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Abstract

In this thesis, we will be investigating the current landscape of state-of-the-art methods using

deep reinforcement learning for the purposes of training self-driving cars. Autonomous driving

has garnered the interest of researchers, governments, and private companies as of late, as such

technologies promise to solve several problems that are prominent in modern society. Examples

of such problems include individuals spending a lot of their time in traffic due to congestion, and

people and institutions having to financially support costly car accidents made by human errors.

Advancements in machine learning is what drives autonomous vehicle technology forward, and

we have already seen several big actors in the automobile and artificial intelligence industries

take advantage of this; having autonomous vehicles drive several miles on public roads without

incidents. The primary goal of this thesis is to provide a comprehensive analysis of current

methods in deep reinforcement learning for training autonomous vehicle agents, and our main

contribution comes in the form of providing a working example of a Proximal Policy Gradient

(PPO) based agent that can reliably learn to drive in the urban driving simulator, CARLA.

Through our work, we provide two OpenAI-like environments for CARLA that we have designed

to (1) minimize overall training time, and to (2) provide the necessary metrics for comparing

models across runs. One of these environments is only concerned with following a predetermined

lap, while the other is focused on navigating arbitrary paths provided by a topological planner –

similar to how we would navigate in real-life. In creating these environments, we provide some

analysis as to how various environment design decisions – such as training with different reward

formulations, training in asynchronous/synchronous environments, or using environments with

or without checkpoints – affect the resulting agent. Furthermore, we will be presenting various

experiments on the use of variational autoencoders in the training pipeline, and show how we

were able to significantly improve the quality of our agent by training a variational autoencoder

to reconstruct semantic segmentation maps rather than training it to reconstruction the source

RGB images themselves. For the lap environment, we will provide a couple of models that

reliably learn to drive along the 1245m lap in approximately 8 hours. For the route environment,

we will show that we can train a PPO network with multiple policy networks to create an agent

that is able to follow the commands of a topological planner to moderate success.
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Chapter 1

Introduction

1.1 Motivation

In the digital age, we have seen an increasing desire to automate our every-day tasks, along

with a desire to use technology to make the world a safer and more reliable place to live.

Creating intelligent systems that are able to safely drive a car from point A to point B without

human intervention is an example of this. This is the problem we wish to solve when we create

autonomous vehicles.

While the idea of creating autonomous vehicles is old and well-known, it is only recently that

we have seen has been public companies and researchers starting to consider these technolo-

gies seriously. Along with other computer vision and artificial intelligence problems, creating

autonomous vehicles is now considered to be viable due to the multitude of advancements we

have seen in artificial intelligence through deep learning.

1.2 Autonomous Driving

Autonomous, in the context of self-driving vehicles, means ”self-governing.” An autonomous

car is a complex system that operates with some level of automation. When we talk about

1



2 Chapter 1. Introduction

self-driving vehicles, we typically talk about vehicles that drive from some starting location A

to some target location B with limited to no intervention made to the control system of the

vehicle by a human driver. The Society of Automotive Engineers has defined a set of levels of

increasing automation when it comes to self-driving cars [SAE14]. These levels are as follows:

• Level 0 - No Automation: Here the human driver is the only one who interacts with the

vehicle’s control system. A system is still considered level 0 if it has some warning signals

or intervention systems integrated.

• Level 1 - Driver Assistance: The human driver shares control of the vehicle with the

automated system. An example of a level 1 autonomous car is a car with Adaptive Cruise

Control, a system where the car determines it’s own speed while the human driver is

responsible for steering the vehicle.

• Level 2 - Partial Automation: The system takes full control of the cars steering and speed,

however a human needs to be prepared to intervene immediately whenever the system

fails.

• Level 3 - Conditional Automation: The driver does not need to be prepared for immediate

intervention, however they will need to respond within a limited time when the system

calls for it.

• Level 4 - High Automation: The car can drive without the drivers intervention within

limited geographical areas or in limited types of driving scenarios. If the car cannot

proceed, the car will safely park the vehicle unless the human driver takes control.

• Level 5 - Full Automation: No human intervention required at all.

Today’s automobiles consist primarily of a mix of level 0 (”no automation”) and level 1 (”hands

on”) autonomous vehicles. Some car manufacturers such as Tesla, have produced vehicles

that are commercially available which have features that are considered level 2 (”hands off”)

automation, such as automatic lane changing. There are also a few examples of commercial and

non-commercial vehicles featuring level 3 (”eyes off”) automation, such as Audi’s A8’s ”Traffic
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Jam Pilot;” capable of autonomously driving the car at speeds up to 60 km/h in traffic jams.

There are no commercially available level 4 (”mind off”) or level 5 (”steering wheel optional”)

automobiles, however there is on-going development for such vehicles, and Waymo’s self-driving

car is an example of a self-driving car that has no steering wheel. Level 5 automation is naturally

the ultimate goal in autonomous driving research and development.

Why is autonomous driving interesting?

Driving has become an essential part of modern life. People have a need to move long distances

over short periods of time, so cities have been constructed and redesigned in such a way to

accommodate fast-moving automobiles. Traffic rules have been put in place to make driving a

safe and reliable way to commute. However, modern day driving is not perfect, and introducing

autonomous driving systems promises to solve a couple of problems we face in today’s society:

Automobile Accidents: Humans are unreliable drivers. In 2017, Norway saw 106 deaths and

665 critical injuries due to traffic [Sen]. However, Norway is not a very densely populated coun-

try, and our traffic rules are relatively strict, so we have significantly lower per-capita numbers

compared to the world. On a world basis, we saw 1,250,000 deaths in 2015 according to WHO

[Org], a figure that is 8x larger than Norway’s per-capita number when adjusted by population

size. Autonomous vehicles promises to push these figures towards zero through automation.

Computers cannot get sleepy. Computers cannot get angry. Computers can react faster than

humans. They can observe their environment with multiple sensors at once, and are not limited

to using only light and color sensors, but can for example use depth and distance sensors to

get a better understanding of the environment than their human counterparts. Therefore, we

expect such systems to be a substantially more safe way to transport people.

Commuting Time and Emissions: Computers can also communicate with each other wire-

lessly, and plan their behaviours in unison to an extent humans are incapable of. An autonomous

car on the road can know where its nearby autonomous cars are going, and can therefore plan

their trajectories accordingly. This would reduce commute time, CO2 emission, and have over-

all benefits to society. With eyes-off automation, the passengers could even do their own work



4 Chapter 1. Introduction

and be productive during their commutes. If autonomous cars were efficient, ride-sharing ser-

vices may be implemented to eliminate people’s need to own cars altogether, potentially cutting

down on the environmental costs of producing cars and the financial expenses of owning a ve-

hicle. Reducing the number of cars in circulation could mean that a lot of physical space can

be saved by reducing the need for large parking spaces.

1.3 Components of an Autonomous Car

An autonomous car require several systems or components which solve their own individual

task. We may divide such a system into the following categories:

Sensors, Compute and Control

What components are required to make a car drive intelligently? In designing an autonomous

vehicle, we should consider what components and sensors are necessary to drive optimally;

while also ensuring that our vehicle and methods are energy efficient enough to drive for long

periods of time with limited battery capacity. We also need to develop the algorithms that

control the car and the interfaces it uses to communicate with the on-board sensors.

Mapping and Localization

Mapping and localization is about finding out how to localize the car on a high-definition map

and to interpret the topology of the car’s surrounding environment. Localization on high-

definition maps may use positioning systems such as Global Positioning System (GPS) and

may also combine this information with information it can extract from the environment. For

example, given a rough estimate of its location on a map, the car may be able to determine a

more precise location by using information it can gather from its surroundings, for example, by

correlating its observations with its estimates on where nearby buildings should be according

to the vehicle’s internal map.
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Perception and Prediction

This is about making sense of sensor input, and generating predictions of various types of

properties for both static and dynamic objects in the environment, e.g. object location in 3D

space, object trajectories, object types, etc. Cars, buses, trucks, bicycles and pedestrians are

examples of dynamic objects that should be tracked, and static object may include traffic lights,

signs, lamp posts, etc. A perception module should be able to determine the location static

object such as lane lines and signs, in addition to also understanding the meaning of various

road signs and signals. Perception information can be extracted with traditional RGB cameras,

infrared cameras, LiDAR laser scanners, etc.

Planning and Control

Planning is all about finding out how to manipulate the acceleration, break and steering to

navigate the vehicle from point A to point B. To control, the vehicle should use the output

from its sensors, or potentially the output of a perception module, to determine a series of

control signal that will lead the vehicle to its goal. Ideally, the vehicle should be able to drive

without any incidents with other vehicles, bikes, pedestrians, etc.

Simulators for Training and Validation

It is vitally important that we have ways to test and verify our control and perception al-

gorithms, before deploying them onto a real vehicle. This is the main purpose of creating

simulators. Since we use simulators to verify our algorithms before deployment, it is also vi-

tally important that the simulator emulates the physics and appearance of real-life as closely

as possible. There are several open-source, high-fidelity, simulators for autonomous driving

research. The most prominent ones are CARLA [DRC+17] and AirSim [SDLK17]. We will

discuss CARLA a bit in later sections.
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1.4 Other Topics in Autonomous Driving

There are also several interesting philosophical, juridical, and societal topics to consider when

it comes to autonomous vehicles.

Safety and Security

Assuring the safety of an autonomous system is important for deployment of autonomous

systems. Simulators are useful in validating methods, however, deep learning based agents are

often hard to interpret. In the case of an accident, we need to have ways to understand why the

agent failed. So safety is, among other things, about building interpretability into our systems.

Security is also a very important topic in the safety of autonomous vehicle; we have to ensure

that our autonomous vehicle systems cannot be exploited or intercepted by outside actors.

Collaborating Vehicles

Collaboration is an important step in maximizing the efficiency of autonomous cars on the

road. If cars can communicate, they can plan together, allowing less congestion in traffic and

thereby faster commuting and less resource usage.

Ride Sharing

Autonomous vehicles may eliminate the need for individuals to own cars altogether. This

reduces the need to produce and own cars, and we can instead focus on providing robust and

safe ride sharing solutions.

Privacy and Ethics

Maintaining the privacy of the users and the surrounding people is also important to con-

sider. When every vehicle is equipped with out and inward-facing cameras, people can easily
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be tracked and identified; something that could violate existing privacy laws. Additionally,

autonomous vehicles may have to make ethical decisions in certain situations. The most com-

monly posed scenario is that in which the car finds itself in a dangerous scenario, and has to

decide whether to sacrifice a innocent bystander vs. the owner of the vehicle.

1.5 Objective

Our main objective in this thesis will be to compare and contrast multiple aspects of agent

and environment designs (e.g. reward functions, environment objectives, agent parameters,

state representation learning through variational autoencoders, etc,) with the goal of finding

agent-environment setups which reliably create agents that can maneuver complex (simulated)

3D environments. In the pursuit of goal, we set out to answer the following research questions:

• What are the principles and methods behind deep reinforcement learning, and are state-

of-the-art reinforcement learning methods able to learn how to drive a car in a controlled

and reliable manner?

• What objective, metrics, and state representations should a reinforcement learning envi-

ronment provide to best fit the needs of autonomous driving researchers?

• How do we design reward functions to bring out desired driving behaviour from reinforce-

ment learning agents?

• How influential is environment design to the training speed and overall performance of a

reinforcement learning based agent?

• How can we generate information rich state representations, and to what extent do good

state representations accelerate agent learning?

• Can we use deep reinforcement learning to train agents to drive in environments that

require the agent to be able to perform multiple types of maneuvers?



Chapter 2

Background

2.1 Machine Learning

2.1.1 Introduction

Machine learning is a sub-field of artificial intelligence that focuses on developing algorithms

and systems that learn to solve problems by examples. Machine learning has garnered a lot of

interest over the last decades, and its popularity stems from its simplicity and the empirical

success of recent machine learning-based approaches. For problems that exhibits some degree

of non-triviality, machine learning often outperform hand-crafted algorithms, for example in

the case of classifying objects in images [DDS+09]. Since the theory behind machine learning

algorithms is often general-purpose, the same theory can often be re-purposed for any number

of domains, given that the necessary data for the given problem exists.

Since machine learning involves learning from examples, it is essential to collect the required

data for training and testing. ”Data” refers to anything that represents some type information

that has meaning to machines or humans, for example, digital images, stock prices, etc.

Supervised learning is the most straight-forward application of machine learning, where the

goal is to create regression models that maps some input data to some output data – in other

8
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words, create a function F , such that F (X) ≈ Y , where X represents the domain of the input,

e.g. ”pictures of animals,” and Y represents the corresponding labels for each X. In order to

apply supervised learning to a problem, a reasonably sized subset of X and Y pairs needs to

be gathered and manually labeled by an expert. Given that our dataset (the complete set of

labeled data-points) is well-formed, it is possible to create regression models that approximates,

and generalizes F (x). This is often done with artificial neural networks (ANNs). Gathering

this data is a laborious process, so many researchers have decided to make their manually

gathered datasets available for the public and other researchers. Some popular ones include

MNIST [LBBH98] and ImageNet [DDS+09] for image classification, and MS COCO for semantic

segmentation. There are also datasets made specifically for self-driving cars, such as KITTI

[GLSU13], Apollo [HCG+18], etc.

In addition to supervised learning, there are also machine learning tasks that work unsupervised

or semi-supervised. In unsupervised learning we wish to solve the same regression problem of

F (X) ≈ Y , without any labeled data, Y . A typical example of unsupervised learning is

clustering, where we will try to group data points based on some statistical properties of the

data. Semi-supervised learning leaves us somewhere in between supervised and unsupervised,

where only a small subset of X is labeled.

In this report, we will explore another machine learning approach called reinforcement learning.

Reinforcement learning features an intuitive learning framework, where we are considering an

agent that lives in an environment in which the agent is able to act. The goal in reinforcement

learning is to train the agent to maximize its ”usefulness,” or utility, with respect to some goal

that was determined beforehand. In the case of autonomous vehicles, the goal could for example

be to reach some destination B, without crashing into any objects. In this scenario, the utility

of the agent is some quantity that describes how well it can drive from A to B without crashing,

and the goal of the agent is to maximize this quantity. We will discuss reinforcement learning

further in Section 2.3.
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2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational networks of nodes and connections re-

sembling that of biological neural networks. Formally, artificial neural networks in machine

learning refer to directed-acyclic graph with weights along each edge of the graph. When a

datapoint xi is fed to an ANN, it will propagate thought the network, and we end up with

some prediction F (xi) = ŷi. The goal in machine learning is to find the best configuration of

network weights, often denoted W , with respect to some objective. This objective may, for

example, be to minimize the error of a class predictor to ground truth labels, that is, minimize

L =
∑

i(ŷi − yi)2 over all labeled data, xi ⊂ X and yi ⊂ Y .

Gradient Decent: Gradient decent is the most common optimization technique used with

ANNs. It works by calculating the gradient of the loss function, L, with respect to the weights

of the network W . Once we have the gradients, we nudge our weight variables in the direction

of greatest decent as follows:

wij ← wij − α
∂L

∂wij
(2.1)

Where α is a hyperparameter that determines how much we should nudge our weights in the

direction of steepest decent per step, and ∂L
∂wij

represents the direction of steepest ascent along

the loss function’s surface with respect to a particular weight wij ∈ W .

2.1.3 Deep Learning

The simplistic formulation of ANNs given above suffers from an inability to generalize to new

data, because this type of ANN is essentially no different than a linear combination of transfor-

mations on input X over the layers’ weight matrices W . It turns out that constructing deeper,

non-linear models resolves this issue. In deep learning, we combine these ideas by constructing

deep networks where we apply non-linear activation functions in our neurons to let the network

extrapolate non-linear relationships in the input data. Common non-linear activation functions
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include the sigmoid function and the Rectified Linear Unit (ReLU) function.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural networks that apply a convolutional opera-

tion to the input in some form. In image processing, convolution refers to a common operation

that was historically used to extract features such as edges, and to blur and sharpen im-

ages. Convolution identifies spatial relationships in the pixel values of an image by sliding a

2-dimensional filter ω over the input image, calculating the dot-product between the filter and

the pixels in the image. These filters were typically hand-crafted for a specific task, however,

with CNNs these filters are learned. The idea of learned convolutional filters is an older idea

from 1989 [LBD+89] that has proven to be very useful in most recent computer vision related

tasks.

2.2 Imitation Learning for Self-Driving Vehicles

There has also been a lot or research in algorithms specific for self-driving vehicles. In this

section, we will take a closer look at the ideas behind end-to-end imitation learning, and then

later discuss how these methods compare to deep reinforcement learning methods for self-driving

vehicles.

2.2.1 Background

There is a long history of research in end-to-end methods for self-driving vehicles. The idea of

training an autonomous car by optimizing a neural network dates back almost three decades

to Pomerleau’s thesis on the Autonomous Land Vehicle in Neural Network (ALVINN) system

[Pom93]. ALVINN demonstrated that it is possible to use machine learning-based models to

train cars to follow roads, and later works have build this idea. An example of such work origi-

nates from military research, where the Defence Advanced Research Projects Agency (DARPA)
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published a report in 2004 detailing their project called DARPA Autonomous Vehicle, or DAVE.

DAVE was a small remote-controlled (RC) vehicle that learned to drive 20 meters autonomously

in complex environments without crashing. DAVE was equipped with two front-facing cam-

eras, and would be operated by an expert driver to generate data. The data would consist

of the left and right images, in addition to the control signal of the expert. After sufficient

data was collected, they would fit a model to map the input images to their respective steering

commands; in other words, they were solving a supervised learning problem. Using the input

of an expert operator to guide the learning is known as imitation learning or behaviour cloning.

2.2.2 End-to-End Imitation Learning

Researchers at NVIDIA built on the ideas presented in DAVE in their 2016 paper titled End

to End Learning for Self-Driving Cars by Bojarski et al. [BTD+16]. In their work, they

built a DAVE-like system that utilizes the advancements in deep learning to teach a full-scale

vehicle to drive. They call this new system DAVE-2, and similar to DAVE, it learns to drive by

training on data generated by an expert driver. Unlike DAVE, DAVE-2 uses a deep, CNN-based

architecture to extract features from its input images. In their ”on-the-road” test, they found

that DAVE-2 was able to drive autonomously 98% of the time, excluding time spent changing

lanes or time spent turning from one road to another. These results show that end-to-end

learning is quite powerful in training autonomous vehicles.

Let’s consider the objective of an imitation learning system like DAVE-2 from a mathematical

stand point. Say that we have a neural network parameterized by θ, and that we have collected

some images (observations), O, and sampled their corresponding control signals, A, from the

expert. Ideally, we want to make the agent perform the same action as the expert, ai ∈ A,

when it is presented with the same observation oi ∈ O. We formulate this as an optimization

problem, where we want to minimize the error between the agent’s predicted control vector,

F (oi; θ), and the expert’s ”ground truth” control vector ai:
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minimize
θ

∑
i

L(F (oi; θ), ai) (2.2)

Where L is some discrepancy measure, such as the squared error between the prediction and the

ground truth, L = (F (oi; θ)−ai)2. Equation 2.2 can then be optimized with stochastic gradient

decent, and given that we have enough data, our agent may generalize to new observations that

are not in O.

This simplistic version of imitation learning has some major drawbacks, however. First, without

any examples of ”bad” or off-center driving in our data, the car will not learn to correct itself

once it finds itself in an unfavorable position. This generally leads to situations where small

perturbations can make the car to ”spiral out of control.” DAVE-2 and similar systems relieve

this problem by having 2 off-center cameras (left and right), and add those images to the data

set with augmented, ”corrective,” control vectors. This, coupled with other image augmentation

techniques led to an agent that in the end was pretty robust to these types of perturbations.

Imitation learning still has a pretty significant limitation in terms of self-driving: it assumes that

the optimal action can be inferred from the camera observations alone. This, however, is not

true in the case of an agent making a turn at an intersection, where the optimal action depends

on other factors such as the destination of the passengers. Codevilla et al. aims to correct this

in their 2018 paper End-to-end Driving via Conditional Imitation Learning [CMD+17].

2.2.3 Conditional Imitation Learning

Codevilla et al. [CMD+17] introduces a conditional imitation learning architecture that aims

to address the issue of not being able to issue navigation commands to a vehicle trained with

imitation learning. What Codevilla et al. propose, is a modified model that learns sub-policies

for the three different commands: {turn left, turn right, continue straight}. This system works

for the most part similar to the system described in Section 2.2.2, but they introduce a set of

discrete commands C = {c0, . . . , cK}, where K = 3 in this case, since there are three commands.

In their network architecture, they construct one branch for every command ck, and optimize
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Figure 2.1: Codevilla’s et al. conditional imitation learning model. Measurements m is a one-
dimensional vector that consists of various measured properties of the system such as speed,
position, throttle, etc. Notice how the fully-connected layers in each Ak branch are conditioned
on the input command c.

the branches separately depending on which command is currently active. Each sub-policy,

Ak, has two fully-connected layers (see Figure 2.1,) ensuring that each branch learns to use the

features that are most relevant to each sub-policy’s respective task. During training, we will

determine which branch to optimize based on the type of action the expert is performing. We

optimize the branches with Equation 2.2 as we did before. This way we have constructed a

model that is conditioned on the current command, meaning we are able to maneuver the car

by enabling the desired sub-policy.

It is worth mentioning that the authors tested their model both in the driving simulator

CARLA, and on a small RC car. In their evaluation, the model reached an episodic accuracy

of 88% in the Town 1 environment, and 64% in Town 2. For comparison, the non-conditional

version got 20% and 26% respectively. For the physical system, they measured the percentage

of missed turns, and got 0% of missed turns on the branched version. A consequence of this ar-

chitecture is that the planning algorithm is now off-loaded to a separate planning system. This

may be beneficial, as the model is not trying to learn too many things at once. A disadvantage

of this methods is that it requires a lot of data to become reliable for all sort of uncommon

traffic setups and different environments and weather. Another disadvantage is the ”blackbox”

nature these types of end-to-end deep learning models. When something goes wrong, it is very

hard to interpret the cause. Interpretability is an ongoing area of research, and there are similar

end-to-end imitation learning methods for self-driving cars that have interpretability in mind,

such as [MSS18].
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2.3 Reinforcement Learning

2.3.1 Introduction

Reinforcement learning refers to a specific group of tasks that exhibit the following properties:

1. There exists an agent which is able to take actions in an environment.

2. When the agent acts it gets some feedback from the environment, referred to as reward.

3. The agent can observe the state of the environment in order to make decisions.

Let’s consider the example of an autonomous vacuum cleaner:

The vacuum cleaner lives in a grid-based world, and has the ability to move in any of the cardinal

directions – north, east, south, west – relative to its current position. Once the vacuum cleaner

visits a dirty cell, that cell becomes clean and the vacuum cleaner receives a positive signal. In

terms of the reinforcement learning concepts introduced above, we may say that the vacuum

cleaner is the agent, and its set of possible actions are {move north, move east, move south,

move west}. The environment is the room in which the agent was deployed, and the state of

the environment represents which cells are dirty, which cells are clean, in addition to which cell

the vacuum cleaner is located in. When the agent moves to a dirty cell, it gets a positive reward

signal from the environment, signifying that the agent made a beneficial move. The rules which

the agent follows to make decisions is the policy of the agent. Whenever a problem can be

described by the properties mentioned above, we are talking about a reinforcement learning

problem. We generally conceptualize this framework as a loop, as shown in Figure 2.2.

Processes that are formulated in terms of agents, environments, and rewards are more formally

known as a Markov Decision Process (MDP). A Markov decision process is a time discrete

stochastic control process that can be modelled by the 4-tuple (S,A, P, r):

• S is the set of all possible states in the MDP.
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Figure 2.2: Reinforcement learning loop. Starting at time-step t, the agent observes the state
st and reward rt. Whenever an agent takes an action, at, the environment returns a new state,
st+1, and a scalar reward value, rt+1, representing the state and reward in time-step t+ 1.

• A is the set of all possible actions in the MDP. Also denoted As, representing all the

possible actions in state s.

• P (s′|s, a) is the probability of transitioning to state s′ ∈ S when taking action a ∈ A in

state s ∈ S.

• r(s, a) is the immediate reward signal for taking action a ∈ A in state s ∈ S.

When we say that a MDP is time discrete, it refers to the fact that we move step-wise through

time; for example, an agent takes action a0, the environment returns a reward r1, the agent

takes another action a1, the environment returns another reward r2, and so forth. Formally,

we represent the current time-step as t ∈ Z. In episodic environments, we typically start at an

initial time-step and end once a terminal state has been reached. We call a run from t = 0 to

t = terminal an episode. In continuous environments, the process will never reach a terminal

state, so the process will run until t→∞.

When we say that a MDP is a stochastic process, it means that environment can be modelled

by transition probabilities. If we are in a state s and take action a, there is some probability

that we will end up in state s′. Formally, this is modelled with a transition function, P (s′|s, a).

A MDP is also a control process, because the goal in a MDP is to determine the optimal control

policy for selecting actions. The policy represents the rules which the agent follows to determine
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its action given a state, and is typically denoted as π(a|s). The optimal policy is the policy

that maximizes cumulative reward, also known as return. Mathematically speaking, to find the

optimal policy, we need to find the policy that maximizes the following equation:

R(τ) =
∞∑
t=0

γtr(st, at) (2.3)

R(τ) is the return along trajectory τ . The trajectory τ = {(s0, a0), (s1, a1), ...} is the series

of action-state pairs the agent took from t = 0 to t → ∞. R(τ) is computed as the sum of

the rewards r(st, at) along the trajectory, that is, the sum of the rewards obtained by taking

action at in state st for every state-action pair along the trajectory, multiplied with a discount

factor 0 ≤ γ < 1. Since at is determined by policy π, it is possible to find a function for π that

maximizes Equation 2.3. Solving this optimization problem will essentially leave us with an

agent that maximizes total cumulative reward; in other words, an agent that follows an optimal

policy. Discount factor γ is applied to future reward to makes sure that immediate rewards are

prioritized over future rewards.

Reinforcement learning concern a subset of MDP problems where the state-transition probabil-

ities P (s′|s, a) and the reward function r(s, a) are unknown to the agent. This means that the

agent needs to explore the environment in order to find correlation between state-action pairs

and reward. This brings us to the following reinforcement learning concepts:

Exploration vs. exploitation

This is the idea that an agent needs to both explore and exploit the environment to arrive at

an optimal policy. Exploring entails taking either random or ”non-optimal” actions in order

to observe the consequences. Exploitation means taking the optimal action under the current

policy. Exploration is essential during training, because the state transitions and rewards are

unknown. When the agent has observed multiple state transitions and rewards, it can exploit

the environment to come closer to a solution. We say that there is trade-off between exploring

the environment and exploiting learned knowledge, and generally, we want to explore more at
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the start of the training process and gradually start exploiting more towards the end of the

training process to arrive at an optimal policy.

Fully observable vs. partially observable environment

In a MDP, the environment can be fully observable or partially observable. When the envi-

ronment is fully observable, the agent can observe the complete state of the environment at

any point (the agent is ”omnipresent.”) An example of this type of environment is the game

of chess. A chess playing agent will be able to observe location and types of all the chess

pieces at any point in the game, so we say that the environment is fully observable. When

the environment is partially observable, only a subset of the state is known. This is the most

common case for real-life agents, such as an autonomous car. The car may only be able to

observe the environment through a front-facing camera, meaning it cannot know or observe

the states the of objects behind it. In other words, this environment is partially observable.

A MDP that is partially observable is also known as a Partially Observable Markov Decision

Process (POMDP).

Discrete vs. continuous state and action spaces

Depending on the environment, the state and action spaces may be discrete or continuous.

Chess is an example of a game with discrete state and action spaces; there are a countable

number of possible states and actions at any given time. Autonomous driving with a proximity

sensor is an example of an environment with both continuous state and action spaces; the state

and actions are real-numbered values, e.g. the state consists of the proximity values in meters,

and the action consists of the vehicle’s steering angle in degrees.

Model-based vs. model-free

Model-based methods are methods that attempt to create a model of how the environment

works. If an agent is in state s and takes action a, it will get a new state s′ and reward r.
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Intuitively, these observations could be used to approximate P (s′|s, a) and r(s, a); that is, we

can approximate a model of the environment. After a model has been approximated, we could

use a MDP-solving algorithm such as Bellman’s value iteration algorithm or Howard’s policy

iteration algorithm to derive the optimal policy given our current model of the environment.

Model-free methods are a methods that optimize the policy directly without modelling the

environment. State spaces and action spaces in many reinforcement learning problems are con-

tinuous, and therefore we have an infinite number of possible values, rendering it impossible to

efficiently create MDP models without making approximations. Optimizing the policy directly

also allows us to find good policies through function optimization techniques, such as gradient

decent.

Deterministic vs. stochastic policy

An agent’s policy may be deterministic or stochastic. When we have a deterministic policy, the

agent will always choose the same action when it is presented with the same state, assuming

that the policy stays the same. The agent may alternatively follow a stochastic policy, where the

agent will choose an action stochastically when it is presented with the same state. An example

of a stochastic policy would be ”given state s, go left 30% of the time and to go right 70% of

the time.” Deterministic policies make sense in fully observable, deterministic environments,

where taking an action always lead to the same result (e.g. chess). Stochastic policies are useful

in partially observable environments and in stochastic environments. Using a stochastic policy

in a partially observable environment allows the agent to model some part of the hidden state

of the environment as part of its stochasticity, making it more robust to hidden information.

When an agent acts in a stochastic environment, taking an action may have different results

from one time to another. This is common in robotics and other real-life control environments,

where time measurements and control signals may be inaccurate. Using a stochastic policy in

these cases is necessary, as a deterministic policy will be unable to find direct mappings from

state-action pairs to their resulting states due to the stochasticity of the environment.
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On-policy vs. off-policy

In on-policy methods, the same policy used to determine the value of the policy, and to control

the agent. Proximal Policy Gradient is an example of an on-policy method (Section 2.3.3).

Off-policy methods use different policies for evaluating the policy and for controlling the agent.

Q-learning is an example of an off-policy method (Section 2.3.2).

Monte-Carlo vs. temporal difference

In methods using Monte-Carlo roll-outs, we compute a complete trajectory before we optimize,

while in methods using n-step temporal difference, we only use n number of steps along a

trajectory before we take an optimization step. Temporal difference (TD) methods have the

advantage that they support non-episodic environments, e.g. a stock marked value predictor.

TD-learning methods are, however, more susceptible to bias originating form the initialization

of the agents parameters, while Monte-Carlo methods are less biased but have higher overall

variance during training.

Reinforcement learning – Justification

Is this a reasonable way to model a learning framework? A common analogy to reinforcement

learning is that of biological learning. When people and animals grow up, they gradually learn

what actions are good and what actions are bad based on the positive and negative signals our

brain receives from sensory organs. For example, if we were to touch a hot stove top with our

hands, the body will send a big negative reward signal to the brain in the form of pain to deter

us from repeating the same, dangerous action in the future. If we eat a calorie rich piece of

cake, the body will send a positive reward signal to the brain, to teach us to repeat that action

in the future. It stands to reason that the reinforcement learning framework is a logical way to

formulate these types of problems following this analogy.
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Figure 2.3: Classes of reinforcement learning algorithms. Illustration borrowed from presenta-
tion by Peter Abbeel of UC Berkeley.

2.3.2 Reinforcement Learning Algorithms

Figure 2.3 shows a hierarchy of classes of reinforcement learning algorithms, and how they

relate. In this section, we will look into both policy optimization and dynamic programming

algorithms, and later explain how these relate to the current state-of-the-art general-purpose

reinforcement learning method, Proximal Policy Optimization.

Simplest Approach – Brute Force Search

One way to solve reinforcement learning problems is to search for the best policy through brute-

force search. This involves evaluating several trajectories from a start to finish and picking the

policy that yielded the highest return. This approach requires an evaluation of every possible

trajectory to converge, and is therefore exponential in number of states, number of actions, and

trajectory length. It may only work in episodic environments where only a few time steps is

required to reach a terminal state, and environments with few and discrete states and actions;

for example, tic-tac-toe.
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Policy Gradient

A better approach would be to optimize the policy directly. Policy optimization methods search

for a policy in a subset of the policy space. This can be done with both gradient-based opti-

mization and gradient-free optimization. We will focus on gradient-based methods, however,

gradient-free methods such as evolutionary computation have also shown to be successful as

well.

Policy gradient optimization was introduced by Williams in 1992 [Wil92] in a paper titled

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.

In the paper, Williams derives the mathematical background of gradient-based policy opti-

mization methods, and subsequently introduces a class of general-purpose algorithms called

REINFORCE that uses gradient-following in connectionist networks – more commonly known

today as artificial neural networks (Section 2.1.2) – to optimize the parameters of the policy.

Intuitively, these methods work by collecting a bunch of trajectories, and then uses gradient

ascent to make the good trajectories more probable in the policy.

Likelihood Policy Gradient

Assume that we have a neural network that parameterizes the stochastic policy πθ(a|s) by

parameters θ. We define the objective function as follows:

J(θ) = E [R(τ)|πθ] (2.4)

Where E [ · |πθ] denotes the expectation of · conditioned on πθ and R(τ) is the return along

trajectory τ (Equation 2.3.) The trajectory τ is conditioned on the policy πθ, and the probability

of following a specific trajectory under policy πθ is given by P (τ |πθ). Using this, we can expand

Equation 2.4 as follows:
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J(θ) = Eτ∼P (τ |πθ)

[
T−1∑
t=0

γtr(st, at)

]
=
∑
τ

P (τ |πθ)R(τ) (2.5)

Where T denotes the horizon, e.g. the number of time-steps we take in a fixed-time step

environment. J(θ) represents the expected return of following policy πθ. To find the optimal

policy we have to find the policy that maximizes expected return, J(θ), with respect to θ. As

such, we can formulate the problem as the following optimization problem on J(θ):

max
θ
J(θ) = max

θ

∑
τ

P (τ |πθ)R(τ) (2.6)

We can solve this optimization problem with gradient ascent (Section 2.1.2), and to do so,

we need to compute the gradient ∇θJ(θ). We can derive this gradient with the help of the

likelihood ratio trick:

∇θJ(θ) = ∇θ

∑
τ

P (τ |πθ)R(τ)

=
∑
τ

∇θP (τ |πθ)R(τ)

=
∑
τ

P (τ |πθ)
P (τ |πθ)

∇θP (τ |πθ)R(τ) Multiply by identity 1 =
P (τ |πθ)
P (τ |πθ)

=
∑
τ

P (τ |πθ)
∇θP (τ |πθ)
P (τ |πθ)

R(τ) Likelihood ratio trick:

=
∑
τ

P (τ |πθ)∇θ logP (τ |πθ)R(τ) ∇θ logP (τ |πθ) =
∇θP (τ |πθ)
P (τ |πθ)

= Eτ∼P (τ |πθ) [∇θ logP (τ |πθ)R(τ)] (2.7)

The reason we compute this gradient with the likelihood ratio trick, is because analytically cal-

culating ∇θP (τ |πθ) is non-trivial – the dynamics model P (τ |πθ) is often a highly discontinuous

function. The final step of Equation 2.7 shows that the gradient ∇θJ(θ) is an expectation. A

direct consequence of this is that we are now able to approximate the gradient empirically by
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sampling m trajectories under policy πθ:

∇θJ(θ) ≈ ĝ =
1

m

m−1∑
i=0

∇θ logP (τ (i)|πθ)R(τ (i)) (2.8)

We know that 1
m

∑m−1
i=0 ∇θ logP (τ (i)|πθ)R(τ (i))→ ∇θJ(θ) when m→∞ from the law of large

numbers. This makes ĝ is an unbiased estimator of ∇θJ(θ). ĝ is unbiased, even if R(τ) is

discontinuous, unknown, or discrete.

However, we still need to be able to compute the gradient of the probability of a single trajectory,

∇θ logP (τ (i)|πθ), in order to solve ĝ. We can do this by decomposing the trajectory into its

state-action pairs as follows:

∇θ logP (τ (i)|πθ) = ∇θ log

T−1∏
t=0

P (s
(i)
t+1|s

(i)
t , a

(i)
t )︸ ︷︷ ︸

Dynamics model

· πθ(a(i)t |s
(i)
t )︸ ︷︷ ︸

Policy


= ∇θ

(
T−1∑
t=0

logP (s
(i)
t+1|s

(i)
t , a

(i)
t ) +

T−1∑
t=0

log πθ(a
(i)
t |s

(i)
t )

)

= ∇θ

T−1∑
t=0

logP (s
(i)
t+1|s

(i)
t , a

(i)
t ) +∇θ

T−1∑
t=0

log πθ(a
(i)
t |s

(i)
t )

=
T−1∑
t=0

∇θ logP (s
(i)
t+1|s

(i)
t , a

(i)
t ) +

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t ) (2.9)

=
T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t ) (2.10)

Note that ∇θ logP (s
(i)
t+1|s

(i)
t , a

(i)
t ) disappears in Equation 2.9 because the dynamics model,

P (s
(i)
t+1|s

(i)
t , a

(i)
t ), is not parameterized by θ – policy gradient methods are model-free. So the

gradient becomes zero, and we are left with a gradient that depends on the parameterized

policy only. Inserting this derivation into the expectation of the objective gradient (Equation

2.8), we get the following model-free gradient estimator:
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ĝ =
1

m

m−1∑
i=0

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )R(τ (i)) (2.11)

Using this equation to optimize J(θ) with gradient ascent is know as vanilla policy gradient.

Vanilla policy gradient is, unfortunately, very sample inefficient due to high variance; a single

sample of R(τ) can have too great of an effect on the gradient. To reduce the variance, Williams

introduces the idea of a baseline value, b. The goal of the baseline value is to center the reward

signal around a zero-mean, meaning we will only update the parameters θ if the return along a

trajectory R(τ) is better or worse than the baseline. This is the equation for the policy gradient

with a constant baseline1:

ĝ =
1

m

m−1∑
i=0

T−1∑
t=0

∇θ log πθ(a
(i)
t |s

(i)
t )(R(τ (i))− b) (2.12)

The baseline value can be estimated several ways, but the simplest way would be to calculate

the expected return over multiple trajectories b = E[R(·)] ≈ 1
k

∑k−1
i=0 R(τ (i)). We will take a

closer look at another baseline in Section 2.3.3.

It is also worth mentioning common representations of πθ. In discrete action spaces, it is

common to express πθ as a softmax policy. The softmax function is Sj = eoj∑K−1
k=0 eok

, where j

represents the jth, and ok is the kth output of a neural network parametarized by θ. Computing

the derivative of the softmax policy yields:

∇θ log πθ(aj|s) =
∑
i

ai
∂Si
∂oj

= aj − Sj (2.13)

In other words, the difference between the softmax-probability of the taken action and the

softmax-probability of the expected action.

There is also the Gaussian policy, commonly used with continuous action spaces. The Gaussian,

or normal distribution is given by N (µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 . Calculating the derivative of a

1Williams proves that the baseline estimator is also unbiased in [Wil92]
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Gaussian policy with respect to the mean, µ gives us:

∇θ log πθ(a|s)a∼N (µ,σ) =
∂

∂µ
log

(
1√

2πσ2
e−

(a−µ)2

2σ2

)
=
a− µ(s)

σ2
(2.14)

In other words, the gradient of the Gaussian policy is the difference between the taken action,

a, and the mean action given state s, µ(s). If the network outputs the standard deviation

σ alongside the mean, we need to calculate the derivative of the Gaussian distribution with

respect to σ:

∇θ log πθ(a|s)a∼N (µ,σ) =
∂

∂σ
log

(
1√

2πσ2
e−

(a−µ)2

2σ2

)
=

(a− µ(s))2 − σ2

σ3
(2.15)

Q-learning

Q-learning is a dynamic programming based approach to solve reinforcement learning problems.

It works by maintaining a table of Q-values, or quality-values. The Q-table maps a state-action

pair to a Q-value that represents the expected return of taking a specific action a in state s.

This table is also denoted as Q(s, a).

Q-learning is a 1-step temporal difference learning algorithm that works in both continuous

and episodic environments, but works only with discrete state and action spaces. It is based

on the Bellman equation, which goes as follows:

Q(s, a)← Q(s, a) + α
[
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(2.16)

This is an equation that can be solved by dynamic programming; this, because we need the

solution of Q(s′, a′) in order to solve Q(s, a). It is also an iterative algorithm that learns over

time. maxa′ Q(s′, a′) is the maximum Q-value of the next state, so r(s, a) + γmaxa′ Q(s′, a′)

represents the current estimate of the maximum return of taking the best action in the next

state s′. r(s, a) + γmaxa′ Q(s′, a′) − Q(s, a) represents how different our current estimate of
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Q(s, a) is, from how we think it should be given what we have learned about the next state

and the reward we received this time-step. This is the temporal difference from state s to s′;

also known as 1-step temporal difference. 0 < α < 1 is a scalar that determines how quickly

the values in the Q-table should be updated based on the temporal difference – in other words,

the learning rate. 0 < γ < 1 is the discount factor, which works as described in Section 2.3.1.

When this equation is applied over several iterations, the Q-values in the Q-table will converge

to values that accurately predicts the return from taking an action in a given state.

Algorithm 1 Q-learning algorithm

1: Initialize Q(s, a) arbitrarily
2: for each episode do
3: Initialize s
4: for each step of episode do
5: Choose a from s using policy derived from Q (e.g. ε-greedy)
6: Take action a, observe r, s′

7: Update Q(s, a)← Q(s, a) + α [r(s, a) + γmaxa′ Q(s′, a′)−Q(s, a)]
8: s← s′

9: end for
10: end for

Algorithm 1 shows the complete Q-learning algorithm. A critical part of this algorithm is the

exploration vs. exploitation trade-off introduced by an ε-greedy policy. An ε-greedy policy

is a policy that will pick the optimal, or ”greedy,” action with a probability of 1 − ε, and a

random action with a probability of ε, where 0 ≤ ε ≤ 1. Typically, we want to initialize ε = 1

and anneal its value towards ε → 0 over the run of episodes. This ensures that our agent will

explore the environment sufficiently before converging to a final policy. Because Q-learning

uses an ε-greedy policy for selecting actions, while it uses a maxa′ Q(s′, a′) policy to determine

the value of the current policy, Q-learning is an off-policy reinforcement learning algorithm.

2.3.3 Deep Reinforcement Learning

As deep learning became more wide-spread, researchers started looking into ways to utilize

deep learning in reinforcement learning. The first successful attempt of this is known as Deep

Q-learning.
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Deep Q-learning

Deep Q-learning, or Deep Q-network (DQN), was introduced in the paper Playing Atari with

Deep Reinforcement Learning by Mnih et al. 2013 at DeepMind Technologies [MKS+13], and it

is the earliest example of a deep reinforcement learning model that successfully learned control

policies from high-dimensional state spaces. The approach has shown to be successful in playing

a wide range of Atari games using only the input frames and a reward signal to train. DQN

achieved scores that were on par with human performance, and it even got better scores than

human players in three of the games that they tested.

Deep Q-learning works by training a convolutional network to accurately predict the Q-values

of every action, given a state. That is, instead of maintaining a |A| × |S| table, we now

approximate the table with a deep neural network. Intuitively, we can say that the network

learns to predict the quality of actions by correlating states, actions and rewards pairs from its

experiences.

Algorithm 2 Deep Q-learning with experience replay

1: Initialize replay memory D with capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1, M do
4: Initialize sequence s1 = x1 and prepossessed sequence φ1 = φ(s1)
5: for t = 1, T do
6: With probability ε select a random action at
7: otherwise select at = maxaQ

∗(φ(st), a; θ)
8: Execute action at in emulator and observe reward rt and image xt+1

9: Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1

10: Store transition (φt, at, rt, φt+1) in D
11: Sample random minibatch of transitions (φj, aj, rj, φj+1) from D
12: Set

yj =

{
rj for terminal φj+1

rj + γmaxa′Q(φj+1, a
′; θ) for non-terminal φj+1

13: Perform gradient descent step on (yj −Q(φj, aj; θ))
2

14: end for
15: end for

Algorithm 2 shares several similarities to the original Q-learning algorithm. We are still work-

ing with an ε-greedy policy – to encourage exploration – and we are still calculating 1-step

temporal differences. We also require discrete action-spaces, however the state-space can now
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be continuous or high-dimensional. The method scales linearly with the state-space, as opposed

to Q-learning, which scales exponentially.

The first difference to note is the addition of replay memory. Replay memory, D, is a deque of

predetermined size N that stores previous experiences of the agent. An experience is a 4-tuple

of (φt, at, rt, φt+1), where φt is the original state before action at is taken, rt is the reward the

agent received from taking the action and φt+1 is the next state. Note that φt = φ(st), where

φ is some function used to preprocess the observation. Adding experiences to the replay buffer

as we explore ensures that the agent reinforces both new and past experiences, so it does not

forget as easily. It also allows us to do minibatch training to reduce the amount correlations

being found by the model, and to speed up training.

However, the most important difference is how the agent is trained in DQN. Instead of iteratively

maintaining a complete Q-table, we are now using stochastic gradient descent to optimize the

network parameters, θ, with respect to the squared error between yj and Q(φj, aj; θ), where

j represents the randomly sampled indices for the minibatches. Following the same logic as

with Q-learning, we can say that yj represents the expected value of φt, given that we take

the action that we currently believe is the best action in φt+1, while Q(φj, aj; θ) represents the

current prediction of the value of the current state according to the network. In other words,

yj−Q(φj, aj; θ) tells us how incorrect our current estimate of the current state’s value is, taking

the current reward and the value of the next step into consideration. Using this as the neural

network’s loss function, we will eventually learn to accurately predict the values for each action

given any state, leaving us with a policy where we can simply pick actions greedily to solve

problems with high-dimensional state-spaces, such as Atari games.

In their experiments, they found it to be necessary to do prepossessing of the input images,

denoted as φ(s) in Algorithm 2. In their case, they apply a prepossessing step that transforms

the 210 × 160 128-bits images into 84 × 84 greyscale images, to reduce the computation load

of backpropagation. More importantly, their preprocessing step also stacks the 4 last frames,

turning the state-space into 84× 84× 4. The authors found this modification to be crucial, as

the network could not learn to predict motion otherwise. If you can only see a single image of
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the game of Pong, it is impossible to predict what the best action is, because a single frame

does not encode the motion of the ball.

It is also worth noting that there exists several improved adaptations and alterations of DQN,

such as: DQN with Fixed Q-targets, Double DQN [Has10], Dueling DQN [WdFL15], DQN

with Prioritized Experience Replay [SQAS15], among others.

Asynchronous Advantage Actor Critic

Deep Q-learning has a big limitation: it requires discrete action spaces. Reinforcement learning

with discrete action spaces is useful for playing games – where the actions comes in the form of

discrete button presses – but it can be difficult to adapt DQN to, say, control a robotic hand,

or in our case, controlling a vehicle with continuous acceleration, breaking and steering angle

variables.

Asynchronous advantage actor citric (A3C) by Mnih 2016 et al. [MBM+16] at DeepMind

represents one of the more recent successes in deep reinforcement learning. A3C is an actor-

critic method – a reinforcement learning formulation that was first introduced by Barto et al.

in 1983 [BSA83]. The actor represents the parameters that determines the policy of an agent

while the critic represents the parameters that are responsible for predicting the value of being

in any given state. The ”critic” part of A3C does essentially the same as DQN, however, unlike

DQN we do not pick our actions based on the value function. Instead, the critic helps our agent

make more accurate advantage estimates, which will in turn guide the training of the policy

parameters. Optimizing the actor separately from the critic allows the actor to explore the

environment independently of the critic, and it also allows for policies that output continuous

action values since we can optimize the policy directly, as we did in Section 2.3.2 regarding

policy gradient methods.

When compared to earlier deep learning-based actor-critic methods such as Deep Deterministic

Policy Gradient [LHP+15], Mnih et al. credits most of the success of A3C to the ”asynchronous”

part of the algorithm. Instead of maintaining a replay memory of previous experiences, A3C
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works by running multiple environments simultaneously. Each agent has its own copy of the

network parameters, and they calculate their respective gradients over several time-steps asyn-

chronously. These gradients are periodically applied to a global copy of the network parameters,

and synchronized across the parallel agents. The benefit of training with parallel agents rather

than replay memory is that all the samples we train on will use a recent version of the policy,

meaning we are more likely to train samples that are probable under our current policy, thus

improving the speed of training. A2C is the synchronous variant of A3C, and OpenAI has

shown that it has equal to or better convergence properties than A3C [Ope17]. In A2C we run

the environments synchronously to gather the samples we use in a minibatch. An advantage

of this is that we can utilize the GPU for performing batched updates with large batch sizes.

Most things that we will be referring to regarding A3C will also hold for A2C.

A3C is an advantage actor-critic method. In practice, this means that the policy gradient,

∇θ log πθ(at|st) (see Section 2.3.2,) is weighed by the actors advantage rather than its return.

We can formulate this as the following policy loss function:

Lπ = −Et [log πθ(at|st)A(τt; θv)] (2.17)

Where θ are the actor parameters and θv are the critic parameters (in practice these may be

shared,) and Et [ · ] denotes the expectation over all time-steps t ∈ [0, . . . , T ]. Note that the

policy gradient from Section 2.3.2, log π(at|st; θ)A(τt; θv), is negated in Lπ because we want

to express it as a loss function instead of an objective function (maximizing an objective

is equivalent to minimizing the negated value of the objective.) A(τt; θv) is the measured

advantage of the agent along trajectory τ , and it is given by:

A(τt; θv) =

Rt(τ)︷ ︸︸ ︷
k−1∑
i=0

(
γirt+i

)
+

bootstrap︷ ︸︸ ︷
γkV (st+k; θv)−

baseline︷ ︸︸ ︷
V (st; θv) = Rt(τ)− V (st; θv) (2.18)

Conceptually, advantage represents how much better the agent did compared to a baseline

expectation, as discussed in Section 2.3.2. There are several ways to calculate this advantage,
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and in A3C, the advantage is calculated by how much better the agent did compared to what

the critic expected, as we can see in Equation 2.18. Rt(τ) is the return of the agent when

following trajectory τ , and V (st; θv) is the critic’s prediction, or the baseline. Note that for

the return value of a trajectory to be accurate, we need to consider the trajectory as t → ∞.

However, because we are doing TD-learning, we instead bootstrap the last reward value with a

discounted prediction of the future return given the last state, γkV (st+k; θv). This is reasonable,

as V (st; θv) ≈ Rt(τ). The purpose of training with advantage rather than return, is that it

will normalize the reward signal during training. This reduces the variance and stabilizes the

training process, as the gradient descent steps are now zero-mean [Wil92].

In addition to optimizing the policy, gradient updates are also applied to the critic parameters,

θv, by minimizing the mean-squared error between the observed n-step return and estimated

value over all the time-steps: LV = Et
[
(V (st; θv)−Rt(τ))2

]
. They also introduce an entropy

loss term, LS, to encourage exploration. The entropy of a normal distribution is given by

−1
2

(log (2πσ2) + 1). Note that that the entropy should be maximized, so the equivalent loss

function becomes negated, LS = 1
2

(log (2πσ2) + 1). This gives us the following, combined loss

function for optimizing a A3C-based network that outputs normal variables:

L = Lπ + αLV + βLS =

Et[− log π(at|st; θ)A(τt; θv) + α (V (st; θv)−Rt(τ))2 + β
1

2

(
log
(
2πσ2

t

)
+ 1
)
] (2.19)

Where α and β are value and entropy loss scaling factors respectively. Applying stochastic

gradient decent to this loss function will make the policy parameters move in the direction of

policies of higher advantage, minimize the value loss to make the critic more accurate, and also

maximize the entropy to maintain some level of uncertainty in the policy (maintain a level of

σ in the case of a Gaussian policy.)
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Proximal Policy Optimization and Trust Region Policy Optimization

Proximal Policy Optimization (PPO) by Schulman 2017 et al. [SWD+17] at OpenAI is currently

considered the best baseline for reinforcement learning research. It has much better convergence

properties than previous reinforcement learning approaches, due to a clever combination of

clipping the policy loss, and calculating the loss in terms of a probability ratio instead of

optimizing the policy’s log likelihood directly. PPO is an actor-critic method similar to A3C,

that combines trust region optimization with gradient decent to stabilize training; creating a

loss function that nearly guarantees that the agent’s policy will improve monotonically. PPO

attempts to improve on Trust Region Policy Optimization [SLM+15] (TRPO) by Schulman

et al., which formulates an objective function that constraints the update step within some

pessimistic lower-bound called a trust region.

Trust region optimization methods are optimization methods that optimize a function by com-

puting a local, but accurate estimate of a function at a specific point, and derives a trust region

from the upper-bound error of the objective function. In TPRO, this error is derived by the

Kullback-Leibler divergence, or KL-divergence. KL-divergence is a measure of how much one

probability distribution differs from another. The intuition is that by constraining the opti-

mization subject to the KL-divergence between the old and the current policy, we are ensuring

that the new policy is not diverging too far from the original; in other words our new policy

will be within the old policy’s trust region. This constraint allow us to perform multiple update

steps per sample, because we know the new policy will not diverge too far from the old one in

any one step, increasing the sample efficiency of our method significantly. In order to measure

how much our policies are diverging, we need to express the optimization problem in terms of

the current policy and the old policy. This is the basis of the TRPO objective:

maximize
θ

Et
[
πθ(at|st)
πθold(at|st)

Ât

]
subject to Et [KL [πθold(·|st), πθ(·|st)]] ≤ δ

(2.20)

Where θold is the policy parameters before the update. TRPO, however, suffers from being
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complicated to implement, and incompatible with models that have noise (such as dropout),

or models that share parameters between the policy and value function. This is due the fact

that Equation 2.20 needs to be optimized with second-order optimization methods such as

the conjugate gradient algorithm, rather than first-order optimization techniques such as gra-

dient decent. PPO aims to correct these shortcomings by reformulating the objective as a

clipped objective function that we can optimize with gradient decent. Let’s, however, start by

reformulating the above objective as an unconstrained loss function:

LISθold(θ) = Et
[
πθ(at|st)
πθold(at|st)

Ât

]
(2.21)

Where IS stands for importance sampling. This comes from the fact that this loss function

can be interpreted in terms of importance sampling [SLM+15]. Recall from Section 2.3.2, that

in order to directly optimize the policy of an agent by first-order optimization, we need to

calculate ∇θ log πθ(a|s). The loss function LISθold(θ) is, however, a loss function expressed by the

ratio between the old an new policy. We can prove, by the help of the chain rule, that these

gradients are actually the same [KL02]:

∇θ log πθ(a|s)|θold =
∇θπθ(a|s)|θold
πθold(a|s)

= ∇θ

(
πθ(a|s)
πθold(a|s)

)
|θold (2.22)

This means that optimizing LISθold(θ) with gradient decent is equivalent to optimizing the policy

gradient, ∇θ log πθ(a|s). The importance of this reformulation of the policy gradient is that

we can now use gradient decent, while imposing a trust region constraint on the loss function

in terms of the new and old policy. Let rt(θ) = πθ(at|st)
πθold (at|st)

. The authors propose the following

clipped loss function:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(2.23)

Where ε is a hyperparameter that determines how much the new policy can diverge, per update,

from the old policy in the direction of improved policies; in other words, the size of the trust
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Figure 2.4: Shows the response of the different loss functions as policy θ is linearly interpolated
to θold. Notice how LCLIP → 0 the more θ deviates from θold.

region (see Figure 2.4.) The min in the objective computes minimum of the unclipped and

clipped objective. The unclipped objective is the regular LISθold loss, and the clipped objective

clips the probability ratio rt to the interval [1−ε, 1+ε] to ensure conservative changes. The min

term makes it so that whenever the new policy is advantageous, that is, if A > 0 && rt(θ) > 1

or A < 0 && rt(θ) < 1, we constraint our updates by the clipped objective. Otherwise, if the

new policy is detrimental, that is, A < 0 && rt(θ) > 1 or A > 0 && rt(θ) < 1, we will push the

current policy parameters towards the parameters of the previous policy, essentially reverting

changes of the previous update. The authors of PPO also tried to use a KL-divergence penalty

with the loss function instead, but found the clipped loss to give overall higher return in their

experiments.

As mentioned before, formulating the optimization problem in terms of a differentiable loss

function allows us to use gradient decent. This means that, unlike TRPO, we can now param-

eterize a critic in terms of θ. PPO optimizes the critic the same way A3C does, by introducing

a value function loss LV F = (V (st; θv)−Rt(τ))2 (see Section 2.3.3). We also add the entropy

term, −1
2

(log (2πσ2) + 1), like in A3C. The final loss function becomes:

LCLIP+V F+S(θ) = −Êt
[
LCLIP (θ)− αLV F (θ)− β 1

2

(
log
(
2πσ2

)
+ 1
)]

(2.24)
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Algorithm 3 PPO, Actor-Critic Style

1: for iteration=1,2,... do
2: for actor=1,2,...,N do
3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, ..., ÂT
5: end for
6: Optimize LCLIP wrt θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

Algorithm 3 is the algorithm for PPO. This algorithm is almost identical to the one of A2C; the

standard policy gradient loss function is replaced with the clipped loss function, there is a loop

repeating the gradient update on random minibatch samples over K epochs, and advantage

estimate Ât uses the more accurate generalized advantage estimation (GAE) calculation instead:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (2.25)

where δt = rt + γV (st+1)− V (st)

Note that for A2C and earlier policy gradient based methods, it is not well-justified to run

multiple batches on data sampled under the same policy. This is because the advantage estimate

Ât is a noisy function, so running multiple batches based on a single sample of the advantage

function is going to drive the likelihood of the respective action to infinity when Â > 0, or to

zero when Â < 0.

2.3.4 Reinforcement Learning for Self-Driving Vehicles

Most research in reinforcement learning we have looked at so far have primarily focused on

solving video games and robotics’ locomotion problems. So far there has been quite limited

research in use of deep reinforcement learning for autonomous driving, perhaps due to the fact

that it is hard to safely train a reinforcement agent in the real world, since such an agent needs

to explore the environment to learn. There is, however, recent notable work done by Kendall
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Figure 2.5: Kendall’s et al. Learning to Drive in a Day model. This is an actor-critic based
reinforcement learning model that learns to output steering and speed given a monocular input
image, and given the vehicle’s current steering and speed measurements.

et al. in their 2018 paper titled Learning to Drive in a Day [KHJ+18]. In their work they

were able to teach a full-scale autonomous car to reliably follow a country-side road with only

a single monocular front-facing camera, and only needing to train it over a handful of episodes.

Applying a deep reinforcement learning model to train self-driving vehicles is not trivial. As

we discussed in Section 2.3.1, reinforcement learning solves Markov decision processes. This

entails that the task can be modeled as a process where we have an agent that takes actions in

the environment, and receives rewards form its actions. In practice, this means that we need

to design a reward signal that is sufficient to teach the agent to solve the problem at hand. In

the case of lane-following, we can imagine a reward signal to be a function of the car’s offset

from the center of the lane. However, this approach is limited in scale according to Kendall, as

it may be difficult to extract the center point of the lane with high accuracy on a multitude of

roads. Instead, Kendall et al. define the reward as the forward speed of the car, and they will

terminate the episode whenever the car drifting too far to the sides of road (termination signal

is given by a human safety driver.) Defining the reward this way encourages the car to cover

as much distance as possible, because velocity ∗ time = distance, and terminating early means

a reduction in time. Given this reward formulation, they apply the actor-critic method DDPG

[LHP+15] out-of-the-box with no further task-specific modifications made.

Figure 2.5 shows the model they used. The action space, or output, of the model is a continuous

two-dimensional vector representing the steering angle, and speed in km/h. It is interesting to
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note that outputting the angle and speed directly, and letting the controller manage turning

and throttle, will most likely smooth out noise coming from the network. In their experiments,

they have tried to use convolutional layers as part of the actor-critic network, in addition to

trying to use a pre-trained variational autoencoder (VAE) to encode image information. They

found using a variational autoencoder to encode the images to vastly improve the performance

of the model, compared to training the convolutional layers alongside the rest of the actor-

critic parameters. A simulator was adopted to tune the hyperparameters and to verify that

their model works. The final model was able to learn to follow a 250m road in 11 epochs, or

15 minutes in real-time.

2.3.5 Reinforcement Learning with Variational Autoencoders

Apart from Kendall’s work, we have also seen other examples of variational autoencoders being

used with reinforcement learning, suggesting that VAEs will have an central place in the field

of deep reinforcement learning. Other examples include Disentangled Representation Learning

Agent by Higgins et al. [HPR+17], and World Models by Ha et al. [HS18]. In this section we

will take a look at what autoencoders are, and how they are useful to reinforcement learning

agents.

Variational Autoencoder

An autoencoder is a type of generative neural network model that consists of an encoder net-

work, followed by a decoder network. The idea is to use backpropagation to train the net-

work to reconstruct a high-dimensional input signal after it has been compressed into some

low-dimensional vector. Mathematically, we may denote the input vector as x ∈ X and the

reconstructed signal as x̂ = p(q(x)), where q and p denote the encoder and decoder respectively.

The encoder and decoder are non-linear functions that can be optimized by backpropagation,

typically multi-layered perceptrons or CNNs. We will denote the the latent vector at the bot-

tleneck as z = q(x), and it has a size of zdim. The goal of the autoencoder is to minimize the
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Figure 2.6: Shows the variational autoencoder architecture. The encoder, q, takes input vector
x and outputs two vectors, zµ and zσ, through two parallel fully-connected layers. z is then
sampled fromN (zµ, zσ) and passed through decoder p, producing reconstructed signal x̂. Figure
adapted from [PC18].

reconstruction loss, Lrec, for all x and x̂ in our dataset X. Lrec is the loss function, and is we

typically use mean squared error or binary cross-entropy. After training the VAE over a large

dataset, we should end up with a model that first encodes (or compresses) input data into its

most essential components, and then attempts to reconstruct the original signal by decoding

the compressed representation.

In the paper Auto-Encoding Variational Bayes, Kingma et al. [KW14] describes an alternative

autoencoder architecture they named a variational autoencoder. A variational autoencoder is

similar to a regular autoencoder, however, a variational autoencoder has an added Gaussian

sampling step in the bottleneck to make the model more robust to noise in the input and in

the encoded representation. Instead of producing a single latent vector z at the bottleneck, we

now produce two latent vectors, zµ and zσ, representing the mean and standard deviations of

a multivariate Gaussian distribution respectively. We use this multivariate Gaussian distribu-

tion to sample a zdim-sized vector that is then feed to the decoder, as is illustrated in Figure

2.6. During training we try to minimize the reconstruction loss, Lrec, just like in a regular

autoencoder.

Kingma et al. also introduces a KL-divergence loss that serves to limit the divergence of

the Gaussian distributions. As mentioned in Section 2.3.3, Kullbak-Leibler divergence is a

measure of the divergence between probability distributions. In our case, we want to minimize
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Figure 2.7: Shows a visualization of how state representation learning (SRL) can be used with
reinforcement learning (RL). Note that the SRL module is typically pre-trained and frozen
before we apply end-to-end reinforcement learning to the parameters of the RL module. Figure
borrowed from [RHT+19].

the distance between the distributions given by N (zµ, zσ) and N (0, 1), effectively pushing

our Gaussian distributions towards zero-mean normal distributions. This forces the model to

diverge as little as possible from a simple N (0, 1) distribution; making the model simpler and

more robust. The KL-loss is given by:

LKL = −1

2

zdim−1∑
i=0

1 + log(zσ,i)
2 − z2µ,i − z2σ,i (2.26)

Where we have summed the KL-loss over zdim different distributions. Adding the reconstruction

loss, Lrec, to LKL gives us a final loss of:

L = Lrec + βLKL (2.27)

Where β is a factor regulating the strength of the KL-divergence loss (set to 1 in the original

VAE paper.)

In Reinforcement Learning

Variational autoencoders are used in reinforcement learning as a type of feature extractor. The

idea is that we can help a reinforcement learning agent learn by compressing high-dimensional

observations into a low-dimensional latent space that is likely easier to learn. Learning on the
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state representations produced by a VAE is known as state representation learning. Raffin et al.

[RHT+19] argue that state representation learning improves the quality of an agent’s learning

by giving the agent a state space that ignores distractors, and is disentangled in its feature

representations. Disentanglement refers to the idea that each latent space variable encodes

some essential, uncorrelated variable in the system, e.g. the x or y-positions of the agent. The

more disentangled the state representations are, the easier it should be for the agent to solve

the environment.

Typically, the VAE is trained separately from the policy, such as in DARLA: Improving Zero-

Shot Transfer in Reinforcement Learning by Higgins et al.. Higgins also experimented with

the effect of changing β to encourage increased disentanglement in the state representation.

Increasing β forces the VAE to find simpler models to explain the data, hence it is reasonable

to expect stronger disentanglement.

World Models by Ha et al. [HS18] is another example of how VAEs can be used to aid the

training of an agent. In their model, they add the output a recurrent network of LSTMs to

the state representation to give the agent memory. The LSTM tries to predict the next state

that will be output by the VAE after some action is taken, and will essentially give us a state

representation model that is able to predict changes in the environment based on the agent’s

actions. In their results, they also note that their agent is the only entry on the CarRacing-v0

leaderboard that has effectively solved the task; achieving an average score of 906 over 100

randomly generated tracks.



Chapter 3

Proximal Policy Optimization in

Driving-Like Environments

3.1 Introduction

As we discussed in Section 2.3.5, there is evidence that better state representations can vastly

reduce training time and improve the quality of our agent. However, in this thesis, we wish to

investigate all aspects of how we may setup a reinforcement learning problem to accelerate the

learning of autonomous vehicles. In particular, we will be looking at the results and methods

of Kendall et al. [KHJ+18], and we will try to identify which of their design decisions had the

greatest impact when it comes to using deep reinforcement learning for autonomous vehicles.

We will compare different variational autoencoder models, different reward functions, the effect

of early termination in the environment, the effect of environment’s visual complexity and

task complexity. The ultimate goal of these experiments will be to demonstrate that deep

reinforcement learning can be used to drive in visually complex and realistic settings, and

we will provide some analysis of the effects of the various design decisions we make in our

environments and agent models along the way.

This chapter is divided into four sections. The first section concerns the implementation details

of the Proximal Policy Optimization implementation we used for most of the experiments. The

42
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following sections are concerned with the three different environments we conducted experi-

ments in: (1) a modified version of CarRacing-v0, and (2) a CARLA based environment that

focuses on following the road (3) a CARLA based environment where we try to follow a route

to reach a goal. We will discuss environment design decisions and experiments later in this

chapter, and we will provide the results of our experiments in Chapter 4.

3.2 Implementation Details

For our experiments, we have decided to use Proximal Policy Optimization, as it appears to

be one of the most consistent deep reinforcement learning algorithms for continuous control

tasks [SWD+17] [BESK18]. As discussed in Section 2.3.3, PPO is a model-free, policy gradient

based reinforcement learning algorithm that employs a first-order trust region criteria to prevent

divergence. In this section, we will lay out the details of our implementation of PPO.

3.2.1 Setup

The implementation was written in Python 3.6 with TensorFlow 1.13. The simulations and

training were run on a system with a single Nvidia GTX 970 with 4 GB of video memory, a

4-core CPU, and 23GB of RAM. Complete code of the PPO implementation, the experiments,

and the new environments can be found at https://github.com/bitsauce/RoadFollowing-ppo.

3.2.2 Algorithm

Algorithm 3 shows the general outline of the PPO algorithm. Recall that PPO works by

optimizing current policy πθ with respect to its deviation from the previous policy πθold . The

training data for an optimization step is sampled by running a single or multiple environments

in parallel with the old policy πθold . As we are trying to emulate Kendall’s result, we opted

to optimize the algorithm to run with a single environment. For each optimization step, we

simulate a T-step trajectory, and store (st, at, rt, dt, V (st; θv))-tuples for each state-transition.

https://github.com/bitsauce/RoadFollowing-ppo


44 Chapter 3. Proximal Policy Optimization in Driving-Like Environments

dt is a variable that represents whether or not this state is a terminal state, and it is only

used when we calculate the advantage estimates. Note that st corresponds to the latent space

vector z produced by the encoder of a variational autoencoder when a VAE is used. After we

have obtained a trajectory, we calculate advantage estimates with the generalized advantage

estimation equation (Equation 2.25), where λ is an interpolation factor that serves as a trade-off

between bias and variance in the advantage estimates [SML+15], and γ is the reward discount

factor. The GAE-calculation is also bootstrapped with the critic’s value prediction of the last

state in the trajectory, as shown in Equation 2.18. Once T steps have been computed, we end

up with T samples, which we stochastically sample minibatches of size M ≤ T from, for K

number of epochs. These minibatches of (sn,t, an,t, Rn,t, Ân,t)-tuples are feed through an actor-

critic network which will optimize the parameters θ and θv with the Adam optimizer according

to the LCLIP+V F+S loss function (Equation 2.24.) Recall that the LCLIP+V F+S introduces a

clipping parameter ε for the LCLIP loss – which ensures that our new policy after optimization

is not too far from our current policy – and that we apply a value loss scaling factor α and

entropy loss scaling factor β to the final loss. In the following sections, we will go into further

details on the exact PPO network architectures that were used in the experiments.

3.2.3 Actor and Critic Architecture

As discussed in Section 2.3.3, PPO needs an actor π(at|st; θ) network and a critic V (st; θv)

network. In our implementation, we implement these as a two distinct multi-layer perceptrons.

We make use MLPs here, since the input, st, is a vector (see Equation 3.3.) The actor MLP

consists of three fully-connected layers of sizes 500, 300, and adim, where adim is the size of the

action space. The activation function is ReLU for the first two layers, and the final layer uses

no activation. The output of the last layer in this MLP represents the unscaled means of the

Gaussian distributions which we sample actions from, and we will denote the unscaled mean

as oi and the scaled mean as µi for the ith action. To get the scaled means, we must first point

out that each of the agent’s actions are limited to a predetermined range of valid values in all

our environments. As a result, it reasonable to scale the output of the MLP to the range of
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each actions respective range. We do this through the following transformation:

µi = amini +
tanh(oi) + 1

2
∗ (amaxi − amini ) (3.1)

By passing the raw outputs of the last fully-connected layer through the hyperbolic tangent

function (tanh) we end up with values in the range [−1, 1]. Adding 1 and dividing by 2 puts our

values in [0, 1] range. Finally, we do a linear interpolation between the ith action min and max

value, resulting in amini ≤ µi ≤ amaxi . Note that this transformation is absent from the PPO

paper [SWD+17], however, we have previously shown (Appendix A.1) that this modification

gives substantial improvements – a claim that is also supported by [RHT+18]. To define the

multivariate Gaussian distribution that we sample actions from, we also provide a trainable

parameter σi. In A3C, σi is predicted alongside µi by a fully-connected layer that is parallel

to the µi layer; making σi a function of st. However, we found this to produce erratic agent

behaviour, and opted to have a trainable variable for each action’s standard deviation instead.

Note that these trainable variables, which we will call σ(log), actually represent the logarithm

of σ. So to retrieve σ we do eσ
(log)

= elog(σ) = σ. This is done to ensure that the standard

deviation is never negative, and that the standard deviation will increase faster when more

exploration is necessary. Each σi is also initialized to a value of our choice, which we will call

σinit. The weights in the µi layer are also initialized with variance scaling [GB10] with a scaling

factor of 0.1. This is done to lower the chances of having the initial weights influence the policy

too much. Our environments use continuous action spaces, so to pick actions during training

we simply sample the multivariate Gaussian distribution given by ai ∼ N (µi, σi), while, in

evaluation mode, we simply pick ai = µi.

The critic is a simple MLP with 3 fully-connected layers of sizes 500, 300, and 1, where the

output will represent V (st; θv) ≈ R(st). We use ReLU for the two first layers, and no activation

for the final layer. Having no activation in the last layer makes it so that the critic is able to

represent any possible value of R(st).

Optimization: With the action means and standard deviations from the network we can
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Figure 3.1: Shows the PPO+VAE training pipeline. Note that the subscript t is omitted in all
the variable names. External state variables refer to acceleration (throttle,) steering angle and
speed, respectively (see Section 3.3.1 for more information.)

calculate the log probability log πθ(a|s) of any action a under policy π given state s. Recall

that we need to calculate rt(θ) = πθ(at|st)
πθold (at|st)

in order to compute the clipped loss, LCLIP . We

can do this with the help of the logarithm quotient rule:

log πθ(at|st)− log πθold(at|st) =
πθ(at|st)
πθold(at|st)

= rt(θ) (3.2)

Thus, we compute the combined loss, LCLIP+V F+S, and optimize it with the Adam optimizer.

3.2.4 Variational Autoencoder

As discussed in Section 2.3.4, Kendall showed that using a variational autoencoder was instru-

mental in reducing the training time. The idea is that the VAE will serve as a feature extractor,

making the state space we train our agents on more disentangled and therefore easier to pre-

dict. We wish to investigate and confirm this, and have therefore implemented and integrated

a VAE into the learning pipeline of our agent. We will further discuss how the encoded latent

representation helps the agent learn faster in Section 4.1.3. Figure 3.1 shows the PPO+VAE

training pipeline we will be using in the experiments.

Architectures: There are several ways to construct the encoder-decoder architecture of an

autoencoder. In our experiments, we have tried using a multi-layer perceptron (MLP) for the
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encoder and decoder, and we have also tried a convolutional neural network for the encoder-

decoder pair. The MLP VAE’s encoder takes a preprocessed w × h image with pixel values in

the [0, 1] range as input. The image is flattened and passed through two fully-connected layers

of sizes 512, 256, and finally two parallel layers of zdim units; where zdim is a constant denoting

the size of latent space of the VAE’s bottleneck. The layers use a ReLU activation, except the

last layer that has no activation function. We sample the latent space – interpreting the output

of one of the parallel heads as the mean of a Gaussian distribution, while the other head is

interpreted as a the standard deviation – and we pass the sampled latent vector through the

decoder. The decoder consists of two fully-connected layers of sizes 256, and 512, with ReLU,

and finally a fully-connected layer of size w×h with a sigmoid activation function. The sigmoid

squashes the output values to ensure that the range of the output pixels are the same as the

input ([0, 1] range.) The VAE is optimized by minimizing using either a binary cross-entropy

loss (BCE) or a mean squared error loss (MSE) between the input and output, as described in

Section 2.3.5.

The CNN version of the VAE is inspired by Ha et al. [HS18]. This model starts with a encoder of

four convolutions of 32, 64, 128, 256 filters, with 4x4 kernels, a stride of 2 and ReLU activations.

The output of the last convolution is flattened and fed into two parallel fully-connected layers

of size zdim. Similarly to the MLP model, we use the output of the parallel heads to sample

vector z from a Gaussian distribution, which we then pass to the decoder. The decoder starts

with a fully-connected layer that serves to resize z to the same size as the output of the final

convolution of the encoder. We do this so that it will be easier to restore the image to its

original size through transposed convolutions. We apply four transposed convolutions of 128,

64, 32 and 1 filters, strides of 2, and 4x4, 5x5, 5x5, 4x4 kernel sizes. The kernel sizes were

selected this way to make the size of the output of the final convolution a w × h image. The

VAE is then optimized with BCE or MSE like before.

Dataset: The datasets that we used to train the VAEs with were obtained by driving around

in the environment manually, collecting images from the front facing camera as we go. In all

the environments, we collected 10,000 images, and split out dataset into 9000 training images

and 1000 validation images. Another alternative we briefly tried was to train the VAE and
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agent simultaneously, thereby eliminating the need to collect any data for pretraining. We will

discuss the datasets more in Section 3.3.2.

Training: To train the VAE, we train the model to reconstruct the input image from the

sampled Gaussian latent vector, and minimize the reconstruction loss as described in Section

2.3.5. We use the Adam optimizer with a learning rate of α, learning rate decay of γ, and a

batch size of N . We end the training if the validation loss has been increasing for the 10 last

epochs.

KL-tolerance: Note that in World Models [HS18], they use a KL-tolerance factor to make

the optimizer only apply KL-loss once the KL-loss exceeds some tolerance factor. We feel like

this is not well justified, and did not find any other examples of this implementation detail, so

we opted to train without a KL-tolerance factor.

3.3 CarRacing-v0 Experiments

The initial goal of the thesis was to explore ways the we can reduce the amount of training time

needed. As we have shown in our previous work (Appendix A.1,) training agents in CarRacing-

v0 can take up to 2 days to converge. At the same time, we have seen recent work that is

able to train a car to follow a road in only 15 minutes. With this as our motivation, we will

discuss some key differences we found in the way their agent was trained compared to ours,

and attempt to identify what measures can be changed to get results closer to theirs.

3.3.1 Environment

As discussed in Section 1.3, there exists a wide range of open source simulators ready to be used

for the task of reinforcement learning. OpenAI’s CarRacing-v0 is one of these, and its strength

lies being easy to use with reinforcement learning compared to other driving-simulators, making

it ideal for quickly testing and iterating on our hypotheses. CarRacing-v0 features a racing car
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(a) (b)

Figure 3.2: (a) Screenshot of the CarRacing-v0 environment as rendered on the screen. (b)
Example of the 96x96 state space as seen by the agent.

on a procedurally generated racing track, viewed from a top-down 2-dimensional (”birdseye”)

view. The car is controlled by a (γ, a, b) triplet of continuous action values, where:

• −1 ≤ γ ≤ 1 is the steering angle (in radians)

• 0 ≤ a ≤ 1 is the acceleration

• 0 ≤ b ≤ 1 is the break

The physics of CarRacing-v0 are simulated with Box2D, a dedicated 2D physics simulator,

making the simulation as realistic as possible. The environment considers several aspects of

the dynamics of the car: it is a rear-wheel drive car with a speed sensor, ABS sensors, and a

gyroscope. It also simulates the friction on the ground, so turning sharply and breaking on the

grass will make the car skid.

The environment generates a randomly generated track for every episode, and the environment

is considered ”solved” if the agent achieves an average score greater than 900 over 100 iterations.

The agent receives a reward of 1000/N every time it reaches a different ”tile” or segment of the

track, where N is the number of segments in total. The agent also looses 0.1 points for every

frame, which equate to −5 points every second. This means that the maximum score the agent



50 Chapter 3. Proximal Policy Optimization in Driving-Like Environments

can get is 1000− 5t where t is the minimum possible time for this particular track in seconds.

We will use this metric (which we will refer to as ”score”) when we compare models later.

Figure 3.2(b) shows an example of the state space of CarRacing-v0. The state space of the

environment consists of a 96x96 pixel RGB image, where the speedometer, ABS sensors, steering

angle and brake sensors are encoded into the image itself as vertical and horizontal bars in the

lower 96x12 pixels of the image. The idea is that by encoding it in the image, we will only need

to train a convolutional model, as the agent will learn to interpret these measurement directly

from the image. However, we found this to be a bit limiting for some of the experiments we

wanted to conduct, so we opted to create a modified version of the environment that we will

discuss next.

Environment Modifications

CarRacing-v0, as its name suggests, is an environment primarily focused on creating agents

that drive fast. In the environment, the car’s acceleration and maximum possible speed are

quite high. The environment also features hard turns that necessitates braking. To make the

environment more similar to Kendall’s, where the goal is to simply follow a straight road, we

decided the following modifications:

Maximum Speed: To give us better control over the car and to reduce the maximum speed, we

decided to make it so that throttle is only applied when the speed is less than 30 pixels/timestep.

Practically, this will limit the max speed to 30 pixels/timestep, making it more in line with

Kendall, who set a hard limit on 10 km/h. Additionally, we apply a 0.1 throttle scale (meaning

1 in throttle is 10% of the original value.)

Action Space: Like Kendall, we decided to reduce the action space by removing the brake

action. That leaves us with a (γ, a) control vector.

Softer Turns: To make the environment more like a road-following environment rather than a

racing environment, we decided to soften the turns, meaning we will have less use of the brake.

State Modifications: Furthermore, we do a simple preprocessing step in order to reduce the
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size of the state space we feed to the VAE. We opted to crop and convert the 96x96 RGB

frames that we are given by the environment into 84x84 greyscale images, giving us a state

space of 84 × 84 × 3 = 27, 648 values. The cropping removes 6 pixels from the left and right

sides, because these pixels typically do not contain information that is immediately relevant to

the argent, and we also crop the lower 12 pixels from the image because these pixels encode

the dashboard parameters, and are not necessary since we are appending these measurements

to the state vector instead. The measurements we append are a, γ, v, so the states the PPO

agent sees looks like follows:

st = {z0, ..., zzdim−1, a, γ, v} (3.3)

Where, z = q(x) is the output of the encoder, a is current throttle, γ is current steering angle,

and v is speed, normalized by max speed = 30. Figure 3.1 shows how this state vector is

constructed.

3.3.2 Experiments

To identify the contributing factors in reducing training time in Kendall, we devised experiments

that compare individual aspects of their design. Here are the experiments we conducted:

Variation Autoencoder: Kendall et al. suggested that using a pretrained variational autoen-

coder for feature extraction was the most impactful design decision, and [RHT+19] supports

this claim. However, we decided to dive a bit deeper, and have analyzed the effect of choice

of loss function (BCE vs MSE,) choice of latent space size (zdim,) and choice of β. Note that

[HPR+17] suggests that increasing β will help the VAE generalize better, by forcing the VAE

to produce more disentangled state representations, so we will also test this claim. Finally, we

will also evaluate the effectiveness of VAE models as a whole, by comparing an agent that uses

a randomly initialized VAE and an agent trained directly on pixel values (with an architecture

matching the encoder of the VAE.)
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PPO Hyperparameter Search: We conducted a quick hyperparameter search, comparing

the Atari and MuJoCo parameters from the PPO paper [SWD+17], and wanted to investigate

the effect of using a finite vs. an infinite horizon in the environment. It is known that infinite

horizons make reinforcement learning agents more biased [BB11], however it may also lead

to shorter training times as a result. Also note that Kendall use an infinite horizon in their

experiments, since it is the most natural way to train an agent in real-life where it is impossible

to pause in the middle of an episode to train.

Early Termination: Early termination is a term that we use to describe an environment that

terminates the environment once the agent has reached a bad or unrecoverable state. From

a training efficiency standpoint, the idea here is that we may learn faster by sampling more

”good” states from a distribution that is smaller than the original distribution. In Kendall’s

environment, the expert driver terminates the episode once the car drives of the road. This is

different from CarRacing-v0, where the car must to drive until a timer has expired, even when

it has driven off the road. Kendall does not directly address the effect of this decision in their

paper, so we will investigate it this report.

PPO, DDPG, SAC: We also wanted to compare deep reinforcement learning algorithms.

Kendall used Deep Deterministic Policy Gradient [LHP+15] in their experiments, and [RS19]

used the newly published Soft Actor-Critic method [HZAL18]. [SWD+17] showed that PPO

consistently has better convergence properties than other state-of-the-art deep reinforcement

learning algorithm, such as DDPG, but one might argue that imposing a trust region may slow

down training in favour of stability. We wish to find this out by comparing the algorithms

side-by-side.

Reward Function: For CarRacing-v0, we used Kendall’s reward function only, however, we

scaled the speed by a factor of 0.001. The full reward function is as follows:

r(v) =


−1 if driven off the road

v ∗ 0.001 otherwise

(3.4)
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Where v is the speed of the car in pixels/timestep.

3.4 CARLA Lap Environment Experiments

Furthermore, we were interested to see whether this type of learning works in an environment

that more closely resembles real-life driving. In the real world, images are not as clean and

noise free as in CarRacing-v0, and we also have to account for depth. The agent needs to learn

when to pay attention to, and when to ignore objects based on distance, as misinterpreting

these distances can have catastrophic results to the agent. Additionally, roads in real life vary

in width and length, they differ in their road markings and lane lines, and some roads may even

lack markings and lane lines altogether. This is to say that the state space of real-life driving

is certainly more complex than that of CarRacing-v0.

3.4.1 CARLA

We will be using the urban driving simulator, CARLA [DRC+17] (version 0.9.4 and 0.9.5,) to

test our algorithm in a harder, more realistic driving environment. CARLA is an open-source

simulator for autonomous driving research, build in Unreal Engine 4. The simulator is focused

on simulating a realistic driving environment featuring common urban driving scenarios, and

it is bundled with 7 different maps out-of-the-box. Additionally, it provides a general purpose

API that allows us to spawn vehicles, cameras and other sensors that we can use however we

like. Figure 3.3 shows screenshots from four of the maps.

In terms of reinforcement learning support, there is no built-in functionality or example code

to train reinforcement learning agents. The authors of CARLA [DRC+17] provide their results

for training a reinforcement learning agent with the A3C algorithm, however, only the code

for running a fully trained agent is available online. Furthermore, we would like to be able to

interact with a CARLA-based environment through an OpenAI gym-like interface. As such,

we decided that we would write our own OpenAI-like environment for CALRA, and has made
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(a) (b)

(c) (d)

Figure 3.3: Screenshot from (a) Town01, (b) Town03, (c) Town04, and (d) Town07. Demon-
strates the variety in road types, lane markings, and landscapes we can find in CARLA’s maps.

that code publicly available at https://github.com/bitsauce/Carla-ppo.

3.4.2 Environment Design

Map

The first step in designing our environment was for us to decide what map we were going to

use. Since we are most interested in emulating the result of Kendall, we decided to go for

Town07 (Figure 3.3(d).) Kendall conducted their experiments on a straight country-side road,

and we found Town07 to emulate this type of environment well. Town07 features both long

and short stretches of curved and straight roads, with a handful of intersections in the more

densely interconnected roads in the center of the map. There are some traffic lights, stop signs,

and speed limit signs spread throughout the map, and there are no multi-lane roads. In this

iteration of our environment, we will be ignoring traffic lights and other signage, to make the

scope of our agent smaller and more similar to Kendall. The curvy up and downhill roads we

https://github.com/bitsauce/Carla-ppo
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Figure 3.4: Example screenshot from the trailing camera.

(a) (b)

Figure 3.5: (a) Example image as seen by the front facing camera. (b) Corresponding segmen-
tation image.

will be using poses an interesting difference compared to Kendall. The map is also filled with

several structures of different shapes and sizes, and additionally features a pond and diverse

vegetation. Differences in vegetation is useful in letting us know if our agent has generalized

to small perturbations in the scenery. Finally, the interconnected roads in the center opens up

the opportunity to try to train our agent to navigate intersections and more complicated road

structures, an idea which we will discuss more in Section 3.5.
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Figure 3.6: Shows a top-down view of the map with the lap highlighted in red. The orange dot
marks the starting location that was used in all the experiments using CARLA 0.9.4, and the
blue dot marks the starting location used in all the experiments that uses CARLA 0.9.5.

Vehicle and Sensor Setup

In this section, we will describe the vehicle and sensor setup used in our environment. The car

we used is a black Lincoln MKZ 2017 with automatic transmission. The vehicle is equipped

with a front facing camera that is attached to the outside on the front of the car, and a trailing

camera for spectating purposes. The front facing camera outputs 160x80 RGB, which is a

common resolution for autonomous driving purposes [BTD+16]. The front facing camera also

has the capability to extract segmentation maps from the environment, which is a feature we

will use in Section 3.4.3. Figure 3.4 and 3.5 show examples of output from the front facing and

trailing camera.

Environment Inner-Workings

Objective: The objective of agents in our environment is to follow a predetermined lap on

the outskirts of Town07, without deviating too far form the center of the lane. The lap is

depicted in Figure 3.6, and it passes through seven intersections. For every intersection, the
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agent should drive straight (or right if there is no road straight ahead.) This means that there

will be no ambiguity in what the end goal of the agent is whenever it encounters intersections.

The length of the lap is 1245m, and the environment will consider the completion of three

laps as a successful run and terminate. The starting position of the agent during evaluation is

marked by the orange dot, however, note that we moved the starting position to the blue dot

in all the experiments that uses CARLA 0.9.5. The agent is expected to drive in a clock-wise

manner along the marked route.

Action Space: The environment expects actions of (−1 ≤ γ ≤ 1, 0 ≤ a ≤ 1)-tuples, just

like the modified CarRacing-v0 environment. We decided to omit braking again, as we will be

driving at low speeds with no other cars present, and with no consideration of traffic rules –

eliminating the need for braking.

Termination Criteria: The termination criteria for the environment are as follows:

1. Have we deviated more than 3m away from the center?

2. Are we driving slower than 1.0 km/h after the first 5 seconds of the episode has passed?

3. Three laps were completed – success.

The first criteria is imposed on the agent to ensure that the agent is following the road, and to

terminate the agent early so it can resume from a good state. We determine the distance to the

center of the road by finding the shortest distance between the location of the car in 3D space,

and the line that is drawn between the previous and next waypoint on the route. Waypoints are

generated along the center of the outermost lane, with a distance of 1m between each waypoint.

The environment keeps track of the previous and current waypoint, by checking if our vehicle

has passed the next waypoint on the route. We do this by help of the dot product between

the waypoint’s forward vector, wfwd, and the vector between the vehicle and the waypoint,

cpos − wpos. If we denote the dot product as dw,c = wfwd · (cpos − wpos), then we know that the

car has passed the line that is orthogonal to the waypoint’s forward vector when dw,c > 0. We

use this rule to keep track of the current and previous waypoints.
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The second criteria is imposed on the agent to make sure that the agent will terminate if: (1)

the agent gets stuck in a local minima where the throttle is always equal to zero, (2) if the

agent gets caught on some object and is unable to recover.

Checkpoints: In order to facilitate the concept of making the agent ”fail faster,” we place

periodic checkpoints along the track (in training mode only.) We save a new checkpoint every

50m traveled, and the agent is reset to the previous checkpoint upon reaching a terminal state.

(Note: the vehicle is always reset to the center of the lane.) The idea behind making the

environment push the agent to fail faster is that we will be able to learn faster by skipping

straight to the parts of the track that the agent is currently struggling with. Making the agent

drive all the way to the difficult part of the track takes a fair amount of time, and the data we

accumulate on this trek may not be very useful to the agent in solving the current challenge.

We will discuss the effects of this design decision a bit later in Section 4.2.2.

Metrics: The environment also collects a bunch of metrics that we use to compare results.

The environment does not provide a default reward function, so these metrics can be used to

compare models instead. We have designed the environment this way, so that we can try out

different reward functions and still be able to compare models. The metrics we record are:

• Total distance traveled: The total distance traveled in meters.

• Number of laps completed: Number of laps completed. Updated every time the agent

passes a waypoint.

• Total and average deviance from the center of the lane: Tells us how much we

are deviating from the center of the lane. Average center deviance is averaged over the

number of timesteps of the current episode.

• Average speed: Average speed, averaged over the number timesteps of the current

episode.

We will be using these metrics in our comparisons section. Note that all metrics are reset at

the beginning of a new episode.
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Synchronous vs Asynchronous: Finally, we have to consider if we want our environment

to be synchronous or asynchronous. In reinforcement learning, a synchronous environment will

wait until we call the step function before it updates the state of the environment. Synchronous

environments are more predictable, and they also allow us to train with learning processes that

run slower than the simulation rate of the environment, with is useful when our hardware is

weak or the training process is slow. However, there is no requirement that we must use a

synchronous environment, so let us consider an asynchronous version of the environment. In

an asynchronous environment, the environment will not wait for the step call before updating

the state of the environment; the environment will update independently and at variable rates.

In terms of autonomous driving, this may actually have some benefits. Training process of

training an agent in an asynchronous environment is similar to training an agent real-world,

since there is no way to halt the environment to do computations in real-life. Therefore, it may

be reasonable to say that if we are able to train an agent to solve the asynchronous version

of the environment, that we may also be able to train the same agent it in a real-life setting.

Another way of looking at it is that training agents in asynchronous environments make them

robust to temporal noise, which is often desirable. In our reward function experiments, we will

be using an asynchronous environment, however, in some of the later experiments we will be

using a synchronous environment instead.

3.4.3 Experiments

Variational Autoencoder Training

The VAE training process is the same as in CarRacing-v0. We start by driving around manually,

collecting 10,000 160x80 RGB images that we will use for training. In addition to the RGB

images, we also collect the corresponding 10,000 160x80 segmentation maps. Figure 3.5(b)

shows an example of a segmentation map, with the corresponding RGB image depicted in Figure

3.5(a). We will be using the full 160x80 RGB image as the input to the variational autoencoder,

which is a relatively big increase compared to CarRacing-v0 (CarRacing-v0: 84×84×1 = 7056,

CARLA: 160 × 80 × 3 = 38400.) We believe that this is a necessary change to compensate
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for the increase in complexity that the CARLA environment brings. Since we changed the

dimensions of the input of the VAE, we also had to change the size of the kernel in the second

deconvolutional layer of the decoder to 4× 4, to make the dimensions add up.

In the following experiments, we have used two different VAE models, one we will call the

rgb-vae model, and the other the seg-vae model. These VAE models were trained with the

same parameters as the best performing CarRacing-v0 VAE (Table 4.2.) The only difference

between the rgb-vae model and the seg-vae model, is that the seg-vae model has been trained

to reconstruct the segmentation maps corresponding to the RGB input, while the rgb-vae

tries to reconstruct the RGB images themselves. The idea here is that if our VAE is able to

reconstruct the segmentation maps from the RGB images, it will learn to encode features that

are more relevant to understanding the semantics of the environment. Using autoencoders for

semantic segmentation is a well known idea (e.g. [NHH15],) however, no one – to the best of

our knowledge – have tested the hypothesis that reinforcement learning agents benefit from

learning on state representations that have stronger emphasis on representing the semantics of

the environment, which, in our case is achieved by training a VAE to reconstruct segmentation

maps.

Reward Functions

We wanted to explore how the reward formulation affects both the end behaviour and the

training speed of our agent. We have devised six different reward formulations, and compared

them in the CARLA environment.

Kendall:

As a baseline, we wanted to train an agent using the Kendall reward formulation. Kendall

simply gives a reward that is proportional to the speed:

r(v) =


0 if v > vtargetor on infraction

v otherwise

(3.5)
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Where v is the current speed of the vehicle in km/h, vtarget is the target speed (the speed we

want the agent to drive at after finishing training,) and an infraction refers to termination

criteria 1 and 2 from Section 3.4.2. Like in Kendall, we also stop the training whenever it goes

above the target speed, which we have set to 20 km/h (different from Kendall’s 10 km/h.)

Reward 1 – No Termination Over Target Speed:

To give the agent a bit more leniency, we decided to remove Kendall’s speed termination criteria,

and instead devise a reward function where v = vtarget is the speed that will give the agent the

highest reward:

r(v) =


−10 on infraction

vnorm vnorm ≤ 1

(2− vnorm) vnorm > 1

(3.6)

Here, the term vnorm = v
vtarget

is the speed, normalized such that vnorm = 1 when v = vtarget.

This term will grow linearly from 0 to 1 as the car reaches v = vtarget, and beyond that, the

reward will decrease linearly from 1 to 0 until v = 2 ∗ vtarget, and continues to negative values

beyond that. This reward function will encourage the agent to stay as close as possible to

vtarget, as this is the only value of v that will yield a reward of 1. Additionally, we give a reward

of -10 on infractions to deter the agent from going into states that lead to infractions.

Reward 2 – Keep Centered:

To properly utilize the power of running in a simulator, we wanted to try some reward functions

that take advantage of being able to measure precise distances between all objects in the

environment. In particular, we will be using the distance between the center point of the car

to the center of the lane.
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Figure 3.7: Shows how speed is rewarded in reward function 3, 4, and 5.

r(v, d) =


−10 on infraction

vnorm + (1− dnorm) vnorm ≤ 1

(2− vnorm) + (1− dnorm) vnorm > 1

(3.7)

The reward function consists of two terms: the first term, vnorm, is a function of the speed v,

and the other term, 1 − dnorm, is a function of the distance to the center of the lane, d. The

distance term 1−dnorm (where dnorm = d
dmax

) is simply a function that is inversely proportional

to the distance d. This term will have a value of 0 when d = dmax = 3. The idea behind this

reward function is that we want our agent to minimize the distance between the center of the

lane and our car (maximize 1− dnorm,) while we also want to encourage the agent to maintain

speeds as close to target speed, vtarget, as possible.

Reward 3 – Leeway for Speeds Close to Target Speed:

r(v, d) =



−10 on infraction

v
vmin

+ (1− dnorm) v < vmin

1 + (1− dnorm) vmin ≤ v < vtarget

(1− v−vtarget
vmax−vtarget ) + (1− dnorm) v ≥ vtarget

(3.8)
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With this reward function, we want to give the agent some leeway whenever its speed is close

to the target speed. One problem the earlier agents have, is that the throttle signal needs to

be very precise for the car to achieve maximum reward. Furthermore, the noisiness originating

from the the speed term makes it harder for the agent to learn the correlations between steering

angle and centering reward, leading to unstable steering. Giving the agent a range of speed

values that all give the maximum reward, allows the agent to focus on steering once it has

learned to maintain speeds within the given range.

In this reward function, we have introduced two new variables: vmin and vmax. Figure 3.7 shows

how these relate to vtarget. In short, vmin denotes the smallest speed that will give full reward,

and any speed in the range [vmin, vtarget] will also give a reward of 1. For any speeds over vtarget,

the rewards will be interpolated from 1 (when v = vtarget) to 0 (when v = vmax,) and then to

negative values beyond that.

Reward 4 – Additional Reward for Being Aligned With the Road:

Furthermore, we want to add an additional reward signal to encourage the car to be aligned

with the road. The idea behind this addition is that we can improve steering behavior by

discouraging the agent from turning away from the direction of the road in the first place. By

placing a stronger emphasis on this, we hope to see an agent that is less erratic in its steering

behaviour.

r(v, d) =



−10 on infraction

v
vmin

+ (1− dnorm) + αrew v < vmin

1 + (1− dnorm) + αrew vmin ≤ v < vtarget

(1− v−vtarget
vmax−vtarget ) + (1− dnorm) + αrew v ≥ vtarget

(3.9)

In this reward function, we have introduced an angle term αrew, which is calculated as the angle

difference between the vehicle’s forward vector, and the current waypoint’s forward vector,

normalized such that an angle difference of 0◦ gives a reward of 1, while an angle difference of

αmax will give a reward of 0. Mathematically:
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αrew =


1− |αdiff

αmax
| |αdiff | < αmax

0 otherwise

(3.10)

Where αdiff is the angle difference between the vehicle’s forward vector and the current way-

point’s forward vector.

Reward 5 – Multiplied Centering, Angle and Speed Rewards:

r(v, d) =



−10 on infraction

v
vmin
∗ (1− dnorm) ∗ αrew v < vmin

1 ∗ (1− dnorm) ∗ αrew vmin ≤ v < vtarget

(1− v−vtarget
vmax−vtarget ) ∗ (1− dnorm) ∗ αrew v ≥ vtarget

(3.11)

In the final reward function, we wanted to test if multiplying the reward terms may work better

than adding them together. Since all of our reward terms have been normalized into [0, 1] range

(except for the speed term when v > vmax,) we speculate that our agent can learn better if we

interpret the reward function in terms of binary logic. In a driving scenario, we really want

the car to drive forward at the same time as it is centered and aligned with the road. In

binary logic, we might say that we ”want the vehicle to have a speed close to the target speed”

AND ”be centered in the lane” AND ”be aligned with the road.” With the previous reward

functions, being completely centered is just as good as driving at target speed completely

off-center (effectively an OR-statement,) and we would like to counteract this. Therefore, we

multiply the different factors – since multiplication of discrete boolean values acts as an AND

statement – leading to a reward function that only gives high rewards if multiple criteria are

met to a certain extent. Note that we are still using continuous values for each term, so it is

not exactly analogous to a boolean AND, but it may still exhibit some of the same properties.



3.5. CARLA Route Environment Experiments 65

Sub-policies

Finally, we would like to explore the idea of training sub-policies for the four maneuvers we

want the car to be able to make. Our method is inspired by Codevilla [CMD+17], who teaches

a car to follow a pre-planned path by switching out their acting network based on the current

maneuver the agent should make – in their case with imitation learning. In our case, we want to

try a similar approach with reinforcement learning, so we trained one PPO actor-critic network

for each of the following maneuvers:

1. Follow the road

2. Go straight at the intersection

3. Turn right at the intersection

4. Turn left at the intersection

As we can see in Figure 3.6, the agent encounters several difficult intersections along the lap

– particularly the two intersections close to the orange marker. Since our PPO agent has to

learn to follow the road even when there is no clear indication of which direction is the correct

one, the agent can get stuck at these intersections. We hope that by introducing additional

policies, we will remove some ambiguity from these situation, resulting in a agent that learns

more reliably, faster. Furthermore, a sub-policy agent will also be able to drive arbitrary routes

by following the high-level commands of a route planner, similar to what Codevilla et al. did

in [CMD+17]. This is an idea we will explore further in Section 3.5.

3.5 CARLA Route Environment Experiments

For the route environment experiments, we simply wanted to test if it is possible to use PPO

to train an agent that is able to follow a path in CARLA. To drive from arbitrary location A

to arbitrary location B is the ultimate goal of most autonomous driving systems, so we will
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design an environment where we may be able to train a deep reinforcement learning agent to

do this. In this section, we will explain the design decisions we made for this environment, and

furthermore describe the final experiment we have conducted.

3.5.1 Environment Design

In this environment, the map, vehicle setup and action space is the same as in Section 3.4.2.

Furthermore, the environment is still customizeable, allowing us to change the reward function

and state space representation to fit our needs. The inner-workings of the environment has

changed, however, and we will discuss these changes next.

Environment Inner-Workings

Objective: The objective is the part that differs the most between the Route environment and

the Lap environment (Section 3.4.2.) In the Lap environment we were only concerned with a

single route along the perimeter of Town07, however, in this environment, there are
(
127
2

)
= 8001

possible routes the agent should be able to drive. The objective of the agent is to drive starting

at point A to point B without any infractions. The points are randomly selected (without

replacement) from a list of 127 manually placed spawn points, without replacement. After

the points have been selected, we use a global route planner to calculate the path between

the two points (it uses the A* pathfinding algorithm [HNR68] internally,) and we generate

waypoints 1m apart along the track as we did before (we use these waypoints to track the

progress of our agent.) Be aware that the episode does not end when the agent reaches point B,

instead a new route is generated (as described above.) The episode will end once the agent has

traversed 3000m in total, and the environment will terminate successfully (e.g. environment

was ”solved.”) The reason we designed it this way is because it gives us a metric that is easy

to compare between episodes. Completing a route is not meaningful if the route was a simple

200m stretch of a straight road. However, consistently driving 3000m on a random assortment

of routes means our agent has generalized well.
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Termination Criteria: Similarly to the Lap environment, this environment will terminate

once the agent is 3m away from the center of the road, or it has been driving with a speed less

than 1.0 km /h for the last 5 seconds. The environment is considered solved once the agent

has traversed 3000m, and will be successfully terminated upon completion.

Checkpoints: Since this environment will expose the agent to a variety of driving scenarios –

by the nature of randomly selecting routes on each reset – we find it to be unnecessary to use

checkpoints like we did before. Therefore, this environment does not feature any checkpoints.

Metrics: The metrics we use are the same as in the Lap environment.

Maneuver: The environment tells the agent what the current maneuver should be at every

timestep. The state of the current maneuver is changed approximately 5m before the maneuver

should be executed, to leave some room for the agent to adjust itself.

3.5.2 Experiments

For this environment, we simply take and run the best performing model from the Lap envi-

ronment, to see how well it performs. Since we want to follow a route, we have to change the

underlying PPO model into a PPO model with sub-policies. To summarize the main elements

of this model:

• This model will use a variational autoencoder that is trained on segmentation maps.

• We will be using Reward 5 form Section 3.4.3.

• We will use four sub-policies – one for each maneuver the car should be able to make

(follow the road, go straight, left or right.)

Using a sub-policy based model to switch the agent’s behaviour depending on the current

maneuver is necessary to make the agent able to follow a path. Without it, the agent will

not know which direction to take in the intersections it encounters, and, as shown by Codevilla
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[CMD+17], introducing sub-policies is an effective solution to this problem. Furthermore, using

sub-policies eliminates the need for the agent to do any route planning at all, relaying all that

work to the global route planner.



Chapter 4

Results

4.1 CarRacing-v0

Here we will present our findings in our modified CarRacing-v0 environment. First, we will

look into VAE training.

4.1.1 Variational Autoencoder Comparisons

To start of, we trained five different variational autoencoders. Figure 4.1, 4.2, 4.3, 4.4, and 4.5

shows the effect of annealing latent space vector z for each of the trained models. The x-axis

in these figures represents a ±1 perturbation to the ith latent space variable, where i is shown

on the y-axis. Also note that the initial z vector was set by passing a typical image from the

Loss Function Architecture zdim β Reconstruction loss
BCE CNN 64 1 4623
BCE MLP 64 1 4623
BCE CNN 10 1 4620
BCE CNN 64 4 4630
MSE CNN 64 1 18.39

Table 4.1: Final reconstruction loss on the validation set for each trained VAE model. Note
that the loss of the MSE model is significantly smaller, because it is measuring a different
quantity.
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Hyperparameter Value
Learning rate α 1e-4
Batch size N 100
Loss function BCE
Architecture CNN
zdim 64
β 1

Table 4.2: Default VAE parameters.

environment (an image of a straight road) through the encoder; meaning that the models have

been seeded similarly.

Baseline Model: Table 4.2 shows a list of all the parameters that were used when training

the baseline model. The parameters for the baseline model were selected based on a similar

implementation of a VAE [RHT+18]. Figure 4.1 shows some reconstructions for this model.

Looking at the figure, we can see that the hypothesis that a VAE can learn disentangled features

is correct (Section 3.2.4.) For example, we can see that zindex = 7 corresponds to the inward

curvature of the center of the road, zindex = 26 and zindex = 27 corresponds to the outward

and inward curvature of the top of the road, zindex = 55 corresponds to the x-position and

angle of the road. Worth noting here is that our VAE appears to have combined the angle and

x-position into a single variable, meaning these features are somewhat entangled. This could

be an issue caused by a lack of data (maybe the road is normally angled whenever the car is

offset on the road in the dataset,) or it may be an issue that we can solve by altering the model.

We will be using the baseline parameters for all the models discussed in this section, unless

otherwise is stated.

CNN vs MLP: In the first set of comparisons, we will look at how the convolutional archi-

tecture compares to the multi-layer perceptron architecture. We can see in Table 4.1, that the

CNN model has equal reconstruction loss to the MLP model. However, in terms of parameters,

the CNN model has 1.9M parameters, while the MLP model has 7.5M parameters; almost 4×

as many. The fact that the CNN model is comparable to the MLP model even when it has

much fewer parameters is to be expected, as CNNs have been experimentally shown to excel at

feature extraction in images [KSEH12]. However, if we compare Figure 4.1 and Figure 4.2, we

can see that, visually speaking, the MLP model is able to reconstruct some details that the CNN
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Figure 4.1: Shows the reconstructions generated by the VAE model trained with BCE loss,
CNN network architecture, zdim = 64, and beta = 1 as we anneal the latent space vector z by
±1, where each figure represents one dimension of z. We can see that zindex = 7 corresponds to
the inward curvature of the center of the road, zindex = 26 and zindex = 27 corresponds to the
outward and inward curvature of the top of the road, zindex = 55 corresponds to the x-position
and angle of the road.
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Figure 4.2: Shows the reconstructions generated by the VAE model trained with BCE loss,
MLP network architecture, zdim = 64, and beta = 1 as we anneal the latent space vector z by
±1, where each figure represents one dimension of z. We can see that zindex = {7, 26, 27, 55}
are the features with the strongest effects, for example, zindex = 5 clearly corresponds with road
curvature.)
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Figure 4.3: Shows the reconstructions generated by the VAE model trained with BCE loss,
CNN network architecture, zdim = 10, and beta = 1 as we anneal the latent space vector z by
±1, where each figure represents one dimension of z. We can see that the model is still able
to learn relevant features, even though zdim = 10. Also observe that this model only has three
dimension that have a significant impact on the reconstructions (zindex = {0, 2, 4}.)
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Figure 4.4: Shows the reconstructions generated by the VAE model trained with BCE loss,
CNN network architecture, zdim = 64, and beta = 4 as we anneal the latent space vector z by
±1, where each figure represents one dimension of z. We can see that only two dimensions have
an impact on the reconstructions (zindex = {13, 21}.)
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Figure 4.5: Shows the reconstructions generated by the VAE model trained with MSE loss,
CNN network architecture, zdim = 64, and beta = 1 as we anneal the latent space vector z by
±1, where each figure represents one dimension of z. We can see that zindex = {18, 25, 31, 46}
are the dimensions with greatest effects, and that these dimensions produce reconstructions
that are visually similar to the significant features in Figure 4.1.
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seemingly ignores. For example, we can see that the yellow spots on the grass come through in

the MLP model, while in the CNN model they do not. The MLP model is, however, more noisy

in its output in general. Having noisy state representations may be a downsides in terms of

trying to train an agent to act, because it means that the agent will need to learn to ignore the

noisy features of the state space. Finally, if we look at zindex = {7, 26, 27, 55} in Figure 4.1, and

compare them with zindex = {5, 27, 37, 50} in Figure 4.2, we can see that the latent variables

have much stronger effects in the CNN model (for example, zindex = 5 clearly corresponds with

road curvature.) This could be a result of the CNN model being more strongly disentangled

than the MLP model – perhaps because the MLP model ends up correlating features such as

the curvature of the road with the yellow patches on the grass. As a result, we will be using

CNN models for the rest of the experiments.

BCE vs MSE: As we see in Table 4.1, the models that were trained with BCE loss have much

higher reconstruction losses than the MSE model. This is because these two loss functions

are measuring different qualities of the predictions of our VAE. As such, these two models

cannot be directly compared in terms of reconstruction loss, so we will instead look at the

quality of the reconstructions, and the quality of the agents later on. Figure 4.5 shows the

reconstructions when we use MSE. If we compare this to the BCE reconstructions in Figure

4.1, it is not very obvious which one is better. One might argue that some of the reconstructions

have higher quality with BCE, such as zindex = 7 of BCE versus zindex = 31 of MSE (which

seem to correspond to road curvature in the respective models,) however, there is not sufficient

evidence to claim that either model is superior. We will stick with BCE for the rest of the

models.

zdim = 10 vs zdim = 64: One question that we posed was if reducing the size of the bottleneck

in the VAE may force the model to learn more important features, since it has fewer variables to

work with. Figure 4.3 show the result when we set zdim = 10. We can see here that the model

was, indeed, still able to learn relevant features. The features differ a bit from the features

when zdim = 64; in particular, we can see that the zdim = 64 model has four variables that have

significant impact on the reconstructions (zindex = {7, 26, 27, 55}), while the zdim = 10 model

only has three (zindex = {0, 2, 4}.) Note that the zdim = 10 has very clear and strong symmetries
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in its state space when compared to zdim = 64. It is not clear if having several strong features

in the state space is more beneficial to the agent than having strictly symmetrical features. If

the features are non-symmetrical, the agent may be able to carefully combine non-symmetrical

features and learn non-symmetrical relationships in the state space. Note, however, that the

zdim = 10 model reached a lower reconstruction loss in Table 4.1. As such, we have reasons to

suspect it to perform similarly or better than the zdim = 64 model.

β = 1 vs β = 4: Finally, we will investigate the effect of increasing the β parameter. Table 4.1

shows us that setting β = 4 increases the reconstruction loss, which is to be expected as the

VAE needs to learn simpler models to compensate for the increase in KL-loss. Looking at the

β = 1 reconstructions in Figure 4.4, we can see that only two dimensions, zindex = {13, 21} have

a major effect on the output. This confirms the idea that increasing β forces a simpler model,

however, the features seem more entangled when compared to β = 4. The model appears

to have combined x-position and road curvature, and furthermore, the two dimensions seem

to encode very similar types of curvature. As such, we do not expect this model to perform

very well, however, it may be true the model works better with transfer learning as claimed in

[HPR+17] (we will not test this claim in this report.)

4.1.2 Proximal Policy Optimization – Hyperparameter Search

Before making any model comparisons, we wanted to find the hyperparameters that give the

fastest learning. In this section, we have applied all the environment modifications discussed

in Section 3.3.1, and we have used the default VAE (Table 4.2) with MSE instead of BCE,

although this is unlikely to affect our learning. Figure 4.6 shows the validation score of running

five different models. Note that validation was run every fifth episode, and that a score over

500 is already fairly good in terms of driving behaviour.

Atari vs MuJoCo: We can observe in Figure 4.6, that the Atari parameters greatly out-

performed the MuJoCo parameters. It seems that increasing the horizon (Atari: T = 128,

MuJoCo: T = 2048) can make the training less table (more biased,) and the learning rate may

also be too high (Atari: 2.5 × 10−4, MuJoCo: 3.0 × 10−4.) Be aware that we have removed
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Figure 4.6: Shows episodic scores of five models different models. Note that a sliding window
of ±2 was applied to smooth out all the score graphs. Also note that while the y-axis (episode
number) does not equate to wall-time, the models that learn in fewer episodes are more sample
efficient and will learn faster in environments that are harder.

the learning rate and epsilon decay from the Atari model, (since we are only training for 100

episodes,) and that the Atari example used 8 parallel environment, while we are only using

1. Atari games are generally more difficult and have sparse reward functions, so reducing the

number of environment (and consequently reducing the amount of exploration,) is not a major

issue to us. Since the Atari parameters performed much better, we will use them as our baseline

from now on.

Learning Rate: Since we removed the learning rate decay, we decided to also lower the

learning rate to compensate. We lowered the learning rate from 2.5× 10−4 to 1.0× 10−4, and

we can see in Figure 4.6 that this reduced the training time further.

Epsilon Modification: Our theory here was that increasing epsilon would speed up the

training, since it would increase the size of the trust region, thus allowing greater divergence in

policy. We can see in Figure 4.6 that this is partially true; it did reach a higher score faster,

however it also started dropping down after the initial spike. This is most likely due to the

trust region being too big, allowing the model to take destructive steps when optimizing the
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Hyperparameter Value
Horizon T 128
GAE parameter λ 0.95
Discount factor γ 0.99
Clipping parameter ε 0.2
Learning rate 1e-4
Value loss scale α 1.0
Entropy loss scale β 0.01
Initial noise σinit 0.4
Number of epochs K 3
Batch size M 32

Table 4.3: Hyperparameters used in agent comparison experiments.

(a) (b)

Figure 4.7: (a) Episodic scores of five agents trained with different VAEs. (b) Episodic scores
of three agents; green was trained with a VAE, orange was trained directly on images from the
environment, blue was trained with a randomly initialized VAE.

policy. The initial spike may, however, be useful if we want to see results faster. As such, we

will be using an epsilon of 0.2 in later chapters.

Infinite vs Finite Horizon: Since the Kendall environment was using an infinite horizon,

we wanted to investigate what the result of this decision may have been. We can see in Figure

4.6 that, for PPO, optimizing with an infinite horizon does not have a significant impact on

the training. We conclude that the length of the horizon is not too influential and we will stick

with a finite horizon.
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4.1.3 Agent Comparisons

At this point, we already have an agent that learns to drive pretty quickly. Most of the models in

the last section learned to drive within 100 episodes, and the best model, in terms of reaching 800

points in the least time, needed only 15 episodes. This was the atari params lr0.0001 epsilon0.2

model in Figure 4.6, and it reached a score of 810.5 in ∼ 4 minutes. As a result, we settled

on using the parameters of this model in subsequent experiments, and the complete list of

hyperparameters are shown in Table 4.3. These parameters are tailored to attain results as

quick as possible, allowing for quicker iteration in more difficult environments.

In addition to comparing the quality of the VAE models directly (Section 4.1.1,) we have also

compared the performance of using these VAEs when training our agent. As discussed, we

cannot compare the MSE and BCE losses directly, so training an agents with these losses may

give us additional insight. Furthermore, reconstruction loss may not be sufficient to judge the

agent’s performance in the first place; for example, a higher value of beta will always have a

higher reconstruction loss because of the restrictions it puts on the optimization of the VAE.

Note that the default parameters of the trained VAEs are stated in Table 4.2, and we have used

those values unless otherwise is stated.

Effect of Variational Autoencoder Model

CNN vs MLP: We can see in Figure 4.7(a) that the MLP and CNN models perform fairly

similarly. The CNN model does a bit better, which could be a result of the fact that CNNs

excel at extracting features from images, as mentioned. As such, we decided to use the CNN

model for the later sections.

BCE vs MSE: We can see here that the MSE model performs slightly worse than the BCE

model. As we discussed earlier, these two metrics cannot be compared directly, and even though

the MSE reconstruction loss was orders of magnitude lower, the BCE model still performs

comparably. As such, we decided to stick with BCE loss for the later sections.

zdim = 10 vs zdim = 64: Surprisingly, the zdim = 10 model seem to perform a lot worse than
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the rest. This may be due to the fact that even though the zdim = 10 model appear to encode

just as much information as the zdim = 64 model (from Figure 4.3 and 4.1,) it may be that the

zdim = 64 model is actually encoding small perturbations that we are unable to spot with our

eyes. The results suggests that zdim = 10 is not sufficient to encode all the high-level features

of the environment, and we will thus use zdim = 64 in later sections.

β = 1 vs β = 4: Contrary to the results of [HPR+17], we could not get beta 4 to outperform

beta 1. As we discussed earlier, when we set β = 4 it appears that the latent features become

more entangled, and as a result, our agent will have a harder time interpreting state features.

As such, we will use β = 1 in later sections.

Randomly Initialized VAE: To ensure that training the VAE is actually beneficial to the

agent, we have also trained an agent with a randomly initialized VAE for comparison. Figure

4.7(b) shows the results. We can clearly see that training the VAE is vital to the quality of our

agent; the random agent barely improved. This makes sense intuitively, as a random VAE is

simply going to output random feature vectors, making it so that the agent needs to learn an

to act in an excessively noisy state space.

Training on Pixel Values: Moreover, we also trained an agent to act directly on pixels

values, much like the original PPO paper [SWD+17]. In this model, we have simply taken

the convolutional layers of the VAE encoder and prepended it to the actor-critic architecture,

and we optimize it with respect to the policy and value loss. We can see in Figure 4.7(b),

that pre-training the VAE to reconstruct the input image does, in fact help. The VAE model

is most likely learning faster because there are fewer parameters to optimize, and the state

space is more stationary. Therefore, we will continue to use a pre-trained VAE for the later

experiments.

Alternating Optimization: We also had the idea to train the VAE and policy in alternate

phases instead of pretraining. The way this worked was that as the agent was exploring the

environment and gathering the data needed to train the PPO model, we were also collecting

all the images/observations. Once the trajectory was computed, we optimize the policy as

described in Section 2.3.3, followed by optimizing the VAE to reconstruct the images it collected
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for 10 epochs as described in Section 3.2.4. The experiment, was unsuccessful – it did not learn

anything useful in 100 episodes – however, we also did not test this method beyond a simple

experiment.

Effect of Reinforcement Learning Algorithm

PPO vs DDPG vs SAC: To make sure we are using the best algorithm for this problem, we

attempted to compare the performance of our PPO implementation to the performance of the

DDPG and SAC algorithms from OpenAI baselines [DHK+17]. Unfortunately, we were unable

to get any decent results with DDPG or SAC. We would have to look into this further to verify

that the VAE was integrated correctly into the baseline algorithms, however we decided to limit

the scope of this project to PPO only.

4.2 Carla Lap Environment

So far, we have shown that providing better state representations through the use of a variational

autoencoder helps speed up the training of a PPO-based deep reinforcement learning agent. Our

agent learned to follow the road in CarRacing-v0 in approximately 4 minutes, and our analysis

lead us to a set of hyperparameters and a training setup that we found to work well. Given

these results, we want to find out if a similar learning setup can translate to a more complicated

environment – namely, the CARLA lap environment discussed in Section 3.4. In this section,

we will be testing and comparing different reward formulations, evaluating the effect of ”failing

faster,” and testing our idea of training the variational autoencoder with segmentation maps

as the target. Note that we have used the default parameters given in Table 4.2 for training

the variational autoencoder, and we have used the PPO parameters given in Table 4.3, except

that we have set σinit = 0.1 because a higher amount of precision is required to solve this

environment – particularly the asynchronous version.

We have compiled a video showcasing the results of our experiments. This video can be found
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Figure 4.8: Shows the distance traveled by the agent before an infraction occurred, in evaluation
mode. The graphs show the six reward formulations that we decided to compare.

at https://youtu.be/iF502iJKTIY, and throughout this and the next sections, we will be ref-

erencing specific behaviours that can be observed in the video in the following experiments.

4.2.1 Reward Functions

Figure 4.8 show a comparison of the performance of the six reward formulations in terms of

distance traveled during evaluation over training time. We use distance traveled as a metric

to compare agents here, because using total reward does not work when the reward functions

themselves measure different aspects of the agent’s behaviour. The section showcasing the

reward functions starts at 44:14 in the video (note that all the timestamps in this report are

clickable,) and in this section of the video we have showcased the best run for each of the six

agents. Note that all agents in this section were trained in the asynchronous version of this

environment, with a target frame rate of 15 FPS, and we will be using vtarget = 20km/h and

dmax = 3m.

Kendall:

https://youtu.be/iF502iJKTIY
https://youtu.be/iF502iJKTIY?t=2654
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(a) (b)

Figure 4.9: (a) Shows episodic average centering deviation for the agent. (b) Shows episodic
the average speed of the agent. Note that a sliding window of ±20 was applied to smooth the
graphs.

Kendall’s reward function was the first one we tested, and it achieved a maximum distance of

2431m, or 1.95 laps completed, in 10 hours (not visible on graph due to smoothing.) Considering

that the lap, starting at the orange marker, is a fair bit more complicated than Kendall’s

straight road, it shows that Kendall’s reward formulation can have success even on curvy up

and downhill roads. However, the agent did not manage to complete the three laps we tasked it

to do. Looking at some of the later results, we found that several of the runs were terminated

early due to the agent slightly overstepping the speed limit we have imposed on it. This is most

likely to happen when the agent experiences some temporal noise in its observations, caused

by the asynchronous environment. As a result, we wonder if an agent that is more free to go

over its desired target speed may perform better, which is what we will test in the next reward

function.

Reward 1 – No Termination Over Target Speed:

Here we show the results of integrating the target speed into the reward function itself, creating

a more lenient environment for the agent to explore. This agent reached a max distance of

3753m after ∼ 4 hours of training. This agent is the first agent to solve our environment, and
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by inspecting the video we have observed the following:

• The agent is able to maintain speeds close to the target speed (20 km/h).

• The agent’s steering is fairly unstable, both on straight (e.g. 49:49) and curvy (e.g. 49:15)

roads.

• The agent is able to turn fairly reliably (e.g. 50:19, 50:50, and 50:55.) It does not cut

corners nor does it make too wide turns.

• Speed and steering are slightly more unstable when going downhill compared to Kendall’s

reward function (e.g. Kendall: 46:59, Reward 1 : 49:15.)

The results show us that the reward function was, indeed, successful at creating an agent that

attempts to drives as close as possible to the target speed, and that aggressively terminating the

environment may be detrimental to the agent’s learning. However, we would like the car to have

a greater focus on staying centered in the lane, to hopefully eliminate the unstable, sinusoidal-

like steering behaviour. Therefore, we have experimented with ways we might incentivize the

agent to staying centered in the lane in the following reward functions.

Reward 2 – Keep Centered:

In this reward function we add an incentive/reward for staying centered. This agent achieved a

maximum score of 2115m after ∼ 8 hours of training, and did not improve beyond that. While

it performed worse than the previous agent, the video reveals that this agent was able to learn

some behaviours that we find to be desirable. For example, we can see several examples of the

agent slowing down before turning to the right, and also slowing down before going downhill.

It is not entirely clear why the modification led to these differences, other than staying centered

gives the agent additional reason to drive more carefully. To summarize the what we see in the

video:

• The agent is able to maintain speeds close to the target speed (20 km/h).

https://youtu.be/iF502iJKTIY?t=2989
https://youtu.be/iF502iJKTIY?t=2955
https://youtu.be/iF502iJKTIY?t=3019
https://youtu.be/iF502iJKTIY?t=3050
https://youtu.be/iF502iJKTIY?t=3055
https://youtu.be/iF502iJKTIY?t=2819
https://youtu.be/iF502iJKTIY?t=2955
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• The agent will slow down before making turns (e.g. 57:01.)

• The agent will slow down before going downhill (e.g. 55:20.) Recall that the agent is not

able to brake in our environment, so doing this makes sense.

• The agent struggles to center itself (similar to Reward 1,) however, it does drive more

centered in certain sections of the lap (e.g. Reward 1 : 50:50, Reward 2 : 57:04.)

We can see that our agent failed at the sharp, 90 degree turn on the second round, and it looks

like it drove off the road because the red house on left confused the agent, making it drive

unstably on the last stretch of road leading up to the turn. As to why these agent seem to

have an unstable, almost sinusoidal, steering behaviour on straight roads, may be a result of

the agents not understanding the physics of the environment. The agent knows that it should

adjust its steering to move to the center, however, it tends to overcompensate, perhaps due of

a lack of temporal information in the input state. Generally though, we think that there are

ways to utilize the distance to the center in the reward function to encourage centering. As a

result, we will be keep the centering term in the next experiments as well.

Note that we have also tried an alternate version of this reward function that simply gives no

speed reward when we are driving above the target speed. This reward function is functionally

more similar to Kendall’s reward function, but we found that it was much more difficult to

learn due to the drastic discontinuities in the reward when the agent was close to the target

speed.

Reward 3 – Leeway for Speeds Close to Target Speed:

Providing some leeway in the speed term of the reward function appears to have improved the

results of Reward 2 by a fair amount. As discussed in Section 3.4.3, the idea behind this reward

function is that if we provide some leeway in the speed term of the reward function, we will give

the agent a chance to explore how the steering angle affects the centering term of the equation

without interference from the speed term. For these experiments, we have set vmin = 15 and

vmax = 25. We can see in Figure 4.8, that, unlike Reward 2, this one does not collapse after

the initial increase in performance around the 8h mark. Instead, this model reaches average

https://youtu.be/iF502iJKTIY?t=3421
https://youtu.be/iF502iJKTIY?t=3320
https://youtu.be/iF502iJKTIY?t=3050
https://youtu.be/iF502iJKTIY?t=3424
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evaluation distance of ∼ 1700m, and achieves a max distance of 3774m (3 laps) at the 13 hour

mark. If we look at the video, we can make the following observations:

• Driving behaviour is fairly similar to Reward 2, however, it is more reliable in sharp turns

(it did not fail any sharp turns unlike Reward 2.)

• The changed did not improve the steering behaviour; it is still overcompensating its turns

when it is trying to converge to the center of the lane (e.g. 59:12.)

Since this agent performed better and remained more stable in its performance after converging

(when compared to Reward 2,) we conclude that providing leeway to the agent’s speed term is

a good idea. We will therefore be utilizing this speed term in the following reward functions as

well.

Reward 4 – Additional Reward for Being Aligned With the Road:

This reward formulation appears to have many of the same benefits as Reward 3, with the

biggest differences being that the steering is a lot smoother, and that the environment was

solved even faster. In this and the next reward formulation, we have set αmax = 20, meaning

that the angle reward will equal zero if we deviate more than 20◦ from the direction of the road.

The first observation we make when looking at Figure 4.8, is that this model had a significant

peak at the 7h mark, achieving a max distance of 3714m in ∼ 8 hours. This model solved

the environment 5h faster than Reward 3. However, after the initial peak in performance, we

observed a dip, similar to that of Reward 2. This may have occurred due to some temporal

noise interfering with the training process, however, the cause is not clearly known.

If we compare the driving behaviour of this agent to the previous agents, we find that:

• Steering behaviour has been significantly improved. The car is no longer overcompensat-

ing its steering when it is centering itself in the lane, and it is driving more centered as a

result (e.g. 1:05:10.)

https://youtu.be/iF502iJKTIY?t=3552
https://youtu.be/iF502iJKTIY?t=3910
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• Steering is, however, unstable when going downhill (e.g. 1:05:20.) We observe the car

starting to turn left and right as it is going downhill, possibly in an attempt to slow itself

down.

• The agent has a tendency to cut corners (e.g. 1:06:40, 1:06:48.)

In terms of driving behaviour, we would say that this is the best agent so far: it does not steer

erratically, and keeps to the speed limit. Policies which overcompensate when they try to center

themselves make the agent have an overall high angle difference compared to one that drives

straight. We have shown here that simply adding a term that gives additional reward when we

are perpendicular to the road is very effective at reinforcing desired driving behaviour. As a

result, we will continue to use an angle reward in the following reward functions.

Reward 5 – Multiplied Centering, Angle and Speed Rewards:

As we discussed in Section 3.4.3, multiplying rewards may enforce the agent to make sure it

fulfills multiple criteria at once while it is driving. In this case, we want the car to have speeds

close to target speed, drive in the center of the lane, and drive with the body of the car aligned

with the road.

This agent achieved a max distance of 3721m at the 9 hour mark. Looking at the video, we

can make the following observations:

• The agent’s steering is more stable than Reward 4 (e.g. Reward 4 : 1:05:10, Reward 5 :

1:10:34.)

• The agent cuts fewer corners than Reward 4, but does make some wide turns – turning

onto the grass or into the neighbouring lane (e.g. 1:11:38, 1:12:10.)

• Speed and steering much better when going down hill when compared Reward 3 and

4 (e.g. 1:10:41.) This is probably one of the results of doing multiplication instead of

addition, because in this reward formulation, the agent will be given a negative reward for

any speed over the max speed, unlike Reward 4, where the final reward could potentially

be positive depending on magnitude of the other terms in the equation.

https://youtu.be/iF502iJKTIY?t=3920
https://youtu.be/iF502iJKTIY?t=4000
https://youtu.be/iF502iJKTIY?t=4008
https://youtu.be/iF502iJKTIY?t=3910
https://youtu.be/iF502iJKTIY?t=4234
https://youtu.be/iF502iJKTIY?t=4298
https://youtu.be/iF502iJKTIY?t=4330
https://youtu.be/iF502iJKTIY?t=4241
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Figure 4.10: Shows the distance traveled by the agent before an infraction occurred, in evalu-
ation mode. The graphs compare two agents that were trained using Reward 2 ; the fail faster
agent is trained in an environment that resets the car to the latest checkpoint, while the other
agent is reset to the track’s starting position at the start of each episode.

Comment on Centering Metric:

In addition to recording the total distance traveled per episode, we also recorded the average

distance to the center of the lane, averaged over all timesteps of the environment (Figure 4.9(a).)

This sounds like a reasonable statistic in theory, however, if we look at the average centering

deviation statistic for Reward 3 and Reward 4, we find that Reward 4 ’s best run had a 0.53m

average distance to the center, while Reward 3 ’s best run had a value of 0.54m. Looking at the

video’s side-by-side, we know that Reward 4 has a much more desirable driving behaviour than

Reward 3 (e.g. Reward 3 : 59:12, Reward 4 : 1:05:10.), meaning that this metric is not very

useful in comparing steering behaviours. Normalizing the mean by the variance of all sampled

distances would most likely lead to a better metric.

https://youtu.be/iF502iJKTIY?t=3552
https://youtu.be/iF502iJKTIY?t=3910
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4.2.2 Failing Faster

In this experiment we wanted to find out what the effect of resetting the agent in a way that

makes the agent fail faster has on the overall training time. In early experimentation phases,

we had started off by training agents in an environment that resets the agent to the start of

the track each time it encountered an infraction (Reward 2 in Figure 4.10 shows one of these

experiments.) We noticed that the agent started to struggle at a very specific point on the

track – the curvy road on the right side of the map – after approximately 3 hours. In each

episode after that, we would see the agent spend ∼ 2 minutes to get back to the point it was

struggling with, where it would then fail almost instantly (showcased in the video at 10:50.) In

order to overcome this obstacle, the agent needs to either (1) repeatedly attempt this stretch

of road, and, by the help of lucky values sampled from the exploration noise, sample actions

that lead to better rewards, or (2) experience similar stretches of roads to eventually generalize

to this road as well. The results in the graphs suggests that our agent is not able to generalize

by redoing the first section of the lap. This might be a result of this turn being the first turn

where buildings taking up major parts of the input image. Up to this point, the agent might

not understand that the buildings it sees in the distance should not affect the policy, and it

most likely has to redo this section several times over to learn this fact. Having to drive all the

way to this point every time is, however, quite sample inefficient, as most of our samples along

the path do not teach us how to overcome this particular obstacle.

To counteract this effect we introduce checkpoints, as described in Section 3.4.2. Figure 4.10

shows us a comparison of this environment design decision, and furthermore shows us that this

is most likely a good idea. We can see here that, unlike Reward 2, the fail-faster model manages

to complete a full three laps in ∼ 11 hours, while the Reward 2 model is still stuck after 20

hours. Reward 2 would likely manage the track given more training time, however, reducing

training time is one of our main goals, so we used checkpoints in all the other experiments as

a result.

Note that these agents were part of an earlier set of experiments where vtarget = 10 and σinit =

0.4.

https://youtu.be/iF502iJKTIY?t=650
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Figure 4.11: Shows the distance traveled by the agent before an infraction occurred, in evalu-
ation mode. The graphs compare two agents trained with Reward 5 ; the segvae agent uses a
VAE that was trained to reconstruct the semantic segmentation maps, while the other uses a
regular RGB VAE.

4.2.3 Variational Autoencoder and Segmentation Maps

In this section, we will look at the effect of trying to train a variational autoencoder to extract

stronger semantic features from the environment, by training it to reconstruct semantic segmen-

tation maps from input images rather than using the standard image reconstruction pipeline.

Figure 4.11 shows us the results of this experiment. The seg-vae model reaches a maximum

score of 3745m at 10.5 hours, while the rgb-vae model reached a score of 3739m at 10.4 hours.

The first thing to notice in the results, is that the seg-vae model has a very steady and reliable

increase in performance from start to end, while the rgb-vae model is a bit more turbulent,

reminiscent of earlier results. Furthermore, the seg-vae model learns to drive decently much

faster than the rgb-vae model, suggesting that our hypothesis that an agent that understands

the semantics of its environment is going to be more effective at solving the task. Intuitively,

it is much more important for the agent to understand what the different object in the scenes

represent in terms of semantics, rather that the general shapes and colors of said objects. By

training the agent this way, we eliminate the need to represent texture and colors in the latent
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Figure 4.12: Shows the reconstructions generated by the rgb-vae model as we anneal the latent
space vector z by ±10, where each figure represents one dimension of z. Note that the VAE we
used in this plot was trained on data from the updated Town07 (see Section 4.2.4.)
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Figure 4.13: Shows the reconstructions created by the seg-vae model as we anneal the latent
space vector z by ±10, once for each zindex. Note that the VAE we used in this plot was trained
on data from the updated Town07 (see Section 4.2.4.)
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space vector, significantly simplifying the latent space representation. We can see this effect

in Figure 4.13; where the seg-vae reconstruction tend to have continuous flat surfaces in the

reconstructions, while the rgb-vae have to use several dimensions that are used to represent

noise and texture (e.g. zindex = {35, 36, 63} in Figure 4.12).

Note that in this experiment and onwards, we have increased σinit to 1.0 because we encountered

some intermediate experiments failing due to getting stuck in local minima.

If we look at the video results of the seg-vae and the rgb-vae models, we can make the following

observations:

• Both agents maintain speeds that are stable and close to target speed, even when going

downhill.

• Both models have smooth turns and do not cut corners or make wide turns.

• The rgb-vae agent overcompensates more than seg-vae agent when it is trying to center

itself in the lane (e.g. 13:30.) This may be a result of the seg-vae model having a better

and less noisy understanding of where the road ends and begins. The seg-vae model is

therefore more aligned with the center of the lane overall.

• Both agents change their steering angle at periodic intervals. This seems to be more of an

effect of increasing σinit = 1.0 than anything else, since this is the only difference between

Reward 5 of the previous section, and the Reward 5 in Figure 4.11.

4.2.4 Sub-policy Model

Environment Changes

As we were writing the code for this experiment, we found a need to update to CARLA 0.9.5 due

to some issues in the path planner in 0.9.4. Along with the update, the map we use, Town07,

also got a visual upgrade. Since this new map emulates the visuals of a real-life driving scenario

more closely, we have decided to use the update map for the rest of the experiments. Since the

https://youtu.be/iF502iJKTIY?t=810
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Figure 4.14: Shows the distance traveled by the agent before an infraction occurred, in evalua-
tion mode. The graphs compare two agents trained with Reward 5 ; the ”sub-policy” agent has
four sub-policy networks – one for each maneuver – and the other agent uses a single policy
like before.

way we train our agent remains practically the same, we have no reason to expect the overall

conclusions of the earlier experiments to be drastically different in the new map. Furthermore,

we also decided to change our environment into a synchronous environment, meaning that the

simulation will wait until we submit an action each step. We do this to eliminate the chance

of temporal noise interfering with our results in the rest of our comparisons. For all of the

experiments using a synchronous environment we set FPS = 30, meaning that 1/30s will pass

between each step.

Results

Figure 4.14 shows the result of training two Reward 5 agents; one with a single PPO network,

and one with four PPO networks. The vanilla network achieved a max distance of 2075m at

∼ 7.7 hours, while the sub-policy network achieved a max distance of 2232m in ∼ 26 hours.

Note that we decided to train the sub-policy network a fair bit longer, because we practically

have to train four separate PPO networks. Furthermore, we decided to increased αmax to 180◦,
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to make sure that the agent will be given some reward signal, even when |αdiff | > 20.

If we look at the video result, we can make the following observations:

• The agent is able to learn in the new map; it keeps a speed around the target speed and

is able to follow the road and make turns (e.g. 21:46)

• Steering is, however, more noisy in both of these experiments when compared to Reward

5 from Section 4.2.1. This might be a result of trying to learn in an environment that is

more visually complex environment, or it can be a side-effect of training in a synchronous

environment, as we will discuss later.

• Both of the agent’s best runs ended because the agent collided with a sign pole or other

objects along the roadside (Single policy: 26:47, Sub-policies: 27:34.) We could have

prevented this by, for example, reducing dmax, or by giving the agent a negative reward

on collision.

• The models have similar turning patters; they make some wide turns, but generally turn

smoothly.

The results show that training separate PPO network for different maneuvers is a valid strategy.

The sub-policy agent reaches a max distance comparable to the vanilla network. While the sub-

policy network takes more than 3x as much time to train, we now have the option to train agents

that have the ability follow commands, a la Codevilla [CMD+17]. This opens up the possibility

to train agents that can navigate from a point A to another point B, by use of a global route

planner that finds the best route between A and B, and then having the PPO agent execute

the driving part. We will explore this option in Section 4.3.

4.2.5 Note on Exploration Noise

During all of the CARLA experiments, we tried a variety of different values for σinit with several

different models. Each value of σinit had its own pros and cons, and we were unable to find the

https://youtu.be/iF502iJKTIY?t=1306
https://youtu.be/iF502iJKTIY?t=1607
https://youtu.be/iF502iJKTIY?t=1654
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Figure 4.15: Shows the distance traveled by the agent before an infraction occurred, in evalu-
ation mode. The graphs compare two agents trained with Reward 5 ; one with σinit = 0.1 and
the other with σinit = 1.0.

perfect value for σinit. When σinit is low (e.g. σinit = 0.1,) the resulting agent will drive more

smoothly – the steering angle will be more stable – but the trade-off is that there is a greater

chance that our agent will be stuck in a local minima, and training will become slower because

the sampled values are generally close to the mean. When σinit is high (e.g. σinit = 1,) we end

up with an agent that is more jerky in its steering, but we also reduce the risk of ending up

in local minima and the agent will train faster. Reward 4 from Section 3.4.3 shows that we

can counter some of the steering angle instabilities by designing reward functions that take this

effect into account, however, more work is necessary to counteract this behaviour completely

(e.g. we could try to keep a history of recent values for the distance to center, and penalize the

agent for having high variance in these values.)

Another issue we observed with the standard Gaussian exploration noise, is that it is difficult

to make the agent ”commit” to a control signal long enough for the agent to observe its effects.

For example, if the agent is stuck on a sharp turn, what will happen with regular Gaussian

noise is that our agent will most likely repeat bad actions and be slowly pushed to go in the

right direction over time due to minor perturbations in the actions. However, when here are
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second-order relationships between the actions and the changes in states, we need to be lucky

enough to repeat the same action multiple times in a row in order to observe these changes,

which is unlikely when we are sampling from a Gaussian. In our case, the speed of the car is the

derivative of the throttle, and the momentum (direction) of the car depends on a combination

of momentum, torque and steering angle. If the agent would able to commit to an action for

longer time (e.g. ”this time, try to turn right more than left for some period of time,”) it is

more likely to reach a good policy faster. In DDPG [LHP+15], this fact is actually accounted

for by the use of Ornstein-Uhlenbeck noise instead of Gaussian noise. An Ornstein-Uhlenbeck

process models the velocity of a Brownian particle under friction, and can be used to sample

random variables that have a second-order relationship to the underlying state, e.g. how should

we sample velocity when we want to sample the position from a normal distribution. Using

Ornstein-Uhlenbeck noise with PPO is not as easy as using it with DDPG, because PPO needs

to calculate the log-probability of an action given a policy, that is calculate log π(at|st). Chen

et al. [YTXC09] has derived the formulas for calculating the log probability of a Ornstein-

Uhlenbeck distribution, and it is certainly an interesting extension to consider.

Figure 4.15 shows that setting σinit = 0.1 generally achieves the same distances as σinit = 1,

however, the best run of σinit = 0.1 has a centering deviation of 0.33m, which is lower than

the best run of σinit = 1, which has an average centering deviation of 0.56m. The increase

in average centering deviation is to be expected, because the policy is has a more aggressive

exploration rule. Comparing the video results, we can also confirm that setting σinit to 1 results

in an agent that only changes its steering angle periodically (see video at 27:58.) The cause for

this is unknown, however we speculate that the σinit = 1 agent is unable to find policies that

use fine steering controls due to the aggressive noise, leading to an agent that only adjusts the

steering angle in bursts.

4.2.6 Note on Environment Synchronicity

Intuitively, we expect a synchronous environment to generally perform better than a asyn-

chronous environment, due to the temporal stochasticity that is inherently introduced in an

https://youtu.be/iF502iJKTIY?t=1678
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Figure 4.16: Shows the distance traveled by the agent before an infraction occurred, in evalua-
tion mode. The graphs compare two agents trained with Reward 5 ; one agent in a synchronous
environment and the other in an asynchronous environment.

asynchronous environment. Initial experimentation showed, however, that only some configura-

tions of reward functions and hyperparameters were easier to solve in the synchronous environ-

ment, while most configurations were actually harder and did not amount to well performing

agents. We suspect that the temporal noise in the asynchronous environment may actually have

been to the agent’s benefit, as the agent would generalize better when the outcome of an action

is non-deterministic, giving the agent more variety in its data. As discussed in Section 3.4.2,

training asynchronously has some benefits in terms creating agents that could, theoretically,

learn to drive in real-time. However, we think it is more valuable to train synchronous agents

in autonomous driving research, as it makes it easier to compare and contrast results between

studies.

Figure 4.16 shows the results for Reward 5. Inspecting the graph, we can see that the agents

in both the synchronous and asynchronous environments learn at a similar pace; with the

synchronous environment increasing in performance slightly faster than the asynchronous one.

The synchronous environment reached a max distance traveled of 2075m in ∼ 7.7 hours, while

the asynchronous one reached a peak distance of 2708m in ∼ 7.9 hours. Comparing the video
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Figure 4.17: Shows the distance traveled by the agent before an infraction occurred, in evalua-
tion mode. The graphs shows the result of agents trained with Reward 5 in the CARLA route
environment. Note that a sliding window of ±5 was applied to smooth out the graphs.

results, we can actually see that temporal noise is what caused the asynchronous agent to fail in

this case (start watching 44:04, lapse happens at 44:07.) A couple of frames before the episode

ends, we can see that there is a short lapse in the recording – likely due to a lost step/frame. A

lapse of one frame has the duration of approximately 1/15s = 67ms, which, in an environment

where fast reaction times are vital, is certainly enough time for the agent to reach unrecoverable

states. In the video we see that an ill-timed lapse was, indeed, enough to cause the agent to

crash into a pole on the side of the road. In terms driving behaviour, the asynchronous agent

tends to overcompensate less in its turns. The reason for this is not clear, however, it could be

a result of noise working in the benefit of the agent; the agent has some probability to recover

from an unstable state when a timestep is shorter or longer than expected.

4.3 Carla Route Environment

Finally, we tested our agent in the CARLA route environment. As stated in Section 3.5.2,

we will be using the seg-vae variational autoencoder, Reward 5 with αmax = 180◦, and four

https://youtu.be/iF502iJKTIY?t=2644
https://youtu.be/iF502iJKTIY?t=2647
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sub-policies. Similar to the Lap environment sub-policy model, we let this model train for ∼ 48

hours, and we additionally lowered the learning rate to 3e-5, to compensate for the fact that

finer controls are most likely necessary to for agents to be successful in this environment.

Figure 4.17 shows the results for this agent. Looking at the graph, we can see that there is a

clear upward trajectory in performance, and by inspecting the videos (starts at 6:47,) we can

see that the sub-policy model is able to learn the different maneuvers. However, the agent is

still quite a ways from completing 3000m, with the best run of this agent finishing 930m at

the ∼ 39 hour mark. If we look at the path this and other high performing agents take, we

quickly realize that the agents who complete the longest distances are also the agents that are

tasked to drive long stretches of easy to drive, straight roads. Therefore, we have also included

additional video examples that better showcases the agent in action.

By looking at the videos, we observe that:

• The agent is able to make a variety of left and right turns, including a right turn onto a

small roundabout (10:22,) keeping to the right or left lane at branches (10:19,) driving

any direction in open four-way intersections (9:50,) etc.

• The steering overcompensates in a similar way to what we saw in the sub-policy model

in the Lap environment.

• The agent does, however, occasionally cut corners, driving on the grass (e.g. 9:50.)

• The agent sometimes crashes into sign poles and fences (e.g. 10:35,) however it also

recovers from these crashes occasionally (e.g. 10:22.)

https://youtu.be/iF502iJKTIY?t=407
https://youtu.be/iF502iJKTIY?t=622
https://youtu.be/iF502iJKTIY?t=619
https://youtu.be/iF502iJKTIY?t=590
https://youtu.be/iF502iJKTIY?t=590
https://youtu.be/iF502iJKTIY?t=635
https://youtu.be/iF502iJKTIY?t=622
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Conclusion

In this thesis, we have explored the several aspects of how deep reinforcement learning can

be used to solve and create autonomous driving agents. We have verified previous research

which suggests that variational autoencoders can be used to help deep reinforcement learning

agents learn faster, and provided extensive analysis as to how different state representations

affect the overall performance of agents. Furthermore, we have shown that this method is not

only limited to 3D environments that are visually simple – such as Raffin’s [RS19] Donkey Car

simulator and Wayve (Kendall) [KHJ+18] custom in-house simulator. While we encountered

some challenges in setting up the final environment in CARLA, we have ultimately created a

self-contained deep reinforcement learning system that works with CARLA, and have provided

in-depth analysis of the effects of multiple parameters of the system, such as the choice of

reward function, standard deviation, environment synchronicity, and environment checkpoints.

Finally, the experiments in the Route environment serves as a simple proof of concept showing

that an agent with sub-policies can be used to learn how to navigate to a destination waypoint

by switching out the current policy according to the route planner’s commands.

102
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5.1 Contributions

In the following list, we have summarized our contributions to the field of deep reinforcement

learning for autonomous vehicles:

• We have created two gym-like environments for CARLA, one that focuses on following

a predetermined lap, and another that is focused on training agents that can navigate

from point A to point B. The code for both of the environment are publicly available

at https://github.com/bitsauce/Carla-ppo. While we can find existing examples of gym-

like environments for CARLA, there is no implementation that is officially endorsed by

CARLA. Furthermore, most of the third-party environments do not provide an example

of an agent that works out-of-the-box, or they may use outdated reinforcement learning

algorithms, such as Deep Q-learning.

• We have provided extensive analysis of various PPO parameters and environment design

decisions, with the aim of finding the optimal setup to train reinforcement learning based

autonomous driving agents.

• We have provided in-depth analysis of several aspects of the design of reward functions

for the purposes of training autonomous driving agents.

• We have provided an example that shows how VAEs can be used with CARLA for rein-

forcement learning purposes.

• We have shown that how we train and use a VAE can be consequential to the performance

of a deep reinforcement learning agent.

• We found that major improvements can be made by training the VAE to reconstruct

semantic segmentation maps instead of reconstructing the RGB input itself. Training the

VAE this way ensures that the VAE has a greater focus on encoding the semantics of

the environment, which further aids in the learning of state representation learning-based

agents.

https://github.com/bitsauce/Carla-ppo
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• We have used our findings to devise a model that can reliably solve the CARLA lap

environment in approximately 8 hours on average.

• We have provided an example of how sub-policies can be used to navigate with PPO, and

we found it to have moderately success in the route environment.

5.2 Discussion and Future Work

In this section, we will be discussing and summarizing our findings, and furthermore, we will

be discussing what improvements can be made to our work, and give our thoughts on what we

believe future work in deep reinforcement learning for autonomous vehicles should pursue in

order to elevate the field.

5.2.1 Variational Autoencoders with Deep Reinforcement Learning

As we have discussed in Section 3.2.4, we can use a variational autoencoder that tries to

reconstruct its input image, as a way to compress our input image into some low-dimensional

feature space that a deep reinforcement learning agent can use to train with. We have shown

that employing a VAE certainly helps compared to training directly on input pixel values.

Furthermore, we have shown that how we train the VAE also affects the end result of the

agent, and that a trained VAE performs much better than a random VAE, suggesting that only

having a stationary state space is not sufficient for an agent to learn – the features also need

to have some semantic meaning. Out of the VAE variables we tested, we found the size of the

VAE’s encoded space, zdim, to be one of the most influential variables, and we found that it

should be large enough for the VAE to encode all possible features of the input. In visualizing

the reconstructions, we saw that even though it might appear like the zdim = 10 model encodes

just as much information as the zdim = 64 model, and that the zdim = 64 has a lot of features

that do not encode anything apparent, the zdim = 64 performs much better; something that

we think could a result of some features being correlated – and therefore will have no effect in
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the absence of another – or that the features might model noise or other perturbations that

are hard to catch with the eye. Additionally, we also provided some high-level analysis of what

the individual encoded features mean in the CarRacing-v0 environment, and also showed that

models with higher β values or lower zdim values tended to generate features that are more

entangled than others. We found BCE loss and MSE loss to have similar results, and showed

that pre-training the VAE on manually collected data worked a lot better than optimizing the

VAE and the PPO agent in alternate training phases.

In Section 4.1.2 we also looked at optimizing PPO to be used with a VAE in the CarRacing-v0

environment, and we demonstrated that the on-policy deep reinforcement learning algorithm

also works in the VAE state representation learning pipeline. In our hyperparameter search,

we compared the Atari and MuJoCo parameters from the PPO paper [SWD+17], and found

the Atari parameters to work the best with our implementation. We are uncertain why the

MuJoCo parameters performed so poorly, and suspect that learning rate is the biggest factor, as

we found the learning rate to be one of the most influential variables in our Atari experiments.

We found that lowering the learning rate helped significantly, however, we did also not use a

decaying learning rate like they did in the PPO paper, because we were unsure how long we

would need to run the simulations for. This might be the biggest factor as to why we had to

lower the learning rate.

As we had shown in our earlier report (Appendix A.1,) squashing the action space to the

minimum and maximum values for each action substantially aids in learning. This is also

corroborated by OpenAI’s Spinning Up documentation [Ach19]. Furthermore, we found little

difference in using a finite or an infinite horizon, which means that we could most likely use our

method to train a PPO driving agent in real-life by using an infinite horizon, as using infinite

horizons allows the agent to finish the entire episode before optimizing.

Some experiments that would have been interesting to try out, would be, for example, to run

our implementation with the best parameters in an unmodified CarRacing-v0, to evaluate what

the effect of making the environment ”easier” to solve had on the training time. It is not obvious

that modifying the environment itself (e.g. making the turns softer or limiting the speed) had
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a great impact on the training time, and, furthermore it is also not clear what the additional

complexity of adding another action is to a PPO agent, even when that action is rarely required.

Lastly, we are not entirely certain why we got different results from Higgins et al. [HPR+17]

when we tried to train an agent with β = 4. After running the CarRacing-v0 experiments, we

did not spend more time trying to finding the answers to these questions, since our main focus

was to get a PPO agent working with CARLA.

5.2.2 CARLA Lap Environment

After we found a pipeline that seemed to perform reliably in CarRacing-v0, we set out to design

an OpenAI gym-like environment, that we can use to train reinforcement learning agents in

CARLA. The first environment we created is one that emulates CarRacing-v0 and other driving

environments where the goal is to simply follow the road (e.g. Kendall’s and Raffin’s,) and the

details of our environment are laid out in Section 3.4.2. In our environment, we have had a

focus on making it easy to try out custom reward functions and state representations, while

providing several metrics that can be used to compare agents. Furthermore, we have provided

a reward function that we found to perform reasonably well, and it could serve as a baseline

for future experiments. In addition to providing some analysis in the choice of our final reward

function, we also have included analysis of five other reward function in Section 4.2.1, including

Kendall’s speed-as-reward reward function. In this section, we showed that too aggressive

termination can be detrimental to the learning, and that creating a reward function that gives

maximum reward when our agent’s speed is equal to the target speed is an effective way of

controlling our agent’s maximum speed. In later reward functions, we showed that providing

some leeway in the speed term of the reward function gives the agent the opportunity to explore

the effect of steering angle on the total reward, independent of the noise from the speed term.

At this point we still had a problem with the agent overestimating how much it should be

turning to center itself in the lane, leading to an agent that drives in a zig-zag pattern without

reaching an equilibrium. To combat this, we tried to train an agent with a reward function

that also considers the angle between itself and the road, and found that to have great effect in
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stabilizing the agent’s steering. Finally, we thought it would make sense to try and change the

reward function into one that will only give high rewards when multiple criteria are met (e.g.

”we are driving in the center,” and ”we are driving at target speed”,) and tried to accomplish

this by making a reward function that multiplies the different reward terms instead of adding

them. We found this to help our agent learn faster without collapsing after the initial peak in

performance, which could be useful for giving the agent time to fine-tune its behavior in the

later stages of the training process.

One question we had after our initial reward function experimentation was why the PPO agent

learns much slower in this environment, compared to CarRacing-v0. The PPO agent needed

only 15 minutes to learn to drive in CarRacing-v0, while in our CARLA lap environment, the

agent needed approximately 8 hours on average to learn to drive well. Looking at some of the

results from the earlier episodes in the training of the CARLA agents, we actually see that the

agent does not need a lot of time to learn to drive 200m on straight roads (approximately 15

minutes.) However, as soon as the agent encounters the first intersection, we saw the agent fail

repeatedly for potentially many hours before being able to make the turn. This observation

is what led us to adding checkpoints to the lap environment, as to encourage the agent to fail

faster in training mode. In reality, we believe that the main reason it takes much longer to

train in our environment, is because it is deceptively more difficult than CarRacing-v0. Our

modified CarRacing-v0 does not feature any sharp turns or branching roads at all, so holding

the throttle at a constant level is a valid strategy in this environment. Furthermore, there

are a lot more small details in the observations that have a lot of importance in the CARLA

environment, compared to CarRacing-v0. The location of the lane lines, locations of object

we can collide with, and the curvature of road that is off-camera are all necessary pieces of

information that our agent needs be able to drive properly in CARLA, and a 160x80 pixel RGB

image may simply not contain enough information. In general, we believe that improving the

state representation by, for example, adding memory to the agent through recurrent networks,

or fusing input between different types of sensors such as LiDAR and RGB cameras, can go a

long way in improving the performance of our baseline agent.

To make sure that our final environment setup and agent parameters were justified before
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continuing onto the route environment, we did some analysis of the effect of different values for

σinit and environment synchronicity. We found that using low values of σinit (e.g. σinit = 0.1)

in our agents, made it more likely that they would get stuck in a local minima. Using higher

values of σinit (e.g. σinit = 1) alleviated this problem, but had the side-effect of introducing

undesirable steering patterns in our agents. We concluded that setting σinit = 1 was still a

worthwhile trade-off to make our agent’s learning more consistent from run to run. In the same

vein, we found evidence that training agents in asynchronous environments introduces temporal

noise in the observations, which is undesirable as it can lead to inconsistencies between runs.

The driving behaviour of the agents trained in the synchronous and asynchronous environment

did not vary drastically, so we concluded that using a synchronous environment is more useful

to autonomous driving researchers, as it makes it easier to reproduce and compare results.

In one of our experiments, we showed that training the VAE to reconstruct the segmentation

maps, rather reconstruction the RGB input images, helps reduce training time by a signifi-

cant portion. When we train the VAE on semantic segmentation maps, we ensure that the

compressed state representations will encode the semantics of the roads and the objects in the

scene, rather than the texture of surfaces or other noisy patters. We believe that the segmen-

tation VAE’s representations are more useful to the agent when solving an autonomous driving

problem, and we think it would be interesting to explore similar ways of enforcing information

rich state representations that can be used with deep reinforcement learning. For example, we

have considered training a VAE model that only trains on segmentation maps with road and

non-road classes only – since being able to distinguish between the 12 classes presented in the

segmentation maps may not be important in determining the optimal driving behaviour (e.g.

vegetation.) Other than that, we could also look into training models that are specialized for

semantic segmentation, and try to use their compressed state representations when training the

agent.

Another contribution of our work is that we have shown that it is possible to train PPO-based

agents with multiple sub-policies, which lets us control the vehicle at intersections – inspired

by the method of Codevilla et al. [CMD+17]. This is allows us to train agents that navigate

from a starting point A to an end point B, with the help of a global path planner. We showed
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that this model is able to perform similarly to the single-policy model, at the cost of having to

train the agent for longer. We might have expected the sub-policy model to perform better,

since it has overall more parameters, so it would be interesting to investigate why it did not

happen in our case.

As we were developing the lap environment, and after having run some of the initial experiments,

we found that several aspects of the environment and experiments could be improved. As seen

in the video, many of the earlier experiments were run in the version of Town07 from CARLA

0.9.4, and also in the asynchronous version of the environment. As such, it would be ideal

to rerun some of the earlier experiments to make them more reflective of how these agents

would perform in a more visually complex environment. Also, changing to a synchronous

environment would make the these results easier to reproduce, as we would eliminate temporal

noise as discussed before. After we had updated to the new environment, we noticed that the

new agents had a tendency to crash into obstacles along the sides of the roads, due to the way

the car learns to steer itself. This is the main reason, we believe, that the agents trained in the

updated map did not always learn to complete three laps like before. This is a problem that we

would like to solve, and our initial thought is that this issue may resolved simply by reducing

dmax or σinit, or adding a negative reward on crashing (none of these have been tested.) Other

improvements we have considered to the environment are, for example, to reintroduce braking

to the action vector, adding orientation to the state vector (so that the agent can understand

movement due to gravity,) implementing traffic rules, supporting multiple agents, etc. One

result that is also worth revisiting is the fact that Reward 1 actually performed better than

Reward 2, suggesting that giving the agent a reward for staying centered may not be as useful

as predicted. Furthermore, designing reward functions that considers temporal aspects of the

agents behavior might be a good solution to prevent the agent from having unstable steering

behaviour; e.g. one could take a sample of the 10 last distances to the center of the lane, and

calculate a reward based on the variance of these datapoints.

Improving exploration is also something we believe could be effective, particularly because

the agent is acting in an environment where there are second-order relationships between its

actions and its future observations. When the agent applies throttle, a change in speed will
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not be observed instantly, and how the agent should steer in the moment depends heavily on

the momentum and other physical properties of the system. We argue that Gaussian noise is

ill-equipped for these types of scenarios, because the agent needs to commit to a particular

action for longer periods of time in order for the agent to experience the consequences of its

actions. As such, we believe that changing the Gaussian noise in PPO with Ornstein-Uhlenbeck

noise could help. Another idea would be to consider curiosity-based reward function to aid in

exploration.

5.2.3 CARLA Route Environment

In our final experiment, we wanted to test the capabilities of our model in an environment that

simulates real-life driving scenarios closer. In doing this, we had to create another version of

the environment that tasks the agent to follow the commands of a global route planner, with

the goal of navigating from some point A on the map to some other point B. The details of

this environment is laid out in Section 3.5. Like before, this is an environment that is easy to

customize and use, however, certain changes had to be made to accommodate for the fact that

the randomly selected routes can have variable difficulties and lengths. To make evaluation

runs easier to compare, we made it so that the agent will be given a new route upon route

completion, until the agent has traveled 3000m in total – a successful terminal state. We

demonstrated that the final agent we trained was able to follow the instruction of the global

route planner, making somewhat complicated maneuvers, such as driving onto, following, and

exiting a roundabout. However, the agent exhibited similar behaviour to the other agents

trained in the updated Town07, crashing into object along the side of the road and having

unstable steering. Like before, we believe that that a simple solution to the crashing could

be to lower dmax or σinit, however, improving the state space by adding memory, training a

specialized VAE, or designing reward functions that consider temporal aspects of the agents

behavior be more fruitful. Unique to the route environment is the fact that it is possible for

the agent to end up ambiguous states which is a result of only having a single image as input.

In certain configurations (even with a sub-policy model,) it is impossible for the agent to know
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if it should turn or drive straight, because the start of a turn can look similar to the end of

another turn, but in these cases the correct actions are different. This further reinforces the

idea that the state space needs to encompass a temporal aspect.

Finally, we would like to mention some improvements that could be made to this environment.

The main problem we encountered in using this environment, was the fact that is was difficult to

properly evaluate an agent’s performance based on any single metric. Like before, we provide

a metric that tells us how far the agent is able to drive each episode, however, this metric

does not immediately tell us how good the agent is at maneuvering intersections, which is the

main challenge in this environment. There is a chance that the agent might get ”lucky,” and

end up being tasked with navigating a route that consists of long stretches of easy, straight

roads. Instead, we should implement a metric that accurately reflects the quality of our agent,

for example, a metric telling us how many successful turns the agent was able to make in an

episode.

5.2.4 Comparison to Similar Work

Our initial problem statement was been inspired by the works of Kendall et al. [KHJ+18],

Raffin et al. [RS19] and CARLA’s Dosovitskiy [DRC+17]. Since these works are fairly similar,

we wanted to discuss some of the similarities and differences in our methods.

Kendall showed that it is possible to get good results in very few episodes (even in real-time,)

given that we set up the driving environment in a way that best facilitates reinforcement

learning. We have shown that by using their reward function, we can achieve similar results in

CARLA, however, the method needs a lot more training in our environment because the steering

behaviour required to navigate curvy roads and intersections are fairly more complicated than

Kendall’s straight roads. Furthermore, the length of our lap is 1245m, while their road is 250m –

our agent has more room for error. Like in their work, we have also restricted our models to not

use any temporal aspect of the observed states, and the same is true for our reward functions.

Our agent needs approximately 8 hours of training time to reach an agent that solves the

environment. Through our experiments, we have confirmed that our agent is also able to learn
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to drive 250m on a straight road after approximately 15m of training, however, if we want to

reduce the training time for the entire track, we believe that we need to create models which

considers some temporal aspects of the environment as well. Other aspects that differ is, for

example, that Kendall trained their VAE by random exploration, while we pretrained ours on

manually collected data, and that their agent outputs an absolute speed instead of throttle.

Instead of adopting these ideas, we decided to take inspiration from Raffin, who, similar to us,

pretrained the VAE on data collected manually, and outputs the throttle. We did this, as their

methodology sounded more robust to us, however, we did not test this claim.

Raffin has shown similar results to Kendall in their Donkey Car simulator; teaching a donkey

car (a small remote controlled car) to follow a somewhat curvy road in 5-10m of training

time. Raffin also showed that a more recent reinforcement learning algorithm, SAC, can work

just as well or better than Kendall’s DDPG. They did not provide any analysis of how much

changing the algorithm helps, other than stating that it is easier to select hyperparameters for

SAC. We have shown that PPO can also be used as well, and we believe that using on-policy

learning algorithms has its benefits; particularly that we can employ trust regions in order to

prevent the policy from degenerating quickly. Other than that, Raffin also found that training

agents with Kendall’s simple speed-as-reward (in their case, throttle-as-reward) reward function

made their trained agents steer in zig-zag patterns, similar to what we found. Raffin provided

some solutions to this problem, and their final solution involved keeping a history of steering

commands and penalizing jerky steering, in addition to clipping the steering signal to impose

continuity in the agent’s actions. At one point, we tried to smooth our agent’s actions in a

similar fashion – in our case by linearly interpolating the new action with the agent’s previous

action – but this experiment did not yield any interesting results. Since our priority was to get

the our route environment agent working, we decided to reduce our scope, and to instead work

with models that only considers one step of the environment a time. Taking inspiration from

Raffin’s work should, however, be considered for future research.

Finally, we would like to add some remarks on CARLA’s official reinforcement learning exper-

iments [DRC+17]. In their experiments, they have shown that they were able to train an A3C

deep reinforcement learning agent to navigate from point A to point B in a similar fashion to
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us, however, their model has a fairly low success rate. One of the reason their agent appears to

travel quite far compared to ours, is that they do not have any termination criteria besides a

time limit, meaning that the agent is free to drive off the road during training and evaluation.

We believe that this has a tendency to create lower quality agents, and we have shown in Section

4.1.3 that early termination can reduce training time by a bit. In CARLA’s A3C experiments,

Dosovitskiy’s et al. [DRC+17] also used a reward function that is fairly different from ours, as

their reward function consists of several terms that only give positive or negative rewards when

a change in the state (such as change velocity, on collision, on intruding into lane going in the

opposite direction,) have occurred since the last step. Our initial reaction when seeing their

reward function is that it might be difficult select the right coefficients for each of the terms

in the equation, however, we encourage future work to look into their style of reward function

as well. CARLA’s implementation of their A3C reinforcement learning agent is, unfortunately,

not available online.

5.2.5 Closing Remark

Overall, we have been able to show that deep reinforcement learning agents can learn to drive

in complicated environments using very sparse information. With only a 160x80 RGB image,

in addition to knowledge of the velocity and the previous control signals, our agent was able to

complete three 1245m laps on the outskirts of Town07. We have shown that minor modifications

in the reward formulations can have a significant impact on the behaviour of our agent, and have

provided some ideas as to how we can construct reward functions to ensure desirable driving

behaviour from deep reinforcement learning based autonomous driving agents. We believe deep

reinforcement learning has several advantages over imitation learning, however, we think there

is still a lot of research needed before we are able create deep reinforcement learning agents

that are able to drive every driving scenario that we may encounter in real-life. We hope that

– by providing an implementation of a CARLA-based gym environment that is bundled with a

working PPO-based agent that works out out-of-the-box – that we may have filled a gap that

is currently present in the reinforcement learning for autonomous driving research community.



Appendix A

CarRacing-v0 with PPO – Non-VAE

Experiments

A.1 Models

Appendix A describes the set of PPO experiments that we used to determine the effectiveness of

various direct optimization models in CarRacing-v0 (direct optimization meaning that the agent

needs to learn to do feature extraction without a pre-trained VAE.) The details of the PPO

training pipeline used in this section is identical to that of Chapter 3, besides not using a VAE.

Furthermore, other state and environment details are altered as described in this appendix.

As stated in Chapter 3, CarRacing-v0 features a car in a procedurally generated racing track,

viewed from a top-down 2-dimensional (”birdseye”) view. In these experiments, car is controlled

by a (γ, a, b) triplet of continuous action values, where:

• −1 ≤ γ ≤ 1 is the steering angle (in radians)

• 0 ≤ a ≤ 1 is the acceleration

• 0 ≤ b ≤ 1 is the brake
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The state space of this environment consists of an image, preprocessed in the same way as

described in Section 3.3.1. The following measurements are also exposed:

• Speed of the car

• ABS sensor values for each wheel

• Steering angle

• Angular momentum

A.1.1 Implementation Details

Code for these experiments can be found at https://github.com/bitsauce/CarRacing-v0-ppo.

A.1.2 Experiments

Frame stack model

Stacking sequential frames is the most straight-forward and most common way to represent

the state space for a reinforcement learning agent that take images as input. As we discussed

in Section 2.3.3, Mnih et al. found it to be essential to stack 4 sequential to solve Atari-

based environments with Deep Q-learning; because a stack of sequential frames store temporal

information. In this model we also opted to create a frame stack of 4 sequential frames, and

we use this as the input.

Image Preprocessing: When we stack 4 96x96 RGB images on top of each other, the resulting

state space becomes quite highly dimensional (96×96×3×4 = 110, 592 state values.) In order

to reduce the size of the state space, we opted to crop and convert the 96x96 RGB frames into

84x84 greyscale images, giving us a state space of 84 × 84 × 3 = 27, 648 state values. The

cropping removes 6 pixels from the left and right sides because these pixels typically contain

information about objects that are far away from the agent and are therefore not relevant to

https://github.com/bitsauce/CarRacing-v0-ppo
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Figure A.1: Shows the 4 CarRacing-v0 models that were tested in the experiments. (a) Is the
typical frame stack model with 4 stacked frames. (b) Same as (a) but with only one frame
as input. (c) Car measurements are concatenated with the latent features φ. (d) Recurrent
model where the previous step’s latent features, φt−1, are concatenated with the current latent
features, φt. Note that convolutional and fully-connected layers have the same kernel sizes and
units in every model.
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the agent at the moment, and we also crop the lower 12 pixels to from the image because these

pixels encode the dashboard parameters, and should not be necessary when these parameters

can be inferred directly from the sequential stack of frames.

Network Architecture: The network is a typical convolutional neural network with a fully-

connected layer for the critic output and a fully-connected layer for the actor output. The

convolutional part of the network architecture was inspired by a project report titled Rein-

forcement Car Racing with A3C [JML] by students at Stanford University’s course CS234. In

the report, they claim to have tested networks with 2 up to 7 convolutional layers of varying

filter sizes and strides. In the end they found that deeper networks did not help the agent

learn. This is probably because state space is not very complex to begin with – it consists of

mostly straight lines and simple solid-colored geometric shapes as shown in Figure 3.2(b) – so

a deeper network will provide little benefit. Another consideration is that deeper networks are

harder to train and take longer to converge. Since is seems shallower architectures are faster

to train and will preform better or similarly to deep architectures, we opted for the 2-layer

architecture shown in Figure A.1(a). The first convolutional layer has 16 8x8 filters with stride

4, while the second layer has 32 3x3 filters with a stride of 2. They both use leaky ReLU,

f(x) = x if x > 0 else 0.01x, as their activation functions. Note that the filters are quite big

compared to the filters in deep architectures such as ResNet [HZRS15]. This is due to the fact

that shallow convolutional networks need bigger filters to increase their receptive fields.

The flattened feature maps of the convolutions is also shared with the critic. The critic is

represented by a fully-connected layer with one output value representing the value of being

in state s, that is V (s). This layer has no activation function because we want to be able to

represent any possible value that Rt might have, in other words −∞ ≤ V (s) ≤ ∞.

Optimization: With the action means and standard deviations from the network we can

calculate the log probability log πθ(a|s) of any action a under policy π given state s. Recall

that we need to calculate rt(θ) = πθ(at|st)
πθold (at|st)

in order to compute the clipped loss, LCLIP . We

can do this with the help of the logarithm quotient rule:
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Hyperparameter Value
Horizon T 128
GAE parameter λ 0.95
Discount factor γ 0.99
Clipping parameter ε 0.2
Learning rate 3e-4, decaying by 0.85 every 10,000 epoch
Value loss scale α 0.5
Entropy loss scale α 0.01
Number of epochs K 10
Batch size M 128
Number of envs N 8

Table A.1: Hyperparameters used in the experiments.

log πθ(at|st)− log πθold(at|st) =
πθ(at|st)
πθold(at|st)

= rt(θ) (A.1)

Thus, we compute the combined loss, LCLIP+V F+S, and optimize it with the Adam optimizer.

Single Frame Model

The single frame model is the same as the frame stack model except that the state is represented

by the current frame only (see Figure A.1(b)). We wanted to train this model to have a baseline

to compare the rest of the models to.

Single Frame with Measurements Model

This model is also a single frame model, however, the speed, steering angle, ABS and angular

velocity measurement of the vehicle, mt, are concatenated with the latent space vector φ, as

shown in Figure A.1(c). It is reasonable to believe that this state representation should encode

as much information as the frame stack variant, since stacking frames simply aims to let the

network infer temporal properties such as speed and angular momentum from the differences

in the frames.
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Figure A.2: Shows the cumulative reward of the models over number of epochs. Note that a
sliding window of ±5 was applied to smooth out the graph.

Recurrent Model

For the recurrent model, we wanted to see if the agent performs better if it can utilize temporal

information beyond 4 frames. In this model, we concatenated the latent space vector φt−1 from

the previous step to the latent space vector φt from the current step, as seen in Figure A.1(d).

Non-scaled Actions, Frame Stack Model

To know whether or not scaling the mean is actually a good idea, we trained the frame stack

model without applying Equation 3.1. Instead of tanh, no activation function was used in the

actors fully-connected layer, and no action scaling (Equation 3.1) is applied.
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A.1.3 Results

A.2 Comparisons

Figure A.2 shows the cumulative reward of each of the models over number of epochs of training.

The evaluation step was run every 200 epoch during training. Evaluation involves using the

current policy over a complete run from start to end on one agent and recording its cumulative

reward (the reward is calculated as explained in Section 3.3.1.) Note that these measurements

are quite noisy because we are only evaluating the performance over a single trajectory. Because

of this, a sliding window of ±5 was applied to calculate the means and standard deviations

shown in the figure.

Frame Stack Model

Frame stacking is a tried and true method in deep reinforcement learning, and using frame

stacking in CarRacing-v0 appears to be no exception. This model achieved the highest score

out of all the model – a score of 896.6 in its best run – and got an average score of 726.4 over

the last 100 runs, as seen in Table A.2. While the model did not ”solve” the CarRacing-v0

environment as far as OpenAI’s criteria of achieving an average of 900 reward over 100 trials is

concerned, it does reliably stay on the road and is able to make sharp turns while maintaining a

constant speed throughout the run without any erratic behaviour. This, and most of the other

models, were even able to recover from bad states, which is a property that is very relevant

to self-driving vehicles. We believe that this model could learn to solve the environment if

we make it a bit deeper by adding more convolutional or fully-connected layers; the current

network is relatively shallow to favour training time. A video of the results can be found

at https://youtu.be/8X LSy4TF84, demonstrating the best run of this agent, in addition to

showing runs of all the 5 models over 50k epochs of training, and an example of how the agent

is able to recover from bad states.

https://youtu.be/8X_LSy4TF84
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Single Frame Model

The single frame model and the frame stack model have very similar developments up until

about epoch 30,000, where we see the single frame model start converging. This model reached

a final average score of 545.9, substantially less than the frame stack model. This goes to show

that the temporal information we get from stacking the frames is essential to the success of a

CarRacing-v0 agent.

Single Frame with Measurements Model

Interestingly enough, this model appeared have faster initial improvement than the other mod-

els, but had a hard time converging later on. The initial improvement may have occurred

because the agent learned more quickly that a high speed is good for getting high rewards,

however, further investigation is required to verify this. We found it to be necessary to normal-

ize the measurements to approximately −1 ≤ mt ≤ 1 range, to reduce training variance due to

fluctuations in measurement values. However, the agent still had the highest variance during

training of all the models.

We suspect that the model was not able to converge because we were simply concatenating

the 8 measurements to the latent vector, meaning the model had a hard time differentiating

those parameters, and learning what their relationship is to the 2592 other parameters. This

could be alleviated by adding fully-connected layers before and after concatenation with the

latent space vectors as Codevilla et al. did [CMD+17], or by using mt to direct an attention

mechanism similar to Mehta et al. [MSS18].

Recurrent Model

The recurrent model had a slow start, but eventually achieved similar scores to that of the

frame stack model. Looking at Figure A.2 and Table A.2, we may observe that this model

has substantially less variance in its performance measures compared to the other models.

Having low variance during training and testing is a very desirable property, and a particularly
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(a) (b) (c)

Figure A.3: Shows the action means for (γ, a, b) over number of epochs. The blue graph is the
frame stack model and green graph is the non-scaled frame stack model. (a) shows the steering
angle γ, (b) shows the acceleration a, and (c) shows the braking b.

Model µ σ
Frame Stack 726.4 138.9
Single Frame 545.9 151.3
Frame + Measurement 590.9 159.3
Recurrent 624.7 75.6
No Action Scale 20.5 81.8

Table A.2: Mean and standard deviation of the cumulative rewards obtained by 100 evaluation
runs after convergence.

important feature when it comes to training self-driving vehicles. This difference may originate

from the fact that we have doubled the number of parameters in our fully connected layers,

because the size of the shared feature vector is doubled after concatenation. Regardless, we

find this model to be the most interesting model to investigate further.

Non-scaled Actions, Frame Stack Model

The non-scaled action mean version performed substantially worse than the scaled one given

the same amount of training time. The agent did not learn anything for the first 40,000 epochs

because the action means, particularly the steering angle, diverged too far away from the

space of valid actions as seen in Figure A.3. We believe that the agent would reach the same

performance as the scaled variant over time, but it is obviously slower to train and is therefore

not favorable.
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OpenAI Baseline Comparison

OpenAI’s PPO implementation was run for comparison, with default parameters except for

the network model, where we chose to use a convolutional neural network instead of a multi-

layered perceptron for a more appropriate comparison. The parameters are, by default, set

to the same parameters that they used to solve continuous control problems in the MuJoCo

environment (Table 3 from [SWD+17].) If these parameters can solve MuJoCo control problems,

it is reasonable to assume that they should also work for CarRacing-v0 as well. To summarize

the most important differences between our models and theirs: their model only runs a single

environment over 1 million frames before terminating, the horizon is T = 2048 and number of

epochs is K = 10 with minibatch size M = 64, meaning that we end up running b#steps
T
c ∗K =

b 106

2048
c ∗ 10 = 4880 epochs in total.

The training was ran to completion, and the baseline model had not started to converge yet

(about -60 score average.) 4880 epochs is admittedly a bit low compared to number of epochs

that we trained the other models in this section for, however, we would expect it to at least

achieve similar performance as our frame stack model – which at this point would get scores

that are greater than zero. There are several reasons why this might have happened. First,

we used 8 environments instead of one. This means that our agent will see much more variety

in its input and target data, leading to faster convergence. Second, the horizon is pretty big

compared to the minibatch size. The consequence of this is that the likelihood of picking

important samples – e.g. samples of when the agent is about to go off-road, or samples that

are pivotal in making an upcoming turn – is lowered. Third, the OpenAI implementation

does not scale their action means either, so we should expect its performance to be similar to

that of the non-scaled action mean frame stack model, which did not get a positive score until

about epoch 40,000. In reality, we should probably run OpenAI’s implementation with the

same hyperparameters as our experiments for at least 70,000 epochs to make more accurate

comparisons.
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