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Preface

This Master’s Thesis is written at the Department of Electric Power Engineering
at the Norwegian University of Science and Technology (NTNU) during the
spring of 2019 and concludes my Master of Science (MSc) degree in Energy
and Environmental Engineering. The thesis focuses on fundamental concepts
related to power system operation and optimization and is written under the
supervision of Associate Professor Hossein Farahmand at the Department of
Electric Power Engineering, NTNU.

Working with this thesis has given me a unique insight into power system
operation and optimization, and it has given me insight into challenges related
to current and future power systems. The thesis has provided me with an excel-
lent foundation for future work within the topic, but I also hope that the work
and results in this thesis will inspire others to dig further into the topic.
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Abstract

Power system operators are facing increasing challenges with both scheduling
and real-time (RT) operation of generating units. The day-ahead unit com-
mitment (UC) is a well-established and essential part of today’s power system
operation, where forecast load data is used to schedule the next-day commitment
and operation of generating units. A well-formulated UC problem formulation,
where ramping and generating constraints are incorporated is crucial to ensure
an effective power system operation. This translates down to both economic
and stability aspects, where the aim is both to reduce operating costs as well as
ensuring sufficient ramping and generating reserves are available in the power
system at all times.

The current day-ahead UC problem models load forecasts as constant in
hour-intervals, where load change between hours is modeled as step functions.
There are several reasons why this formulation is so well-established and widely
used. It is simple and effective. However, it has some major weaknesses. It is
effective when load forecasts are accurate and when sub-hourly variations in load
are low. In power systems with high penetration of variable renewable energy
sources (VRES), two main problems are: 1) Power output from VRES is highly
intermittent and hard to predict accurately, and 2) large and steep variations
in power output from VRES require large ramping reserves. The current day-
ahead UC formulation does not capture such sub-hourly variations and sharp
ramping events, which can lead to ramping scarcity during RT operation of
power systems.

In this thesis, a continuous time day-ahead UC problem formulation will
be considered by using spline interpolation. The model uses the very same
day-ahead load data as the current UC model but will use this data not only to
schedule generating output profiles but also ramping profiles. Hence, sub-hourly
variations will be considered and generating units will be incorporated into the
UC problem. Furthermore, two modifications will be assessed and applied to
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this UC model are namely to 1) formulate robust generating constraints and 2)
introduce energy storage (ES) units in the system. The proposed UC model is
formulated as a mixed integer linear programming (MILP) problem and will be
compared to the traditional UC problem through simulations based on historical
load data.

Simulations are based on load data from California ISO (CASIO), and show
that overall, the proposed Bernstein UC model outperforms the traditional UC
model in terms of both operating costs and scarcity events. The models perform
similarly when day-ahead load forecasts are accurate, but for load data with
large forecast errors, steep ramping and large sub-hourly load variations, the
Bernstein model performs significantly better. RT operation costs are kept
much lower with the Bernstein model, much because the traditional model relies
more heavily on auxiliary generation during RT operation due to ramping and
generating scarcity.

In the cases where ES units were introduced, it became clear that robust
operating constraints were beneficial to keep sufficient generating and ramping
capacity available in the system during the charging/discharging cycles of the
ES units. The Bernstein model and the traditional model performed close to
equally well when identical robust constraints were applied to both models,
however, the natural robust nature of the Bernstein UC model ensured the
model performed excellently also without added robust generating constraints.
That was not the case for the traditional UC model.



Sammendrag

Nåværende kraftsystemer står overfor økende utfordringer knyttet til både plan-
leggings og sanntidsdrift av generatorenheter. Dagen-før Unit Commitment
(UC) er en veletablert og viktig del av dages kraftsystemdrift, der prognoselast-
data brukes til å planlegge driftstatus of produksjonseffekt fra generatorenheter.
En velformulert UC-problemformulering hvor ramping og generasjonskapasitet
tas høyde for er avgjørende for å sikte effektiv drift av kraftsystemer. Dette
kan oversettes både ned til økonomi- og stabilitetsaspekter, hvor målet er både
å minimere driftskostnader såvel som å sikre a tilstrekkelige rampe- og gen-
erasjonsreserver er tilgjengelige i kraftnettet til enhver tid.

Den nåværende UC-problemmodellen modellerer lastprognoser som konstante
på timesintervaller, hvor lastendringen mellom timesintervaller er modellert som
stegfunksjoner. Der er flere grunner til at denne formuleringen er så veletabler
og mye brukt; den er enkel og den er effektiv. Den har likevel enkelte klare
svakheter. Den er effektiv når lastprognosene er nøyaktige og når lastvari-
asjonene innad i timesintervallene er små. I kraftsystemer med en høy gpen-
etrasjon av variable fornybare energikilder (VRES) er to hovedproblemer at:
1) kraftproduksjon fra VRES er svært avhengig av værmønster og vanskelig å
forutse nøyaktig, og 2) store og skarpe variasjoner i utgangseffekt fra VRES kr-
ever store rampe-reserver. Den nåværende dagen-før UC-formuleringen fanger
ikke ikke opp variasjoner innad i timesintervaller and skarpe rampehendelser,
noe som kan føre til rampeknapphet under sanntidsdrift av kraftsystemer.

I denne oppgaven blir en kontinuerlig dagen-før UC problemformulering pre-
sentert ved å bruke Bernstein-polynomer av grad 3. Modellen benytter nøyak-
tig de samme dagen-før lastdatasettene som dagens model, men den vil bruke
disse dataene ikke bare til å definere kraftproduksjonsgrenser, men også rampe-
grenser. Dermed vil variasjoner inad i timersintervaller fanges opp slik at drift
av generatorenheter planlegges også på grunnlag av rampeegenskaper. Videre
vil to modifikasjoner vurderes og anvendt på denne modellen, 1) formulere ro-
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buste produksjonsgrenser for generatorene i systemet og 2) innføre energilagrings
(ES)-enheter i systemet. Modellen formuleres som en Mixed Integer Linear Pro-
gramming (MILP) problem og sammenlignes med sin motpart UC-formulering
med timesvis konstante lastprognoser, for hver simulering.

Simuleringene er basert på lastdata fra California ISO, og viser at totalt
sett, så presterer den foreslåtte Bernstein UC-modellen bedre enn den tradis-
jonelle UC-modellen, både når det gjelder driftskostnader og knapphetshen-
delser. Modellene presterer begge akseptabelt når dage-før lastprognosene er
nøyaktige, men for lastdatene med store prognosefeil presterer Bernstein-modellen
betydelig bedre enn den tradosjonelle modellen. Sanntids driftskostnader holdes
generelt mye lavere med Bernstein-modellen, mye grunnet at den tradisjonelle
modellen avhenger i langt større grad av kraft fra hjelpe-generatorer under san-
ntidsdrift på grunn av knapphet på generasjonskapasitet og ramping.

I tilfellene hvor ES-enherter ble introdusert i kraftsystemet, kom det tydelig
fram at robuste driftsbetingelser var fordelsaktige for å sørge for at tilstrekkelig
renererings- og rampekapasitet var tilgjengelig under lade- og utladningssyk-
lusene til ES-enhetene. Bernstein-modellen og den tradisjonelle modellen presterte
nært like bra når identiske robuste genereringsgrenser ble brukt på begge mod-
eller, men Bernstein-modellen presterte langt bedre enn den tradisjonelle mod-
ellen uten robuste grensebetingeler.



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Unit Commitment 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Previous attempt on improving UC scheduling accuracy . . . . . 6
2.3 General UC operation Constraints . . . . . . . . . . . . . . . . . 7

2.3.1 Generating and ES unit constraints . . . . . . . . . . . . 7
2.3.2 Binary operational variables . . . . . . . . . . . . . . . . . 8
2.3.3 Convention . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 UC objective function . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Cost Based objective function . . . . . . . . . . . . . . . . 12

2.5 The traditional day-ahead UC model implementation . . . . . . . 14
2.5.1 UC model vairables . . . . . . . . . . . . . . . . . . . . . 14

2.6 The Bernstein day-ahead UC model . . . . . . . . . . . . . . . . 15
2.6.1 Estimating DA load ramping . . . . . . . . . . . . . . . . 15
2.6.2 Hermite Splines . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.3 Bernstein polynomials . . . . . . . . . . . . . . . . . . . . 18
2.6.4 Bernstein Convex hull . . . . . . . . . . . . . . . . . . . . 21
2.6.5 UC model vairables . . . . . . . . . . . . . . . . . . . . . 22

3 Test System 23
3.1 Important simplifications and definitions . . . . . . . . . . . . . . 24
3.2 Generating Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



x CONTENTS

3.3 Energy Storage Systems . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 RT operation costs . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Bernstein UC RT operation . . . . . . . . . . . . . . . . . 30
3.4.2 Traditional UC RT operation . . . . . . . . . . . . . . . . 30

4 Robust Optimiaztion 33
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 The Unit Commitment problem . . . . . . . . . . . . . . . . . . . 34
4.3 Robust Load Forecast Model . . . . . . . . . . . . . . . . . . . . 35

4.3.1 Analysis of February 2019 CAISO Load Data . . . . . . . 35
4.3.2 Determining uncertainty boundaries . . . . . . . . . . . . 41

4.4 Robust VRES Forecast Model . . . . . . . . . . . . . . . . . . . . 43
4.4.1 Analysis of June 2018 CAISO VRES Data . . . . . . . . . 45
4.4.2 Determining uncertainty boundaries . . . . . . . . . . . . 45

4.5 Net Robust Optimization model . . . . . . . . . . . . . . . . . . 49
4.5.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Case Studies 51
5.1 Case Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Case 1: May 4th, 2018 Load Profile . . . . . . . . . . . . . . . . . 52
5.3 Case 2: August 4th, 2018 Load Profile . . . . . . . . . . . . . . . 53
5.4 Case 3: July 2nd, 2018 Load Profile with VRES penetration . . . 54

6 Results and discussion 55
6.1 Case 1: May 4th, 2018 Load Profile . . . . . . . . . . . . . . . . . 55

6.1.1 Standard UC model . . . . . . . . . . . . . . . . . . . . . 55
6.1.2 Robust UC model . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Standard UC model with ESs units . . . . . . . . . . . . . 57
6.1.4 Robust UC model with ESS units . . . . . . . . . . . . . 58

6.2 Case 2: August 4th, 2018 Load Profile . . . . . . . . . . . . . . . 59
6.2.1 Standard UC model . . . . . . . . . . . . . . . . . . . . . 59
6.2.2 Robust UC model . . . . . . . . . . . . . . . . . . . . . . 60
6.2.3 Standard UC model with ES units . . . . . . . . . . . . . 61
6.2.4 Robust UC model with ESS units . . . . . . . . . . . . . 62

6.3 Case 3: July 2nd, 2018 Load Profile with VRES penetration . . . 63
6.3.1 Standard UC model . . . . . . . . . . . . . . . . . . . . . 63
6.3.2 Robust UC model . . . . . . . . . . . . . . . . . . . . . . 64
6.3.3 Standard UC model with ESs units . . . . . . . . . . . . . 66
6.3.4 Robust UC model with ESS units . . . . . . . . . . . . . 67



CONTENTS xi

6.4 Discussion and interpretation . . . . . . . . . . . . . . . . . . . . 68
6.4.1 Summary of Case simulations . . . . . . . . . . . . . . . . 69

7 Conclusion 71
7.1 Bernstein vs Traditional UC problem formulation . . . . . . . . . 71
7.2 Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



xii CONTENTS



List of Figures

2.1 Binary UC variables . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Hermite Spline Interpolation . . . . . . . . . . . . . . . . . . . . 16
2.3 Bernstein polynomials of degree 3 . . . . . . . . . . . . . . . . . . 19
2.4 The Bernstein Convex Hull . . . . . . . . . . . . . . . . . . . . . 21

3.1 The IEEE 1996 Reliability Test System[1] with added ESS units
at buses 1, 13 and 16 . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Example of Uncertainty Sets for Robust Optimization . . . . . . 34
4.2 Day-ahead forecast error and load curve scaled down to maximum

values of 100 MW . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Forecast error plotted versus ramping of load . . . . . . . . . . . 37
4.4 Uncertainty boundaries for Robust UC . . . . . . . . . . . . . . . 42
4.5 Uncertainty boundaries for Robust UC . . . . . . . . . . . . . . . 43
4.6 VRES Weibull Distribution CAISO June 2018 . . . . . . . . . . . 46
4.7 VRES uncertainty boundaries for Robust UC . . . . . . . . . . . 47

5.1 CAISO May 5th 2018 Load Profile scaled down to a maximum
value of 2850 MW . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 CAISO August 4th 2018 Load Profile scaled down to a maximum
value of 2850 MW . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 CAISO August 4th 2018 Load Profile scaled down to a maximum
value of 2850 MW . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 Standard UC DA generating schedules May 4th . . . . . . . . . . 55
6.2 Robust UC DA generating schedules May 4th . . . . . . . . . . . 56
6.3 Standard UC with ES DA generating schedules May 4th . . . . . 57

xiii



xiv LIST OF FIGURES

6.4 Robust UC with ES DA generating schedules May 4th . . . . . . 58
6.5 Standard UC DA generating schedules August 4th . . . . . . . . 60
6.6 Robust UC DA generating schedules August 4th . . . . . . . . . 61
6.7 Standard UC with ES DA generating schedules August 4th . . . 61
6.8 Robust UC with ES DA generating schedules August 4th . . . . 63
6.9 Standard UC DA generating schedules July 2nd . . . . . . . . . . 64
6.10 Robust UC DA generating schedules July 2nd . . . . . . . . . . . 65
6.11 Standard UC with ES DA generating schedules July 2nd . . . . . 66
6.12 Robust UC with ES DA generating schedules July 2nd . . . . . . 67



List of Tables

3.1 Generator data used for UC optimization . . . . . . . . . . . . . 27
3.2 ESS data used for UC optimization . . . . . . . . . . . . . . . . . 29

4.1 Error data for February 2019 CAISO Load Data . . . . . . . . . 38
4.2 Robust Uncertainty set for UC model . . . . . . . . . . . . . . . 40
4.3 VRES Forecast model for CAISO June 2018 . . . . . . . . . . . . 48

6.1 Standard UC costs May 4th 2018 . . . . . . . . . . . . . . . . . . 56
6.2 Robust UC costs May 4th 2018 . . . . . . . . . . . . . . . . . . . 57
6.3 Standard with ESS UC costs May 4th 2018 . . . . . . . . . . . . 58
6.4 Robust with ES UC costs May 4th 2018 . . . . . . . . . . . . . . 59
6.5 Standard UC costs August 4th 2018 . . . . . . . . . . . . . . . . 59
6.6 Robust UC costs August 4th 2018 . . . . . . . . . . . . . . . . . 60
6.7 Standard with ES UC costs August 4th 2018 . . . . . . . . . . . 62
6.8 Robust with ES UC costs August 4th 2018 . . . . . . . . . . . . 62
6.9 Standard UC costs July 2nd 2018 (VRES penetration) . . . . . . 64
6.10 Standard UC costs July 2nd 2018 (no VRES) . . . . . . . . . . . 64
6.11 Robust UC costs July 2nd 2018 (VRES penetration) . . . . . . . 65
6.12 Standard UC costs July 2nd 2018 (no VRES) . . . . . . . . . . . 65
6.13 Standard with ES UC costs July 2nd 2018 (VRES penetration) . 66
6.14 Standard with ES UC costs July 2nd 2018 (no VRES) . . . . . . 67
6.15 Robust with ES UC costs July 2nd 2018 (VRES penetration) . . 68
6.16 Robust with ES UC costs July 2nd 2018 (no VRES) . . . . . . . 68
6.17 Summary UC costs Case 1: May 4th . . . . . . . . . . . . . . . . 69
6.18 Summary UC costs Case 2: August 4th . . . . . . . . . . . . . . 70
6.19 Summary UC costs Case 3: July 2nd (VRES penetration) . . . . 70
6.20 Summary UC costs Case 3: July 2nd (no VRES) . . . . . . . . . 70

xv



xvi LIST OF TABLES

7.1 IEEE 24-bus RTS Load distribution . . . . . . . . . . . . . . . . 97
7.2 IEEE 24-bus RTS line ratings . . . . . . . . . . . . . . . . . . . . 98



Abbreviations

ES Energy Storage

RT Real-time

UC Unit Commitment

VRES Variable Renewable Energy Source

MILP Mixed Integer Linear Programming

ISO Independent System Operator

IEEE
RTS

IEEE Reliability Test System

DA Day-ahead

SOC State of Charge

xvii



xviii LIST OF TABLES



Nomenclature

g, e, v, d, l generating unit, ES unit, VRES unit,load bus and transmission
line index

H(.), B(.) Hermite spline and Bernstein polynomial index

k integer hour interval index

D(t) load demand vector

G(t) power generating vector

E(t) state of charge vector

N(t) net load demand

P (t) power flow variable

R(t) ramping variable

U(t, g) Generating unit commitment variable

Y (t, g) Generating unit startup variable

Z(t, g) Generating unit shutdown variable

ηc charging efficiency

xix



xx LIST OF TABLES

ηd discharging efficiency

Pmax,min maximum/minimum power flow

SU maximum startup ramping

SD maximum shutdown ramping

CSU Startup costs

CSD Shutdown costs

RU,RD maximum ramp up and ramp down rate rate

UT minimum up-time

DT minimum down-time

Uini initial commitment status for generating unit

U0 initial ontime

S0 initial offtime

CU Upward reserve marginal cost

CD Downward reserve marginal cost

Emax Maximum storage capacity

Eini Initial energy level

CDA DA UC scheduling costs

CRT RT operation costs

CNET Net UC costs

c(.) RT cost function



LIST OF TABLES xxi

∆G
+/−
g (t) Up-/ down spinning reserves

ωL, ωU lower/upper boundaries of confidence interval

∆N
k,(.)
R,(.) robust uncertainty set at time interval k



xxii LIST OF TABLES



Chapter 1

Introduction

1.1 Motivation

The UC problem is a key aspect of power system operation and involves deter-
mining start-up and shut down schedules of thermal generating units, as well
as the deployment of ES resources, to meet a forecasted load in a future short-
term period[2]. Power system operation planning process is a continuous-time
mixed integer problem[3] that is commonly broken into discrete time steps as
an approximation. Reducing the continuous-time time frame to a given set of
time intervals enables the use of a finite set of variables to determine operation
schedules.

The UC problem consists of several markets, including several RT-markets
and forward markets, of which the day-ahead market is where most of the bulk-
energy trading takes place. The day-ahead UC problem where generating units
are scheduled day-ahead in 24-periods is well established. An independent sys-
tem operator (ISO) operates energy markets and is responsible for scheduling
and committing generators based on generating offers and load forecasts[4]. As
explained, the current day-ahead UC problem formulation models day-ahead
forecasted loads as piecewise constant on hour-intervals and solves the UC
problem as an optimization problem the most economically with an array of
constraints into taken consideration.

In recent years, there has been a steady increase in installed wind capacity
worldwide, with 51.3 GW being installed in 2018[5]. This is a part of the tran-
sition from thermal energy generation to renewable energy generation. With

1



2 CHAPTER 1. INTRODUCTION

an ever-increasing world population and electrification, the increase in installed
VRES is a natural trend that will continue for the foreseeable future. This de-
velopment is also accelerated by the Paris Agreement[6] that emphasizes that
global greenhouse gas emissions have to be reduced to keep global temperature
rise this century below the critical 2 degrees Celsius goal. VRES such as wind
turbines and photovoltaics are expected to play a crucial role in this develop-
ment, as they produce close to emission-free and renewable power and provide
unique opportunities for future power supply. Their variable nature, however,
introduces major challenges to power system operations.

Power systems with a high penetration of VRES can experience significant
ramping stress and scarcity, as VRES output is challenging to forecast and
integrate into power system operations on a large scale. The current day-ahead
UC with hourly constant generating schedules is designed for and works well for
power systems with low variability, but it’s starting to fall inadequate for power
systems with a high penetration of VRES. The motivation for this thesis will
thus be to test the use of a continuous-time formulation of the UC problem that
reflects intra-hour load variations and better account for ramping constraints
and profiles.

1.2 Scope
The continuous time UC formulation proposed in this thesis (denoted Bernstein
UC model) is based on Hermite spline data interpolation and Bernstein poly-
nomials. The traditional day-ahead UC formulation uses load forecasts in hour
intervals to determine the next day UC schedule. The proposed Bernstein UC
model will be based on the same exact input data as the traditional UC model.

The Bernstein UC model will use the DA forecast load data to estimate the
ramping of the next day load trajectory, and use this as an input parameter for
the day-ahead UC problem. A combination of the properties of Hermite splines
and Bernstein polynomials will be used to schedule smooth and continuous
generating curves, that also satisfy ramping and generating capacity constraints
in the system.

In addition to the Bernstein UC problem formulation, 4 sub-models will be
defined and tested to assess the impact of a set of possible future power system
scenarios. These models are designed to highlight the impact of 1) having ISO
operated ES units available in the power system, and 2) robust spinning reserve
constraints. The 4 different sub-models are:

• Standard UC model
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• Robust UC model

• Standard UC model with ES units

• Robust UC model with ES units

To compare the Bernstein model with the traditional UC model, the UC
problem will be simulated on historical load data. The simulations will deter-
mine DA operating costs and calculate the RT economic dispatch based on RT
load data. This thesis will only consider the day-ahead UC schedule and do not
include the effects of the hour-ahead energy market or the 5-minute RT energy
market. The goal for the Bernstein UC formulation is to reduce forecasting and
scheduling errors in the day-ahead UC model and to better capture sub-hourly
load variations. Hence, it is justifiable to exclude the hour-ahead and RT energy
market from the model. Demand response is also not considered in this thesis.

1.3 Contributions
This thesis aims at developing an alternative day-ahead UC model that better
approximates load ramping and thus reduces scheduling errors of day-ahead
UC, compared to the current UC model. The continuous-time UC formulation
will be designed to better capture sub-hourly load variations as well as the
intermittent generating nature of VRES.

The proposed UC model uses the same load forecasts as the current UC
model, but schedules the operation of thermal and ES units through Hermite
spline coefficients, instead of a step function. Hence, it can be considered as a
modification or simply an extension of the current UC model, that schedules
thermal and ES units based also on forecasted ramping trajectories such that
online units can respond more efficiently to load variations during RT operation.

1.4 Structure

Chapter 1 - Introduction, provides the main background and concepts for the
thesis, and defines scope and structure of the thesis.

Chapter 2 - Unit Commitment, explains main concepts related to UC scheduling
and proposes a Bernstein UC problem model.



4 CHAPTER 1. INTRODUCTION

Chapter 3 - Test System, provides a detailed overview of the IEEE 24-Bus
Reliability Test System(RTS), UC model definitions, and UC sub-models.

Chapter 4 - Robust Optimization, introduces fundamental robust optimization
concepts and presents the robust UC model that will be used in this thesis.

Chapter 5 - Case Studies, lists the load data cases that will be simulated in
this thesis.

Chapter 6 - Discussion, lists results from the case studies, and discusses and
interprets the results.

Chapter 7 - Conclusion, draws conclusions from Chapter 5 and presents sug-
gestions for future work.



Chapter 2

Unit Commitment

2.1 Background

The day-ahead UC problem has a pivotal role in power system operation, and
likewise, optimization techniques to solve the UC problem are constantly being
developed and improved. Extensive optimization literature surveys are dis-
cussed in [7][8][9]. The UC problem is very commonly formulated as a MILP
problem, with a given set of floating variables and binary variables determining
commitment. A high number of binary variables yield high computational costs,
so it is typically an aim to keep the number of binary variables to a minimum.
In [10], the UC problem is solved using only a single binary variable. For trans-
parency, this thesis will use a MILP UC formulation with 3 binary variables,
respectively representing startup, shutdown and commitment status.

One of the major weaknesses of the current day-ahead UC problem formu-
lation is that it does not directly capture sub-hourly variations in load. This
can yield high marginal prices during RT operation, resulting in a sub-optimal
RT economical dispatch for both the ISO as well as load consumers. The is-
sue can be improved by applying a "brute force" method of simply reducing
the step size of the UC scheduling intervals. Although this approach improves
the accuracy of the traditional UC model, it has some clear limitations. 1)
Narrowing the step size of the scheduling interval increases the number of UC
scheduling variables exponentially. 2) Discrete approximations do not reflect
the continuous-time ramping of the load. 3) Increasing the number for schedul-
ing intervals would also require more load forecast data and could potentially
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6 CHAPTER 2. UNIT COMMITMENT

complicate the day-ahead energy bidding and trading process[11].

2.2 Previous attempt on improving UC schedul-
ing accuracy

A number of UC models have been designed, aiming to better incorporate ramp-
ing constraints in the day-ahead generating unit scheduling. In [12][13] and
[14], ramping constraints are integrated into the UC problem though nonlinear
dynamic programming. The papers model ramping as linear on discrete-time
intervals on a finite number of time steps. The authors in [15] use interior point
methods to solve the UC problem as a composite of linear discrete time prob-
lems bounded together by ramping constraints. In papers [16][17][18] and [19],
ramping is incorporated into the UC problem as a discrete-time MILP problem
solved by Lagrangian relaxation, modeling ramping as piecewise constant on
discrete time intervals.

Dynamic programming has a tendency of being computationally exhaustive,
and all of the UC models referenced in the above paragraph solves the UC
problem as piecewise linear on discrete time intervals instead of a continuous-
time formulation. The authors in [20] and [3] solves the UC problem as a
continuous-time UC problem formulation operating with decision variables in
one-hour intervals, similar to the approach proposed in this thesis.

To account for day-ahead load forecasting errors, it is also common to in-
clude security constraints in the form of spinning and/or standing reserve re-
quirements. Two security constrained UC formulations are presented in [21][22],
and both models use spinning reserve constraints. While security constrained
UC models often result in higher DA scheduling costs, they may yield lower
RT operation costs and net UC costs than a standard UC formulation. Ap-
propriate security constraints must be selected wisely for optimal effect. This
will be addressed in Chapter 4. But while security constraints can improve UC
problem RT operation costs, their impact may only be so good in the current
UC problem formulation, as sub-hourly load variations are not captured in the
UC scheduling.

For the proposed Bernstein UC model, it is desirable to maintain the hourly
scheduling profile of generating units. The Bernstein UC model will be using
the same hourly binary variables as the traditional UC model, but instead of
one variable describing the constant hourly power profile, four Hermite spline
coefficient variables will be used, and they can yield an infinite number of load
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and generation trajectories while also imposing continuity and smoothness.

2.3 General UC operation Constraints

The UC problem is an optimization problem subject to a number of constraints,
including generating unit and ES unit power limits, ramping constraints, and
thermal limits for transmission lines. The balancing constraint for the UC prob-
lem is that generating input must be equal to the power demand in the system.
In cases of extreme generating capacity scarcity it may be necessary with load
shedding, and similarly in cases with a large overproduction from VRES, wind
or solar curtailment may be necessary[23]. These means, and load shedding, in
particular, may be extremely expensive and should be kept to a minimum.

At any given time, to maintain power system stability, the power generated
must be equal power consumed by loads. An advantage with a continuous time
UC problem formulation is that there also is an emphasis on power ramping
trajectories. By also considering these trajectories, the number of ramping
scarcity events in the grid could be reduced compared to the traditional day-
ahead UC formulation that only schedules for constant power balance on hourly
intervals.

∑
e,v,g

G(t)−
∑
v

Gcurtail(t) =
∑
d

D(t) +
∑
e

D(t)−
∑
d

Dshred(t) (2.1)

∑
e,v,g

R(t) =
∑
d

R(t) (2.2)

Equation 2.1 represents a general power balance, while 2.2 describes the
ramping trajectory balance between loads and generating units. The operation
and scheduling of generating units and ES units is based on cost functions,
power and ramping capacities, as well as available reserves.

2.3.1 Generating and ES unit constraints

There are a number of constraints that restrict how generating and ES units
can be operated, given by the physical properties of the respective units. These
constraints described in the section below. Certain operation constraints are
dependent on the commitment status of thermal units in the power system.
These binary variables are described below.
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2.3.2 Binary operational variables

The day-ahead UC problem in this thesis is formulated on a per-hour basis,
meaning that start-ups, shutdowns, and commitment status are considered in
hourly intervals. Let the variable U(t, g) denote commitment status for gen-
erating unit g at time t, Y (t, g) denotes a start-up, and the variable Z(t, g)
denotes a shutdown sequence. These variables are used for both the traditional
UC model and the proposed Bernstein UC model, but their interpretation is
slightly different for the two models. Let the figure below illustrate:

U(t,g) = 1

Y(t,g) = 1 Z(t,g) = 1

Bernstein
Traditional

Figure 2.1: Binary UC variables

As seen in Figure 2.1, the Bernstein generating curve is continuous, and
for this UC formulation, the variables Y (t, g) and Z(t, g) initiate startup- and
shutdown intervals. I.e., the generating profile is at nominal operation at the
end of the time interval for these variables. For the traditional UC formulation,
there is no continuity requirement, and for the startup- and shutdown intervals,
the nominal operation is assumed from the start of the interval. For both
formulations, there is an overlap between the variable Y (t, g) = 1 and U(t, g) =
1. Due to the slightly different binary variable interpretations for the two UC
models, their operating constraints are correspondingly implemented differently.
The constraints are formulated below.
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Bernstein model

(U(t, g)− Y (t, g))Pmin
g ≤ Pg(t) ≤ (U(t, g) + Z(t, g))Pmax

g (2.3)

Traditional model model

U(t, g)Pmin
g ≤ Pg(t) ≤ U(t, g)Pmax

g (2.4)

Equation 2.3 and Equation 2.4 define lower and upper bounds for the power
output from generating units. Notice that the power output from the thermal
units is restricted by the commitment status of the respective units. This is
because thermal units have minimum up- and downtimes and cannot instantly
be started up or shut down.

Power and energy constraints

Pmin
e,v,l ≤ Pe,v,l(t) ≤ Pmax

e,v,l (2.5)

Dmin
e,d ≤ De,d(t) ≤ Dmax

e,d (2.6)

Equation 2.5 is similar to Equation 2.4, and applies to VRES, ES units and
transmission lines. VRES and ES units do not have commitment variables,
and their operation is hence not bounded to certain periods of the day. The
lower bounds for the ES units define the maximum charging power, while upper
bounds define maximum discharging power. The power constraints for trans-
mission lines is given by thermal limits, and in many cases, Pmin

l = −Pmax
l , as

power can flow bidirectionally. In other cases, e.g. when power flows through a
transformer, the power may be restricted to flowing unidirectionally, such that
Pmin
l = 0. Equation 2.6 describes the minimum and maximum loading limits of

the system. These constraints limit the charging/discharging cycles of the ES
units in the system.

Emin
e ≤ Ee(t) ≤ Emax

e (2.7)

In Equation 2.7, the term Emax
e describes the maximum energy storage

capacities of the ES units, while Emin
e describes the minimum stored energy.

While the upper bounds only reflect the maximum storage capacity of the units,
the lower bounds are very much dependent on the type of ES system, as cer-
tain ES systems suffer from accelerated degradation at a low state of charge
(SOC)[24][25]. ES systems like e.g. lithium-ion batteries can experience signifi-
cant degradation with deep discharge cycles, while e.g. hydrogen fuel cells are
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not heavily affected by deep discharging. The stored energy in an ES unit at
time t is given as:

E(t) = E(t0) +

∫
t

(ηcD(τ)e −
G(τ)e
ηd

)dτ (2.8)

In the energy balance in 2.8, ηc and ηd respectively represent the charging
and discharging efficiencies of the ES unit. An important note, however, is that
the daily self-discharge is neglected in the energy balance equation. This is a
valid assumption for 1) short energy storage durations, and 2) for ES systems
with low self-discharge losses. The term E(t0) represents the initial energy in
an ES unit at the beginning of the UC scheduling interval.

Ramping constraints

In addition to power and energy constraints, all generating and ES units in power
systems have ramping constraints. The thermal units have different generating
constraints for startup, nominal operation and shutdown, as has been discussed
in [20]. The constraints can be written as:

dPg(t)

dt
≤ SUgY (t, g) +RUg(U(t, g)− Y (t, g) + Z(t, g)) (2.9)

dPg(t)

dt
≥ −RDgU(t, g)− SDgZ(t, g) (2.10)

−RDe ≤
dPe(t)

dt
≤ RUe (2.11)

The constraint above ensure that a thermal or ES unit cannot instantly
change its power output (or input). Equations 2.9 and 2.10 define these con-
straints as a function of the binary variables U(t, g), Y (t, g) and Z(t, g), and
SU (maximum startup ramp), RU (maximum ramp), RD(maximum ramp down)
and SD(maximum shutdown ramp). For this thesis it will be assumed that the
same ramping limits apply to both charging and discharging of ES units, which
is expressed in Equation 2.11.

2.3.3 Convention

For convenience, the load demand, power output, ramping, ES energy state and
thermal unit commitment status, can be represented in vectors denoted by the
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bold-faced letters D(t) = [D(t)1, ..., D(t)n]T , G(t) = [G(t)1, ..., G(t)n]T , R(t) =
dP(t)
dt = [R(t)1, ..., R(t)n]T , E(t) = [E(t)1, ..., E(t)n]T and U(t) = [U(t)1, ..., U(t)n]T .

The dimensions of these vectors are a function of number of load buses, thermal,
ERES and ES units.

While generating units, VRES units and demand buses have a uni-directional
flow of power, ES units have a bi-directional power flow. This means that an
ES can operate in two different states, namely charging, or discharging state
(stationary can be classified as either of these two states). During charging, the
ES unit will be seen as a load from the grid, and it will be seen as a generating
unit during discharging. As the generating units g only operate in one state,
they can be represented with only g commitment variables, U(t,g). The e ES
units can operate in two states, and for simplicity, the following definitions are
made:

Ge(t) =

{
Pe(t), ifPe(t) ≥ 0

0, otherwise
(2.12)

De(t) =

{
−Pe(t), ifPe(t) ≤ 0

0, otherwise
(2.13)

During charging, the ES units absorb energy from the grid and can be con-
sidered as a positive load, and during discharging they deliver power to the grid
and can be considered as a generating unit. This is expressed in Equations 2.12
and 2.13, where each ES unit is described by one load- and one generating unit
variable. The dimension of the vectors described above are as follows:

dimD(t) = d+ e (2.14)

dimG(t) = g + v + e (2.15)

dimR(t) = g + 2e+ v + d (2.16)

dimU(t) = g (2.17)

dimE(t) = e (2.18)

The dimension of D(t) in 2.14 is given by the number of system units that
consume power. The dimension of G(t) in 2.15 is given by the number of system
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units that deliver power to the grid. The dimension of R(t) in 2.16 is given by
the ramp rates of all system units. The ES units have one ramp-rate describing
charging and one ramp-rate describing discharging (they are assumed to be
equal in this thesis). As shown in Equation 2.17, the generating units have one
commitment variable each. Equation 2.18 describes the energy content in the
ES units in the system and thus E(t) has the dimension e.

2.4 UC objective function

The day-ahead UC problem is solved based on load demands, subject to all
constraints listed in Section 2.3. The UC problem itself is an optimization
problem that can be solved based on a number of different objective functions.
Some different UC environments include Cost based UC, Price based UC, Profit
based US and Security based US. In [9], these UC objective models are described
as:

• Cost based UC - the objective is to minimize production costs. Satisfying
hourly loads is a restriction.

• Price based UC - on/off statuses of generating units are decided by fuel
purchase prices and energy sales prices. Satisfying hourly loads is not a
restriction.

• Profit based UC - the objective is to maximize profit. Satisfying hourly
loads is not a restriction.

• Security based UC - the objective is to minimize production costs, given
added security constraints. Satisfying hourly loads is a restriction.

This thesis will consider Cost based UC and Security based UC models. They
have identical objective functions, and the Security based UC models used will
be derived as an extension of the Cost based UC models, with added spinning
reserve constraints. The objective functions are described below.

2.4.1 Cost Based objective function

The net operation costs for the UC commitment problem is a sum of the DA
UC scheduling costs and RT operational costs. The DA UC problem will be
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solved based on the DA objective cost function, but the overall performance of
the UC model also depends on RT costs. The DA objective function is:

CDA =
∑
g

∫ tend

t=0

(cg(Ug(t, g), Gg(t)) + SUgε
SU
g (t) + SDgε

SD
g (t))dt

+
∑
e

∫ tend

t=0

(ce,d(Ge(t))− ce,c(De(t)))dt+
∑
d

∫ tend

t=0

(cshred(Dshred(t)))dt

(2.19)

In 2.19, cg(Ug(t, g), Gg(t)) represents the generation costs [$/MWh] of gen-
eration unit g at time t as a function of commitment power output. εSU,SD

g

represent infinitely small logical functions that initiate start-up and shutdown-
costs. ce,d(Ge(t)) and ce,c(De(t)) respectively represent discharging and charg-
ing costs for ES units, while cshred(Dshred(t)) represents load shredding costs.
Assuming that adequate generating capacity is available to meet all loads, no
load shredding is allowed in DA planning of the Cost Based UC model. In the
DA cost function, costs of VRES generation is assumed to be negligible. The
DA UC problem is solved by minimizing the objective function, Equation 2.19.

The RT operation cost function is similar to the DA cost function but is
calculated in RT. In a perfect load and VRES forecast and scheduling scenario,
RT operation costs are equal to zero. Hence, RT operation costs reflect how
effective a given day-ahead UC model formulation is, as poor and inaccurate
scheduling results in high RT costs. The RT cost function is:

CRT =
∑
g

∫ tend

t=0

(CUg(∆G+
g (t)) + CDg(∆G−g (t)))dt+

∑
aux

∫ tend

t=0

(caux(Gaux(t)))dt

+
∑
d

∫ tend

t=0

(cshred(∆Dshred(t)))dt+
∑
v

∫ tend

t=0

(ccurtail(∆Gcurtail(t)))dt

(2.20)

In Equation 2.20, CUg(∆G+
g (t)) and CDg(∆G−g (t)) respectively represent

the cost of applying up- and down reserves of the committed generating units.
caux(Gaux(t)) represents the cost of auxiliary generation that is committed to
supply extra ramping or generating capacity in the system in RT. The last two
terms in the equation represent the cost of unscheduled load shedding and VRES
curtailment.
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While minimizing Equation 2.19 will be the objective function for the DA
scheduling problem, the performance of the UC model will be evaluated in terms
of how well the sum of Equation 2.19 and 2.20 has been minimized. The cost
CDA is calculated before the scheduling period, while DRT is known only at the
end of the scheduling period. This can be expressed as:

CNET = min(CDA + CRT ) (2.21)

The net operational costs explained in Equation 2.21 will be used as one of
the indicators to assess and compare the performance of the proposed Bernstein
UC model with the traditional UC model in this thesis.

2.5 The traditional day-ahead UC model imple-
mentation

The UC model uses one floating variable, describing the magnitude of the power
output[10]. The same goes for scheduling of ES unit operation. The magnitude
of the power output and input is obviously bounded by the maximum and
minimum power and energy capacities of the thermal and ES units. The ramping
capacities are considered from hour to hour:

P (k)g,e−P (k−1)g,e ≤ (U(k−1, g)−Y (k−1, g)+Z(k−1, g))RUg,e+Y (k−1, g)SUg,e

(2.22)

P (k)g,e − P (k − 1)g,e ≥ −U(k − 1, g)RDg,e − Z(k − 1, g)SDg,e (2.23)

Equation 2.22 and 2.23 constrain the maximum and minimum ramping of
units from hour k − 1 to k. The ramping limits are only considered as average
ramping per hour.

2.5.1 UC model vairables

The traditional UC model has 3 logical variables per thermal unit, and 1 variable
denoting the magnitude of hourly power flow. The ES units have 3 variables
per hourly interval, one denoting charging, one denoting discharging and one
for ES state of charge.
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2.6 The Bernstein day-ahead UC model
A goal for the proposed continuous time UC formulation is to base the US
model on the same available input data as for the traditional UC model, and it
is desirable to use this data to estimate the ramping of the load at these hour
interval points. For a continuous-time UC formulation, the hour to hour ramping
constraints used for the traditional UC model (Equation 2.22 and Equation 2.23)
are no longer sufficient, as they do not capture or constrain intra-hour ramping
variations. These issues will be addressed in this section.

2.6.1 Estimating DA load ramping
The forecasted net system load at time interval k is denoted N(k), and the
forecasted ramping at the same points as R(k). The ramping R(k) can be ap-
proximated numerically by using a finite difference method. Using the numerical
approximation method described [26], the point ramping can be approximated
as:

R(k)end =
−3N(k) + 4N(k + 1)−N(k + 2)

2k
(2.24)

R(k)mid =
N(k + 1)−N(k − 1)

2k
(2.25)

The three-point approximation method in 2.24 will be used to approximate
the ramping in endpoints, while the two-point approximation in 2.25 will be
used to approximate ramping in midpoints.

2.6.2 Hermite Splines
Now that the ramping and magnitude of the load is estimated at each hour-
interval point, it is desirable to establish a continuous time function that inter-
polates all the values into one load forecast curve. Hermite spline interpolation
is a powerful tool that is widely employed to smoothly interpolate a curve be-
tween data points[27]. This is illustrated in the figure below.

In Figure 2.2, the points N(k) and N(k+ 1) correspond to the magnitude of
the forecasted load at times k and k + 1, while R(k) and R(k + 1) correspond
with the ramping of the curve of the same points. The smooth curve between
the points is obtained simply by multiplying the 4 load forecast points with 4
Hermite basis polynomials and add them together[27]. The four polynomials
are:
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Figure 2.2: Hermite Spline Interpolation

H00(t) = 2t3 − 3t2 + 1 (2.26)

H01(t) = t3 − 2t2 + t (2.27)

H10(t) = −2t3 + 3t2 (2.28)

H11(t) = t3 − t2 (2.29)

The polynomials in 2.26 can be used to create a continuous time curve inside
time intervals. Between each time interval k and k, the time variable t ranges
linearly from t = 0 to t = 1. Notice that for t = 0, H00(t) = 1 while all other
polynomials are zero, and for t = 1, H10(t) = 1 while all other polynomials
are zero. There will be one continuous time curve for each time interval k. For
convenience, one can introduce the coefficients Nk

H00 = N(k), Nk
H01 = R(k),

Nk
H10 = N(k + 1) and Nk

H11 = R(k + 1). The continuous time curve can then
be expressed as:

NH(k, t) = NH00(k)H00(t) +NH01(k)H01(t) +NH10(k)H10(t) +NH11(k)H11(t)
(2.30)

Equation 2.30 describes the interpolated load curve for time interval k, with
the continuous time subinterval t ∈ [0, 1] for each k. For k = kend, it is assumed
that N(k+ 1) = N(k). A key property automatically implied from the Hermite
spline interpolation, is continuity and smoothness between time intervals. The
time interval coefficients are related as follows:

NH10(k) = NH00(k + 1) (2.31)
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NH11(k) = NH01(k + 1) (2.32)

Equation 2.31 relates the magnitude of the load curve at the end of a period
k to the magnitude of the curve at the beginning of the next period k + 1.
Similarly, Equation 2.32 relates the ramping between intervals. This means for
each time interval, the load forecast for the Bernstein UC model is composed of
4 coefficients, as opposed to 1 for the traditional UC formulation. Analogous to
this, the thermal and ES will be scheduled with 4 coefficients for each interval.

Generating and ES unit trajectory

With the load forecasts modeled by Hermite splines, it follows naturally to also
model ES and generating unit trajectories by the same approach. For this, one
can use a similar denotation as for the load forecast curve. Let generating curves
and load curves be denoted as:

Gg,e
H (k, t) = Gg,e

H00(k)H00(t) +Gg,e
H01(k)H01(t) +Gg,e

H10(k)H10(t) +Gg,e
H11(k)H11(t)

(2.33)

Dd,e
H (k, t) = Dd,e

H00(k)H00(t)+Dd,e
H01(k)H01(t)+Dd,e

H10(k)H10(t)+Dd,e
H11(k)H11(t)

(2.34)
Equation 2.33 describes the thermal unit output and ES unit discharging

curves, while Equation 2.34 describes ES unit charge trajectories as well as
load forecasts at load bus d. Please note that NH(k, t) =

∑
dD

d
H(k, t). While

smoothness is implicitly implied for the load forecast model, it is not for the
generating trajectories, as generating trajectories can be considered independent
for each time interval k. To enforce continuity, it is hence necessary to define
constraints that relate the generating trajectories. These constraints are similar
to Equation 2.31 and Equation 2.32.

Gg,e
H10(k) = Gg,e

H00(k + 1) (2.35)
Gg,e

H11(k) = Gg,e
H01(k + 1) (2.36)

De
H10(k) = De

H00(k + 1) (2.37)
De

H11(k) = De
H01(k + 1) (2.38)
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The constraints 2.35 enforce magnitude continuity and ramping continuity
in the intersection points of the time intervals. However, these constraints alone
are not enough to enforce generating capacity and ramping constraints for gen-
erating trajectories. While the coefficients in 2.35 can be used to constrain
ramping and power output at the hourly interval intersection points, they do
not directly constrain intra-hour variations. To enforce this, a linear change of
basis to Bernstein polynomials will be used.

2.6.3 Bernstein polynomials

There are several spline models that can be used to approximate the continuous
trajectory curve of an interpolation problem, based on a set of discrete data
sets. The order of these splines will increase the accuracy of the trajectory
model. Like the Hermite splines, Bernstein polynomials are a widely employed
interpolation tool, with its most powerful feature being the convex hull property.
This will be addressed later in this section. A Bernstein polynomial is defined
by:

Bi,n(t) =

(
n

i

)
ti(1− t)n−1 (2.39)

In 2.39,
(
n
i

)
represents the binomial coefficient, and the Bernstein polynomi-

als of degree n form the basis for the power polynomials of degree n[28]. A linear
combination of these polynomials can be used to create an infinite number of
trajectory curves. The Hermite polynomial in 2.30 can be linearly transformed
to a Bernstein power polynomial of degree 3 through a change of basis matrix.

Figure 2.3 shows the Bernstein polynomials of degree 3, as well as the tra-
jectory curve of each respective polynomial. As for the Hermite spline, a linear
combination of these polynomials can be used to determine generating and ES
power flow trajectories. For this, the Bernstein coefficients Gg,e

Bi3(k) and Dd,e
Bi3(k)

are introduced, and the power trajectories can be expressed as:

Gg,e
B (k, t) = Gg,e

B03(k)B0,3(t)+Gg,e
B13(k)B1,3(t)+Gg,e

B23(k)B2,3(t)+Gg,e
B33(k)B3,3(t)

(2.40)

Dd,e
B (k, t) = Dd,e

B03(k)B0,3(t)+Dd,e
B13(k)B1,3(t)+Dd,e

B23(k)B2,3(t)+Dd,e
B33(k)B3,3(t)

(2.41)
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Figure 2.3: Bernstein polynomials of degree 3

Equation 2.40 and Equation 2.41 are power flow curves on the same form as
2.33 and Equation 2.34. As Hermite splines and Bernstein polynomials of degree
3 are linearly related, it is possible relate the Bernstein and Hermite polynomials
as follows Gg,e

H (k, t) = Gg,e
B (k, t), Dd,e

H (k, t) = Dd,e
B (k, t). This approach has beed

used in [3] and [20], and yields the following:

H(t) = DB3(t)→ Gg,e
H (k) = DTGg,e

B3(k) (2.42)

where D is the change-of-basis matrix

D =


1 1 0 0
0 1

3 0 0
0 0 1 1
0 0 − 1

3 0

 (2.43)

In 2.43, the vectors H(t) = [H00(t), H01(t), H10(t), H11(t)]T and B3(t) =
[B03(t),
B13(t), B23(t), B33(t)]T are related through the matrix D, and subsequently
the coefficient vectors Gg,e

H (k) = [Gg,e
H00(k), Gg,e

H01(k), Gg,e
H10(k), Gg,e

H11(k)]T and
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Gg,e
B3(k) = [Gg,e

B03(k), Gg,e
B13(k), Gg,e

B23(k), Gg,e
B33(k)]T are related through the trans-

pose of the matrix D.

Ramping trajectory

The generating curve Gg,e
B (k, t) describes the power flow to/from thermal and

ES units, and hence the slope of the curve, or ramping, is given by the derivative
of this function. Any Bernstein power polynomial of degree (n-1) can be written
as a linear combination of Bernstein polynomials of degree n[29]. Hence it is
possible to write the derivative of a degree 3 Bernstein power polynomial as a
linear combination of Bernstein polynomial of degree 2. This has been done in
[3]:

Ḃ3(t) = AB2(t) (2.44)

where A is the matrix

A =


−3 0 0
3 −3 0
0 3 −3
0 0 3

 (2.45)

In Equation 2.44, B2(t) = [B02(t), B12(t), B22(t)]T is a vector of Bernstein
polynomials of degree 2. By combining this with Equation 2.42 it is possible to
write the following (where Ġ

g,e

B3(k) = [Ġg,e
B1(k), Ġg,e

B2(k), Ġg,e
B3(k)]T is a vector of

Bernstein ramping coefficients):

Ġ
g,e

B3(k) = MGg,e
H (k) (2.46)

where M is the matrix

M = KTWT =

 0 1 0 0
−3 −1 3 −1
0 0 0 1

 (2.47)

Equation 2.46 relates the ramping coefficients of the Bernstein formulation
with the Hermite spline coefficients through the Matrix in 2.47. Now that both
the Bernstein load and Bernstein ramping trajectory coefficients are expressed
in terms of Hermite spline coefficients, the Bernstein convex hull property can
be used to defined generating and ramping constraints.
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Figure 2.4: The Bernstein Convex Hull

2.6.4 Bernstein Convex hull

A very important characteristic of Bernstein polynomials is their convex hull
property, which yields that the value of the polynomial at any time t is bounded
by the minimum and maximum Bernstein coefficients[30]. This means that
maximum and minimum power and ramping capacities for thermal and ES
units can be constrained by the Bernstein convex hull property.

Figure 2.4 shows an example of a Bernstein convex hull given 4 data points.
The interpolated curve is always contained by this hull, hence the complex hull
can be used to define operating conditions for the thermal and ES units. Power
output constraints are:

max(Gg
B03(k), Gg

B13(k), Gg
B23(k), Gg

B33(k)) ≤ Pmax
g (U(t, g) + Z(t, g)) (2.48)

min(Gg
B03(k), Gg

B13(k), Gg
B23(k), Gg

B33(k)) ≥ Pmin
g (U(t, g)− Y (t, g)) (2.49)

max(Ge
B03(k), Ge

B13(k), Ge
B23(k), Ge

B33(k)) ≤ Pmax
e (2.50)

min(Ge
B03(k), Ge

B13(k), Ge
B23(k), Ge

B33(k)) ≥ Pmin
e (2.51)

, while the ramping constraints are
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max(Ġg
B1(k), Ġg

B2(k), Ġg
B3(k)) ≤ SUgY (t, g) +RU(U(t, g)− Y (t, g) + Z(t, g))

(2.52)

min(Ġg
B1(k), Ġg

B2(k), Ġg
B3(k)) ≥ RDgU(t, g) + SDgZ(t, g) (2.53)

max(Ġg
B1(k), Ġg

B2(k), Ġg
B3(k)) ≤ RUe (2.54)

min(Ġg
B1(k), Ġg

B2(k), Ġg
B3(k)) ≥ RDe (2.55)

Equation 2.48 defines upper and lower boundaries of the convex for generat-
ing output, while Equation 2.52 defines upper and lower ramping limits. Notice
how the convex hull of the generating trajectories has 4 data points, while the
convex hull of the ramping trajectories has 3 data points. This is because the
convex hull of a n degree Bernstein polynomial is defined by n+ 1 data points.

2.6.5 UC model vairables
The Bernstein UC model has 3 logical variables per thermal unit, and 4 vari-
able denoting the power trajectory of hourly power flow. The ES units have 9
variables per hourly interval, 4 denoting charging power trajectory, 4 denoting
discharging power trajectory and one for ES state of charge.



Chapter 3

Test System

Method

The proposed Bernstein UC formulation in this model will be assessed using the
1996 IEEE 24-bus RTS, with data from [1] and [31]. The schematic of the test
system is shown in Figure 3.1. All load data that will be used in the test will
be scaled to a maximum value of 2850 MW, which is the maximum generating
capacity of the system. Load data used for simulations in this thesis is from
CAISO[32]. Simulations are done in two stages, where the DA UC scheduling
costs are calculated as a first step before the RT economic dispatch is simulated
in stage two.

For each load data simulation, the Bernstein UC models will be solved using
the submodels:

• Standard UC formulation

• Robust UC formulation

• Standard UC formulation with ES units

• Robust UC formulation with ES units

Data for the ES units is presented in this chapter, while the robust UC model
constraints are presented in Chapter 4.

To asses the performance of the proposed UC model, the operation costs of
the proposed Bernstein-polynomial based model will be compared to the same
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simulation on a traditional UC model. This comparison will be used not only
for a purely cost-based side-by-side comparison but will also be used to evaluate
potential ramping scarcity in the UC models.

3.1 Important simplifications and definitions

Auxiliary power generating units that may be employed during the real-time
operation of the system respond on demand, and will thus not have associated
commitment restrictions. IEEE 24-Bus RTS load bus and transmission line
ratings are listed in Appendix B.

The day-ahead UC models in this thesis will operate under the following
assumptions and simplifications:

1. All generating units in the system will operate with the DA determined
commitment status. Power output, however, can be regulated to meet the
load demand in the system.

2. ES units will operate under the day-ahead operating schedule. The charg-
ing/discharging cycles of the ES units will be determined from the DA
scheduling, independent of RT load demands. Hence, all response to real-
time load deviations will be done by generating and auxiliary units only.

3. If the load demand or ramping of the load exceeds the capacity of the
committed generating units and ES units in the system at any point,
the extra power is supplied by auxiliary generating units that respond to
demand in RT. It is assumed that there is always enough power available
from these auxiliary units to meet the net load demand in the system.

4. To avoid modifications of load distribution and transmission line data, it
is assumed that all power from VRES reduces net load uniformly for the
entire load bus system.

5. The system is assumed to have a power factor equal to 1. This means
that the thermal limits of transmission lines between buses (see Figure
3.1) given in MVA can be considered in MW.

6. Resistive losses in transmission lines are ignored, and it is assumed that
power can flow freely in any direction in the transmission lines, within the
thermal limits of the transmission.
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Figure 3.1: The IEEE 1996 Reliability Test System[1] with added ESS units at
buses 1, 13 and 16
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A change in load demand will affect the net output of the generating units
in the systems. But as transmission lines have given thermal limits, it may be
necessary to re-direct the flow directions and hence also power generation in the
system. This is mainly a consideration when the RT demand is significantly
higher than the day-ahead forecasted demand. These potential extra costs are
accounted for and considered in the real-time UC model.

The test system that will be used for this paper is the IEEE 24-Bus RTS, with
32 generating units distributed over a total of 12 buses. The generating units will
be considered on a per-bus basis, i.e. 12 generating buses, denoted by g1, ..., g12,
and their characteristics are listed in the table below. Additionally, a bulk
auxiliary generating unit has been added. This unit will not be considered for
the day-ahead scheduling of UC, but will only serve during the RT calculations
of system operation costs, to supply the ramping and generating capacity the
committed generating units cannot supply themselves.

3.2 Generating Units

The auxiliary generating unit will be considered as one bulk unit and denotes
all auxiliary power that has been supplied to the system during operation. The
generating unit data used in this paper is based on on [1],[31], [33] and [34], and
is listed in Table 3.1.

The marginal cost for auxiliary generating units has been capped at 40
MW/h which is greater than the marginal costs of all 12 generating units in
the 24-Bus system. This has been determined such that the expensive auxiliary
generating unit will only be called on to keep the generation-demand balance
in the system from becoming infeasible. A poorly constructed UC formulation
model may need great amounts of auxiliary generation, and will hence have high
operation-costs, which is not desirable.

As generating units have minimum up- and down times, their operation sta-
tus at the beginning of the scheduling period is important. The commitment
status and current ontime/downtime in Table 3.1 has been randomly selected
such that available generating capacity in the system at the beginning of the
scheduling interval is sufficient to meet standard (and robust) generating con-
straints.
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Gen. a b c CSD CSU RU RD UT DT
Unit ($/MW 2) ($/MW ) ($) ($) ($) (MW/h) (MW/h) (h) (h)
g1 0 13.32 0 1430.4 1430.4 120 120 8 4
g2 0 13.32 0 1430.4 1430.4 120 120 8 4
g3 0 20.70 0 1725 1725 350 350 8 8
g4 0 20.93 0 3056.7 3056.7 240 240 12 10
g5 0 26.11 0 437 437 60 60 4 2
g6 0 10.52 0 312 312 155 155 8 8
g7 0 10.52 0 312 312 155 155 8 8
g8 0 6.02 0 0 0 280 280 1 1
g9 0 5.47 0 0 0 280 280 1 1
g10 0 0 0 0 0 300 300 1 1
g11 0 10.52 0 624 624 180 180 8 4
g12 0 10.89 0 2298 2298 240 240 8 4
gaux 0 40 0 x x x x x x

Gen. SD SU Pmin Pmax U0 Uini S0 CU CD
Unit (MW/h) (MW/h) (MW) (MW) (h) (0/1) (h) ($/MW) ($/MW) Bus
g1 120 120 30.4 152 22 1 0 15 14 1
g2 120 120 30.4 152 22 1 0 15 14 2
g3 350 350 140 350 0 0 20 10 9 7
g4 240 240 206.65 591 22 1 0 8 7 13
g5 60 60 12 60 0 0 10 7 5 15
g6 155 155 54.25 155 0 0 20 16 14 15
g7 155 155 54.25 155 10 1 0 16 14 16
g8 280 280 100 400 50 1 0 0 0 18
g9 280 280 100 400 16 1 0 0 0 21
g10 300 300 0 300 24 1 0 0 0 22
g11 180 180 108.5 310 10 1 0 17 16 23
g12 240 240 75 350 50 1 0 16 14 23
gaux x x x x 0 0 0 x x x

Table 3.1: Generator data used for UC optimization
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a Quadratic generating cost SU Maximum startup ramping
b Linear generating cost Pmin Minimum output power
c Fixed generating cost Pmax Maximum output power
CSD Shutdown costs U0 Current ontime
CSU Startup costs Uini Initial commitment status
RU Maximum ramp up rate S0 Current offtime
RD Maximum ramp down rate CU Upward reserve cost
UT Minimum uptime CD Downward reserve cost
DT Minimum downtime Bus Location of generating unit
SD Maximum shutdown ramping

Table 3.1 shows the generating unit data the will be used for the UC problem.
Note that all fixed commitment costs and quadratic generating costs are set to
be zero. Generating units g8, g9 and g10 do not have any startup- or shutdown
costs, and additionally generating unit g10 is the only unit without any lower
boundary for power output. The buses are located as shown in Figure 3.1, and
their operation is constrained by the thermal limits of the lines between the
buses.

3.3 Energy Storage Systems

Although ES units are not a part of the original IEEE 24-Bus RTS, three ESS
units have been added to some of the UC case studies in this thesis, to better
represent a modern power grid. The 3 ES units have been placed on bus 1,
13 and 16. The ES units placed on bus 1 and 16 are two identical lithium-ion
battery banks, with energy storage capacities of 100MWh and rated power of
100 MW. The ES unit on bus 13 is a pumped hydro storage system, with a
rated capacity and power of 1000 MWh and 250 MW, respectively.

The ES unit data is retrieved from [24], and ramping rate specifications
are based on data from [35] and [20]. Batteries are prone to degradation, and
their health is highly sensitive to charging and discharging patters. It is not
good practice to have discharging cycles between a full state of charge and no
state of charge, as this will accelerate degradation significantly and reduce the
battery lifetime[36]. However, for this UC model formulation, assume that the
SOC describes the available capacity in the battery, where degradation has been
taken into account.
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ESS RU RD Pmax Pmin Emax Eini

Unit (MW/h) (MW/h) (MW) (MW) (MWh) (MWh) ηc ηd Bus
es1 2000 2000 100 -100 100 0 0.95 0.95 1
es2 1500 1500 250 -250 1000 0 0.90 0.90 13
es3 2000 2000 100 -100 100 0 0.95 0.95 16

Table 3.2: ESS data used for UC optimization

RU Maximum ramp up rate Eini Initial energy
RD Maximum ramp down rate ηc Charging efficiency
Pmax Maximum output power ηc Discharging efficiency
Pmin Minimum output power Bus Location of ESS unit
Emax Maximum storage capacity

Table 3.2 shows the ES unit specs for the UC model used in this paper. The
parameter Eini describes the initial energy in a given ES unit. A constraint
that has been used in [37] is that the SOC of all ESS units at the end of the
scheduling interval is equal to the initial SOC at the beginning of the scheduling
interval. The same constraint will be used in this UC model:

Eend = Eini (3.1)

The term Eend in Equation 3.1 is the energy in a ESS unit at the end of
the scheduling period. This constraint ensures that all ESS units are ready
to operate under the same conditions in every scheduling interval. The charg-
ing/discharging cycles of the ESS units are unrestricted.

3.4 RT operation costs
CAISO load data is given in hourly intervals for the day-ahead load forecasts,
and averaged values in 5-minute intervals for the RT load demand data. Hence,
the RT economical dispatch will be simulated in 5-minute intervals. The RT
operation cost function is given in 2.20, accounting for the cost of shredded load
and curtailed VRES. For the UC simulations in this thesis, no load needs to
be shredded and no VRES needs to be curtailed. Thus, the RT operation cost
function for 5-minute dispatch window becomes:

CRT =
∑
g,t

(CUg∆G+
g (t) + CDg∆G−g (t)) +

∑
aux,t

cauxGaux(t) (3.2)
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As shown in Equation 3.2, the RT operation costs is now a function of
up/down reserve deployment per generating unit and auxiliary generation. The
RT operation constraints are an extension of the UC operations constraints
listed in Chapter 2, restricting both generating output and ramping. The gen-
erating output power constraints are:

3.4.1 Bernstein UC RT operation

GDA
g (t) + ∆G+

g (t) + ∆G−g (t) ≤ Pmax
g (U(t, g) + Z(t, g)) (3.3)

GDA
g (t) + ∆G+

g (t) + ∆G−g (t) ≥ Pmin
g (U(t, g)− Y (t, g)) (3.4)

(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≤ RUg

12
(U(t, g)− Y (t, g) + Z(t, g)) +

SUg

12
Y (t, g)

(3.5)

(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≥ RDg

12
U(t, g) +

SDg

12
Z(t, g)

(3.6)

Equation 3.3 and Equation 3.4 constrain the generating reserves that are
available per thermal unit as a function of the day-ahead scheduled operation.
Equation 3.5 and Equation 3.6 define the ramping constraints of the thermal
units as averaged values in 5-minute intervals, in correspondence with the RT
load dispatch data from CAISO.

3.4.2 Traditional UC RT operation

GDA
g (t) + ∆G+

g (t) + ∆G−g (t) ≤ Pmax
g U(t, g) (3.7)

GDA
g (t) + ∆G+

g (t) + ∆G−g (t) ≥ Pmin
g U(t, g) (3.8)
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(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≤ RUg

12
(U(t, g)− Y (t, g)) +

SUg

12
Y (t, g), if U(t− 1, g) = 1 and U(t, g) = 1

(3.9)

(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≥ RDg

12
U(t, g), if U(t− 1, g) = 1 and U(t, g) = 1

(3.10)

(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≤ SUg, if U(t− 1, g) = 0 and U(t, g) = 1

(3.11)

(GDA
g (t) + ∆G+

g (t) + ∆G−g (t))− (GDA
g (t− 1) + ∆G+

g (t− 1) + ∆G−g (t− 1))

≤ SDg, if U(t− 1, g) = 1 and U(t, g) = 0

(3.12)

Equation 3.3 and Equation 3.4 restrict the output from thermal units dur-
ing commitment hours. Equation 3.9 and Equation 3.10 restrict ramping during
commitment hours. Equation 3.11 and Equation 3.12 restrict the ramping dur-
ing startup and shutdown sequences. Notice that the startup and shutdown
ramping constraints for the Bernstein UC formulation are tighter than for the
traditional UC model, as the two models have a different startup and shutdown
syntax.
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Chapter 4

Robust Optimiaztion

4.1 Background

Robust UC models have gained much attention in recent years[38]. Robust op-
timization uses uncertainty sets, assuming the true probability distributions of
the uncertainty parameter to be unknown. A basic robust optimization problem
uses hard constraints, such that no realization of the unknown data set can vio-
late the constraints. The authors in [39] propose a contingency constrained UC
model, that schedules UC to be able to handle simultaneous worst-case contin-
gencies at once, and thereby inflicting very conservative robust UC uncertainty
sets.

A more sophisticated approach to robust optimization is to restrict the un-
certainty sets. This can help eliminate the most extreme realizations of an
uncertainty set[40]. Certain realizations are assumed very unlikely to occur and
can impose very tight bounds. Hence it is reasonable to restrict such extreme
realizations by using softer uncertainty sets.

In [41] a robust UC model is constructed with a 95% confidence interval for
the uncertainty sets, and in [42] a 90% confidence interval is used. In papers
[43][44][41] and [42] the authors discuss the advantages of using elements of
stochastic optimization in robust optimization, and in all of these papers, his-
torical load data is used to design appropriate uncertainty sets. This approach
will also be used for the robust UC model in this thesis.

Figure 4.1 shows two uncertainty set as function of x - and y-variables. Let
the square be the "primary" set and the ellipse another uncertainty set that
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Figure 4.1: Example of Uncertainty Sets for Robust Optimization

has been introduced to restrict possible realizations of the net uncertainty set.
Any possible realization of the uncertainty set is the pink area inside both the
rectangle and the ellipse. The most extreme realizations of the uncertainty set
that would have been the corners of the red square are now eliminated, and the
extreme cases are now at the intersection points of the curve and the rectangle.
This is just an example of how a combination of the variables in x -direction and
y-direction can be restricted by selecting appropriate uncertainty sets.

4.2 The Unit Commitment problem

A crucial part of scheduling generators to meet demands in a UC problem
is to achieve economic savings[45]. Another critical aspect is maximizing the
efficiency of the real-time operation of power systems, as the cost of electricity
is linked directly with the efficiency of power systems[46]. In recent years,
power systems have experienced a significant increase in the penetration level
of VRES. This has contributed to lower power production costs, but perhaps
more importantly, it helps reduce carbon emissions.

However, VRES provide major challenges in the scheduling of power systems
operations, as the power output of renewables cannot be predicted accurately
in the day-ahead planning [47][48]. Another problem with VRES such as wind
and solar is the magnitudes of the variations, which yields the need for fast-
ramping capacity in power systems[49][50]. To maintain system stability in
power systems with increasing uncertainties, it may hence be necessary to design
Robust UC problem formulations.

The day-ahead UC problem formulation deals with two main uncertainty
parameters, namely, load forecast uncertainty and VRES output uncertainty. In
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systems dominated by thermal and hydro generating units and low penetration
of VRES, the uncertainty parameter of biggest concern is the load forecast. The
trend in current and future power systems is increasing penetration of VRES,
and it has become increasingly important to establish VRES output forecast
models. In this thesis, two separate forecast uncertainty sets will be determined,
one for the load forecast, and one for the VRES output forecast. Finally, the
two uncertainty sets will be merged into one single uncertainty set.

4.3 Robust Load Forecast Model
The worst case scenarios that will be used to make appropriate uncertainty sets
for the robust load forecast model are based on historical load data from CAISO.
Load data from the full month of February 2019 will be analyzed to determine
the following:

• Maximum day-total deviation from forecasted generating schedule, rela-
tive to the total load demand in the system

• Peak deviations relative to peak demand in the system

• Hours of a day with large deviations from forecasted generating schedule.
This robust model will consider any deviation larger than 2/3 of the peak
deviation, as a large deviation.

• Investigate any possible correlations between forecast error and: peak
load, time of the day or load ramping. If any relation, this will be used to
define the base for the robust constraints.

4.3.1 Analysis of February 2019 CAISO Load Data
The data analysis is divided into to main parts: The first part of the analysis
will investigate if the day-ahead forecasting error can be linked to the following:
1) Amplitude of the load, 2) Time of the day, and 3) Ramping of the load. The
second part of this analysis will be used to determine numerical values for the
uncertainty sets.

Observations

In Figure 4.2, the orange curve shows the accumulated loads for the entire month
of February 2019, scaled down to a maximum value of 100 MW. The blue curve



36 CHAPTER 4. ROBUST OPTIMIAZTION

Figure 4.2: Day-ahead forecast error and load curve scaled down to maximum
values of 100 MW

shows the accumulated forecast errors for the same time period, scaled down
to a maximum value of 100MW. There seems to be little correlation between
peak load and forecast errors, and similarly, there seem to be no clear trends
in the errors related to time of the day (e.g. no linear change in errors related
to the time of the day). However, there seems to be a relation between the
load ramping and the forecast errors. The figure shows peaks in forecast errors
where the load has the steepest ramps.

Another observation that can be made is that there are two main peak loads
in Figure 4.2 one occurring at the morning hours at about 7:00 AM and another
one at about 6:00 PM. This is a very typical profile, as discussed in [51] and [52],
with one peak occuring at between hour 0:00 PM-11.59 AM and another one
between 12.00 AM-11.59 PM. Steep ramping of the load curve is often related
to the ramp up and down from these peaks.

To investigate the load ramping hypothesis further, Figure 4.3 shows the
forecast error on the y-axis plotted versus the load ramping on the x -axis. The
absolute value of the forecast errors is plotted, i.e. the graph does not distinguish
between negative or positive forecast errors but only shows the magnitude of
the errors.

The forecast errors in Figure 4.3 are scattered over a large area, indicating
a large standard deviation for forecast errors. However, it is possible to observe
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Figure 4.3: Forecast error plotted versus ramping of load

a trend in increasing forecast errors with steeper load ramping, which supports
the observation made from Figure 4.2, where there appears to be a correlation
between forecast errors and ramping.

Numerical Data

Step two of the Robust UC problem formulation is to identify the numerical
values for the uncertainty sets. The first parameter to be determined is the
total forecast error for a day divided by the total load demand for the same
day. The next parameter to be determined is the fraction of errors for a given
day that is upward and downward errors, i.e. when the forecasted load curve is
greater/lower than the real-time demand curve. The maximum robust bound-
aries for a given load curve will be calculated by determining the worst case
forecast error of the load profile, and dividing it by the peak load demand the
same day. The last parameter to be determined is the period during a day at
which a large forecast error has occurred. As discussed above, a large forecast
error in this model will be defined as any deviation larger than 2/3 of the peak
deviation.
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Fraction of Fraction of Peak error/ Fraction with
Date Error error pos. error neg. peak load large error

February 1. 1.7% 24.1% 75.9% 6.1% 6.3%
February 2. 2.0% 33.2% 66.8% 4.4% 22.2%
February 3. 2.4% 52.2% 47.8% 5.9% 5.6%
February 4. 2.4% 25.0% 75.0% 6.8% 10.4%
February 5. 4.4% 6.2% 93.8% 9.9% 24.0%
February 6.* 3.7% 10.6% 89.4% 14.9% 5.9%
February 7. 2.6% 23.9% 76.1% 8.5% 10.1%
February 8. 2.4% 7.5% 92.5% 6.7% 10.4%
February 9. 2.1% 60.6% 39.4% 4.4% 16.3%
February 10. 2.4% 75.3% 24.7% 5.4% 14.2%
February 11. 2.5% 34.5% 65.5% 6.6% 13.9%
February 12. 3.5% 85.8% 14.2% 7.2% 33.0%
February 13. 2.2% 67.3% 32.7% 5.9% 15.6%
February 14. 2.8% 38.1% 61.8% 6.4% 18.8%
February 15. 2.8% 37.7% 62.3% 6.0% 14.2%
February 16. 2.4% 81.9% 18.1% 6.0% 11.5%
February 17. 2.1% 49.6% 50.4% 5.7% 11.8%
February 18. 2.9% 18.5% 81.5% 9.6% 9.4%
February 19. 2.8% 49.4% 50.6% 8.3% 7.3%
February 20. 2.4% 49.8% 50.2% 6.5% 18.8%
February 21. 2.7% 66.6% 33.4% 7.0% 16.3%
February 22. 3.0% 34.5% 65.5% 8.8% 9.7%
February 23. 2.4% 46.1% 53.9% 6.6% 10.8%
February 24. 2.2% 16.4% 83.6% 4.8% 20.8%
February 25. 3.3% 15.9% 84.1% 7.0% 17.0%
February 26. 2.3% 38.0% 62.0% 6.5% 14.6%
February 27. 3.6% 12.4% 87.6% 7.7% 14.6%
February 28. 4.0% 10.0% 90.0% 8.1% 25.0%
Maximum 4.4% 85.8% 93.8% 14.9% 33.0%

Table 4.1: Error data for February 2019 CAISO Load Data
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Uncertainty Sets

By calculating the parameters in Table 4.1 as fractions, they can easily be
applied to any load curve, which is what will be done for the robust formulation
used for the UC problem in this thesis. As discussed in the introduction of
this chapter, the next step for the Robust optimization problem is to use the
data from Table 4.1 to determine appropriate uncertainty sets for the robust
UC formulation.

The worst possible day-total error occurs on February 5. with a total forecast
error of 4.4%. The robust constraint in thus paper will be set at 15% to ensure
that all errors in Table 4.1 is contained in the uncertainty set. Another takeaway
is the fractions of the total errors that are positive/negative errors, respectively.
On February 12., 85.5% of the error was positive errors (RT load greater than
forecasted load), while on February 5., 93.9% of the errors were negative errors
(real-time load lower than forecasted load). For the rest of the month the ratio
between positive and negative errors varies, some days negative errors dominate,
other days positive errors dominate. For the uncertainty set, it is hence assumed
that 100% of the error can occur in either direction.

The peak error in the forecasts occurs on February 6, with a peak error of
14.9%. An important note here, however, is that the CAISO load data for this
particular day may be faulty. Between 5.00PM and 6.00Pm there is a sudden
load drop before the normal load curve shape resumes after 6.00PM. The peak
error for all other days is well below 10%. Hence, 9% of the total peak will be
used as the benchmark upper error for the uncertainty set.

The last parameter that will be used is the fraction of the day where large
errors occur. As mentioned above, these are all errors greater than 2/3 in
magnitude of the peak error for the day. On February 12., this occurs for 33%
of the scheduling period, which translates to 8 hours. The uncertainty set in
this Robust Optimization problem will thus be that the peak error of 15% of the
curve max can occur for 8 hours, in both a negative an positive direction. As
the upper bound for day-total error is determined to be at 5%, the remaining
16 hours of the 24-hour scheduling time frame, where peak-error doesn’t occur,
will have error bounds such that the day-total allowed error sums up to 5%.

Table 4.2 sums up all parameters that make up the uncertainty set for the
Robust UC optimization problem, based on February 2019 CAISO load data.
Notice how the peak-error is assumed for only 8 hours per day, to narrow down
the uncertainty set. As discussed in the introduction of this chapter, these are
not hard constraints but are valid when there’s a very low probability of extreme
realization of uncertainties, as e.g. large errors occurring for an entire 24 hours
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Robust Optimization Uncertainty Set
Total Fraction of Fraction of Peak error/ Hours with
Error error pos. error neg. peak load large error
15% 100% 100% 9% 8

Table 4.2: Robust Uncertainty set for UC model

of a day.
The uncertainty bounds are calculated as follows:

∆NR,max
k = 9% ·maxN(t) (4.1)

∫ 24

0

∆NR
k (t)dt = 15% ·

∫ 24

0

N(t)dt (4.2)

In Equation 4.1, ∆NR,max
k is the upper uncertainty bound. The lower un-

certainty bound is calculated such that Equation 4.2 is fulfilled. For all intervals
that are not peak-errors intervals, ∆NR

k (t) is uniformly distributed. This will
be illustrated with examples below. A model that determines the 8 peak-error
intervals will also be addressed below. And, finally, as it assumed that 100%
of the forecast error can occur in both a negative and positive direction, the
following can be stated:

∆NR,up
k (t) = 100%∆NR

k (t) = ∆NR
k (t) (4.3)

∆NR,down
k (t) = 100%∆NR

k (t) = ∆NR
k (t) (4.4)

Equations 4.3 and 4.4 can be modified such that the error bounds for a
given system become asymmetrical and shifted in either a positive or negative
direction. However, as seen from Table 4.1, the errors shift from positive to
negative day by day, hence this thesis will consider symmetric error bounds.

Integrating ramping into the Robust Optimization model

As discussed above, based on the observations and interpretations of Figure
4.2 and Figure 4.3, there seems to be a correlation between load ramping and
forecast errors. The ramping periods of the load, are related to the peak load
demands throughout the day. Again, as discussed above, there are typically
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two peak demands points throughout the day, one occurring between 0:00PM-
11.59AM and another one between 12.00AM-11.59PM.

As the uncertainty set is determined to account for 8 hours of peak error, it
is reasonable to assume that 4 of these errors will occur around each peak-load.
Hence this uncertainty set will designate 4 max-error hours between 0:00PM-
11.59AM and 4 between 12.00AM-11.59PM. The 4 hours for each time intervals
will be divided into two, where 2 maximum-peak errors will form uncertainty
bounds for the two hours with the larges ramping-up and the remaining two
for the two hours with the greatest ramping down. This uncertainty set will
be used to determine both the negative and positive uncertainty bound for the
load forecast trajectory.

4.3.2 Determining uncertainty boundaries

Now that the robust load uncertainty set has been defined, it can be applied
to the load demand data that will be used of the UC problem formulation in
this thesis. As two main UC formulations are discussed in this paper, namely
the continuous time Bernstein-model and the traditional hour-to-hour constant
model. This means that the Robust uncertainty sets have to be applied slightly
differently for the models.

The uncertainty bounds will be used to define robust generating constraints
by considering the generating capacity of the committed generating unit in the
system:

U(t, g)Pmax
g +

∑
e

Ge(t) ≥ Nk(t) +
∑
e

De(t) + ∆NR
k (t) (4.5)

U(t, g)Pmin
g +

∑
e

Ge(t) ≤ Nk(t) +
∑
e

De(t)−∆NR
k (t) (4.6)

Equation 4.5 simply states that the generating capacity of the committed
generating units at any given time in the system must be greater than the
forecasted load plus uncertainty boundaries. Similarly, Equation 4.6 states that
the minimum output of all committed units must be lower than forecasted load
minus uncertainty boundaries.

The peak values of the uncertainty sets are the same for both models. How-
ever, the uncertainty bounds for the Bernstein model will be described by Bern-
stein coefficients and will enforce continuity. For the Bernstein model, the in-
terval between a peak-error interval and a non-peak interval will be an interval
where the uncertainty bounds ramp between peak and non-peak. This will
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be illustrated in the figures below. The traditional UC model has no conti-
nuity constraints and will have separate bounds for peak-error intervals and
non-peak-error intervals.

To illustrate how the uncertainty bounds will be applied to a load curve,
CAISO load data from an arbitrary day can be selected. A day with relative
large forecast errors and ripple is May 4th, 2018, which will be used here as an
example. First, the data will be scaled down to the IEEE RTS maximum of
2850 MW. The results are shown in the figures and discussed below.

The Bernstein Load model

Figure 4.4: Uncertainty boundaries for Robust UC

In Figure 4.4, first consider plot a). The dark blue curve shows the day-ahead
forecasted load, while the green curve is the real-time load. The cyan curves are
the uncertainty boundaries calculated from the day-ahead forecasted load. As
shown in plot b), the uncertainty curves are identical with respect to negative
and positive errors, and are added as constraints on top of the forecasted load
curve as shown in plot a). Notice that the RT load curve is captured by the
robust boundaries. The ramping at the hour-interval points is defined to be
zero.
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The traditional UC model

Figure 4.5: Uncertainty boundaries for Robust UC

In Figure 4.5, first consider plot a). The red curve shows the day-ahead
forecasted load, while the green curve is the real-time load. The cyan curves are
the uncertainty boundaries calculated from the day-ahead forecasted load. As
shown in plot b), the uncertainty curves are identical with respect to negative
and positive errors, and are added as constraints on top of the forecasted load
curve as shown in plot a). Notice that the real-time load curve is captured by
the robust boundaries for almost the entire time frame, except from a small
deviation in the interval 11:00 PM - midnight.

4.4 Robust VRES Forecast Model

Designing an efficient VRES forecast model is a challenging problem, but like-
wise an essential element in integrating VRES into power system operations. A
number of advanced forecast models are evaluated in [53], and reflect that wind
power forecasting is highly dependent on typography, climate and a number of
other parameters. The most accurate forecast models are also the most complex
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ones and may require a large number of input parameters. Due to the limited
availability of historical CAISO VRES forecast data, some simplifications are
needed for the VRES forecast model in this thesis.

In [54], a stochastic UC model is designed and evaluated, using a two-stage
UC approach. In stage one, the traditional day-ahead UC scheduling is carried
out to determine the next-day commitment scheduling of slow-start generating
units. Step two is carried out inside the scheduling horizon, using rolling plan-
ning. RT VRES generating data is used to generate scenario trees[55], and the
UC problem is resolved and updated intra-period, using data from the scenario
trees as inputs. The UC problem is resolved and updated inside the scheduling
interval a finite number of times, e.g. every 3 hours. In [56], a similar two-stage
stochastic UC model is described, where commitment decisions are made as a
first step and dispatch decisions are made on a second stage based on given
scenario realizations.

Both of the stochastic UC models discussed above are described as relatively
computational-costly and assume a number of wind power forecast and dispatch
data to be available. In both cases, the stochastic models perform better than a
deterministic counterpart, but not by much. As the historical VRES data from
CAISO is given as net bulk generation from both solar and wind, it’s harder to
determine specific stochastic probability distributions to forecast VRES gener-
ation. Additionally, solar and wind have a different generating nature. Hence,
it is justifiable to use a deterministic VRES forecast model in this thesis.

Background

The California power system has a large penetration of VRES, as the state has
very suitable conditions for both solar and wind generation. In 2017, 18.03% of
the net in-state power generation in California was from wind and solar[57], but
more renewable energy sources are scheduled to be installed the coming years,
as the state aims to meet its Renewables Portfolio Standard, which requires
utilities to source 50% of retail sales from renewables by 2030[58][59].

The ratio between solar to wind generation in California in 2017 was close to
1.9:1[57], and has remained in the same range since. The power output profiles
from wind and solar farms are fundamentally different. Both are VRES and have
a random generating nature, but while the power output from wind farms tend
to flatter and more consistent throughout the day, solar plants only generate
power during sun hours. In power systems with a large penetration of solar,
such as in California, USA, the power production from solar farms during sun
hours causes a rapid decline in power and a rapid increase in power that must be
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supplied by other energy sources during sunrise and sunset, respectively[60][61].
Thus, the net power demand curve of a power system resembles the silhouette
of a duck and is appropriately often referred to as a duck curve. The rapid
power ramping during sunset and sunrise is a major challenge with such power
systems and will be considered in the robust forecast model.

To illustrate the impact of VRES in power systems, this thesis will consider
CAISO load data from one of the summer months, when the power output
from both wind and solar is at an annual high. An important notice here is
that no day-ahead renewable power forecast is available from CAISO. Hence, it
is necessary to establish a VRES generation forecast model. In the months
of June and July, power generation from both solar and wind is relatively
simililar[59][62][63][64], so this thesis will establish a VRES forecast model for
July 2018 based on data from June 2018.

4.4.1 Analysis of June 2018 CAISO VRES Data
The robust VRES forecast model used in this thesis is based on CAISO load
data from VRES the entire month of June 2018. The shape of the VRES fore-
cast curve is based on the shape of the average VRES power profile for the entire
month of June, while the amplitude of the generating curve is determined by
from a Weibull probability distribution regression on the peak renewable gener-
ation outputs for each day of the month. The Weibull probability distribution
is:

f(x|a, b) =

{
b
a (x

a )b−1e(
x
a )b , x ≥ 0

0, x < 0
(4.7)

The parameters a and b in Equation 4.7 are determined using MATLAB,
and can be found to be a = 13312 and b = 11.168. The Expected value of this
function is E(x) = 13201 MW.

4.4.2 Determining uncertainty boundaries
To increase the reliability of the forecast model, a two-side bounded 80%-
confidence interval[65] based on the Weibull distribution will be used to deter-
mine operation constraints for the day-ahead UC scheduling. The constraints
are: ∫ ωL

0

b

a
(
x

a
)b−1e(

x
a )bdx = 10% (4.8)
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∫ ∞
ωU

b

a
(
x

a
)b−1e(

x
a )bdx = 10% (4.9)

In Equations 4.8 and 4.9, the variables ωL and ωU respectively represent
lower and upper generating constraints that will be used in the UC model.
These parameters are calculated to be ωL = 10883 MW and ωU = 14345 MW.
The Weibull distribution along with Expected value and 80% confidence interval
boundaries is shown in Figure 4.6.

Figure 4.6: VRES Weibull Distribution CAISO June 2018

The RT VRES generation data from CAISO is given as a net sum of wind and
solar. Ideally, the data from solar and wind should have been treated separately
as they can yield quite different probability distributions due to their different
generating nature. As they are combined to one data set, the data from the
Weibull distribution regression above will be applied to the net VRES model.
The forecast model will be determined by using the hourly average values for
VRES generation in June 2018 and scaling them up to a maximum value of the
E(x) = 13201 MW. Generation constraints and forecast equations are shown
below.

Nforecast
net (t) = Nforecast(t)−Gforecast

V RES (t) (4.10)
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∑
g

PmaxU(t, g) +
∑
e

Ge(t) ≥ Nforecast(t)− ωL

E(x)
Gforecast

V RES (t) +
∑
e

De(t)

(4.11)

∑
g

PminU(t, g) +
∑
e

Ge(t) ≤ Nforecast(t)− ωU

E(x)
Gforecast

V RES (t) +
∑
e

De(t)

(4.12)

Equation 4.10 states that the forecasted net load is the forecasted load minus
the forecasted generation from VRES. Equations 4.11 and 4.12 incorporate the
forecast uncertainties of the VRES model into the UC model by ensuring that
the committed generating units can compensate for all deviations in VRES
power output within the confidence interval boundaries of the VRES. This is
shown in the figure below.

Figure 4.7: VRES uncertainty boundaries for Robust UC

In Figure 4.7, the leftmost plot shows the average CAISO output from VRES
output in 5-minute intervals during the month of June 2018, while the rightmost
figure shows the derived robust VRES power forecast and confidence boundaries,
based on the June 2018 average VRES power and the Weibull distribution de-
scribed above. The corresponding Bernstein coefficients for the VRES forecast
model are shown in Table 4.3:
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H00 H01 H10 H11

t1 4052.684344 -106.8227696 3919.843641 -158.8586382
t2 3919.843641 -158.8586382 3734.967068 -132.6069561
t3 3734.967068 -132.6069561 3654.629728 -111.9112806
t4 3654.629728 -111.9112806 3511.144507 -193.5072625
t5 3511.144507 -193.5072625 3267.615203 -181.8018892
t6 3267.615203 -181.8018892 3147.540728 1365.051511
t7 3147.540728 1365.051511 5997.718224 3290.684319
t8 5997.718224 3290.684319 9728.909366 2701.783569
t9 9728.909366 2701.783569 11401.28536 1207.091903
t10 11401.28536 1207.091903 12143.09317 598.358547
t11 12143.09317 598.358547 12598.00246 343.1238702
t12 12598.00246 343.1238702 12829.34091 202.4256422
t13 12829.34091 202.4256422 13002.85374 151.8821638
t14 13002.85374 151.8821638 13133.10524 99.07312921
t15 13133.10524 99.07312921 13201 -30.89067804
t16 13201 -30.89067804 13071.32388 -343.0159865
t17 13071.32388 -343.0159865 12514.96803 -1179.114082
t18 12514.96803 -1179.114082 10713.09572 -2888.368299
t19 10713.09572 -2888.368299 6738.231428 -3322.024512
t20 6738.231428 -3322.024512 4069.046694 -1373.07086
t21 4069.046694 -1373.07086 3992.089708 -28.12166499
t22 3992.089708 -28.12166499 4012.803364 64.17277643
t23 4012.803364 64.17277643 4120.435261 53.81594841
t24 4120.435261 53.81594841 4120.435261 -53.81594841

Table 4.3: VRES Forecast model for CAISO June 2018
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4.5 Net Robust Optimization model
In case studies 1 and 2 in this thesis, the only uncertainty variable is the day-
ahead load forecast profile. In case 3, VRES input is also included. Hence, the
day-ahead load forecast model needs to account for the uncertainty sets of both
forecasts. To determine uncertainty constraints, the combined standard uncer-
tainty model in [66] will be used to combine the robust generating constraints
with the VRES power forecast uncertainty to form new generating constraints
for the Robust optimization model.

∆NR,vres
k,lo =

√
(∆NR,vres

k )2 + (1− ωL

E(x)
)Gforecast

V RES )2 (4.13)

∆NR,vres
k,up =

√
(∆NR,vres

k )2 + ((
ωU

E(x)
− 1)Gforecast

V RES )2 (4.14)

In Equation 4.13 and 4.12, the parameter NR,vres
k is the robust uncertainty

boundary defined in Chapter 4, while the variables ωL, ωU and E(x) are the
VRES forecast variables described in this section. ∆NR,vres

k,up and ∆NR,vres
k,lo

represents the net upper and lower robust generating constraints that will be
used for the robust formulation of the UC model.

4.5.1 Applicability
As details of the probability distributions of forecasting errors are assumed to be
unknown, a robust optimization model is preferred over a stochastic optimiza-
tion model in this thesis. Data from CAISO has been used to provide empirical
forecast error data. An important note for the model is that the sum of uncer-
tainty bounds and forecasted load will be capped at 2850 MW, as this is the
maximum possible load in the IEEE 24-bus RTS.

The robust load uncertainty set is defined in terms of relative functions, and
can, in theory, be applied to any load forecast set. The robust VRES uncertainty
set, however, is specifically designed for the California Power System, and only
for summer months. To justly apply the robust VRES uncertainty set, it will
hence be applied to the case study on July 2nd, 2018, such that the forecast set
is based on as recent empirical VRES data as possible.
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Chapter 5

Case Studies

The simulation case studies will not consider any hour-ahead markets, where
the DA load forecasts are updated and further market bids are submitted. This
is an important market aspect of power systems operations in many market
structures and with many ISO[67], but will not be included in the case studies.
This is has been done to avoid complicating the UC model further, and is beyond
the scope of this thesis. The main goal of these computations is to compare the
Bernstein UC model with the current UC model.

The proposed UC model will be assessed through three different case studies.
Each case will be simulated using the Bernstein UC model, and compared to
the traditional UC model simulated on the same case. For each of the three
cases, the UC simulation will be solved using the four submodels, that aim to
highlight possible UC scheduling scenarios and their impact on scheduling costs.
ES systems exist in a wide number of technologies and can provide an array
of enhancements in power system operations[68][69]. A higher penetration of
renewable generation introduces greater uncertainties, and introduce variations
of greater magnitude and frequency[70] than before. It is thus expedient to
design UC models that investigate this issue.

The UC models are simulated on three different load data sets from CAISO.
One Case is selected to represent large load forecasting errors, another case is
selected to represent low forecasting errors, and a final set is selected to show
the impact of VRES penetration. The data set that is used for the large forecast
error test is CAISO load data from May 4th, 2018, the low forecast error data
set is CAISO load data from August 4th, 2018, while the data set with VRES
penetration is from July 2nd, 2018. The July data set is selected because power

51
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both solar and wind is at an annual high during summer, and hence the impact
of VRES will be as large as possible for this case.

5.1 Case Solver

The cases were solved using GAMS CPLEX solver with a duality gap of 0.0,
on a computer with a 2x2.60 GHz Xeon processor and 384 GB of RAM. The
number of binary variables is the same for both the Bernstein and traditional
UC model, while the number of floating variables, equations and constraints are
higher for the Bernstein model, and hence the Bernstein models require slightly
more computation time. All models were solved in under 2s. Simulation results
are presented in Chapter 6. Code used to solve the UC problem is listen in
Appendix C.

5.2 Case 1: May 4th, 2018 Load Profile

Figure 5.1: CAISO May 5th 2018 Load Profile scaled down to a maximum value
of 2850 MW
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Figure 5.1 shows the CAISO Load Data from May 5th, 2018 load profile. The
data has moderate DA forecast errors throughout the entire scheduling interval
but has significant forecast errors from hour 20 to 24. These errors make up
main challenges for the RT UC operation and must be countered during the RT
operation of the grid. For Case 1, May 4th, the Bernstein model forecasts a
0.15% larger energy demand than the traditional model.

5.3 Case 2: August 4th, 2018 Load Profile

Figure 5.2: CAISO August 4th 2018 Load Profile scaled down to a maximum
value of 2850 MW

Figure 5.2 shows the CAISO Load Data from August 4th, 2018 load profile.
The data has low DA forecast errors throughout the entire scheduling interval.
Hence, RT operation costs are expected to be low. For Case 2, August 4th, the
Bernstein UC model forecasts a 0.05% larger energy demand than the traditional
model.
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5.4 Case 3: July 2nd, 2018 Load Profile with
VRES penetration

Figure 5.3: CAISO August 4th 2018 Load Profile scaled down to a maximum
value of 2850 MW

Figure 5.3 shows the CAISO Load Data from July 2nd, 2018 load profile.
The data has moderate DA forecast load errors and low VRES forecast errors
throughout the entire scheduling interval. The case will be simulated on the net
load demand curve which is the total system demand minus power from VRES.
For reference, the case will also be solved without VRES penetration. For
Case 3, July 2nd, the Bernstein model forecasts a 0.22% larger energy demand
than the traditional model with VRES penetration, and a 0.17% larger energy
demand without VRES generation.



Chapter 6

Results and discussion

6.1 Case 1: May 4th, 2018 Load Profile

6.1.1 Standard UC model

(a) Bernstein model (b) Traditional model

Figure 6.1: Standard UC DA generating schedules May 4th

Figure 6.1a and Figure 6.1b respectively show the generating schedule of the
standard UC case, using the Bernstein and traditional model. The forecasted
load ramps consistently from time t = 12 to t = 20. The Bernstein model
shuts down generating unit 4 and starts up generating unit 6 at time t = 0.

55
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Generating unit 5 is committed from time t = 12, and unit 3 is committed from
time t = 13. The traditional model also shuts down unit 4 and starts up unit 6
at time t = 0. Generating unit 5 is committed from time t = 13 and generating
unit 3 is committed from time t = 14.

Model DA cost RT operation Net costs
Bernstein $473,129.67 $20,610.87 $493,740.54
Standard $471,106.12 $112,607.51 $583,713.63

Table 6.1: Standard UC costs May 4th 2018

Table 6.1 shows that the DA costs from both models are in the same range.
The RT operation costs are much higher for the traditional model than the
Bernstein model. Both models suffer from generating capacity scarcity between
hours 18-21, however, the traditional model suffers from both ramping and
generating scarcity during hours 11-14 and relies heavily on auxiliary generation.
Hence the net operation costs are $89,973.09 higher for the traditional model
than the Bernstein model.

6.1.2 Robust UC model

(a) Bernstein model (b) Traditional model

Figure 6.2: Robust UC DA generating schedules May 4th

Figure 6.2a and Figure 6.2b respectively show the generating schedule of
the robust UC case, using the Bernstein and traditional model. The Bernstein
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model starts ups generating unit 6 at time t = 0. The traditional model shuts
down unit 4 and starts up unit 6 at time t = 0. Generating unit 3 is committed
from time t = 6 and shut down at time t = 15. Generating unit 4 is committed
again from time t = 15.

Model DA cost RT operation Net costs
Bernstein $493,876.44 $12,763.43 $506,639.87
Standard $484,495.56 $17,071.09 $501,566.65

Table 6.2: Robust UC costs May 4th 2018

As seen in Table 6.2, the Bernstein model has much higher DA scheduling
costs than the traditional model, but does in return have lower RT operating
costs. Neither of the models need to commit any auxiliary generation, unlike
the standard model without the added robust constraints. The net operation
costs are $5,073.22 higher for the Bernstein model.

6.1.3 Standard UC model with ESs units

(a) Bernstein model (b) Traditional model

Figure 6.3: Standard UC with ES DA generating schedules May 4th

Figure 6.3a and Figure 6.3b respectively show the generating schedule of the
standard UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 4 and starts up generating unit 6 at time t
= 0. Generating unit 3 is committed from time t = 17. The traditional model
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also shuts down unit 4 and starts up unit 6 at time t = 0. Generating unit 3 is
committed from time t = 18 and runs through the rest of the scheduling period.

Model DA cost RT operation Net costs
Bernstein $463,630.88 $30,420.11 $494,050.99
Traditional $461,655.54 $388,646.39 $850,301.93

Table 6.3: Standard with ESS UC costs May 4th 2018

Both models need auxiliary generation in the time span from t = 11 to t
= 22, but while the Bernstein model only needs moderate inputs from period
t = 10 to t = 16, the traditional model relies heavily on auxiliary generation
input from t = 9 to t = 18. As seen in Table 6.3, this causes high RT operation
costs, with net operation costs for the traditional model $356,250.94 higher than
the Bernstein model. While the ES units contribute to peak load shaving[23]
by discharging power from time t = 12, the heavy price paid is due to less
generating units being committed and hence less available generating capacity
during the peak load period. Figures showing ES unit power flow and SOC can
be found in Appendix A.

6.1.4 Robust UC model with ESS units

(a) Bernstein model (b) Traditional model

Figure 6.4: Robust UC with ES DA generating schedules May 4th

Figure 6.4a and Figure 6.4b respectively show the generating schedule of
the robust UC case, using the Bernstein and traditional model. The Bernstein
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model shuts down generating unit 4 and starts up generating unit 6 at time t
= 0. Generating unit 5 is committed from time t = 4 and shuts down again at
time t = 13. Additionally, generating unit 3 is committed from time t = 12.
The traditional model also shuts down unit 4 and starts up unit 6 at time t =
0. Generating unit 5 is committed from time t = 6 and shut down at time t =
13. Generating unit 3 is committed from time t = 13.

Model DA cost RT operation Net costs
Bernstein $468.192,48 $17,104.26 $485,296.74
Traditional $465,516.33 $23,628.40 $489,144.73

Table 6.4: Robust with ES UC costs May 4th 2018

Table 6.4 shows that the models have similar DA scheduling and RT op-
eration costs. The traditional model has lower DA scheduling costs, but the
Bernstein model has lower RT operation costs. The Bernstein model does not
commit any auxiliary generation, but the traditional model needs auxiliary in-
put at time t = 5 due to ramping scarcity. The net operation costs are $3,847.99
lower for the Bernstein model. Figures showing ES unit power flow and SOC
can be found in Appendix A.

6.2 Case 2: August 4th, 2018 Load Profile

6.2.1 Standard UC model
Figure 6.5a and Figure 6.5b respectively show the generating schedule of the
standard UC case, using the Bernstein and traditional UC model. The fore-
casted load profile ramps consistently from time t = 5 to t = 17 and hence
extra generating capacity is needed. The Bernstein starts ups generating unit 6
at time t = 0. The traditional shuts down unit 4 and starts up unit 6 at time t
= 0. Generating unit 4 is committed again from time t = 13. The lo

Model DA cost RT operation Net costs
Bernstein $480,030.38 $3,087.33 $483,117.71
Standard $458,591.40 $10,143.96 $468,735.17

Table 6.5: Standard UC costs August 4th 2018

As seen in Table 6.5, the DA costs are much lower for the traditional model
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(a) Bernstein model (b) Traditional model

Figure 6.5: Standard UC DA generating schedules August 4th

than the Bernstein model. This is due to the Bernstein model scheduling for
ramping between hours t = 10 and t = 16. The RT operation costs are more
than three times as large for the traditional model as the Bernstein model.
While the Bernstein model does not commit any auxiliary generation at all, the
traditional model needs a small amount of auxiliary input around time t = 13.
The net operation costs are $14,382.54 higher for the Bernstein model than the
traditional model.

6.2.2 Robust UC model
Figure 6.6a and Figure 6.6b respectively show the generating schedule of the
robust UC case, using the Bernstein and traditional model. The Bernstein
starts ups generating unit 6 at time t = 0. The traditional model shuts down
unit 4 and starts up unit 6 at time t = 0. Generating unit 4 is committed again
from time t = 11.

Model DA cost RT operation Net costs
Bernstein $480,030.38 $3,087.33 $483,117.71
Standard $462,080.83 $5,330.62 $467,411.45

Table 6.6: Robust UC costs August 4th 2018

Table 6.6 shows that the Bernstein model has the exact same DA schedule
as in the standard submodel, and has DA scheduling significantly higher DA
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(a) Bernstein model (b) Traditional model

Figure 6.6: Robust UC DA generating schedules August 4th

scheduling costs than the traditional model. The traditional model has much
higher RT operation costs, but the robust constraints have reduced the RT costs
of the traditional model to about 50% of the scheduling costs for the standard
model. Neither of the models need to commit any auxiliary generation. The
net operation costs are $15,706.26 higher for the Bernstein model.

6.2.3 Standard UC model with ES units

(a) Bernstein model (b) Traditional model

Figure 6.7: Standard UC with ES DA generating schedules August 4th
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Figure 6.7a and Figure 6.7b respectively show the generating schedule of the
standard UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 4 and starts up generating unit 6 at time t
= 0. Generating unit 3 is committed at time t = 13 and shut down at time t =
22. The traditional model also shuts down unit 4 and starts up unit 6 at time t
= 0. Generating unit 3 is committed from time t = 14 and shut down at time
t = t = 22.

Model DA cost RT operation Net costs
Bernstein $446.264,99 $5,394.53 $451,659.52
Traditional $445,538.01 $41,987.57 $487,525.58

Table 6.7: Standard with ES UC costs August 4th 2018

As seen in Table 6.7, the two models have very similar DA scheduling costs,
however, the Bernstein has significantly lower RT operation costs at $5,394.53
compared to $41,987.57 for the traditional model. Both models need auxiliary
generation around time t = 22. The traditional model also needs auxiliary
generation at certain other points in the scheduling time frame, particularly
between t = 13 and t = 14. This is the reason why the traditional model has
much higher RT operation costs. The net operation costs are $35,866.06 higher
for the traditional model than the Bernstein model. Figures showing ES unit
power flow and SOC can be found in Appendix A.

6.2.4 Robust UC model with ESS units

Figure 6.8a and Figure 6.8b respectively show the generating schedule of the
robust UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 4 and starts up generating unit 6 at time t =
0. Generating unit 3 is committed from time t = 11 and runs through the rest
of the period. The traditional model also shuts down unit 4 and starts up unit
6 at time t = 0. Generating unit 3 is committed from time t = 12.

Model DA cost RT operation Net costs
Bernstein $449.592,25 $4,568.33 $454,160.58
Traditional $447,973.62 $18,352.01 $466,325.63

Table 6.8: Robust with ES UC costs August 4th 2018
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(a) Bernstein model (b) Traditional model

Figure 6.8: Robust UC with ES DA generating schedules August 4th

Table 6.8 shows that the models have DA scheduling costs in the same range,
but the Bernstein model has much lower RT operation costs. However, the
robust constraints have reduced the RT costs of the traditional model by about
50%. The Bernstein model commits no auxiliary generation, but the traditional
model needs auxiliary support at hours 3 and 7. The net operation costs are
$12,165.05 lower for the Bernstein model. Figures showing ES unit power flow
and SOC can be found in Appendix A.

6.3 Case 3: July 2nd, 2018 Load Profile with
VRES penetration

6.3.1 Standard UC model

Figure 6.9a and Figure 6.9b respectively show the generating schedule of the
standard UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 4 at time t = 0. Generating unit 11 is shut
down at time t = 8 and started up again at time t = 16. Unit 6 is committed
from time t = 12. The traditional model also shuts down unit 4 at time t = 0.
Generating unit 11 is shut down from time t = 8 and started up again at time
t = 16. Generating unit 6 is committed from time t = 14.

Table 6.9 shows that the DA costs from both models are in the same range.
The RT operation costs are more than twice as large for the traditional model as
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(a) Bernstein model (b) Traditional model

Figure 6.9: Standard UC DA generating schedules July 2nd

Model DA cost RT operation Net costs
Bernstein $257,121.14 $25,294.65 $282,415.79
Standard $255,959.33 $57,674.80 $313,634.13

Table 6.9: Standard UC costs July 2nd 2018 (VRES penetration)

Model DA cost RT operation Net costs
Bernstein $454,102.85 $21,680.10 $475,782.95
Standard $452,302.40 $185,892.22 $638,194.62

Table 6.10: Standard UC costs July 2nd 2018 (no VRES)

for the Bernstein model. Both models need auxiliary generation between time t
= 20 and t = 22. The net operation costs are $31,218.34 lower for the Bernstein
model than the traditional model. Table 6.10 shows UC costs for the same load
profile without VRES penetration for reference.

6.3.2 Robust UC model

Figure 6.10a and Figure 6.10b respectively show the generating schedule of the
robust UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 4 at time t = 0. Generating unit 11 is shut
down at time t = 8 and started up again at time t = 16. Generating unit 6 is
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(a) Bernstein model (b) Traditional model

Figure 6.10: Robust UC DA generating schedules July 2nd

committed from time t = 12, and unit 3 is committed from time t = 19. The
traditional model also shuts down unit 4 at time t = 0. Generating unit 11 is
shut down at time t = 8 and started up again at time t = 16. Generating unit
6 is committed from time t = 14, and unit 3 is committed from time t = 20.

Model DA cost RT operation Net costs
Bernstein $264,531.34 $20,305.59 $284,836.93
Standard $262,630.74 $32,588.52 $295,219.26

Table 6.11: Robust UC costs July 2nd 2018 (VRES penetration)

Model DA cost RT operation Net costs
Bernstein $477,307.02 $10,548.02 $487,855.04
Standard $459,127.23 $14,354.05 $473,481.28

Table 6.12: Standard UC costs July 2nd 2018 (no VRES)

Table 6.11 shows that the models have DA scheduling costs in the same
range, but the RT operation costs for the traditional model are about 50%
higher than for the Bernstein model. While the Bernstein model doesn’t need
to commit any auxiliary generation, the traditional model needs auxiliary gen-
eration due to ramping scarcity at time t = 20. The net operation costs are
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$10,382.33 lower for the Bernstein model. Table 6.12 shows UC costs for the
same load profile without VRES penetration for reference.

6.3.3 Standard UC model with ESs units

(a) Bernstein model (b) Traditional model

Figure 6.11: Standard UC with ES DA generating schedules July 2nd

Figure 6.11a and Figure 6.11b respectively show the generating schedule of
the standard UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 1, unit 2 and unit 4 at time t = 0. Generating
unit 6 is committed from time t = 4. The traditional model also shuts down
generating unit 1, unit 2 and unit 4 at time t = 0. Generating unit 6 is committed
from time t = 6.

Model DA cost RT operation Net costs
Bernstein $254.256,56 $38,683.79 $292,940.35
Traditional $253,276.61 $269,932.70 $523,209.31

Table 6.13: Standard with ES UC costs July 2nd 2018 (VRES penetration)

From Table 6.13 it can be seen that the two models have very similar DA
scheduling costs, however, the Bernstein has significantly lower RT operation
costs at $38,683.79 compared to $269,932.70 for the traditional model. Both
models suffer from significant generating scarcity between time t = 18 to time
t = 23. The traditional model also has significant ramping scarcity between
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Model DA cost RT operation Net costs
Bernstein $443.444,17 $21,334.54 $464,778.71
Traditional $442,222.40 $122,875.17 $565,097.57

Table 6.14: Standard with ES UC costs July 2nd 2018 (no VRES)

t = 19 and t = 20. This is the reason why the traditional model has much
higher RT operation costs. The net operation costs are $239,268.96 higher for
the traditional model than the Bernstein model. Table 6.14 shows UC costs for
the same load profile without VRES penetration for reference. Figures showing
ES unit power flow and SOC can be found in Appendix A.

6.3.4 Robust UC model with ESS units

(a) Bernstein model (b) Traditional model

Figure 6.12: Robust UC with ES DA generating schedules July 2nd

Figure 6.12a and Figure 6.12b respectively show the generating schedule of
the robust UC case, using the Bernstein and traditional model. The Bernstein
model shuts down generating unit 1 and unit 4 at time t = 0. Generating unit
6 is committed from time t = 5. The traditional model shuts down unit 2 and
unit 4 at time t = 0. Generating unit 6 is committed from time t = 6.

Table 6.15 shows that the models have DA scheduling costs in the same
range, but again the Bernstein model has much lower RT operation costs, at
below 50% of the traditional model. The Bernstein model does not commit
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Model DA cost RT operation Net costs
Bernstein $255.047,25 $25,042.53 $280,089.78
Traditional $254,155.21 $56,976.97 $311,132.18

Table 6.15: Robust with ES UC costs July 2nd 2018 (VRES penetration)

Model DA cost RT operation Net costs
Bernstein $446.166,05 $14,747.77 $460,913.82
Traditional $444,739.79 $21,872.08 $466,611.87

Table 6.16: Robust with ES UC costs July 2nd 2018 (no VRES)

any auxiliary generation, but the traditional model needs auxiliary generation
between t = 19 and t = 20 and at time t = 22. The net operation costs are
$31,042.40 lower for the Bernstein model. Table 6.16 shows UC costs for the
same load profile without VRES penetration for reference. Figures showing ES
unit power flow and SOC can be found in Appendix A.

6.4 Discussion and interpretation

To assess the performance of the proposed Bernstein DA UC model, the re-
sults from the three different case studies will be interpreted in terms of several
aspects. The DA scheduling and RT operation costs for the UC models are
summed up in Table 6.17, Table 6.18, Table 6.19 and Table 6.20 below. The
simulations in this thesis are based on the IEEE 24-bus RTS, with 12 generating
units. All the unit data used for the simulations are given in bulk generating
bus quantities, and economic costs are calculated based on this. Hence, it does
not perfectly reflect how the UC models perform in a real-life power system in
terms of costs. Such systems may have thousands of generating units and corre-
sponding energy bids that must be handled in the UC problem DA scheduling.
However, the results from the case studies in this thesis can be used to highlight
some crucial aspects of power system operation.

The RT operational costs for a given UC scheduling simulation reflect gen-
erating, and perhaps more importantly, ramping scarcities from the day-ahead
UC scheduling. A poor UC scheduling may lead to the need for expensive aux-
iliary generating during the RT operation, leading to high RT operation costs.
For most cases simulated with the standard submodel, the DA scheduling costs
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for the Bernstein model were less than 0.5% larger than for the traditional
model, i.e. almost negligible. The one exception was in Case 2, where the DA
scheduling costs were close to 5% larger for the Bernstein model due to steep
and protracted forecast ramping between hour t = 6 and t = 16. An important
note here, however, is that this issue was significantly reduced with ES units
present in the system, as their fast-ramping capabilities relieved much of the
ramping stress from the generating units.

As stated earlier in this thesis, the hour-ahead market, as well as the 5-
minute RT market in power systems with VRES penetration[71], is not imple-
mented into the UC simulations in this paper, and hence the worst case RT costs
for certain of the submodels in some of the case studies would likely be lower in
real life operation. Still, RT costs from the UC simulations in this thesis reflect
the forecasting and scheduling errors of the respective models and provide an
excellent basis to assess the performance of the proposed Bernstein UC model.

6.4.1 Summary of Case simulations

Submodel Model DA cost RT operation Net costs Diff.

Standard Bernstein $473,129.67 $20,610.87 $493,740.54
Traditional $471,106.12 $112,607.51 $583,713.63 +$89,973.09

Robust Bernstein $493,876.44 $12,763.43 $506,639.87 +$5,073.22
Traditional $484,495.56 $17,071.09 $501,566.65

Std. w/ES Bernstein $463,630.88 $30,420.11 $494,050.99
Traditional $461,655.54 $388,646.39 $850,301.93 +$356,250.94

Rob. w/ES Bernstein $468.192,48 $17,104.26 $485,296.74
Traditional $465,516.33 $23,628.40 $489,144.73 +$3,847.99

Table 6.17: Summary UC costs Case 1: May 4th
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Submodel Model DA cost RT operation Net costs Diff.

Standard Bernstein $480,030.38 $3,087.33 $483,117.71 +$14,382.54
Traditional $458,591.40 $10,143.96 $468,735.17

Robust Bernstein $480,030.38 $3,087.33 $483,117.71 +$15,706.26
Traditional $462,080.83 $5,330.62 $467,411.45

Std. w/ES Bernstein $446.264,99 $5,394.53 $451,659.52
Traditional $445,538.01 $41,987.57 $487,525.58 +$35,866.06

Rob. w/ES Bernstein $449.592,25 $4,568.33 $454,160.58
Traditional $447,973.62 $18,352.01 $466,325.64 +$12,165.05

Table 6.18: Summary UC costs Case 2: August 4th

Submodel Model DA cost RT operation Net costs Diff.

Standard Bernstein $257,121.14 $25,294.65 $282,415.79
Traditional $255,959.33 $57,674.80 $313,634.13 +$31,218.34

Robust Bernstein $264,531.34 $20,305.59 $284,836.93
Traditional $262,630.74 $32,588.52 $295,219.26 +$10,382.33

Std. w/ES Bernstein $254.256,56 $38,683.79 $292,940.35
Traditional $253,276.61 $269,932.70 $523,209.31 +$239,268.96

Rob. w/ES Bernstein $255.047,25 $25,042.53 $280,089.78
Traditional $254,155.21 $56,976.97 $311,132.18 +$31,042.40

Table 6.19: Summary UC costs Case 3: July 2nd (VRES penetration)

Submodel Model DA cost RT operation Net costs Diff.

Standard Bernstein $454,102.85 $21,680.10 $475,782.95
Traditional $452,302.40 $185,892.22 $638,194.62 +$162,411.67

Robust Bernstein $477,307.02 $10,548.02 $487,855.04 +$14,373.76
Traditional $459,127.23 $14,354.05 $473,481.28

Std. w/ES Bernstein $443.444,17 $21,334.54 $464,778.71
Traditional $442,222.40 $122,875.17 $565,097.57 +$100,318.86

Rob. w/ES Bernstein $446.166,05 $14,747.77 $460,913.82
Traditional $444,739.79 $21,872.08 $466,611.87 +$5,698.05

Table 6.20: Summary UC costs Case 3: July 2nd (no VRES)



Chapter 7

Conclusion

7.1 Bernstein vs Traditional UC problem formu-
lation

The Bernstein UC model and the traditional UC model have similar DA com-
mitment schedules for most cases and submodel simulations. A noticeable trend
is that the Bernstein model tends to start up and commit generating units one
time-step ahead of the traditional UC model in periods with significant ramp-
up. The advantage of this becomes very clear in e.g. Case 1 in both the standard
and standard with ES submodel, where RT operating costs for the traditional
model respectively were 546% and 1277% higher than their Bernstein UC model
counterparts.

While it is obviously a goal to minimize net UC operation costs, it is also
a goal to minimize the need for auxiliary generation during RT operation. In
every single case study, the traditional model had a higher need for auxiliary
generation than the Bernstein model. In several simulations, where the tradi-
tional UC model needed auxiliary generation, the Bernstein UC model didn’t
need any at all. This is one of the key takeaways from this thesis. The Bernstein
UC model has a robust nature that captures sub-hourly variations much better
than the traditional UC model.

71
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7.2 Submodels

The Bernstein UC model performs significantly more consistent than the tra-
ditional model without added robust constraints, as the Bernstein UC model
has a robust nature itself. The robust constraint submodels had a very pos-
itive effect on the traditional UC model, lowering the net operation costs for
every case study, perhaps a little surprisingly also for Case 2, where forecast
errors were very low. For the Bernstein UC model, the standard UC submodel
costs were lower or equal to the net costs for the robust submodel for all cases
simulated. An important issue to keep in mind, however, is that the robust
submodel reduced the need for auxiliary generation. Nevertheless, the robust
UC constraints benefited the traditional model more than the Bernstein model.

Integrating ES units in power systems effectively lower the DA scheduling
costs of the UC problem. However, charging ES units will mean occupying some
of the spinning reserves in the system, and the power provided from discharg-
ing ES units may lead to generating units being shut down, hence also reducing
spinning reserves. Hence, the standard with ES UC model is particularly vulner-
able to load forecast errors, as can be seen from high RT costs in several cases,
particularly in Case 1 and Case 3. Added robust constraints for ES scheduling
had a positive effect on net UC operation costs for both the traditional and the
Bernstein UC model. For every case simulation, except in case 2, the robust
with ES submodel on the Bernstein formulation gave the lowest net costs. Case
2 had very low forecast errors, and here, the robust with ES Bernstein submodel
was second best, only beaten by the standard with ES Bernstein submodel at
0.55% lower costs.

7.3 Concluding remarks

The results of the simulations in this thesis show that the Bernstein UC model
performs much more consistent than the traditional UC model, and its main
advantages are shown in the case studies where day-ahead forecast errors are
large, when there are large sub-hourly load variations and when there is large
load ramping. The robust nature of the Bernstein UC model yield lower RT
operational costs and fewer ramping scarcity events than the traditional UC
model.

An important takeaway from the simulations in the thesis is that the con-
tinuous time Bernstein UC model, schedules generating unit commitment in
one-hour intervals, just as the traditional UC model. Hence, it is shown that
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it is possible to effectively incorporate ramping trajectory functions into a UC
model while maintaining the same one-hour scheduling structure as before. This
means that the MILP commitment structure from the traditional UC model is
preserved.

Case 3 is selected to reflect some of the main challenges in future power
grids: large forecasting uncertainties (in both load demand and VRES output)
and steep ramping caused by a high penetration of VRES. And it is this case
study that the advantages of the Bernstein UC formulation become particularly
prominent. The Bernstein UC model completely dominates the traditional UC
model in terms of net costs, auxiliary generation and ramping scarcity. More
specifically, the robust with ES submodel performs best of all the proposed
submodels. The Bernstein UC model has proven highly suitable for scheduling
ES unit operation.
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7.4 Future Work
This thesis has proposed a Bernstein UC formulation with the same scheduling
structure as the traditional UC model, using the same input parameters and
commitment variables. Simulations done on the Bernstein UC formulation has
shown significant potential for reducing net operation costs, ramping scarcity
and the need for auxiliary generation during RT operation. The model, however,
is however based on a number of simplifications. Some possible future directions
of this work are:

• An ES unit RT operation model. Running the charging/discharging cycles
based on DA-scheduling may cause problems when there are large forecast
errors. In certain scenarios, power system operation may be infeasible
without auxiliary generation e.g. when ES units are charging in the DA
schedule.

• Introducing stochastic spinning/standing reserve constraints for the en-
tire power system, zones or buses, and functions that integrate demand
response into the model.

• Improved robust optimization model. The robust UC model suggested in
this model benefited the traditional UC model far more than the Bernstein
model. It may be ideal to redesign a robust optimization model for optimal
effect on the Bernstein UC model.

• In both the DA-market and the RT-market, it could be interesting to
investigate the possibility of ramping market features[72][73], and not only
a generating capacity market.

• The UC model in this thesis uses several deterministic constraints and
considerations. Rewriting this model into a stochastic formulation could
improve the performance and effectiveness of the model.
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Appendix A

Case 1: May 4th 2018

Stardard UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC

Robust UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC

Case 2: August 4th 2018

Stardard UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC

Robust UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC

Case 3: July 2nd 2018

Stardard UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC

Robust UC with ES units
Bernstein
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(a) ES unit power flow (b) ES unit SOC

Traditional
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(a) ES unit power flow (b) ES unit SOC
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Appendix B

Bus Load
Bus % of System Load
1 3.8
2 3.4
3 6.3
4 2.6
5 2.5
6 4.8
7 4.4
8 6.0
9 6.1
10 6.8
13 9.3
14 6.8
15 11.1
16 3.5
18 11.7
19 6.4
20 4.5

Table 7.1: IEEE 24-bus RTS Load distribution
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From To Rating
Bus Bus (MVA)
1 2 175
1 3 175
1 5 175
2 4 175
2 6 175
3 9 175
3 24 400
4 9 175
5 10 175
6 10 175
7 8 175
8 9 175
8 10 175
9 11 400
9 12 400
10 11 400
10 12 400
11 13 500
11 14 500
12 13 500
12 23 500
13 23 500
14 16 500
15 16 500
15 21 500
15 21 500
15 24 500
16 17 500
16 19 500
17 18 500
17 22 500
18 21 500
18 21 500
19 20 500
19 20 500
20 23 500
20 23 500
21 22 500

Table 7.2: IEEE 24-bus RTS line ratings



Appendix C

GAMS Code
MATLAB Code
EXCEL Code

(RESTRICTED PUBLIC ACCESS.)
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