many others. A general conclusion is that while there
is a stronger relation between active power and voltage in the distribution system, reactive power
support from distributed inverters has still proven to be an effective way of stabilizing voltages.
In particular, inverters are useful in dealing with the local over-voltages that often accompany
distributed PV-generation.

1.6 Chance constrained optimization

Chance constrained optimization (CCO) is a technique used to apply uncertainty to optimization
problems. As mentioned in [14], the key uncertain parameters involved in distributed voltage regu-
lation are all possible to forecast. PV output is forecastable by weather forecasting, and load profiles
rarely change dramatically from expected values. In fact the day ahead scheduling of the power
market is entirely based on the load being somewhat predictable.

As a consequence, the uncertain variables in them self are not necessary to model. Instead it is
possible to simply account for how the variables may vary from the forecasted value. In other
words: The forecasting error. If X is the actual value of the variable, X0 is the forecasted value, and
∆X is the forecasting error, then:

X = X0 + ∆X (1.3)

CCO applies this error to the modeling of the system by adding probabilistic constraints to the
equations. CCO is a quite robust method, however, it is often difficult to solve as it depends heavily
on probability distribution functions (PDF), which are often difficult to formulate[15]. This is espe-
cially true for nonlinear cases, of which AC optimal power flow (OPF) is an example. A significant
advantage of using CCO is that if the error in the forecasts can be modeled, then there is no need
for historical data from the system to apply uncertainty.

There are numerous recent examples of literature that use CCO for uncertainty modeling in power
systems. M. Hajian et al.[16] use CCO for an online voltage control system with an uncertain
amount of load available for load-shedding. Articles [17],[18],[19],[20] all use CCO for optimal
resource utilization in transmission systems, while [21] use CCO for energy storage planning in
distribution systems.
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When it comes to applying CCO, H. Bludszuweit et al.[22] mention that the kurtosis of the weather
forecasting error PDF typically has values ranging from 3 to 10, where 3 is normal for day ahead
forecasting, and 10 or greater is very short term forecasting. Continuing, it is stated that the fore-
casting error PDF has a close to symmetrical behavior. As 3 is the kurtosis of a univariate normal
distribution, the normal distribution function can be applied when modeling the forecasting error
for day ahead forecasts.

A key feature of the normal distribution function is that the expected value is zero. Thus the average
error of the problem will also be zero, making the problem easier to implement. This is especially
useful when linearizing nonlinear AC power-flow, which will be mentioned further in section 1.7.

To implement the normally distributed variables, the cumulative distribution function (CDF) can be
utilized. More specifically the quantile function, K, which is the inverse of the CDF. Intuitively that
means that if the CDF represents a function F (x) that returns the probability of X being smaller
than or equal to some value x as shown in (1.4), then the quantile gives the x that would make
F (x) return a specific value. In equation form:

Pr(X ≤ x) = F (x) (1.4)

F−1(α) = K(α) = x (1.5)

For the purpose of this paper, α represents the level of uncertainty tolerance, and has a known
value that can be decided on a simulation basis. The quantile function will return a value when
given an uncertainty tolerance α. However to return the correct value, the normal distribution
of which the quantile is derived will have to be scaled appropriately. As mentioned, the normal
distribution will have a mean value of 0 and a kurtosis of 3. Thus the scaling will be solely subject
to the standard deviation of the distribution, which will have to be calculated for all the individual
uncertain parameters.

From the properties of the normal distribution, it is known that 99.9% of all the possible errors
are placed within the interval ±3σ, where σ is the standard deviation. Thus if errmax is the upper
limit of forecasting error for a specific forecasting procedure, then the standard deviation, σ can be
calculated as:

σ =
errmax

3
(1.6)

If we then apply a known parameter, ε as the relative value of the forecasting error with respect to
the forecasted value:

ε =
errmax

X0
(1.7)

Then standard deviation can be written as:

σ =
εX0

3
(1.8)
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Thus, equation (1.8) can be used to calculate the standard deviation of a forecasted variable, X0, if
the relative forecasting error has been determined.

1.7 Linear AC power-flow

AC optimal power-flow is in it self a nonlinear problem, and as a consequence, optimization prob-
lems done on any moderately sized system will be very computationally demanding. Additionally
adding chance constraints will not make the problem more computationally efficient, so other so-
lutions have to be examined in order to get practical computation times over multiple iterations.

In the precursor project for this thesis, it was concluded that linear programming is a highly advan-
tageous solution method when applicable. This is mainly because of the vastly superior computation
speeds compared to the nonlinear alternative, as well as being relatively easy to implement[23].

The main drawback of linear programming is loss of accuracy. This is not an issue for inherently
linear problems, but presents itself as a problem when linearizing nonlinear systems. Thus linear
programming is only a feasible option when the system is already linear, or when the nonlinear
system can be linearized without significant loss of accuracy.

Linearization of AC power flow is not to be confused with the frequently used DC power flow. DC
power flow, although linear, is a result of simplifications and assumptions about voltage magnitude
and resistance in the transmission system. It is well suited for fast system calculations, but results
are often infeasible in real systems [24].

Application of the DC-OPF model in distribution systems would suffer from these infeasibilities at
an even worse scale, due to the the inherent properties of the distribution grid. In particular the
higher R upon X ratio, since DC power flow is based on neglecting resistance altogether.

Multiple articles have shown the feasibility of linearizing AC power flow. In [25], A. Garces provide
a framework for linear load flow for three-phase distribution systems. Despite the linearization, the
method is quite accurate compared to the commonly used back-forward sweep algorithm. Articles
[24], [26] and [27] show linearized AC power flow utilized for somewhat different purposes. Thus
the solutions are not identical, however, they all show the feasibility of a solution. Additionally, [26]
demonstrates a solution for a distributed case, and as such is highly relevant. Lastly, [10] presents a
set of linearized equations for the PV inverter. Variations of these equation will be shown in chapter
2.
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2 Methodology

In this chapter, the methodology of the thesis will be described. Section 2.1.1 will present the basic
mathematical outline of the problem, while sections 2.1.2 - 2.1.9 will present the specific equations
required to implement this model. Lastly, section 2.2 will present how the model is implemented
for computer modeling.

2.1 Mathematical formulation

This section will present the mathematical formulation of the optimization problem. Most equations
have been derived from fundamental power system analysis or statistics, while some have been
derived from a paper by Jamshid Aghaei and Naser Hashemipour that is currently under review.
However, a conference paper describing the basis for the article can be found at [28].

2.1.1 Basic problem outline

The basis of any optimization problem is to find out what to optimize, and formulate the objective
function. In this case, the objective is to minimize voltage difference of the buses relative to 1 per
unit (P.U), where 1 P.U is the given base voltage of the system.

This objective function will be subject to several constraints. In this case, the constraints are the
maximum and minimum allowed voltage values, the load flow of the system and the inverter rating.
Additionally, it is desirable that the PV unit delivers as much active power to the grid as the solar
irradiation allows. In other words, active power injection from PV should follow the PV MPPT-curve,
that is: the maximum power point tracker of the PV system. Thus, the basis for the optimization
problem can be described as equations (2.1) - (2.5):

min
∑
i,t

|Vi(t)− 1| (2.1)

h(X) = 0 (2.2)

Vmin ≤ Vi(t) ≤ Vmax (2.3)
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P 2
g (t) +Q2

g(t) ≤ S2
inv (2.4)

Pgi(t) = PMPPTi
(t) (2.5)

Here (2.1) is the objective function which is to minimize voltage, V , deviation from 1 P.U for all
buses, i over all time steps, t. Equation (2.2) represents the power flow equations which will be
described in detail in section 2.1.5, and equation (2.3) is the voltage upper and lower limits at each
bus. Lastly (2.4) describes the capacity curve of the PV inverter, and (2.5) ensures that maximum
active power is delivered from the PV unit. The inverter capacity curve is a curve that limits the
active and reactive power output of the inverter, Pg and Qg respectively, so that the total apparent
power does not exceed the inverter limit, Sinv.

Note that equations (2.1) - (2.5) are the basic equations describing the optimization problem, but
some will have to be transformed to be applicable in a chance constrained linear model. This will
be shown in the remaining part of this chapter.

Figure 3: The inverter capacity curve in the P-Q plane.

2.1.2 Basic chance constrained implementation

The modeling of the uncertainty has been divided into three steps. First the upper bound of the day
ahead forecasting error of PV and demand is determined, εmax. The upper bound of the forecasting
error is then used to calculate the standard deviation of the forecasting error, which ultimately is
used to solve the chance constrained optimal power flow.
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As mentioned in section 1.6, CCO is based on writing uncertainty as probabilistic constraints. For
some arbitrary uncertain parameter β̃ with PDF f and CDF F , there are two methods of implement-
ing chance constraints:
Method 1:

β̃ ≤ g1(X) (2.6)

Pr
(
β̃ ≤ g1(X)

)
≥ 1− α (2.7)

Here g is some arbitrary function of X, and Pr represents probability. By the definition of the PDF
and CDF, (2.7) can then be written as:

Pr
(
β̃ ≤ g1(X)

)
= f

(
β̃ ≤ g1(X)

)
≥ 1− α (2.8)

Consequently, the chance constraint is implemented as:

f
(
β̃ ≤ g1(X)

)
= F (g1(X)) ≥ 1− α (2.9)

Since the CDF is an ascending function, (2.9) can be written using the quantile K(x):

g1(X) ≥ K(1− α) (2.10)

Method 2:
g2(X) ≤ β̃ (2.11)

Pr
(
g2(X) ≤ β̃

)
≥ 1− α (2.12)

And then similarly as in method 1, the relation between PDF and CDF gives:

Pr
(
g2(X) ≥ β̃

)
= f

(
g2(X) ≥ β̃

)
(2.13)

f
(
g2(X) ≥ β̃

)
= 1− F

(
g2(X) ≥ β̃

)
≥ 1− α (2.14)

F
(
g2(X) ≥ β̃

)
≤ α (2.15)

g2(X) ≤ K(α) (2.16)

For both methods, α represents the level of uncertainty tolerance in the model.
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2.1.3 Calculating the quantile function

As mentioned in section 1.6, to implement the quantile functions shown in methods 1& 2, the
standard deviation of the uncertain parameters will have to be calculated. The uncertain parameters
in this case is the load and generation of each bus. For the buses without generation, only the load
is uncertain. The standard deviation of real and reactive power at those buses can thus be found by
utilizing equation (1.8):

σPi
=
εPli

3
(2.17)

σQi
=
εQli

3
(2.18)

In buses with PV generation, the active power generation is another uncertain variable. For two
normally distributed parameters with mean µ and standard deviation σ, the following properties
apply:

a ∼ N (µa, σa)

b ∼ N (µb, σb)

a± b ∼ N
(
µa ± µb,

√
σ2
a + σ2

b

) (2.19)

Thus the standard deviation for the net power at a PV bus is calculated as:

σPni
=
ε
√
P 2
gi + P 2

li

3
(2.20)

To simplify the implementation of the CCO, the error in power and reactive power can be transferred
to the voltage variable as a constraint. Since the forecast error is relatively small, the relation
between power and voltage can be written as:[

∆P
∆Q

]
= Jac×

[
∆δ
∆V

]
(2.21)

Here ∆ is the difference between the forecasted and actual value, and Jac is the Jacobian matrix
of the system used in power flow analysis. The Jacobian matrix is inversed to calculate the voltage
from the real and reactive power, and the inverse of the Jacobian is divided into four sub-matrixes
like:

(Jac)−1 =

[
J−1
1 J−1

2

J−1
3 J−1

4

]
(2.22)

So that:
∆V = J−1

3 ×∆P + J−1
4 ×∆Q (2.23)
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Thus applying the relation (2.19), the standard deviation of the voltage error can be calculated as:

σvi =

√√√√∑
j

((
J−1
3 (i, j)σp(j)

)2
+
(
J−1
4 (i, j)σq(j)

)2)
(2.24)

As a result the uncertainty related to real and reactive power can be transferred to the voltage
constraints, as will be shown in equations (2.43)-(2.44)

2.1.4 Inverter capacity

As mentioned, the inverter capacity curve is presented in equation (2.4). Plotting this constraint in
the P-Q plane results in a semi-circle like the one presented in figure 3. To convert (2.4) to a chance
constrained inequality, the following methodology is used:

If P̃g is the actual value of active power generation at the bus, Pg0 is the forecasted value of gen-
eration and ∆P̃g is the forecasting error, then the relationship between these can be written as:

P̃g = Pg0 + ∆P̃g (2.25)

The inverter capacity must be upheld, thus the original capacity curve (2.4) can be rewritten as:

P̃g =
√
S2
inv −Q2

g (2.26)

Inserting (2.25) into (2.26):

∆P̃g ≤
√
S2
inv −Q2

g − Pg0 (2.27)

Now utilizing the method for implementing chance constraints shown in section 2.1.2 on inequality
(2.27), the inverter capacity curve ends up as:(

Pginv
+ K(1− α)

)2
+Q2

ginv
≤ S2

inv (2.28)

In practice, the constraint added from K(1−α) means that the area of the capacity curve is smaller
than before adding the chance constraints. This difference is illustrated in figure 4. Additionally it
can be seen that higher forecasting error leads to a more constrained capacity curve. When there is
no solar generation the inverter capacity is simple to model, as the inverter will be fully dedicated
to provide reactive power support. Thus the inequality constraints for the no generation hours are:

Qg ≤ Sinv (2.29)

Qg ≥ −Sinv (2.30)

However, when there is solar generation the inverter will focus on delivering active power foremost,
and then supply reactive power by capacity. To implement these constraints in a linear model,
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Figure 4: Visualization of the impact of the chance constraints on the inverter capacity curve.

the inverter capability curve will have to be linearized. The linear solution space for the supplied
reactive power can be found by utilizing the maximum potential reactive output (2.31), and the
minimum power factor (2.32):

Qmax =
√
S2
inv − P 2

g (2.31)

cosφ =
Pg

Sinv
(2.32)

Where Pg is the active power delivered by the inverter for a specific hour. Thus the capability curve
may be linearized as equations:

Pg −
(
Sinv − Pg(−Qmax)

Qmax

)
·Qg ≤ Sinv (2.33)

Pg −
(
Sinv − Pg(Qmax)

−Qmax

)
·Qg ≤ Sinv (2.34)

Qg ≤ Sinv cosφ (2.35)

Qg ≥ −Sinv cosφ (2.36)

However, since equations (2.33)&(2.34) contain uncertain elements, they will have to be chance
constrained. Using methods shown in section 2.1.2, equations (2.33)&(2.34) can be written in
chance constrained version as equations (2.37)&(2.38):

Pg −
(
Sinv − Pg(−Qmax)

Qmax

)
·Qg ≤ Sinv −K(1− α) (2.37)
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Pg +

(
Sinv − Pg(Qmax)

−Qmax

)
·Qg ≤ Sinv −K(1− α) (2.38)

Figure 5: The linearized inverter capacity curve.

2.1.5 Power flow

Equations (2.39) - (2.40) represent the traditional power flow equations.

Pni
= Pgi − Pli =

∑
j

ViVjYij cos(δi − δj − θij) (2.39)

Qni = Qgi −Qli =
∑
j

ViVjYij sin(δi − δj − θij) (2.40)

Where Pni and Qni represent net active power at bus i and net reactive power at bus i respectively.
Subscripts gi and li represent generation and load at bus i respectively. Yij and θij represent the
magnitude in p.u and angle of the admittance of the connecting branch. As previously, Vi is the
voltage magnitude at bus i, and δi, δj represent the voltage angle at buses i and j respectively.

To be able to apply linear programming, equations (2.39) - (2.40) will have to be linearized. Since
the magnitudes and angles of the voltages will have values around 1 and 0 respectively, the standard
load flow equations will be linearized around these points [25]:

Pni =
∑
j

Yij [cos θij + cos θij · (Vi − 1) + cos θij · (Vj − 1)− sin θij · δj + sin θij · δi] (2.41)
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Qni
=
∑
j

Yij [cos θij · δi − sin θij · (Vi + Vj − 1) + cos θij · δj ] (2.42)

2.1.6 Voltage limits

As shown in equation (2.3), the voltage of the buses is to be kept within a specified range. To
implement chance constraints into equation (2.3), methods 1&2 from section 2.1.2 can be applied.
Thus the upper limit of the voltage is applied as:

Vi ≤ Vmax −K(1− α) (2.43)

And the lower limit is applied as:
Vi ≥ Vmin + K(α) (2.44)

2.1.7 The objective function

To be able to apply linear programming, the non-linear objective function shown in equation (2.1)
has to be linearized. Since an absolute value is not a linear equation, the objective can be reformu-
lated as:

min
∑
i,t

yi,t (2.45)

Subject to constraints:
yi,t ≥ Vi,y − 1, yi,t ≥ 1− Vi,t, yi,t ≥ 0 (2.46)

Thus the objective is defined by only linear equations.

2.1.8 Modeling the tap changer

In a distribution system where insufficient PV to cover all demand is installed, it is also necessary to
model the tap changer at the slack bus. Since tap changers are based on changing transformer taps
between several distinct positions, the voltage at the slack bus is not a strictly continuous variable.
Instead it is a discrete variable that can only take on a specified number of values. This changes the
whole problem from a linear programming problem to a Mixed integer linear programming (MILP)
problem. The impact of this change will be discussed further in section 3.1.1.

2.1.9 Implementing energy storage

As mentioned in section 1.5, some form of energy storage is highly desirable when implementing
large scale distributed PV generation to avoid curtailment. A simple, technology-independant en-
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ergy storage model can be implemented based on the model presented in [29]. The storage is placed
on the DC side of the PV inverter, and is only charged directly from the PV panels. Additionally, this
model is easy to implement in every single PV bus in the system.

For a given PV bus at time step t, active power delivered to the inverter, Pg(t) can be written as:

Pg(t) = PPV (t) + PB(t) · η (2.47)

Where PPV (t) is generated power from PV, PB(t) is battery power, and η is the round trip efficiency
of the storage. Note that PB(t) can be both positive and negative for discharging and charging
respectively.

The amount of energy stored at a given time, EB(t) can be written as:

EB(t) = EB(t− 1)− PB(t) (2.48)

Equations (2.47)-(2.48) are then subject to the following constraints:

0 ≤ EB(t) ≤ EBmax (2.49)

−PBmin ≤ PB(t) ≤ PBmax (2.50)

PB(t = night) ≥ 0 (2.51)

Where equations (2.49)-(2.50) keep the variables within the given component limits, and (2.51)
tell the system that the batteries should never charge using grid power, only PV. Additionally it may
be desirable that the storage start each day not depleted, but rather with a specific state of charge,
SOCstart. This can be ensured using the following constraints:

EB(t = startofday) = SOCstart · EBmax

EB(t = endofday) = SOCstart · EBmax

(2.52)

2.2 Implementation

The suggested approach has been modeled on the standard IEEE 33-bus system with a 1 MW PV
unit connected to bus 30. The inverter of the PV unit has been somewhat oversized to 1.054 MVA to
enable effective reactive power control. The system has a base voltage of 12.66 kV, and the voltage
limits were set to Vmax = 1.05 P.U and Vmin = 0.95 P.U. The optimization was done over 24 hours,
and in 1 hour increments. The load and PV irradiation profiles can be seen in figure 7, and the data
for the load and PV profiles can be found in appendix A.
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For the scenario with energy storage, a generic storage with round trip efficiency of η = 0.9 was
implemented at the PV bus. An efficiency of 0.9 is roughly equivalent of a really good lead-acid
battery, but worse than the best li-ion batteries. The storage had a maximum power of PBmax =

5 MW, state of charge at start SOCstart = 0.4, and EBmax = 15 MWh.

The optimization was done using the Pyomo language [30] for Python 3.6, and using the GUROBI
solver. The opimization was run on a laptop computer with a Intel(R) CORE m 1.40 GHz CPU and
8GB of RAM. The figures have been generated using the package matplotlib for Python.

Figure 6: The IEEE 33-bus distribution system.
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Figure 7: The 24 hour irradiation and load data used.
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3 Results and analysis

This chapter will focus primarily on presenting the optimization results for the model. First the
base case without energy storage will be presented. With the base case, the impact of a simplified
tap changer model will be presented, as well as the impact of changing the relative forecast error.
Then the impact of increasing the installed PV will be studied in section 3.1.4, and the impact of
increasing the inverter size in section 3.1.5.

In section 3.2, a generic energy storage system is added to the PV bus, and the effects are studied.
The PV system is then expanded considering storage in section 3.2.1. In section 3.3, the distributed
PV is decentralized, and the effects are observed. Lastly an equivalent system without distributed
PV is optimized to better understand the difference between the scenarios in section 3.4.

3.1 Base case without storage

In the base case the system described in section 2.2 was simulated over a 24 hour period, using the
load and irradiation data provided. The level of uncertainty tolerance was set to α = 0.1 and the
relative value of the forecasting error is set to ε = 0.1

It can be seen in figure 8 that both positive and negative voltage deviation from 1 P.U is significantly
larger in the peak load hour (hour 20) than in the peak PV hour (hour 12). This is partly because
the load is significantly lower at peak PV hour, but also because the extra generation from the PV
helps with supplying the rest of the grid. As a consequence, the voltage at the slack bus does not
need to be as high at peak PV hour.

It can be noted that the sudden change in voltage from bus 18 to 19 is due to different radials. As
can be seen in figure 6, bus 18 is at the end of the main radial while bus 19 is connected to bus 2.
Thus the total line impedance to bus 18 will be higher, and consequently the voltage loss is higher.

Studying figures 9 and 10, the impact of the PV system can be seen. Most notable is the expected
drop in power delivered from upstream grid in the PV production hours, as well as the inverter
covering a very large part of the reactive power demand outside of PV production hours.
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Figure 8: The bus voltage seen at peak load hour and peak PV-production hour, base case.

Figure 11 shows a plot of the acceptable voltage range for each bus at peak load hour. Also repre-
sented in the plot is the actual voltage at each bus for this time. Since the maximum and minimum
voltage values are predecided scalars, the deviation in the lines from exactly 1.05 and 0.95 can be
attributed to the chance constraints. It can be noted that the chance constraints change the voltage
limits based on the consequence of a wrong forecast. Subsequently the constraints are more narrow
around bus 24-25, due to those buses having significantly larger load demand than the rest. Bus 30
also has more narrow constraints, due to the PV system placed at the bus. The impact of changing
the forecasting error will be further studied in section 3.1.3.
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Figure 9: Reactive power provided by the inverter for each hour of the day, base case.
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Figure 10: Power covered by upstream grid for each hour of the day, base case.
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Figure 11: The voltage limits at each bus and actual bus voltage, at peak load, base case.
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Figure 12: Slack bus voltage at each hour of the day, for discrete and continuous tap changer.
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3.1.1 Tap changer modeling

As mentioned in section 2.1.8, the discrete modeling of the tap changer turns the problem into a
MILP problem. Table 1 shows a brief summary of some results from the optimization problem using
the default discrete option, and using a simplified continuous version. Additionally, figure 12 shows
the resulting slack voltage at all time increments using both methods.

It can be observed that the calculation time of the optimization problem decrease with about 25%
when moving from the discrete to the continuous model. This is primarily because MILP is some-
what less computationally efficient than regular linear programming. Using a discrete model for the
tap changer also yields a somewhat more optimal solution, as can be observed with the value of
the objective function. It is, however, important to note that a real tap changer is a discrete system,
and thus the discrete modeling will be closer to the realistic “real” values.

Table 1: Comparison between discrete and continuous tap changer modeling.

Method Calculation time [s] Objective function [P.U]
Discrete 1.0172 8.2070

Continuous 0.8113 8.0416

3.1.2 Irradiation impact on the inverter capacity curve

As illustrated in figure 4, the chance constrained impact on the inverter is dependant on the active
power generated by the PV panels. When there is no generated active power, there is also no
uncertainty in the inverter capability. Table 2 shows the different values for K(1 − α) at the hours
of PV generation. As expected, the constraints have the highest impact at peak PV hour, and a near
negligible impact when generation is low. Intuitively, this means that the total area of the inverter
capacity curve is at its lowest value when PV production is at its highest.

Table 2: Time of day impact on inverter capacity curve, ε = 0.1.

Time 9 10 11 12 13 14 15 16
K(1-α) 0.0067 0.0183 0.02 0.0333 0.0266 0.0260 0.0244 0.0007
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3.1.3 Forecast error impact on constraints

Adjusting the relative value of the forecast error, ε, is a relatively simple method of observing how
the chance constraints are impacted by the quality of the forecast. Figures 13 and 14 show how
the acceptable voltage ranges are impacted by changing the value of ε, compared to the base case
shown in figure 11 where ε = 0.1.

For the ε = 0.01 case, the chance constraints are almost indistinguishable from a scalar voltage
limit. This is to be expected, as a relative forecast value of 0.01 represents a nearly perfect forecast.
However, increasing the value of ε from the base case will drastically alter the voltage constraints.
At ε = 0.252 the voltage constraints are at the limit of what the base system can handle, meaning
that the optimization problem is infeasible for ε ≥ 0.252. As an illustration, figure 15 shows the
voltage limits for ε = 1

Intuitively the base case that is simulated with a relative forecast error ε = 0.1, and uncertainty
tolerance α = 0.1 means that all of the constraints will be satisfied with a probability of 90%. If
the forecast error increase while the uncertainty tolerance remains the same, then the limits will
tighten to ensure that the constraints remain satisfied with the same probability.
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Figure 13: The voltage limits at each bus and actual bus voltage, at peak load, ε = 0.01.
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Figure 14: The voltage limits at each bus and actual bus voltage, at peak load, ε = 0.252.
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Figure 15: The voltage limits at each bus at peak load, ε = 1.
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3.1.4 PV sizing

At the level of installed PV in the base case there is no real concern regarding over-voltage or
over-generation from PV, as the total load is still significantly higher than total generation at peak.
However, this will change if the amount of installed PV is increased. Increasing the installed PV
by more than 2.25 times will violate the system constraints, and studying figure 16 it is easy to
understand that this is due to over-generation. As a side note, figure 16 is a good example of the
“duck-curve” mentioned in section 1.5.

From figure 17 it can be observed that increasing the installed PV capacity does to some extent
improve the overall voltage. This is the same effect as in figure 8, where increased generation at
bus 30 means that the slack voltage needs to compensate less for the voltage loss throughout the
system. Furthermore, there is a somewhat significant jump in voltage at bus 30 for PV scales larger
than 1.5, which can be interpreted as an early symptom of the increased PV leading to over-voltages.
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Figure 16: Power covered by upstream grid at each hour of the day, for different amounts of installed PV.
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Figure 17: Bus voltage at peak load hour and peak pv-production hour for different amounts of installed PV.

3.1.5 Inverter sizing

It is also possible to imagine increasing the size of the inverter without increasing the amount
of installed PV. The inverter should then be able to do reactive power compensation to a greater
extent, even when there is maximum PV generation. Figure 18 presents the bus voltage at peak
load and production hours for a normal sized inverter, and for a highly scaled up inverter 100 times
as large. What can be noted is that while a very oversized inverter does indeed improve the voltage
to some extent at peak load hour, there is hardly any difference at peak PV hour.

The objective function of the optimization problem, equations (2.45)-(2.46), is a good indication of
how good the total voltage profile is. Looking at figure 19, the change in the objective function for
increasing inverter sizes can be observed. The main takeout here is that increased inverter size does
decrease the value of the objective function, but only to a certain point. As inverter size reaches 5
times the base case, the objective function stabilize, and further increasing the size of the inverter
has no impact on the objective function. Additionally, it can be observed that most of the decrease
in objective function happen for the first 2 times of increased inverter capacity.
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Figure 18: Bus voltage at peak load and PV hours, two different inverter scales.
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Figure 19: Relation between inverter size and objective function of optimization problem.
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3.1.6 Inverter size impact on tolerated forecast error

An additional effect of increasing the inverter size, is the impact it has on the tolerated error in
forecasting. As previously mentioned, the base case of the optimization problem is feasible only for
forecasting errors of ε ≤ 0.252. However, for a 1.5 times increase in inverter size, this boundary is
pushed all the way up to ε ≤ 0.757. A plot of the voltage limits for this case is presented in figure 20.
From this figure it can be observed that the increased tolerance for forecast error can be attributed
to smaller peaks in the voltage.
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Figure 20: The voltage limits at each bus and actual bus voltage, at peak load, INVscale = 1.5, ε = 0.757.
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3.2 Adding energy storage

As mentioned in section 3.1, the system without energy storage cannot handle any more PV than
an upscale of 2.25 without suffering from over-generation. That is: 2.25 MW installed generation.
To cover more of the demand with PV, as well as gaining a benefit of the PV outside of generation
hours, a storage system can be implemented. Using the simplified general model described in sec-
tion 2.1.9 and the data given in 2.2, a generic energy storage system was added to the base case
system.

Figure 21 presents the equivalent of figure 8 with storage implemented. It can be observed that even
without installing more PV, the voltage profile at peak load hour is slightly better. That is: There
is slightly less deviation from 1 P.U. The voltage profile at peak PV-production hour is, however,
arguably worse. This slight increase in deviation from 1 P.U can be explained by the fact that the
objective function of the optimization problem is defined as the sum of deviation over all hours.
Thus the total deviation from 1. P.U is still lower when storage has been included.
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Figure 21: The bus voltage seen at peak load hour and peak PV-production hour, with storage.

Depicted in figure 22 is the active and reactive power covered by the upstream grid, as well as the
total demand. Compared to figure 10 from the base case, it can be noted that the upstream grid no
longer has to cover all the active power outside of PV-production hours. However, the upstream grid
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has to cover a higher amount of the demand at the hours of PV-production. This effect is because the
storage system is charging. One additional effect is that there is a slightly less reactive power being
covered by the upstream grid at peak PV-production. Again this is due to more power being used to
charge the storage system, thus leaving more reactive power capacity available in the inverter.
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Figure 22: Power covered by upstream grid for each hour of the day, with storage.

Figure 22 can be more easily understood if viewed in combination with figure 23, as this figure
presents key data about the storage system. What can be noted is that the storage system discharges
slightly during the night, charges during the day, and then discharges back down in the evening.
Most of the energy passing in and out of the storage system also does so during the peak PV and
load hours. The result is that the peak active power demand is shaved by approximately 0.5 MW.
Had this optimization problem been focused on peak shaving rather than voltage regulation, then
this effect could possibly have been more extensive.

33



Voltage Control for Distribution Systems using Chance Constrained Linear AC OPF

0 5 10 15 20 25

0.4

0.2

0.0

0.2

0.4

0.6
Po

we
r t

o/
fro

m
 b

at
te

ry
 (M

W
)

0 5 10 15 20 25
Time

0.40

0.42

0.44

0.46

0.48

Ba
tte

ry
 st

at
e 

of
 c

ha
rg

e

Figure 23: Power to/from storage, and storage SOC for each hour of the day.

3.2.1 Increasing PV capacity

As aforementioned, a major selling point of installing energy storage, is the ability to increase PV-
generation. Thus when expanding the system, figures 24 - 27 are the equivalent figures to 21 - 23
where installed PV has been scaled up by 5 times. In addition, EBmax has been increased from 15
to 30 MWh to avoid completely filling the storage during the PV-production hours.

Looking at figure 24, it can be observed that the highest voltage peaks have been further decreased,
while the lowest voltage value at bus 18 has been somewhat worsened. Additionally it can be
observed that the difference between the voltage profiles at peak load and peak PV-production are
becoming more similar. Again the total value of the objective function is lower for this case than in
the previous case, however, this effect may be hard to discover by looking only at figure 24.
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Figure 24: The bus voltage seen at peak load hour and peak PV-production hour, PVscale=5, with storage.

From observing figure 25, it is clear that the demand covered by the upstream grid has changed
drastically. There are now large areas of the plot where upstream grid covers very little to zero of
the active demand. Additionally, the active power supplied by the upstream grid at peak load hour
has been cut by over 1.5 MW.

However, this benefit does come at a cost, which becomes apparent when looking at the reactive
power supplied by the upstream grid. The reactive power now varies frequently from very high
values, to close to zero values. For time periods with high PV supply to the grid, the reactive power
supplied by upstream increase to well over the reactive demand of the other buses. While the
storage is charging, however, the upstream demand for reactive power is virtually zero due to the
now large scale inverter.
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Figure 25: Power covered by upstream grid for each hour of the day, PVscale=5, with storage.

The reason for the large reactive power demand is that the inverter absorbs large amounts of
reactive power to counteract the active power injection. The reactive power absorption is so large
that the upstream grid has to cover the difference. This turn of events is because the optimization
problem objective is to improve voltage profile by all available means. Figure 26 instead show
a hypothetical example where the single objective of the problem is rather to minimize reactive
power covered by upstream grid.
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Figure 26: Power covered by upstream grid, PVscale=5, with storage, Q from upstream minimized.

The storage data presented in figure 27 shows that even with the expanded capacity, the storage
system can get somewhat close to both full discharge and full charge in a single day. During PV-
production hours, the storage system charges from a state of charge of 0.2 to a state of charge of
0.75. For a 30MWh storage system, this is equivalent of charging and subsequently discharging a
total of 16.5MWh. With a roundtrip efficiency of η = 0.9, this means that of the 16.5MWh charged
this day, 1.65 MWh will be lost.

In figure 28, the results from figure 11 have been plotted for the expanded PV and storage system.
It is quite noticeable that although the voltage constraints are unchanged, the actual voltage at the
buses is more comfortably placed within the boundaries in this case. As previously mentioned, the
objective function of the optimization problem is a good indication of how overall good the voltage
profile is.
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Figure 27: Power to/from storage, and storage SOC for each hour of the day, PVscale=5, EB max = 30MWh.
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Figure 28: The voltage limits at each bus and actual bus voltage, at peak load, PVscale=5, with storage.
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Observing figure 29, it can be noted that the objective does indeed keep declining in value for
increasing installed PV. Thus if perfecting voltage profile is the only concern of the operator, then
increasing PV-generation and storage is a good basis for doing so. However, there is some indication
that the objective value starts to flatten around 8 times increase, and the impact is significantly
higher for the first 100% of increased capacity.
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Figure 29: Development of objective function of the optimization problem for installed PV capacity.
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3.3 Decentralizing PV generation

Instead of increasing the installed PV at bus 30, it is also possible to expand the system by installing
PV and storage at multiple different buses. Thus instead of scaling up the capacity at bus 30 beyond
the base case, the optimization problem was rerun with buses 14, 21, 24 and 30 as PV-buses. Each
PV-bus had a 1 MW PV unit and a 1.054 MVA inverter. Furthermore, each bus had maximum storage
power PBmax = 3 MW and maximum capacity EBmax = 9 MWh. The resulting voltage profile and
storage behavior can be seen in figures 30 and 31 respectively.
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Figure 30: The bus voltage seen at peak load hour and peak PV-production hour, decentralized PV + storage.

Inspecting figure 30, it becomes immediately clear that the overall voltage deviation of the system
is significantly reduced. Furthermore, both peaks and lows are closer to 1 P.U. The previously most
challenging bus, 18, now has a voltage of almost exactly 1 P.U, while voltage at slack bus is kept
below 1.02 P.U. Looking at figure 31, it can be observed that the storage at bus 30 now does no
work outside of generation hours, while all the other storage systems do significantly more. The
impact decentralization has on the power supply from upstream grid can be seen in appendix C.

40



Voltage Control for Distribution Systems using Chance Constrained Linear AC OPF

0 5 10 15 20 25
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Po
we

r t
o/

fro
m

 b
at

te
ry

 (M
W

)

Battery at bus 14
Battery at bus 21
Battery at bus 24
Battery at bus 30

0 5 10 15 20 25
Time

0.1

0.2

0.3

0.4

0.5

0.6

Ba
tte

ry
 st

at
e 

of
 c

ha
rg

e

Figure 31: Power to/from storage, and storage SOC for each hour of the day, decentralized PV + storage.

3.4 Distribution grid without PV

To get a better understanding of how the distributed PV system impacted the distribution grid,
optimization was also run on the grid without any PV. In other words bus 30 was treated as any
other bus, and all demand was covered by the upstream grid. The resulting voltage profile at maxi-
mum and minimum load hours can be seen in figure 32. It can be easily observed that the voltage
profile at peak load is worse than the case with PV, and significantly so compared to the case with
expanded PV and storage.

Table 3 shows the value of the objective function for the different optimization problems run, and
further shows the significant positive effect of the distributed PV and inverter on the voltage profile.
The small difference in objective function between the base case and the base case with storage,
further proves that there is little benefit in installing energy storage if the PV system is too small to
contribute to over-voltages. Meanwhile, it is important to note that this model only consider voltage
over 1 hour time steps, and not rapid generation fluctuations from e.g passing clouds. The table
also shows the huge improvement that comes from decentralizing the installed PV.
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Figure 32: Bus voltage limits at max load, and actual bus voltage at max and min load, no PV.

Table 3: Value of the objective function for the different optimization problems.

System Normal grid Base case PV PV + storage 5·PV + storage Decentralized PV+storage
Value of objective function [p.u] 11.687 8.207 8.010 6.663 2.217

Improvement from normal
/bus/time [p.u] n/a 0.0044 0.0046 0.0063 0.012

Computation time [s] 0.75 1.02 2.90 1.21 10.04
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4 Discussion

This chapter will discuss the implications of the result obtained in the last chapter, and validate the
results. Section 4.1 will discuss the information gained from the optimization scenarios, looking
first into the overall results, and then into the impact of the different changes to the system in
sections 4.1.1 - 4.1.5. Section 4.2 look at the viability of the model, what simplifications have been
made and how do they impact the model. Subsequently, sections 4.2.1 - 4.2.7 will handle separate
aspects of the model, and discuss shortcomings and potential improvements.

4.1 Information gained from the optimization

The value of the objective function is calculated from equations (2.45)-(2.46), and represents the
sum of the deviation from 1 p.u for all buses over all time increments. Thus, this value is an indica-
tion of the total system performance. Inspecting the value of the objective function for each of the
main scenarios that were optimized, which is presented in table 3, two main observations can be
made: The system performance improves for each upgrade of the system, and the different system
upgrades have vastly different impact on that change.

The by far biggest impact on the system is the change from centralized to decentralized PV, while
the introduction of storage to the non-decentralized case has an almost negligible impact on the
voltage profile (an average of 0.00025 P.U improvement per bus per time).

Looking at the results as a whole, there is no doubt that the distributed PV system improves the
voltage profile of the distribution system. This is both a result of the active power injection at bus
30 when there is PV-production, but also the inverter connected to the PV doing reactive power
control during and outside of production hours as seen in figure 9.

The well known problem with over-voltage at PV buses is not present for the base case. This can be
primarily attributed to the amount of installed PV capacity in the base case. At peak production for
the base case, the production is still only 1 MW, which even in the middle of the day is less than
half of the demand. Thus it is easy to conclude that over-voltage will not be a real problem for this
system until a higher PV capacity is installed.
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4.1.1 Impact of installing storage in the base case

Since the base case system is at no time covered entirely by PV, there is also no need to curtail
over-generation in the base case. Thus, purely based on getting everything out of the installed PV,
it is superfluous to install storage. That conclusion does, however, not account for any grid benefits
of saving the power for later. Considering that most energy systems will see an increase in energy
cost for increasing demands, it is quite possible that it can be economically profitable to rather use
power from the upstream grid during mid-day. Thus, the PV generation can be stored and used to
shave demand peaks during the evening.

Some peak shaving can be seen in figure 22, where storage has been implemented into the base
case. However, it is important to note that this problem has been optimized purely based on im-
proving the voltages. The system still sees it as beneficial to shave the peaks, however, this decision
is based on reducing the transmission losses that affect the voltage. The peak shaving would have
been much more visible if there had been added a cost of upstream generation to the model, and if
the objective was to minimize cost.

As mentioned in section 1.5, PV generation has a marginal cost of practically zero. Thus it can be
very favorable to use stored PV for peak shaving. Economically, this is especially true in systems
with a high dependency on non-renewable dispatchable generation like coal or gas.

Whether it is economically viable to install and use PV+storage in a given distribution system is,
ultimately, a decision that has to be made considering many factors: The levelized cost of electricity
for a new PV system, the cost of the upstream dispatchable generation, how much there is to gain
on reducing line losses (is the system strained or not). However, this will not be discussed here at
length, as voltage regulation is the primary concern of this thesis.

4.1.2 Impact of PV sizing

With any renewable energy source, it is desirable that as much of the total energy consumption
as possible is covered by it. As mentioned in the results, installing storage gives an opportunity to
increase the installed PV as well. Increasing the installed PV to five times that of the base case has
some significant effects on the system: The deviation in voltage from 1 P.U is further decreased, and
the difference between voltage at peak load and peak production is also decreased. This decrease
in difference between peak hours can be mainly attributed to the stored PV shaving the peaks.

As improving overall voltage profile goes, the increase in installed PV is purely beneficial. The only
significant disadvantage is that the voltage at bus 18 is lower for this scenario. As bus 30 contributes
more to the voltage of the other buses, the maximum voltage at the tap changer can be lower while
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still keeping the rest of the bus voltages close to 1 P.U. As a consequence, the voltage at bus 18
deviates slightly more from 1 P.U. while the value of the objective function still decrease. It is worth
noting, however, that voltage at bus 18 is still within the constraints.

When it comes to the flow of power in the system, the increase in installed PV results in some
disruptive changes: The upstream grid now has to cover significantly less of the total demand for
active power, in fact during hours 3 & 9 it supplies no active power at all. Additionally, the highest
amount of active power covered by the upstream grid is now at hours 19 & 22, since required power
at hour 20 has been decreased by over 1.5 MW.

Meanwhile, the large leaps in active power delivered from the PV and storage system has a large
impact on the demand for reactive power. Comparing figures 25 and 26, there is good reason to
evaluate how realistic the model is when only focusing on voltage regulation. This does not mean
that minimizing reactive power delivered from the upstream grid is a better objective, but delivering
reactive power does not necessarily come without a cost. Especially considering the on/off behavior
of the reactive power shown in figure 25.

4.1.3 Impact of decentralizing PV

Decentralizing the PV from one bus to four different buses was shown to be the single most effective
change to the system in terms of minimizing the objective. This is an interesting result, as the total
PV and inverter capacity actually decrease somewhat from the PVscale=5 scenario (5 MW to 4
MW). The primary reason why it is so effective is that the PV-buses have been strategically placed
so that every radial has a voltage regulator. In addition, no bus is more than 6 buses from its closest
voltage regulator. Thus the overall voltage loss due to line impedance is decreased.

When the regulators are placed closer to the place of demand, it is less necessary to compensate for
voltage loss in the lines. Thus the voltage can be closer to 1 P.U, while at the same time decreasing
total power loss. As there is no real limit to how far this can be scaled, the voltage could potentially
be almost perfect if every bus was equipped with a PV and storage system. At least as long as there
is sufficient capacity to power the grid, and sufficient storage to avoid over-voltages.

The obvious downside to such an expansion is the cost of investing in distributed PV at such a scale.
Certain components like the inverter will be cheaper as one large unit, rather than several smaller
units with the same cumulative capacity. The same can be said about installing and maintaining
PV-panels and battery banks at several different locations. Ultimately a decision made about a real
system will have to weigh the cost of such an investment versus the benefit of an improved voltage
profile.
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An additional factor to be considered, is that control over the regulators is still centralized. Cen-
tralizing control is by far the easiest way to maintain control over the voltage, but it does require
some form of communications infrastructure. That infrastructure could be the internet, although
connecting critical infrastructure to the internet is associated with security risks on its own. The
alternative is that each regulator is autonomous, which can lead to different regulators working
against each other.

Lastly it is worth mentioning that the computation time increase drastically for the decentralized
case. A simple explanation is that a normal bus has two equations describing active and reactive
generation at the bus, while a PV-bus is constrained by 15 different equations describing the active
generation, the inverter and the battery. This is unchanged if the single installed system is simply
scaled up, but adding 3 new PV-buses equals to 15

[
equations

h

]
· 3 · 24 [h] = 1080 [equations] that are

added to the optimization problem. The amount of equations will thus increase linearly with the
amount of PV-buses.

4.1.4 Impact of inverter sizing

Increasing only the inverter in the base case was shown to have an impact on the value of the
objective function. However, the system does, as shown, reach a point around 5 times increase
where just adding more capacity to the inverter has no further impact on the objective. Increasing
the capacity of the inverter will expand the capacity to perform reactive power control, and as such
it is a good way to illustrate the impact that pure reactive power control has on the system voltage.
However, it is worth noting that installation of vastly oversized inverters is not something that is
actually done in any real system.

In a real system, large scale reactive power control would be done by dedicated components such
as switched capacitors or a static synchronous compensator (STATCOM). While switched capacitors
are more simple, a STATCOM is based on a power electronics interface. Thus it can function much
like an oversized PV inverter, although more specialized for this purpose. However, as mentioned in
section 1.5, reactive power control is usually not applied in distribution systems at all. The primary
reason rective power control is considered as an option for systems like this one, is that the inverter
is already required to install the PV, and thus might as well be utilized fully.

Another important aspect of inverter sizing is the initial assumption of an oversized inverter. The
inverter is by far the most expensive single component of a PV system. Even on a sunny day, the PV
panels will not produce at potential maximum power for most of the day. Thus having an inverter
that is capable of handling more power than the system will ever produce, is not profitable in it
self. The benefit gained from an oversized inverter is primarily attributed to the system operator,
and there would have to be some kind of other incentive if a private consumer were to install an
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oversized inverter with their PV system.

4.1.5 Impact of chance constraints

It is important to realize that there is nothing inherently random about chance constrained opti-
mization. Rather, CCO is an optimization tool that makes it possible to model an uncertainty in the
parameters used. For a system like this one, this means that although load and solar irradiance for
the next day is uncertain, it can still be optimized within a quantifiable probability. The important
limitation for that probability is that a forecast is available, and it has been decided by how much
the forecast can be wrong.

As previously shown, an increase in the forecast error results in more narrow voltage constraints.
Continued increase in the forecast error will result in the system no longer staying within bound-
aries, and for the base case system this happened at ε = 0.252. Intuitively that means that at any
point of the simulation, the load or the solar irradiation may be 25.2% higher or lower than the
expected value. The fact that the system cannot keep within boundaries does, however, not mean
that such a system would never work under those conditions. What it does mean, is that we cannot
with α certainty say that it does.

A major advantage of using CCO for this optimization problem, is that we can easily decide what
margins we want to run the system with. Thus it is easy to see how the system is impacted by less
certain forecasts (ε), or higher demanded certainty(α). Since the chance constraints are connected
to the voltage at each bus, it is also easy to see which buses are the most vulnerable to forecast
error. Thus the potential error is not dealt with, but rather the risk is quantified.

In the expanded system cases, the voltages are mostly further within the constraints. A good exam-
ple of this can be seen for the case in figure 20, where a 50% increase in inverter capacity means
that the system is feasible up to a forecast error of ε = 0.757. Thus an investment in increased
capacity is not only a matter of better overall voltage profile, but in fact an investment that can
be made to decrease the impact of uncertainty. In short: Investing in increased capacity can be
considered as the cost of certainty.
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4.2 Viability of model

4.2.1 The size of the time increments

As aforementioned, the optimization in this thesis was done with relatively large 1 hour time incre-
ments, which entails some distinct advantages and disadvantages.

Most importantly there are no transients in the model at all, and as such this is a purely stationary
set of optimization problems. One major issue with a purely stationary solution, is that it fails to
model the often fast intermittency of PV generation. If a patch of clouds were to drift over a PV
installation, then that could more than halve the generation for just a couple of seconds. After the
clouds disappear the generation would suddenly spike again, which could lead to short time over-
voltages. This behavior is impossible to model when the irradiation is treated as constant for one
hour at a time.

The intermittent behavior of PV is often a major reason to install energy storage, which is not
something that can be interpreted from the results presented here. In fact tap changers may have
a response time of multiple seconds, which may lead to severe voltage irregularities when a large
amount of PV suddenly stops generating. In such as situation, the voltage can be held stable by a
storage system until the PV stabilize, or the tap changer adjusts. These are operations that don’t
impact the SOC of large storage systems to a large degree, but can be vital for the voltage stability.
In this model, however, energy storage is purely used to save energy for later use.

Since the model is stationary for each time increment, there is no modeling of the transient response
of different components. In fact, there is no specific mention of specific components at all. Every
component used is presented as a generic component with generic values. The inverter is just de-
fined by its maximum rating, PV panels are defined by their peak power output, and storage is given
as a generic storage technology. This is done because the purpose of the thesis is to look at a large
scale system, and not the performance of individual components. When everything is stationary,
the time dependant performance of individual components is also somewhat less relevant.

Optimization of a stationary system is not inherently worse than a transient one, but it is important
to recognize what the model can tell you and what it cannot. In short the impact of the time
increments are that:

• The model does give realistic values for a stationary distribution system with distributed PV.
• The model does give insight into the impact of chance constraints, and how the forecast error

impacts the uncertainty.
• The model does show the benefits of installing energy storage and storing energy for later
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use.
• The model does not show the viability of the system for short time intervals
• The model does not show anything about how individual components respond to transient

behavior

The way the model is formulated it is still possible to run the optimization with smaller time incre-
ments, as long as the increments are large enough to avoid transient behavior. However, transient
component behavior is not modeled anyway. Thus, there is no indication from these results that
any new information would come from decreasing the time increments. Since the amount of vari-
ables and equations increase linearly with increased time iterations, simulating the system with one
minute increments could easily take 60 times longer. The impact of decreasing time increments is,
however, an aspect that should be researched more thoroughly.

4.2.2 Tap changer modeling

In the results, a different simulation using a continuous tap changer for the base case system was
shown. While the discrete version better models the behavior of a real tap changer, there is good
reason to argue that the discrete modeling is unnecessary. Mostly it can be argued that the extra
computation time is not worth it when the difference between the models is so small.

The 25% increase in computation time is completely insignificant when the total computation time
is 1 second. However, if the optimization problem was run on a significantly larger system, or
iterated over multiple solutions, then approximating the tap changer could potentially be a good
choice to decrease computation times. Furthermore, if this optimization was done using nonlinear
programming, then doing a continuous approximation of the tap changer could be easily defended,
as computation times would increase drastically.

4.2.3 Energy storage modeling

During the modeling of the energy storage, no specific technology has been selected. Instead a
generic storage technology with a 90% round trip efficiency was used, which is roughly an average
of the relevant battery technologies available for grid storage. Which technology used is not entirely
irrelevant, as there are some key differences between them. For instance, there is a big difference
between the charge/discharge capacity per battery size for different battery technologies. Lithium-
ion batteries can charge much faster than lead-acid batteries, and you would thus need significantly
less total storage capacity to cover the same short time power output/input. Again, this aspect
would be more important if the time increments were smaller.
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The mathematical formulation of the storage was made very simple, so that it could be easily
implemented in the existing optimization problem. As a whole the storage is treated as a “black-
box”, where the model only keeps track on total capacity, power in/out and efficiency. Thus there
is some loss of realism, but the model is easy to implement, easy to scale, while still keeping track
of losses. As storage modeling or optimization is not the primary objective of this thesis, this can be
considered an acceptable compromise.

4.2.4 Line constraints and PV localization

This model does not consider thermal line constraints. As a consequence there is nothing that keeps
the line flow from reaching very high values, apart from the objective that controls voltage. In
traditional radial distribution grids, line constraints are unimportant except for when planning the
grid. Since all power is flowing downstream from the slack bus, then all lines have to be sufficiently
sized to handle the peak potential power of all lines down stream. As such, a normal system has no
way of optimizing line flow, apart from changing generation and load at each bus.

This, however, is not a traditional radial distribution grid. Power still flows downstream from the
slack bus, but it may also flow upstream from the PV bus. As a consequence it is no longer possible
to effortlessly assume that all lines have high enough capacity. For the base case of the system it is
unlikely that there would be a major impact from including line constraints, but for the up-scaled
PV scenario this is not the case. When the installed PV is at 5 MW, the transfer capacity of the lines
to and from bus 30 could very well be a problem. This is a weakness in the model that should be
accounted for in future versions.

Another aspect that affects not only the line constraints, but also other parts of the system, is the
placement of the installed PV. Decentralizing PV generation will remove the strain on some lines,
and would definitely not subject any line to more load than they would already be designed to
handle. In fact if a new system were to be planned with decentralized PV, the line capacity of some
of the lines closest to the tap changer could probably be decreased.

4.2.5 Modeling of supply by upstream grid

For every system where the total distributed generation is insufficient to cover all demand, it is
important to have some way to model supply from the upstream grid. In this model the upstream
grid contributes to voltage at slack bus via the tap changer, and power supply by injection into the
slack bus. Solving the upstream grid like this is a good way to ensure that total demand in the
distribution grid is covered, although once again this is mostly a “black box” approach. Modeling
the upstream transmission system is, however, outside the scope of what this thesis intends to do.
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Therefore, this modeling approach can be considered an acceptable simplification.

What could have been done differently is how the optimization is prioritized. As previously men-
tioned, the optimization problem had one single objective: Minimize voltage deviation from 1 P.U.
As such, the optimization solver is not concerned with the cost of active and reactive power supplied
by upstream grid. The impact of this single objective method can be seen clearly in the difference
between figures 25 and 26.

This also means that in principle, the optimization solver is unconcerned with the losses attributed
to how it handles the upstream supply. As such there is no real cost of loss either. In practice,
however, the solver still tries to decrease line losses due to the voltage drop associated with them.
Thus the solver has no concern for the cost of the power loss, but will still work to minimize it.

An additional shortcoming becomes clear when looking at figure 25: There is no real inertia in the
system. As a consequence, the optimization problem will at any time find the amount of upstream
supply that is ideal for this exact time increment, never basing the solution on how the supply
was in the last one. While a distribution system could potentially only be a small part of a large
transmission network, a couple of megawatts is not an insignificant load. Thus it would require
some adjustment in the energy production, and most large generators are not turned on or off
many times each day. While the lack of inertia can probably be ignored for a model with 1 hour time
increments, it is an issue that would have to be alleviated in a model with smaller time increments.

4.2.6 Forecasting method

The method used for determining the chance constraints is, as mentioned, based on typical kurtosis
of forecasting error from H. Bludszuweit et al.[22]. However, it is worth mentioning thatthis paper
primarily focus on the forecasting error of wind, and not solar irradiation. Although there is a
connection between wind and irradiation in a given day, there is some potential in improving the
realism of the chance constraints by looking into a forecasting error PDF that is based on irradiation
instead.

Furthermore, there is no assumption made regarding actual forecasting method. Forecasting is only
covered when discussing the kurtosis of a typical day ahead forecast, but how the actual forecast is
done remains outside the scope of this particular thesis.

It should also be noted that the model considers the same relative forecast error for all uncertain
parameters. Thus the standard deviation is still different due to different equations for each uncer-
tain parameter, but the relative maximum error is the same. This could potentially be changed, as
the relative error of PV generation and demand are not necessarily the same, although related. In
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future alterations of this work, it would be trivial to implement multiple forecasting errors

4.2.7 Real life value of an optimal solution

Although some of the parameters in this optimization problem are chance constrained, the result
of the optimization is still deterministic. The solver knows all parameters and constraints for the
whole day when doing the optimization, and thus the results are to the best of the solvers ability
optimal. This is obviously not how a real distribution system functions.

Some aspects of the system, like how the inverter functions to supply reactive power, will always
behave in the same way. Scheduling of the storage, however, is here optimized with the system
knowing exactly what the future will look like. While it is advantageous to have a target SOC at
the end of the day, the actual value at the end of the day will not be exactly the targeted value.
As a consequence, scheduling batteries for voltage regulation the way it is done in the different
scenarios of this model will not be as effective as shown in the results. Having good forecasts will,
however, help to alleviate this.
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5 Conclusion and future work

In this thesis, a voltage regulation model for distribution systems combining tap changer, photo-
voltaics and energy storage has been presented. The model focuses on minimizing the deviation
of voltage in all buses of the distribution system. At the same time the uncertainty of demand and
solar irradiation was taken into account, and this uncertainty was incorporated into the model us-
ing chance constraints. This uncertainty method has the big advantage that it is not dependent on
historical data to be applicable.

The model was then implemented in the Pyomo optimization framework, and an optimal solution
was found for the base case of the system. The model was then modified one part at a time, and
the impact of the changes were further tested in Pyomo and discussed. Specific scenarios are tested,
but the model is easily applicable to any distribution grid with photovoltaics.

The results reveal that there is a significant improvement in voltage profile if the tap changer is
utilized together with distributed voltage regulators like PV and storage. Installation of distributed
PV at one of the buses in the IEEE 33-bus test system, improved the voltage with an average of
0.0044 P.U for every bus at every time increment, while also reducing the deviation of the voltage
peaks. Introducing a distributed PV + storage system drastically reduced the voltage peaks, and
improved the average voltage with 0.012 P.U over all buses and time increments. Overall, the result
of this analysis is that the voltage at the buses is significantly more affected by the placement of the
voltage regulators rather than the size of the regulators.

Changing the value of the forecast error resulted in more narrow voltage constraints, and the base
case PV-system failed to solve within a 90% certainty when the forecast error became 0.252. Increas-
ing the scale of the distributed regulators was shown to improve this tolerance, and increasing the
size of the inverter by 50% increased this tolerance to 0.757. Thus, the price of increased capacity
can be viewed as the price of certainty.

Future work can be made by expanding the model to a larger network, as well as looking into the
effect of installing PV at every bus. For a solution that is more true to real values it is also desirable
to implement line constraints, as well as a more advanced model for energy storage.

Regarding uncertainty, the chance constrained model can be improved by looking into forecasting
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error of solar irradiation rather than wind. Additionally, individual forecasting errors for differ-
ent parameters can be implemented. It is also possible to expand the model by applying a different
uncertainty model altogether. For instance, robust optimization is a more complex uncertainty mod-
eling framework that can be applied.
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A Appendix: Simulation data

Table 4: 24 hour load and irradiation data.

Hour Load Solar irradiation
1 0.6000 0
2 0.5667 0
3 0.4333 0
4 0.3667 0
5 0.3000 0
6 0.3000 0
7 0.3333 0
8 0.4000 0
9 0.4667 0.1899
10 0.5667 0.5225
11 0.6000 0.5699
12 0.6333 0.9499
13 0.7000 0.7599
14 0.7333 0.7409
15 0.7333 0.6966
16 0.7333 0.0189
17 0.8000 0
18 0.8333 0
19 0.9000 0
20 1.0000 0
21 0.9667 0
22 0.8667 0
23 0.7333 0
24 0.6667 0
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B Appendix: Summary of system data

Table 5: Summary of system data for different optimization scenarios.

System Normal grid Base case PV PV + storage 5·PV + storage Decentralized PV + storage
Base voltage[V] 12660 12660 12660 12660 12660

PV buses n/a 30 30 30 14, 21, 24, 30
PV installed at PV buses[MW] n/a 1 1 5 1
Inverter size at PV buses[MVA] n/a 1.054 1.054 5.27 1.054

Storage power at PV buses[MW] n/a n/a 5 5 3
Storage capacity at PV buses[MWh] n/a n/a 15 30 9
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C Appendix: Supporting figures
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Figure 33: Power covered by upstream grid for each hour of the day, decentralized case.
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