
Direct Visual Odometry on a
GPU

Matias Christensen

Supervisor:
Frank Lindseth

Department of Computer Science (IDI)
Norwegian University of Science and Technology

TDT4900 - Computer Science, Master’s Thesis, Spring 2019
Delivery: 28. May 2019

Abstract

This thesis covers the implementation of the DVO (Direct Visual Odometry) algorithm
on a GPGPU (General-purpose Graphical Processing Unit). DVO is a direct visual odom-
etry algorithm capable of accurately estimating the trajectory of a camera from a RGB-D
video feed. We cover the necessary mathematical background thready needed to reason
about motion in three-dimensional space, as well as how to propose the trajectory as an
optimization problem we can solve in a efficient manner. A overview of GPGPU program-
ming is given, illustrating how this differs from CPU programming. We then show how
the DVO algorithm can be implemented in a efficient manner on a GPGPU and how this
differs from a CPU implementation. Finally, a evaluation of how altering the parameters
of the algorithm effects the efficiency and accuracy of the implementation is given.

Abstrakt

Denne masteroppgaven dekker implementasjonen av DVO (Direct Visual Odometry)
algoritmen på en GPGPU (General-purpose Graphical Processing Unit). DVO er en di-
rekte visuell odometri algoritme som er i stand til å estimere banen til et kamera på en
nøyaktig måte, gitt en RGB-D video. Vi dekker den nødvendige matematiske teorien som
trengs for å kunne drøfte rundt bevegelse i tre-dimensjonalt rom, i tilegg til hvordan vi kan
definere bane estimeringen som et optimaliseringsproblem og løse det på en effektiv måte.
Vi gir så et overblikk over GPGPU programmering som illustrerer hvordan det skiller seg
fra CPU programmering. Vi viser så hvordan DVO algoritmen kan implementerer på en
effektiv måte på en GPGPU og hvordan den skiller seg fra en CPU implementasjon. Til
slutt evaluerer vi hvordan en endring i algoritmens parametere påvirker effektiviteten og
nøyaktigheten til implementasjonen.

i

ii

Table of Contents

Summary i

Summary i

Table of Contents v

List of Figures viii

Acronyms ix

Symbols xi

1 Introduction 1
1.1 Motivation & Goals . 1
1.2 A Concise History of Visual Odometry & SLAM 2
1.3 Taxonomy of Visual Odometry Methods 2

1.3.1 Filtering vs. Smoothing . 3
1.3.2 Direct vs Indirect . 3
1.3.3 Dense vs Sparse . 4

2 Theory 7
2.1 Three-dimensional Geometry . 7

2.1.1 Position & Translation . 7
2.1.2 Rotation . 7
2.1.3 Homogeneous Coordinates . 9
2.1.4 Skew-symmetric matrices . 9
2.1.5 Lie Algebra & Lie Groups . 10

2.2 The Mathematics of Cameras . 18
2.2.1 Images . 18
2.2.2 Projection . 21
2.2.3 Epipolar Geometry . 23

iii

2.2.4 Lense Distortion . 24
2.2.5 Photometric Model . 25
2.2.6 Stereo Cameras . 26

2.3 Non-Linear Optimization . 30
2.3.1 Linear Least Squares . 31
2.3.2 Non-linear Least Squares . 32
2.3.3 Gradient Descent . 32
2.3.4 Newton’s Method . 32
2.3.5 The Gauss-Newton Algorithm 33
2.3.6 The Levenberg-Marquardt Algorithm 34
2.3.7 Iteratively Reweighted Least Squares 34
2.3.8 Optimization over Lie Groups 35

3 CUDA & GPGPU Programming 39
3.1 Introduction . 39

3.1.1 From GPU to GPGPU . 39
3.1.2 GPGPU vs CPU Programming 40

3.2 CUDA Execution Model . 41
3.2.1 Kernels . 41
3.2.2 Thread Divergence . 41
3.2.3 Execution Hierarchy . 42
3.2.4 Kernel Synchronization . 43
3.2.5 CUDA Streams . 44

3.3 CUDA Memory . 44
3.3.1 Local Memory . 45
3.3.2 Shared Memory . 45
3.3.3 Global Memory . 46
3.3.4 Constant Memory . 46
3.3.5 Texture Memory . 47

3.4 CUDA Libraries . 47
3.4.1 cuBLAS . 47
3.4.2 Nvidia VisionWorks . 48

3.5 OpenGL Interoperability & Visualization 48

4 Direct Visual Odometry Algorithm & Implementation 51
4.1 Direct Image Alignment . 51

4.1.1 Photo-consistency Assumption 52
4.1.2 Warping function . 52
4.1.3 Probabilistic Model . 53
4.1.4 Optimization . 55
4.1.5 Implementation . 56

4.2 Robust Estimation . 64
4.2.1 Outlier Suppression . 64
4.2.2 Motion Model . 64
4.2.3 Implementation . 66

4.3 Visualization . 67

iv

5 Evaluation 69
5.1 Functionality . 69
5.2 Stopping Criteria . 71
5.3 Limitations & Challenges . 71

6 Conclusions & Further Work 75

Bibliography 77

v

vi

List of Figures

1.1 Direct vs. indirect motion estimation . 3

2.1 Euler angles . 8
2.2 The function f maps the region U of the differential manifold M to the

region f(U) of the euclidean space Rn. 11
2.3 so(3) exists as a 3-dimensional vector space in R9 while SO(3) is a 3-

dimensional differential manifold in R9. so(3) lies tangent to SO(3) at
the identity I. 12

2.4 Perturbations of ξ . 19
2.5 CMOS image sensor [4] . 20
2.6 Effects of global and rolling shutter with camera motion 21
2.7 Pinhole projection . 22
2.8 Epipolar geometry . 24
2.9 Lense distortion effect on images from [29] 25
2.10 Vignetting from [29] . 27
2.11 Non-linear response function generated from [8] 27
2.12 Stereo rectification . 28
2.13 Stereo vision . 29
2.14 Disparity from stereo calculated with images from [29] 30
2.15 Structured-light stereo . 31
2.16 Structured light stereo images from [32] 32
2.17 Weighted error functions. 34

3.1 Thread Divergence when executing kernel in listing 3.4. 42
3.2 CUDA Execution Hierarchy . 43
3.3 CUDA streams . 44
3.4 Memory Hierarchy . 45

4.1 Photo-consistency assumption . 52
4.2 Warp function . 52
4.3 Image pyramid . 57

vii

4.4 Brightness and depth pyramids created from images from [32] 59
4.5 Direct image alignment of image stream 60
4.6 Warp Function: Image & Error . 61
4.7 Warp Function gradients . 62
4.8 Translational & rotational residuals at different image pyramid levels . . . 65
4.9 DVO Visualization . 68

5.1 Trajectory of freiburg1 desk sequence 70
5.2 Iterations per level for first 150 frames 70
5.3 Trajectory of freiburg3 long office household sequence 72
5.4 Y-position of challenging segment of the freiburg2 pioneer slam sequence 73
5.5 XZ-position of challenging segment of the freiburg2 pioneer slam sequence 74

viii

Acronyms

CPU Central Processing Unit. 39–41, 56

DSP Digital Signal Processor. 39

DVO Direct Visual Odometry. 51, 52

FPGA Field-programmable Gate Array. 39

GPGPU General-purpose Graphical Processing Unit. 1, 39–42, 51

GPU Graphical Processing Unit. 1, 4, 39, 41–43, 45, 51, 56

IMU Inertial measurement unit. 54

RGB Red Green Blue. 20, 56

SIMD Single Instruction, Multiple Data. 40

SLAM Simultaneous Localization and Mapping. 2, 4, 11, 21, 26, 35

VO Visual Odometry. 2, 4, 11, 21, 26, 35

ix

x

Symbols

x, u = Vectors.
x̃, ũ = Homogeneous vectors.
A, K = Matrices.
so(3), se(3) = Lie Algebras.
SO(3), SE(3) = Lie Groups.
ω̂ = Skew-symmetric matrices.
Ω = Set of all point in an image.

xi

xii

Chapter 1
Introduction

We will, in this chapter, introduce this thesis and try to give context for the work that has
been done. Section 1.1 overviews the motivation for why the subject matter of this thesis
was chosen to be what it is and what the goals where. In section 1.2 we give a short
account of some of the historical developments that have been made in the area of visual
odometry and SLAM, this is to provide some context for the current state of the field and
give some indication for where it is heading. We then provide an overview of how the
different visual odometry methods differ in section 1.3. This section attempts to show how
the method discussed in this thesis fits into the varied landscape of previous and current
visual odometry methods.

1.1 Motivation & Goals
Visual odometry and SLAM methods have in recent years showed them self to be in-
creasingly relevant as their uses increase in emerging areas such as autonomous vehicles,
augmented reality, and virtual reality. We have also seen a considerable increase in the
performance of Graphical Processing Units (GPUs) and the ability to do General-purpose
Graphical Processing Unit (GPGPU) programming. Finally, we have also seen the intro-
duction of small, embeddable GPUs, such as NVIDIA Jetson or NVIDIA Drive, making
it possible to run GPGPU programs on mobile robotic platforms such as cars and drones.
These factors combine to make the use of GPGPU programming in visual odometry and
SLAM, a great opportunity to develop robotic systems with novel capabilities.

We are then left with the question of how we best can utilize such GPU devices for
visual odometry, and how can we implement the algorithms using GPGPU programming.
For this thesis, we have chosen to focus on the DVO (Direct Visual Odometry) algorithm,
first published in [15]. It is a modern direct visual odometry method that has shown good
performance and is also simple enough that the GPGPU implementation from scratch is
achievable within the scope of this thesis.

We have chosen to formalize the focus of the thesis into three research questions that
we aim to answer through the following chapters:

1

Chapter 1. Introduction

1. How can we best implement DVO on a GPGPU?

2. How does the implementation on a GPGPU differ from the already published CPU
implementation?

3. How does a change in the parameters of the GPGPU implementation change the
performance and accuracy of the algorithm?

1.2 A Concise History of Visual Odometry & SLAM

The history of computing three-dimensional structure from two-dimensional images long
precedes the introduction of computers and digital cameras. Early work such as [17] de-
scribes a method of manually calculating three-dimensional structure and its distance from
the observer by manually selecting corresponding image points.

The introduction of computers and digital photography allowed the field that we now
consider computer vision to begin. Methods such as Harris corner detection[10] and later
FAST[35] was introduced to detect corners in the image computationally. Such methods
were used to create feature trackers such as the KLT-tracker[34] that tracked identified
feature points over multiple frames.

With the introduction of robust feature descriptors such as SIFT[18], SURF[2] and
ORB[27] correspondences could now match between images. This method made it pos-
sible to use bundle adjustment methods to calculate camera transformations and scene
structure.

Early visual odometer methods like EKF-SLAM[20] used Kalman filters to represent
and update the pose through filtering. Later methods such as PTAM[16] showed it was
possible to create real-time visual odometry systems based on bundle adjustment.

An early example of dense methods operating directly on the image intensities was
shown in [19], which estimated the dense depth in the image. This method was improved
further in methods like DTAM[22], which could generate a detailed geometry of the scene
using dense methods.

In the last few years, we have seen an increasing number of methods which entirely use
a dense formulation such as LSD-SLAM[6] and DSO[5], and others which use a partial
direct formulation such as SVO[9].

1.3 Taxonomy of Visual Odometry Methods

In this section, we will give an overview of the three principal axes we can use to classify
a Visual Odometry (VO) or Simultaneous Localization and Mapping (SLAM) algorithms.
While these distinctions are not binary and solutions falling in the middle of any of the
three classifications exists, it is still a useful distinction that allows us to classify and
compare different methods.

2

1.3 Taxonomy of Visual Odometry Methods

1.3.1 Filtering vs. Smoothing
The difference between filtering- and smoothing-methods lie mainly in how the methods
represent the current state of the model.

Filtering methods use a joint probability distribution over all states in the system.
When the system gets a new measurement, it is used to update the probability distribu-
tion and reduce the uncertainty of the system. New parameters are usually added with
large uncertainties, and old values are marginalized away when no longer needed.

Smoothing methods, also called optimization methods, for visual odometry, represent
the state in the form of a non-linear optimization function that is continuously optimized
in the background. They will in most cases, aggressively marginalize variables outside a
small window to keep the optimization computationally tractable.

In filtering methods, usually, only the current pose of the camera is represented as
the old pose is marginalized as soon as a new pose is obtained. The estimation of a new
pose usually involves a linearization of a non-linear function to propagate the probability
distribution to the new pose. As the old pose is marginalized away, the system loses the
ability to re-linearize at a new point if information giving a better estimate of an old pose
is obtain. Smoothing methods do not suffer from this problem as long as old pose remains
within the optimization window, as the non-linear optimization function is re-linearized
for each step of the optimization function.

In [31], the accuracy of filtering and smoothing methods are compared. Here the con-
clusion is drawn that filtering methods work best for small problems with few parameters,
while larger problems with more points work better with smoothing methods.

1.3.2 Direct vs Indirect

Image Keypoints Pose

Keypoint
extraction

Geometric
error

minimization

(a) Indirect motion estimation

Image Pose
Direct image alignment

(b) Direct motion estimation

Figure 1.1: Direct vs. indirect motion estimation

The difference between direct and indirect methods is how we represent the image
information and how we optimize using them.

With indirect methods, we first perform feature extraction on the image to create a
number of feature-descriptors and then perform optimization on those descriptors, as il-

3

Chapter 1. Introduction

lustrated in fig. 1.1a. These feature-descriptors are created from points in the image with
a high gradient, like corners, and take the form of a vector that should be distinct from
other feature points. The feature extraction can be computationally costly, and the point
correspondence will often contain some outliers because of error in the matching. In the
optimization stage, the features are matched with features extracted in earlier images to
build point correspondences between images. The pose is retrieved by optimizing over
the geometric error, which is the Euclidean distance between the observed feature image
coordinate and the coordinate of the matched feature in a different image projected into
the image. A geometric error function over two images with known point depths is shown
in eq. (1.1), here ξ is the pose between the images, xi and yi are the same point detected
in each image, di is the depth and ω is the re-projection function projecting a point in one
image to the other given a depth and a pose.

E(ξ) =
∑
i

‖xi − ω (yi, ξ, di)‖22 (1.1)

Direct methods, on the other hand, use the image directly without any features ex-
traction step, as shown in fig. 1.1b. There may be a point selection process to select an
appropriate subset of the image to use, but this subset of pixels will be used directly with-
out any feature extraction. Direct method will usually use a much larger fraction of the
image in the optimization and will, therefore, make use of information that might exist
in the image that indirect method will discard, such as low gradient areas. When opti-
mizing, we use a photometric error function that compares the intensity values of pixels
re-projected from one image to the other. While direct methods avoid the need to compute
feature vectors, the optimization usually involves far more points and is, therefore, more
computationally expensive and requires some ingenuity to allow it to run in real-time. A
photometric error function for two images with known depth is shown in eq. (1.2). Here ξ
is the pose between the images, I1 and I2 are the image functions, xi are the image points,
di is the point depths and ω is the warping function that projects a point from one image
to the other given a pose and a depth value.

E(ξ) =
∑
i

(
I1(xi)− I2(ω(xi, ξ, di))

)2
(1.2)

Some methods like [9] use a combination of both direct and indirect methods and are
referred to as semi-direct methods.

1.3.3 Dense vs Sparse
The distinction between dense and sparse method is how the images are used in the
method.

Dense methods will use the entire image in the optimization and attempt to estimate
depth for every pixel in the image, often combined with a smoothness prior to the depth to
convexify the optimization problem. Fully dense method, such as [22] are very computa-
tionally expensive and requires GPU implementations to run in real-time. The use of all
pixels also doesn’t add to the accuracy of the camera trajectory and is usually done in the
context of 3D reconstructions rather than VO or SLAM.

4

1.3 Taxonomy of Visual Odometry Methods

In sparse method, we instead use a subset of independent points in the image without
any smoothness prior. This change gives us far fewer point to optimize over and lowers
the computational overhead considerably.

There exist also methods classified as semi-dense, such as [6]. Here connected patches
of high gradient areas in the image are used and optimized with a smoothness prior on the
depth.

5

Chapter 1. Introduction

6

Chapter 2
Theory

2.1 Three-dimensional Geometry
In this theses, we will concern our self with the estimation of motion within a 3D envi-
ronment. Thus we require mathematical tools to describe the three-dimensional world.
This section describes how we will represent position, translation, rotation, and motion
mathematically, and how we will work with them.

2.1.1 Position & Translation
We describe a point in three-dimensional space with a vector x, which consist of three
scalar values which indicate it’s position along the cardinal directions.

x =

x1

x2

x3

We can translate the point x by adding a translation v to it.

x + v =

x1 + v1

x2 + v2

x3 + v3

While a translation and a point may appear identical, it is useful to separate the two

as distinct types of objects by letting them represent different things. We let a point be a
position within a coordinate system, while a translation is a linear movement that can be
applied to any point.

2.1.2 Rotation
There are multiple ways of representing rotations three-dimensional space. We will here
give an outline of the most common methods and justify our representation of choice.

7

Chapter 2. Theory

Euler-angles

The simplest way to describe three-dimensional rotation is to use Euler-angles. Here we
describe the final rotation by successive rotation around the principal axis, as shown in
fig. 2.1. There are multiple valid sequences of axes to rotate around when using which
introduces ambiguity. Euler-angles also suffer from a phenomenon known as ”gimbal-
lock,” where they lose a degree of freedom. This problem makes Euler-angles unsuitable
for the optimization methods we will employ in the latter part of this thesis.

Figure 2.1: Euler angles

Quaternions

Quaternions represent rotation as a point on a four-dimensional sphere. Unlike Euler-
angles, quaternions are a singularity-free representation of rotation. They are parameter-
ized by four real values and are given by q = (x, y, z, w)T ∈ S3. Quaternions are however
constrained, as a valid quaternion must be of unit length, that is

√
x2 + y2 + z2 + w2 = 1.

This constraint makes optimization with quaternions difficult, as only a small subset of
possible iteration step will move a valid quaternion to another valid quaternion. We could
mitigate this problem by heavily penalizing a quaternion with a unit length different than
1 in the optimization cost function. It is also possible to convert any invalid quaternion to
the closest possible valid quaternion after each step, but this can significantly slow down
the optimization. Neither of these solutions is ideal, which is why we will avoid the use of
quaternions in our optimization.

Lie Representation

In this thesis, we will instead employ Lie Groups and Lie Algebra for representing rota-
tions, which we will introduce in section 2.1.5. We shall see that this method avoids any
of the problems of Euler-angles or quaternions, and are therefore well suited for our pur-
poses. We shall also see that the representation can be extended to represent any Euclidean
transformation, that is a combination of a rotation and a translation.

8

2.1 Three-dimensional Geometry

2.1.3 Homogeneous Coordinates
The position vectors introduced in section 2.1.1 may be extended to what is called homo-
geneous coordinates. We will later show in section 2.1.5 why this is useful.

Given a vector u we can extend it to a homogeneous vector ũ by appending a one as
the fourth element, as shown in eq. (2.1).

u =

xy
x

→ ũ =

x
y
x
1

 (2.1)

The vector may be scaled by a scalar w as in eq. (2.2). We consider two homogeneous
vectors that differ only by a scaling factor to be representing the same vector.

w̃ · ũ = w̃

x
y
x
1

 =

x̃
ỹ
x̃
w̃

 (2.2)

To recover an inhomogeneous vector from a homogeneous one, we can divide the
vector by the fourth element to get the correct scale. And then remove the fourth element,
as shown in eq. (2.3).

x̃
ỹ
x̃
w̃

→ 1

w̃

x̃
ỹ
x̃
w̃

 =

x
y
x
1

→
xy
x

 (2.3)

2.1.4 Skew-symmetric matrices 0 −z y
z 0 −x
−y x 0

 (2.4)

A matrix A ∈ Rn×n is called skew-symmetric if AT = −A. A skew-symmetric
matrix û of size 3 × 3 must be on the form given in eq. (2.4). This can trivially be seen,
as any diagonal elements must be equal to 0, to be equal to it’s own negation, that is
∀i, j|uij = −uji =⇒ uii = 0. Any off-diagonal element must be equal to the negation
of its corresponding transpose element, that is ∀i, j|uij = −uji. We therefore get eq. (2.4)
as the only 3× 3 solution.

ω =

ω1

ω2

ω3

 ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.5)

As the skew-symmetric is parameterized by three real values, we can define a hat-
operator (̂·) which converts any three-element vector ω = (ω1, ω2, ω3)T to it’s corre-
sponding skew-symmetric matrix as given in eq. (2.5).

9

Chapter 2. Theory

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∨ =

ω1

ω2

ω3

 (2.6)

Similarly, we can define a inverse vee-operator (·)∨ which converts any skew-symmetric
3 × 3 matrix to it’s vector representation as show in eq. (2.6). We therefore have that
(ω̂)∨ = ω.

The skew-symmetric matrix corresponding to a given vector has the property that mul-
tiplication of the skew-symmetric matrix with another vector is equivalent to the cross-
product of the two vectors, as provided in eq. (2.7).

u× v = ûv (2.7)

2.1.5 Lie Algebra & Lie Groups
We will in this section, describe the use of Lie Groups and Lie Algebra for representing
rotations and Euclidean transformations of rigid-bodies. We shall see that this form of
representation will allow us to avoid the problems outlined in section 2.1.2, as well as
providing methods for composing, inverting, and differentiating transformations.

Definitions

The non-rigorous definition of a Lie Group is a group that is also a differentiable manifold.
A group is set, G, combined with a binary operator, ◦, which together follow the four
group axioms:

• Closure: For all a, b ∈ G, we have that a ◦ b ∈ G.

• Associativity: For all a, b, c ∈ G, we have that (a ◦ b) ◦ c = a ◦ (b ◦ c).

• Identity element: There exist an unique element e such that for all a ∈ G, we have
that a ◦ e = e ◦ a = a.

• Inverse element: For all a ∈ G there exist and inverse element a−1, such that
a ◦ a−1 = a−1 ◦ a = e.

A differentiable manifold is a manifold where each point on the manifold is locally
similar to Euclidean space, as illustrated in fig. 2.2. This definition means that for any
given point on the manifold and a maximum non-zero error, we can define a sufficiently
small neighborhood, with non-zero area, around the point where the error between the
manifold and the Euclidean space is less than the given error.

We can, therefore, see a Lie Group as a smooth, connected manifold where we contin-
uously move from any point on the manifold to any other, along its surface. We may also
employ the methods calculus on the manifold to reason about its curvature.

A Lie Algebra is a vector space g together with binary operator g × g → g; (x, y) 7→
[x, y] called the Lie bracket, which satisfy the following axioms:

10

2.1 Three-dimensional Geometry

Figure 2.2: The function f maps the region U of the differential manifold M to the region f(U) of
the euclidean space Rn.

• Bilinearity: For all a, b ∈ R and x, y, z ∈ g we have that [ax + by, z] = a[x, z] +
b[y, z] and [z, ax+ by] = a[z, x] + b[z, y].

• Alternativity: For all x ∈ g we have that [x, x] = 0.

• The Jacobi identity: For x, y, z ∈ g we have that [x, [y, z]]+[z, [x, y]]+[y, [z, x]] =
0.

There exist a close connection between any Lie group G and its corresponding Lie
algebra g. A Lie algebra is the tangent space of the identity element of the Lie group.
We illustrate an example of this in fig. 2.3, with the Lie group SO(3) and Lie algebra
so(3), which we will introduce in detail in the following section. There also a function
exp(ω) which maps any element ω of the Lie algebra to its corresponding element in the
Lie group, as well as a log(R) function, which performs the inverse.

There exists many corresponding pairs of Lie groups and Lie algebras. We will, in this
thesis, concern our self with those that are relevant in the context VO and SLAM methods.
Those are the Lie groups SO(3) and SE(3) and their corresponding Lie algebras so(3)
and se(3). The pair SIM(3) and sim(3) are also used in some methods, such as [6], but
will not be covered here for the sake of brevity.

Rotations in 3D: SO(3) & so(3)

The elements of the Lie Group SO(3) are represented by 3-by-3 orthonormal matrices. To
rotate a point x by a rotation given as an matrix R of SO(3), we perform matrix-vector
multiplication as shown in eq. (2.8).

x′ = Rx (2.8)

As the elements of SO(3) are orthonormal matrices, the inverse is equal to the trans-
pose, that is R−1 = RT . This rule can trivially be seen from eq. (2.9) where we view R
as a matrix of column vectors. By multiplying with the transpose, we get a matrix of dot
products. As each column vector is orthogonal to the others, the dot product of any two
different column vectors will be zero. Likewise, as all the column vectors are unit length,

11

Chapter 2. Theory

Figure 2.3: so(3) exists as a 3-dimensional vector space in R9 while SO(3) is a 3-dimensional
differential manifold in R9. so(3) lies tangent to SO(3) at the identity I.

the dot product of a vector with itself will give the value one. The result is the identity
matrix, which again implies that the transpose is equal to the inverse.

RRT =

r1 r2 r3

 rT1
rT2
rT3

=

a1 · a1 a1 · a2 a1 · a3

a2 · a1 a2 · a2 a2 · a3

a3 · a1 a3 · a2 a3 · a3

=

1 0 0
0 1 0
0 0 1

 = I

(2.9)

Two rotations compose into a single rotation by performing matrix-matrix multiplica-
tion. It is, therefore, as shown in eq. (2.10), equivalent to multiply a vector with a series of
rotation matrices in turn, as it is to multiply it once with the resulting composed rotation
matrix. Note that this operation is not commutative, and R1 · R2 6= R2 · R1 for most
rotation matrices.

x′ = R2 ·R1 · x
= (R2 ·R1) · x
= R · x, R = R2 ·R1

(2.10)

The elements of so(3) are the set of 3-by-3 skew-symmetric matrices. We can rep-
resent this set as the linear combination of three matrices. These matrices are called the

12

2.1 Three-dimensional Geometry

generators of so(3) and are given in eq. (2.11). The generators correspond to the deriva-
tives of rotation around each axis, evaluated at identity.

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 (2.11)

We can represent any element in so(3) by a three-value vector indicating the corre-
sponding linear combination of the generators, as shown in eq. (2.12). We can see that this
implements the vee-operator from section 2.1.4.

ω̂ = ω1G1 + ω2G2 + ω3G3 ∈ so(3), ∀ω ∈ R3 (2.12)

The exponential map is the mapping from elements in SO(3), to elements in so(3) —
this mapping smooth, meaning that a small change in the input causes a small change in
the output. The mapping is also differentiable so that we can calculate a Jacobian of the
function. And it is invertible.

The exponential map takes the 3-by-3 skew-symmetric matrix and maps it to the cor-
responding rotation matrix and is defined as in eq. (2.13).

exp(ω̂) = I + ω̂ +
1

2!
ω̂2 +

1

3!
ω̂3 + · · · (2.13)

We can rewrite the terms in pairs, as shown in eq. (2.14).

exp(ω̂) = I +

∞∑
i=0

[
ω̂2i+1

(2i+ 1)!
+

ω̂2i+2

(2i+ 2)!

]
(2.14)

Using the property of skew-symmetric matrices, that its cube can be calculated as given
in eq. (2.15), we can calculate the identities provided in eq. (2.16).

ω̂3 = −(ωTω) · ω̂ (2.15)

θ2 ≡ ωTω
ω̂2i+1 = (−1)iθ2iω̂

ω̂2i+2 = (−1)iθ2iω̂2

(2.16)

Using these identities we can rewrite eq. (2.14) as shown in eq. (2.17). This final for-
mula is known as the Rodrigues formula and is what we will use to calculate to exponential
of SO(3) elements. This will let us convert any element ω̂ ∈ so(3) to its corresponding
element R ∈ SO(3).

13

Chapter 2. Theory

exp(ω̂) = I +

(∞∑
i=0

(−1)iθ2i

(2i+ 1)!

)
ω̂ +

(∞∑
i=0

(−1)iθ2i

(2i+ 2)!

)
ω̂2

= I +

(
1− θ2

3!
+
θ4

5!
+ · · ·

)
ω̂ +

(
1

2!
− θ2

4!
+
θ4

6!
+ · · ·

)
ω̂2

= I +

(
sin θ

θ

)
ω̂ +

(
1− cos θ

θ2

)
ω̂2

(2.17)

To reverse this process, that is convert an element in R ∈ SO(3) to it’s respective
element in ω̂ ∈ so(3), we can use the equation given in eq. (2.18). To retrieve the vector
ω we can use the vee-operator, ω = (ln(R))∨.

θ = arccos

(
tr(R− 1

2

)
ln(R) =

θ

2 sin θ

(
R−RT

) (2.18)

When optimizing over elements in so(3), we will need to be able to calculate the
gradient of expressions such as the one given in eq. (2.19). This equation is a function
rotating a point x using the rotation matrix R, which again is created from the skew-
symmetric matrix ω̂ parameterized by the vector ω.

y = f(R,x) = R · x, R = exp(ω̂) (2.19)

The gradient of this function with respect to x is given in eq. (2.20), and is simply R.
This result makes intuitive sense as any small change in the original point will cause the
same change in the resulting point with the direction rotated.

∂y

∂x
= R (2.20)

We can calculate the gradient of the same function with respect to the vector ω, which
is given in eq. (2.21). We use the fact that any infinitesimal change around a specific
rotation R, can be modeled as R · exp(ψ̂) where exp(ψ̂) is an infinitesimal rotation away
from identity. The gradient around the identity rotation is given by the generators of so(3),
as given in eq. (2.11). We, therefore, get that the final gradient is given by the skew-
symmetric matrix of −y.

14

2.1 Three-dimensional Geometry

∂y

∂ω
=

∂

∂ω
R · x

=
∂

∂ψ

∣∣∣∣
ψ=0

(
exp(ψ̂) ·R

)
· x

=
∂

∂ψ

∣∣∣∣
ψ=0

(
exp(ψ̂)

)
· (R · x)

=
∂

∂ψ

∣∣∣∣
ψ=0

(
exp(ψ̂)

)
· y

= (G1y|G2y|G3y)

= −ŷ

(2.21)

Euclidean transformations in 3D: SE(3) & se(3)

The elements T of the Lie-group SE(3) are represented by a 4 × 4 matrix as shown in
block form in eq. (2.22). The upper left 3×3 sub-matrix is an element of SO(3), encoding
the rotation of the transformation. The translation is represented by the vector t.

T =

[
R t
0 1

]
, T ∈ SE(3), R ∈ SO(3), t ∈ R3 (2.22)

A homogeneous vector x̃ may be transformed using a simple matrix-vector multiplica-
tion as shown in eq. (2.23). The vector does not necessarily have to be normalized as in the
example. We will get the same inhomogenous vector regardless of whether we perform
the normalization before or after the transformation.

T · x̃ =

[
R t
0 1

]
·

x
y
z
1

 (2.23)

Two transformations, T1 and T2, may be multiplied as shown on eq. (2.24) to cre-
ate a new transformation combining the transformation of the two. Note that this is like
regular matrix-matrix multiplication not commutative and T1 · T2 6= T2 · T1 for most
transformations.

T1 ·T2 =

[
R1 t1

0 1

]
·
[
R2 t2

0 1

]
=

[
R1R2 R1t2 + t1

0 1

] (2.24)

We can also calculate the inverse transformation T−1, such that T−1 ·T = I, as shown
in eq. (2.25). Here we use that R is orthogonal, and therefore R−1 = RT to simplify the
calculation.

15

Chapter 2. Theory

T−1 =

[
RT −RT t
0 1

]
(2.25)

As with so(3), the elements of se(3) are the linear combinations of the generators of
its lie group, SE(3). Again, the generators are corresponding to the differential of the
rotation and translation. We, therefore, get the six generators, as shown in eq. (2.26).

G1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

G3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , G4 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,

G5 =

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , G6 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

(2.26)

We can therefore parameterize any element of se(3) by a vector ξ = (ν|ω)T ∈ R6.
Where ν are the translational parameters, and ω are the rotational parameters.

ξ̂ = ξ1G1 + ξ2G2 + ξ3G3 + ξ4G4 + ξ5G5 + ξ6G6 ∈ se(3), ∀ξ ∈ R6 (2.27)

We can define a exponential function that maps from ξ̂ ∈ se(3) to its corresponding
T ∈ SE(3), as is shown in eq. (2.28). We can see that we end up with a block matrix
consisting of exp(ω̂), which we showed how to calculate in section 2.1.5, and Vν. Where
V is defined as a series.

exp(ξ̂) = exp

([
ω̂ ν
0 0

])
= I +

[
ω̂ ν
0 0

]
+

1

2!

[
ω̂2 ω̂ν
0 0

]
+

1

3!

[
ω̂3 ω̂2ν
0 0

]
+ · · ·

=

[
exp(ω̂) Vν

0 1

]
, V = I +

1

2!
ω̂ +

1

3!
ω̂2 + · · ·

(2.28)

We can again use the identities defined in eq. (2.15), to rewrite the series as shown in
eq. (2.29). These identities allow us to rewrite the series to a closed form formula for V.

16

2.1 Three-dimensional Geometry

V = I +

∞∑
i=0

[
ω̂2i+1

(2i+ 2)!
+

ω̂2i+2

(2i+ 3)!

]

= I +

(∞∑
i=0

(−1)iθ2i

(2i+ 2)!

)
ω̂ +

(∞∑
i=0

(−1)iθ2i

(2i+ 3)!

)
ω̂2

= I +

(
1

2!
− θ2

4!
+
θ4

6!
+ · · ·

)
ω̂ +

(
1

3!
− θ2

5!
+
θ4

7!
+ · · ·

)
ω̂2

= I +

(
1− cos θ

θ2

)
ω̂ +

(
θ − sin θ

θ3

)
ω̂2

(2.29)

Combining all of this, we get the definition of the exponential function for se(3) as
shown in eq. (2.30).

ξ = (ν|ω) ∈ R6

θ =
√
ωTω

A =
sin θ

θ

B =
1− cos θ

θ2

C =
1−A

θ2

R = I + Aω̂ + Bω̂2

V = I + Bω̂ + Cω̂2

exp(ξ̂) =

[
R Vν
0 0

]

(2.30)

The logarithm function that maps from T ∈ SE(3) to ξ = (ω|ν) ∈ se(3), can be
defined by calculating ω as shown in eq. (2.18). Then we can calculate ν as ν = V−1 · t,
where V−1 is defined as shown in eq. (2.31).

V−1 = I− 1

2
ω̂ +

1

θ2

(
1− A

2B

)
ω̂2 (2.31)

We can define a function f , shown in eq. (2.32), which takes a point x and transforms
it according to a transformation T ∈ SE(3).

y = f(T,x) = (R|t) · (x|1)
T

= R · x + t, T = exp(ξ̂) (2.32)

The gradient of this function with respect to change in x is shown in eq. (2.33). As a
constant translation does not affect the gradient; this is the same as eq. (2.20).

∂y

∂x
= R (2.33)

17

Chapter 2. Theory

We can calculate the gradient with respect to ξ. Using the same procedure as in
eq. (2.21), we arrive at the expression given in eq. (2.34).

∂y

∂ξ
= (G1y| · · · |G6y)

= (I| − ŷ)

(2.34)

How changes in the Lie algebra ξ affects the Lie group T is illustrated in figs. 2.4a
to 2.4f. The figures show the effect of small perturbations on each of the elements of ξ as
its resulting SE(3) transforms the points of a rectangular prism.

2.2 The Mathematics of Cameras
In Visual Odometry, we are trying to estimate the ego-motion of cameras based solely
on the images we record with the cameras. We, therefore, require a proper mathematical
model of how images are formed in a camera and how they relate the motion of the camera
and the geometry of the real world. In this section, we will describe this relationship and
introduce the mathematical tools we will use to model it.

In section 2.2.1, we will describe the mathematical model of an image and the technical
details of digital images. section 2.2.2 describes the model of image projection, which is
the relationship of three-dimensional objects and their projection onto a two-dimensional
image. section 2.2.4 is about the distortion effects introduced by real-world camera lenses.
section 2.2.5 describes the mathematical model needed to adequately describe color al-
tering effects such as vignetting, exposure-time, and non-linear response functions of the
camera. In section 2.2.6, we describe the use of stereo-cameras with a known transforma-
tion between them to estimate depth.

2.2.1 Images
While we in a real-life implementation must perform quantization of images to store and
work with them digitally, it is often useful to model them mathematically as continuous ob-
jects. The continuous representation allows us to more easily reason about images, without
complicating the argument with implementation details. In this section, we will first intro-
duce the continuous mathematical model of an image and then discuss the implementation
details of digital quantization as well as the effects of rolling and global shutters.

Mathematical Model of an Image

An image I can best be modeled as a multidimensional function. A monochrome image
maps locations in the image to a scalar value and is therefore defined as in eq. (2.35). Here,
Ω is the two-dimensional image region and is a subset of R2, which maps to an intensity
value. Then the expression i = I(p) denotes i ∈ R to be equal to the intensity of the point
p ∈ R2

I : Ω→ R, Ω ⊂ R2 (2.35)

18

2.2 The Mathematics of Cameras

(a) Perturbation of ξ1 (b) Perturbation of ξ2

(c) Perturbation of ξ3 (d) Perturbation of ξ4

(e) Perturbation of ξ5 (f) Perturbation of ξ6

Figure 2.4: Perturbations of ξ

19

Chapter 2. Theory

The model for monochrome images in eq. (2.35) can be extended to RGB color images
as shown in eq. (2.36). Here each point maps to a three-value vector representing the red,
green and blue intensity values.

I : Ω→ R3, Ω ⊂ R2 (2.36)

Both eq. (2.35) and eq. (2.36) can be extended with a temporal parameter to represent
video. The representation in eq. (2.37) shows the extension of eq. (2.35) to represent video.
Now i in i = I(p, t) is assigned the value of point p ∈ R2 at time t ∈ R+.

I : Ω× R+ → R, Ω ⊂ R2 (2.37)

Digital Quantization

A real-world camera is not able to capture the real world with infinite precision, neither
spatially or temporally and must, therefore, perform quantization, which is the process of
converting real-value functions to discretized values.

A camera’s image sensor, as seen in fig. 2.5 is a large number of light-sensitive patches
arranged in a grid.

Figure 2.5: CMOS image sensor [4]

Each patch senses the number of photos within a range of wavelengths hitting it within
a certain time period, effectively integrating over the light seen by the camera both spatially
and temporally. This can be modeled by the triple integral given in eq. (2.38), where It[p]
is the discretized image at time t evaluated at pixel p and e is the exposure time of the
image.

It[p] =

∫ t

t−e

∫ px+0.5

px−0.5

∫ py+0.5

py−0.5

I(q, u) dqy dqx du (2.38)

Global & Rolling Shutter

In a global shutter camera, every single pixel in the image sensor is active at the same time.
In a rolling shutter camera, the pixels are activated in sequence over a small period of time.

20

2.2 The Mathematics of Cameras

Usually, the image is scanned one line at the time, starting from the top, which can cause
distortion artifacts in the image if the camera is moving during this period, as illustrated in
figs. 2.6a to 2.6c.

(a) Rightward camera motion

(b) Global shutter image (c) Rolling shutter image

Figure 2.6: Effects of global and rolling shutter with camera motion

This distortion can cause significant problems for VO, and SLAM algorithms and
rolling-shutter cameras are therefore best avoided for these applications. If the use of
rolling shutter cameras is unavoidable, then these distortions must be explicitly accounted
for in the algorithm, such as in [28].

2.2.2 Projection

The projection model of a camera describes how any three-dimensional point is projected
into the two-dimensional image. Pinhole projection is the most common form of camera
projection model and works well for cameras with a field of view that is below 180.

The pinhole camera projection is modeled using an intrinsic camera matrix K. This
matrix is shown in eq. (2.39), which is a three-by-three matrix parameterized by four
values.

K =

fx 0 cx
0 fy cy
0 0 1

 (2.39)

21

Chapter 2. Theory

Figure 2.7: Pinhole projection

The fx and fy give, respectively, the horizontal and vertical field of view of the pro-
jection. The cx and cy values provide the coordinates for the principal point in the projec-
tion, which is the point at which the projection vector is orthogonal with the image plane.
These values are obtained through a calibration process with a calibration object of known
dimensions.

Z

xy
1

 =

fx 0 cx
0 fy cy
0 0 1

︸ ︷︷ ︸

K

xy
z

︸︷︷︸

x

(2.40)

The camera matrix is used, as shown in eq. (2.40). A three-dimensional point x is
multiplied by the camera matrix to create a two-dimensional homogeneous point. This
point can be converted to an inhomogeneous point as described in section 2.1.3 to retrieve
the final image coordinates.

We can extend the equation with an additional matrix Π0. This matrix allows us to
use the same equation with a homogeneous point x̃. The matrix Π0 is a modified identity
matrix which removes the last element from the matrix. Therefore the homogeneous point
x̃ must be scaled to have the fourth element be 1 to function correctly.

Z

xy
1

 =

fx 0 cx
0 fy cy
0 0 1

︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

X
Y
Z
1

︸ ︷︷ ︸

x̃

(2.41)

So far, the point x was required to be expressed in the camera’s coordinate system.
We can extend eq. (2.41) further by adding a SE(3) transformation matrix T, giving us
eq. (2.42). Using the appropriate transformation T, we can now transform a point into the

22

2.2 The Mathematics of Cameras

camera’s coordinate-system and project it into the image in a single operation by multi-
plying KΠ0T into a single matrix.

Z

xy
1

 =

fx 0 cx
0 fy cy
0 0 1

︸ ︷︷ ︸

K

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

Π0

[
R t
0 1

]
︸ ︷︷ ︸

T

X
Y
Z
1

︸ ︷︷ ︸

x̃

(2.42)

When projecting a large number of points, we can stack the homogeneous column
vectors in a matrix and perform the projection of multiple points as a single matrix-matrix
multiplication as shown in eq. (2.43).

fx 0 cx
0 fy cy
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

[R t
0 1

]

X1 X2 · · · Xn

Y1 Y2 · · · Yn
Z1 Z2 · · · Zn
1 1 · · · 1

 (2.43)

2.2.3 Epipolar Geometry
When the same point is seen through two different cameras, there exists a geometric re-
lation between the projected two-dimensional position in the two images and the trans-
formation between the two cameras. This relation is known as epipolar geometry and is
illustrated in fig. 2.8.

A three-dimensional point p is seen by two cameras, giving the two, two-dimensional
projected image points x1 and x2. Here we denote x1 and x2 to be the two-dimensional
point extended to a three-dimensional vector by setting the third vector value to 1. This
formulation lets us think of all the two-dimensional image point as points on a plane one
unit in front of the camera origin and lets us simplify our calculations.

If we only know the two-dimensional projected point position x1, we can deduce that
the point p must lie somewhere on the line going from the camera origin o1, through the
point on the image-plane x1. This calculation may be written as multiplying the image-
plane position x1 by a scalar, as in eq. (2.44). We can do the same with x2 after transform-
ing it to its coordinate system, as in eq. (2.45).

λ1x1 = p (2.44)

λ2x2 = Rp + t (2.45)

By inserting eq. (2.44) into eq. (2.45), we get eq. (2.46).

λ2x2 = R(λ1x1) + t (2.46)

We can then left-multiply eq. (2.46) with the skew-symmetric matrix t̂. This eliminates
t, as t̂ · t = t× t = 0 and gives us eq. (2.47).

λ2t̂x2 = λ1t̂Rx1 (2.47)

23

Chapter 2. Theory

Figure 2.8: Epipolar geometry

Finally we left-multiply eq. (2.47) with xT2 , which gives us eq. (2.48). We have that
xT2 t̂ · x2 = 0, since t̂ · x2 will always be perpendicular to x2, causing the dot product of
the two to always be zero.

xT2 t̂Rx1 = 0 (2.48)

The constraint given in eq. (2.48) is known as the epipolar constraint. The equation
can be geometrically interpreted as stating that the three vectors −−→o1p, −−→o1o2 and −−→o2p all
lie on a plane. We have that −−→o1p ∝ x1, −−→o1o2 ∝ t and −−→o2p ∝ Rx2. Additionally, given
three vectors in a plane, taking the cross product of two of them results in a vector that
is perpendicular to both and therefore the dot product of this vector with the remaining
vector must be zero. Therefore we have that xT2 (t×Rx1) = xT2 t̂Rx1 = 0.

2.2.4 Lense Distortion

Cameras use lenses to capture and focus light better. A wide angle lens enables the camera
to sense a large portion of the environment in a single image but also introduces lens
distortion artifacts. The most common form of lens distortion can be seen in fig. 2.9a, with
images taken from [29], and is known as barrel distortion. We can see that straight lines in
the environment are no longer straight in the image. The image is shown in fig. 2.9b is the
same image which has been undistorted using the methods described in this section.

To undistort the image, we must model the distortion mathematically, and then apply
the inverse transformation to the image to create the undistorted image. To achieve the
proper result, this inverse distortion transformation must be applied before the projection
described in section 2.2.2. The parameters of the projection are usually obtained in the
same calibration operation used to find the projection parameters. We will now introduce
the two most common distortion models used for this purpose.

24

2.2 The Mathematics of Cameras

(a) Distorted image (b) Undistorted image

Figure 2.9: Lense distortion effect on images from [29]

Radial-tangental Distortion Model

A good description of the radial-tangental model is given in [33]. The model is a combi-
nation of radial distortion, which is distortion towards or away from the center depending
on the distance from the center point. The function from the distorted points x and y to
the undistorted points x′ and y′ is given in eq. (2.49). Here xc and yc is the centered point
such that (xc, yc) = (0, 0) is the principal point of the image, and rc is the distance from
this point, that is rc =

√
x2
c + y2

c . The parameters k1, k2, p1, and p2 must be obtained
through calibration.

x′ = x+ xc(k1rc + k2r
4
c)︸ ︷︷ ︸

Radial

+ 2p1xy + p2(r2
c + 2x2)︸ ︷︷ ︸

Tangential

y′ = y +
︷ ︸︸ ︷
yc(k1rc + k2r

4
c) +

︷ ︸︸ ︷
2p1xy + p2(r2

c + 2y2)

(2.49)

Equidistant Distortion Model

The equidistant model is described in [13]. This is a more recently introduced model that
can produce a better result for lenses with a large fish-eye distortion [26]. For a distorted
point x = (x, y), eq. (2.50) transforms the point to the undistorted point x′. k1, k2, k3,
and k4 are the parameters of the distortion model that must be calibrated beforehand.

x′ =
(θ + k1θ

3 + k2θ
5 + k3θ

7 + k4θ
9)√

x2 + y2
x, θ = arctan(

√
x2 + y2) (2.50)

2.2.5 Photometric Model
In section 2.2.2 and section 2.2.4 we have given an account of what is collectively re-
ferred to as the geometric model. This model describes the relation of a point’s location

25

Chapter 2. Theory

in three-dimensional space, with its projected position within a two-dimensional image. A
photometric model is a mathematical model describing how the intensity of a point may be
altered by camera effects such as vignetting, non-linear response function, and exposure
time. The geometric model is sufficient for indirect methods that use robust feature de-
tectors and earlier direct methods such as [6] were able to function without a photometric
model, but the use of it in methods like [5] significantly improved performance.

The photometric model attempts to model the three most significant effects that affect
the perceived intensity of a point:

• Exposure Time: The amount of time the camera is collecting light for a single
image. The length of time affects the overall brightness of the entire image.

• Vignetting: The lens is not perfectly transparent, but absorb a small amount of
light. Therefore pixels towards the edge of the image will appear slightly darker
than pixels in the center.

• Non-linear response function: The relation between the intensity of a pixel in an
image, and the amount of light hitting that pixel in the image sensor will be non-
linear for most cameras. As the other photometric effects might sift the amount of
light, the non-linearity of the image sensor will alter it further and must, therefore,
be taken into account.

We model these three effects as show in eq. (2.51). Here G : R+ → R+ is a mono-
tonically increasing function representing the non-linear response function, mapping irra-
diance to the pixel value. An example of such a non-linear response function is shown
in fig. 2.11. The function V : Ω → [0, 1] is the vignetting effect, which darkens pixels
depending on their position in the image. An example of this is shown in fig. 2.10. The
exposure time t ∈ R+ affects all pixels in the image equally. B : ω → R+ is the irradi-
ance, which we can think of as the true intensity of a pixel, and is the unknown value we
wish to estimate.

I(x) = G(t · V (x)B(x)) (2.51)

The vignetting V and non-linear response functionG must be obtained through photo-
metric calibration, as described in [8]. The exposure time t must be read from the camera
together with each image. We can then use the inverse of eq. (2.51) together with these
known values to obtain an image of the real irradiance value without the intensity altering
camera artifacts described above.

2.2.6 Stereo Cameras
A stereo camera is a camera system containing multiple image sensors. When the trans-
formation between the image sensors, and the necessary calibrations are performed, it is
possible to use the stereo image pair obtained from the stereo camera to estimate depth in
the image. While it is possible to use a single monocular camera for VO and SLAM, the
performance is often significantly improved when the system is extended to stereo vision,
as in [21], [7] and [36].

26

2.2 The Mathematics of Cameras

Figure 2.10: Vignetting from [29]

50 100 150 200 250

50

100

150

200

250

Pixel value I

Irradiance U

Figure 2.11: Non-linear response function generated from [8]

Section 2.2.6 describes the necessary image transformation step required to make
points in one image lie on the same horizontal line as in the other. In fig. 2.13b, we
will explain how we can locate the same position in both images, and use the distance
between the image coordinates to estimate the depth of the point.

Stereo Rectification

The goal of stereo rectification is two warp the stereo images, such that they are equivalent
with images captured with two cameras with co-linear z-axis, as illustrated in fig. 2.12,
which means that the two axes through their respective image centers are parallel.

This goal can be achieved by first rotating the two cameras such that the vector of
their viewing direction is perpendicular to the line joining the camera origins. Next, the
cameras are both rotated around the viewing direction such that their respective y-axis also

27

Chapter 2. Theory

is perpendicular to the line joining them.

Figure 2.12: Stereo rectification

The original image is then re-projected into these new camera orientations, which en-
sures that corresponding epipolar lines are horizontal, and points at infinity have the same
image coordinate in both images.

Disparity

The disparity is a measure of distance, measured in pixels, between the two image coor-
dinates. We calculate the disparity of a point by searching for the same point along the
horizontal line of the point in the other image. To search, we take a small patch around
the potential point pair in both images end to evaluate how well they match. A common
matching function is NCC(Normalized Cross Correlation), which is shown in eq. (2.52).
We can calculate the NCC value of all potential matches with our given point if none are
above a certain threshold we set the disparity to be unknown. Otherwise, we calculate the
disparity between the points as shown in fig. 2.13b, which gives us a disparity image like
fig. 2.14b.

NCC(x1,x2) =

∑
v∈N I1(x1 + v) · I2(x2 + v)√∑

v∈N [I1(x1 + v)2] ·
∑

v∈N [I2(x2 + v)2]
(2.52)

28

2.2 The Mathematics of Cameras

(a) Stereo projection (b) Stereo disparity

Figure 2.13: Stereo vision

Depth from Disparity

By knowing the disparity of a point, the intrinsic parameters of the camera, and the dis-
tance between the cameras, we can calculate the depth of the point. The formula for this
calculation is given in eq. (2.53), where fx is the horizontal focal length of the camera, bx
is the distance between the camera origins and d is the disparity of the point.

z = fx
bx
d

(2.53)

The accuracy of this depth measurement will depend on the accuracy of the point
matching algorithm and will be more accurate for points closer to the camera as they give
a greater disparity.

Structured-light Stereo

Another way to produce stereo images is by using a structured-light stereo method. This
method used a camera and a projector and a camera instead of multiple cameras. The
projector will project a known light pattern onto the scene, which the cameras detects, as
illustrated in fig. 2.15. Despite the different setup the calculation needed to find depths
is almost the same as with a regular stereo setup. Here we use the known light pattern
to estimate the disparity, and then estimate depth in the same way as before. Often an
infrared projector is used with an infrared camera, in addition to a common visible-light
camera as this allows the camera to produce both depth images in addition to color or
gray-scale image where the light pattern is not visible. An example of images created with
a structured light sensor is shown in fig. 2.16a and fig. 2.16b.

29

Chapter 2. Theory

(a) Left stereo image (b) Stereo disparity image

Figure 2.14: Disparity from stereo calculated with images from [29]

2.3 Non-Linear Optimization
In visual odometry, we are trying to find the parameters that best describe some motion
of the camera. These kinds of problems are, in most cases, solved as an optimization
problem. An optimization problem are usually formalized as in eq. (2.54), where we are
trying to find the input vector x∗ that minimizes the value of the cost function E(x).
Here E is a function that assigns a number to how well our input x works as a solution
to our problem, where a lower value is better. The key to solving any problem using
optimization is therefore to design a suitable cost function, which will have a minima as
close to our desirable solution as possible given our data, while still being tractable to
optimize numerically within our given limitations.

x∗ = argmin
x

E(x), E : Rn → R (2.54)

In this section, we will describe the methods that can be used to solve such a prob-
lem, primarily focusing on those that are characterized by non-linear functions. Most of
the interesting problems modeling real-world phenomenons will turn out to be non-linear
functions. It is, therefore, vital that we can solve them robustly and efficiently.

In section 2.3.1 we first start by introducing a linear least squares problem, and the
method for solving them. Section 2.3.2 presents non-linear least squares, which is the
types of an optimization problem that will be most relevant to us. Section 2.3.3 cov-
ers gradient descent, which is the simplest and most naive method of solving non-linear
optimization problems. In section 2.3.4 we improve on gradient descent by taking into
account the Hessian of the function. Section 2.3.5 expands on this further by introduc-
ing a less costly method of approximating the Hessian. In section 2.3.6 we describe a
method of combining both gradient descent and Newton’s method to improve stability on
specific problems. Section 2.3.7 shown how we can create robust optimizations that can
handle outliers in the data using a method called iteratively reweighted least squares. Sec-
tion 2.3.8 shows how we can apply optimization methods to solve problems over Lie group

30

2.3 Non-Linear Optimization

Figure 2.15: Structured-light stereo

manifolds.
A more detailed introduction to the theory given in sections 2.3.1 to 2.3.7 can be seen

in [24], while the theory in section 2.3.8 is covered extensively in [1].

2.3.1 Linear Least Squares

In a linear least squares problem we are trying to find a vector x that best solves the
equation given in eq. (2.55). Here, ai is a function of x with some gaussian noise ηi with
zero mean and a diagonal covariance matrix on the form Σ = σ2I.

ai = bTi x + ηi, ai ∈ R,x ∈ Rm,bi ∈ Rm, i ∈ {1, . . . , n}, η ∼ N (0,Σ) (2.55)

This equation leads to the minimization problem given in eq. (2.56).

argmin
x

(Ax− a)TΣ−1(Ax− a) (2.56)

As this is a linear problem, the optimal input x∗ has a closed form solution as shown
in eq. (2.57). Which allows us to solve the problem directly.

x∗ = argmin
x

(Ax− b)TΣ−1(Ax− b)

= (ATΣ−1A)−1ATΣ−1b
(2.57)

31

Chapter 2. Theory

(a) Structured light stereo color (b) Structured light stereo depth

Figure 2.16: Structured light stereo images from [32]

2.3.2 Non-linear Least Squares

Most optimization problem we are interested in solving within the context of visual odom-
etry is non-linear, and often take the form of non-linear least squares problems. The gen-
eral form of non-linear least squares problems are given in eq. (2.58), for some non-linear
function f . As the problem is non-linear, we will not be able to solve it directly as in
section 2.3.1. Instead, we must use iterative methods to find a solution. For non-convex
problems, we are also not guaranteed that our solution is an optimal one, as the iterative
method might get stuck in local a minima.

argmin
x

∑
i

ri(x)2, ri(x) = ai − f(bi,x) (2.58)

2.3.3 Gradient Descent

Gradient descent is the most basic iterative method for solving non-linear optimization
problems like the one introduced in section 2.3.2. Given an initial value x0, we iteratively
improve the input according to eq. (2.59). We evaluate the gradient at our current value of
x and alter x in the direction most negative gradient, with a step length λ.

xk = xk−1 − λ
dE

dx

∣∣∣∣
x=xk−1

, k = 1, 2, 3, . . . λ > 0 (2.59)

We continuously iterate over x according to eq. (2.59) until we reach a local minimum
where we are unable to improve the input further. Gradient descent is robust and will find
the global minimum for convex functions. It can, however, be quite slow to converge, and
we will, therefore, introduce other methods which are faster.

2.3.4 Newton’s Method

Newton’s method is a second order, meaning it employs both the gradient and the Hessian
to estimate the iteration step. A geometrical intuition of Newton’s method is that we are

32

2.3 Non-Linear Optimization

for each step fitting a quadratic function to the gradient and Hessian of our current value
of x, and solving this new quadratic problem to get a new value of x for the next iteration.

Given a cost function E, we can approximate it as a quadratic function by it’s second
order Taylor expansion at point xk, as shown in eq. (2.60). Here g and H is the gradient
and Hessian respectively, at point xk

E(x) ≈ E(xk) + gT (x− xk) +
1

2
(x− xk)TH(x− xk)

g =
dE

dx

∣∣∣∣
x=xk

, H =
d2E

dx2

∣∣∣∣
x=xk

(2.60)

For this second order approximation, the optimality condition is given by eq. (2.61).

g + H(x− xk) = 0 (2.61)

Solving for x in eq. (2.61) lead us to the iterative formula given in eq. (2.62).

xk = xk−1 −H−1g (2.62)

In practice, we may wish to limit the step-size with a variable λ, as shown in eq. (2.63).

xk = xk−1 − λH−1g, 0 < λ ≤ 1 (2.63)

2.3.5 The Gauss-Newton Algorithm
The Hessian may be costly to calculate for more complex functions. The Gauss-Newton
algorithm introduces a method for approximating the Hessian and thereby simplifying the
calculations necessary for non-linear optimization.

The elements of the Hessian are defined as shown in eq. (2.64).

Hjk = 2
∑
i

(
∂ri
∂xj

∂ri
∂xj

+ ri
∂2ri

∂xj∂xk

)
(2.64)

Given that the function is not to non-linear, we can assume that eq. (2.65) holds, and
drop the second term of the sum without to much error.∣∣∣∣ ∂ri∂xj

∂ri
∂xk

∣∣∣∣� ∣∣∣∣ri ∂2ri
∂xj∂xi

∣∣∣∣ (2.65)

We can, therefore, approximate the elements of the Hessian using the Jacobian, as
shown in eq. (2.66).

Hjk ≈ 2
∑
i

JijJik, Jij =
∂ri
∂xj

(2.66)

Using this together with g = 2JT r gives us the iterative formula given in eq. (2.67).

xk = xk−1 − (JTJ)−1JT r (2.67)

33

Chapter 2. Theory

2.3.6 The Levenberg-Marquardt Algorithm
For specific optimization problems, a large valued Hessian may have unwanted effects on
the algorithm when using Newton’s method. To mediate this, we can use the Levenberg-
Marquardt algorithm, which is given in eq. (2.68).

xk = xk−1 − (H + λI)
−1

g (2.68)

This algorithm now is a mix of gradient descent and Newton’s algorithm, with λ as a
parameter for controlling the interpolation between the two. The algorithm will be equal
to Newton’s method when λ = 0, and equal to gradient descent when λ→∞.

We can combine Levenberg-Marquardt with Gauss-Newton, and get the formula as
given in eq. (2.69).

xk = xk−1 −
(
JTJ + λI

)−1
JT r (2.69)

We may also alter the formula slightly by using the diagonal of the Hessian, or ap-
proximated Hessian, as shown in eq. (2.70), which will help the algorithm to avoid slow
convergence when the gradient is small.

xk = xk−1 −
(
JTJ + λdiag(JTJ)

)−1
JT r (2.70)

2.3.7 Iteratively Reweighted Least Squares

−3 −2 −1 1 2 3

2

4

6

Least Squares
Huber Loss

Figure 2.17: Weighted error functions.

The formulation described in section 2.3.2 works well in many problems, but per-
formance may suffer significantly in the presence of outliers. An outlier is defined as a
data-point that does not fit the model we are optimizing and is usually included in the
data by some error in a previous step. Some amount of outliers is to be expected in most
real-world optimization applications and must, therefore, be accounted for.

34

2.3 Non-Linear Optimization

Iteratively reweighted least squares are one such method of improving robustness of
non-linear least squares methods to be able to handle outliers in the data. The formulation
is shown in eq. (2.71) and is similar to eq. (2.58) but with a additional weighting term
function wi, that is recalculated for each iteration.

argmin
x

∑
i

wi(x)ri(x)2, ri(x) = ai − f(bi,x) (2.71)

The iterative solution to this is as given in eq. (2.72), where W is a diagonal matrix of
all the weights.

xk = xk−1 −
(
JTWJ

)−1
JTWr (2.72)

There exist a large number of different weighting functions, each with their strengths
and weaknesses. One of the most commonly used weighting functions is Huber Loss,
which was first published in [12]. By applying the Huber weights shown in eq. (2.73)
we turn the error function into a combination of a linear and a squared function, as is
illustrated in fig. 2.17. This figure shows the error function for both regular least squares
and Huber loss with k = 1. We see here that both functions are equal in the range -1 to 1,
but the Huber loss is linear beyond this. This change will significantly reduce the error of
outliers as the error now grows linearly instead of quadratic outside this range. The tuning
constant k is usually adapted to the distribution of residual in each iteration. A common
method is to set k = 1.345σ, where σ is the standard deviation of the residuals, which
gives a 95-percent efficiency for Gaussian distributed weights and still offers protection
against outliers.

wH(e) =

{
1 for |e| ≤ k
k/|e| for |e| > k

(2.73)

2.3.8 Optimization over Lie Groups
The theory we have established so far in this chapter is enough to implement optimization
algorithms for most non-linear problems if they are trivially mapped to Euclidean space.
Many problems in VO and SLAM are however not trivially mapped to Euclidean space.
One such example is rotations, which we in section 2.1.5 showed was best represented
as a Lie Group manifold. The way we optimize over a Lie Group is to use its respective
Lie Algebra as the parameterization and using the linearized gradient of the exponential
function, which maps an element of the Lie Algebra to its corresponding element in the
Lie Group.

We will illustrate this method with a simple example. Given a set P of points pi ∈ R3

we can can create a set Q, which is a set of points that have been transformed by an
unknown transformation function g(exp(ξ),p) witch transforms a point p, using exp(ξ),
and add a independent and identically distributed, zero-mean gaussian noise η ∈ R3, as
given in eq. (2.74).

qi = g(exp(ξ),pi) + η

pi ∈ P,qi ∈ Q,η ∼ N (0,Σ),Σ = diag
(
(σ2, σ2, σ2)T

) (2.74)

35

Chapter 2. Theory

We now wish to recover the unknown transformation T using non-linear optimization.
To achieve this, we must first design a cost function that will recover the transformation.
For this we use the function given in eq. (2.75), which takes a se(3) element ξ as a param-
eter and calculates the sum of the squared Euclidean distance between the corresponding
point after the points in P have been transformed with the given transformation.

E(ξ) =
∑
i

‖g(exp(ξ),pi)− qi‖22 (2.75)

We rewrite the function slightly to better work with the iterative method we will use to
optimize the cost function. Instead of changing the existing transformation, we concate-
nate it with a small transformation away from identity exp(∆ξ). This change will make
the linearization we soon will perform work much better, as it is only accurate in a small
neighborhood around the identity transformation. The altered cost function is shown in
eq. (2.76). We can no linearize the function g with respect to ∆ξ as shown in eq. (2.77)
as to turn each iteration of the optimization to a linear optimization problem. This lin-
earization gives us the Jacobian J of g which is defined as in eq. (2.81). By rearranging
the terms and defining two new variables A and b as shown in eq. (2.78) we get the much
more familiar form of eq. (2.79). We can get rid of the summation by stacking the terms
as shown in eq. (2.82) to get eq. (2.80).

∆ξ∗ = argmin
∆ξ

∑
i

‖g(exp(ξ) · exp(∆ξ),pi)− qi‖22 (2.76)

≈ argmin
∆ξ

∑
i

‖g(exp(ξ),pi) + Ji ·∆ξ − qi‖22 (2.77)

= argmin
∆ξ

∑
i

∥∥∥∥∥∥ Ji︸︷︷︸
A

·∆ξ − (qi − g(exp(ξ),pi))︸ ︷︷ ︸
b

∥∥∥∥∥∥
2

2

(2.78)

= argmin
∆ξ

∑
i

‖Ai ·∆ξ − bi‖22 (2.79)

= argmin
∆ξ

‖A ·∆ξ − b‖22 (2.80)

Ji = (I| − p̂i) (2.81)

A =

A1

A2

...
An

 , b =

b1

b2

...
bn

 (2.82)

Just as with eq. (2.56) we can rewrite eq. (2.80) into the matrix form given in eq. (2.83).

∆ξ∗ = argmin
∆ξ

(A ·∆ξ − b)
T

(A ·∆ξ − b) (2.83)

36

2.3 Non-Linear Optimization

This allows us to solve the minimization just as we did in section 2.3.1 which gives us
eq. (2.84).

∆ξ∗ = (ATA)−1ATb (2.84)

For each iteration, we use the value of ∆ξ∗ to update our current value of ξ, with
each iteration bringing the value closer to a local minimum. Normally this is done using
simple addition. But as we are optimizing over a manifold, and not simply in Euclidean
space, this will not work. Instead we must use eq. (2.85), where convert both values to
their SE(3) Lie group representation, multiply them using matrix-matrix multiplication,
and convert the resulting SE(3) element back to a se(3) element using the exponential and
logarithm functions described in section 2.1.5.

ξ := log(exp(ξ) · exp(∆ξ∗)) (2.85)

Putting this all together gives us the alg. 1, which solves the optimization problem
iteratively. The algorithm converges to the optimal transformation ξ∗, after a sufficient
number of iterations.

Algorithm 1: Optimization of transformation between P and Q
Data: Set of points P and Q, each with m points
Result: Computes the optimal transformation ξ∗

P(0) ←− P

ξ(0) ←− 0
for i← 1 to n do /* Optimize for n iterations. */

T(i) ←− exp
(
ξ(i−1)

)
for j ← 1 to m do

p
(i)
j ←− g(T(i),p

(0)
j)

b
(i)
j ←− p

(i)
j − qj

Aj ←−
(
I| − p̂

(i)
j

)
end
∆ξ ←− (ATA)−1ATb

ξ(i) ←− log(exp(ξ(i−1)) · exp(∆ξ))
end
ξ∗ ←− ξ(n)

37

Chapter 2. Theory

38

Chapter 3
CUDA & GPGPU Programming

3.1 Introduction
In this chapter, we will introduce the programming of General-purpose Graphical Pro-
cessing Units (GPGPUs) and illustrate how it differs from the programming of Central
Processing Units (CPUs). GPGPUs allows us to implement an algorithm in a massively
parallel manner, where hundreds of threads will be run simultaneously.

We will in this thesis focus on the the CUDA library[25] created by the Nvidia Cor-
poration. This is a proprietary, closed-source library that allows GPGPU programming of
Nvidia GPUs. Other GPGPU programming libraries exist, such as OpenACC which pro-
vides a single library targeting Nvidia, AMD and Intel GPUs, and OpenCL which in addi-
tion to GPGPUs is able to target Digital Signal Processors (DSPs) and Field-programmable
Gate Arrays (FPGAs).

While these alternative libraries can target a larger and more diverse group of hardware,
CUDA can still be the better choice in many cases. The dominance of Nvidia hardware
in the GPGPU space has caused the CUDA-ecosystem to be far more active, with a larger
selection of supported libraries and development tools. CUDA has also been shown to beat
both OpenCL and OpenAAC in performance tests when run on Nvidia hardware [14][11].

3.1.1 From GPU to GPGPU
Graphical Processing Units (GPUs) were introduced as a dedicated processor for render-
ing 3D graphics. As the GPU was specially created for a singular purpose, they could be
optimized for the characteristics of 3D graphics computation. This optimization mainly
involved the parallel nature of 3D rendering, where one pixel can be computed indepen-
dently from any other pixel, and implementing many commonly used operations in hard-
ware rather than software.

It later became apparent that massively parallel nature of GPUs could be exploited to
compute certain problems far faster than what was possible with CPUs. This discovery
led to the introduction of GPGPU programming languages and libraries, which allowed

39

Chapter 3. CUDA & GPGPU Programming

such algorithms to be implemented far easier than using the graphics-specific languages
and libraries for purposes they were not designed. Nvidia introduced their own GPGPU
library, CUDA, in 2007 [23].

3.1.2 GPGPU vs CPU Programming

To illustrate some of the main differences between CPU and GPGPU programming, we
will use the implementation of a Single-precision A, X plus Y (SAXPY) in both paradigms.
SAXPY is a common linear algebra operation where a vector X is multiplied by a scalar
A and added to vector Y. This operation is an easily parallelizable problem as each value
of the solution vector is independent of all the others.

Listing 3.1 shows the serial CPU implementation, written in C. We see that this imple-
mentation is based on serially looping through the vectors. While it would be possible to
optimize this code using Single Instruction, Multiple Data (SIMD) instructions or multi-
threading, we will still be forced to use a loop because of the limited parallelism of a
CPU.

1 vo id saxpy (i n t n , f l o a t a lpha , f l o a t *x , f l o a t *y)
2 {
3 f o r (i n t i = 0 ; i<n ; ++ i)
4 {
5 y [i] = a l p h a *x [i] + y [i] ;
6 }
7 }
8

9 saxpy (n , 2 . 0 , x , y) ; / / Invoke SAXPY C F u n c t i o n

Listing 3.1: C SAXPY

Listing 3.2 shows the same function implemented in CUDA. We can see that this code
does not use any loops. Instead, the code implements the functionality of a single CUDA
thread, and the CUDA library is responsible for executing the code across multiple threads.
As the code is identical for all threads, we must instead let each thread calculate its index
in the array. This is in listing 3.2 done in line 4, using values stored in blockIdx, blockDim
and threadIdx which are internal CUDA objects that will be explained in more detail in
section 3.2.3.

1 g l o b a l
2 vo id saxpy (i n t n , f l o a t a lpha , f l o a t *x , f l o a t *y)
3 {
4 i n t i = b l o c k I d x . x* blockDim . x + t h r e a d I d x . x ;
5 i f (i >= n) { r e t u r n ; }
6

7 y [i] = a l p h a *x [i] + y [i] ;
8 }
9

10 i n t n b l o c k s = (n + 255) / 256 ;
11 saxpy<<<nb locks , 256>>>(n , 2 . 0 , x , y) ; / / Invoke SAXPY CUDA k e r n e l .

Listing 3.2: CUDA SAXPY

40

3.2 CUDA Execution Model

3.2 CUDA Execution Model
In this section, we will describe how a GPU executes CUDA code and how it differs from
how a CPU executes code.

3.2.1 Kernels

To execute code on a GPGPU, we submit jobs to be executed from the CPU. In CUDA,
these jobs are referred to as kernels and are executed as function calls with a special syntax.
We will from here on be referring to the CPU as the host, and the GPU as the device as
this in common terms in the context of GPGPU programming.

1 k e r n e l<<<g r i d s i z e , b l o c k s i z e , s h a r e d m e m o r y s i z e , s t r eam>>>(a , b , c) ;

Listing 3.3: CUDA kernel launch example

Listing 3.3 shows an example of the syntax for launching a CUDA kernel from the
host code. We can see that the syntax is similar to a regular C function call, but with the
addition of the triple angle brackets (<<<...>>>) to set the parameters that are needed to
launch the CUDA kernel.

The first to parameters is the grid size and the block size for the execution of the
kernel, and are described in section 3.2.3. These parameters are mandatory and must be
included in all kernel launches. The next are shared memory size, which is described in
section 3.3.2, and stream, which is described in section 3.2.5. Both of these values are
optional. The function parameters work similar to regular C function parameter and are
accessible from each thread in the kernel. A CUDA kernel is however not able to return a
value in the same manner as a standard C function and must therefore always be defined
with void as the return type.

3.2.2 Thread Divergence

An essential difference between the execution of host code and device code is the concept
of thread divergence. Listing 3.4 shows a CUDA kernel where different threads will take
different paths in the branch.

1 g l o b a l
2 vo id foo ()
3 {
4 i n t i = b l o c k I d x . x* blockDim . x + t h r e a d I d x . x ;
5

6 A;
7 i f (i % 2 == 0) {
8 B ;
9 } e l s e {

10 C ;
11 }
12 D;
13 }

Listing 3.4: Branching Kernel

41

Chapter 3. CUDA & GPGPU Programming

This branching introduces a phenomenon known as thread divergence, illustrated in
fig. 3.1. The issue is that CUDA is not able to execute different instructions of a single
kernel at the same time. All threads execute A, but when the threads reach a branching
part of the code, the threads not executing the branch are temporarily disabled and are not
doing useful work.

Figure 3.1: Thread Divergence when executing kernel in listing 3.4.

Branching can, therefore, be detrimental to performance as a single thread can hold
up all other threads from doing useful work by taking a different branch. The problem
gets exponentially worse with multiple levels of branching as each level can potentially
double the time taken to execute the branching part of the kernel. Because of this, the
CUDA kernel code should limit the amount of branching, where different threads may
take different paths.

3.2.3 Execution Hierarchy
The execution of a CUDA kernel is organized into a hierarchy of 4 levels and is illustrated
in fig. 3.2. These levels are:

• Block: Threads are grouped into thread blocks. The dimensions of a thread-block
are adjustable by the user and can be set to a one, two, or three-dimensional config-
uration. The size of each dimension can be set by the user, with some limitations,
and the total number of threads in a thread-block may not exceed 1024 threads on
all current hardware[25].

• Warp: The threads in a thread-block is organized into groups of threads called a
Warp. All currently existing Nvidia hardware uses a warp size of 32 threads and is
not controllable by the user[25]. There exist a collection of methods for sharing data
between threads in a warp without using shared memory.

• Grid: The collection of thread-blocks are again organized into a grid. The grid
can like the thread-block be arranged in a user-specified configuration of up to three
dimensions. Threads in different thread block are not able to communicate directly,
and any data transfer must be done through the global memory.

• Device: A single CUDA program can cooperatively use multiple Nvidia GPGPUs
and directly transfer data between them. Multi-GPU programming is however out-
side the scope of this thesis, and will therefore not be covered further.

42

3.2 CUDA Execution Model

Figure 3.2: CUDA Execution Hierarchy

3.2.4 Kernel Synchronization
While a large number of threads in the execution of a CUDA kernel may be run simultane-
ously, not all of them will be, and groups of threads will be run in succession. The order of
execution is set by the CUDA scheduler and is not controllable by the user. Synchroniza-
tion is therefore required if any thread, at any point needs to utilize data from a different
thread.

CUDA provides two main methods for performing synchronization within a kernel:

• Block-level synchronization: Performed by calling syncthreads () . This call will
ensure that all threads in a block have reached this line in its execution before any
thread in the block is allowed to continue past it.

• Warp-level synchronization: Performed by calling syncwarp() . This call will en-
sure that all threads in a warp have reached this line before continuing past it.

Until recently there was no way to synchronize across a grid in CUDA, but CUDA 9.0
added a feature known as Cooperative Groups which added the functionality of syncing
across arbitrary groups of threads, and even across multiple GPUs[25]. This feature was,
however, not used for this thesis, so we will not go into more details here.

In addition to the synchronization methods, CUDA provides a collection of atomic
functions. These methods are guaranteed to perform their action without allowing any
other thread to access the data in an intermediate state. One such atomic function is

43

Chapter 3. CUDA & GPGPU Programming

atomicInc which increments an integer stored in shared or global memory and returns its
value before the incrimination. The atomic nature of the function assures the correctness
of the affected value despite multiple threads incrementing the same variable without any
synchronization.

3.2.5 CUDA Streams

CUDA streams is a method of optimizing and simplifying the orchestration of launching
multiple CUDA kernels. A CUDA program will often have some kernels with dependency
on the result on other kernels, and must, therefore, be run in order, while others have
no such dependencies. The use of CUDA streams allows us to launch multiple series of
kernels, where the kernels of each series are computed in order, but the CUDA scheduler is
allowed to switch between streams or run multiple operations at the same time if possible.

An example of this is given in fig. 3.3, where we illustrate the benefits using an example
where we have two independent kernels that perform some work on the GPU. We need to
copy some memory to the GPU before the kernel and copy some data back after it has run.
In fig. 3.3a, we are only using a single stream, and all the operations will, therefore, be
completed serially. In fig. 3.3b we are however assigning the work to two separate streams.
As the execution of a kernel and the copying of data utilizes separate pieces of the GPU
hardware, we can perform each in parallel and therefore increase throughput.

(a) Single CUDA stream

(b) Multiple CUDA streams

Figure 3.3: CUDA streams

Recent versions of CUDA have also introduced functionality for defining a computa-
tional graph of kernel launches [25], this is however outside the scope of this thesis and
will not be covered here.

3.3 CUDA Memory

One of the most significant differences between CUDA programming and regular CPU
programming is a large number of different memory types a CUDA programmer must be
aware. While CPU code should take into account the behavior of the CPU cache to ac hive
maximum performance, and therefore isn’t entirely trivial, a CUDA program has access to
a wide array of different memory types. Each memory type has its advantages and caveats
that must be taken into account for maximum utilization and performance when writing
GPU code.

44

3.3 CUDA Memory

Figure 3.4: Memory Hierarchy

We will, in this section, give an overview of the different memory types available when
writing CUDA programs and try to explain how they best can be used.

3.3.1 Local Memory

The local memory is the collective term for the set of GPU registers that are available to
a CUDA program. While a CPU often only has around 10-20 general-purpose register
per CPU core, modern GPUs has several hundred registers per CUDA thread [25]. The
local memory is the fastest memory available in CUDA code, and it is what is used to
store the input parameters, variables defined within a CUDA kernel or any intermediate
computation result.

3.3.2 Shared Memory

Shared memory is the second level of the CUDA memory hierarchy. The shared memory is
shared among all threads in a thread-block, and not accessible by any thread in any other-
thread block. This memory is used as the primary method of communication between
threads in a thread-block. Most systems have between 48KB and 96KB of shared memory

45

Chapter 3. CUDA & GPGPU Programming

per thread block.
Shared memory can be defined at run-time by using the shared memory size parameter

when launching the kernel, as shown in listing 3.5. Here the shared memory is defined in
the CUDA kernel using the extern keyword together with the shared keyword.

1 g l o b a l vo id foo ()
2 {
3 e x t e r n s h a r e d f l o a t s [] ;
4

5 / * K e r ne l code u s i n g t h e s h a r e d memory * /
6 }
7

8 / / Launching k e r n e l w i th run−t ime s h a r e d memory s i z e
9 foo<<<g r i d s i z e , b l o c k s i z e , s h a r e d m e m o r y s i z e >>>() ;

Listing 3.5: Run-time shared memory definition

Shared memory can also be defined at compile time, as shown in listing 3.6, by speci-
fying the size of the shared memory array. When this is done, there is no need to determine
the shared-memory size when launching the CUDA kernel.

1 g l o b a l vo id foo ()
2 {
3 s h a r e d f l o a t s [1 2 8] ;
4

5 / * K e r ne l code u s i n g t h e s h a r e d memory * /
6 }

Listing 3.6: Compile-time shared memory definition

3.3.3 Global Memory

Global memory is the main memory of the GPU. The size depends on the specific de-
vice and is usually multiple gigabytes on a modern GPU. Global memory is allocated by
calling cudamalloc, or one of its variants. These functions return a pointer to the allocated
GPU memory which will continue to exist until freed by a call to cudaFree or the process
terminates.

The global memory is slow, and without caching, it is however required to store data
that will last across multiple kernels and can be read from and written to from different
thread blocks.

3.3.4 Constant Memory

Constant memory is a read-only version of the global memory that can be advantageous
if a kernel only needs to read from global memory, and not write. Constant memory is
physically part of the global memory, but it is accessed as constant memory the GPU can
use caching to speed significantly up parallel or repeated memory access.

Constant memory is defined using the constant prefix, as shown in listing 3.7. It is
not possible to write to constant memory from kernel code, it is, however, possible to write
from host code using the cudaMemcpytoSymbol function.

46

3.4 CUDA Libraries

1 c o n s t a n t f l o a t c [1 2 8] ;

Listing 3.7: Constant memory definition

3.3.5 Texture Memory
Like constant memory, texture memory is a special way for kernel code to access global
memory in a read-only way. Texture memory does, however, utilize specific hardware
capabilities to significantly increase performance when the data is arranged in a one, two,
or three-dimensional form.

The caching used for texture memory is a spatial locality type cache, which greatly
increases the performance when multiple threads in a thread-block, access points in the
texture memory that is spatially close to each other.

Texture memory is also able to perform extremely fast, hardware-implemented, linear
interpolation, which makes it possible to sample the texture using a real-valued coordinate
and get the interpolated value of the neighboring points in the texture.

3.4 CUDA Libraries
CUDA has many public libraries that implement commonly used functionality. Some
of these libraries are created by Nvidia themselves, while others are a community open-
source effort.

We will in this section give a short introduction to the two CUDA libraries that are
relevant for this thesis. Section 3.4.1 provides an introduction to cuBLAS, which is an
official library from Nvidia for performing many common linear algebra operations on a
GPGPU. We also give an overview of Nvidia VisionWorks in section 3.4.2, which is an
Nvidia library covering commonly used computer vision algorithms.

3.4.1 cuBLAS
The cuBLAS library is a GPGPU implementation commonly used linear algebra opera-
tions, such as matrix-matrix and matrix-vector multiplication. The library is based on the
BLAS[3] (The Basic Linear Algebra Subprograms) library, which is a CPU linear algebra
library for C and Fortran that has been in use for several decades. The cuBLAS library uses
the same API (Application Programming Interface) as BLAS to simplify the conversion
from BLAS to cuBLAS.

The cuBLAS library API is divided into three levels.

• Level-1 Functions: Scalar and vector based operations.

• Level-2 Functions: Matrix-vector operations.

• Level-3 Functions: Matrix-matrix operations.

All the function names in the cuBLAS library follow a common naming pattern to
simplify the process of selecting the correction function for the task. This naming pattern

47

Chapter 3. CUDA & GPGPU Programming

is cublas<t><f>, where <t> is the datatype and <f> is the operation performed on the data.
The different data types are shown in table 3.1.

Datatype Meaning
S Real single-precision
D Real double-precision
C Complex single-precision
Z Complex double-precision

Table 3.1: Table to test captions and labels

As an example, we will take the level-2 function for calculating a double-precision
matrix-vector multiplication, which is cublasDgemv.

This function is defined to calculate eq. (3.1), where α and β are scalars and op either
has no effect or is a transposition.

y = α · op(A)x + β · y (3.1)

The complete list of cuBLAS functionality is given in [25].

3.4.2 Nvidia VisionWorks
Nvidia VisionWorks is a CUDA library released by Nvidia for computing common com-
puter vision operations on a GPU. The API is split into three versions with different ad-
vantages and disadvantages.

• OpenVX Immediate Mode: This API follows the OpenCV standard set by the
Khronos Group. Each operation is called immediately and blocks execution until
it finishes. The data is stored in opaque structures where the internal data is not
immediately accessible by the user.

• OpenVX Graph Mode: Like the immediate mode, this API follows the OpenVX
standard, but here the computation is defined as a computational graph that may
be executed multiple times on different data. As the computation is defined be-
forehand, VisionWorks can perform several optimizations on the graph to improve
performance.

• CUDA API: This is a low-level CUDA API for VisionWorks. Unlike the other
APIs, the data is completely transparent and accessible, and memory management
is left to the user.

3.5 OpenGL Interoperability & Visualization
The ability to visualize is an essential tool when working with large amounts of data or
complex programs. The visualization of CUDA programs have both advantages and disad-
vantages of the visualization of CPU programs, as GPU memory is slightly more opaque

48

3.5 OpenGL Interoperability & Visualization

and harder to inspect but we may also take advantage of some of the graphical abilities to
visualize the data.

CUDA provides the functionality to inter-operate with both OpenGL and Vulcan,
which are both graphics libraries supported by most modern GPUs. By using this func-
tionality, we can map memory used in the CUDA program to be accessible by OpenGL or
Vulcan code.

49

Chapter 3. CUDA & GPGPU Programming

50

Chapter 4
Direct Visual Odometry Algorithm
& Implementation

In this chapter, we will give a detailed explanation of how the Direct Visual Odometry
(DVO) algorithm functions, using the theory we established in chapter 2. We will also
show how DVO was implemented on an Nvidia GPU using the CUDA library, and give
extra attention to how this implementation differs from the CPU implementation detailed
in [15].

A video of the implementation running can be seen at
https://youtu.be/oioTzMCSmH4.

The full code of the implementation can be viewed and downloaded at
https://github.com/matiasvc/gpu-dvo.

4.1 Direct Image Alignment

In this section, we will detail the theory behind direct image alignment as given in [30]
and [15]. This method is the core algorithm of DVO and allows us to align two views of
the same scene using direct non-linear optimization. Section 4.1.1 introduces the photo-
consistency assumption, which is the base assumption on which direct image alignment is
based. Section 4.1.2 details the warping function that is used to mathematically model the
projection of a pixel in one image into another. In section 4.1.3, we show the probabilistic
reasoning behind the cost function used for the image alignment. Section 4.1.4 shows
how we can optimize the cost function to find the most probable transformation of the
camera. Section 4.1.5 shows how the warp function and its optimization is implemented
on a GPGPU.

51

https://youtu.be/oioTzMCSmH4
https://github.com/matiasvc/gpu-dvo

Chapter 4. Direct Visual Odometry Algorithm & Implementation

Figure 4.1: Photo-consistency assumption

4.1.1 Photo-consistency Assumption

The algorithm is based on the photo-consistency assumption, which is illustrated in fig. 4.1.
This assumption states that color or gray-scale intensity of a point viewed through a cam-
era at one position will be equal to the same point view from a different position. This
assumption is not entirely descriptive of the real world, as it assumes all surfaces to be
perfectly Lambertian as any specular surface will break this assumption. Despite this, the
assumption is accurate enough for DVO to work in most real-world environments. The
robustification methods detailed in section 4.2 will also help to minimize the effect from
surfaces breaking the assumption and other outliers.

4.1.2 Warping function

Figure 4.2: Warp function

The warp function describes how a pixel in the image of one camera is projected into
three-dimensional space with a known depth, and then re-projected back into the image of
a camera with a known transformation to the first image, as illustrated in fig. 4.2.

The projection of a pixel with know depth into three-dimensions is a static transforma-
tion and is not dependent on the transformation we will optimize over. We can, therefore,

52

4.1 Direct Image Alignment

do this once as a pre-processing step for each image. We use the inverse of the projection
described in section 2.2.2 and shown in eq. (4.1), where we project each pixel to a point
on an image plane, one unit in front of the camera origin. By multiplying this vector with
the known depth of the pixel D(x), we get the three-dimensional point in the coordinate
system of the camera.

p = π−1(x, D(x))

= D(x)

(
u+ cx
fx

,
v + cy
fy

, 1

)T (4.1)

To transform a three-dimensional point p we use the function T given in eq. (4.2)
which transform the point according to a given transformation g ∈ SE(3).

T (g,p) = Rp + t (4.2)

We will need to use a minimal parameterization for the transformation to be able to
optimize over it, as described in eq. (2.74). We will, therefore, parameterize the SE(3)
element using a se(3) element as shown in eq. (4.3).

g(ξ) = exp(ξ̂) (4.3)

After the three-dimensional points have been transformed into the coordinate system
of the other camera, we need to project them back into the two-dimensional image. To
do this, we use a simple pinhole projection, as outlined in section 2.2.2. This process is
summarized in the function given in eq. (4.4).

π(p) =

(
fxx

z
− cx,

fyy

z
− cy

)
(4.4)

All of these operations are composed into the full warp function τ as shown in eq. (4.5).

τ(ξ,x) = π(T (g(ξ,p)

= π(T (g(ξ, π−1(x, D(x))
(4.5)

4.1.3 Probabilistic Model
Based on the photo-consistency assumption from fig. 4.1 we can define a residual for
a given pixel i as shown in eq. (4.6). Here the residual is the difference in brightness
between the original color of the pixel in the first frame, and the color of the point hit
when projecting the pixel into the second frame, given the transformation ξ.

ri(ξ) = I2(τ(ξ,xi))− I1(x1) (4.6)

Because of errors in measurement and the the photo-consistency assumption the resid-
uals in eq. (4.6) will be distributed according to a probabilistic sensor model p(ri|ξ). We
assume that the distribution of all residuals are independent and equally distributed, and

53

Chapter 4. Direct Visual Odometry Algorithm & Implementation

we may, therefore, model the distribution over all the residuals as the product of each of
them as shown in eq. (4.7).

p(r|ξ) =
∏
i

p(ri|ξ) (4.7)

Using Bayes’ rule we can rewrite it to the probability of ξ given r as in eq. (4.8).

p(ξ|r) =
p(r|ξ)p(ξ)

p(r)
(4.8)

We will model p(r) as a uniform distribution, and we can therefore rewrite the equation
as given in eq. (4.9).

p(ξ|r) ∝ p(r|ξ)p(ξ) (4.9)

Here p(ξ) is interesting as it models the probability distribution of all possible trans-
forms. By choosing a fitting distribution, we can include a priori knowledge of the dynam-
ics of the system or use a probability based on the measurements from a Inertial measure-
ment unit (IMU). We will show how we do the former in section 4.2.2.

Our goal is to find the most probable transformation ξ given the residuals r, which
gives us the formula in eq. (4.10). We use eq. (4.7) to rewrite the equation to eq. (4.11).
We can then take the log of the formula to get eq. (4.12). This formulation is far easier
to optimize as we have replaced the product with a sum and does not change the solution
as the minimum is not altered by the log operator as it is a strict monotonically increasing
function.

ξMAP = argmax
ξ

p(ξ|r) (4.10)

= argmax
ξ

∏
i

p(ri|ξ)p(ξ) (4.11)

= argmin
ξ
−
∑
i

log (p(ri|ξ))− log (p(ξ)) (4.12)

We will for now ignore the motion model term log(p(ξ)) for the sale of simplicity, and
re-introduce it later in section 4.2.2. To minimize eq. (4.12) will we take the gradient and
set it equal to zero as shown in eq. (4.13).

∑
i

∂ log p(ri|ξ)

∂ξ
=
∑ ∂ log p(ri)

∂ri

∂ri
∂ξ

= 0 (4.13)

By factoring out part of the equation into a separate functionw(ri), we get the equation
given in eq. (4.14).

∂ri
∂ξ

w(ri)ri = 0, w(ri) =
∂ log p(ri)

∂ri

1

ri
(4.14)

54

4.1 Direct Image Alignment

This minimization becomes equivalent to the least squares minimization over a Lie
group as we introduce in section 2.3.8. This result gives us the final minimization problem,
as shown in eq. (4.15).

ξMAP = argmin
ξ

∑
i

w(ri)(ri(ξ))2 (4.15)

4.1.4 Optimization
We now wish to optimize the non-linear optimization problem eq. (4.15). The solution
to this uses the theory we established in section 2.3. We will for now let the weighting
function w(ri) = 1 for the sake of simplicity, and reintroduce it later on section 4.2.1. The
equation we must solve is therefore as given in eq. (4.16). We linearize the equation and
write it as a small transformation ∆ξ away from the current transformation ξ as we did in
section 2.3.8 which gives us eq. (4.17), which we can rewrite as eq. (4.18). This equation
diverges slightly from formula used in [15], where the linearization is done at the identity
transformation ξ̃ = 0 instead of at the current transformation ξ̃ = ξ, we will come back
to the reason for this change in section 4.1.5.

ξ∗ = argmin
ξ

∑
i

(ri(ξ))2 (4.16)

≈ argmin
∆ξ

∑
i

ri(ξ) +
∂r(τ(ξ̃,xi))

∂ξ̃

∣∣∣∣∣
ξ̃=ξ

∆ξ

2

(4.17)

= argmin
∆ξ

∑
i

(ri(ξ) + Ji∆ξ)
2 (4.18)

Using the same method as in section 2.3.8 we can rewrite the problem as the linear
optimization problem eq. (4.19).

JTJ∆ξ = −JT r (4.19)

Which we can see in eq. (4.20) is just a simple linear equation we easily can solve.

JTJ︸︷︷︸
A

∆ξ︸︷︷︸
x

= −JT r︸ ︷︷ ︸
b

(4.20)

The residual jacobian Ji is the Jacobian of the warp function of point i. The warp-
function is the concatenation of the point transformation, point projection, and image in-
tensity function. We can, therefore, use the chain-rule and calculate the warp-function
Jacobian as the product of the jacobians of each of the three composed functions as given
in eq. (4.21).

Ji = ∇I(r)|r=π(T (exp(ξ),pi))
· ∂π(q)

∂q

∣∣∣∣
q=T (exp(ξ),pi)

· ∂T (exp(ξ), p̂)

∂ξ

∣∣∣∣
p̂=pi

(4.21)

55

Chapter 4. Direct Visual Odometry Algorithm & Implementation

The Jacobian of the image function is simply the image gradient as shown in eq. (4.22)
while the jacobians of the point projection and point transformation are given in eq. (4.23)
and eq. (4.24) respectively.

∇I(p) =
[
Ix(p) Iy(p)

]
(4.22)

∂π(p)

∂p
=

fx

pz
0 −

fxx

p2
z

0
fy

pz
−
fyy

p2
z

 (4.23)

∂T (exp(ξ),p)

∂ξ
=

1 0 0 0 pz −py
0 1 0 −pz 0 x
0 0 1 py −px 0

 (4.24)

The product of these three jacobians gives us the full warp jacobian, as shown in
eq. (4.25).

Ji =

Ixfx

pz
Iyfy

pz

−
Ixfxpx

p2
z

−
Iyfypy

p2
z

−Iyfy − py
Ixfxpx + Iyfypy

p2
z

Ixfx − px
Ixfxpx + Iyfypy

p2
z

Iyfypx

pz
−
Ixfxpy

pz

T

(4.25)

4.1.5 Implementation
We will here give an overview how the most basic version of the direct image alignment
was implemented using C++ and CUDA, later in section 4.2.3 we will expand on this
implementation with the implementation of the robustification features described in sec-
tion 4.2.

For testing the algorithm, the TUM RGB-D dataset[32] was primarily used. The imple-
mentation loads corresponding pairs of RGB and depth images into CPU memory, which
is then copied into GPU memory. All further image operation is then in the GPU, and no
images are ever copied out to CPU memory again.

Image Pyramid Creation

While most of the robustification features will be skipped here to be covered in section 4.2
instead, there is one feature that is so vital to the direct image alignment that it would not

56

4.1 Direct Image Alignment

function properly without it. This feature is the use of an image pyramid, as illustrated
in fig. 4.3. An image pyramid is created by taking an image and then blurring it before
lowering the resolution, usually by half, to create a new layer. This procedure is done
repeatedly until the desired number of layers are created. Our implementation uses a
Gaussian image pyramid, which blurs the image with the 5 × 5 gaussian kernel given in
eq. (4.26) and halves the resolution for each level in the pyramid. All image pyramids in
the implementation using 5 levels, which means that as the base resolution is 640 × 480
pixels, the final level has a resolution of 40× 30 pixels.

Figure 4.3: Image pyramid

G =
1

256
·

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (4.26)

The creation of the depth pyramid is done slightly different as the depth images have
missing data as can be seen in fig. 4.4f. We use the same blurring kernel eq. (4.26), but
when a pixel is missing depth data it is ignored, and the division used to set the average
kernel value to one is adjusted to only include the kernel values that are used.

In addition to this, two more pyramids are created for the horizontal and vertical gra-
dient of the brightness image. This operation is done by applying a 3× 3 Scharr operator,
as shown in eq. (4.27), on each level of the brightness pyramid.

57

Chapter 4. Direct Visual Odometry Algorithm & Implementation

Gx =

 −3 0 3
−10 0 10
−3 0 3

 ,
−3 −10 −3

0 0 0
3 10 3

 (4.27)

An example of the resulting brightness and depth pyramids are shown in figs. 4.4a
to 4.4j.

Warp Jacobian & Residual Calculation

As soon as the second image frame is received, the algorithm will start performing direct
image alignment between pairs of frames, as shown in fig. 4.5. Each alignment uses the
depth and brightness from the previous frame to create a three-dimensional point-cloud
of points with an associated brightness. Each image alignment produces a transformation
between two image pairs. We assume the first frame to be at an identity transformation
in relation to the origin and compose new transformations with the existing estimate to
continuously estimate the camera transform as the algorithm runs. The algorithm starts
aligning the level in the image pyramid with the lowest resolution. Once this level has
converged, the algorithm moves the next level, until the final layer has converged. As
a new frame enters, it replaces the memory used by the oldest frame. This procedure
ensures that only frames are kept in memory at any time, keeping the memory usage low.
This process is illustrated in fig. 4.5. A visualization of points warped into another frame
is shown in fig. 4.6a with the resulting error shown in fig. 4.6b.

As mention in section 4.1.4, we chose to implement the calculation of the Jacobian
slightly differently than in [15]. The difference is that the CPU implementation described
in the original paper calculates the warp jacobian once for each point in the first iteration,
and then uses the same Jacobian for each iteration. This method makes sense for a serial
CPU implementation as the small performance gain by not recomputing the Jacobian adds
up as the code loops over each pixel, and the small inaccuracies caused by not recomputing
the warp jacobians does not affect the ability to converge to the true transformation.

The situation is, however, different when implementing this on a GPU. First of all,
the small increase in performance by not recomputing the Jacobian becomes insignificant
when running in parallel as it is not added together many times as with the loop in a
serial implementation. We would also need to store the Jacobian in the first iteration in
memory and load it back for each iteration, and such memory operations would take far
more time than the few instructions we save by not recomputing the jacobians. Therefore
our implementation is more suited for a GPU.

The core part of the CUDA kernel computing the residuals and Jacobians is given
in listing 4.1. Here line 10 to 15 corresponds to computing eq. (4.25). We also make
use of the hardware implemented bi-linear texture sampling described in section 3.3.5 to
sample the gradients, on line 1 and 2, and brightness values on line 17. The operation at
line 22 allows us to count the number of active points, which is used by later operations,
as the given code is only run on points that fall within the image and points outside the
image have their Jacobian and residual values set to zero. A visualization of the resulting
Jacobian values for each of the six columns in the final Jacobian is shown in figs. 4.7a
to 4.7f.

58

4.1 Direct Image Alignment

(a) Level 1 brightness (b) Level 2 brightness (c) Level 3 brightness

(d) Level 4 brightness (e) Level 5 brightness

(f) Level 1 depth (g) Level 2 depth (h) Level 3 depth

(i) Level 4 depth (j) Level 5 depth

Figure 4.4: Brightness and depth pyramids created from images from [32]

59

Chapter 4. Direct Visual Odometry Algorithm & Implementation

(a) Alignment of frame 0 & frame 1

(b) Alignment of frame 1 & frame 2

Figure 4.5: Direct image alignment of image stream

60

4.1 Direct Image Alignment

(a) Warp Image (b) Warp Error

Figure 4.6: Warp Function: Image & Error

1 c o n s t f l o a t gradXValue = tex2D<f l o a t >(g radXTexture , s t a t i c c a s t <f l o a t
>(u + 0 . 5) , s t a t i c c a s t <f l o a t >(v + 0 . 5)) ;

2 c o n s t f l o a t gradYValue = tex2D<f l o a t >(g radYTexture , s t a t i c c a s t <f l o a t
>(u + 0 . 5) , s t a t i c c a s t <f l o a t >(v + 0 . 5)) ;

3

4 c o n s t d ou b l e Ix = s t a t i c c a s t <double >(gradXValue) ;
5 c o n s t d ou b l e Iy = s t a t i c c a s t <double >(gradYValue) ;
6

7 c o n s t d ou b l e z d i v = 1 . 0 / z ;
8 c o n s t d ou b l e z 2 d i v = 1 . 0 / (z * z) ;
9

10 J p t r [p o i n t I d + 0* n P o i n t s] = (Ix * fx) * z d i v ;
11 J p t r [p o i n t I d + 1* n P o i n t s] = (Iy * fy) * z d i v ;
12 J p t r [p o i n t I d + 2* n P o i n t s] = −(Ix * fx *x) * z 2 d i v − (Iy * fy *y) * z 2 d i v ;
13 J p t r [p o i n t I d + 3* n P o i n t s] = −Iy * fy − y * ((Ix * fx *x) + (Iy * fy *y)) * z 2 d i v ;
14 J p t r [p o i n t I d + 4* n P o i n t s] = Ix * fx + x * ((Ix * fx *x) + (Iy * fy *y)) * z 2 d i v ;
15 J p t r [p o i n t I d + 5* n P o i n t s] = (Iy * fy *x) * z d i v − (Ix * fx *y) * z d i v ;
16

17 c o n s t d ou b l e c u r r e n t I m a g e V a l u e = s t a t i c c a s t <double >(tex2D<f l o a t >(
c u r r e n t I m a g e T e x t u r e , s t a t i c c a s t <f l o a t >(u + 0 . 5) , s t a t i c c a s t <
f l o a t >(v + 0 . 5))) ;

18 c o n s t d ou b l e p r e v i o u s I m a g e V a l u e = s t a t i c c a s t <double >(p o i n t . i n t e n s i t y)
/ s t d : : n u m e r i c l i m i t s <u i n t 8 t > : :max () ;

19 c o n s t d ou b l e r e s i d u a l = c u r r e n t I m a g e V a l u e − p r e v i o u s I m a g e V a l u e ;
20 r e s i d u a l P t r [p o i n t I d] = r e s i d u a l ;
21

22 a t o m i c I n c (n A c t i v e P o i n t s P t r , 0xFFFFFFFF) ; / / Count up t h e number o f
p o i n t s t h a t a r e a c t i v e i n t h e o p t i m i z a t i o n

Listing 4.1: DVO Jacobian CUDA code

Linear Equation Solver

Once the Jacobian matrix and the residual vector is computed, we use the cuBLAS library
introduced in section 3.4.1 to compute the matrix A = JtJ and the vector b = −JT r.
This computation is done, as shown in line 4 and 15, respectively, in listing 4.2. The
resulting matrix and vector are quite small, at a size of only 6×6 elements for the matrix A

61

Chapter 4. Direct Visual Odometry Algorithm & Implementation

(a) ξ1 Gradient (b) ξ2 Gradient

(c) ξ3 Gradient (d) ξ4 Gradient

(e) ξ5 Gradient (f) ξ6 Gradient

Figure 4.7: Warp Function gradients

62

4.1 Direct Image Alignment

and 6 elements for the vector b. We can therefore quickly copy them to the CPU memory
and do the final equation solving using the robust Cholesky decomposition implemented
in the Eigen C++ library, as shown on line 32.

1 c o n s t d ou b l e i d e n t i t y S c a l a r = 1 . 0 ;
2 c o n s t d ou b l e z e r o S c a l a r = 0 . 0 ;
3

4 cublasDgemm v2 (cu b l a sH an d l e ,
5 CUBLAS OP T , CUBLAS OP N ,
6 6 , 6 , n P o i n t s ,
7 &i d e n t i t y S c a l a r ,
8 a l i g n I m a g e B u f f e r s . d J , n P o i n t s ,
9 a l i g n I m a g e B u f f e r s . d J , n P o i n t s ,

10 &z e r o S c a l a r ,
11 a l i g n I m a g e B u f f e r s . d A , 6) ;
12

13 c o n s t d ou b l e n e g a t i v e I d e n t i t y S c a l a r = −1.0;
14

15 cublasDgemm v2 (cu b l a sH an d l e ,
16 CUBLAS OP T , CUBLAS OP N ,
17 6 , 1 , n P o i n t s ,
18 &n e g a t i v e I d e n t i t y S c a l a r ,
19 a l i g n I m a g e B u f f e r s . d J , n P o i n t s ,
20 a l i g n I m a g e B u f f e r s . d r e s i d u a l , n P o i n t s ,
21 &z e r o S c a l a r ,
22 a l i g n I m a g e B u f f e r s . d b , 6) ;
23

24 Matr ix6d A;
25 cudaMemcpyAsync (s t a t i c c a s t <vo id *>(A. d a t a ()) , s t a t i c c a s t <vo id *>(

a l i g n I m a g e B u f f e r s . d A) , 6*6* s i z e o f (d ou b l e) , cudaMemcpyDeviceToHost
, s t r e a m) ;

26

27 Vec to r6d b ;
28 cudaMemcpyAsync (s t a t i c c a s t <vo id *>(b . d a t a ()) , s t a t i c c a s t <vo id *>(

a l i g n I m a g e B u f f e r s . d b) , 6* s i z e o f (d ou b l e) , cudaMemcpyDeviceToHost ,
s t r e a m) ;

29

30 CUDA SAFE CALL(c u d a S t r e a m S y n c h r o n i z e (s t r e a m)) ;
31

32 c o n s t Vec to r6d x i d e l t a = A. l d l t () . s o l v e (b) ;
33 x i = Sophus : : SE3d : : l o g (c u r r e n t P o s e * Sophus : : SE3d : : exp (x i d e l t a)) ;

Listing 4.2: DVO Jacobian CUDA code

This whole process is done run multiple times until the Euclidean length of the result-
ing ∆ξ is sufficiently small. The algorithm then moves onto the next level in the image
pyramid, using the current transformation found in the last layer as the starting point for
the next. This method of optimizing over increasingly higher resolution images in the
image pyramid has two primary purposes.

The first is robustness, as lowering the resolution as the effect of smoothing out the
residual landscape. This effect can be seen in section 4.1.5 where we have plotted the value
of the residual resulting from different changes in components of the transformation ξ at
different levels. We can see that the residual curves of the higher levels are smoother than
the other ones. While it may appear that residuals are fully convex even at the lower levels,
it is essential to remember that this figure is only a small sampling along the principal

63

Chapter 4. Direct Visual Odometry Algorithm & Implementation

axis of the se(3) vector space. The real landscape is a highly complex multi-dimensional
landscape that could in certain situations contain local minimas which would be smoothed
away at lower resolution levels.

Another important gain is performance. As the lower levels contain far fewer pixels,
they are much faster to optimize over. Starting the optimization on the lower resolution
images means we can achieve a rough initial estimation of the transformation quickly, and
then only spend a few iterations on the more computationally expensive higher layers to
fine-tune the transformation.

4.2 Robust Estimation
In this section, we will expand on the method and implementation we described in sec-
tion 4.1. This implementation does function on its own, but [15] outlines two methods of
significantly increasing the robustness of the implementation. These are outlier rejection,
which makes the direct image alignment more robust against errors in the data. We will
cover this feature in section 4.2.1. We will also cover the implementation of a motion
model in section 4.2.2. The use of a motion model dramatically reduces the amount of
error in cases of input with a lot of error, like motion blur, and makes the optimization
more likely to converge to the global minimum in the instances of a non-convex residual
landscape.

4.2.1 Outlier Suppression
The outlier suppression is based on the theory we established in section 2.3.7, where we
use a weighting function to reduce the effect of outliers.

The addition of weights to the optimization changes eq. (4.19) to eq. (4.28). Where
the matrix W is a diagonal matrix of all the weights.

JTWJ∆ξ = −JTWr (4.28)

We can in eq. (4.29) see that this does not change the basic structure of the final equa-
tion, and can, therefore, be solved in the same manner. We calculate the matrix A and the
vector b in a slightly different way.

JTWJ︸ ︷︷ ︸
A

∆ξ︸︷︷︸
x

= −JTWr︸ ︷︷ ︸
b

(4.29)

The original DVO paper[15] advocates for using a student-t weighting. This method
does, however, require iterating over all the residuals multiple times to solve for the stan-
dard deviation of the student-t distribution. We chose instead to use Hubert weighting,
as described in section 2.3.7, as the standard deviation to be used in the weights, can be
calculated in a single pass, and still provide great robustness against outliers.

4.2.2 Motion Model
As we are estimating the motion of a physical system in the real world, not all possible
motions are equally likely. The system has mass and is therefore limited in how fast it may

64

4.2 Robust Estimation

−0.4 −0.2 0 0.2 0.4

2

4

·104

(a) Level 1 translational residuals

−0.4 −0.2 0 0.2 0.4

1
2
3
4

·104

(b) Level 1 rotational residuals

−0.4 −0.2 0 0.2 0.4

0.5

1

·104

(c) Level 2 translational residuals

−0.4 −0.2 0 0.2 0.4

0.5

1

·104

(d) Level 2 rotational residuals

−0.4 −0.2 0 0.2 0.4

1,000

2,000

3,000

(e) Level 3 translational residuals

−0.4 −0.2 0 0.2 0.4

1,000

2,000

3,000

(f) Level 3 rotational residuals

−0.4 −0.2 0 0.2 0.4

200

400

600

800

(g) Level 4 translational residuals

−0.4 −0.2 0 0.2 0.4

200

400

600

(h) Level 4 rotational residuals

−0.4 −0.2 0 0.2 0.4

50

100

150

200

(i) Level 5 translational residuals

−0.4 −0.2 0 0.2 0.4

50

100

150

(j) Level 5 rotational residuals

Figure 4.8: Translational & rotational residuals at different image pyramid levels

65

Chapter 4. Direct Visual Odometry Algorithm & Implementation

accelerate. This knowledge is not embedded anywhere in our algorithm, but it is possible
for us to do so by making a few alterations.

First of all, we can change what transformation our optimization starts with. Our
current implementation begins with an identity transformation and starts optimizing from
there. We change this by letting the optimization algorithm start optimizing from the
transformation of the previous frame. This change improves performance, as we will quite
often already be close to the true transformation. This change also improves robustness as
we are more likely to already be in a convex area around the global minima, where we are
guaranteed to converge to the optimal solution.

We may also penalize the optimization from moving too far away from the transforma-
tion of the last frame. This is achieved by further modifying eq. (4.28) into eq. (4.30). Here
ξt−1 is the transformation from the previous frame and ξt is the transformation from the
previous iteration. The matrix Σ, is a diagonal 6× 6 matrix as shown in eq. (4.31). Each
element in the diagonal matrix defines the strength of the motion model for its respective
term in the transformation vector ξ, where a smaller value increases the penalization for
value away from the motion model.

(
JTWJ + Σ−1

)
∆ξ = −JTWr + Σ−1

(
ξt−1 − ξt

)
(4.30)

Σ =

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . . 0

0 0 0 σ6

 (4.31)

As before, we do not alter the structure of the linear equation we must solve, and we
are instead redefining the matrix A and the vector b as shown in eq. (4.32).

(
JTWJ + Σ−1

)︸ ︷︷ ︸
A

∆ξ = −JTWr + Σ−1
(
ξt−1 − ξt

)︸ ︷︷ ︸
b

(4.32)

4.2.3 Implementation

We first give an overview of how the implementation was changed to include robust
weighting. The cuBLAS library does not support diagonal matrices, and we wanted to
avoid having to create the actually W matrix in memory, as it is a very large matrix with
almost only zero values. We chose a more efficient implementation where we calculate
the weights as a vector, as shown in listing 4.3. We then multiply each element of the
vector with the corresponding row of the matrix J to get the weighted matrix J′. We then
calculate the matrix A with cuBLAS as before, now using A = JTJ′. We use the same
matrix J′ to calculate the vector b = −(J′)T r.

66

4.3 Visualization

1 g l o b a l vo id c a l c u l a t e H u b e r W e i g h t s (d oub l e * r e s i d u a l A r r a y , do ub l e *
weigh tAr ray , do ub l e * v a r i a n c e P t r , c o n s t u i n t 3 2 t nArrayElements ,
u i n t 3 2 t * n A c t i v e P o i n t s P t r)

2 {
3 c o n s t u i n t 3 2 t a r r a y I n d e x = b l o c k I d x . x * blockDim . x + t h r e a d I d x . x ;
4 i f (a r r a y I n d e x >= nAr rayE lemen t s) { r e t u r n ; }
5

6 / / Value o f 1 .345 g i v e s 95% e f f i c i e n c y i n c a s e s o f g a u s s i a n
d i s t r i b u t i o n and i s commonly used wi th hube r w e i g h t s

7 c o n s t d ou b l e k = 1 .345* s q r t ((1 . 0 / (* n A c t i v e P o i n t s P t r)) * (* v a r i a n c e P t r)
) ;

8 c o n s t d ou b l e a b s E r r o r = abs (r e s i d u a l A r r a y [a r r a y I n d e x]) ;
9

10 i f (a b s E r r o r > k)
11 {
12 w e i g h t A r r a y [a r r a y I n d e x] = k / a b s E r r o r ;
13 }
14 e l s e
15 {
16 w e i g h t A r r a y [a r r a y I n d e x] = 1 . 0 ;
17 }
18 }

Listing 4.3: Huber weight calculation

To implement the motion model, we can alter the final linear solving that is done on
the CPU. This is done as shown in listing 4.4. We also multiply ∆ξ with a step length
variable which starts at a value of 1 at the beginning of each level and is decreased a bit
for each level. This step length variable was found to increase the convergence rate of the
optimization slightly.

1 Matr ix6d A;
2 cudaMemcpyAsync (s t a t i c c a s t <vo id *>(A. d a t a ()) , s t a t i c c a s t <vo id *>(

a l i g n I m a g e B u f f e r s . d A) , 6*6* s i z e o f (d ou b l e) , cudaMemcpyDeviceToHost
, s t r e a m) ;

3

4 Vec to r6d b ;
5 cudaMemcpyAsync (s t a t i c c a s t <vo id *>(b . d a t a ()) , s t a t i c c a s t <vo id *>(

a l i g n I m a g e B u f f e r s . d b) , 6* s i z e o f (d ou b l e) , cudaMemcpyDeviceToHost ,
s t r e a m) ;

6

7 CUDA SAFE CALL(c u d a S t r e a m S y n c h r o n i z e (s t r e a m)) ;
8

9 c o n s t Vec to r6d x i d e l t a = s t e p L e n g t h * (A + s i g m a i n v) . l d l t () . s o l v e (b
+ s i g m a i n v *(i n i t i a l X i − x i)) ;

Listing 4.4: Linear solver with motion model

4.3 Visualization
A system for visualizing the algorithm while it is running was also implemented, which
is seen in fig. 4.9. While there exist many tools for easy visualization of CPU programs,
there is far fewer to choose from when it comes to CUDA programs. We, therefore, to im-
plement our system using the OpenGL interoperability functionality that exists in CUDA,

67

Chapter 4. Direct Visual Odometry Algorithm & Implementation

as described in section 3.5. The system is capable of visualizing the estimated trajectory
alongside the ground truth trajectory and the pixel projected into the scene using the depth
image. It also displays the image and depth pyramid.

Figure 4.9: DVO Visualization

68

Chapter 5
Evaluation

We will, in this chapter, evaluate the performance of our DVO implementation, in terms
of both speed and accuracy. For this we will use the RGB-D dataset from [32]. From this
dataset, we will focus on the three sequences given in table 5.1, which together showcase
several aspects of the implementation. The tests where run on a machine using an AMD
Ryzen 5 2600X CPU and an Nvidia Geforce 1070 Ti GPU.

5.1 Functionality

The freiburg1 desk sequence is a shorter sequence and will be used to demonstrate the
basic functionality of the implementation, while the freiburg3 long office household is a
longer, more complex sequence that we will use to show the effect of changing the param-
eters of the algorithm. Finally, we will look at the freiburg2 pioneer slam sequence, which
illustrate some of the limitations of the implementation and shows how the performance is
affected by motion blur.

Sequence Length Description

freiburg1 desk 23.40s Shows several sweeps over four
desks in a office environment.

freiburg3 long office household 87.09s The camera moves in a large
circle around a office scene in
the center.

freiburg2 pioneer slam 155.72s The camera is mounted on top
of a Pioneer robot as it is driv-
ing around a hall with several
large objects.

Table 5.1: Dataset sequences

69

Chapter 5. Evaluation

Figure 5.1 shows a plot of the XZ-position of both the ground-truth and the estimated
trajectory of the freiburg1 desk sequence. We can from this plot see that the implementa-
tion can track the path of the camera reasonably well. There is some drifting over time,
but this is to be expected as each transformation between two frames will have some small
error that adds up over time.

−0.5 0 0.5 1 1.5

−0.5

0

0.5

1

X Position [m]

Z
Po

si
tio

n
[m

]

Estimated trajectory
Ground truth trajectory

Figure 5.1: Trajectory of freiburg1 desk sequence

Figure 5.2 shows the number of iterations to converge for each of the levels. There is
a spike in the number of iterations in the beginning as the motion model is initialized, but
the optimization then stabilizes at around 18-20 iterations per frame. We can see that most
of the iterations are done in the higher levels, which are much cheaper to compute, and
just 1-2 iterations are done on the final layer.

20 40 60 80 100 120 140

20

40

Frame

It
er

at
io

ns

Level 1
Level 2
Level 3
Level 4
Level 5

Figure 5.2: Iterations per level for first 150 frames

70

5.2 Stopping Criteria

5.2 Stopping Criteria
We will now look at how changing some of the parameters of the implementation changes
the accuracy and the performance of the implementation. We evaluate the accuracy of the
path using the relative pose error with a distance of 1 second, as detailed in [32].

In table 5.2 we see the result from running the implementation on the
freiburg3 long office household sequence. The optimization is set to run on each level
until the euclidean length of ∆ξ becomes less than or equal to ξmin. We can see that a
lower value of ξmin does decrease the accuracy of the trajectory, not by much however.

ξmin Translation RMSE Translation RMSE Iterations average (Level 1-5)

1e−5 0.015693 m 0.682646 deg 8.03 6.65 10.35 34.72 44.19
1e−4 0.015762 m 0.685008 deg 3.26 3.34 3.53 3.54 3.83
1e−3 0.016141 m 0.701809 deg 1.08 1.60 2.03 2.09 2.50
1e−2 0.016190 m 0.710133 deg 1.00 1.04 1.12 1.12 1.06
1e−1 0.017754 m 0.729568 deg 1.00 1.00 1.00 1.00 1.00

Table 5.2: Stopping criteria

We can in fig. 5.3 see that the change in accuracy, has minimal effect on the accuracy of
the path. Astonishingly, even when we only run the implementation for a single iteration
on each level, the path only degrades slightly. We found these results very surprising, as
we expected the optimization landscape to be far more challenging to optimize. It should,
however, be noted that this sequence is only 87 seconds long, and even a small increase
in error will quickly grow over time. These results do, however, show the implementation
can be run with very few iterations, and therefore run very quickly, in applications where
some error over long periods is not detrimental to the functioning of the system.

5.3 Limitations & Challenges
We will, in this section, utilize the freiburg2 pioneer slam to illustrate some of the lim-
itations of the implementation. This sequence is recorded in a larger room with several
large objects. The camera is placed on top of a Pioneer wheeled robot, which is remotely
operated. The sequence is especially challenging as it contains several short segments of
intensive motion blur as the robot drives over objects on the ground.

The Y-position of a small segment of the sequence is shown in fig. 5.4, at multiple
different values for the standard deviation of the motion model. This plot shows how
the position jumps at several places. We can see that high uncertainty in the motion model
gives a much more significant jump; however, a very low uncertainty causes the estimation
to calculate a wrong path outside the jumps. This sequence does unfortunately not have a
working ground-truth path, but as the camera always stays the same height of the ground,
we know the path should be a straight line.

Figure 5.5 show the same segment as in fig. 5.4, but showing the XZ-coordinates. In
this plot, we can see how a very low uncertainty in the motion model causes the path to
drift away from the others.

71

Chapter 5. Evaluation

−3 −2 −1 0 1 2

−2

−1

0

1

2

3

X Position [m]

Z
Po

si
tio

n
[m

]
ξmin = 1e−5
ξmin = 1e−4
ξmin = 1e−3
ξmin = 1e−2
ξmin = 1e−1

Figure 5.3: Trajectory of freiburg3 long office household sequence

We can see that we can decrease the effect of motion blur using our motion model, but
we must be careful not to use too low uncertainty as it causes the path to drift significantly.
No value does, however, remove the effect of the motion blur and we are not able to avoid
it having a significant impact on the performance of the implementation.

72

5.3 Limitations & Challenges

0 50 100 150 200 250 300 350 400 450

−1

−0.8

−0.6

−0.4

−0.2

0

Frame

Y
Po

si
tio

n
[m

]

Σ = 0.0001
Σ = 0.001
Σ = 0.01
Σ = 0.1

Figure 5.4: Y-position of challenging segment of the freiburg2 pioneer slam sequence

73

Chapter 5. Evaluation

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

−2

−1.5

−1

−0.5

0

0.5

X Position [m]

Z
Po

si
tio

n
[m

]

Σ = 0.0001
Σ = 0.001
Σ = 0.01
Σ = 0.1

Figure 5.5: XZ-position of challenging segment of the freiburg2 pioneer slam sequence

74

Chapter 6
Conclusions & Further Work

In this thesis, we have shown how the DVO algorithm can be implemented on a GPU
effectively and efficiently. We saw that the CUDA library, together with the cuBLAS
and Nvidia VisionWorks libraries provided us with the tools necessary to implement the
algorithm in a massively parallel way on a GPGPU.

Through the implementation, we saw that some design decisions that was a good fit in
a CPU implementation, where better implemented differently on a GPU. This difference
was especially true with regards to memory access. A GPU has multiple different types
of memory, and access to the global memory is an expensive operation causing the re-
computation of particular values to be more efficient than fetching it from memory. We
also saw that we could make use of some of the unique hardware features found in GPUs,
like texture memory with hardware bi-linear interpolation.

Testing the algorithm with different parameters, we found that the implementation
functioned surprisingly well with just a few iterations. We also saw how the motion prior
was able to minimize significantly larger jumps caused by errors in the optimization but
needed to be appropriately adjusted not negatively to affect the optimization.

There is, however, still room for improvements. We did not make use of the cuSolve
library, created by Nvidia. This library is a GPU linear solver library that could have been
used to avoid having to move data to the CPU memory to perform the final solving in
the optimization. We could also have improved the motion model by using data from an
IMU (Inertial Measuring Unit) so that instead of merely using the previous transformation,
we would use the measurement from the IMU. This change would most likely greatly
improved the issues that were observed with motion blur in the images.

DVO is a relatively simple direct visual odometry algorithm. Therefore it would be
an interesting future work to investigate possible GPU implementation of more advanced
algorithms, such as [5], [6] or [9]. Some of these more advanced methods use multiple
processes running simultaneously with coordination and data transmitting between them.
These are complexities which would make a GPU implementation much more challenging
to implement and optimize.

We have also only shown the implementation running on a desktop computer, and it

75

Chapter 6. Conclusions & Further Work

remains to be shown how well this implementation is capable of running on integrated
platforms, such as Nvidia Jetsons, or Nvidia Drive. While the implementation should be
able to run without any alterations, it should be altered slightly to take advantage of the
hardware feature available in such platforms, such as unified GPU-CPU memory, tensor
cores, and vision processing units.

76

Bibliography

[1] Barfoot, T. D., 2017. State Estimation for Robotics. Cambridge.

[2] Bay, H., Tuytelaars, T., Van Gool, L., 2006. Surf: Speeded up robust features. In:
European conference on computer vision. Springer, pp. 404–417.

[3] Blackford, L. S., Petitet, A., Pozo, R., Remington, K., Whaley, R. C., Demmel, J.,
Dongarra, J., Duff, I., Hammarling, S., Henry, G., et al., 2002. An updated set of ba-
sic linear algebra subprograms (blas). ACM Transactions on Mathematical Software
28 (2), 135–151.

[4] Commons, W., 2019. Cmos image sensor.
URL https://commons.wikimedia.org/wiki/File:Matrixw.jpg

[5] Engel, J., Koltun, V., Cremers, D., July 2016. Direct sparse odometry. In:
arXiv:1607.02565.

[6] Engel, J., Schöps, T., Cremers, D., September 2014. LSD-SLAM: Large-scale direct
monocular SLAM. In: European Conference on Computer Vision (ECCV).

[7] Engel, J., Stückler, J., Cremers, D., 2015. Large-scale direct slam with stereo cam-
eras. In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Con-
ference on. IEEE, pp. 1935–1942.

[8] Engel, J., Usenko, V., Cremers, D., July 2016. A photometrically calibrated bench-
mark for monocular visual odometry. In: arXiv:1607.02555.

[9] Forster, C., Pizzoli, M., Scaramuzza, D., 2014. Svo: Fast semi-direct monocular
visual odometry. In: Robotics and Automation (ICRA), 2014 IEEE International
Conference on. IEEE, pp. 15–22.

[10] Harris, C., Stephens, M., 1988. A combined corner and edge detector. In: Alvey
vision conference. Vol. 15. Citeseer, pp. 10–5244.

[11] Hoshino, T., Maruyama, N., Matsuoka, S., Takaki, R., 2013. Cuda vs openacc: Per-
formance case studies with kernel benchmarks and a memory-bound cfd application.

77

https://commons.wikimedia.org/wiki/File:Matrixw.jpg

In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid
Computing. IEEE, pp. 136–143.

[12] Huber, P. J., 1992. Robust estimation of a location parameter. In: Breakthroughs in
statistics. Springer, pp. 492–518.

[13] Kannala, J., Brandt, S. S., 2006. A generic camera model and calibration method for
conventional, wide-angle, and fish-eye lenses. IEEE transactions on pattern analysis
and machine intelligence 28 (8), 1335–1340.

[14] Karimi, K., Dickson, N. G., Hamze, F., 2010. A performance comparison of cuda
and opencl. arXiv preprint arXiv:1005.2581.

[15] Kerl, C., Sturm, J., Cremers, D., 2013. Robust odometry estimation for rgb-d cam-
eras. In: 2013 IEEE International Conference on Robotics and Automation. IEEE,
pp. 3748–3754.

[16] Klein, G., Murray, D., 2007. Parallel tracking and mapping for small ar workspaces.
In: Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM Interna-
tional Symposium on. IEEE, pp. 225–234.

[17] Krames, J., 1941. Zur ermittlung eines objektes aus zwei perspektiven.(ein beitrag
zur theorie der “gefährlichen örter”.). Monatshefte für Mathematik und Physik 49 (1),
327–354.

[18] Lowe, D. G., 1999. Object recognition from local scale-invariant features. In: Com-
puter vision, 1999. The proceedings of the seventh IEEE international conference on.
Vol. 2. Ieee, pp. 1150–1157.

[19] Matthies, L., Szeliski, R., Kanade, T., 1988. Incremental estimation of dense depth
maps from image sequences. In: Computer Vision and Pattern Recognition, 1988.
Proceedings CVPR’88., Computer Society Conference on. IEEE, pp. 366–374.

[20] Moutarlier, P., Chatila, R., 1990. An experimental system for incremental envi-
ronment modelling by an autonomous mobile robot. In: Experimental Robotics I.
Springer, pp. 327–346.

[21] Mur-Artal, R., Tardós, J. D., 2017. Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33 (5), 1255–
1262.

[22] Newcombe, R. A., Lovegrove, S. J., Davison, A. J., 2011. Dtam: Dense tracking
and mapping in real-time. In: Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, pp. 2320–2327.

[23] Nickolls, J., Buck, I., Garland, M., 2008. Scalable parallel programming. In: 2008
IEEE Hot Chips 20 Symposium (HCS). IEEE, pp. 40–53.

[24] Nocedal, J., Wright, S. J., 2006. Numerical Optimization, 2nd Edition. Springer.

78

[25] Nvidia, 2019. Cuda C Programming Guide.
URL https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html

[26] Richardson, A., Strom, J., Olson, E., 2013. Aprilcal: Assisted and repeatable camera
calibration. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, pp. 1814–1821.

[27] Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. Orb: An efficient alternative
to sift or surf. In: Computer Vision (ICCV), 2011 IEEE international conference on.
IEEE, pp. 2564–2571.

[28] Schubert, D., Demmel, N., Usenko, V., Stückler, J., Cremers, D., 08 2018. Direct
sparse odometry with rolling shutter.

[29] Schubert, D., Goll, T., Demmel, N., Usenko, V., Stückler, J., Cremers, D.,
2018. The tum vi benchmark for evaluating visual-inertial odometry. arXiv preprint
arXiv:1804.06120.

[30] Steinbrücker, F., Sturm, J., Cremers, D., 2011. Real-time visual odometry from dense
rgb-d images. In: Computer Vision Workshops (ICCV Workshops), 2011 IEEE In-
ternational Conference on. IEEE, pp. 719–722.

[31] Strasdat, H., Montiel, J., Davison, A. J., 2010. Real-time monocular slam: Why
filter? In: Robotics and Automation (ICRA), 2010 IEEE International Conference
on. IEEE, pp. 2657–2664.

[32] Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D., Oct. 2012. A bench-
mark for the evaluation of rgb-d slam systems. In: Proc. of the International Confer-
ence on Intelligent Robot Systems (IROS).

[33] Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer.

[34] Tomasi, C., Kanade, T., 1991. Detection and tracking of point features.

[35] Trajković, M., Hedley, M., 1998. Fast corner detection. Image and vision computing
16 (2), 75–87.

[36] Wang, R., Schwörer, M., Cremers, D., 2017. Stereo dso: Large-scale direct sparse vi-
sual odometry with stereo cameras. In: International Conference on Computer Vision
(ICCV). Vol. 42.

79

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

80

	Summary
	Summary
	Table of Contents
	List of Figures
	Acronyms
	Symbols
	Introduction
	Motivation & Goals
	A Concise History of Visual Odometry & SLAM
	Taxonomy of Visual Odometry Methods
	Filtering vs. Smoothing
	Direct vs Indirect
	Dense vs Sparse

	Theory
	Three-dimensional Geometry
	Position & Translation
	Rotation
	Homogeneous Coordinates
	Skew-symmetric matrices
	Lie Algebra & Lie Groups

	The Mathematics of Cameras
	Images
	Projection
	Epipolar Geometry
	Lense Distortion
	Photometric Model
	Stereo Cameras

	Non-Linear Optimization
	Linear Least Squares
	Non-linear Least Squares
	Gradient Descent
	Newton's Method
	The Gauss-Newton Algorithm
	The Levenberg-Marquardt Algorithm
	Iteratively Reweighted Least Squares
	Optimization over Lie Groups

	CUDA & GPGPU Programming
	Introduction
	From GPU to GPGPU
	GPGPU vs CPU Programming

	CUDA Execution Model
	Kernels
	Thread Divergence
	Execution Hierarchy
	Kernel Synchronization
	CUDA Streams

	CUDA Memory
	Local Memory
	Shared Memory
	Global Memory
	Constant Memory
	Texture Memory

	CUDA Libraries
	cuBLAS
	Nvidia VisionWorks

	OpenGL Interoperability & Visualization

	Direct Visual Odometry Algorithm & Implementation
	Direct Image Alignment
	Photo-consistency Assumption
	Warping function
	Probabilistic Model
	Optimization
	Implementation

	Robust Estimation
	Outlier Suppression
	Motion Model
	Implementation

	Visualization

	Evaluation
	Functionality
	Stopping Criteria
	Limitations & Challenges

	Conclusions & Further Work
	Bibliography

