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Summary

User privacy has been put into the limelight after numerous scandals where passwords and
other personal user data have been leaked. Europe’s General Data Privacy Regulation,
which took effect in 2018, addresses some of these issues but makes it not so straightfor-
ward to use a blockchain to store personal data. The right to be forgotten dictates that a
user can request a company to delete all their personal data, while the blockchain is an
immutable data structure that does not support deletion. This thesis explores how com-
panies can move storage to the edge, away from centralized databases, while still being
able to aggregate data and use machine learning without compromising privacy. The main
contribution is a caching mechanism for linkable ring signatures that enables orders of
magnitude faster authentication while providing the same privacy guarantees as standard
linkable ring signatures.
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Sammendrag

Brukeres personvern har blitt satt i rampelyset etter mange skandaler der passord og an-
dre personlige brukerdata har blitt lekket. Europas nye personvernlov (GDPR), som trådte
i kraft i 2018, tar opp noen av disse problemene, men gjør det ikke så enkelt å bruke
en blokkkjede til å lagre personopplysninger. Retten til å bli glemt dikterer at en bruker
kan be om at et selskap sletter alle personopplysninger de har om dem, mens blokkjeder
er en uforanderlig datastruktur som ikke støtter sletting. Denne oppgaven undersøker
hvordan bedrifter kan flytte lagring til kanten, vekk fra sentraliserte databaser, samtidig
som de fortsatt kan samle data og bruke maskinlæring uten å ødelegge personvern. Hov-
edbidraget er en hurtigminne-mekanisme for linkbare ringsignaturer som muliggjør en
størrelsesorden raskere autentisering samtidig som de gir samme personvern-garantier som
linkbare ringsignaturer.
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Chapter 1
Introduction

1.1 Purpose

The modern web leaves no place for anonymity. Authentication is usually done with an
email-password pair or social media login, which ties the user to a real-world person. Data
about these users is stored in huge centralized databases, where leaks can affect millions
of people at a time. The motive of this research is to investigate how we can improve user
privacy with decentralization and distributed systems.

Blockchains pave the way to make the world decentralized but meet oppression from law-
makers and governors that want to maintain power. The General Data Protection Regula-
tion (GDPR) affects how a blockchain can store personally identifiable information (PII).
A blockchain creates a way to guarantee that the information is not tampered with while it
is stored. However, storing personal data as plaintext on an immutable data structure is a
direct violation of GDPR’s ”right to be forgotten”, so privacy-enhancing techniques have
to be applied to make the PII private before adding it to a blockchain.

GDPR imposes responsibilities on data controllers and data processors. It assumes that a
single entity controls compute and storage, not a Decentralized Autonomous Organization
(DAO) where no one can be held personally accountable for mistakes. Centralized storage
is a recipe for misuse and data leaks. By decentralizing storage, we can have cheaper,
faster, and more secure file storage. GDPR dictates where information can be stored.
Blockchains are built for a global world that knows no national borders.

Presently, the most important use case for blockchain is digital money. However, storing
value like cryptocurrencies on a blockchain is different than storing information. Cryp-
tocurrency transactions can be compressed with off-chain solutions like zk-SNARKS to

1



Chapter 1. Introduction

prove that a transaction happened, while for information storage, you sometimes need all
the information from the transaction. With value storage, the cryptography can be up-
graded so attackers cannot take control over your funds. However, encrypted data is only
as secure as the encryption schemed first used to encrypt it and since anyone can create a
copy of the encrypted data, it is meaningless to re-encrypt it with a stronger scheme later.
This means that all publicly stored information will be exposed when quantum computers
are made available. We have to make a trade-off between decentralization, privacy, and
scalability.

People think cryptocurrencies are anonymous, but most of them are not. This thesis at-
tempts to raise awareness of what information you expose about yourself interacting with
cryptocurrencies by mapping the information you expose when buying cryptocurrencies.
Exposing your social security number, passport number, or credit card number should not
be necessary. You should only be required to prove your ID without providing it. At the
same time, blockchains with strong privacy-guarantees like anonymous cryptocurrencies
face stiff opposition from governments that demands transparency.

There are many public blockchains under active development, and most of them store data
that can be considered personal. Because of its nature, most of these projects are global,
so personal data is not only stored in countries with adequate privacy laws, as GDPR
requires. To become genuinely global, blockchain projects have to adhere to the strictest
privacy laws. The complexity of these systems makes them hard to reason about.

The research in this thesis is done through the eyes of a computer scientist, not a lawyer,
and contains a technical interpretation of GDPR, not a legal one.

1.2 Research Questions

RQ1: How can we increase user privacy?

There has been much research lately about the security and privacy for public blockchains.
Since there is a strong financial incentive to exploit these systems, they must adhere to
even stricter requirements than private ones (although that is security by obscurity). The
goal is to learn from these distributed systems and find novel ways to apply cryptographic
techniques.

RQ2: Can we use a blockchain to store personally identifiable information?

Can we transform data so it can be stored on a blockchain? When is data sufficiently
anonymized?

2



1.3 Thesis Structure

1.3 Thesis Structure

The thesis is structured into four parts. The State of Internet Privacy chapter describes
what privacy is, defines personally identifiable information, explains how machine learn-
ing makes data more useful, and discusses use-cases for blockchains. The Technical So-
lutions to Obtain Privacy chapter introduces technical blockchain concepts and privacy-
enhancing techniques needed to explain more complex topics later. The Experiment chap-
ter investigates and analyses how storage can be moved towards the edge, and users are
given control of their data. The Related Work and Conclusion chapter evaluates the related
work and compares the experiments with the research goals.

3
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Chapter 2
The State of Internet Privacy

This section explains what privacy is, how GDPR affects data collection and processing for
European citizens, and how GDPR makes it hard to use blockchains and machine learning.
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Chapter 2. The State of Internet Privacy

2.1 Privacy

“Privacy is the power to selectively reveal oneself to the world” – Eric Hughes
in a Cypherpunk’s Manifesto[1

.

]

2.1.1 Definition

Privacy is a human right[2

.

]. It does not mean secrecy, a secret is something you do not
want anyone to know, but it gives you the ability to control what can be accessed by
others. This applies to governments and police, although some governments seem to care
less about it.

If we want privacy, we must disclose as little as possible about ourselves when we transact
with other parties. The other party should only know what is directly necessary for the
transaction. Showing your drivers license to a bouncer not only reveal your age, but also
your name and social security number and when you got the permission to drive. Now, this
information is exposed. To achieve privacy, we need an anonymous transaction system
where we can selectively reveal the information the other party requires. This requires
cryptography, which will be described in Chapter 3.

In the digital age, we often reveal ourselves. When we buy something from a store and
pay with a credit card, the purchase can be used to direct advertisement against us in the
future. Before we handed cash to the cashier and remained anonymous, however, cash is
going away.

2.1.2 I have nothing to hide

Some people might say that they do not care if their privacy is violated because they do not
think they have anything to hide. This is a false premise. You do not need to justify why
you need a human right. You cover your windows with curtains in your home not because
you are doing anything immoral or illegal, but just because you do not want people to
watch you. Even if you have nothing useful to say, does that mean free speech not import?
Moreover, if you do not need your rights, that does not imply that others do not need them.

If payment information is stored on a computer or phone, a hacker can steal your money.
If the door to your computer is open, a hacker can encrypt all your data and demand
ransom[3

.

, 4

.

]. If you have written something critical about someone that can have conse-
quences. By letting advertisers learn about you from your data, they will eventually learn
to know you better than yourself and use that information to manipulate you.

6



2.1 Privacy

2.1.3 Platforms Dictates the Rules of the Game

Data is now arguably the most valuable commodity in the world. Four out of the five most
valuable companies in the world, Alphabet, Amazon, Facebook, and Microsoft[5

.

] all play
significant roles in our lives. They provide free services in exchange for user data and
monetize with the advertisement. These platforms have been hugely successful in gener-
ating revenue at the expense of user privacy. They have sold data to third parties without
being transparent about it[6

.

, 7

.

, 8

.

]. However, it is hard to imagine a life without search, file
storage, navigation, messaging, and online shopping. Power has become concentrated at
these gatekeepers of the truth. They dictate the rules and companies using their platform
has to obey them. Who can publish an app on the app store? What content should be
censored? How much is an artist paid when you listen to their song? Platforms dictate the
rules and can change them at any time[9

.

].

When building a platform for a global audience, local cultural views are often overlooked.
The iconic photo of a naked 9-year old girl fleeing from napalm bombs was infamously
censored from Facebook as it was flagged as nudity, but Facebook was later forced to
restore it[10

.

]. Should a single entity be allowed to decide what we are allowed to share on
a global scale? To decide what can be considered free speech, and what is not? Fake news
should be censored, but it is difficult to define. If President Trump says something untrue,
should it be considered fake news? Most politicians never tell the whole truth. No news
site is free of mistakes and biases, but some make an honest effort to find out the truth.
One person might consider something fake news, while another consider it free speech.
Tech giants are told to do more about fake news by the European Commission[11

.

].

2.1.4 Censorship

There is both business and political risk to let a central entity manage data. It becomes
easier for countries to suppress free speech, like China’s blocking of Wikipedia[12

.

], Egypt
blocking Tor[13

.

] and Venezuela blocking cryptocurrency exchanges[14

.

]. Surveillance can
catch criminals, but who will overthrow a corrupt regime if the regime is totalitarian?

In 2011 the US cut WikiLeaks off from their funding for being whistleblowers[16

.

]. As
97% of the global payment market was blocked, it became harder to donate, and the
blockade was without democratic oversight and transparency[17

.

]. Funny enough, this
lead WikiLeaks to accepting cryptocurrencies as donations and making millions shown
in Figure 2.1

.

. Still, whistleblowing has consequences, and you should be able to remain
anonymous. It is not sufficient to get legal protection if you risk someone slipping some
plutonium in your morning coffee.

Governments want more control, and it seems like we are heading towards an Orwellian
world. France has suggested a ban on privacy-oriented cryptocurrencies[18

.

]. The UK
wants to ban encryption[19

.

]. Australia forces tech companies to add a backdoor in the
software, so they can access data even when it is end-to-end encrypted[20

.

].
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Figure 2.1: Consequence of the banking blockade of WikiLeaks[15

.

]

2.2 GDPR

2.2.1 Definition

The General Data Protection Regulation[21

.

] (GDPR) is a legal framework that provides
guidelines to companies for how personal information can be collected and processed for
individuals that live in the European Union (EU). This includes companies not based in
the EU. GDPR was put into effect the 25th of May, 2018 and promise more transparency,
accountability, and fines up to 4% of the annual turnover.

2.2.2 Personal Identifiable Information

Personal Identifiable Information (PII) is personal data that can directly or indirectly iden-
tify a person (data subject). Examples are names, date of birth, email address, IP address,
or location. PII is used to create better and more personalized services but is also sold to
third parties to create targeted advertisements. GDPR does not apply to anonymized data,
but it is hard to tell if data is truly anonymous. It is difficult to know the consequence of
indirectly linked data when gathering data. Although not specified in the GDPR, it is later
stated in WP29 that data that is indirectly given through observations of your activities,
like access logs, also is considered as PII[22

.

].
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GDPR encourages pseudonymization of data. Pseudonymisation is the process of re-
moving identifiers, so data no longer is directly identifying. This reduces the risk of
data processing while retaining the usefulness of the data. GDPR is more relaxed about
pseudonymized data, so it allows it to be used for other purposed than the original collec-
tion purpose. It also gives leeway to process PII for scientific, historical, and statistical
purposes.

2.2.3 Data controllers

Data controllers are entities that dictate how and why PII is going to be used by the orga-
nization. A data controller can process the collected data or work with a third party. For
PII to be processed, the data subject has to give explicit consent, and it is the responsibil-
ity of the data controller to collect the consent. To ensure a transparent process, the data
controllers must create a privacy policy that outlines:

• What data is collected

• How the data is stored

• How the data is used

• Whom the data is shared with

• When and how data is deleted

Sometimes data is stored on servers in different countries. Some countries, like Argentina,
Switzerland, and New Zealand, have adequate privacy laws, and data can be transferred
freely[23

.

]. Others do not, and here, data cannot be transferred without the data subject
explicitly giving consent after having been provided with the associated risks. The US
has ”partial” adequacy since they do not have a general data protection law; however,
companies that participate in the Privacy Shield Framework[24

.

] are allowed to transfer
data into the US.

Data controllers must be able to prove that they are compliant with the GDPR principles.
This is referred to like the accountability principle.

2.2.4 Data processors

Data processors process data on behalf of the data controller. If the controller and the
processor are not the same, they have to have a contract that dictates for example, what
happens with the data if the contract is terminated. In general, data processors have less
responsibility than data controllers.

9
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2.2.5 The Right to Data Portability

A data subject has the right to request PII about them in a structured format so they can
without hindrance transmit those data to another controller. It is not the data controllers
obligation to transmit the data in a compatible format to the new data controller, but the
data has to be a commonly used machine-readable format.

2.2.6 The Right to be Forgotten

A data subject has the right to ask the data controller to delete PII concerning them. How-
ever, the data subject does not have an absolute right to erasure. If the data is anonymized,
it no longer counts as PII.

This also applies to search engines. Two UK businessmen demanded Google delete their
criminal conviction from its search engine results[25

.

]. Google first refused, but the London
High Court ruled in favor of one of the criminals because he expressed genuine remorse.
The other man’s request was rejected because he had not accepted his guilt and was likely
to repeat his offense.

2.2.7 The Right to Explanation

The right to explanation has become a controversial subject in GDPR[26

.

]. GDPR states
that data subjects should have ”meaningful information about the logic involved” in au-
tomated decision-making processes (article 15h), but does not further specify what this
entails. Data subjects should also be able to opt out of automated processing and have the
right to a human intervention, where they can express their point of view and challenge
the decision (recital 71).

2.3 Data Mining

Data mining is the process of turning raw data into useful information. Learning about
data patterns can help businesses develop more effective strategies, decrease costs, and
increase revenue. By continuously analyzing data, a company can automate decision-
making without waiting for human judgment. Insurance companies can detect fraud, stores
can forecast demand, and farmers can learn how much water is optimal for a tomato plant.
The strategy for many companies has been to hoard data, expecting it will be useful in the
future. It is challenging to handle the volume, variety, veracity, and velocity of the data.
Data mining quickly becomes slow and expensive.
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2.3.1 Artificial Intelligence

Artificial Intelligence (AI) is a field of computer science where machines learn from data
to make intelligent decisions. AI represents a breakthrough for almost all applications as
it allows for unprecedented precision and recall in automation. At a high level, one of the
big goals is to create general intelligence[27

.

]. To be able to perform any intellectual task
like a human.

Machine learning (ML) is a subset of AI, where statistical methods and algorithms are used
to perform a task without explicit instructions, like spam filtering, but also life-saving ones
like a cancer diagnosis. Machine learning trains a model to predict some output for a given
input. The algorithms run on the data and capture patterns from the data and transfer the
learning to the model. ML is classified depending on how models are trained and can
be broadly classified into supervised learning, unsupervised learning, and reinforcement
learning.

Supervised learning requires a lot of training data with labels. For spam filtering emails
would need to be labeled as ”spam” or ”not spam,” and after seeing many samples, the
algorithms will eventually figure out what characteristics make an email likely to be spam.
To verify that the model is a precise prediction, some of the training data is put aside and
only used for verification. If the model is too similar to the training data, it is considered
overfitted, and will only perform well on data that is precisely the same as the training
data. However, this is no good, and we want to generalize the model enough so it can
handle similar, but unknown input. Showing one picture of a dog is not sufficient for it to
learn what a dog is.

Unsupervised learning can learn from data without labels and use clustering to evaluate
how different samples are. Data like pictures can sometimes be very rich and can hardly
be described with a single label (e.g., dog). Unsupervised learning attempts to learn ev-
erything that can be learned about the data without a particular task in mind; to learn for
the sake of learning.

Reinforcement learning allows an agent to learn by trial an error by interacting with the
environment instead of inspecting data. Feedback is given by using rewards and pun-
ishments as signals for positive and negative behavior. The agent seeks to maximize the
reward and minimize its penalty. The advantage of reinforcement learning is that you are
not dependent on data or manual feature engineering.

2.3.2 The Cost of ML

It is hard to get an overview of what companies use your PII for. Personal data is cre-
ating better and more personalized services, but it can also be used for evil. Cambridge
Analytica harvested in 2014 PII from 50M Facebook users and used it to target them with
personalized political advertisements before the 2016 US election[28

.

].
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It is clear that tracking your opinions and political stance can give you trouble when you
apply for a new job. However, trivial things are also essential to keep private. Tracking toi-
let breaks tracks your health. Tracking if you smoke an insurance company can decide you
need to pay more for insurance. Tracking your mouse movement might spot Parkinson’s
before you do, and you might be denied insurance.

Training with biased data also leads to biased decision-making. Face recognition systems
fed fewer photos of dark-skinned people is worse at recognizing dark-skinned faces[29

.

].
Amazon’s internal recruitment tool discriminated female candidates because their histori-
cal hiring decisions favored men over women[30

.

].

2.3.3 Explainable AI

Biased AI is hard to fix because machine learning is not transparent. Machine learning
today is a black box of magic, and it is hard to identify bias before later, and fixing it
retroactively is not trivial. This problematic in combination with GDPR’s ”right to expla-
nation.” A company must be able to give you a better explanation for why they denied your
insurance than ”the algorithms say so.”

2.4 Blockchain

Blockchains are a type of distributed ledgers technology that offers a way to keep records
of transactions. Cryptography enables blockchains to run without the control of a central
authority because everyone participating can audit the history.

Blockchains have similar motivations as GDPR in that power should not be centralized at a
few large actors. However, GDPR still assumes that power is still centralized but at smaller
actors. Blockchains challenges this centralized world and aims to replace centralized enti-
ties all together with decentralized ones. The challenge is, how can a decentralized world
be regulated?

2.4.1 Decentralization

Paul Baran’s diagram shown in Figure 2.2

.

from ”On Distributed Communications Networks”[31

.

]
is often used to explain the difference between decentralization and distributed systems.
Older literature uses different definitions for decentralized and distributed that we use to-
day and provide a lot of confusion[32

.

, 33

.

, 34

.

]. With our modern definition, decentralized
and distributed switch places.

Decentralized systems have no central point of control. Distributed systems use messages
to coordinate actions across components to achieve a common goal. Decentralization can
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Figure 2.2: Degree of Decentralization: (a) Centralized. (b) Decentralized. (c) Distributed
networks[31

.

]

be further divided into three categories.

• Architectural decentralization

• Political decentralization

• Logical decentralization

Architectural decentralization is how physically decentralized the system is. How many
computers can fail before the system breaks down? Political decentralization is how de-
centralized governance is. How many individuals control the system? Logical decentral-
ization is how monolithic the system is. If the system is cut in half, will the two halves be
able to operate independently?

When centralized companies grow, they make their services more valuable for users. After
reaching the top of their growth curve, they start optimizing for profit and stops adding
value for users. For users to get more value, we need there to be another company for
competition. Without competition, we end up in a monopolistic state. A decentralized
non-profit organization never end up in a state where they optimize for profit; they optimize
to have users keep using the project. Projects that have a token have a built-in incentive
for maintainers and developers to improve the project.

Decentralized systems also protect the system from failing, either by accident or by ma-
licious intent. They are fault tolerant, so they are less likely to fail when one component
fails. Attacks on the systems are more expensive to carry out as they lack sensitive central
points to be attacked at a lower cost than the economic gain. It is harder for participants to
collude by doing coordination we do not like.
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2.4.2 Cryptocurrencies

Cryptocurrencies are digital currencies, secured with cryptography and a blockchain. Dis-
tributed consensus replaces a central authority and creates trust where there before could
be none without a trusted third party. Not trusting a third party makes cryptocurrencies
less vulnerable to censorship.

Digital payments are not private. When you purchase something with your credit card,
your bank will learn what you bought, where you bought it and how much you paid for
it. Cryptocurrencies can also be used in a traceable way if, for example, addresses are
reused[35

.

]. This puts the burden of ensuring privacy over on the user.

2.4.3 Third Parties are Expensive and Slow

An important use case for cryptocurrencies is remittance. Remittance is money sent to
support family members in another country. If your bank is not connected to the other
bank, you have to use a money transfer service, which is expensive and slow. The World
Bank estimates that $689 billion was sent as a remittance in 2018 and that the global av-
erage cost for remittance in Q1 2019 to be 6.94%[36

.

]. Sub-Saharan Africa is the most
expensive region to send money to, with a total average cost of 9.25%. These are some of
the poorest people in the world and the people who can least afford it. Cryptocurrencies
offer a way to send money globally with low fees instantaneously. The World Food Pro-
gramme tested Ethereum to send aid money to more than 100,000 refugees and found that
they save more than $40,000 per month in bank transfer costs[37

.

].

2.4.4 Open the world for more cooperation

Today’s centralized systems store vast amounts of data in silos. The interoperability of
data between these platforms is minimal. The vendor lock-in does not allow for sharing
data like pictures between platforms. Why is it not even possible to use one chat program
to communicate with everyone?

The free, open-source social network Mastodon1

.

try to address data siloing by encouraging
people to host server instances and allowing for communication between the instances,
making data portable between services. However, hosting instances requires technical
know-how and is arguably only accessible to the technocratic elite. Mastodon also ends
up not being as decentralized as its vision as most users only join the top 5 instances[38

.

].

Payment is not a solved problem. There are many currencies and payment systems. They
speak different languages, and they have a hard time understanding each other. Moving
money is slow and expensive. International wire transfers take multiple days to clear and

1https://joinmastodon.org/

.
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move through multiple intermediaries that each take a cut. Streaming payments cannot
work with today’s infrastructure as the fees are too high. Networks like Ripple2

.

and Stel-
lar3

.

can handle this by integrating with other payment systems so you can send money
cheaply between countries.

2https://ripple.com/xrp/

.

3https://www.stellar.org/

.
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Chapter 3
Technical Solutions to Obtain
Privacy

This section explores the challenges of preserving privacy when aggregating data. We start
by explaining the disadvantages of using the cloud and argue that users should be able to
decide where their data is stored. We then define cryptographic primitives and blockchain
for building decentralized, private, and secure services. Lastly, we discuss how we can use
these techniques to decouple storage from applications.
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3.1 Local-first Software

3.1.1 Slow Software

When opening an app, it sometimes takes seconds to load data before it is displayed. A
spinner icon is displayed instead, and the app feels slow. The multiple round-trips the
app has to do to fetch data is not all of the perceived slowness. The operating system,
the garbage collector in the runtime and latency from keyboards all add up total response
time. If it takes more than 100ms from user input to the response, the response will not
feel immediate[39

.

]. Overall response time also impacts the bottom line. AWS found that
a 100ms increase in response time decreased their revenue with 1%[40

.

]. When you store
data in the cloud, it becomes tough to create a fast app, and this provides motivation to
store user data locally and synchronize data in the background. It is often useful to access
data from the service, even if it might be slightly out of date.

C O V I Si T Se Sy SP
C 0(1) 22(2) 65(13) 136(5) 189(12) 113(5) 142(12) 159(2) 185(11)
O 22(2) 1(1) 88(14( 125(2) 166(13) 101(11) 131(13) 178(3) 182(11)
V 65(13) 88(14) 1(16) 73(13) 220(22) 156(16) 179(29) 219(13) 121(16)
I 136(5) 125(2) 73(13) 0(0) 180(18) 211(10) 233(14) 301(5) 185(12)
Si 189(11) 166(12) 220(22) 180(17) 1(9) 68(8) 97(13) 169(8) 329(21)
T 133(5) 101(11) 156(18) 211(10) 68(9) 0(3) 32(9) 104(2) 263(15)
Se 142(9) 131(13) 179(20) 233(13) 97(13) 32(10) 1(9) 133(8) 290(16)
Sy 159(2) 178(3) 219(12) 301(5) 169(10) 104(2) 133(8) 1(0) 338(11)
SP 185(13) 182(12) 121(17) 185(13) 329(23) 263(16) 290(18) 338(14) 1(11)

Table 3.1: Average measured RTT between AWS data centers in milliseconds with standard devia-
tion in parentheses

To commit data to a global data store, it is not sufficient to send the data to the closest data
center[41

.

]. Data needs to be replicated to multiple data centers, and this will often require
multiple round-trips to other data centers. Table 3.1

.

shows the average measured Round-
Trip Time (RTT) between AWS data centers in California (C), Oregon (O), Virginia (V),
Ireland (I), Singapore (Si), Tokyo (T), Seoul (Se), Sydney (Sy), and São Paulo (SP). To
achieve consensus between the three data centers that are closest together (C, O, V) we are
already at more than 100ms.

3.1.2 The Cloud in a Support Role

When we store data in the cloud, we do not have ownership of the data, even though we
created it. If the cloud is unavailable, we often cannot use the software. If the service
decides to shut down, there might not be an easy way for us to export the data and run the
service locally. Stringify[42

.

], Google Reader[43

.

], and Mailbox[44

.

] are just a couple of
examples.
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For apps with cloud storage, the clients at best cache data and must send all modifications
to the cloud, or they did not happen. Reversing this order, we make the client the primary
and the cloud secondary for backup and synchronization assistance. Using the cloud as
a backup has two significant advantages. First, only storing data locally is not redundant
enough for data like family photos. It is also not sufficient to back up to multiple devices if
they are all in the same house. What if the house burns down? Second, the primary device
might not always be online or might only be connected to a mobile network. The cloud
makes synchronization possible and limits mobile data usage.

3.2 Cryptographic Primitives

To create a private and secure system, we need two basic primitives. We need to be able to
hide data from others, and we need to be able to prove that the data is ours. This is done
with encryption and digital signatures. Both of these rely on cryptographic hash functions.

3.2.1 Hash functions

A hash function maps data of arbitrary size to data of a fixed size. Hash functions are
deterministic - meaning an input must always give the same hash value. Because the input
data might be larger than the output data, there will be inputs that map to the same output
(pigeonhole principle), but collisions should be rare. A good hash function is uniform in
the sense that every output hash value should be generated with about the same probability.

3.2.2 Cryptography

Cryptography is the study of techniques to prevent a third party or the public from reading
our messages. The un-encrypted message, called plaintext, is converted into ciphertext
with an encryption algorithm to allow for secure communication.

3.2.3 Cryptographic hash functions

A cryptographic hash function is a deterministic function H that maps a message M to a
small fixed-size output H(M):

H(M1) = H(M2),M1 6=M2 (3.1)

Not only should collisions be rare, but it should not be practical to generate these. Some-
times cryptographic hash functions are broken, like SHA-1 was broken in 2017, but remain
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widely used[45

.

].

3.2.4 Symmetric-key Encryption

Symmetric-key encryption uses the same key for encryption and decryption. This requires
that the parties that are communicating have to exchange a secret before they start com-
municating. Exposing the symmetric key affects both confidentiality and authentication.
An unauthorized person can not only decrypt messages but also encrypt new messages and
send them back to the parties that were originally communicating.

C = Ek(M) (3.2)

M = E−1k (C) (3.3)

We define Ek to be our encryption algorithm that uses the key k. We use Ek to encrypt a
plaintext M to a ciphertext C. We observe that the decryption algorithm is the inverse of
Ek and that it uses the same key.

3.2.5 Diffie-Hellman Key Exchange

A Diffie-Hellman (DH) Key Exchange is a way to exchange cryptographic keys over a
public channel. The original protocol uses a multiplicative group of integers modulo p,
where p is prime and a generator g that is a primitive root modulo p.

p and g are defined in public. Alice chooses a secret a and sends A = ga mod p to Bob.
Bob chooses a secret b and sends B = gb mod p to Alice. Alice computes Ba mod p.
Bob computes Ab mod p.

(ga mod p)b mod p = (gb mod p)a mod p (3.4)

Alice and Bob will arrive at the same value, but an attacker Eve will not because of the
discrete logarithm problem.

3.2.6 Public-key Cryptography

Modern cryptography uses the idea that you can make the key used to encrypt your data
public, while the key used to decrypt data is kept private. Because the keys are different,
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we call the encryption schemes asymmetric, and because we can expose one of the keys
to the public, we call the systems public key cryptography systems. The most commonly
used of these are RSA[46

.

], which is named by the inventors of the algorithm: Ron Rivest,
Adi Shamir, and Leonard Adleman. There is a big advantage of not having to do a secret
key exchange before starting communication, but it comes at the cost of about 9x key
length[47

.

].

Algorithms like RSA are based on Trapdoor one-way permutations. Essentially, this
means two algorithms where one is easy to compute, and one is hard.

To let Bob send her encrypted data Alice starts by creating a secret key Sk = dk and derive
the corresponding Pk public key from it Pk = (nk, ek), which specifies the trapdoor one-
way permutation fk of Znk :

fk(x) = xek (mod nk) (3.5)

We assume that only Alice knows how the inverse permutation f−1k can be computed
efficiently. This is the original Diffie-Hellman model.

C =Mek (mod nk) (3.6)

Bob produces a ciphertext C by encrypting a message M with Alices’ public key (n, e).

M = Cdk (mod nk) (3.7)

Alice can easily decrypt C with her secret key dk, but an attacker Eve would, in the worst
case, have to factor nk to compute the private key from the public key, which is very com-
putationally hard. However, more efficient factoring algorithms like the General Number
Field Sieve and the Quadratic Sieve have been moderately successful than the naı̈ve ap-
proach of guessing pairs of known primes. This leads to longer keys and is unsustainable
for mobile and low-powered devices with limited computational power. We need a better
trapdoor function.

3.2.7 Elliptic Curve Cryptography

Elliptic Curve Cryptography[48

.

] (ECC) is gaining traction over RSA and DH because it
offers smaller key sizes and more efficient implementations while providing the same level
of security. The advantage of EC over RSA is the key size. 256 bit ECC provides the secu-
rity of a 3072 bit RSA/DH and computations are done approximately 10 times faster[47

.

].
There have also been no compromising attacks on ECC since when it introduced in 1985.
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Figure 3.1: Point addition on Elliptic Curves (P + Q = R)

An Elliptic Curve (EC) is a curve defined by an equation on the form y2 = x3 + ax + b,
with no cusps or self-intersections. The curve is symmetric over the x-axis, and a line
through two points on the curve will intersect the curve exactly one more place. To move
around on the EC points are added together to produce a third point, as shown in Figure
3.1

.

. The addition is done n times to end up at some point on the curve. The Elliptic curve
discrete logarithm problem is that to compute the number of addition it takes to get to that
point we actually have to do additions until we find a matching point. To illustrate this,
one can imagine a game of billiards. A ball starts at some point and is bounced around
until it ends up at some other point on the curve. Someone observing would easily be able
to count the number of times the ball bounced the wall. But someone not observing would
have to redo the billiard game from start to finish.

3.2.8 Digital Signatures

To have trust in a system, we need authentication, integrity, and non-repudiation. Au-
thentication verifies that a message comes from a certain user. Integrity verifies that the
content has not been altered. This is to avoid a man-in-the-middle attack and random cor-
ruption. Non-repudiation is proof that someone has signed a document. If someone signs
a document, they cannot later deny that they have signed it.

Whole messages are not signed, the hash of the message is signed instead for efficiency,
compatibility, and integrity. Because of this, digital signatures rely on a cryptographically
secure hash function.
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3.2.9 Secret Sharing

Secret sharing is methods to distribute a secret to a group of participants. Each participant
is allocated s, a share of the secret. The secret can only be reconstructed when sufficient
numbers of shares are combined.

Trivial secret sharing

s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sn−1 = sn (3.8)

Create n − 1 random numbers (a1 to sn−1) and XOR them with the secret. The random
numbers and the result of the operations are the shares.

s = s1 ⊕ s2 ⊕ · · · ⊕ sn (3.9)

The weakness in this scheme is that it requires all shares to recover the secret. If one
share is corrupted or lost, the secret is gone. Shamir’s scheme provides a way to recover
the secret with t out of n shares[49

.

]. However, this weakens privacy or requires more
participants.

Secret sharing works well for storage but exposes the secret to someone when we want to
do useful operations on the secret. This someone is often a service provider that we do not
want to trust.

3.2.10 Homomorphic Encryption

Homomorphic Encryption[50

.

, 51

.

] (HE) allows computations on ciphertext where the re-
sult when decrypted would match the result if the operations had been done on the plain-
text. This allows privacy to be preserved when users share sensitive data.

An example of HE is a service provider that shares a public key with some users. The
users encrypt their data and share their encrypted data with the service provider. The
service provider does computations, like adding the encrypted user data and decrypts the
result. The result is then shared with everyone.

Using HE does not mean that information cannot leak. If the service provider is dishonest,
they can decrypt the user’s data straight away. If an attacker controls the network, they
can control n − 1 inputs and differentiate the result to extract a user’s information. HE is
malleable, so an attacker can transform the ciphertext even though they do not know what
it decrypts to.
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HE is computationally expensive, so anonymizing data and storing that data as plaintext
might be more suited for data aggregation.

3.2.11 Blinding

Blinding is a technique where an agent can provide a service without knowing the real
input or the real output. This can prevent side-channel attacks like if an attacker tries to
recover information by measuring computation time or power consumption.

An example of blinding is that Alice has an input , x and Bob has a function f . Alice
wants Bob to compute y = f(x) without revealing y or x. Alice cannot compute y herself
because she might not have enough resources, or she might not know f . By encoding x
with some other input E(x) that is a bijection of the input space of f , Alice blinds the
message. Alice then gives the encoded message to Bob and Bob computes f(E(x)) for
her. Alice can decode the message by applying D and obtaining y = D(f(E(x))))

3.2.12 Zero-knowledge proofs

Usually, we expose more information about ourselves than necessary when we share per-
sonal information. To get into a nightclub, we often show the bouncer our drivers license,
which contains our birthday, which our age can be derived from. There is also a picture so
the bouncer can be sure that the ID belongs to us. But not only that, the license contains
more information like our social security number, which can be memorized and misused.
The bouncer has no business knowing this about us, and we would like a system which
allows us to reveal information about ourselves selectively.

Exposing too much information is also a problem for web applications. For example, if
a client wishes to log into a web server, it often has to prove that it knows the password.
Most often the password is transmitted in cleartext over a secure channel. The server
then hashes the transmitted password and compares it with the stored password hash. The
server, therefore, knows the cleartext password, and we are reliant on the fact that the
server is not compromised.

Having one complex password is not sufficient because they are frequently leaked[52

.

].
It would be safer if servers only stored salted hashes, but many do not follow these best
practices. Re-using password exposes users to many risks. Because we cannot trust other
parties, we want to have a system where we can prove that we know the password without
revealing the password itself.

Zero-Knowledge (ZK) proofs allows us to prove possession of certain information without
revealing the information itself. The first efficient examples of ZK proofs were mentioned
in 1985 by the cryptographers Shafi Goldwasser, Silvio Micali, and Charles Rackoff[53

.

].
The MIT researchers proposed an interactive and probabilistic proof system where no
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information is leaked from the proof, except that it is correct (sound).

To illustrate this, imagine that you are colorblind and a friend has to pens which she claims
are different colors, but otherwise identical. But you cannot tell the difference. Your friend
wants to prove that the pens are different colors without revealing their color. She gives
the pens to you and asks you to hold one in each hand and put them behind your back.
You are then allowed to shuffle them, or not. Then presenting the pens to your friend,
she has to guess if you shuffled. She has a 50% chance of guessing correctly. But doing
this multiple times the probability of her cheating will become very small. For an input of
n-bit, the probability of cheating can be generalized to 1

2n . Because this proof applies to
graph coloring, it can be generalized to all NP-C problems.

However, the problem with interactive constructions like this is the latency it would intro-
duce in a vast network where nodes might be thousands of kilometers from each other. It
would also not be efficient to send many messages for each proof. For cryptocurrencies,
interaction is also a problem. However, zero-knowledge is still a very desirable feature.
You want to be able to prove that a transaction took place without revealing the amount
sent or the parties involved.

3.2.13 ZK-SNARKS

Zero-Knowledge Succinct Non-interactive ARgument of Knowledge (ZK-SNARKS) is a
non-interactive ZK system[54

.

]. To be practical, the proof can be verified within a few
milliseconds and have a short length not to use too much storage space. The cryptocur-
rency Zcash was the first widespread use of ZK-SNARKs[55

.

]. The big drawback with
ZK-SNARKS is that they require a trusted setup to generate randomness. To avoid com-
promising the security Zcash organized a multi-party ceremony where each party generates
a shard of a public-private key pair. You only need the public key, so the private key needs
to be destroyed to avoid actors being able to print money.

3.2.14 ZK-STARKS

The trusted setup issues with ZK-SNARKs was addressed by Eli Ben-Sasson et al. in
2018 when they introduced a transparent ZK system: Zero-Knowledge Scalable Transpar-
ent ARgument of Knowledge (ZK-STARKS)[56

.

]. They correctly identified the lack of
scalability, transparency, and post-quantum security as severe issues with the current ZK
systems. Scalable means that the verification of proofs scales exponentially faster than
the data size. For a blockchain, a full node can thus generate proof in quasi-linear time
(n log n) and convince other nodes what the current state of the ledger is without requir-
ing them to store the entire blockchain or re-compute the current state. Being transparent
means that no trusted setup is required; the randomness used by the verifier is public.

No other universal realized ZK system than ZK-STARKS scales, provide transparency,
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and is post-quantum secure. However, there is, however, also a significant drawback with
ZK-STARKS. Current ZK-STARKS proofs are about 1000x longer than ZK-SNARKS, so
it is likely that research will be on making the proofs shorter or aggregate and compress
them. Scalability is a big debate in the cryptocurrency space as the most successful projects
only manage to do a tiny amount of transactions compared to VISA, as shown later in the
scalability section.

3.2.15 Identity-linked ZK-SNARKS

ZK-SNARKS does not provide a concept of identity; they merely prove that someone
knows something. If you are presenting a proof that you are old enough to buy alcohol,
you must also prove that you generated the proof. This can be done with key derivation
on the secret key. Provide a secret key and compute the associated public key to prove
knowledge of the secret key.

Proofs are likewise very sensitive. If Alice gives Bob a proof that she held more than
1,000 BTC, she might not want the whole world to know, despite that the exact amount is
hidden. This can be avoided by creating a proof that guarantees either:

1. The prover knows the secret and the sender’s secret key.

2. The prover knows the receiver’s secret key.

Using XOR on the previous statements Alice can create a proof because she knows her
secret key as well as the secret. Bob knows that Alice does not know his secret key, so
Alice must have created the proof. However, Dave cannot tell if it was Alice or Bob that
created the proof, so Alice has plausible denyability[57

.

].

3.2.16 Bulletproofs

An alternative to SNARKS and STARKS are Bulletproofs[58

.

]. They are short, non-
interactive, and requires no trusted setup. However, a Bulletproof is more time-consuming
to verify than a SNARK proof. Bulletproofs support proof aggregation, so proving that
Bitcoin transactions happened instead of storing the transactions themselves would shrink
the UTXO from 160 GB to 17GB.

3.2.17 Group Signatures

Group signatures allow any member to sign on behalf of a group without revealing their
identity[59

.

]. This can be useful when we want to make sure someone in an organization
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has signed a document, but we want to provide plausible deniability for the signer. Group
signatures are useful when members want to cooperate and requires a trusted manager
to set up the system. This manager can reveal the signer if there are disputes and group
signature are, therefore, a centralized solution.

3.2.18 Ring Signatures

A ring signature is a group signature but without a group manager[60

.

]. A user can spon-
taneously create a ring signature with a set of public keys that may or may not belong to
anyone else. Other members may not be aware that they are participating in the ring. Ring
signatures provide a way for whistleblowers to remain anonymous while making them
a trustworthy source of information. A person in the government could leak a secret to
a journalist without revealing himself, and the journalist can be convinced it came from
someone in the government. Ring signatures are useful when members of a group do
not want to cooperate. The signature scheme can be simplified to a disjunctive statement
where the signer shows that he has knowledge of one of the secret keys of a set of users: I
know S1 ∨ S2 ∨ · · · ∨ Sn, where Si is a secret key.

Signing

A ring signature σ is created from a set of public keys P1, P2, · · · , Pr for r ring members,
the signers secret key Ss and a message m. The signature σ includes the public keys used
to generate it. Because of this, the size of ring signatures grows linearly with the numbers
of public keys. We define a combining function Ck,v(y1, y2, · · · , yr) which is initialized
with a key k, value v and random values y1, y2, · · · , yr that act as ”fake” secret keys.
The combining function uses the symmetric encryption function Ek generated with the
message m to encrypt the output of XOR operations like this shown in equation 3.10

.

.

Ck,v(y1, y2, · · · , yr) = Ek(Yr ⊕ Ek(yr−1 ⊕ Ek(· · · ⊕ Ek(y1⊕ v) · · · ))) (3.10)

Solving the ring equation Ck,v(y1, y2, · · · , yr) = v we calculate a unique value for ys that
satisfies the equation. The signer obtain xs by inverting gs on ys:

xs = g−1s (ys)

Only the signer has the knowledge to invert his trapdoor, and it should be infeasible to
solve the equation without a trapdoor. Figure 3.2

.

illustrates the combining function and
Figure 3.3

.

depict why ring signatures are called ring signatures.
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Figure 3.2: The Original RSA Ring Signature Scheme Combining Function[60

.

]

Verifying

To verify a ring signature the verifier computes the encryption key k and yi = gi(xi) for
all members of the ring. If the fundamental ring equation is satisfied with these values, the
ring signature is valid.

Figure 3.3: The Original RSA Ring Signature Scheme[60

.

]

3.2.19 Linkable Ring Signatures

Linkable ring signatures provide anonymity but also allows verifiers to determine if the
same ring member[61

.

] has issued two signatures. This is useful in a voting scheme where
voters should remain anonymous but are not be allowed to vote twice in the same election.
It is also useful if we require multiple independent sources to trust a government leak.

We define linkability as signatures that were generated with the same secret key. The
linkability is dependent on the list L of public keys being fixed. If a user signs any two
messages with the same ring, the verifier can tell that the signer was the same (but the
signer’s identity is not revealed).
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LSAG Signature Scheme

Linkable Spontaneously Anonymous Group (LSAG) is a linkable signature that satisfies
three properties: Linkability implies that we can link two signatures by the same signer;
Spontaneity implies that we have no group secret and thus require no shared setup;
Anonymity implies that we have signer indistinguishability.

We define G = 〈g〉 as a group of prime order q, so the underlying discrete logarithm
problem is intractable. Let L = { y1, · · · , yn } is a list of n public keys. H1 and H2 are
independent hash functions where H1 : { 0, 1 }∗ −→ Zq and H2 : { 0, 1 }∗ −→ G. Each
user i has a secret key xi such that yi = gxi .

Signing

1. To get linkability the signer creates a tag ỹ by computing h = H2(L) and ỹ = hxπ .
This ties the signature to a user’s secret key

2. Generate a random seed value u and compute cπ+1 = H1(L, ỹ,m, g
u, hu)

3. For i = 1, · · ·n generate a ”fake” secret key si and compute

ci+1 = H1(L, ỹ,m, g
siycii , h

si ỹci)

4. Compute secret sπ = u− xπcπ mod q

The signature then becomes σL(m) = (c1, s1, · · · , sn, ỹ)

Verifying

1. Compute h = H2(L)

2. For i = 1, · · ·n compute the following

z′i = gsiycii ,

z′′i = hsi ỹci ,

ci+1 = H1(L, ỹ,m, z
′
n, z
′′
n)

3. Check that c1
?
= H1(L, ỹ,m, z

′
n, z
′′
n). If yes, accept the signature

Linkability

Given two signatures σ′L(m
′) = (c′1, s

′
1, · · · , s′n, ỹ′) and σ′′L(m

′′) = (c′′1 , s
′′
1 , · · · , s′′n, ỹ′′)

check that both signatures are valid and that ỹ′ = ỹ′′. The signatures are created if the
congruence holds.
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Linkable ring signature provides less anonymity than standard ring signatures. If an inves-
tigator subpoenas a user’s private key he can use that key to generate a new ring signature
and test the linkability with the signature of the leaked document to check the signer is
behind the leak.

3.2.20 Formal verification

Extensive code reviews and testing is not enough to discover all faults in a system. The
complexity in modern distributed systems increases the probability of human error in the
design and code. Formal verification is a method to prove that a program is correct for
all inputs. The correctness of the algorithm is proven with math, For example, that a state
machine cannot reach a specific state.

Formal verification can be a valuable tool for concurrent and distributed programs. We
can, for example, use it to prove safety properties: The system cannot lose committed
data, and liveness properties: If the system receives a request, it must eventually respond.

Using TLA+, a formal specification language that is based on discrete mathematics, AWS
found three subtle bugs in DynamoDB where the shortest error trace was 35 high-level
steps[62

.

]. They also found bugs in S3, EBS, and the Internal distributed lock manager.

Figure 3.4: The newbie developer that killed the Parity library contract

Finding bugs is crucial for cryptocurrencies, where millions of dollars are at stake. Every-
one is incentivized to maximize their economic gains by exploiting bugs. One of the most
famous examples of a bug in a cryptocurrency is the Parity suicidal contract bug. Parity
is an Ethereum client and also a multi-signature wallet. A developer new to Ethereum
killed[63

.

] a library contract which the main Parity contract relies on upon and locked
$169m in Ether1

.

.

1https://github.com/paritytech/parity-ethereum/issues/6995

.
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3.3 Privacy-Preserving Data Collection

“Data cannot be fully anonymized and remain useful” – Dwork/Roth[64

.

]

To make a collection of data useful, we need to perform operations on it. We are not
interested in individual data records, but the aggregates. This section will discuss various
techniques for preserving individual privacy when aggregating data.

3.3.1 Anonymization or Pseudonymization?

In general, data is more useful, the richer it is[64

.

]. However, the more rich data is, the
more difficult it is to achieve privacy with anonymization. Removing obvious personally
identifiable information is not sufficient. Sometimes a particular combination of fields
or attributes, like a ZIP code, gender, and date of birth can identify an individual with
remarkable accuracy. In 2000 Sweeny showed that 87% of Americans could be identified
with only those three pieces of information[65

.

]. The attack is performed by linking the
records with non-anonymised records in another data set. By linking anonymized medical
records and voting records, both publicly available) they were able to expose the governor
of Massachusetts’s medical records.

Membership or not membership in a data set also leaks information. If you live in a
sparsely populated area and you know your neighbor has been at the emergency room you
can probably guess their diagnosis by matching the time.

Even revealing seemingly trivial facts is not ok. If Dave buys bread consistently every day
until suddenly not buying bread anymore, an analyst could conclude that he got Type 2
diabetes. The conclusion might be correct, but either way, Dave’s privacy is harmed. This
poses a difficult problem: When is personal data sufficiently anonymized? It is challenging
to anonymize personal data because you do not know what it takes to de-anonymize it.

3.3.2 Federated learning

Typically, machine learning requires that training data is centralized and models are trained
in the cloud. Federated learning is a new approach that enables training on sensitive
data[66

.

]. Multiple hospitals might want to cooperate with training a model, but the data
cannot leave the hospital, even in an encrypted form. Also, competitors in business might
choose to train a model together without exposing their secrets to each other.

Another motivation for doing federated learning is to distribute heavy computations to
devices on the edge. This will reduce the costs of training models and enable training on
rich data, like video, when the connection bandwidth is low. For a self-driving car, it would
be next to impossible (or costly) to send all the sensor data to the cloud for processing.
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While aggregating the models from the clients in the federated learning system, we must
treat the information as confidential. The ML model can also leak information[67

.

]. The
next sections explore techniques of secure aggregation.

3.3.3 Differential Privacy

The traditional way to extract useful information from data is to collect raw usage infor-
mation in a centralized database and then run queries on it. This data is vulnerable to nosy
programmers, hackers, and subpoenas from governments. While it is possible to use ho-
momorphic encryption when doing operations on encrypted data, this is still not efficient
enough for large data sets.

Differential Privacy (DP) is a technique where a user’s identity is obscured by adding
mathematical noise to a sample of the usage pattern[64

.

]. When multiple users share the
same pattern, a general pattern starts to emerge, but with some noise. Raw data is not
collected, and this has several advantages. First, it requires less storage for the service
provider. Second, it provides plausible deniability for the user about their answers. A
medical company might want to do a study where people report if they smoke or not.
The analysis might help us understand how smoking affects our health. If an insurance
company learns that you smoke they might increase your premium. We need a way to
analyze without compromising the user’s privacy by not revealing if the user was part of
the data set. On the other side, predictions are useless if they are too imprecise. Add too
much noise in a model used to diagnose disease and you will kill patients[68

.

]. Differential
privacy is a trade-off between usefulness and privacy.

An example of DP is a research method used in structured survey interviews called ran-
domized response[69

.

]. A user reports an answer to a potentially embarrassing question,
like whether he had sex with a prostitute in the last year. Before he answers, he flips a
coin without revealing the result to the interviewer. If the coin comes up head, he answers
truthfully. Else he answers yes. We can assume that half of the people that honestly would
have said no had to say yes because of the law of large numbers for sizeable randomized
sampling. Therefore, if 40% answered no and 60% answered yes, the true fraction that
had sex with a prostitute would be around 20%. This leaks information about people who
respond ”no”, so we can generalize the response by also providing plausible deniability
for ”no”:

1. Flip a coin

2. If head, answer truthfully

3. If tails, flip coin again

4. If head, answer ”yes”

5. If tails, answer ”no”
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Of course, there would be no actual coin flipping involved, but it would be built into the
client. However, coins are great for illustrating examples. In this second example, we get
privacy for any outcome.

p

heads

heads

1
4

tails

1
4

1
2

tails

yes

p/2

no

(1− p)/2

1
2

Figure 3.5: Probability Tree for Randomized Response

With plausibility deniability for both ”yes” and ”no” we estimate the real fraction of par-
ticipants having the property to be 2(Y − 0.25), where Y is the ”yes” answers collected.

Another method is output randomization. A database stores the information, and a re-
searcher queries the database for information. The database ads noise to the true answer
before sending a response. The database has to make sure each answer does not leak too
much information about the data and that the answers with noise are close to the origi-
nal answers by adding noise from a Laplace or a Gaussian distribution[70

.

, 71

.

]. However,
both randomized response techniques leak data if the participants are questioned multiple
times, as we only add a small amount of noise to make the collected data useful.

RAPPOR

RAPPOR is an implementation of the randomized response technique used by Google for
collecting usage statistics in Google Chrome[69

.

, 72

.

]. Instead of only ”answering” one
question at a time, answers are encoded as strings and added as vectors in a Bloom filter.
This allows for collecting queries repeatedly without the loss of privacy. Still, RAPPOR
adds noise, which makes it unsuitable for some applications. DP remains hard to get right,
and a sign of that is that there are papers written only to point out errors in existing papers
about DP[73

.

].

3.3.4 Prio

Instead of adding noise to the data Prio[74

.

] takes another approach. Data is divided into
shares on the clients and sent to multiple servers for aggregation. As long as at least one
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server is honest (and servers can be managed by different entities), the servers learn nearly
nothing about the information. This is used by Mozilla Firefox to learn how many users
that use ”private browsing” without revealing who these are[75

.

].

Prio Scheme

1. Clients split its private data into s shares, one for each server, and sends the data on
a secure channel to the servers

2. Servers aggregate the shares

3. Servers publish their accumulators, and a total sum of the accumulators yields the
correct sum

Robustness and Correctness

Choosing a privacy advocating company to administer one of the servers make it next to
impossible for the other servers to learn any personal information. The downside of this
is the robustness of the protocol. If one server fails to do is a job, the aggregation will not
work. We could make the protocol with s servers handle k faulty servers but only protect
the privacy of s− k− 1 malicious servers. Placing a server in a country with strict privacy
laws and no extradition would probably keep the data safe.

To protect against faulty or malicious clients, Prio uses a ZK proof called Secret-shared
Non-Interactive Proofs (SNIP) to prove that data is inside a valid range. Prio provides
privacy with only a 5.7x slowdown compared to naı̈ve data collection, which is a lot faster
than alternative systems.

By having different entities manage the Prio servers, we can ensure privacy as long as all
of the parties avoid colluding. E.g., one server can be managed by app developers, and
one can be managed by the mobile application platform (e.g., App Store or Google Play).

One thing that Prio does not solve is participation in the aggregation. To avoid spam it is
suggested to use API keys for authentication, but this leaks information about participation
and can over a long time leak data the same way as DP if the same data is collected multiple
times. This problem will be discussed further in the Experiment section.
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3.4 Blockchain Building Blocks

3.4.1 Definition

A blockchain is a database where the participants do not need to trust a central party to
maintain the state of the database. The blockchain is structured as a linked list, where the
elements are called blocks, and the pointers chain the blocks together. All the nodes on the
network store the blockchain (also called a distributed ledger) and can validate the current
state and the new state when blocks are added. Blocks can never be removed. Each block
contains the cryptographic hash of the previous block, a timestamp and transaction data.
By design, a blockchain is protected against modification of blocks and can store data in a
permanent and verifiable way.

3.4.2 Cryptocurrencies

Cryptocurrencies are digital assets that use cryptography to secure financial transactions
and to print more money. Unlike the central banking system control is decentralized and
typically managed with a blockchain, though some projects are more centralized than
others.

3.4.3 Bitcoin

Bitcoin[76

.

] (BTC) is the blockchain-based payment system with the highest market cap
and regarded as the first decentralized cryptocurrency. The decentralization came as a
result of Satoshi Nakamoto solving the double-spending and centralized money creation
problem in 2008. Double-spending refers to an individual being able to spend the same
money twice. Because network communication in the network is not instantaneous differ-
ent parts of the network might receive different next blocks. This network partition results
in a fork and creates different states in the network. Because of this, it is not enough to
trust a transaction from a block on the ledger. It must be hardened first. The conflict is
solved when a new block is mined for one of the forks. Bitcoin chooses the longest chain,
and the shorter one will be discarded. It is therefore recommended to wait for 6 more
blocks to be added after your block (confirmations) before you consider something added.
The finality is still only probabilistic since you could theoretically have a 51% attack.

3.4.4 Ethereum

Ethereum (ETH) is a decentralized platform that runs smart contracts. The Ethereum
Virtual Machine (EVM) is a Turing-complete virtual machine that runs on the Ethereum
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blockchain, which can execute scripts on a decentralized network of nodes. The script
requires gas to be deployed and run. This is a mechanism to mitigate spam and allocate
resources on the network. Smart contracts are programs stored on a blockchain. They can
run (in theory) without any possibility of downtime, censorship, fraud, or third-party inter-
ference. In Ethereum smart contracts are written in a higher-level language and compiled
down to EVM bytecode before being deployed.

Figure 3.6: How a smart contract interacts with a blockchain[77

.

]

3.4.5 Making Blockchains Secure

Blockchains rely on cryptography for integrity, authentication, and non-repudiation. Digi-
tal signatures ensure that a document has not been altered while it was transferred. Authen-
tication makes sure the owner of a document can be verified based on a digital signature.
Non-repudiation means that the sender of a signed document cannot deny signing it. Both
Bitcoin and Ethereum use the Elliptic Curve Digital Signature Algorithm (ECDSA) for
signatures as the key size is a lot smaller for the same level of security.

3.4.6 Merkle Tree

Merkle Tree is a data structure that allows efficient and secure validation of large data
structures. With a tree of hashes, two lists of data can be compared with only the root
hash. This makes validation of blocks in blockchains much faster.

3.4.7 Smart Contracts

Smart contracts[79

.

] are contracts written with code that facilitate interaction without a
trusted third party. A blockchain is used to store the contracts, so they are immutable and
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Figure 3.7: Merkle Trees - a tree of hashes[78

.

]

decentralized. Since vulnerabilities cannot be removed once a contract is deployed, the
contracts should be formally analyzed to avoid exploits[80

.

].

Smart contracts let us create a decentralized version of Kickstarter2

.

that does not charge an
8% fee[81

.

]. A company or entrepreneur can create a smart contract that only gives them
access to the fund if a specific funding goal is reached. If this does not happen, everyone
that put money into the contract are automatically refunded.

3.4.8 Desirable Privacy Properties For Transactional Data

We do not want anyone to know when we spend money. Unlinkability is when you can’t
tell who sent money. If someone sends money twice, you cannot even tell that it is the
same person sending money. The same applies to storing data. If an outsider can observe
that you are storing the same bytes again, they can learn something about that data.

Another desired property is not to be able to trace funds. If someone knows you have
money, they should not be able to tell when you spend it. This is called untracability.
This also makes money fungible.

2https://www.kickstarter.com/
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3.4.9 Consensus

To avoid double-spending, the network has to agree on the state. It is unpractical to wait
an hour for 6 confirmations, and there exist other means to get consensus. The consensus
is harder when we have a public network where we do not control all actors. When money
is involved actors have an incentive to try to game the system, and we have to protect the
network not only against network forks but malicious behavior.

FLP impossibility theorem

The FLP impossibility theorem[82

.

] is a formal proof that consensus is not always reach-
able in limited time for an asynchronous environment where one process may fail by crash-
ing. The system cannot distinguish between processes being slow or crash failures. The re-
sult of this is that consensus protocols must choose between safety and liveness. Safety
means that nothing bad will ever happen. Liveness means that we will have progress.

Proof of work

Proof of work[76

.

] (PoW) is the consensus mechanism used in Bitcoin and is a mechanism
to prevent spam on the network. The network rewards the first participant that solve a hard
cryptographic puzzle. The first node to solve the puzzle is allowed to create a new block.
Since each block is dependent on the input from the previous block, miners cannot pre-
compute blocks. On average, it takes 10 min for someone to solve the puzzle. If hashing
power is added to the network that average will go down, so the network adjusts itself by
making the puzzle harder.

When a miner has found a valid solution for the PoW puzzle, they broadcast their solution
to the rest of the network alongside transactions for the new block. Miners use electricity
and get tokens as rewards. Miners also get mining fees for mining blocks and transaction
fees. If a higher transaction fee is added to a transaction, it will be processed faster (at
least miners are economically incentivized to do so)

Current fee mechanism for Bitcoin is to reward miners for mining blocks. This will not
be sustainable in the long run; the number of coins that will be created is fixed — the
transition from relying on block rewards into higher fees on transactions. Having fees
for transactions is not clear-cut. There is only room for a certain amount of transactions
per block, and the people that are willing to pay the most to will get their transaction
in that block. It is difficult for a user to know how much they should pay because the
network might congest in a non-predicable way. They probably end up paying more than
needed. A better fee market[83

.

] would be only to pay what the lowest bidder fee that
was accepted into the block. This avoids that some parties accidentally pay millions for a
single transaction[84

.

] and represents the actual demand instead of first-price auctions.
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PoW is dependent on miners to secure the network with useless puzzles. This makes the
network require a lot of energy to be secured and transactions expensive. Yet, lowering
transaction fees and mining rewards would result in the tragedy of the commons. Smaller
rewards will result in fewer miners. Fewer miners and the network might be susceptible to
a 51% attack.

Proof of Stake

Proof of Stake[85

.

] (PoS) is another consensus mechanism where miners are people with
wealth, not computing power. People that stake their wealth and are chosen at random
to be validators and are typically punished if they try to cheat. There is no solving of
cryptographic puzzles, so PoS is much more energy efficient.

To carry out a 51% attack on PoW, you have to temporarily obtain 51% of the hash power
of the network. To carry out a 51% attack on PoS, an attacker would need to obtain 51%
of the tokens. This is a lot more expensive.

dPoS

Delegated Proof of Stake (dPoS) is a PoS system where token holders voter for delegates to
run the system. Each token holders voting power is determined by how many tokens they
hold. The delegates with the most votes are elected to run the system. If they misbehave,
voters can vote for someone else. Because the delegates that run the protocol are rewarded,
there are backups to take their place. This makes for an efficient and effective protocol and
mirrors democracy in many ways. However, just as in a real-world election, a large number
of users might not care about voting, and it is easier to organize cartels and perform attacks
since the system is more centralized.

Byzantine Fault Tolerance

Byzantine Fault Tolerance (BFT) solves the Byzantine Generals’ Problem in a synchro-
nized environment. By signing and passing messages, no expensive mining is required,
and this results in low fees. The catch is that the network needs 2/3 or more honest and
reliable nodes. BFT also has closed membership, which means that there has to be a list
of recommended validators. Usually, the company behind the protocols manages that list,
which makes BFT centralized. Finality is however guaranteed, and the system will not
fork as PoW does.
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Federated Byzantine Agreement

Federated Byzantine Agreement (FBA) refines BFT and makes membership open and con-
trol decentralized. No central entity creates a list of who can participate. Each node creates
a quorum slice of other parties they trust. For example, a non-profit can trust that a trans-
action happened if Mozilla says it happened and Bank of America or JPMorgan Chase
says it happened. FBA favors safety over liveness and will never fork, but can become
unavailable, if, for example, the network splits. The drawback of FBA is that more setup
is required by the node operator.

Consensus Protocol Membership Safety Liveness Scalable
PoW Open No Yes No
PoS Open No Yes Somewhat
BFT Closed Yes No Yes
FBA Open Yes No Yes

Table 3.2: Comparison of Consensus Algorithms

3.4.10 Decentralized Storage

Decentralized Storage Networks (DSNs) store your files on strangers computers and pay-
ing them with cryptocurrency tokens. The InterPlanetary File System3

.

(IPFS) an example
of one of these systems, but many more exist4

.

5

.

6

.

. Data is content-addressed instead of
location-addressed. Instead of telling the browser to get the data stored at example.com’s
IP address, you ask for the content that has the hash value of the data.

Qmc5gCcjY ypU7y28oCALwfSvxCBskLuPKWpK4qpterKC7z (3.11)

The hash in equation 3.11

.

is the hash for ’Hello World!’. The first byte indicates the
hash function that was used to produce the hash (default now is SHA-256). The second
byte indicates the length of the hash, and the rest is the output of the hash function. Like
Bitcoin, IPFS uses Base58 to make the hash more user-friendly, by avoiding characters that
can be mistaken for each other in certain fonts (like capital O and zero). The advantage of
specifying the hash function in the hash is that it is easy to later upgrade to a better hash
function while making sure the system is backward compatible. This is called Multihash7

.

.

To store who has what content IPFS relies on a Distributed Hash Table (DHT). No single
node holds information about what other nodes store, but knows where to ask to get that

3https://ipfs.io/

.

4https://storj.io

.

5https://sia.tech/

.

6http://swarm-gateways.net/bzz:/theswarm.eth/

.

7https://multiformats.io/multihash/

.
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information. This is similar to how DNS works. Files are duplicated, so they are resilient,
but not in a wasteful way.

This network is more resilient than a traditional one because the data could be stored in
multiple nodes, so if one node goes down, others can provide the data. Re-hashing the
content after downloading it makes sure you got the file you were asking for. No one can
change the data when it is being transmitted through the network without you knowing.

Data cannot be removed but will be forgotten by the swarm if peers do not have an in-
centive to store it. This problem can be solved by incentivizing nodes to store and keep
content available by offering the Filecoin token. To get paid, node operators must prove
that they are storing the data, not just claiming they are. This proofofreplication can be
done with Verifiable Delay Functions[86

.

].

3.5 Scaling Blockchains

This section describes the scalability of current blockchains and the work that is being
done to increase scalability.

The first public comment on the Bitcoin whitepaper was how can this scale?[87

.

]. When
Cryptokitties8

.

became popular, Ethereum experienced a sixfold increase in pending trans-
actions, and almost it almost brought the network to a grinding halt[88

.

]. Scalability has
arguably become the most important debate[89

.

, 90

.

] in the cryptocurrency space, as Bitcoin
consumes more electricity than 159 countries at peak[91

.

].

To scale blockchains, we can build on decades of research of distributed systems. We start
by defining a naı̈ve blockchain. All nodes store and process the same information. Adding
nodes will not make the network able to store or process more transactions, but will make
the network more collusion-resistant. One can argue that at a point, adding nodes for this
system is a waste of electricity. To add more capacity to the network, we scale vertically by
using more powerful nodes. We can process faster and store more information, but these
increased hardware requirements restrict who can operate nodes and make the network
less secure and more vulnerable to collusion. Mining is centralized to only powerful node
operators running specialized hardware.

The scalability trilemma[92

.

] dictates that a blockchain can at most have two out of the
three properties:

• Decentralization

• Scalability

• Security

8https://www.cryptokitties.co/

.
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We observe in Table 3.3

.

the different priorities of payment systems and that none achieve
all three properties[93

.

, 89

.

, 94

.

, 95

.

, 96

.

].

System Degree of Decentralization Peak TPS Finality time Private
Bitcoin Distributed 7 1 hour Maybe

Ethereum Distributed 15 2 min Maybe
EOS Decentralized 250 Not guaranteed Maybe
IOTA Centralized 1,500 1 min Maybe
Ripple Decentralized 1,500 4 sec Maybe
Stellar Distributed 4,000 3-5 sec Maybe
Visa Centralized 56,000 Days No

Table 3.3: Classifying payment systems with regards to the scalability trilemma

Bitcoin and Ethereum are secure and decentralized, but not speedy. In the other end, Visa
is very speedy but is centralized and prone to censorship. In between, we have private
systems like Monero and Zcash and systems that are more decentralized than distributed,
like Ripple and EOS. They have many nodes, but few validator nodes, so they are less
censorship resistant. However, still possible to host a node and keep a local copy of the
blockchain. However, there is no mining reward and therefore, little incentive for regular
users. However, more prominent entities could be incentives to do so.

3.5.1 Layer 1

Layer 1 scaling refers to scaling the core blockchain protocol to achieve scalability. This
can be done with sharding, better consensus algorithms, use more powerful nodes, or use
an alternative data structure to store blocks.

Sharding

Sharding is horizontal scaling by partitioning data into shards of data. If the data is too
big to be stored on one node, split the data and store the parts on different nodes. This
might seem straightforward. Split the key space from A-M and N-Z and store it on two
different nodes. However, what if the keys in the first key space are more common than in
the second one? A hotspot like this might create more load on one node, which also might
change over time. The system must be able to rebalance itself, preferably in real-time.
Sharding for blockchains is even more complex as the hashing power used to secure the
network is split over shards. Less computing power is needed for an adversary to do a 51%
attack.
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Other ”Blockchains”

There exist multiple data structures that compete with blockchains. IOTA’s tangle[97

.

] is a
DAG where a new transaction must do work to approve two earlier transactions. No miners
are required as users do work to add their transactions. This works both as an incentive
and an anti-spam mechanism. Removing miners enables zero fees and high scalability.
However, for now, the tangle requires a centralized coordinator.

Figure 3.8: IOTA’s tangle - a DAG[98

.

]. The grey node is unconfirmed as no other transaction links
to it.

Nano’s block lattice[99

.

] has users store their account blockchain off-chain. A transaction
requires two transactions: one for the sender and one for the receiver. As with IOTA Nano
have zero fees, and the unpruned ledger containing 14 million transactions is only 7.5GB.
Zero fees might sound like a good thing, but if no one is incentivized to secure the network,
an attacker might be able to carry out an attack.

Figure 3.9: Nano’s block lattice[99

.

]. S represent a send transaction and R represent a receive
transaction
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3.5.2 Layer 2

Layer 2 scaling refers to building a more performant layer which can fall back on the base
layer for safety in case a black swan scenario9

.

emerges. These systems are often off-chain
and require the base layer to lean towards safety and decentralization.

The simple solution for scaling is to avoid putting transactions on the blockchain because
they are expensive. Interaction with layer 1 happens only if there is a conflict or for
checkpointing. This enables micropayments as transactions are fast and cheap.

Lightning network

Lightning Network is a layer 2 protocol built for Bitcoin. The lightweight software users
to run nodes on commodity hardware since no mining is involved. There exists several
implementations10

.

11

.

12

.

13

.

and this provides decentralization. If there is found a bug in one
of the clients, users can switch to another.

Plasma

A current limitation of smart contracts on Ethereum is that they are expensive to call. After
all, the computation is duplicated over thousands of nodes. Computationally expensive
transactions are therefore much more expensive to run on Ethereum than on a cloud VM.
Plasma organizes blockchains in a hierarchical tree - to spawn child chains, which also can
spawn child chains and do expensive operations on the child chains. Commitments will
periodically be relayed to the root blockchain. A child chain can charge lower transaction
fees because the operation does not have to be replicated over all the nodes in the root
blockchain. Plasma guarantees that everyone can withdraw their funds to the main chain
at any time, and if anyone tries to cheat, they are penalized because they have to stake a
deposit to participate. This makes it safe even if a single entity controls the entire child
chain.

3.5.3 Verification of Computational Integrity for Confidential Data
Sets

When a new Bitcoin node is added to the network, it should verify the blockchain. To
verify the integrity of the blockchain, we compare the hash of the last block with everyone

9An event that is extremely difficult to predict, yet have catastrophic ramifications
10https://github.com/mit-dci/lit

.

11 https://github.com/ElementsProject/lightning

.

12https://github.com/ACINQ/eclair

.

13https://github.com/lightningnetwork/lnd

.
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else. If it is the same, we know that all the transactions before are the same, unless a 51%
attack has happened. Verifying smart contracts is more tricky, as the verification takes as
much time as executing the smart contract.

A party P reports that doing a computation C on a data set D will result in particular
output. If a data set D is public any party can verify C(D) by re-execute C and compare
the output with what was reported by P and ensure that it is C(D). This naı̈ve solution
does not scale as we have to read the whole data set D linearly. If the data set D contains
confidential data, a third party cannot use this naı̈ve solution as it would violate privacy.
To solve this in the real world, we often rely on a trusted third party, like an accountant,
to verify the computation on behalf of everyone else. Putting trust in a single third party
opens up the possibility for collusion. ZK proofs can replace these third parties and create
scalable and transparent proofs that we can verify efficiently. The proofs are shorter than
D and are verified faster than a naı̈ve examination.

3.6 Privacy in a Cloud-Native World

3.6.1 A Naive Way to Build a Secure Storage

Databases are an important part of the modern computing experience. They are a central
part where users can store and access the same data. An advantage over only storing
the data on a user device is the redundancy you get. Replication over multiple drives
and geographical zones make sure you do not lose your family photos if disaster strikes.
Databases also provide ”unlimited” scalability. The pay-as-you-go model ensures you can
buy more capacity instead of buying a new device when the storage capacity is exceeded.

Because databases often contain sensitive data, there is (or at least should be) a strong
incentive to encrypt the data. The goal is to make sure you can access your data, and
others can not — even the database provider which have physical access to the server. A
naive solution to this problem would be to encrypt the data on the client and upload the
encrypted data to the database while storing the encryption key on the client. However, this
renders the modern database to a simple key-value store, unable to do range queries. Data
would no longer be sorted because that would leak information. If records were sorted, an
attacker could insert other records and leak information about specific records.

However, being able to range queries is one of the most useful features of a relational
database and not something we want to forego. Instead of offloading the work on the
database, the client has to download all the data rows and query themselves. This might
not be possible because of the sheer size it takes to store the data on the client, and the
time it takes to download it all makes it unusable from a usability perspective. While this
is not great for database records, it works well for file storage, as we will see later.

Deterministic encryption creates the same ciphertext for the same plaintext. If queries are
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done on surnames, the attacker can guess the name by observing repeated queries since
some names are more common. Adding a unique salt to the encryption scheme would
avoid this but come at the cost of duplication.

Order-preserving encryption leaks the order of the records and in combination with the
data distribution is it possible to reconstruct the majority of records in some databases[100

.

].

In a world where data breaches are the norm[101

.

] maybe any type of encryption is better
than storing records in plaintext? Alternatively, maybe this gives the developers corpulent
confidence in the security of the system? Maybe this problem has no good solution[102

.

]?
They do not have network access to our system, so it is ok that the internal communication
in our system is unencrypted. Too many rely on security by obscurity.

3.6.2 Central Storage and Trust

Can we trust the cloud provider? If data is not encrypted, they have physical access to the
hardware and can extract the entire data set. Even encrypting the data is not enough. By
observing RAM access patterns, one can perform statistical attacks to learn what informa-
tion is accessed. Centralizing storage creates a valuable target to hack. Economics dictates
that it is worth it to attack if the reward is more significant than the resources used to attack
and the risk. Storing data multiple places divides the resources used to attack and makes
the reward for a successful attack smaller.

3.6.3 Trusted Hardware

Sometimes encrypting data is not sufficient to ensure privacy. If an adversary can observe
access patterns to encrypted storage or memory, they can still learn sensitive information.
Oblivious RAM[103

.

] (ORAM) is an interface between the program and the physical RAM
that shuffles memory, so data access patterns are hidden.

In 2013 Apple introduced the idea of a Secure Enclave Processor (SEP) to store and run
sensitive data. Since then Intel has created Intel SGX (Software Guard Extensions) that
allows private regions of memory inside the CPU. This makes it possible to build a trusted
system on top of untrusted software resources, like a malicious operating system or hyper-
visor. However, it does require trust in Apple and Intel not having put in backdoors.

3.6.4 Trust on the Blockchain

For blockchains, we need a trusted method to communicate with the real world. This is
referred to as the ”Oracle problem”. We need a way for smart contracts to access external
data sources that they can trust. Smart contracts cannot access the data itself because
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inconsistent answers and time-outs might shut down the whole network. Many of the use
cases for blockchain do not work without a trusted oracle, like a weather report for crop
insurance, how much electricity is produced by a solar panel and sold and the outcome of
an election on a prediction market.

Figure 3.10: Chainlink’s blockchain agnostic decentralized oracles[104

.

]

Chainlink[105

.

] develops a decentralized oracle system that uses a reputation system when
deciding which sources to trust. If a data source reports a result that deviates too much
from the mean value or takes too long to respond, their input will not be included in
the aggregate, and they will have less influence on future aggregations. Services will,
therefore, be strongly incentivized to provide high availability and performance.

3.6.5 Secure Aggregation

Secure aggregation is a type of secure multi-party computation algorithm where multiple
parties aggregate their values without learning anything about other parties values. This
can be used to count how many people are in an area without exposing who is there or
collecting sensitive medical data.

Trusting a Centralized Actor

To create a secure aggregator, you need two properties to hold. To be able to create a
public-private key pair where no one else can now the private key. No one should be
able to snoop on the hardware and extract the key. Moreover, the aggregation should only
happen if N of the users participate.

Google’s federated learning model can be attacked by them if they create N −1 users. We
need at least 3 honest users part of the aggregation for t to work. This can be solved by
generating random user results (noise) and adding these as part of the aggregation. 3 users
would not affect the total result by much if N is 1000 but make it a lot harder to extract
user data by diffing the result. Another problem with Google’s secure aggregator is that
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you have to trust that they are running precisely that algorithm and nothing else. I have no
way of knowing if they are genuinely using an incorruptible third party for the aggregation
without any backdoors. The code is not public and verifiable. Even if it was how can we
make sure Google is using that code and not some other code with a backdoor?

Selective denial-of-service attack

If adversaries prevent all honest clients except one from contacting the servers, and they
provide all the other values they can differentiate and learn the honest client’s values.

To avoid Selective DoS attacks, we can add authentication and only allow authenticated
clients to participate. However, API keys leak information to the servers about who is
participating. In the Experiments chapter, we address this by using ring signatures to
create anonymous authentication.

3.6.6 Federated Learning With Secure Aggregation

Federated learning is suitable for a system where the clients produce vast amounts of data,
and the cost of collecting the data is significant. An alternative approach would be to
sample the data, but this would make the predictions less precise. For federated learning,
Google assumes honest-but-curious actors. We assume a Byzantine environment (trust
no-one).

It should be up to the user to decide where they want to store their data. Maybe they want
to use the service but do not trust that the cloud provider can store their data securely?
Maybe the company have a history of outages or are known to extradite information to the
government? The way the data is encrypted should also be transparent to the user. Too
many systems rely on outdated encryption or no salts.

Alternatively, a blockchain could be utilized to store the data, but the cost would be much
higher due to increased duplication. Cost is an integral part of a system. A system that is
secure but too expensive is impractical.

3.6.7 User best-practices

Many, if not most users do not know how their computer works and they do not care.
The dream of decentralization is to have everyone host their data, to set up a server, but
it is unrealistic that everyone becomes their system administrator. Privacy should not
be reserved for the tech-savvy technocratic elite and those who can afford to buy Apple
products[106

.

]

Because users do not understand how strong a password should be, we expose them to
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risk when we allow them to choose weak passwords. We should strive towards creating UI
patterns that protect users and expose them to as little risk as possible. It is not sufficient
to have a rigorous privacy scheme because if the security becomes too tight, the users will
find a way around it.
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Chapter 4
Experiments

In this chapter, we implement prototypes to demonstrate how we can achieve better user
privacy. Section 4.2 demonstrates how we can recover a lost password without fully trust-
ing a single provider. Section 4.3 shows how we can decouple storage from applications
and how blockchains can provide a recovery mechanism when the client experiences data
loss. Section 4.4 demonstrates a caching mechanism for a voting protocol that provides
authentication, but also plausible deniability for participation.
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4.1 Motivation

We want to move storage to the edge and do useful aggregations while maintaining con-
fidentiality; however, having users storing their data in an untrusted environment presents
new challenges:

• How will data be recovered if a user forgets their password?

• How will a user be authenticated without a linkable API key?

• What if the user does not have enough storage space on their device to store their
data?

• Can we still rely on the cloud, but in a more secure way?

It has become more evident in the last years that companies cannot be trusted to store your
personal information. We should move information from these centralized systems to a
more decentralized one closer to the user. By decoupling storage from applications, we
can have less load on network because data is stored locally or physically close to you.
The user experience can become better because of the lower response time. Our trust
model should change from trusting large companies to assume that we are in a hostile
environment, where no single actor should be trusted alone.

The cloud does not come for free. Lyft plans to spend $300M on AWS in the next 3
years[107

.

] and self-driving cars are estimated to produce between 11-152 TB of data ev-
ery single day[108

.

]. Application providers benefit from users storing their data and ML
models by having lower storage and compute costs. They can also get more high-res data,
and we can train neural networks on all data, not just a sample sent to the server. One can
also argue that federated learning allows for using more sensitive data for training, which
increase the accuracy of the models.

4.2 Split-password

Decoupling storage from the service provider creates a recovery problem. The service
provider can no longer help the user to recover their data if they lose their password.
Forcing users to back up their password on a paper slip and storing it somewhere safe is
not ideal, because you might forget where that somewhere safe is, or your house might
burn down. Concurrently, service providers should not be trusted to store the password
either as this would give them full access to your data.

An alternative to fully trust someone with your password is to split the password into
shares and to have independent parties store the shares in semi-trusted locations. One part
could be encrypted and stored by the service provider, the second could be stored in your
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email inbox and the third in your sister’s Dropbox1

.

. Only by combining all the shares it
would be possible to recover the password.

4.2.1 Setup

We created a prototype that demonstrates a split password scheme2

.

. When a user creates
a password n shares are created so they can recover their password later. The prototype
is based on trivial secret sharing, but could also be extended for redundancy by allowing
some shares to be lost and still be able to recover the password[109

.

].

To create shares, we generate n− 1 random strings with the same length as the password
and XOR them with the password to create the last random string.

password⊕ random1⊕ random2 = random3 (4.1)

To recover the password we XOR all the random strings together.

password = random1⊕ random2⊕ random3 (4.2)

4.2.2 Analysis

We can observe that we only recover password if all parties cooperate. Knowledge of
k − 1 shares reveals no information about the password except its length. To recover the
password, the client has to gather all the shares. However, how can the parties that store
the shares trust that the client really is the client if we cannot authenticate the client? We
have to provide a weaker form of authentication, like answering questions that only the
client should know, but are also likely to forget.

Because we need all shares to recover the password, all parties must collude to recover
the password. This provides good security but is brittle as the shares might be lost or a
service provider might refuse to give us their share when requested. This trade-off between
security and robustness must be evaluated for each use case.

1https://www.dropbox.com
2https://github.com/estensen/split-password

.
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4.3 Blockchain and IPFS

Data should be stored as close to the user as possible to minimize response time. This
is not always possible, due to limited storage space (e.g., mobile phones), so we need
somewhere else to store data. It is unrealistic to expect everyone to be their own system
administrator and administer a server, but we also do not want to hand over the control to
a single service provider. We suggest storing encrypted data in IPFS. IPFS pointers can
be stored on a blockchain to simplify synchronization and backup if the user experiences
data loss.

We wanted to explore if it is possible to store information on a blockchain and maintain
privacy. By encrypting data before storing it on a blockchain, only the ones with the de-
cryption key can make sense of it. Still, there is little reason to use a public blockchain to
store your private information, so a permissioned blockchain is used, to increase perfor-
mance, decrease storage cost and avoid the public even accessing the encrypted data.

The prototype stores data in IPFS and uses a blockchain as a file system. The blockchain
is shared with semi-trusted parties for redundancy. If your device dies, you can request the
blockchain from the other parties and be sure that you still have access to all your files. The
main advantage of using a blockchain to store the pointers is its built-in checksums. When
recovering from device loss, you can make sure you get the correct data by comparing root
hashes instead of naı̈vely comparing all elements. Using a permissioned blockchain, we
can configure it, so the user node is the leader node by default. The semi-trusted nodes
will be used only for data recovery. Because the client is the leader, we do not need a
consensus mechanism. If the client signs something, it is considered the truth.

4.3.1 Setup

We created a proof of concept prototype in Go that stores arbitrary data in IPFS3

.

. Data is
serialized to binary and encrypted before it is uploaded. We encrypt data with AES and
use a different salt every time we encrypt data to avoid leaking that the same information
is uploaded again. This leads to data duplication hell. The IPFS pointer is added to a
blockchain, and the blockchain could be replicated to secondary nodes for backup.

4.3.2 Analysis

The system is centralized around the user and relies on it always being online to share
data. If the client goes offline, data cannot be shared because only the client can decrypt
the data. Routing all data through the client leads to draining batteries on mobile devices
and huge cellular network usage. A user might share photos with a friend and turn off their

3https://github.com/estensen/blockchain

.
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computer. The friend will then not be able to view the photos. One solution would be to
share the decryption key. This is simple but exposes the data forever. The decryption key
cannot be unshared. However, sharing the encryption key will make downloads faster as
data can be downloaded from multiple IPFS nodes simultaneously.

What do we do if nodes storing the blockchain goes offline? Say we have 3 nodes: user
node, insurance node, and hospital node. If the hospital node goes offline and we commit
a result, this will only be backed up in the insurance node. If we have disk failure in our
user node, we can only recover the last result from the insurance node. If the insurance
node behaves maliciously, they can delete the last record. Using symmetric encryption,
we are protected against altering data because the insurance company does not have our
encryption key. To protect ourselves from a malicious party deleting blocks, we can add
more nodes to the system. If we do not trust that the backup nodes act honestly, we can
have them stake cryptocurrency and occasionally challenge them by randomly asking for
data. If they fail to give us the data, we will automatically get refunded some of our
payment from a smart contract.

You could use a simple key-value store instead of a blockchain, but the blockchain has
built-in checksum, which makes the recovery fast and straightforward. Instead of down-
loading both databases and check all key-pairs naı̈vely you can request the latest hash
and compare it. If they match, so does all the keys and values. Then download the
blockchain in parallel from all the other nodes, because you can guarantee the integrity
with the blockchain.

4.4 Linkable Ring Signatures

Previously data aggregation protocols with authentication, like Prio, leak information
about which users participate in the data aggregation because they use API keys for authen-
tication. Using linkable ring signatures (LRS) to not leak information has been suggested
before[110

.

] but is not practical to use on a large set of users, due to the time it takes to
sign and verify the rings and the proof sizes. This would be very expensive for a voting
scheme where users vote regularly. We propose a linkable ring signature scheme where
users are partitioned into smaller rings. The ring signatures are used to create secret cre-
dentials that are authenticated. If the rings are large enough, we only leak information
about participation in two edge cases: If no user in the ring has participated or if all have
participated.

Our contribution is to point out how ring signatures could be used to create a new public-
private key-pair that is anonymous but authenticated. The initial setup cost is high, but
all subsequent requests would only require the server to verify the signature from a single
key, which in comparison to a large ring signature, is almost free.

The registration phase for the user consists of generating an ECC key pair and signing it
with a linkable ring signature of size n. The user sends a message with the new key pair and
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the signature to a server, which authenticates the validity of the signature and checks that
that specific user has not previously generated an anonymous key pair. Linkability is fast
to verify as we can add tokens from verified signatures to a set and check for membership
instead of naı̈vely checking against all previous ring signatures.

4.4.1 Setup

We implement linkable ring signatures in Go and measure the execution time for signing
and verifying signatures against normal ECC signatures4

.

. We would like to know how
practical it is to use rings with many public keys and estimate the time saving from caching
an anonymous key pair over always authenticating with a ring signature. We assume
an ideal world where all citizens have a public key which they can use to authenticate
themselves. Users that are authenticated for a given service have their public key added to
a public repository. We also assume all users can reliably download all the public keys.

We use ECC over RSA as the size of the signature is smaller, and they are faster to verify.
All tests were run on a MacBook Pro (15-inch 2017) on macOS Mojave beta 6 with a 2.8
GHz Intel Core i7 processor and 16 GB RAM. The measurements were done 10 times, and
the averages over these measurements were used. From the theory, we assume the signing
and verification will scale linearly.

4.4.2 Results

Ring Size Sign (s) Verify (s)
10 0.011(0.0010) 0.0097(0.0011)
100 0.086(0.0089) 0.087(0.0066)

1,000 0.73(0.010) 0.73(0.012)
10,000 7.9(0.16) 7.9(0.23)

100,000 80(2.4) 80(2.1)

Table 4.1: Average measured Sign and Verify times in milliseconds with standard deviation in
parentheses

For comparison, we benchmarked signing and verifying a message with a standard ECC
signature. The average time for signing was 0.00013(0.000018) s and for verification
0.00000016(0.00000012) s.

4https://github.com/estensen/linkable-ring-signatures

.
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Figure 4.1: Time savings when caching LRS instead of signing the LRS every time data is sent.
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Figure 4.2: Time savings when caching LRS instead of verifying the LRS every time data is re-
ceived.

4.4.3 Analysis

We can observe from Figure 4.1

.

and Figure 4.2

.

that the larger the ring size is, the more
we gain from caching. For a ring size of 1,000, signing is approximately 5,600x faster
and verifying approximately 4,500,0000x faster. This is not to say that our prototype is
perfect. It could very likely be optimized further.
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As both signing, verification, and storage scales linearly splitting a ring into 10 would de-
crease signing, verification, and storage by a factor of 10. The total number of signatures
would be constant, but the signatures would be smaller. By caching the newly generated
key-pair, we observe that verification is reduced while providing the same privacy guaran-
tees.

Before you leak a secret, you should make sure to use many public keys in your ring. It
should not be possible to track down all the participants and force them to expose their
private keys to learn who a signer is. The overall response time experienced by the client
is essential. We argue that the one-time setup can sacrifice user experience to provide
security.

4.5 Future Work

Here we lay out some suggestion and improvements for future improvements in our ex-
periments.

4.5.1 Split-password

We did not find a good way of providing weak authentication so we can retrieve our shares
if we lose our password. Answering questions, you might forget the answer to might not
be the best idea. Answers should be hard to guess, but also hard to forget or mix. Instead of
answering easy-to-guess questions like ”what was your mother’s maiden name” or ”what
was the first street you lived in” research should determine which question are easy to
remember and hard to forget.

4.5.2 Blockchain and IPFS

The prototype works well for isolated user data. Data is private and immutable. However,
collaboration on data that change is more complicated, especially in real-time. Conflicts
are annoying and often requires a user to manually resolve them if collaborators do not
agree beforehand who is going to edit the file[111

.

]. Conflict-free Replicated Data Types
(CRDTs) have been suggested as a way to merge concurrent modification[112

.

].

4.5.3 Linkable Ring Signatures

The presented linkable ring signature scheme relies on the hardness assumptions of classi-
cal cryptography and is vulnerable to quantum computers. Further research the efficiency
of lattice-based linkable ring signatures. Do a cost analysis of using serverless functions to
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verify and check the linkability of linkable ring signatures. The cost will be an important
factor when deciding how many public keys are needed in a ring signature to provide good
enough anonymity.
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Chapter 5
Related Work and Conclusion

This chapter discusses related work and evaluates the research goals together with the
experiments.
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5.1 Related Work

Ring signatures are well-studied and have many applications, including cryptocurrencies
and whistleblowing. Current research focuses on creating smaller signatures[113

.

, 114

.

] and
making them quantum-resistant[115

.

, 116

.

]. Creating smaller signatures is especially im-
portant for blockchains, where storage is expensive. Logarithmic-size ring signatures have
been created, but no benchmarks were published, and the extra work with pairings, encryp-
tion, and signatures look expensive, so the decreased size comes at a cost. Lattice-based
cryptography holds a great promise for post-quantum cryptography[117

.

], and schemes for
ring signatures have been suggested.

Textile1

.

is building a decentralized programmable iCloud on top of IPFS. As of know, they
have built a photo app and a note app.

OrbitDB2

.

a serverless, P2P distributed database. A database like this could replace the
blockchain as a means of backing up the IPFS pointers.

5.2 Purpose

The purpose of this thesis was to explore techniques to increase user privacy. We presented
three prototypes that demonstrate techniques that enhance user privacy.

The research questions are repeated here for reference:

RQ1: How can we increase user privacy?

RQ2: Can we use a blockchain to store personally identifiable information?

5.3 Conclusion

5.3.1 Towards User Privacy

Throughout the project, we have answered RQ1 by exploring privacy-preserving tech-
niques. None of these are silver bullets; all have their weaknesses. Defending against
increasingly sophisticated attackers is a constant battle that has to be taken seriously. Best-
practices has to be followed, but best-practices also change. Hash functions are broken and
have to be replaced. However, the best defense against leaking data is not to store data at
all. Until now, the practice has been to store data because it might be valuable to mine in

1https://www.textile.io/

.

2https://github.com/orbitdb/orbit-db

.
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the future. With the GDPR, this practice is no longer allowed; companies must disclose
the purpose for all data they are storing and processing.

Low-Hanging Fruits to Improve Privacy

It is hard to give general guidelines as companies are in different situations. Some com-
panies have security teams, and others have a single developer. Still, security and privacy
should be a top priority, and some things should be on the agenda no matter the company
size or resources. We suggest some low-hanging fruits:

• Do not store more PII than strictly necessary

• Do not make anonymous data public. Chances are it is pseudonymous, not anony-
mous

• Pseudonymize data before analyzing it

• Do not allow users to choose weak passwords

• Use end-to-end encryption where possible

• Create a plan for being GDPR compliant

• Do not implement your own cryptography

5.3.2 GDPR, the Breaker of Chains

While the GDPR is a step towards better user privacy, the laws are arguably confusing.
The GDPR is unclear about the right to explainability and courts has yet to rule in either
direction. Too much privacy can also be problematic. If ML on PII is outlawed in the EU,
the US and China might get an unfair technological advantage in the race to become AI
superpowers.

This is especially evident with blockchains. Blockchains were not designed for the cen-
tralized world the GDPR was made for. Is everyone that is running an Ethereum node a
data processor? They are more neutral in the way that they have no say in what should and
should not be processed because they might not know what they are processing. On public
blockchains, data is public and stored everywhere, not only inside the EU. We should not
restrict ourselves by geographical borders, but create tools that can be used by everyone.
Build a better future together where everyone has privacy, freedom of speech, and the
possibility of participation.

Answering RQ2, we conclude that you should most often not use a blockchain to store
PII. By adding something to a blockchain, it cannot be removed, and the risk of something
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being leaked in the future often does not justify the benefits. However, if you must use a
blockchain, it can be useful to ask oneself these questions:

• Is data integrity and transparency necessary?

• What type of blockchain will be used?

• What data is stored on the blockchain?

• Can the users demand that their data is redacted and how will this be done?

• If data is encrypted who controls the keys?
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