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Abstract

Freely collecting data from autonomous vehicles without anonymizing personal
information is illegal with the introduction of the General Data Protection Regu-
lation (GDPR). Therefore, to collect images to train and validate machine learn-
ing models, we are required to anonymize the data without drastically changing
the original image appearance. Despite the remarkable progress of deep learn-
ing, there exists no suitable solution to automatically anonymize faces in images
without destroying the original image.

We present DeepPrivacy ; a two-stage pipeline that automatically detects and
anonymize faces in images. We propose a novel generative model that can auto-
matically anonymize faces in images while retaining the original data distribution;
that is, our generative model generates a realistic face fitting the given situation.
We ensure total anonymization of all individuals in an image by generating im-
ages without utilizing any privacy-sensitive information. Our model is based on
a conditional generative adversarial network, generating images considering the
original pose and image background. The conditional information enables us to
generate highly realistic faces with a seamless transition between the generated
face and the existing background. Furthermore, we introduce a diverse dataset of
human faces, including unconventional poses, occluded faces, and a considerable
variability in backgrounds. Finally, we present experimental results reflecting the
ability of our model to anonymize images while preserving the data distribution,
making the data suitable for further training of deep learning models. As far as
we know, no other solution has been proposed that guarantees the anonymization
of faces while generating realistic images.
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Sammendrag

Samle data fra selvkjørende biler uten å anonymisere personlig informasjon er
ulovlig etter introduksjonen av Personvernforordningen (GDPR) i 2018. For å
samle data for å trene og validere maskinlæringsmodeller, m̊a vi anonymisere
dataen uten å endre det originale bilde betydelig. Selv med den store framgangen
i dyp læring s̊a finnes det ingen løsning som kan automatisk anonymisere fjes uten
å ødelegge bildet.

Vi presenterer DeepPrivacy ; en to-stegs modell som kan automatisk detektere og
anonymisere fjes i bilder. Vi presenterer en ny generativ modell som anonymis-
erer fjes, samtidig som vi beholder den originale data distribusjonen; det vil si,
v̊ar generative modell genererer fjes som passer den gitte situasjonen. DeepPri-
vacy er basert p̊a en betinget Generative Adversarial Network som generer bilder
basert p̊a plassering og bakgrunnen av det original fjeset. Videre introduserer
vi et diverst datasett av menneskelige fjes, som inkluderer uvanlige rotasjoner
av fjes, tildekket fjes, og en stor variasjon i bakgrunner. Til slutt, presenterer vi
eksperimentelle resultater som reflekterer evnen til DeepPrivacy til å anonymisere
fjes og beholde den originale data distribusjonen. Ettersom at de anonymiserte
bildene beholder den originale data distribusjonen, gir det oss muligheten til å
videre trene og validere maskinlærings modeller. Fra v̊ar kunnskap finnes det
ingen presentert løsning som garanterer anonymisering av bilder uten å ødelegge
den original data distribusjonen.
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Preface

In the following pages lies my master’s thesis on how deep learning can anonymize
data by generating new, unidentifiable faces. This master thesis is a part of a Msc.
in computer science at the Norwegian University of Science and Technology, and
this thesis is a part of the NTNU Autonomous Perception laboratory (NAPLab).
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generative adversarial network for face anonymization” and it is attached in the
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Glossary

AP Average Precision (AP) is a metric used for object detection, combining
precision and recall to a single metric. 8

DSFD Dual Shot Face Detection (DSFD) is a SSD-based face detection method.
8

EMA Exponential Moving Average (EMA) is a technique to remove artifacts
and improves the quality of images generated by GANs in inference. 20

EM-Distance Earth Mover’s Distance (EM-distance) is a distance measure be-
tween two probability distributions. 16

FDF Flickr Diverse Faces (FDF) is a dataset consisting of 1.3M human faces
with facial pose annotation and bounding box annotation of the face region.
5

FID Frèchet Inception Distance (FID) is a metric to evaluate the image quality
of generated images compared to the original training data. 21, 22

Frèchet Distance Frèchet Distance is a measure of similarity of two curves that
takes into account location and ordering of the points. 23

GAN Generative Adversarial Network (GAN) is a generative model that con-
sists of a generator and a discriminator which are optimized together. 2

GDPR General Data Protection Regulation (GDPR) is a regulation in EU law
on data protection and privacy for all citizens of the European Union and
Europoean Economic Area. 1
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IS Inception Score (IS) is a metric to automatically evaluate the image quality
and sample diversity of generated images.. 21

JS-divergence Jensen-Shannon divergence (JS-divergence) is a distance mea-
sure between two probability distributions. 15

K-Lipschitz A function is a K-Lipschitz function if the function is lipschitz
continuous for a real positive K. 16, 17, 52, 58

KL-divergence Kullback-Leibler divergence (KL-divergence) is a distance mea-
sure between two probability distributions. 13

Nash Equilibrium Nash Equilibrium is a proposed solution for a two-player
non-cooperative game, where each player knows the optimal strategy; in
other words, no player has anything to gain by changing their own strategy.
14, 52

non-maxiumum supression non-maximum supression is used to remove over-
lapping objec detections, making sure a single object is only identified once.
8, 32

recall Recall is a metric measuring the fration of relevant instances that have
been retrieved over the total of relevant instances for a classification task.
3, 7, 31

RPN Region Proposal Network (RPN) is a anchor-based sliding window ap-
proach to generate regions of interest, often used for object detection. 8

S3FD Single Shot Scale-invariant Face Detector (S3FD) is an SSD-inspired face
detection model using several layers to improve scale-invariant face detec-
tion. 37

SSD Single Shot Detection (SSD) is an object detection method that uses a
single shot to detect multiple objects in an image. 8

VAE Variational Autoencoder (VAE) is a generative model based on an encoder-
decoder structure to generate images. 13

WIDER-Face WIDER-Face is a face detection dataset consisting of a large
diversity of human faces with different makeups, backgrounds, poses, illu-
mination, and ethnicities.. 5, 8, 32, 39, 40, 41, 42, 43, 42, 43, 42, 44, 47,
49, 50, 57, 59, 71
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Chapter 1

Introduction

Privacy-preserving data-processing is becoming more critical every year; however,
no suitable solution has been found to anonymize images without degrading the
image quality or destroying the image. With the introduction of GDPR (General
Data Protection Regulation), a suitable solution to successfully anonymize images
is a necessity for a vast domain of applications, such as training and validation
of deep learning models for autonomous vehicles. In this master thesis, we will
evaluate a suite of possible solutions for anonymizing faces in images; yet, our
approach is a general method, suitable for other applications such as anonymizing
license plates.

1.1 Background and Motivation

The General Data Protection Regulation (GDPR) came to effect as of 25th of
May, 2018, affecting all processing of personal data across Europe. GDPR re-
quires regular consent from the individual for any use of their data, and the in-
dividual shall be able to withdraw their consent at any time. This law is difficult
to obey for companies, especially in cases of training and validation of machine
learning models. However, if the data does not allow to identify an individual,
companies are free to use the data without consent.

Anonymizing personal data is a requirement before we store and process the data
without consent. Furthermore, if we desire to train and validate deep learning
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models on the anonymized data, we require the anonymized data distribution to
be similar to the original data distribution. In the case of faces in images, we want
to replace the original face without destroying the existing data distribution; that
is: the replaced face should be a realistic face fitting the situation.

Anonymizing images while retaining the original distribution is a challenging
task. The model is required to remove all privacy-sensitive information, generate
a highly realistic face, and the transition between the original and the anonymized
parts has to be seamless. Standard tools, such as pixelation or blurring, are
inadequate since they alter the original distribution: the output is not a realistic
face. For practical use, we desire the model to be able to handle a broad diversity
of images, poses, backgrounds, and different persons. Our proposed solution can
successfully anonymize images in a large variety of cases, and create realistic faces
to the given conditional information.

The majority of open-source datasets for autonomous vehicles are collected either
in the United States or Germany. To apply models developed by the NAPLab in
a Nordic climate, we wish to validate the models on data collected from similar
environments. Collecting data for autonomous vehicles captures several privacy-
sensitive parts, such as faces, and license plates. Before utilizing this data, we
are required to anonymize it. This requirement is a challenging task to solve and
is a major motivating factor for our work.

Generative Adversarial Networks (GANs)s have the potential to solve such a
challenging task, and it has proven to be able to generate close to photo-realistic
images of human faces. The original GAN introduced by Goodfellow et al. [14]
was a proof-of-concept to model a data distribution; however, it was nowhere
near to being applied in a practical application. With the numerous contributions
since its conception, it has gone from a beautiful theoretical idea to a tool we can
apply for real-world use cases. In our work, we show that GANs are an efficient
tool to remove privacy-sensitive information without destroying the original data
distribution.
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1.2 Goals and Research Questions

The overall goal of this project is:

Goal Develop a multi-stage pipeline to detect and anonymize faces in images,
while retaining the original data distribution.

Our goal is to anonymize all faces in images without destroying the existing data
distribution; such that, it is still suitable to train and validate other machine
learning models. The first stage of the pipeline should perform bounding box
detection of faces with high recall; that is, it should be able to detect all privacy-
sensitive parts in the image. From these detections, the second stage should
generate a new face fitting the given situation, such that the transition between
generated and real parts of the image is seamless.

Research Question 1 What object detection and pose estimation methods are
suitable for this application?

Detecting privacy-sensitive information is the cornerstone of the entire frame-
work. We require a robust model that can detect faces with high recall and exact
bounding box annotations. Furthermore, the generative model might need ad-
ditional information; for example, pose information, to successfully generate a
realistic face.

Research Question 2 How can we generate a realistic human face, fitting for
a given situation?

Anonymizing faces, while retaining the original data distribution, requires a com-
plex generative model. To generate a face with a seamless transition to the orig-
inal image, the generative model has to consider the existing background and
pose of the original face.

Research Question 3 How does the proposed framework perform on real im-
ages, which are not present in the training data?

We train the final model on a dataset collected from a particular source, and
the application area of this model can be different from the training data. For
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example, we might only use images collected in traffic; in this case, how will the
model perform on anonymizing images from an airport?

Research Question 4 How can we evaluate the impact of anonymized data used
to train and validate deep learning models?

By anonymizing our dataset, we will alter the original data distribution. This al-
teration might impact the dataset substantially, making it unsuitable for training
or validation purposes. Quantifying the impact of anonymization is essential to
evaluate the quality of our generated faces, and to assess the potentially degraded
performance of a deep learning model. For example, we want to quantify how
much the performance of a face detection model is degraded in the case of using
an anonymized dataset rather than the original dataset.

1.3 Research Method

All research questions will be answered through experiments. Initially, we will
review the existing techniques to detect and generate human faces, then select a
technique to develop our model. Evaluating the result of the generated images is
a challenging task, and we will assess it both quantitatively and qualitatively. For
quantitative assessment, we will use a widely used performance metric to evaluate
the image quality of our generated images. This quantitative measurement will
give us a statistical metric of image quality, making it easy to evaluate architec-
ture choices. However, these methods contain several disadvantages and results
in an imperfect evaluation. Therefore, we present a wide range of anonymized
images to qualitatively evaluate the perceived image quality.

A suitable dataset for this task has to contain faces with a high variance in poses,
persons, and background clutter. To ensure that the model is generalizing well
to unseen images, the model will be evaluated strictly on unseen images. To
evaluate the impact of anonymization, we will evaluate our model on a different
dataset than the training dataset, collected from a different source.

To ensure the reproducibility of our results, we will release the code with all
hyperparameters for the final model. With our BMVC paper, we will release our
proposed dataset (Flickr Diverse Faces), with all pre-processing stages described
in Chapter 3. A final pre-trained model will be included with this report.
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1.4 Contributions

We propose a model, called DeepPrvacy, that detects and anonymizes faces in
images for a broad variety of applications. Our proposed model consists of an ob-
ject and a human pose estimation model to detect bounding boxes and keypoints
for the faces. This information is provided to a generative model to generate a
new, anonymized face.

In summary, the main contributions of this thesis include:

• We propose a novel GAN architecture to anonymize faces, which ensures
100% removal of privacy-sensitive information in the original image. The
generator can generate realistic looking faces that have a seamless transition
to the existing background for various sets of poses and contexts.

• We provide the Flickr Diverse Faces (FDF) dataset, including 1.3M faces
with a tight bounding box and keypoint annotation for each face. The
dataset covers a considerably larger diversity of faces compared to previous
datasets.

• We present an extensive qualitative and quantitative evaluation of the gen-
erated images and our model’s ability to retain the original data distribu-
tion. Further, we perform several ablation experiments to illustrate the
necessity of conditional pose information and a large generative model to
generate realistic images.

1.5 Thesis Structure

In the following chapter, Chapter 2, we will give a brief overview of different
object detection methods, generative models, and review closely related work.
In Chapter 3, we present our model and discuss the architecture choices. Also,
we present a new dataset, the Flickr Diverse Faces dataset. Chapter 4 presents
the results of our model on the FDF dataset and the WIDER-Face dataset. In
Chapter 5, we will discuss our research questions, limitations of our model, and
perform an in-depth analysis of the model. Finally, in Chapter 6, we will conclude
and discuss further work.
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Chapter 2

Background Theory

In this chapter, we will cover the existing solutions for object detection and human
pose estimation. Further, we will discuss several options for generative models,
discuss techniques to evaluate generated images quantitatively, and take a deep
dive into generative adversarial networks. Finally, we will review closely related
work to the task of anonymizing visual data and why the existing solutions are
inadequate to solve this challenging problem.

2.1 Object Detection and Pose Estimation

Object detection is the task of localizing and classifying objects in images. The
task is a highly researched and fast moving area. For our task, we require a fast
face detection method with high recall; that is, it is able to detect a majority of
the privacy-sensitive faces in the image. Additionally, we desire an exact pose
estimation of the face to further guide our generative model. In this section, we
will shortly cover different face detection and pose estimation systems.

2.1.1 Face Detection

The challenge of detecting faces is an area of research that is well defined, and
methods before the deep-learning era were able to solve this task well [79]. Tra-
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ditional methods rely on hand-crafted feature vectors and a simple classification
layer to generate proposals. For example, the Viola-Jones algorithm [69] can de-
tect faces at 15 Frames Per Second (FPS), while still maintaining high detection
accuracy. Recent work in this area has shifted its attention to detecting faces ”in
the wild,” including challenging scenarios with high occlusion, reflection, image
distortion, and low resolution faces, as small as 3px tall.

Current state-of-the-art face detectors can be roughly divided into two categories
[35]; methods based on Region Proposal Network (RPN) introduced in Faster
R-CNN [54]. Methods utilizing RPN are trained end-to-end and generate high-
quality bounding box proposals, which are further refined by a regression head.
The other category is Single Shot Detection (SSD) [41], which directly predicts
bounding boxes and has no refinement stage. SSD methods have remarkably
faster inference time and have recently attracted more attention.

TinyFace [22] is a RPN-based face detection model that significantly improved the
state-of-the-art on the WIDER-Face dataset. Their results reduced the error rate
on the WIDER-Face [75] ”hard” by a factor of 2 from the previous state-of-the-
art (from 29-64% Average Precision (AP) to 82%). They utilize a coarse image
pyramid of the original image at different scales, then train separate detectors
for the different scales. They merge the heatmaps from the image pyramid and
apply non-maxiumum supression to generate the final heatmap. The detector is
based on ResNet101 [20] and runs at 3.1 FPS on 720p resolution.

Since then, SSD based face extractors have become increasingly popular because
of their superior inference time [35, 48, 82]. As of May 2019, the current state-
of-the-art on both the WIDER-Face [75] and FDDB [25] datasets is the Dual
Shot Face Detection (DSFD) [35]. Examples of DSFD impressive face detection
can be seen in Figure 2.1. DSFD predicts on features extracted from several lay-
ers, similar to Feature Pyramid Networks [37]; however, they propose a feature
enhancement module that enhances the discriminability and robustness of the
features. Further, they perform slight adjustments to the loss function and im-
prove the initialization of the anchor matching strategy to enhance the regressor.
DSFD can perform inference in 22 FPS for VGA resolution on an NVIDIA P40
[35]. In comparison to the TinyFace [22] detector, TinyFace achieves 82% AP on
WIDER-Face ”hard”, while DSFD achieves 90.4%.
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Pose & Occlusion Reflection

BlurryScale Illumination

Makeup

Figure 2.1: DSFD Detection Examples: Dual Shot Face Detection (DSFD)
[35] is the current state-of-the-art face detection method. DSFD is robust to a
large variety of scales, illumination, pose, reflection, and makeup.

2.1.2 Human Pose Estimation

Human pose estimation refers to the technique of detecting human poses in images
or videos. The task is to predict a set of keypoints on the human figure placed
on the different joints through the body. Pose estimation is often coupled with
object detection and masking for improved results through multi-task learning
[19]. OpenPose, Mask R-CNN, and DensePose are highly successful frameworks
to perform both pose estimation and object detection.

OpenPose

OpenPose was the first real-time multi-person system to jointly detect a human
body, hand, facial, and foot keypoints (in total 135 keypoints) on a single frame.
The OpenPose framework consists of several techniques combined into a sin-
gle keypoint detection framework and described in several papers from Carnegie
Mellon University [10, 9, 62, 73]. The great benefit of this framework is its
bottom-up approach for keypoint detection, giving a runtime that is independent
of the number of persons in the image. The OpenPose system significantly ex-
ceeded the previous state-of-the-art on the MPII Multi-Person benchmark [4] and
placed first in the COCO [38] 2016 keypoints challenge, and they continuously
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Figure 2.2: OpenPose Predictions Left: Examples of predicted poses from
OpenPose. Right: Face keypoints that OpenPose predicts. Figure source:
https://github.com/CMU-Perceptual-Computing-Lab/openpose

develop it. Figure 2.2 shows examples from OpenPose.

The significant advance of OpenPose is its bottom-up approach for keypoint de-
tection. A common approach to keypoint detection is to employ a top-down
system, first detecting persons in the image, then based on these detections per-
form single-person pose estimation. This approach suffers from being unable to
recover in case the person detector fails, and the runtime is proportional to the
number of persons detected in the image. The OpenPose framework employs a
bottom-up approach that is separated into a two-branch pipeline that uses an
iterative procedure to refine the prediction over successive stages. They utilize a
VGG19 [63] network, specifically the first 10 layers, to generate a set of feature
maps which is then fed into the first stage of each branch. Then the prediction
is refined over t stages. By using a two-branch network, they can simultaneously
predict body parts and the association between body parts.

Mask R-CNN

Mask R-CNN [19] is a flexible and general framework for object detection and
instance segmentation. It provides a simple, yet efficient method to perform
instance segmentation and its general framework is easy to extend to other tasks,
such as human pose estimation. With this approach, they show state-of-the-art
results on all three tracks of the COCO [38] suite of challenges, including object
detection, instance segmentation, and person keypoint detection.

https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 2.3: The Mask R-CNN architecture for instance segmentation. A
deep CNN (e.g., ResNet/ResNext, VGG) extracts a set of feature maps; then
region proposals are computed by the RPN. Finally, the region proposals are
reshaped with RoIAlign and classified with outputs heads (in this case a classifi-
cation head and instance segmentation head). Figure source: He et al. [19]

The Mask R-CNN framework improves the Faster R-CNN framework [54] by
extending it to perform instance segmentation in addition to bounding box re-
gression and object classification. Their main contribution is the replacement
of the Region of Interest Pool (RoIPool) layer with a Region of Interest Align
(RoIAlign) layer. This replacement is necessary as the RoIPool layer introduces
a misalignment between the region of interest and the extracted features, which
has a substantial negative effect on pixel-accurate instance segmentation masks.

One of their experiments to prove that Mask R-CNN is a general and straight-
forward framework for several tasks, was to add a new output head to perform
human pose estimation. By modeling each keypoint on the body as a one-hot
mask, they can output K one-hot masks for K keypoints. This is a method
exploiting minimal domain knowledge, and they present marginally improved re-
sults from the COCO keypoint detection result of OpenPose. In comparison to
OpenPose, the OpenPose network is a complex multi-stage pipeline, while Mask
R-CNN is a more straightforward approach; however, the runtime of OpenPose is
independent on the number of people in the image, while the RPN makes Mask
R-CNN’s inference time dependent on the number of persons.

DensePose

DensePose-RCNN [2] is a combination of two architectures: the Dense Regres-
sion [3] system and the Mask-RCNN [19] architecture. They state the problem
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Figure 2.4: DensePose aims at mapping all human pixels of an RGB image to
the 3D surface of the human body. Left: The image and the regressed corre-
spondence in DensePose-RCNN. Middle: DensePose Coco annotations. Right:
Partitioning of the body surface. Figure Source: Güler et al. [2]

as predicting a dense correspondence between 2D RGB images and a 3D surface
based representation of the human body. They divide the human body into 25
parts, as seen in Figure 2.4, and with a regression head similar to the keypoint
head in Mask-RCNN, they predict pixel correspondence to each part. Similar
to OpenPose, they use an iterative refinement to improve performance. Further,
they exploit the benefit of multi-task learning by utilizing information from re-
lated tasks, such as keypoint estimation and instance segmentation. This results
in a model that can generate highly-accurate dense correspondences between im-
ages and the body surface in multiple frames per second. Their method operates
at 4-5 FPS for 800 × 1100 resolution, but their runtime scales linearly on the
number of persons in the image, just as Mask R-CNN.

2.2 Generative Models

Generative models is a subfield of unsupervised learning where the goal of the
model is to represent a probability distribution over multiple variables in some
way. Some generative models allow evaluating the probability distribution ex-
plicitly. Others do not allow the evaluation of the probability distribution, but
it supports operations that implicitly requires knowledge about the distribution,
such as drawing samples from it. In our task, we are interested in having a latent
vector z and the conditional information y, then sample from the probability dis-
tribution to generate our new image x; we desire to model p(x|z, y). There exist
several methods to approximate this, and the most relevant techniques are Pixel-
RNN [53], Variational Autoencoders [31], and Generative Adversarial Networks
[14].
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(a) PixelRNN starts in
a corner of an image and
generates each pixel se-
quentially.

(b) VAE consists of an encoder p(z|x) and a decoder q(x|z).
x is the original image, and z is a latent variable that is
optimized to follow a pre-defined probability distribution
(e.g. gaussian)

Figure 2.5: Illustrations of how PixelRNN and Variational Autoencoders work.

PixelRNN explicitly defines the probability distribution, generating pixels in an
image sequentially starting from the top left corner. With this definition, we can
optimize the network with gradient descent by maximizing the likelihood of data;
in practice, they perform softmax classification for each pixel into a class between
[0-255]. Example of how PixelRNN generates pixels are shown in Figure 2.5a.
The drawback of PixelRNN is its sequential nature, making training and inference
time extremely slow. PixelCNN [53] improves training time by enabling parallel
inference of pixels, but inference time is still sequential. Also, PixelRNN struggles
to model complex data distributions, and the generated images are usually blurry.

Variational Autoencoder (VAE) is built on an encoder-decoder architecture
and can be trained purely with gradient-based methods. Figure 2.5b illustrates
the basic architecture of a VAE. VAE is an elegant, simple, and theoretical pleas-
ing approach to minimize the Kullback-Leibler divergence (KL-divergence) be-
tween the original and the generated data distribution [13]. VAE explicitly defines
a probability distribution; however, due to the intractability of the function, VAE
are optimized on the variational lower bound. The main drawback of VAEs is its
tendency to generate blurry images. The causes of this are yet not known , but
this is an issue shared with generative models that optimize a log-likelihood, or
the KL-divergence [13].

Generative Adversarial Networks define an implicit probability distribution
and try to optimize the generative model as a two-player game [14]. We will
discuss GANs in detail in Section 2.3.
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Figure 2.6: Generative Adversarial Networks consist of a generator that gen-
erates samples similar to the training set and a discriminator that tries to predict
if the sample is real or fake. Figure source: https://skymind.ai/wiki/generative-
adversarial-network-gan

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [14] is a highly successful architecture
to model a natural image distribution. GANs enables us to generate new images,
often indistinguishable from the real data distribution. It has a broad diversity
of application areas, from general image generation [29, 8, 80, 30], text-to-photo
generation [81], style transfer [23, 58], and much more. With the numerous
contributions since its conception, it has gone from a beautiful theoretical idea
to a tool we can apply for practical use cases.

The basic idea of GANs is to set up a zero-sum game between two neural network
adversaries. One of the players is called the generator, G, whose main objective
is to create samples that should resemble the training data as closely as possible.
The opposing player is the discriminator, D, whose job is to examine these sam-
ples and determine whether they are real (originate from the training data) or
fakes (produced by the generator). Figure 2.6 illustrates a typical GAN setup.

Formally, the GAN objective function in its original form is given by:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.1)

where z ∈ Rd is a latent vector, with size d, drawn from a random noise distri-
bution pz (such as pz ∈ N (0, 1)), and x is a sample drawn from our real data
distribution pdata. G is the generator, and D is the discriminator, where the out-
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Figure 2.7: Mode collapse on the MNIST dataset [34]. The generator
can generate a limited diversity of samples while still being able to fool the
discriminator.

put of D is the predicted probability that the sample is real or fake, restricted by
the sigmoid function. The objective function involves finding the Nash Equilib-
rium for this two-player min-max game. The min-max game will ideally force the
generator to generate samples that look like perfect counterfeits, indistinguishable
from the original data distribution and trick D to label them as real.

Without auxiliary information, this training procedure is remarkably brittle, re-
quiring fine-tuned hyperparameters and careful architecture choices. Stable and
efficient training for GANs is still an open research area; however, several im-
provements to objective functions, architecture choices, and the overall training
process has improved GANs significantly.

Problems with original GANs

Original GANs suffered from a notoriously unstable training phase, often leading
to unrealistic or low diversity images. One of the leading causes of this is van-
ishing gradients in the generator. Arjovsky et al. [5] proves that the generator
suffers from vanishing gradients if the generated images are far from the original
data distribution. This is due to the original objective function (Equation 2.1),
which is shown to minimize the Jensen-Shannon divergence (JS-divergence) with
an optimal discriminator [14]. However, the JS-divergence flattens out in cases
when the generated data distribution is far apart from the real data distribution,
leading to vanishing gradients in the generator.

The second cause of unstable training is something known as mode collapse. Mode
collapse occurs when the generator can generate a limited diversity of samples
while still being able to fool the discriminator. Figure 2.7 shows a simple example
of mode collapse. The severity of mode collapse can vary from a complete collapse
where the generator is independent of the noise variable and generates a single
output sample, or a partial collapse where all the samples share similar features.
Mode collapse is still a significant problem for modern GANs and an actively
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researched area.

2.3.1 GAN Objective Functions

The original objective function for GANs (Equation 2.1) is challenging to optimize
without causing vanishing gradients or mode collapse. Since then, a large amount
of objective functions has been proposed: Wasserstein GAN [5, 17], Relativistic
GAN [27], Least Square GAN [44], and GAN with gradient penalties [57] are the
most popular objective functions. In the following sections, we will take a closer
look at two versions of Wasserstein GANs.

Wasserstein GANs

Arjovsky et al. [5] address several of the issues introduced by the original ob-
jective function, shown in Equation 2.1. They propose a new objective function
based on Earth Mover’s Distance (EM-Distance), indicating that EM-Distance
can converge in cases when JS-divergence cannot. They propose a GAN based on
minimizing this EM-Distance , called a Wasserstein GAN. The new Wasserstein
objective function is given by

max
w∈W

Ex∼pdata
[fw(x)]− Ez∼p(z)[fw(G(z)] (2.2)

where z ∈ Rd is a latent variable drawn from a random noise distribution pz,
and x is drawn from our real data distribution pdata. G and fw is the generator
and the discriminator, respectively. In their paper they refer to fw as the critic;
however, we will stick to the discriminator for simplicity. The discriminator is not
restricted by a sigmoid function here (fw ∈ R), but it is required that {fw}w∈W
are all K-Lipschitz functions for some K. To roughly approximate the K-Lipschitz
criteria, they ensure that the weights of the discriminator lie in a compact space
after each gradient update, also known as weight clipping.

The Wasserstein GAN solves several challenges with training GANs, especially
the problem of vanishing gradients in the generator. In cases where the gener-
ated images are far from the real data distribution, the gradient updates are still
reliable. This enables us (and is encouraged) to train the discriminator till opti-
mality [5]. The more we train the discriminator, the more reliable the gradients
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of the Wasserstein we get. Furthermore, they argue that an optimal discrimina-
tor makes it impossible for mode collapse. In practice, this doesn’t seem to be
the case. Several papers struggle with a lack of diversity (partial mode collapse)
in their generated samples, leading to additional ”tricks” to encourage sample
diversity [29].

Improved Wasserstein GAN

Arjovsky et al. [5] states that weight clipping is a terrible way to enforce the K-
Lipschitz constraint and encourage further work in this area. Gulrajani et al. [17]
proposes an alternative to clipping weights: penalize the norm of the gradient of
the discriminator with respects to its output. They illustrate that weight clipping
can lead to undesired behavior on toy datasets, and replacing it with gradient
penalty achieves state-of-the-art results on CIFAR-10 [32] and LSUN [78] (March
2017). The improved Wasserstein objective function is given by

L = Ez∼p(z)[D(pg)]− Ex∼pdata
[D(x)]︸ ︷︷ ︸

Original discriminator loss

+λEx̃∼px̂
[(||∇x̂D(x̂)||2 − 1)2]︸ ︷︷ ︸

Gradient penalty

(2.3)

where z ∈ Rd is a latent variable drawn from a random noise distribution pz,
and x is drawn from our real data distribution pdata. G and D is the genera-
tor and the discriminator, respectively. They define a sampling px̂ distribution
that samples evenly along straight lines between a pair of points from the data
distribution pdata and pg. Their proposition gives the thought behind this sam-
pling; the gradient norm is 1 almost everywhere along the straight lines between
pdata and pg. Enforcing the constraint along these lines is sufficient to enforce
the K-Lipschitz constraint on the discriminator, and the presented results are a
significant improvement.

2.3.2 Conditional GANs

In a generative adversarial network, there is no control over modes of the data
being generated; for example, it is impossible to tell our generator to generate an
image with a cat. Mirza et al. [46] proposes a novel approach to generate samples
based on auxiliary information. Instead of generating images from a random noise
variable z, we combine this latent vector with additional conditional information.
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Figure 2.8: Conditional Generative Adversarial Network. x is the original
sample, y is the conditional information and z is the latent vector. Figure source:
[46].

This information could be anything such as class labels, a base image to perform
image inpainting, or even data from other modalities to perform tasks such as
segmentation. Figure 2.8 shows a conditional GAN architecture.

In practice, converting a GAN to a conditional GAN is fairly simple. For the
method proposed by Mirza et al. [46], the only modification required is to pro-
vide the conditional information to both the generator and discriminator. Other
approaches include Auxiliary Classifier GANs (AC-Gans) [52], where the con-
ditional information is provided to the generator; however, the information is
not provided to the discriminator explicitly. The discriminator is provided the
information implicitly, by introducing an additional output head and objective
function to train the discriminator to predict the conditional information. Odena
et al. [52] shows that AC-Gans is a well-suited approach for datasets with a large
variety of conditional image class information.

2.3.3 Curriculum Learning with GANs

Curriculum learning of GANs is based on the idea that learning to complete a
task is easier to learn in steps. You can think about it as if you want to learn
how to multiply numbers, you first have to learn what addition is. Curricu-
lum learning of GANs is to learn the complex mapping from latent vectors to
high-resolution images in steps. First, you want your model to learn high-level
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Figure 2.9: Progressive growing of GANs. The training starts with a low
spatial resolution of 4x4, then they incrementally add new layers to both the
generator (G) and discriminator (D), thus increasing the spatial resolution of
the generated images. On the right is six examples generated by their model at
1024x1024. Figure source: Karras et al. [29]

structures of the image distribution, such as shape and general color. Later on,
you want the model to shift its attention to finer scale details. Several authors
explore this basic idea in different ways; Wang et al. [71] explores using multiple
discriminators at different spatial resolutions, StackGANs [81] defines a generator
and discriminator for each level in an image pyramid, and progressive growing
of GANs [29] iteratively increases the spatial resolution. The latter method has
shown impressive results on generating close to photo-realistic images of faces
and images based on the CIFAR-10 [32] dataset.

Progressive Growing GANs

Progressive growing of GANs [29] is a novel training method that improves train-
ing stability, image quality, and covergence time. The technique builds upon
the observation that a complex mapping from latent to high-resolution images is
easier to learn in steps. The method initially starts with low-resolution images
(4x4), then progressively increase the resolution by adding new layers to both the
discriminator and the generator. This incremental approach enables the train-
ing procedure first to discover the large-scale structure of the image distribution,
then shift its attention to increasingly finer scale detail. Figure 2.9 shows the
overall training architecture.
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Figure 2.10: The effect Exponential Moving Average (EMA) for GANs.
Generation for the CelebA dataset for the same two noise samples from 50k
to 200k with 10k intervals. Top two rows are generated images without EMA;
bottom two rows with EMA (β = 0.9999). Figure source: Yazici et al. [76]

Progressive training has several benefits. Early on, the generation of smaller im-
ages is significantly more stable because there are less class information and fewer
modes. By increasing the resolution incrementally, we are continuously asking
much simpler questions compared to the end goal of discovering a mapping from
latent vectors to high-resolution images. An additional benefit of this approach
is reduced training time. With a progressive training approach, we perform the
majority of gradient steps at a lower resolution. The author states that images
of comparable quality are obtained up to 2-6 times quicker, compared to training
solely on the target resolution.

2.3.4 The Unusual Effectiveness of Averaging in GANs

Exponential Moving Average (EMA) of the generator is a technique that has
shown to be successful in removing artifacts and improving image quality for
GANs. EMA has a copy of the generator parameters that are updated after each
training iteration with the following equation:

θ
(t)
EMA = βθ

(t−1)
EMA + (1− β)θ(t), (2.4)

where θ
(t)
EMA is the parameters of the moving average of the generator at time step

t, and θ(t) is the parameters of the generator at time step t. β is a scalar we have
to set between 0 and 1 (often β = 0.999). Note that the moving average of the
generator is newer used for a training step, and is only updated by Equation (2.4).

EMA has seen a wide adoption recently [29, 30, 8, 40], and it generally improves
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image quality. Yazici et al. [76] does a large scale study of the technique and
presents results indicating that EMA improves image quality on various datasets,
network architectures, and GAN objectives. Figure 2.10 shows the effect of EMA
on the CelebA dataset. Notice, the top row has several artifacts and a substan-
tially worse image quality compared to the bottom row with EMA .

2.4 Evaluation Metrics for Generative Models

Overall image quality is a subjective measurement, but having a quantitative
metric to evaluate a generative model is a vital requirement to drive algorithm
research. Evaluating synthetic images from a generative model is a difficult chal-
lenge, and currently, we have no optimal measurement for image quality. To
assess a generative model, we desire two properties: First, it should generate
high-quality images that are indistinguishable from our original dataset. Sec-
ondly, the generative model should be able to sample from a large part of the
training distribution; in other words, there is a broad diversity in the generated
images. In recent years, a variety of metrics have been used to evaluate image
quality and diversity; Multi-Scale Structural Similarity [72], Multi-Scale Statis-
tical Similarity [29], Inception Score (IS) [60], and Frèchet Inception Distance
(FID) [21]. In the following sections, we will take a closer look at IS and FID.
Also, we will review the recent advances in the area; precision and recall for
generative models.

2.4.1 Inception Score

Inception Score (IS) [60] is a method to automatically evaluate both the image
quality and the sample diversity of generated images. The metric has become a
popular evaluation technique due to its property of correlating well with human
evaluation. For an image x and a predicted image class y, IS evaluates two
properties:

1. Images that contain meaningful objects should have a conditional label
distribution p(y|x) with low entropy. In other words, the inception network
should be highly confident that there is a single object in the image.

2. The generative model should output a high diversity of images from all the
different classes in ImageNet: p(y) should be high for all classes y.
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IS applies a pre-trained Inception Network v3 [66] to every generated image to
get the conditional label distribution p(y|x), and calculates the statistics of the
network’s output. Formally the equation of the IS is given by:

IS(G) = exp(Ex∼pg KL(p(y|x) || p(y))), (2.5)

whereKL is the KL-divergence between two distributions, and p(y) =
∫
x
p(y|x)pg(x)

is the marginal class distribution. x is the generated image and y is the predicted
class probabilities of the inception network. In practice, a high IS indicates that
the generated images clearly contain a single object, and the images contain a
large variety of different object classes. A small IS indicates that the generated
images contains very few unique object classes, and the images do not clearly
include a single object class.

IS is widely used; however, it has several issues:

1. Intra-class mode collapse: IS is insensitive to intra-class mode collapse.
If the generative model suffers from a mode collapse for each class, meaning
that it only generates one image per class, it would give p(y) a uniform
distribution, and p(y|x) would not be affected, giving us a high inception
score.

2. Sensitivity to weight: IS depends on the parameters of the Inception
network. Salimans et al. [60] show that the IS mean can vary with as much
as 11% depending on the deep learning framework (Tensorflow vs. Keras
vs. Torch).

3. Usage beyond ImageNet: The inception network is pre-trained on the
ImageNet dataset; however, it is frequently applied to other datasets. The
usage beyond ImageNet can give misleading IS.

4. Overfitting of generator: A generative model that memorizes a subset
of the training data, would perform exceptionally well in terms of IS [6].

5. Score calculation: The final score calculation is dependent on the number
of batches the generated images are split into [6]. IS is an average of the
KL-divergence over a sequence of batches, which is an approximation of the
exact IS.

6. IS does not look at the real data distribution. IS is based on statistics
calculated from the generated images, giving us no information if the images
are realistic in comparison to the original training images.
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2.4.2 Frèchet Inception Distance

Frèchet Inception Distance (FID) [21] is an alternative approach to IS, solving
some of the issues with the previous metric. FID includes the original data dis-
tribution in its evaluation, it can detect intra-class mode dropping, it is shown to
be more robust to noise than IS, and results show a negative correlation between
FID and visual quality of the generated images.

To quantify the quality of generated images, FID first embeds images into a
feature space given by a layer of the Inception Net. Then, viewing the embedding
as a multivariate Gaussian, the mean and covariance are estimated for both the
generated data and the real data. Frèchet Distance is then calculated between
these two Gaussians. Formally, FID is given by:

FID(x, g) = ||µx − µg||+ Tr(Σx + Σg − 2(ΣxΣg)
1
2 ), (2.6)

where (µx,Σx) and (µg,Σg) are the mean and covariance of the sample embed-
dings from the data distribution and model distribution, respectfully. Tr is the
sum of the diagonal. Lucic et al. [43] provides a thorough empirical analysis of the
FID metric, and they show results arguing for FIDs ability to detect intra-class
mode dropping.

FID has proven to be an essential metric to evaluate image quality and diversity
in images. However, it still suffers from several of the disadvantages present in the
IS. The FID is sensitive to weights, it assumes an Inception Network pre-trained
on ImageNet, and it is unable to detect overfitting of the generator.

2.4.3 Precision and Recall for Image Quality

IS and FID group two separate goals (image quality and diversity) in a single
score without a clear trade-off. For example, a low FID may indicate realistic
images with a large amount of variation, or anything between. Recently, Sajjadi
et al. [59] proposed a metric that expresses the quality of generated samples
using two separate metrics: precision and recall. Precision corresponds to the
average sample quality, while recall corresponds to the coverage of the training
distribution. This separation gives us the ability to evaluate the generated images
and selectively choose a model with larger diversity or better image quality.

Kynkäänniemi et al. [33] proposes an alternative formulation to measure preci-
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Figure 2.11: Comparison of precision-recall metric and FID for different
StyleGAN [30] setups (lower FID is better). Black dots show Kynkäänniemi et
al. [33] precision and recall, and red triangles denote Sajjadi et al. ’s [59] method.
We recommend zooming in to better assess the quality of images. Figure source:
Kynkäänniemi et al. [33].

sion and recall for generated images. They present their results on state-of-the-
art GANs for ImageNet [8] and human face generation [30]. Figure 2.11 shows
a precision-recall curve along with FID values. The precision-recall curve shows
clear correlation between precision and image quality, and recall and image diver-
sity. Also, note that Sajjadi et al.’s method tends to give over-optimistic results,
and it cannot correctly interpret situations where a large number of generated
samples are packed together.

2.5 Mixed Precision Training

To utilize tensor cores on NVIDIA GPUs, we need to satisfy a set of requirements:
the batch size and convolutional kernel have to be divisible by 8, and the floating
point operation has to be done in 8 or 16 bit. The first requirement is rather
simple to achieve. However, training a neural network with floating point 16
precision (FP16) or lower, the final results are often degraded in comparison to
FP32. Micikevicius et al. [45] proposes a method called mixed precision training,
where they try to do all possible computations in FP16 where it is safe and FP32
otherwise. Micikevicius et al. presents a range of experiments on a diversity of
classification and object detection datasets with state-of-the-art models. With
mixed precision training, they report comparable results to fp32 training with
2− 6x speedup with a significant reduction in GPU memory usage.
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Figure 2.12: The effect of static loss scaling for mixed precision training. Scaling
the loss with a static loss scale reduces overflow in gradient computations, making
the loss converge. The loss graph is an LSTM trained for language modeling.
Figure source: Micikevicius et al. [45]

Miciekvicius et al. introduces three techniques to make mixed precision training
possible: maintaining a master copy of weights in fp32, loss-scaling that prevents
underflow in gradients (gradients becoming 0), and fp16 arithmetic with accu-
mulation in fp32. Figure 2.12 shows the effect of a static loss scale for training
an LSTM for language modeling. Since then, empirical experiments have shown
other useful techniques to improve mixed precision training. For example, the
APEX framework [51] recommends performing batch normalization and other
precision-sensitive computations in fp32, and they recommend a dynamic loss
scale instead of a static scale.
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Figure 2.13: K-Same face de-identification. K-same family of algorithms
finds the k most similar images, then anonymize the image by taking the average
of the k-same images. Figure Source: Gross et al. [15]

2.6 Related Work

There exists a limited number of research studies on the task of removing privacy-
sensitive information from an image. Typically, the approach chosen is to alter the
original image such that we remove all the privacy-sensitive information. These
algorithms can be applied to all images; however, we have no assurance that we
remove the privacy-sensitive information. Naive methods that use simple image
distortion have been discussed numerous times in literature [7, 49, 15, 50, 16],
such as pixelation and blurring. Simple image distortion methods are inadequate
for removing the privacy-sensitive information [16, 49, 50], and they alter the
data distribution substantially.

K-Same Family of Algorithms

The K-same family of algorithms [50, 28, 16] implements the k-anonymity algo-
rithm [65] for face images. The basic idea behind the K-same methods is to find
similar faces to the original face, then anonymize the original face by replacing
it with the average of the similar images. Figure 2.13 shows faces anonymized
by a K-same method. Newton et al. [50] proves that the k-same algorithm can
remove all privacy-sensitive information; but, the resulting images often contain
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”ghosting” artifacts due to small alignment errors [16].

Jourabloo et al. [28] extends the k-same algorithm for face de-identification of
grayscale images to preserve a set of facial attributes, such as ethnicity, pose,
age, and gender. This is different from our work, as we do not directly train
our generative model to generate faces with similar attributes to the original
image. In contrast, our model performs complex semantic reasoning to generate
a face that is coherent with the overall context information given to the network,
yielding a realistic face given the context.

GANs for Face Anonymization

Ren et al. [55] proposes a method that anonymizes faces in videos. They use a
GAN that tries to alter a face to remove all privacy-sensitive information. Their
results are impressive in both the image and video domain; however, they base
the generated face on the original face, and they do not discuss if their method
removes all privacy-sensitive information.

Further, the transition between generated parts and original parts of the images
are visible in several of their examples, which is undesirable. In contrast to their
method, we can ensure the removal of all privacy-sensitive information, as our
generative model never observes the original face.

Image Inpainting

Image Inpainting is a closely related task to what we are trying to solve, and it is
a widely researched area for generative models [39, 26, 36, 77]. Several research
studies have looked at the task of face completion with a generative adversarial
network [36, 77]. They mask a specific part of the face and try to complete this
part with the conditional information given. Figure 2.14 shows two examples of
this. From our knowledge, and the qualitative experiments they present in their
papers, they are not able to mask a large enough part to remove all privacy-
sensitive information. As the masked region grows, it requires a more advanced
generative model that understands complex semantic reasoning, making the task
considerably harder. In comparison to these methods, we expect a rectangular
shaped mask to identify the area we want to inpaint. Also, we use a more complex
dataset than the typical CelebA dataset [42].
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(a) (b)

Figure 2.14: Image inpainting of faces. In each row from left to right: (a)
masked input. (b) face completeion result. Figure source: Li et al. [36]

DeepFakes

The subject of DeepFakes has gotten a lot of attention in the last years in the
media. The Face2Face [67] method was a groundbreaking result in this area,
presenting a model that was able to portray a person speaking. Given a source
video of a person speaking and a target video of the person we desire to portray,
they were able to re-enact the person’s lip movement photo-realistically. Further
work on re-enacting lip movement to sync up to audio has given us videos that
are unidentifiable to be a generated or fake video sequence. Suwajanakorn et
al. [64] simplifies the task, by generating the lip movement directly from the
audio and applying this to the target video. The result of this is truly remark-
able and indistinguishable from the original video 1. These results have inspired
communities to develop algorithms to swap out a persons face in a video.

Face-swap [1] is a community-driven method for swapping faces between videos,
and it has attracted a lot of attention the recent year for their impressive results.
They can generate a video with swapped faces with a seamless transition between
the generated parts of the image and the original image2. The original model is
a shallow autoencoder optimized on the L1 loss and further models have been
implemented based on GANs and VAE. The base input is a sequence of images
from the source face, the target image, and the facial pose of the target image.

1Synthesizing audio video example: https://youtu.be/9Yq67CjDqvw
2Face-swap example video: https://youtu.be/r1jng79a5xc

https://youtu.be/9Yq67CjDqvw
https://youtu.be/r1jng79a5xc


Background Theory 29

The downside of using the face-swap method is its dependency on robust annota-
tions of the pose of the face. Also, the method base the generation on the original
target image, giving us no assurance that the resulting face is anonymized or not.
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Chapter 3

Method

In this chapter, we introduce our architecture and discuss the design choices
behind them. Then, we will introduce a new dataset, the FDF Dataset.

3.1 Architecture Overview

Our proposed architecture, DeepPrivacy, consists of two separate stages. The
first stage is responsible to detect all privacy-sensitive regions in the image and
estimate the pose of the individual. The second stage is a generative model
responsible for generating a new anonymized face. To handle irregular poses, we
use the pose of the face as conditional information to guide the model.

3.1.1 Face Detection and Pose Estimation

Face detection and pose estimation is the cornerstone of our proposed architec-
ture. For face detection, we require a model that is able to detect all privacy-
sensitive faces (has high recall), and for pose estimation, we need an exact pose
annotation. The focus of this thesis is on developing a generative model; there-
fore, we reviewed the current models for face detection and pose estimation that
are available open-source. We chose models with simple-to-use implementation
and state-of-the-art performance on the selected tasks. Further development or
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Face Detection

Pose Estimation

Generative Model

Figure 3.1: Overview of the DeepPrivacy architecture. Initially, the face
is detected with S3FD [82] and pose estimation is done with Mask R-CNN [19].
The bounding box and pose of the face are given as conditional information to
the generator, which generates an anonymized face for each person.

training of these models are outside of the scope for this thesis.

Face Detection is done with DSFD [35]. DSFD achieves state-of-the-art results
on the WIDER-Face dataset. The model uses a ResNet-152 backend, and achieves
90.4% AP on the WIDER-Face dataset. For inference on a single image, we
predict bounding boxes for the original image, a horizontally flipped image, and
for two different image scales (50% and 150% of original size). We apply non-
maxiumum supression to these predictions, and we filter with a bounding box
confidence threshold of 0.3.

The DSFD authors claim that their model can achieve 22 FPS with a ResNet-50
backbone on an NVIDIA P40 GPU during inference. However, their officially
released model is a ResNet-152 and they report no inference time for this model.
In practice, we experience about 3-4 FPS (including all flipping/scaling predic-
tions) with an NVIDIA V100-32GB. These numbers should be taken with a grain
of salt, as we do no pipeline optimization.

Pose estimation is done with a Mask R-CNN [19] using three output branches;
segmentation, object detection, and keypoint estimation. The Detectron reposi-
tory [12] contains several Mask R-CNN models with different feature extractors,
where all models are trained on the COCO dataset. We chose the feature extrac-
tor with the highest AP for keypoint estimation. This model has a ResNeXt [74]
backbone with 101 layers utilizing feature pyramid networks [37]. This model
achieves 67.0% AP for pose estimation on the Coco minival 2014 dataset. The
inference time is approximately 0.394s per image.
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Matching of keypoints and face detections

To match each keypoint with a corresponding bounding box we use a greedy
approach. We assume that each keypoint has a single unique bounding box match
and vice versa. We sort both bounding boxes and keypoints based on descending
prediction confidence, then iterate through them sequentially. For each potential
match, we check if the nose and eye keypoint is within the bounding box of the
face; if this is the case, we register it as a match. We disregard any bounding
box or keypoint without a match. Algorithm 1 shows the pseudocode for our
matching strategy.

Algorithm 1 Algorithm to match keypoints and bounding box predictions.

1: procedure MatchAnnotations(keypoints, bounding boxes)
2: sort bounding boxes descending on prediction confidence
3: sort keypoints descending on prediction confidence
4: matches← [] . Initialize matches to an empty list
5: for bbox in bounding boxes do
6: for kp in keypoints do
7: if kp in bbox then
8: matches add match(bbox, kp)
9: mark bbox as matched

10: mark kp as matched

11: return matches

3.2 Generative Model

Our proposed generative model is a conditional GAN, generating images based on
the surroundings of the face and sparse pose information. We ground our model
on the model proposed by Karras et al. [29]. Their model is a non-conditional
GAN and we perform several alterations to include conditional information. Fig-
ure 3.2 shows the overall architecture of our GAN. We use the surrounding back-
ground and pose of the face as conditional information, which is given to both
the discriminator and generator.

We use seven facial landmarks to describe the pose of the face, including the
following keypoints: left/right eye, left/right ear, left/right shoulder, and nose.
To reduce the number of parameters in the network, we pre-process the pose
information into a one-hot encoded image of size K ×M ×M , where K is the
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Figure 3.2: Our GAN architecture. We use a conditional generative model,
where information about the surrounding and pose of the face is given to both
the generator and discriminator.

number of landmarks and M is the target resolution.

Progressive growing training technique improves the final image quality and over-
all training time, and it’s crucial for our model’s success. We apply progressive
growing to both the generator and discriminator to grow the networks from a
starting resolution of 8. We double the resolution each time we expand our net-
work until we reach the final resolution of 128× 128. To include the pose infor-
mation through the whole training period, we decided to include this information
for each resolution for both the discriminator and generator.

3.2.1 Generator Architecture

Figure 3.3 shows our proposed generator architecture for 128 × 128 resolution.
Our generator uses U-net [56] architecture to include background information,
similar to the generator proposed by Isola et al. [24]. The encoder and decoder
have the same number of filters in each convolution, but the decoder has an ad-
ditional 1× 1 bottleneck convolution after each skip connection. This bottleneck
design reduces the number of parameters in the decoder significantly. To include
the pose information for each resolution, we concatenate the output after each
upsampling layer with pose information and the corresponding skip connection.
The general layer structure is identical to Karras et al. [29], where we use pixel
replication for upsampling, pixel normalization, and LeakyReLU after each con-
volution, and equalized learning rate instead of careful weight initialization. In
total, the generator has 46.9M parameters.

Progressive growing: Each time we increase the resolution of the generator,
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Figure 3.3: Our generator architecture for 128x128 resolution. Each convo-
lutional layer is followed by pixel normalization [29] and LeakyReLU(α = 0.2).
After each upsampling layer, we concatenate the upsampled output with pose
information and the corresponding skip connection.

we add two 3× 3 convolutions to the start of the encoder and to the end of the
decoder. We use a transition phase identical to Karras et al. [29] for both of these
new blocks, making the network stable throughout the training. We note that
the network is still unstable during the transition phase, but it is significantly
better compared to training without progressive growing.

3.2.2 Discriminator Architecture

Our proposed discriminator architecture is identical to the one proposed by Kar-
ras et al. [29], with a few exceptions. First, we include the background informa-
tion as conditional input to the start of the discriminator, making the input image
have six channels instead of three (2xRGB). Secondly, we include pose informa-
tion at each resolution of the discriminator. The pose information is concatenated
with the output of each downsampling layer, similarly to the decoder in the gen-
erator. Finally, we remove the mini-batch standard deviation layer presented by
Karras et al. [29], as we find the diversity of our generated faces satisfactory.
Otherwise, our discriminator uses the same structure in all layers. Table 6.1 in
Appendix A includes a detailed description of the discriminator architecture.

The adjustments made to the generator doubles the number of total parameters
in the network. To follow the design lines of Karras et al. [29], we desire that the
complexity in terms of the number of parameters to be similar for the discrimina-
tor and generator. We evaluate two different discriminator models, which we will
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name the deep discriminator and the wide discriminator. The deep discrimina-
tor doubles the number of convolutional layers for each resolution. To mimic the
skip-connections in the generator, we wrap the convolutions for each resolution in
residual blocks. The wider discriminator keeps the same architecture; however,
we increase the number of filters in each convolutional layer by a factor of

√
2.

For example, for a convolutional block with initially 512 filters, we use 724 filters
instead. In total, the wide discriminator has 45.6M parameters, and the deep
discriminator has 44.7M parameters.

3.3 Mixed Precision Training for GANs

Training a generative adversarial network with mixed precision without degrading
the final results is complicated. GANs include several different loss functions, all
with varying loss scales. The variety of loss scales makes it almost impossible
to have a single loss scaling factor for mixed precision without impacting the
convergence of our model. Therefore, we decide to use a unique loss scaling
factor for each loss. Also, the gradient penalty term in the Wasserstein loss
(Equation 2.3) includes the computation of second derivatives, which is hard
to perform in fp16. Therefore, we scale the logits of the discriminator before
computing the first derivative. From this, we can calculate the gradients (and the
second derivative of the gradient penalty term) without impacting convergence.

For our GAN, we utilize mixed precision training with Pytorch and the Apex
framework [51]. From experiments, we observe no difference in convergence or
final results, and we observe a 220% speedup in comparison to pure fp32 training.
Also, we notice a significant reduction in GPU memory usage, allowing us to
increase the batch size by approximately 50%.

3.4 Flickr Diverse Faces Dataset

FDF (Flickr Diverse Faces) is a new dataset of human faces, crawled from the
YFCC-100M dataset [68]. It consists of 1.3M human faces with a minimum res-
olution of 128x128, containing facial landmarks and a bounding box annotation
for each face. The dataset has a vast diversity in terms of age, ethnicity, facial
pose, image background, and face occlusion. The dataset was mainly extracted
from scenes related to traffic, sports events, and outside activities. In comparison
to the FFHQ dataset [30], our dataset is largely more diverse in facial poses, and
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Figure 3.4: The FDF dataset. Each image has a sparse keypoint annotation (7
keypoints) of the face and a tight bounding box annotation. We recommend the
reader to zoom in.

it is generally much larger; however, the FFHQ dataset has a higher resolution.
Figure 3.4 shows a randomly picked set of samples from the FDF dataset with
keypoint and bounding box annotation.

The FDF dataset is a high-quality dataset with few annotation errors. The faces
are automatically labeled with state-of-the-art keypoint and bounding box mod-
els, and we use a high confidence threshold for both the keypoint and bounding
box predictions. The faces are extracted from 964, 099 images in the YFCC100-
M dataset. For keypoint estimation, we use Mask R-CNN [19], with a ResNet-
50 FPN backbone [37]. For bounding box annotation, we use the Single Shot
Scale-invariant Face Detector (S3FD) [82]. Keypoints and bounding boxes are
thresholded and matched together with the same approach as explained in Sec-
tion 3.1.1. Due to the large number of images we want to annotate, we used
different face detection and pose estimation models from what presented in Sec-
tion 3.1.1 to improve inference time. Mask R-CNN with ResNet-50 (in compari-
son to a ResNeXt-101 backbone) improves GPU inference time by approximately
330% (322ms vs. 97ms) while maintaining a high AP on keypoint prediction
(64.2% vs. 66.8% AP). S3FD can perform inference at about 36 images per sec-
ond according to the authors; however, we observe about 5-7 FPS. S3FD degrades
results somewhat in comparison to DSFD (84% vs. 90% AP), but the model is
sufficient for our purpose.
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Chapter 4

Experiments and Results

In this section, we will present our experiments and results. First, we will describe
our experimental plan and experimental setup. Then, we will present our results
analyzing the impact of anonymization on the WIDER-Face dataset. Finally, we
present ablation experiments on the FDF dataset.

4.1 Experimental Plan

The goal of this thesis is to anonymize faces in images by replacing the face
with a realistic face fitting the given situation. As previously discussed, eval-
uating a generative model with quantitative metrics is extremely hard, and it
is a subjective task. Therefore, to evaluate our proposed model, we will per-
form several qualitative and quantitative experiments. First, we will perform a
qualitative evaluation of the proposed model to assess the generated faces and
how they fit the given conditional information. For quantitative assessment, we
will anonymize the WIDER-Face validation set and evaluate the performance of
a face detector on the anonymized dataset. This experiment will indicate how
our proposed model performs on a large scale and how well our proposed model
retains the original data distribution. Finally, we perform a variety of ablation
experiments to discuss the architecture choices behind our model. The ablation
experiments will be evaluated quantitatively with FID. All the presented results
will be done on the validation set of FDF (consisting of 50K images), or other
data not used for training. By using no training data for evaluation, we can
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ensure that our model generalizes to unseen images.

4.2 Experimental Setup

In this section, we will describe details about our data pre-processing pipeline,
and the hyperparameters used for our final model. For further details, please
revise the source code attached 1 with this thesis.

4.2.1 Dataset

FDF dataset is the foundation of our experiments. The FDF dataset is used
for training and validating our generative model. The dataset is described in
detail in Section 3.4. We split the dataset into a validation set of 50K images
and a training set of 1.283M images. The FDF dataset will be publicly released
with our BMVC paper. If required, contact me (hakon.hukkelas@ntnu.no) or my
supervisor Frank Lindseth (frankl@ntnu.no) to get early access to the dataset 2.

We use the WIDER-Face [75] validation dataset to evaluate our model’s ability
to retain the original data distribution. The dataset has a high degree of vari-
ability in scale, pose, and occlusion. The WIDER-Face validation set is split into
three different challenges: easy, medium, and hard based on the detection rate
of EdgeBox [83]. The validation set consists of 3,220 images, with an average of
1.22 faces per image. Note, our generative model is never trained on any samples
in the WIDER-Face dataset.

4.2.2 Training Details

The initial hyperparameters are based on results from Karras et al. [29], and we
have used minimal time for hyperparameter tuning. We use the following batch
size for the given resolutions: 8× 8 : 256, 16× 16 : 256, 32× 32 : 128, 64× 64 :
72, and 128× 128 : 48. We use Adam Optimizer with a learning rate of 0.00175
and β1 = 0, β2 = 0.999. For each expansion of our network, we use a transition
and stabilization face of 1.2M images each. We use EMA for the weights of the

1The code with this thesis can be downloaded from: Google Drive
2The FDF dataset will be released on Github: github.com/hukkelas/FDF

https://drive.google.com/file/d/19deBHoQwrskvpQHn5qNorFKAdsWI35WP/view?usp=sharing
https://github.com/hukkelas/FDF
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generator with a decay of 0.999. Our final model is trained for 18 days on two
NVIDIA V100-32GB GPUs.

To expand our training dataset, we use simple data-augmentation techniques.
All images are scaled to the range of (-1,1), and for the training dataset we use
two random data augmentation methods; horizontal flip of the images, and 2%
random shift of the face bounding box width and height.

Tensor Core Modifications

To utilize tensor cores in NVIDIA’s new Volta architecture, we do several mod-
ifications to our network, following the requirements of tensor cores. First, we
ensure that each convolutional block uses a number of filters that are divisible
by 8. Secondly, we make certain that the batch size for each GPU is divisible
by 8. Further, we use automatic mixed precision for Pytorch [51] to significantly
improve our training time. We see an improvement of 220% in terms of training
speed with mixed precision training.

4.2.3 Evaluation Details

For evaluations done on the FDF dataset, we use a validation set of 50K images
for final assessment. FID is calculated using the official FID implementation by
Heusel et al. [21]. The FDF dataset consists of images containing a single face,
but several of these faces can come from the same original image. Therefore, we
ensure that the validation set of FDF does not include faces that come from the
same image as a face in the training set.

For the WIDER-Face dataset, we use the validation set for all three challenges:
easy, medium and, hard. As the WIDER-Face dataset has bounding box annota-
tions for each face, we do not need to use the face detection stage in our pipeline.
The WIDER-Face dataset has no facial landmark annotation; therefore, we use
Mask R-CNN to predict the keypoints. To match the landmarks with the an-
notated bounding boxes, we use the same greedy approach as described in Sec-
tion 3.1.1. Mask R-CNN is not able to detect keypoints for all faces, especially in
cases with high occlusion, low resolution, or faces turned away from the camera.
Thus, we are only able to anonymize 43% of the bounding boxes in the validation
set. Of the faces that are not anonymized, 22% are partially occluded, and 30%
are heavily occluded. For the remaining non-anonymized faces, 70% has a reso-
lution smaller than 14x14. Note, for each experiment in Table 4.1, we anonymize
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Figure 4.1: DeepPrivacy results on a diverse set of images. The left image
is the original image annotated with the bounding box and keypoints, the mid-
dle image is the input image to our generative model, and the right image is
the generated image. Note that our generator never sees any privacy-sensitive
information.

Figure 4.2: Anonymized images from DeepPrivacy. Every single face in the
images is generated. We recommend the reader to zoom in on the pictures.

the same bounding boxes.

4.3 Experimental Results

In this section, we present and briefly discuss the results of our proposed model.
We perform experiments on the FDF dataset and the WIDER-Face dataset. Fig-
ure 4.1 shows the original image, the conditional information, and the generated
image of DeepPrivacy. Figure 4.2 shows DeepPrivacy on images with several
challenges, such as high occlusion and irregular poses. More results can be seen
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Anonymization method Easy Medium Hard
No Anonymization 96.6% 95.7% 90.4%
Blacked out 20.6% 29.4% 44.2%
Pixelation (16x16) 95.2% 94.2% 89.9%
Pixelation (8x8) 91.0% 91.8% 88.6%
9x9 Gaussian Blur (σ = 3) 95.1% 92.2% 82.4%
Heavy Blur (filter size = 30% face width) 82.8% 85.5% 85.5%
DeepPrivacy (Ours) 95.4% 94.4% 89.6%

Table 4.1: Face detection AP on the WIDER Face [75] validation
dataset. The face detection method used is DSFD [35], the current state-of-
the-art on WIDER-Face.

Figure 4.3: Different anonymization methods on a face in the WIDER Face
validation set.

in Figure 6.1. Also, the fully anonymized WIDER-Face validation set is uploaded
to Google Drive 3.

4.3.1 Effect of Anonymization for Face Detection

To evaluate the impact of anonymization, we anonymize the WIDER-Face [75]
validation set. We evaluate the AP of a face detection method on the anonymized
dataset and compare the results to the original dataset. We report the standard
metrics for the different difficulties for the WIDER-Face dataset. Table 4.1 shows
the AP of different anonymization techniques. In comparison to the original
dataset, DeepPrivacy only degrades the AP by 1.2%, 1.3%, and 0.9% on the
easy, medium, and hard difficulties, respectively.

We compare DeepPrivacy anonymization to simpler anonymization methods;

3The anonymized WIDER-Face validation dataset can be seen on Google Drive. Note that
each anonymized face is annotated with a blue bounding box.

https://drive.google.com/open?id=10mTPkPKtK0BuAl3DdivTxESo9DyZYvZi
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Model FID
With Pose 2.63

Without Pose 4.80

(a) Result of using
conditional pose.

Discriminator FID
Deep Discriminator 5.04
Wide Discriminator 2.63

(b) Result of the deep and wide
discriminator.

#parameters FID
12M 2.63
46M 1.53

(c) Result of different
model sizes.

Table 4.2: Ablation experiments on our architecture. We report the frèchet
inception distance after showing the discriminator 23.4M images (lower is better).
For results in Table 4.2a and Table 4.2b, we use a model size of 12M parameters
for both the generator and discriminator.

black-out, pixelation, and blurring. Figure 4.3 illustrates the different anonymiza-
tion methods. DeepPrivacy generally achieves a significant higher AP compared
to all other methods, except for 16x16 pixelation. 8x8 pixelation suffers signifi-
cantly in terms of AP. We want to repeat that pixelation and blurring are shown
to be insufficient anonymization methods, unable to remove all privacy-sensitive
information [16, 49, 50].

WIDER-Face ”hard” of the validation dataset consists of considerably small faces.
For the ”easy” challenge, only 43% has a resolution larger than 16 × 16, and
81.4% has a resolution larger than 8×8. For the ”medium” challenge, 29.9% has
a resolution larger than 16 × 16, and 77.0% has a resolution larger than 8 × 8
For the ”hard” challenge, 0% has a resolution larger than 16 × 16, and 23.5%
has a resolution larger than 8 × 8. For any resolution lower than 16x16, 16x16
pixelation has no effect. The observant reader might notice that for the ”hard”
challenge, 16x16 pixelation should have no effect; however, the AP is degraded
in comparison to the original dataset (see Table 4.1). The only explanation for
this behaviour is that pixelating different faces, not present in the ”hard” set,
has an effect on detecting faces in the ”hard” set (Note that ”easy” and ”hard”
faces can be present in the same image).

4.3.2 Ablation experiments

We perform several ablation experiments to evaluate our architecture choices. We
report the average Frèchet Inception Distance between the original image and the
anonymized image for each experiment. We calculate FID from a validation set
of 50, 000 faces from the FDF dataset. Table 4.2 shows the results of our ablation
experiments and we discuss it in detail next. Note, our final model is trained for
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42M images and converges to an FID of 1.08.

Effect of pose information: Face poses provided as conditional information
improves our model significantly, as seen in Table 4.2a. The FDF dataset has a
large variance of faces in all different poses, and we find it necessary to include
sparse pose information to generate realistic faces. In contrast, when trained on
the CelebA dataset, our model completely ignores the given pose information.

Discriminator Architecture: Table 4.2b compares the quality of images for a
deep and wide discriminator. With a deeper network, the discriminator struggles
to converge, leading to poor results. We use no normalization layers in neither of
these networks, causing deeper networks to suffer from exploding forward passes
and vanishing gradients. Even though, Brock et al. [8] also observes that a deeper
network architecture degrades the overall image quality. Also, we experimented
with a discriminator with no modifications to the number of parameters, but this
was not able to generate realistic faces.

Model size: We empirically observe that increasing the number of filters in
each convolution improves image quality drastically. As seen in Table 4.2c, we
train two different models with 12M and 46M parameters. Unquestionably,
increasing the number of parameters generally enhances image quality. For both
experiments, we use the same hyperparameters; the only thing changed is the
number of filters in each convolution.

We further experimented with a model with 160M parameters. We had to reduce
the batch size significantly, and we were unable to converge it to an image size of
128× 128, due to computational limitations. The preliminary results on 64× 64
resolution were slightly worse than our model with 46M parameters, probably
due to the reduced batch size.
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Chapter 5

Discussion

In this chapter, we will discuss the results presented with a focus on our research
questions. Then, we will review the limitations of our framework and perform
in-depth analysis of our generative model.

5.1 Evaluation

In this section, we will review the research questions presented in Section 1.2 and
conclude our findings.

RQ1: What object detection and pose estimation methods are suitable
for this application?

Our object detection method is the cornerstone of our model, and the choice of
this method is highly dependent on the generative model. We chose DSFD for
face detection and Mask R-CNN for pose estimation.

The choice of DSFD [35] for face detection is the perfect balance between per-
formance and inference time. DSFD is state-of-the-art on a wide range of face
detection datasets and uses an SSD based approach which improves inference time
significantly in comparison to region proposal networks (e.g: TinyFace [22]).
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We found Mask R-CNN to be the best-suited model for pose estimation in our
case. The vast open-source resources enable us to choose between inference time
and keypoint detection performance by changing the CNN backbone. Further-
more, Mask R-CNN is easy to extend for face detection by including an addi-
tional output head. However, Mask R-CNN struggles in several scenarios on the
WIDER-Face dataset; being able to detect keypoints for only 40% of the present
faces, as discussed in Section 4.2.3. For these situations, the faces are either low-
resolution or heavily occluded. Alternative pose estimation models (OpenPose
or DensePose) would struggle in these scenarios as well. For low-resolution situa-
tions, generating a realistic face is more straightforward, and we might not require
pose estimation in these situations. An alternative solution could be a secondary
generative model that is independent of pose estimation to handle low-resolution
situations.

Using two different models for face detection and pose estimation enables us to
do the computation in parallel; still, a unified face detection and pose estimation
system would improve inference time significantly. Also, training the task in
parallel with multi-task learning can help the model to generalize [19]. This is
further discussed in Section 6.1

RQ2: How can we generate a realistic human face, fitting for a given
situation?

The experiments presented in this thesis reflects that conditional GAN is a suit-
able method to generate a realistic human face fitting a given situation. On the
FDF validation set, the generated images has a significant low FID, indicating
that the generated images are similar to the original training dataset. This il-
lustrates that the generated images share very similar features to the original
training dataset.

Our method proves its ability to generate objectively high-quality images for a
diversity of backgrounds and poses. However, for several faces, a human can
easily distinguish a generated face upon closer inspection. Often this is caused
by small artifacts in the face. For all observed images, we note that the generative
model generates a seamless transition between the generated face and the original
background; having no ”borders” to the extracted bounding box.

The generated images of our model illustrates its ability to perform complex
semantic reasoning. Generating a natural face for a large variety of images is
extremely difficult for a generative model. We require the model to perform
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Figure 5.1: Generalization to unseen images. DeepPrivacy can handle a
diverse set of poses, background clutter, ethnicity, ages, and occlusions. All faces
in the images are generated.

complex semantic reasoning to understand the placement of eyes, mouth, and
ears while maintaining a seamless transition between the generated face and the
original image. Handling this kind of variation is an issue even for non-conditional
GANs, where the state-of-the-art on ImageNet is unable to generate consistently
realistic images for several classes [8]. For example, Brock et al. [8] reports that
a model trained on ImageNet is more successful at generating dogs (which makes
up a large portion of the ImageNet dataset) than crowds (which comprise a small
portion of the dataset and have more large-scale structure).

RQ3: How does the proposed framework perform on real images,
which are not present in the training data?

The presented results on the WIDER-Face dataset illustrates that our model
can generalize to unseen situations and real-world images 1. From observing the
model on a diverse set of images, we argue that our model can handle a broad
collection of facial poses, ethnicities, ages, background clutter, and occlusions.
Figure 5.1 shows DeepPrivacy applied to people with different ages, ethnicities
and poses. Also, we recommend the reader to take a closer look at the anonymized
WIDER-Face dataset presented in Section 4.3.

There exist no perfect quantitative measure to evaluate a model’s ability to gen-
eralize to unseen images. Still, the Fréchet Inception Distance has shown to be
a valuable measurement for this. Our model achieves a small FID for the whole
FDF validation dataset. The FDF dataset consists of a large diversity of images,

1Note that our model is never trained on any images in the WIDER-Face dataset.
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and the low FID reflects our model’s ability to handle this kind of variety. We
note that the FDF dataset is collected from the Flickr websites and inherently
contains the biases of the Flickr dataset. Even though, with validating on the
WIDER-Face dataset, we conclude that our model generalizes well to unseen
images and we observe no sorts of overfitting on the training set.

RQ4: How can we evaluate the impact of anonymization to further
train and validate deep learning models?

Our experiments on the WIDER-Face dataset reflects that anonymized data is
suitable for validation of machine learning models. In this thesis, we focus solely
on face anonymization, and further work should be done on analyzing the impact
on other popular deep learning tasks, such as instance segmentation and general
object detection. Also, we perform no experiments focused on training of deep
learning models on the anonymized dataset. But, we believe that the experiments
shown with validation indicates that the generated image distribution is very
similar to the original data distribution; therefore, it is will suited for training.

Evaluating the impact of anonymization on the WIDER-Face validation dataset
gives us an indication of the quality of our anonymization, but several factors
impact our results. First of all, we are unable to anonymize every bounding box
due to Mask R-CNN not being able to detect keypoints for each face. Secondly,
the hyperparameters of DSFD [35] are tuned for the original WIDER-Face val-
idation dataset, which might degrade the performance if we slightly change the
image.

The results presented in Section 4.3.1 argues that our model is able to retain the
original data distribution and reduce the impact of our anonymization. Tradi-
tional anonymization tools, such as blurring and pixelation, degrades the perfor-
mance of the face detection significantly, indicating that these approaches destroy
the existing data distribution.

5.2 Limitations

Our method proves its ability to generate objectively good images for a diver-
sity of backgrounds and poses. However, it still struggles in several challenging
scenarios. Figure 5.2 illustrates some of these. These issues can impact the gen-
erated image quality, but our solution ensures the removal of all privacy-sensitive
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Figure 5.2: Failure cases of DeepPrivacy. The four leftmost images indicates
that DeepPrivacy struggles in cases of complex backgrounds, and high occlusion
of the face. The image in column 3, row 2 has noisy pose annotations, resulting
in unrealistic faces. The image in column 4, row 2 illustrates that DeepPrivacy
struggles in cases of highly irregular poses. Finally, we notice in some scenarios
(column 4, row 1), the image has a perfect pose annotation; however, our gener-
ative model is unable to generate a realistic face, even though it is a fairly simple
scenario.

information. These limitations can be a limitation of our dataset, as we have
collected human faces mainly from traffic and cities.

Faces occluded with high fidelity objects are challenging when generating a real-
istic face. For example, in Figure 5.2 several images have persons covering their
face with hands. To generate a face in this scenario requires complex semantic
reasoning, which is still a difficult challenge for GAN.

Handling non-traditional poses can cause our model to generate corrupted faces.
We use a sparse pose estimation to describe the facial pose, but there is no
limitation in our architecture to include a dense pose estimation. A denser pose
estimation would, most likely, improve the performance of our model in cases of
irregular poses. However, predicting a denser pose estimation is more challenging
and would restrict the practical use case of our method.
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5.3 Further Analysis

From an in-depth analysis of our network, we present several interesting findings
working with conditional GANs using progressive growing. We will discuss these
in detail next.

Training Stability and Convergence

Training stability is a substantial issue for GANs and can impact final image
quality. We include several techniques to improve the stability of our network,
especially Progressive Growing of GANs, but we still observe significant oscilla-
tion in the wasserstein loss during training. This instability is prominent during
transition phases when we scale the resolution of our model, as seen in Figure 5.3.
Even though, our network can successfully train for a large set of hyperparameter
choices.

The gradient penalty function is a large cause of instability during the transition
phase. As seen in Equation 2.3, the gradient penalty is calculating the norm of
the gradient on the input image. Therefore, the scale of the gradient penalty
is dependent on the image resolution, and it grows by a factor of 22 each time
we increase the image resolution. To counteract this, we experimented with
linearly scaling the gradient penalty to mirror the increase of the gradient penalty.
However, linearly scaling the gradient penalty during the transition phase is sub-
optimal, as this would remove the K-Lipschitz constraint on our discriminator.

Deterministic Output of Generator

We analyze the sensitivy to the input of our generator. Our generator has two
inputs; conditional information (context and pose), and a latent variable z drawn
form a normal distribution (N (0, 1)). To achieve a Nash Equilibrium, the z vector
is necesarry and the generator should be dependent on z [14]. As seen in Fig-
ure 5.4, our generator is close to independent on z. This can cause suboptimal
training of our networks. Therefore, we experiment with ”forcing” the generator
to care about the variable. We introduced an additional L2 loss to make the gen-
erator reconstruct z at the end of the network. However, we observed insignficant
difference in the dependency of the latent variable z, and the resulting FID was
the same.
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Figure 5.3: Instability of Wasserstein Distance during training. The network
was trained to 64×64 resolution, with 600K images for transition and stabilization
faces. The training was stopped after 9.6M images.

Figure 5.4: Deterministic Generator Output. By changing our latent vari-
able z, we notice minimal difference in generated images. The two left images
has the same conditional information with different z vector. The right image
is the L1 distance per pixel between the images, normalized between 0-1. We
recommend the reader to zoom in to notice minor differences.
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Figure 5.5: Bounding box sensitivity experiment on our our generative model.
DeepPrivacy is robust to small adjustments in the bounding box.

Figure 5.6: Pose information sensitivity experiment on our generative model.
Leftmost image is the original pose information. Rightmost image is the pose
information with random noise within [−0.1 · image width, 0.1 · image width].

A deterministic output of the generator in a conditional GAN has been observed
by several authors [24]. Previous methods has used dropout to force a non-
deterministic generator [24]; however, we experimented with this and observed
significantly worse image quality. Due to the enourmous size of our dataset, we
believe the deterministic output of our generator does not harm training. Still,
further work into analyzing the cause of this, and the impact on final results
should be performed.

Sensitivity to Detection Models

For practical use, we desire our generative model to be independent on the de-
tection system, such that the generative model is robust to small variations in
the bounding box or pose annotation. Figure 5.5 shows our generative model on
the same image for various bounding boxes. Notice that our generative model is
robust to major changes in the bounding box. Figure 5.6 shows our generative
model on the same image for multiple pose annotations. Our generative model is
robust to minor adjustments in pose information, but the more non-traditional
poses generates unrealistic images. From these experiments and overall quality
of generated images on the FDF dataset, our model is robust to rather large
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Figure 5.7: Background sensitivity experiment on our generative model. We
take greenscreen image with a person, and anonymize the image with different
image background. Each face here is generated.

changes in annotations.

Robustness to Image Background

We analyse the sensitivity of our generative model to different background in-
formation. Figure 5.7 shows the same person for different backgrounds, where
we took an original image with greenscreen to change the background of the
face. Notice that our model is able to generate realistic faces for a large variety
of backgrounds. Also, an interesting observation is that the personal traits of
the individual is similar for all the different backgrounds. This indicates that
DeepPrivacy generates the identity dependent on the given information about
the person, and not the background information.
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Chapter 6

Conclusion and Further
Work

We propose a multi-stage pipeline to automatically anonymize faces in images
without destroying the original data distribution. The presented results on the
WIDER-Face dataset reflects our model’s ability to generate high-quality images.
Also, the diversity of images in the WIDER-Face dataset shows the practical
applicability of our model. The current state-of-the-art face detection method
can achieve 98.8% of the original AP on the anonymized WIDER-Face validation
set. In comparison to previous solutions, this is a significant improvement to both
the generated image quality, and the certainty of anonymization. Furthermore,
the presented ablation experiments on the FDF dataset suggests that our model
improves with an increased number of parameters. Also, inclusion of sparse pose
information is necessary to generate high-quality images.

Our generative model is a conceptually simple generative adversarial network,
easily extendable for further improvements. Handling irregular poses, difficult
occlusions, complex backgrounds, and temporal consistency in videos are still
subjects for further work. We believe our contribution will be an inspiration for
further work into ensuring privacy in visual data.
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6.1 Future Work

The presented results are encouraging, but it requires further work to ensure
robustness to a large diversity of scenarios. In this section, we will discuss al-
ternative objective functions for improved generated image quality and training
efficiency. Also, we will briefly discuss our proposed FDF dataset and techniques
to unify object detection and pose estimation into a single model for improved
inference time. Finally, we review the ability to extend our proposed model to
the video domain.

Alternative Objective Functions

Even though we use progressive growing throughout training, we experience
significant instability in our network during transition phases, as discussed in
Section 5.3. Gradient penalty is sub-optimal for progressive growing GANs, as
it scales quadratically with the resolution. Other objective functions can be
beneficial for the stability of the network. StyleGAN [30] argues that the non-
saturating loss with R-regularization improves final image quality; however, the
R-regularization term also scales quadratically with the resolution. Miyato et al.
[47] proposes Spectral Normalization to enforce the K-Lipschitz criteria instead
of gradient penalty, and this would not be dependent on the image resolution.
Replacing gradient penalty with spectral normalization can be an area worth
exploring to improve training stability.

FDF Dataset

FDF is a crucial part of our model’s success, giving us a dataset with a diverse
set of faces. However, the dataset is unnecessarily large (1.3M images), making it
computationally expensive to use for training. A smaller dataset, but represen-
tative of the data distribution, would reduce the requirement of computational
power and improve training time. Active Learning [61] tries to minimize the
amount of data required to train a machine learning model. In active learning,
the key idea is to extract images that are unique and representative for the data
distribution while removing any images that do not provide new knowledge. To
pick new samples for a dataset, we often look at the classification certainty of
a trained model; however, this is not a trivial task for generative models. Ef-
fectively selecting a representative subset of the FDF dataset could limit the
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computational power requirements, and it is shown that active learning can im-
prove convergence time [61].

Unified Object Detection and Pose Estimation

Our pipeline does face detection and pose estimation in parallel with two different
models. For the scope of this thesis, this parallel pipeline is a suitable solution.
However, similar features have to be computed separately for each model, which
is very computational inefficient. Alternatives to this could be to extend the
Mask R-CNN network with an additional output head to include a face detection
branch. The modifications to the model are minimal, but the dataset require-
ment is a substantial issue to make this work. We would require a dataset with
an object bounding box, face bounding box, segmentation masks, and keypoint
annotations. The COCO dataset [38], which Mask R-CNN is originally trained
for, includes these annotations except for bounding boxes of faces. Another op-
tion to remove the dataset constriction could be to transfer learn a pre-trained
Mask R-CNN on a face detection datasets, such as WIDER-Face.

Dense Pose Information

Our generative model uses sparse pose information about the location of the
eyes, ears, nose, and shoulders. The presented ablation experiments indicate
that sparse pose information improves overall image quality significantly. Using
a denser pose estimation to guide the generative model is a promising area for
further work. DensePose [2] maps each pixel of the human body to a 3d body
part, giving us a dense pose estimation. From this, we would be able to extract a
semantic segmentation of the face region instead of a rectangular bounding box.
However, our proposed model does not scale well with dense pose estimation.
We encode the pose information as K ×M ×M one-hot encoded image, where
K is the number of keypoints and M is the image width and height. With
dense pose information the memory requirement would be infeasible. To support
a dense pose estimation, we require an alternative approach to input the pose
information.
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Temporal Consistency for Videos

The work done in this thesis is focused on the image domain, anonymizing im-
ages frame-by-frame and ignoring any temporal consistency. Applying our model
on a video generates realistic faces, but introduces significant flickering and a
human notices inconsistency over time 1. Several works have focused on using
GANs for generating videos with temporal consistency; two popular tasks are
style transfer for videos [11, 18, 58], and video-to-video synthesis [70]. Wang
et al. [70] proposes a video-to-video GAN, where they use a basic markov as-
sumption to enforce temporal consistency; that is, a single frame is dependent
on the previous two frames. This markov assumption performs well to enforce
short temporal consistency, but they discuss the limitation of this assumption to
generate coherent synthesis with long temporal consistency.

1Example video can be downloaded from Google Drive. ”detected.mp4” is the original video
with detections, ”generated.mp4” is the final result, and ”marked.mp4” is the generated video
with annotations indicating which faces are anonymized.

https://drive.google.com/drive/folders/1H4zcWFis3jq93W-hZgjHCROcKvLnLseb?usp=sharing
https://drive.google.com/drive/folders/1H4zcWFis3jq93W-hZgjHCROcKvLnLseb?usp=sharing
https://drive.google.com/drive/folders/1H4zcWFis3jq93W-hZgjHCROcKvLnLseb?usp=sharing
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Appendices

A. Discriminator Architecture

Discriminator Act Output shape Params
Input image + conditional Info – 6× 128× 128 –

Conv 1× 1 LReLU 176× 128× 128 1.2K
Stack pose information – 183× 128× 128 –

Conv 3× 3 LReLU 176× 128× 128 290K
Conv 3× 3 LReLU 360× 128× 128 571K

Downsample – 360× 64× 64 –
Stack pose information – 367× 64× 64 –

Conv 3× 3 LReLU 360× 64× 64 1.2M
Conv 3× 3 LReLU 720× 64× 64 2.3M

Downsample – 720× 32× 32 –
Stack pose information – 727× 32× 32 –

Conv 3× 3 LReLU 720× 32× 32 4.7M
Conv 3× 3 LReLU 720× 32× 32 4.7M

Downsample – 720× 16× 16 –
Stack pose information – 727× 16× 16 –

Conv 3× 3 LReLU 720× 16× 16 4.7M
Conv 3× 3 LReLU 720× 16× 16 4.7M

Downsample – 720× 8× 8 –
Stack pose information – 519× 8× 8 –

Conv 3× 3 LReLU 720× 8× 8 4.7M
Conv 3× 3 LReLU 720× 8× 8 4.7M

Downsample – 720× 8× 8 –
Stack pose information – 727× 4× 4 –

Conv 3× 3 LReLU 720× 4× 4 4.7M
Conv 4× 4 LReLU 720× 1× 1 8.3M

Fully-connected linear 1× 1× 1 721
Total trainable parameters 45.5M

Table 6.1: Discriminator that we use to generate 128x128 images.
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B. Additional Generated Images

Figure 6.1: DeepPrivacy results on a diverse set of faces in the WIDER-Face
dataset. The left image is the original image annotated with the bounding box
and keypoints, and the right image is the generated image. Note that these faces
are randomly picked. We recommend the reader to zoom in.
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C. BMVC Paper

This thesis was submitted as a 9-page paper to the British Machine Vision Con-
ference 2019, and is currently under review. Acceptance notification will be sent
out by Monday 24th of June, 2019.
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DeepPrivacy: A generative adversarial
network for face anonymization

BMVC 2019 Submission # 1068

Abstract

We propose a novel architecture which is able to automatically anonymize faces in
images while retaining the original data distribution. We ensure total anonymization of
all individuals in an image by generating images exclusively on privacy-safe informa-
tion. Our model is based on a conditional generative adversarial network, generating
images considering the original pose and image background. The conditional informa-
tion enables us to generate highly realistic faces with a seamless transition between the
generated face and the existing background. Furthermore, we introduce a diverse dataset
of human faces including unconventional poses, occluded faces, and a vast variability
in backgrounds. Finally, we present experimental results reflecting the capability of our
model to anonymize images while preserving the data distribution, making the data suit-
able for further training of deep learning models. As far as we know, no other solution
has been proposed that guarantees the anonymization of faces while generating realistic
images.

Figure 1: DeepPrivacy results on a diverse set of images. The left image is the original
image annotated with bounding box and keypoints, the middle image is the input image,
and the right image is the generated image. Note that our generator never sees any privacy-
sensitive information.

1 Introduction
Privacy-preserving data-processing is becoming more critical every year; however, no suit-
able solution has been found to anonymize images without degrading the image quality. The
General Data Protection Regulation (GDPR) came to effect as of 25th of May, 2018, affect-
ing all processing of personal data across Europe. GDPR requires regular consent from the
individual for any use of their personal data. However, if the data does not allow to identify

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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an individual, companies are free to use the data without consent. To effectively anonymize
images, we require a robust and highly effective generative model to replace the original
face, without destroying the existing data distribution; that is: the output should be a realistic
face fitting into the situation.

Anonymizing images while retaining the original distribution is a challenging task. The
model is required to remove all privacy-sensitive information, generate a highly realistic face,
and the transition between original and anonymized parts has to be seamless. This requires a
model that can perform complex semantic reasoning to generate a new anonymized face. For
practical use, we desire the model to be able to manage a broad diversity of images, poses,
backgrounds, and different persons. Our proposed solution can successfully anonymize im-
ages in a large variety of cases, and create realistic faces to the given conditional information.

Our proposed model, called DeepPrivacy, is a conditional generative adversarial
network [18]. Our generator considers the existing background and a sparse pose annotation
to generate realistic anonymized faces. The generator has a U-net architecture [23], which
we train with a progressive growing training technique [12] from a starting resolution of
8× 8 to 128× 128; this substantially improves the final image quality and overall training
time. Our generator never receives any privacy-sensitive information, thus ensuring that the
generated images are completely anonymized.

For practical use, we assume no demanding requirements for the object and keypoint
detection algorithm. Our model requires two simple annotations of the face: (1) a tight
bounding box annotation to identify the privacy-sensitive area, and (2) a sparse pose estima-
tion of the face, containing keypoints for the ears, eyes, nose, and shoulders; in total seven
keypoints. This keypoint annotation is identical to what Mask R-CNN [6] provides.

We provide a new dataset of human faces, Flickr Diverse Faces (FDF), which consists of
1.3M faces with a bounding box and keypoint annotation for each face. This dataset covers
a considerably large diversity of facial poses, partial occlusions, complex backgrounds, and
different persons. We will make this dataset publicly available along with our source code
and pre-trained networks.

We evaluate our model by performing an extensive qualitative and quantitative study of
the model’s ability to retain the original data distribution. We anonymize the validation set
of the WIDER-Face dataset [27], then run a face detection on the anonymized images. The
current state-of-the-art, DSFD [14], achieves 98.8% (95.4% out of 96.6% average precision),
98.6% (94,4%/95,7%), and 99.1% (89,6%/90,4%) of the original average precision on the
easy, medium, and hard difficulty, respectively; on average, it keeps 98.8% of the original
performance. In contrast, 8x8 pixelation achieves 96.0%, heavy blur 89.9%, and black-out
33.6% of the original performance. Additionally, we present several ablation experiments
that reflect the importance of a large model size and conditional pose information to generate
high-quality faces.

In summary, we make the following contributions:

• We propose a novel generator architecture to anonymize faces, which ensures 100%
removal of privacy-sensitive information in the original image. The generator can gen-
erate realistic looking faces that have a seamless transition to the existing background
for various sets of poses and contexts.

• We provide the FDF dataset, including 1.3M faces with a tight bounding box and
keypoint annotation for each face. The dataset covers a considerably larger diversity
of faces compared to previous datasets.
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2 Related Work
De-identifying faces: Currently, there exists a limited number of research studies on the task
of removing privacy-sensitive information from an image including a face. Typically, the ap-
proach chosen is to alter the original image such that we remove all the privacy-sensitive
information. These algorithms can be applied to all images; however, we have no assurance
that we remove the privacy-sensitive information. Naive methods that apply simple image
distortion have been discussed numerous times in literature [1, 4, 5, 19, 20], such as pixe-
lation and blurring; but, they are inadequate for removing the privacy-sensitive information
[4, 19, 20], and they alter the data distribution substantially.

K-same family of algorithms [4, 11, 20] implements the k-anonymity algorithm [25]
for face images. Newton et al. prove that the k-same algorithm can remove all privacy-
sensitive information; but, the resulting images often contain "ghosting" artifacts due to small
alignment errors[4].

Generative Adversarial Networks(GANs) [3] has been a highly successful training
architecture to model a natural image distribution. GANs enables us to generate new images,
often indistinguishable from the real data distribution. It has a broad diversity of application
areas, from general image generation [2, 12, 13, 31], text-to-photo generation [30], style
transfer [8, 24] and much more. With the numerous contributions since its conception, it
has gone from a beautiful theoretical idea to a tool we can apply for practical use cases. In
our work, we show that GANs is an efficient tool to remove privacy-sensitive information
without destroying the original image quality.

Ren et al. [22] look at the task of anonymizing video data by using a generative adver-
sarial network. They perform anonymization by altering each pixel in the original image to
hide the identity of the individuals. In contrast to their method, we can ensure the removal of
all privacy-sensitive information, as our generative model never observes the original face.

Progressive growing of GANs [12] propose a novel training technique to generate faces
progressively, starting from a resolution of 4x4 and step-wise increasing it to 1024x1024.
This training technique improves the final image quality and overall training time. Our
proposed model uses the same training technique; however, we perform several alterations
to their original model to convert it to a conditional GAN. With these alterations, we can
include conditional information about the context and pose of the face. Our final generator
architecture is similar to the one proposed by Isola et al. [9], but we introduce conditional
information in several stages.

Image Inpainting is a closely related task to what we are trying to solve, and it is a
widely researched area for generative models [10, 15, 17, 29]. Several research studies have
looked at the task of face completion with a generative adversarial network [15, 29]. They
mask a specific part of the face and try to complete this part with the conditional information
given. From our knowledge, and the qualitative experiments they present in their papers,
they are not able to mask a large enough part to remove all privacy-sensitive information.
As the masked region grows, it requires a more advanced generative model that understands
complex semantic reasoning, making the task considerably harder. In comparison to these
methods, we expect a rectangular shaped mask to identify the area we want to inpaint, and
we use a more complex dataset than the typical CelebA dataset [17].

Jourabloo et al. [11] look at the task of de-identification grayscale images while preserv-
ing a large set of facial attributes. This is different from our work, as we do not directly
train our generative model to generate faces with similar attributes to the original image. In
contrast, our model is able to perform complex semantic reasoning to generate a face that is
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coherent with the overall context information given to the network, yielding a highly realistic
resulting face.

3 The Flickr Diverse Faces dataset
FDF (Flickr Diverse Faces) is a new dataset of human faces, crawled from the YFCC-100M
dataset [26]. It consists of 1.3M human faces with a minimum resolution of 128x128, con-
taining facial landmarks and a bounding box annotation for each face. The dataset has a vast
diversity in terms of age, ethnicity, facial pose, image background, and face occlusion. The
dataset was mainly extracted from scenes related to traffic, sports events, and outside activ-
ities. In comparison to the FFHQ dataset [13], our dataset is largely more diverse in facial
poses, and it is generally much larger; however, the FFHQ dataset has a higher resolution.

The FDF dataset is a high-quality dataset with few annotation errors. The faces are
automatically labeled with state-of-the-art keypoint and bounding box models, and we use
a high confidence threshold for both the keypoint and bounding box predictions. The faces
are extracted from 964,099 images in the YFCC100-M dataset. For keypoint estimation, we
use Mask R-CNN [6], with a ResNet-50 FPN backbone [16]. For bounding box annotation,
we use the Single Shot Scale-invariant Face Detector [32]. Each keypoint is matched with
a bounding box if the eye and nose annotation are within the tight bounding box. Each
bounding box and keypoint has a single match, and we match them with a greedy approach
based on descending prediction confidence.

4 Model
Our proposed model is a conditional GAN, generating images based on the surrounding of
the face and sparse pose information. Figure 1 shows the conditional information given to
our network. We base our model on the one proposed by Karras et al. [12]. Their model is a
non-conditional GAN, and we perform several alterations to include conditional information.

We use seven facial landmarks to describe the pose of the face, including the following
keypoints: left/right eye, left/right ear, left/right shoulder, and nose. To reduce the number
of parameters in the network, we pre-process the pose information into a one-hot encoded
image of size K×M×M, where K is the number of landmarks and M is the target resolution.

Progressive growing training technique improves the final image quality and overall
training time, and it’s crucial for our model’s success. We apply progressive growing to
both the generator and discriminator to grow the networks from a starting resolution of 8.
We double the resolution each time we expand our network until we reach the final resolution
of 128×128. To include the pose information through the whole training period, we decide
to include this information for each resolution for both the discriminator and generator.

4.1 Generator Architecture
Figure 2 shows our proposed generator architecture for 128×128 resolution. Our generator
has a U-net[23] architecture to include background information. The encoder and decoder
have the same number of filters in each convolution, but the decoder has an additional 1×
1 bottleneck convolution after each skip connection. This bottleneck design reduces the
number of parameters in the decoder significantly. To include the pose information for each
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Figure 2: Our generator architecture for 128x128 resolution. Each convolutional layer
is followed by pixel normalization [12] and LeakyReLU(α = 0.2). After each upsampling
layer, we concatenate the upsampled output with pose information and the corresponding
skip connection.

resolution, we concatenate the output after each upsampling layer with pose information and
the corresponding skip connection. The general layer structure is identical to Karras et al.
[12], where we use pixel replication for upsampling, pixel normalization and LeakyReLU
after each convolution, and equalized learning rate instead of careful weight initialization.

Progressive growing: Each time we increase the resolution of the generator, we add two
3×3 convolutions to the start of the encoder and the end of the decoder. We use a transition
phase identical to Karras et al. [12] for both of these new blocks, making the network stable
throughout the training. We note that the network is still unstable during the transition phase,
but it is significantly better compared to training without progressive growing.

4.2 Discriminator Architecture

Our proposed discriminator architecture is identical to the one proposed by Karras et al.
[12], with a few exceptions. First, we include the background information as conditional
input to the start of the discriminator, making the input image have six channels instead of
three. Secondly, we include pose information at each resolution of the discriminator. The
pose information is concatenated with the output of each downsampling layer, similarly to
the decoder in the generator. Finally, we remove the mini-batch standard deviation layer
presented by Karras et al. [12], as we find the diversity of our generated faces satisfactory.

The adjustments made to the generator doubles the number of total parameters in the
network. To follow the design lines of Karras et al. [12], we desire that the complexity in
terms of the number of parameters to be similar for the discriminator and generator. We
evaluate two different discriminator models, which we will name the deep discriminator
and the wide discriminator. The deep discriminator doubles the number of convolutional
layers for each resolution. To mimic the skip-connections in the generator, we wrap the
convolutions for each resolution in residual blocks. The wider discriminator keeps the same
architecture; however, we increase the number of filters in each convolutional layer by a
factor of

√
2.
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Figure 3: Anonymized images from DeepPrivacy. Every single face in the images has been
generated.

Figure 4: Different anonymization methods on a face in the WIDER Face validation set.

5 Experiments

DeepPrivacy can robustly generate anonymized faces for a vast diversity of poses, back-
grounds, and different persons. From qualitative evaluations of our generated results on the
WIDER-Face dataset [27], we find our proposed solution to be robust to a broad diversity of
images. Figure 3 shows several results of our proposed solution on the WIDER-Face dataset.
Note, the network is trained on the FDF dataset; we do not train on any of the images in the
WIDER-Face dataset. With our paper, we will release the full WIDER-Face validation set
anonymized by DeepPrivacy. (For this submission, we deliver a randomly picked subset of
this dataset, as the total file limit is 100MB.)

We evaluate the impact of anonymization on the WIDER-Face [27] dataset. We measure
the average precision of a face detection method on an anonymized dataset and compare
this to the original dataset. We report the standard metrics for the different difficulties for
the WIDER-Face dataset. Additionally, we perform several ablation experiments on our
proposed FDF dataset that suggests that pose information and a large model size is crucial
for generating high-quality faces.

Our final model is trained for 18 days, 40M images, until we observe no qualitative dif-
ferences between consecutive training iterations. It converges to a frèchect inception distance
(FID) [7] of 1.51. Specific training details are given in Appendix A.
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Anonymization method Easy Medium Hard
No Anonymization 96.6% 95.7% 90.4%
Blacked out 20.6% 29.4% 44.2%
Pixelation (16x16) 94.2% 94.2% 89.9%
Pixelation (8x8) 91.0% 91.8% 88.6%
9x9 Gaussian Blur (σ = 3) 95.1% 92.2% 82.4%
Heavy Blur (filter size = 30% face width) 82.8% 85.5% 85.5%
DeepPrivacy (Ours) 95.4% 94.4% 89.6%

Table 1: Face detection average precision on the WIDER Face [27] validation dataset. The
face detection method used is DSFD [14], the current state-of-the-art on WIDER-Face.

5.1 Effect of anonymization for face detection

To evaluate the impact of anonymization, we anonymize the WIDER-Face [27] validation
set. We evaluate the average precision of a face detection method on the anonymized dataset
and compare the results to the original dataset. Table 1 shows the average precision of
different anonymization techniques. In comparison to the original dataset, DeepPrivacy only
degrades the average precision by 1.2%, 0.9%, and 0.26% on the easy, medium and hard
difficulties, respectively.

We compare DeepPrivacy anonymization to simpler anonymization methods; black-out,
pixelation, and blurring. Figure 4 illustrates the different anonymization methods. Deep-
Privacy generally achieves a significant higher AP compared to all other methods, with the
exception of 16x16 pixelation. 8x8 pixelation suffers significantly in terms of average preci-
sion. We want to repeat that pixelation and blurring are shown to be insufficient anonymiza-
tion methods, unable to remove all privacy-sensitive information [4, 19, 20].

Experiment details: For the face detector we use the current state-of-the-art, Dual Shot
Face Detector (DSFD) [14]. The WIDER-Face dataset has no facial landmark annotation;
therefore, we use the same method as we used for the FDF dataset to retrieve landmarks.
To match the landmarks with a bounding box, we use the same greedy approach as earlier.
Mask R-CNN [6] is not able to detect keypoints for all faces, especially in cases with high
occlusion, low resolution, or faces turned away from the camera. Thus, we are only able
to anonymize 43% of the bounding boxes in the validation set. Of the faces that are not
anonymized, 22% are partially occluded, and 30% are heavily occluded. For the remaining
non-anonymized faces, 70% has a resolution smaller than 14x14. Note, for each experiment
in Table 1; we anonymize the same bounding boxes.

5.2 Ablation Experiments

We perform several ablation experiments to evaluate the model architecture choices. We re-
port the average Frèchet Inception Distance [7] between the original image and the anonymized
image for each experiment. We calculate FID from a validation set of 27,000 faces from the
FDF dataset. The results are shown in Table 2 and discussed in detail next.

Effect of pose information: Face poses provided as conditional information improves
our model significantly, as seen in Table 2a. The FDF dataset has a large variance of faces in
all different poses and we find it necessary to include sparse pose information to generate re-
alistic faces. In contrast, when trained on the CelebA dataset, our model completely ignores
the given pose information.
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Model FID
With Pose 2.80

Without Pose 3.01

(a) Result of using condi-
tional pose.

Discriminator Architecture FID
Deep Discriminator 5.04
Wide Discriminator 2.80

(b) Result of the deep and wide
discriminator.

#parameters FID
12M 2.80
46M 2.01

(c) Result of different
model size.

Table 2: Ablation experiments on our architecture. We report the frèchet inception distance
after showing the discriminator 20M images (lower is better). For results in Table 2a and
Table 2b, we use a model size of 12M parameters for both the generator and discriminator.

Figure 5: Failure cases of DeepPrivacy Our proposed solution can generate unrealistic
images in cases of high occlusion, difficult background information, and irregular poses.

Discriminator Architecture: Table 2b compares the quality of images for a deep and
wide discriminator. With a deeper network, the discriminator struggles to converge, leading
to poor results. We use no normalization layers in neither of these networks, causing deeper
networks to suffer from exploding forward passes and vanishing gradients. Even though,
Brock et al. [2] also observe that a deeper network architecture degrades the overall image
quality. Note, we also experimented with a discriminator with no modifications to number
of parameters, but this was not able to generate realistic faces.

Model size: We empirically observe that increasing the number of filters in each con-
volution improves image quality drastically. As seen in Table 2c, we train two models with
12M and 46M parameters. Unquestionably, increasing the number of parameters generally
improves the image quality. For both experiments, we use the same hyperparameters; the
only thing changed is the number of filters in each convolution.

We further experimented with a model with 160M parameters. We had to reduce the
batch size significantly, and we were unable to converge it to an image size of 128x128,
due to computational limitations. The preliminary results on 64x64 resolution were slightly
worse than our model with 46M parameters, probably due to the reduced batch size.

6 Limitations
Our method proves its ability to generate objectively good images for a diversity of back-
grounds and poses. However, it still struggles in several challenging scenarios. Figure 5
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illustrates some of these. These issues can impact the generated image quality, but our solu-
tion ensures the removal of all privacy-sensitive information.

Faces occluded with high fidelity objects are extremely challenging when generating a
realistic face. For example, in Figure 5 several images have persons covering their face with
hands. To generate a face in this scenario requires complex semantic reasoning, which is still
a difficult challenge for generative adversarial networks.

Handling non-traditional poses can cause our model to generate corrupted faces. We use
a sparse pose estimation to describe the face pose, but there is no limitation in our architecture
to include a dense pose estimation. A denser pose estimation would, most likely, improve the
performance of our model in cases of irregular poses. However, this would set restrictions
on the pose estimator and restrict the practical use case of our method.

7 Conclusion
We propose a conditional generative adversarial network, DeepPrivacy, to anonymize faces
in images without destroying the original data distribution. The presented results on the
WIDER-Face dataset reflects our model’s capability to generate high-quality images. Also,
the diversity of images in the WIDER-Face dataset shows the practical applicability of our
model. The current state-of-the-art face detection method can achieve 98.8% of the original
average precision on the anonymized WIDER-Face validation set. In comparison to previous
solutions, this is a significant improvement to both the generated image quality, and the
certainty of anonymization. Furthermore, the presented ablation experiments on the FDF
dataset suggests that a larger model size and inclusion of sparse pose information is necessary
to generate high-quality images.

DeepPrivacy is a conceptually simple generative adversarial network, easily extendable
for further improvements. Handling irregular poses, difficult occlusions, complex back-
grounds, and temporal consistency in videos is still a subject for further work. We believe
our contribution will be an inspiration for further work into ensuring privacy in visual data.

Appendix A - Training details
We use the same hyperparameters as Karras et al. [12], except the following: We use a batch
size of 256, 256, 128, 72 and 48 for resolution 8,16,32,64, and 128. We use a learning rate of
0.00175 with the Adam optimizer. For each expansion of the network, we have a transition
and stabilization phase of 1.2M images each. We use an exponential running average for
the weights of the generator with decay 0.999, as this generally improves overall image
quality[28]. Our final model was trained for 18 days on two NVIDIA V100-32GB GPUs.

Tensor Core Modifications
To utilize tensor cores in NVIDIA’s new Volta architecture, we do several modifications to
our network, following the requirements of tensor cores. First, we ensure that each convo-
lutional block use number of filters that are divisible by 8. Secondly, we make certain that
the batch size for each GPU is divisible by 8. Further, we use automatic mixed precision for
pytorch[21] to significantly improve our training time. We see an improvement of 220% in
terms of training speed with mixed precision training.
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