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Abstract

The immune system is arguably one of nature’s most highly adaptive, distributed
and self-organising systems. It has the property of being able to recognise anoma-
lies, something that deviates from the common rule. When immune principles are
applied in algorithms they are effective solvers of both optimisation and pattern
recognition problems. However, such algorithms typically do not fill any defined
niche where it is the best tool for the job, as many of the immune system’s natural
properties are not sufficiently utilised. Further, one such property is the immune
system’s inherent distributed nature which the work herein exploits in order to
enhance classification efficiency and accuracy over that of a more traditional Ar-
tificial Immune System (AIS). To this end a novel hybrid classification algorithm
MAIM is proposed, combining AIS with an Island Model Genetic Algorithm (IGA).
Consequently, the proposed algorithm employs a distributed AIS population with
partially isolated sub-populations that communicate through exchanging genetic
material.

The following work thoroughly investigates the properties of the individual
techniques and components chosen for the proposed algorithm and their likely
applicability in achieving the performance enhancements sought. Subsequently,
key features of the model are presented and evaluated through testing in terms
of their contribution to accuracy and efficiency. As a result, model properties are
discovered and limitations investigated, resulting in components being revised in
order to further enhance model performance. Consequently, MAIM is shown to
employ a computationally efficient architecture while simultaneously possessing a
generalisation ability on par with several state of the art algorithms.
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Sammendrag

Immunsystemet er uten tvil et av naturens mest tilpasningsdyktige, distribuerte og
selvorganiserende systemer. Det har egenskapen til a kunne gjenkjenne unormal-
heter, altsa noe som avviker fra den vanlige regelen. Nar immunprinsipper brukes i
algoritmer, lgser de effektivt bade optimaliserings- og mgnstergjenkjenningsproblemer.
Imidlertid fyller ikke slike algoritmer noen definert nisje der det er det anses
som det beste verktoyet for jobben, ettersom mange av immunsystemets naturlige
egenskaper ikke blir tilstrekkelig utnyttet. Derav utnytter dette arbeidet immun-
forsvarets iboende distribuerte natur for a forbedre klassifikasjonseffektiviteten
og ngyaktigheten i sammenligning med et mer tradisjonelt kunstig immunsystem
(AIS), samtidig som det beveger seg videre mot en mer definert nisje for AIS-
algoritmer. I det fglgende arbeidet, foreslas en ny hybrid klassifiseringsalgoritme
MAIM, som kombinerer AIS med en gy-modell (IGA). Den foreslatte algoritmen
benytter en distribuert AIS-populasjon med delvis isolerte underpopulasjoner, som
kommuniserer gjennom utveksling av genetisk materiale.

Dette arbeidet er en grundig undersgkelse av egenskapene til de nevnte teknikkene
og hvordan de pa kan kombineres for a oppnéa de gnskede ytelsesforbedringene.
Deretter presenteres og evalueres ngkkelfunksjoner i den foreslatte modellen MAIM,
med tanke pa dens bidrag til klassifiseringsngyaktighet og effektivitet. Videre blir
begrensninger av modellen undersgkt, som igjen resulterer i videre revideringer av
modellen for ytterligere forbedringer. Til slutt viser MAIM til & ha en sveert effektiv
arkitektur, som har en generaliseringsevne pa niva med moderne algortimer.
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Chapter 1

Introduction

A novel hybrid bio-inspired algorithm for supervised classification: MAIM - Mul-
tiple Artificial Immune Model, is proposed herein. MAIM is a population-based
distributed artificial immune system, combining the strengths of artificial immune
system algorithms and island-model genetic algorithms. This thesis provides in-
sights into the design decisions made in the light of the state of the art, testing,
evaluation and revision of the proposed algorithm.

The following chapter will elaborate on the background and motivating factors
in section 1.1. Section 1.2 elaborates on the goals and research questions. In section
1.3 the research method is introduced. Section 1.4 presents the structured literature
review process. Section 1.5 shows the overview of the preliminary process. Finally,
the structure of the thesis is presented in section 1.6.

1.1 Background and Motivation

The immune system (IS) is the product of millions of years of evolution. It is a
highly adaptive system consisting of two main sub-systems; the innate and adaptive
IS. On one hand, the innate IS targets anything it deems to be a pathogen and does
not change during the lifetime of the host [18]. On the other hand, the adaptive
IS targets specific intruders, the antigens (AGs), through the application of its
antibodies (ABs). Further, the adaptive IS evolves specialised ABs which, upon
repeated AG exposure, become increasingly proficient at recognising specific AGs.
Through such adaptive processes of AB specialisation, the IS is capable of learning
[6].

Artificial Immune Systems (AIS) are population based and evolution driven
algorithms, that solve computationally heavy problems of a wide variety of types
by employing IS principles of learning, memory and adaption. However, as stated
by Hart et al [15], AISs lack a defined application niche and should be focused
on applications that exploit the inherent nature of the IS, which, among others,
include its distributed properties. Some recent works [19, 38, 8] have successfully
used IS principles in classification, as classification is an inherently distributed task
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suitable to the distributed nature of AGs and ABs.

Island Model Genetic Algorithms (IGAs), on the other hand, were originally de-
signed as distributed algorithms where sub-populations or islands separately evolve
and communicate through exchanging genetic material. Further, such algorithms
have been shown to have a natural tendency to exploit the separable nature of
problems [40] and improve results through enhanced convergence and exploration
[17, 12]. Studies have also shown that it is possible to achieve linear speedup for
non-linear problems [27].

IGAs have mostly been applied to optimisation tasks. However, they have
shown to be proficient at enhancing distributed genetic algorithms (GAs) [40],
which in many ways are similar to those of AIS classification. Subsequently, the
following work is situated within the field of biologically inspired computation and
proposes a new hybrid classification algorithm, MAIM, that combines the AIS and
IGA techniques in a distributed artificial immune system.

1.2 Goals and Research Questions

This section defines the goal statement and research questions that will be investi-
gated in this work. The research goal of the work is the following:

Goal How can artificial immune systems be combined with the island model to
create an accurate and efficient novel hybrid classification algorithm.

The desired enhancements by combining AIS and IGA include improvements
in both efficiency and accuracy, which means the algorithm should simultaneously
be faster and more accurate than the AIS model implemented running without an
island structure. Additionally, the distributed AIS proposed in this work should
also be able to perform on par with other state of the art AIS classification algo-
rithms. However, in the event that such results are not achieved, the goal is to
understand why the results were below expectations and propose, implement and
revise model components.

Much of the work in enhancing the classification process and result therefore lies
in exploiting the inherent separate nature of the problem solving process achieved
from evolving several different populations with IGA. Further, the distribution of
population and evolution, which is a significant feature of the IGA technique, must
effectively be used in the proposed algorithms favour. Consequently, parts of the
work concerns identifying how IGA can best be applied to an AIS in order to
improve the overall performance. Subsequently, a thorough investigation of back-
ground and state of the art literature will be conducted in order to determine such
properties. Additionally, by focusing on and exploiting the inherent distributed
nature of the IS, another goal of this work is to further AIS algorithms towards
a more defined niche (see section 2.2.2). The research questions explored are as
following:

Research question 1 How can the island model combined with artificial immune
systems be used to increase the accuracy of the classification?
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Research question 2 How can the island model combined with artificial immune
systems be used to increase the efficiency of the classification process?

Research question 3 How does the migration configuration used impact the ac-
curacy results of the algorithm?

Both accuracy and efficiency enhancements are sought in the proposed algo-
rithm. Subsequently, it is natural to look at these as separate research questions or
sub-goals. As a result, the experiments will first focus on evaluating accuracy and
efficiency, in separate experiments, as reflected in the experimental plan in chapter
4. Finally, additional experiments will investigate the effects of IGA migration,
i.e. the exchanging of genetic material between sub-populations, on the accuracies
achieved.

1.3 Research Method

The research method applied was first and foremost an analytic process. As the
research objective is something that requires a novel combination of AIS and 1GA,
the two techniques were first investigated individually through a structured liter-
ature review. Further, the techniques were analysed by looking at the different
components and properties of the techniques, their behaviour and impact on the
result. Through this, promising properties of both the techniques were investigated
in terms of how they could potentially positively affect the efficiency and accuracy
of the proposed algorithm.

The knowledge gathered from the literature search was used to select and justify
the design decisions of the algorithmic model. After completing the model it was
implemented with the addition of a visual interface for viewing the progress and
results during and after a run of the algorithm. Additionally, an experimental plan
was developed to test important aspects of the model, as explained in section 1.2,
in order to best answer the research questions. Finally, it was discussed to what
degree the overall goal were achieved, what contributions were made and how the
work could be further extended in the future.

1.4 Structured Literature Review Protocol

The following research questions and a strategy have guided the structured liter-
ature search in finding relevant literature, substantiating the work in this thesis.
Further, this includes questions that have guided the search, as well as inclusion
criteria that must be fulfilled for the article to be included and quality criteria to
assess the value given to the research.

1.4.1 Research Questions

As the project description was not set at the start of the project, the guiding re-
search questions for the literature review have changed somewhat throughout the
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course of the search. However, one question that has been an important factor
during the whole process was: "How can biologically inspired methods be fully in-
tegrated with machine learning in a hybrid classification algorithm?”. Further, the
intention, from the beginning, was to angle the project toward machine learning
combined with bio-inspired methods. Additionally, it became clear that most hy-
brid systems, investigated during the research phase, employed a two-step process.
In such methods already established machine learning techniques were applied sep-
arately from a bio-inspired optimisation method used in the pre- or post-processing
stages of the algorithm.

As the project got more focused, the search changed towards questions tar-
geted on specific techniques like artificial immune systems, island-model genetic
algorithms and generally hybrid methods of bio-inspired algorithms. After decid-
ing where to focus the research, the following questions has guided the literature
search:

e How can classification in artificial immune systems be enhanced?

e Under what conditions does use of the island model positively affect conver-
gence and result?

On one hand, for AIS, further research was conducted into antibody shapes
and techniques such as local feature selection for enhancing classification. On the
other hand, for IGA, the research was focused towards migration policies, island
topoligies and applications the island model were shown to improve the performance
of the algorithm.

1.4.2 Research Strategy

In attempting to answer the research questions a few quality and inclusion criteria
had to be defined in order to asses the article’s value for the research, as well as
keywords used when searching. These factors have been summarised in table 1.1
and was used to identify relevant articles. Further, if an article was from a journal,
the journal should hold a respectable score according to international standards to
ensure that the information is credible. Finally, more recent articles, preferably as
recent as b years or less, were given greater value.



1.4 Structured Literature Review Protocol 5

Identifying | Keyword used when searching (comma separated):

e Artificial immune system, island based genetic algorithm, machine
learning, classification, feature selection, migration, antibody shapes,
clonal selection.

Qualifying | Inclusion Criteria

e Articles have to have IGA or AIS as their main research topic.

e The articles have to appear relevant from only reading the abstracts
and conclusion.

e The articles should include a further work section that elaborates
on possible improvements

Evaluating | Quality Criteria

e The algorithms or techniques being presented in the research are
compared against other algorithms known to be proficient in its field
of research.

e The article also needs to provide sufficient background information
to understand the relevant topics presented.

e The research must clearly state its purpose and it must be evident
that it actually contributes to the field.

Including Research published by respected sources found on sites like IEEEXplore,

ScienceDirect, Google Scholar, etc...

Table 1.1: Article Selection Criterias.
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1.5 Preliminary Process Overview

2
Rule based systems
investigation.

Rule based systems
seemed unnecessarily cumbersome

3

Rule based systems contained
many bloated parts that had to be
connected. It should be a more
integrated process

—lead to—————

1
Twitter sentiment for
stock prediction.

A thesis working with
classification was preferable.
AIS seemed like an interesting
approach.

6
IGA has usually been applied
to optimasation problems. This

VALIS was introduced——

lead to an investigation on its
combination with AIS

IGA was mentioned in
a meeting

AlS had been used
to create a classifier
before. A new
approach was

needed. 7

Investigation on
whether an IGA could
enhance AlS
classification.

RESEARCH
IGA + AIS has never
been done before.

10
MMO + AIS.
There was a lot of research
regarding the combination of
these techniques. Subsequently, it
was easier to find reasons why
these techniques should be
combined.

9
It was hard to
substantiate as a
\good idea. As a result,

IGA was further investigated

12
AIS +IGA was selected as
thesis topic as it was new
and interesting

13
Sate of the art

other options were
investigated.

1"
RESEARCH
Six positive properties of
IGA was discovered with two
important traits: Speed and
quality could be improved.

Figure 1.1: Preliminary process overview.

Through the selection of different research topics, a goal was developed iteratively
as reading and different ideas progressed, with research leading into several differ-
ent sub-fields of biologically inspired computing, as shown in figure 1.1. Further,
initial research started by looking into sentiment analysis of tweets on Twitter,
optimised by a genetic algorithm to predict the movements of the stock market in
the United States [33]. The work of the article was focused heavily on the senti-
ment analysis which were implemented using a support vector machine classifier
and not a bio-inspired method. However, the system also employed a bio-inspired
rule based model for buying and selling stocks, which seemed unnecessarily com-
plex as it required several steps of processing using both a machine learning and a
genetic algorithm. After a thorough literature review, the results showed that most
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research that combined machine learning and bio-inspired techniques were heav-
ily module based and few systems combined the techniques in a fully integrated
system.

The main module would typically be a standard machine learning approach,
while the steps of pre- or post-processing would be optimised with some from of
genetic algorithm. Therefore, the conclusion was that it would be more interesting
to fully integrate bio-inspired concepts with machine learning to create a proper
evolution driven bio-inspired machine learning algorithm. Subsequently, research
into AIS classification algorithms was conducted through the recently published
VALIS algorithm [19]; a classification algorithm based on principles from the adap-
tive immune system. During this investigation it was concluded that in general
AIS algorithm encounter some limitations in terms of not sufficiently exploiting
the properties of the IS.

The idea of combining AIS with IGA was conceived as AIS seemed to have
many properties exploitable by distributed systems. Subsequently, the techniques
were further researched, but no studies combining the techniques were found. Con-
sequently, it was concluded that the island model had mostly been used for optimi-
sation problems, which made it difficult to substantiate that combining IGA with
AIS would enhance the performance of the algorithm.

Considering no research was found on the combination of AIS with IGA, or IGA
in machine learning methods in general, a conclusion was made that it would be
more sensible to look into other techniques that could possibly be used in enhancing
classification algorithms. Consequently, research into multi-objective-optimisation
(MOO) was conducted, which had previously been combined with AIS and there-
fore made it easier to substantiate researching. However, the idea of combining
AIS with IGA was considered to be a more unique approach, which in turn lead to
another round of research into IGA. Subsequently, a list of positive IGA properties
was produced, where it was concluded that the technique, under the right condi-
tions, could enhance the quality of the result and the efficiency of the algorithm.
Finally, as a result of promising articles found on the second research sequence into
IGA, a decision was made to select the research objective as the creation a hybrid
classification algorithm based on a combination of the IGA and AIS techniques.

1.6 Thesis Structure

Subsequent chapters will be presented as following: Chapter 2 contains the back-
ground theory, where basic concepts are introduced and explained, followed by the
state of the art for the IGA and AIS techniques. Chapter 3 ties the state of the art
into the chosen model and presents the proposed algorithm. Chapter 4 displays the
algorithm simulator and contains the experimental plan, results and evaluations.
Finally, chapter 5 presents discussion and goal evaluation, contributions and future
work.
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Chapter 2

Background Theory and
State of the Art

The following chapter elaborates on the background theory of the thesis in section
2, as well as presenting and discussing the state of the art of the of IGA and AIS
techniques in section 2.2. Finally, a summary of the state of the art is included in
section 2.2.3.

2.1 Background Theory

The background theory employed in this thesis will be presented in the following
sections. These include introductions to the project’s main topics; starting with
genetic algorithms in section 2.1.1 and followed by the island model in section
2.1.2. Furthermore, section 2.1.3 introduces classification and section 2.1.4 immune
systems.

2.1.1 Genetic Algorithms

Genetic Algorithms (GAs) are a type of iterative search algorithms commonly used
in optimisation problems that draws inspiration from biological evolution. Each
iteration of the algorithm is referred to as a generation in nature. These algorithms
operate on a population of individuals where each individual represent a possible,
or parts of a possible, solution to the problem. One such solution consisting of a
set of genes, i.e. its genetic material, is called a chromosome.

An example of the processing cycle in a GA is presented in figure 2.1. The
algorithm starts by creating an initial population of more or less randomly gener-
ated individuals. Further, it uses this initialisation to start its evolutionary cycle,
marked with green on the figure. On each iteration individuals are selected for
breeding, where stronger individuals have a greater chance of being selected. This
selection process is referred to as parent selection, and the breeding process it-
self is called a crossover, where typically two individuals are combined into one
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Figure 2.1: Overview of a GA (adapted from [9]).

or more offspring. One common way of performing a crossover is referred to as a
uniform crossover, where the offspring’s genes are randomly selected from its par-
ents, typically with each gene having an equal probability of selection. However,
the crossover process is not something that is necessarily implemented in a GA as
some algorithms only employ a mutation process. Mutation is typically applied to
the offspring after a crossover and commonly consist of randomly changing parts
of the individuals genetic material or, alternatively, more informed, heuristic based
changes. Similarly to a uniform crossover, a uniform mutation is commonly ap-
plied where every gene has an equal probability of being mutated. The goal of
using older individuals to create or change new ones is not that all offspring need
to be stronger than their parents. However, the population on average should im-
prove over consecutive generations [9]. Further, the strength of these individuals
are calculated as a fitness score based on how well they provide a solution to the
problem being solved [10].

The number of individuals in a population usually remains constant over the
course of the search, meaning that a population size of n individuals always makes
it to the next iteration. If more than n individuals remain at the end of the GAs
iteration, survivor selection is typically employed. Here, individuals are selected
for the next generation, where the fitter individuals are more likely to survive, until
n individuals are selected for survival [10].

The process of selection, crossover and mutation are repeated iteratively until
the algorithm creates a sufficiently strong individual or the maximum number of
iterations is reached. These tasks are often regulated by several parameters which
typically consist of, among others, crossover and mutation rate, maximum itera-
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tions and population size. Much of the success of GAs lies in the choosing and
tuning of parameters [10].

Selection Methods

Selection of parents and survivors can be done in several different ways, but gen-
erally each individual has some probability of being selected based on its fitness.
Different methods provide varying degrees of selection pressure and genetic diver-
sity [10].

On one hand, the level of selection pressure indicates the amount of individuals
that will be selected for reproduction, which means that with a high selection
pressure the algorithm may converge fast and create individuals of high fitness.
However, this increases the risk of the population becoming homogenised and the
algorithm suffering from premature convergence. When this occurs the population
has converged to a point where consecutive iterations does not improve a solution
that is unsatisfactory [10].

On the other hand, genetic diversity refers to the level of which the individ-
uals in the population differ from each other, where a high diversity means that
the population contains many individuals of vastly different chromosomes and fit-
ness values. Further, the risk of premature convergence decreases when diversity
increases. However, too much diversity in the selection process may cause the algo-
rithm to diverge if not enough of the fittest individuals are being selected, making
it similar to random searching. As some level of both selection pressure and genetic
diversity is desirable, GAs typically need to make compromises between them, as
achieving a high level of both is often not feasible as increasing one counteracts the
other [10].

An example of a selection method is Fitness proportionate selection which gives
every individual a probability of being selected as its fitness value divided by the
cumulative fitness of the whole population [10]. Based on this, fitness proportion-
ate selection will select a set of individuals of given size, s, from a provided set
of selectable individuals called the selection pool. This is illustrated in figure 2.2,
where individuals are depicted as boxes with letters and the size of the boxes cor-
respond the fitness of the individual. In the example the selection process moves
successively through the list from A to E until an individual is selected. On each
individual, the probability of it being selected is the sum of the cumulative prob-
ability of all the previously evaluated individuals that was not selected and the
probability of the individual currently under evaluation being selected. If the last
individual in the sequence is reached it will be selected with a 100% certainty.
When an individual is selected, it is removed from the selection pool and moved
to the set of selected individuals. When this happens and s individuals have not
yet been selected, the cumulative fitness of the remaining selectable population is
recalculated and the selection process repeated.
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Figure 2.2: Illustration of fitness proportionate selection.

Fitness proportionate selection usually provides the best compromise between
selection pressure and genetic diversity when the population contains individuals
of significantly varying fitness values. Otherwise, every individual would receive
a similar chance of being selected and the evolutionary search will degrade to
just random search. However, in this approach no individual should have a much
higher fitness than all the others, as such an individual will be selected almost every
time, meaning that it may end up dominating the reproduction process and cause
premature convergence [10].

Tournament Selection is another selection methods that selects a tournament
set which consists of a given tournament size randomly selected individuals. Fur-
thermore, the individual with the highest fitness value in the tournament set is
returned from the selection process. Subsequently, a larger tournament set means
a greater probability of the individual being selected having a high fitness value
relative to the rest of the population. Additionally, as each tournament only se-
lects one individual the number of tournaments needed is equal to the number of
individuals being selected. This method is usually able to achieve a good compro-
mise between selection pressure and genetic diversity depending on the size of the
selection pool and tournament size used [10].

2.1.2 The Island Model

The Island-Model Genetic Algorithm (IGA) or just island model is a method de-
signed for enhancing population based optimisation techniques by employing a
distributed population scheme. The technique is usually implemented with n sub-
populations which in the IGA context is referred to as islands. Each island runs
a population-based GA, initialised with a population that is evolving partially
isolated from the other islands. The different islands can communicate through
migration of individuals. This means that an island can both send and receive
individuals from other islands [40].

In [17] Huang states that there are six important parameters to handle when
using the IGA technique. The first is to decide the number of islands or sub-
populations to employ and the second is the population size for each island. I.e,
figure 2.3(a) illustrates four islands with populations varying from four to six in-
dividuals. The third important parameter is the island topology, which defines the
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Figure 2.3: Common Island Topologies.

connection between the islands. These connections defines the authorised migra-
tion routes for each islands, i.e where each island is allowed to send its individuals.
To illustrate this figure 2.3 shows three different island topologies. Here, (a) is
a fully connected topology where the migration routes are from everyone to ev-
eryone. Furthermore, (b) shows a star-shaped topology, where one island, here
referred to as the master island, have migration routes to all the other islands (the
slave islands) while the slaves only have routes to the master. Finally, (c) shows
a ring-shaped topology, where the migration routes only connects the immediate
neighbours of each island. The fourth important parameter is the migration rate
(MR), which typically controls what percentage of the island population are to be
moved from one island to another during migration. Further, the fifth important
parameter is the migration frequency (MF) or migration interval, which defines the
number of algorithm iterations between each migration. Finally, the last important
parameter is the migration policy, which is the policy for selecting emigrants during
migration. Such a policy could for instance state that either the strongest or the
most diverse individuals should be selected for migration.

All the parameters mentioned above are crucial for an IGA, and all of them have
an impact on the efficiency of the algorithm and quality of result. However, another
aspect that should be taken into consideration, especially if the IGA implementa-
tion is done in a parallel fashion, is whether the migration should be synchronous
or asynchronous. Synchronous migration means that that all islands migrate their
selected individuals at set points in an iteration and waits until migration if fin-
ished before continuing. Asynchronous migration on the other hand, means that
an island can send and receive individuals at any time, which for instance could be
as soon as it find the suited individual(s). Synchronous implementations are usu-
ally simpler than asynchronous implementations, but the latter is typically more
flexible and efficient [12].

The choice of selecting either homogeneous or heterogeneous islands should be
addressed when designing an IGA. In [12] Gong et al. describes a homogeneous
island model as a model where all islands adopts the same genetic operations,
fitness function and selection strategy. This approach is very straight forward,
but it has some known weaknesses. If the physical layer running the algorithm
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consists of different processors, the slowest processor will be a bottleneck regarding
the efficiency of the algorithm. Furthermore, by letting different islands use the
same parameters and components, they may not be able to balance local- and
global exploration. On the other hand, a heterogeneous IGA design may employ
different settings and strategies for the different islands and therefore avoid the
weaknesses of a homogeneous design. However, this often comes at the cost of
increased algorithm complexity.

Advantages and Disadvantages

The island model has become a well known and accepted strategy for keeping a
high diversity within a population. It is known to be very flexible, due to the
possibility of having multiple strategies in order to maintain diversity within the
islands. By dividing the total population into smaller migrating sub-populations
it may vary the level of genetic diversity and selection pressure on each island,
depending on the selection scheme used (see section 2.1.1). This in turn may
help to achieve better convergence and higher diversity of each sub-population,
providing an enhanced exploration of the search space and subsequently better
solutions [17, 12]. Additionally, IGAs may be implemented very efficiently by
exploiting their inherent parallel nature, due to the fact that sub-populations are
evolving mostly independently from each other. This allows for the possibility of
running each island on separate computational nodes or computer cores, potentially
drastically reducing the runtimes of the algorithm [21].

The island model may suffer from islands becoming homogenised and prema-
turely converging, often as a result of selection pressure on each island being too
high. This typically occurs when the best individuals on an island are selected for
migration and sent to all other islands, which over time makes a few strong indi-
viduals dominate the gene pools on all the islands. Subsequently, it is important
to employ an effective migration scheme tailored to the needs of the algorithm [21].

Biological Similarities

By looking at how evolution works in biology and studying smaller, natural, pop-
ulations, the famous geneticist Sewall Wright [41] argues that having closed pop-
ulations breed internally with occasional crossbreeding, might greatly improve the
convergence rate of the populations. However, too much inbreeding will lead to
extinction and too much mutation will lead to a population of anomalies. Further,
Wright also states that how much inbreeding, mutation and crossbreeding is nec-
essary will vary between the populations and it is important to maintain a balance
between the factors. Furthermore, these properties of biological populations are
also applicable to IGA. Subsequently, each island exploits the rapid convergence of
inbreeding. Further, the migration of individuals between the islands ensure that
excessive inbreeding will not take place while keeping a certain level of diversity in
the populations.
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2.1.3 Classification

Classification is the task of categorising. When this is done by an algorithm it
is commonly referred to as machine learning. More formally, machine learning is
the process by which the algorithm learns from experience with respect to some
class of tasks, and a performance measure to assess how well the assigned tasks
perform in the chosen task environment. If the program increases its performance
measure at its assigned tasks given its experience, it is said to learn. Learning is
the foundation of machine learning, and subsequently also classification [26].

Machine learning algorithms can be divided into several types, depending on
the problems they solve and how they solve them. Common types include regres-
sion, association learning, classification and reinforcement learning. Classification
will be the focus of the machine learning aspect of this thesis. As mentioned, clas-
sification is the task of categorising, and it is performed given a set of examples
with attributes to distinguish, and classes to categorise by. This has many real
world applications. An example of this being credit score evaluation in a bank. A
bank typically want to assess whether a customer is high or low risk in regards to
being able to pay back a loan or not. In other words, the goal is to categorise the
customer into one of two different classes; high-risk or low-risk. Each customer is
then represented by its set of attributes or features. This set of features could for
instance include the customer’s age, name, savings, profession and so on. The cus-
tomer can then be represented in n-dimensional feature space, the space containing
all possible features of n dimensions, where n is the number of features assigned
to each customer [2].

The classification or machine learning task here would then be to find the plane
in feature space that best divides the examples into its respective groups. This will
usually be done by using a set of pre-labeled training examples; a set of example
customer which have already been correctly labelled as one of the two classes. This
is referred to as supervised learning where the algorithm is provided with a set
of already classified examples and based on these attempt to create a generalised
function and thus also classify new unseen examples. More specifically, the task is
to best approximate the true function that correctly classifies all examples given a
set of pre-labelled examples. These learned functions takes an input example, also
commonly referred to as a case, and returns one or several output classes for that
case. Cases used during the supervised learning process are usually divided into
training, validation and test sets. The training set is used to iteratively approx-
imate the classification function in the training phase of the algorithm. Further-
more, during training, the validation set, consisting of cases left out of the function
approximation, is used to evaluate and select the current candidate function(s) at
each iteration. This is done in order to evaluate the function(s) over unseen cases
in order to improve the final function’s generalisation ability. However, it should
be noted that using a validation set is optional as the function can alternatively
be evaluated using only the test set. When training is completed a final function
approximation is returned and the algorithm transitions to the test phase. Here,
the function is evaluated by seeing how well it is able to generalise and classify
when applied to the unseen cases of the test set [26].
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Figure 2.4: Credit score evaluation problem (adapted from [2]).

Going back to the credit score evaluation problem one can do a simple represen-
tation of each customer by representing them in a 2-dimensional space with only
savings and income as features. The classification algorithm could for instance be
the process of finding the respective threshold, 6;, for each feature, and any cus-
tomer that is above both thresholds (have enough savings and income) is deemed
low risk, as shown in figure 2.4. This can be simplified into a straightforward func-
tion such as ”IF income is greater than 6; AND savings is greater than §; THEN
low-risk ELSE high-risk” [2]. Finding this function may involve several iterations
of testing how well the function perform by applying it to the training and/or
validation set, calculating an error value based on its performance and using this
error to adjust the function. The algorithm terminates when it correctly classifies
all examples, detects premature convergence or reaches the maximum number of
allowed iterations [26].

When testing the generalisation ability of a classification algorithm, different
validation schemes may be employed. One method that is often adopted is the
k-fold cross-validation approach. Here, a parameter, k is picked and the dataset
is split into k equally large parts. Further, the algorithm is ran k times with each
part being used as the test set exactly once and otherwise being a part of the
training set when not selected. When all parts have had their turn as the test
set, an accuracy averaging the k runs is returned as a measure of the algorithm’s
generalisation ability [26].

Ensemble Learning

One commonly used machine learning technique is ensemble learning. Ensemble
methods combine multiple weak models into one strong. A weak model is a model
that only approximates a part of the complete function the algorithm wishes to
learn. The weak models will have high accuracy on one or more parts of the data,
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but low accuracy when tested on the complete data set. Subsequently, the idea is
that multiple weak learners specialising in parts of the problem are together able
to create one strong learner approximating the complete function. In such a model
multiple weak learners work together to make up for each others’ weaknesses [22].

2.1.4 Immune Systems

The immune system (IS) is arguably one of nature’s most highly adaptive, dis-
tributed and self-organising systems [35]. It is has the property of being able to
recognise anomalies; something that deviates from the common rule. This ability
to differentiate between organisms that do and do not belong in the body, gives the
IS its inherent classification properties. Through repeated exposure to the same
anomalies the IS is able to adapt and evolve its cells to combat secondary infections
at much higher rates than the original infection [18].

The Natural Immune System

The natural IS is the body’s natural way of dealing with intruders and otherwise
anything that does not fit into the norm of the system. Generally, the IS is split
into two subsections of immunity; namely innate and adaptive immune responses.
Unlike the adaptive IS, the innate IS does not target any specific intruder, but
rather anything it deems a pathogen (infectious microorganism) [35]. These innate
immune responses is the product of millions of years of evolution and does not
change during the lifetime of the host [18]. Additionally, it operates as a controlling
organ for the rest of the IS, and plays a crucial role in administering and triggering
immune responses [35].

While the innate IS is sufficient at protecting the body against microorganisms
with certain common molecular patterns it is not able to protect it against anything
that has not been observed before. Pathogens evolve while the innate IS does not.
This is why in addition to the innate IS the adaptive IS is needed. This part of
the IS has evolved to handle what the innate IS is not able to recognise. While
the innate IS target any foreign microorganism it is able to recognise, the adaptive
system target specific intruders with its variety of immune cells. Furthermore,
each cell is able to recognise a certain antigen (AG) which are foreign substances
like toxins and enzymes, or more specifically, the epitope or antigenic determinant
present on the invading microorganism. Upon repeated exposure to such AGs the
adaptive IS is in fact able to adapt and evolve new and specialised antibodies (ABs).
ABs, with paratopes as AG binding sites, are the parts of the immune cell that are
able to recognise and bind to AGs [31].

The adaptive IS employs two different types of lymphocytes as immune cells,
namely T-cells and B-cells. T-cells function as the controlling cells of the adaptive
IS, as they initiate the attack, while B-cells are the immune cells that produce ABs
that actually bind to the AG [35].
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Figure 2.5: Illustration of an AB’s connection to an AG

Biological Operations in the Natural Immune System

As mentioned, upon repeated exposure to new patterns in invading microorganisms
the ABs in the adaptive IS gradually evolve to recognise these intruders. This is
done through a process called affinity maturation. Affinity is a measure for how
well an AB is able to recognise and bind to a specific AG. Higher affinity means
higher strength of the bond between the AB’s epitope and the AG’s paratope [6].
Figure 2.5 illustrates an AB-AG interaction through the AB’s epitopes connecting
to the AG’s paratopes. The binding strength, i.e. the affinity between the AG and
the AB, increases with the amount of connections. Furthermore, affinity matura-
tion occurs during exposure to an AG, when B-cells with higher affinity ABs are
stimulated by the specific AG to proliferate (divide) with a rate proportional to the
corresponding affinity [38]. Subsequently, This either turns the B-cells into what
is called plasma cells, which secrets one type of ABs, or memory cells that consti-
tutes the immune memory [35]. Further, The memory cells are a type of long-lived
B-cell that continue to exist in the body even after the AGs and the original B-cells
have died. These usually high affinity cells circulate through the body, and when
exposed to antigenic stimulus of the same or similar AG from when they were first
created, they differentiate into large lymphocytes that produce high-affinity cells.
This in turn combats the returning AG at a much higher rate than during the
first exposure. These memory cells allow for the IS to learn and protect against
secondary infections [35].

During the proliferation process the cloned B-cells are subjected to affinity
maturation, which constitutes some somatic hypermuation [6] along with strong
selective pressure that allows the IS to learn. Somatic hypermutation mutate the
variable regions of the AB genes affecting its capability of binding to certain AGs,
which either increase or decrease the affinity of the AB. During the hypermutation
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process the B-cells undergo a stochastic alteration of their receptors in an attempt
to generate ABs of higher affinity specialising on the invading AG. As mentioned
above, B-cells of higher affinity are stimulated to proliferate at greater rates, which
in turn creates a selective pressure where more capable (higher affinity) B-cells are
produced in greater numbers, while lower affinity cells are gradually phased out.
Additionally, the mutation process makes the affinity of these cells converge to
a point where there are many and capable enough B-cells to combat the current
AG invasion [35]. The theory that only the cells being able to recognise the AG
proliferate, and therefore being selected over those that do not, is what is referred
to as the clonal selection principle [1].

Artificial Immune Systems

Artificial immune systems (AIS) are algorithms that solve computationally com-
plex problems by employing immune principles. They are population based and
evolution driven with many similar aspects to GAs (see section 2.1.1). Furthermore,
in such systems one or several IS-inspired components and theories are employed.
However, so far no system employ all the principles of the natural IS and thus
there is currently no algorithm that creates a complete abstraction [15]. The prin-
ciples used typically have elements in common with evolutionary methods, but at
the same time exhibit some peculiarities that make them useful for certain unique
applications [10].

One concept typically employed in AISs is shape space. Shape space is a common
abstraction that allows the system to interpret the process of ABs recognising and
connecting to AG in terms of geometric properties of shape and position. This is
further visualised in figure 2.6 where AB-AG interactions are represented by their
coordinates and distances in shape space. The aim of such an abstraction is to
simplify the interaction process, at the same time as some similarity to a biological
system is kept. Further, in natural ISs the recognition process is based on the
complementarity of the geometric shapes between the surface of the AG and the
AB receptors, as well as the electric charge distribution on parts of the surfaces
[10].

A simplified view of the recognition process is to assume that an AB recognises
and connects to all AGs within some threshold length from its centre. Mathe-
matically, one can abstract and simplify the representation of this interaction by
representing the properties of the AG and AB necessary in determining the de-
gree of interaction between them, i.e the binding region of the AB, as a list on
n parameters. This list is referred to as the generalised shape of the AB, stating
its position in shape space. What set of values is used to define the generalised
shape also determines the complexity of the AB representation and, subsequently,
its interaction with AGs, which in turn is highly dependent on the needs of the
AIS model adopted. Using the generalised shape we can place the ABs, as well as
the AGs, as points in the n-dimensional shape space, indicated by the black circles
and squares in figure 2.6 [10].

Only representing the AGs and ABs as points in shape space is not enough for
determining the degree of interaction between them. For this a representation will
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Figure 2.6: Visualisation of the shape space.

be needed of how and under what conditions ABs recognise AGs. As mentioned, in
an IS the degree of interaction is determined by the complementary of the interact-
ing molecules. However, in an AIS, these physical properties can be ignored, and
simply look at the interaction from an abstract point of view. In such a view there
is only a need to look at how well the ABs and AGs match each others’ position in
shape space, namely to what degree their attributes overlap. In determining the
degree of overlap the concept of recognition region (RR) is employed. In figure 2.6
the RRs are shown as grey circles surrounding the ABs. An AB recognises and
connects to all AGs within its RR. To determine what is within the RR of the AB
a similarity or distance function must be defined. For some AB, G;, and some AG,
Bj, the distance and therefore the similarity between the pair in shape space, is
defined as the function d(G;,B;). Here, a zero value means a perfect match, and
increasingly higher values means decreasingly similar AG-AB pairs. Alternatively,
a complementary similarity function, s(G;,B;), can be defined to give increasing
values to increasingly overlapping AB-AG pairs [10].

Typically, some threshold, 6, is defined for each individual AB, Bj, to deter-
mine if an AG, G;, is within its RR, r;, where i = 1,2,...,m and j = 1,2,...,n.
More precisely; if d(G;,B;) < 0, then G; is said to be within the RR of B;. This is
illustrated in figure 2.6, where the RR of AB By contains an AG, G4. Subsequently,
when the AG is within the RR of the AB they are said to be interacting, and the
distance between the two can be used in further calculations for determining the
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affinity between them. In this example, 6, correspond to the radius of a spheri-
cal RR, where smaller values means a smaller RR and therefore an AB of higher
specificity, capable of recognising a more specific set of AGs [10]. The concept of
specificity is furthermore illustrated in figure 2.6 where 6,., is larger than 6,, and
therefore less specific.

What ABs are connected to what AGs and how well these ABs solve the problem
addressed by the algorithm determines how the ABs change in order adapt and
more correctly recognise as many of the invading AG as possible. Additionally, the
total area covered in the shape space by the unified RRs of all the ABs determines
what AGs can be recognised. This area is also what is referred to as the coverage
of the immune repertoire, which here is being the set of all ABs. As there are
physical constraints that limit the number of possible configurations for the n
parameters defining the AGs, the size of the shape space is also consequently finite.
Subsequently, a finite number of distinct ABs with corresponding RRs is in theory
able to recognise all possible AGs [10].

2.2 Sate of the Art

The following section presents the state of the art regarding the AIS and IGA
techniques. More specifically, configurations and results of IGA will be discussed
in section 2.2.1, followed by a discussion of AIS, its implementations, challenges
and solutions in section 2.2.2.

2.2.1 Configurations, Applications and Results of the Island
Model

The island model has commonly been used for various optimisation problems such
as job shop scheduling problems, feature selection and clustering. The technique
has shown promising results on both convergence and quality of outcome [40].

Island Model Applications

Corcoran et al. [5] compares different types of GAs, both serial and parallel, includ-
ing the island model. Their results indicate that the serially running GA provides
as good, or equal, results to the IGA version of the algorithm when looking at the
smallest problems. However, when compared to the most complex problems, the
IGA outperforms the serial GA in both time and quality of result.

A study presented by Rahman [30] compares three different GAs for attribute
reduction; serial GA, IGA without migration and IGA with migration. Their
results also shows that the IGA with migration outperforms the other two, both
in time and quality of the result. Such results are likely due to the parallel and
separable nature of IGA. Further, performance is improved by preserving diversity
in the different sub-populations, while periodic migration enhances the quality of
the selection process [17]. Additionally, Huang states in [17] that distributed GAs
like IGA are often more efficient than a serial GAs even when the algorithm runs on
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a single processor. Subsequently, a serial IGA will often find the optimal solution
faster than a serial GA. Furthermore, other studies also show that it is possible to
get linear speedups for non-linear problems, using a distributed GAs as shown by
Neves et al. [27].

Whitley et al. [40] also states that the island model has a natural tendency to
exploit the separable nature of problems. Subsequently, linearly separable problems
have especially good convergence rates. Consequently, each island is able to evolve
solutions proficient at different parts of a problem, before being exchanged and
combined through migration to create even better solutions.

Number of Islands and Population Size

One of the main properties of the island model is the enhanced diversity achieved
from employing several smaller and communicating subpopulations (see section
2.1.2). However, the number of islands employed is important for the result and
can be decided in several different ways. For instance, the number of islands in a
parallel IGA could be the same as the number of available processors, as shown in
by Rahman [30]. Alternatively, a dynamic approach like what is presented by Meng
et al. [25] could be adopted where islands are created and removed dynamically as
needed. Finally, a fixed set of islands set by an algorithm parameter could also
successfully be employed. This approach is favoured for its simplicity and being
very configurable, as presented by Gozali [13], but comes at the cost of additional
parameter tuning.

Areibi et al. [16] presents an IGA for static and dynamic optimisation problems.
Their results show clear correlation between the number of islands and quality of the
solution, where an increase in islands (and subsequently a higher total population)
improves the solution. However, this approach results in increased computational
cost as the number of islands increase.

As stated by Whitley et al. [40] the population size of the islands will impact
the convergence of the algorithm. In a typical GA, a large population with high di-
versity will converge slower in comparison to one with a small population. Further,
this is also true for the island model, as an IGA where islands have large popu-
lations will converge slower than an IGA with smaller populations. Subsequently,
it is important to effectively balance the total population size and the number of
islands employed, as smaller islands converge faster, while larger islands are able
to maintain greater degrees of diversity.

Impact of Island Topology

The island topology employed has a large impact on how fast genetic material is
shared between sub-populations (see section 2.1.2). Further, Huang [17] presents
promising results using a directed rTing topology where migration routes form a di-
rected cyclic graph as in figure 2.7. In their proposed algorithm increasing the
number of islands subsequently increases the total population. Through this topol-
ogy, together with other components, the algorithm’s runtimes and quality of the
result are improved. Further, this topology is very efficient as the number of migra-
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tion routes grows linearly with the number of islands. It only needs to perform two
more migrations for each island added, as opposed to the fully connected model
where the number of migrations increase exponentially with the number of islands.
Additionally, in the directed ring topology, an increase in the number of islands is
also an increase the time it takes to share genetic material from island; to island,,
as it takes a minimum of n — 1 migrations for genetic material to reach n from 1.
This is illustrated in figure 2.7 where it takes a minimum of three migrations for
genetic material to reach island d from island a. Increasing the number of islands
may make the algorithm converge slower, while keep heightened levels of diversity
within the population. Furthermore, the study presented by Areibi et al. [16] also
use a directed ring topology, but where a fixed population size is divided across
multiple islands. Also here the topology is shown to improve the quality of the
final solution. Further, a directed ring topology is able to vary the level of genetic
isolation and interconnection between islands. Subsequently, smaller islands num-
bers will make the topology more interconnected, while higher numbers increases
the isolation levels because of the extra migrations needed for genetic material to
reach all islands.
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Figure 2.7: Directed ring topology.

Gozali et al. [13] presents promising results with a star-shaped island topology,
which is also referred to as a master-slave topology (see figure 2.3 (b)). Three slave
islands run three heterogeneous GAs and the master island has the role of control-
ling the migration between the salve tslands. Due to employing heterogeneous slave
islands the islands operate differently and subsequently migration is implemented
asynchronously and controlled by the master island. Further, the algorithm is able
to keep a high diversity due to the implementation of the master, which keeps the
other islands from directly communicating with each other, only receiving selected
genetic material through the master.
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Another approach to island topology is a dynamic design presented by Meng
et al. [25]. Here, an algorithm called DIM-SP (Dynamic Island Model based on
Spectral Clustering) is proposed, which is initialised with only one island. Through
successive iterations sub-populations create and migrate to new islands based on
similarities between their individuals. This, refereed to as central clustering, is
repeated until the last iteration, where all islands are merged together. Further,
Meng et al. compare DIM-SP to three other IGAs with three different topologies;
namely the fully-connected, star-shaped and ring-shaped topologies. Further, DIM-
SP achieved the best results, followed by the ring topology, the star-shaped topology
and lastly the fully-connected topology. Further, results indicate that the ring-
topology generally performs better than star- and fully-connected topologies. This
is because the ring-model is able to maintain a higher diversity over time due to
its isolating topological features. On the other hand, the other two models show
tendencies where the islands prematurely converge and become homogenised, as a
consequence of the number of connections between them.

Impact and Approaches to Migration

As mentioned in section 2.1.2, migration corresponds to the sharing of genetic
material between sub-populations. However, it is possible to implement an IGA
without migration, but studies indicate that it does not perform as well. Subse-
quently, without migration the sub-populations show a tendency to prematurely
converge as not enough diversity is kept [30, 5, 17].

IGAs has proven to perform well with migration [17, 30, 5, 20, 27]. Through
migration, IGAs are able to exploit the rapid convergence of small populations,
while simultaneously maintaining sufficient amounts of diversity. Consequently,
the search space is more thoroughly searched and better solutions may be found
[17].

As mentioned, migration has three parameters; MR, MF and policy (see section
2.1.2). However, if the MR and MF are too high, the sub-population will not
be able to evolve in an partially isolated environment. Subsequently, successive
migrations makes islands increasingly similar to each other, which lowers the level
of diversity in the total population. Consequently, also at this point the sub-
populations prematurely converge. As a result, both too low and too high MRs
and MF's will lead to premature convergence, indicating that a healthy, problem
dependent, balance is needed [25, 17].

Migration policies may be implemented in several different ways. One such ex-
ample is presented by Merelo et al. [3]. Their study suggests to migrate multiple
individuals at a time, while having the receiving population decide which indi-
viduals should be migrated, in order for the island to promote its own diversity.
Subsequently, each island chooses the individuals most different from its own. This
policy produces promising results as because of its enhanced diversity. Further-
more, another example of a promising migration policy is presented by Gong et
al. [11] where an elitist approach is implemented, resulting in only the best indi-
vidual on an island being migrated. Migration occurs when a new best individual
is found, which at that point is sent to a random neighbouring island. Further, the
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receiving population replaces its worst individual with the new immigrant. Addi-
tionally, Raman et al. [30] presents a similar well-performing elitist policy, where
at each island a percentage of the best individuals are selected for migration. On
the other hand, the receiving population replaces the same percentage of its worst
individuals with the new immigrants. However, as opposed to Gong et al., mi-
gration does not occur once a new best individual is found, but rather after a
set time, long enough to allow development of several diverse individuals of high
quality at each island. Elitist strategies are quite common as indicated by several
other studies [16, 29, 17] that successfully employ different elitist migration policies.
However, as stated by Huang [17], if an island only sends its best individuals and
replace its worst, it may lead to premature convergence. This is increasingly true
when migration is performed often. Alternatively, a random migration scheme can
be employed that counteracts premature convergence through enhanced diversity,
while simultaneously being more effective as a result of reduced sorting needed.

Cantu-Paz [4] presents a study comparing elitist and random migration poli-
cies. The study shows that migrating the best individuals and removing the worst
generally achieves the fastest convergence. On the other hand, both sending and re-
moving random individuals has the slowest convergence as a consequence of having
the highest diversity, but risks never converging at all. Alternatively, combinations
of elitist and random approaches can be employed, i.e. sending random and remov-
ing the worst or sending the best and removing random. Such policies may be able
achieve a reasonable compromise between the approaches, in terms of diversity and
convergence. However, what performs better is generally determined by the needs
of the problem solving process.

2.2.2 Artificial Immune Systems - Implementations, Chal-
lenges and Solutions

ATSs have gotten attention in various fields in recent years, as it has been shown to
have success in a some application areas. These areas include clustering and clas-
sification, anomaly detection, computer security, numeric function optimisation,
combinatoric optimisation and learning [35, 15].

Algorithms

A substantial amount of different AIS algorithms have been proposed in literature.
They all differ in the amount of IS and biologically inspired concepts employed.
However, hypermutation, affinity maturation and clonal selection are important IS
concepts that are often implemented [6, 38, 8]. Generally, an AIS for classifica-
tion seeks to evolve the bests set of ABs able to correctly classify a set of AGs.
Subsequently, AISs recognising typically population based and evolution driven al-
gorithms, sharing similarities to GAs (see section 2.1.1) and allowing a wide variety
of biologically inspired techniques to be employed.
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CLONALG

One of the most iconic AIS algorithms is CLONALG, a biologically plausible AIS
algorithm which has inspired the work of many subsequent AISs. CLONALG is
based on the clonal selection principle (see section 2.1.4) and employ a few key steps
inspired from the IS. These include maintaining a set of memory cells capable of
recognising and selecting from the generated ABs, cloning and mutation of stim-
ulated ABs (ABs recognising AGs), as well as removal or death of non-stimulated
ABs. When ABs are selected they are subjected to affinity maturation (see section
2.1.4) in in order to successively create better ABs [6]. Finally, while CLONALG is
known for its ability to solve both optimisation and pattern recognition problems
it generally does not perform as well on the latter. However, several alternative
CLONALG derivatives have been proposed that improves on the shortcomings of
the original [32].

AIRS

AIRS - Artificial Immune Recognition System is a recognised AIS algorithm for
classification. AIRS, as well as CLONALG, is heavily based on the idea that
immunological metaphors can be used to create an effective learning algorithm,
through clonal selection and affinity maturation. Further, AIRS follows the shape
space model where every receptor has its own fixed position in feature space and
bindings between AB-AG pairs are calculated as euclidean distances (see section
2.1.2). Additionally, it abandons the immune network model where ABs can in-
teract with each other and, as such, the ABS are evolved independently from each
other. Furthermore, ABs are cloned at a rate proportional to the strength of their
bindings, with stronger bindings giving a higher degree of stimulation to the AB.
Additionally, during the training loop, the least stimulated ABs are continually
removed as better performing ABs emerge from a continuous process of cloning
and mutation. These properties has been shown to perform well for classification
in a supervised learning system, performing on par with or better than several
established algorithms [38, 39].

VALIS

VALIS - Vote-Allocating Immune System is an AIS algorithm that operates by
allowing all ABs that contain a given AG within its RR to connect to said AG.
Further, when a connection is realised, a class assigned to each AB is cast as a vote
for the what class the AG belongs to, as a means of classification. Consequently, the
different AB classes cast are the same as the classes in the data set used. Further,
the strength of the AB’s connection with the AG determines the impact of the vote
and the class with the highest tally, when all connected ABs have cast their votes,
is the predicted class of the AG. Furthermore, at every iteration of the algorithm
the evolved ABs are evaluated by their fitness score. For this VALIS employs a
flexible fitness function consisting of several components involving accuracy, AB-
AG interaction and resource sharing, which changes the dynamics of the evolution
according to how they are weighted [19].
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Other AIS algorithms like CLONALG and AIRS does not rely on independent
voting based on binding weights, but rather on the most common class of the
k-nearest neighbours (KNN). Therefore, VALIS employs, arguably, a more biolog-
ically plausible method as it relies on local AB-AG interactions and not distance-
based sorting of AGs. Subsequently, in a voting process, only ABs that are actually
connected to the AG is used when classifying it, as opposed to looking at all the
closest ABs regardless of there existing a connection between them [19]. On the
other hand, VALIS uses a crossover approach when proliferating ABs, which in turn
is less biologically plausible than the proliferation process of AIRS and CLONALG.

The VALIS algorithm employs a training scheme similar to traditional GAs,
where antibodies are created through crossover and mutation and a set population
of ABs are selected and employed at each iteration (see section 2.1.1). Additionally,
both parent and survivor selection are used during an iteration. On one hand, for
survivor selection, the worst individuals are replaced by the newly generated ABs
at each iteration. On the other hand, for parent selection, fitness proportionate
selection is used (see section 2.1.1) which reportedly gives good results in terms of
effective convergence [19].

AISLFS and Implications of Shape Space

In section 2.1.4 the notion of shape space and spherical RRs were introduced.
Spherical RRs are simple, yet effective, to use as they can be implicitly defined
through a radius. VALIS is an example of an algorithm using hypersphere RRs.
However, a spherical RRs causes some issues because as the number of dimen-
sions increase its volume approaches zero. Further, dimensionality problems are
common in machine learning, where computation that yields good results in a low-
dimensional spaces, becomes intractable in higher dimensions. In fact, it is such a
common problem that it is often referred to as the curse of dimensionality [23, 8].

The curse indicates that AIS algorithms with spherical RRs may become de-
creasingly effective when applied to data sets containing a high number of features.
Fortunately, some approaches has been proposed to address this problem as in
[23, 8]. Further, Dudek [8] introduces an algorithm called AISLFS - Artificial Im-
mune System Local Feature Selection, where an AIS using local feature selection
(LFS) is implemented. LFS operates on the idea of using different subsets of the
problem’s features in different parts of the search space. The features employed in
each AB is a subset of features derived from the complete shape space of the prob-
lem. This means that each AB operate in an specialised I-dimensional subspace
where [ is the length of the subset feature vector, derived from the complete fea-
ture space of n features where n > [. Further, the AB only considers this feature
subset when classifying cases. Subsequently, the use of subspaces decreases the
impact of curse of dimensionality, as most ABs operate on lower than n features.
Further, this is illustrated in figure 2.8 where a set of ABs is first shown to use the
whole two-dimensional shape space (a), and another set is shown to have different
sub-spaces of either 1 or 2 dimensions, using different parts of the shape space (b).

The subspace abstraction is somewhat closer to a real IS as each derived feature
vector represents the specialised receptor of a B-cell. In biology, the epitope is an
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Figure 2.8: All ABs (small circles) visualised with their RRs (dashed lines) of
radius rr where k = 1,2,3. (a) All ABs are using the whole 2-dimensional shape
space of features {1,2}. (b) One AB of radius 72 using the whole shape space
{1,2}, another, r1, using just {1} and the last one, r3, uses just {2} (Adapted
from [8]).

arbitrary discontinuous region on a the surface of the AG, with potentially large
differences between epitopes in the area of the AG covered [23]. Therefore, the
specialised receptors may also vary widely in the area covered. Subsequently, not
representing each AB as a configuration of all the available features, but rather as
a subset of related, but sufficiently different features, creates a biologically closer
model [8].

The AISLF'S algorithm employ no set population size and simply evolve memory
cells of different feature subsets recognising AGs until convergence. Additionally,
AISLFS employ an apoptosis mechanic where redundant ABs (ABs of equal feature
values) are removed from the population after training. This mechanic, along with
LFS, allow AISLFS to achieve good results on datasets with large and difficult
feature spaces. Additionally, the LFS mechanic enables the algorithm to reduce
the amount of data needed for classification by up to 99% [8].

The AIS Niche

As mentioned, AIS algorithms have shown promise by being able to solve increas-
ingly complex problems of a wide variety of types. However, according to Hart
et al. [15] there is little distinct value added to these fields by AIS. Furthermore,
it is stated that that the value of using AIS over other methods is not clear, as
there are no known problems that cannot be solved to an equal or better degree by
other techniques. For instance, when used for classification or clustering, an AIS
provides features like feature extraction, recognition and learning. While these
are necessary features for any machine learning task, it is also something that is
already well-performing and integrated into many other techniques.
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Because of this, the AIS field has no clear niche where it is the best tool for
the job [15]. However, the authors suggest some improvements that would move
AIS closer to their biological counter-part. To this end, a set of principles in order
to fulfil a more defined, unique niche is presented. These principles include a
combination of properties from the biological IS that have yet only partially been
implemented in an AIS. The principles are the following:

1. It should be embodied, the IS does not act in isolation.

2. It should exhibit homeostasis - a relatively stable equilibrium between the
components.

3. It should benefit from interactions between innate and adaptive IS.

4. Tt should consist of multiple, heterogeneous interacting, communicating com-
ponents.

5. It should contain components that can be easily and naturally distributed.

6. It will be required to perform life-long learning.

Ideally all the above principles should be implemented in an complete AIS, but
work arguably still remain in fully achieving each one. The fifth principle is espe-
cially important for this work, as the proposed algorithm exploits the inherent and
naturally distributed nature of an AIS. Some work has already been done on this
in regards to AIS classification by Watkins et al. [37]. In their work they present a
parallel implementation of AIRS where training data is scattered over several pro-
cessors. While accuracy improvements from this were small, the approach achieved
good improvements in terms of parallel efficiency. Additionally, Watkins [36] takes
the AIRS implementation one step further by implementing a fully distributed ver-
sion of the AIRS algorithm. Subsequently, the training process on different parts of
the data set is completely decentralised. While the improvements from distribut-
ing the evolution were subtle, it was shown that certain segments of the network
became more proficient at correctly classifying certain classes over others. Some
segments excelled at classifying cases while others were hopeless. Futhermore, Hart
et al [15] argues that a distributed approach is both necessary to create a distinct
niche for AIS classifiers and at the same time, much more biologically plausible
than the non-distributed alternative.

Alternative Recognition Regionss

Spherical RRs are easy and efficient to use because of their simplicity in definition
and computation. However, several other geometric shapes may be employed for
the ABs RR. Other shapes have shown to give good results under certain conditions
for optimisation problems, as shown by Hart [14]. Furthermore, different AB RRs
may perform better on some problems than others. This is illustrated in figure 2.9,
where an AB with a cross-shaped RR is able to separate the two classes of data
points, while the AB with a circular region is not.



30 Chapter 2. Background Theory and State of the Art

o
0%
e o
@]
O

i -'LE

Figure 2.9: Example problem where the choice of RR shape is important
(adapted from [14]).

Hart [14] further evaluates different RRs in a classical AIS, as well as in an
idiotypic immune network, where ABs are able to interact with both AGs and other
ABs. Further, it is shown that different RRs result in networks with different sizes
and dynamics. Additionally, these networks show a varying degree of being able to
tolerate AGs, given the different ranges of their recognition radius. Subsequently,
the size and shape of the AB RR may affect both results and convergence of the
algorithm.

For AIS classification, research has shown to give good results by employing
dynamic RRs as in Ozsen et al. [28], where evolvable elliptical regions are used.
Here, three different mutation operators are employed on the RRs that consist of
changing the centre, length and orientation of the elipsis. The resulting algorithm
shows no great improvements in regards to solving linearly separable data sets, but
on complex nonlinear data it appears to perform well and sometimes even better
than other algorithms in regards to both training times and accuracies. Further-
more, another example of an algorithm using alternative RRs is AISLFS, which
successfully employ a variety of different AB RR shapes that include spheres, cubes
and cylinders [8]. However, many of these are only employed for a certain subset
dimensionality as some shapes are inefficient when applied in higher dimensions
(see section 5.3.2).

2.2.3 Summary of State of the Art

AIS algorithms can be adapted to solve classification problems of both linear and
non-linear nature. Such classification algorithms generally consists of evolving a
set of ABs able to recognise, adapt and interact with a set of AGs. Several algo-
rithms have been proposed that implement parts of the IS in different, yet similar,
ways and it is shown that AIS algorithms are able to perform just as well than
several established classification methods on some problems. However, some AIS
algorithms are dependent on evolving ABs in higher-dimensional spaces where a
connection is only realised between an AB-AG pair when the AG is within the hy-
perspherical RR of the AB. This property has the unfortunate effect of increasingly
subjecting AIS algorithms to the curse of dimensionality, as the dimensions in the
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dataset increase, leading to the RR’s volume approaching zero. However, these
issues can for be addressed through employing dimensionality-reducing methods,
such as LFS. Finally, while AISs have successfully been adapted to several different
problems, they lack any defined niche. However, this could be solved by exploiting
principles inherent to the IS, such as employing naturally distributed components.
IGA has successfully enhanced the performance of several algorithms. This is
done through maintaining enhanced diversity and exploration by employing several
separately evolving and migrating sub-populations. As a result, convergence and
exploration can be regulated through the number of islands and migration param-
eters employed. Through this, IGAs are reportedly able to achieve both better
results and lower run times than its non-distributed counterparts. However, not
all IGAs enhance performance as worsening results may be a consequence of mi-
gration and high levels of selection pressure making each island homogeneous and
prematurely converge. Subsequently, good results typically come from effective
compromises between genetic diversity and selection pressure on the islands.
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Chapter 3

Algorithmic Model

The following chapter introduces the algorithmic model of the proposed algorithm.
Section 3.1 introduces how the IGA will be combined with AIS through topologies,
algorithm flowchart and migration policies, as well as reasons for selecting the
components used. Furthermore, section 3.2 presents the configuration of the AISs
on each island, consisting for parameters, initialisation, chromosomes, crossover
and mutations, selection mechanisms, AB and population fitness evaluations and,
finally, voting and classification.

3.1 Combining IGA and AIS

In principle, to create a hybrid algorithm involving AIS and IGA, each island runs
its own AIS that evolves its population of ABs independently, except for the peri-
odic swapping of genetic material (ABs) through migration. This is done in order
to exploit IGA properties of enhanced efficiency and exploration (see section 2.2.1)
in order to improve AIS classification. Subsequently, as the proposed algorithm
evolves a several interacting AISs, it is named MAIM - Multiple Artificial Immune
Model.

3.1.1 Topology

The key consideration in the choice of the topology was to select a computationally
efficient architecture that could provide flexibility between genetic isolation and
interconnection. Figure 3.1 illustrates a novel two layered master slave directed
ring topology chosen for the MAIM algorithm.

A directed ring topology was chosen for the first layer. These islands are the
slaves in the model. The second layer is a single island which acts as the master.
Unlike the standard master slave topology, slaves may migrate to other slaves
directly rather than through the master. The slaves are responsible for exploration
of the search space through selection, crossover and mutation of the ABs of their
island populations, I Ps. The master is responsible for combining the I Ps to form
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Figure 3.1: Directed ring topology with master island.

the new population P and applies fitness to the population, F'(P) (see section 3.2.7).
The master island holds a copy of the best population found so far. This novel
approach of combining two established topologies was selected in order to achieve
the benefits of both: The master-slave topology, for its ability to direct the search
and combine solutions, and the directed ring model for its advantages of efficiency,
diversity and flexibility (see section 2.2.1).

Traditionally in an IGA with N islands there are (N - I P) potential solutions at
every iteration. However, in AIS, one individual is an AB and it takes a population
of ABs to create a complete solution, meaning that there would be N solutions.
However, in this work, the population P is spread across all the slaves, where each
island holds (P/N) individuals and there is only one solution at any iteration.
Each island contributes to the combined solution P by evolving a partial solution.
By evolving only partial solutions the potential issue of smaller sub-populations
prematurely converging is greatly reduced while simultaneously enabling increased
efficiency due to having smaller IPs.

It should be noted that there is a second fitness evaluation, which is the fit-
ness of an AB, F(b) (see section 3.2.7), that is calculated for each AB on every
island. Optionally, through a global AB_interaction parameter, the master can
guide the selection of ABs at each island (see section 3.2.7). There is no partial
fitness function, i.e. fitness of the island population and, therefore, the term partial
solution is used loosely. The slaves may be said to act as weak learners creating
partial solutions whilst the master may be thought of as a strong learner, making
it similar to an ensemble method (see section 2.1.3).
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3.1.2 Proposed Algorithm Flow Chart

Evaluate Master

In|t|aI|sat|on Combine slave
populations
Inlt slaves Migrate ¥
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master Evaluate
population
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achieved?

Time to migrate es Migrate
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global interaction
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PERAC)
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L T l

(optional)

Vote using For each slave, s, in the set of all slaves, S:
test set
lterate s:
J; . Evaluate children Create children
Select survivors [« < Select parents
and parents and mutate

‘Termination ‘
Figure 3.2: Flowchart showing the proposed MAIM algorithm.

Figure 3.2 presents an overview of the MAIM algorithm. During initialisation,
parameters controlling the master and the islands are applied (see section 3.2),
and an initial population of ABs is randomly generated for each island. AGs,
being training samples, are split into complete training and test sets. The complete
training set is further split into training and validation sets. Every slave is supplied
with the training set as their AG population, while the master is supplied with the
validation set. Therefore, slaves are tasked with evolving an AB population using
the training set, while P is evaluated by the master using the validation set.
After initialisation, the sub-populations are migrated to the master, combined
to form the current population and evaluated. The evaluation involves a voting
process that assigns classes to AGs in the validation set based on the ABs in P
and the classes assigned to all AGs are compared to their true classes to calculate
F(P) (see section 3.2.7). The current population then becomes the best population
so far. Optionally, the global AB_interaction parameter (see section 3.2.7) from
the master is sent to the slaves to affect the next iteration of the AISs. Further,
during the parallel iterations of the AISs (on every slave island), parent ABs are
selected, crossover and mutation are applied and the individual ABs of both the
parent and the child population are evaluated through F(b) (see section 3.2.7). A
new IP is then selected from the combined parent and child population for each
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island (see section 3.2.6). If the maximum iterations is not reached and it is not
time to migrate between slaves (see section 3.1.3) the slaves again migrate their
IPs to the master and the loop continues as before. Note that the evaluation at
the master includes a comparison between the current population and the best so
far where the best population is updated with the current population if it achieves
a higher F(P).

If it is time to migrate, as indicated by the MF (see table 3.1), all islands
exchange x individuals (see section 3.1.3), before migrating their IPs to the master.
When the mazimum iterations is reached, a final migration between the slaves and
the master is needed, the process of evaluate master is followed to ensure that
the best population and its fitness is stored which subsequently is the final the
solution. Finally, voting is conducted for the test set using the best population,
and the resulting fitness is returned as a measure of the algorithm’s generalisation
ability upon termination.

3.1.3 Migration

As illustrated in figure 3.1, there are two different migration policies employed in
the algorithm. These are the migration between the slave islands and migration
of all the sub-populations from the slaves to the master. However, in this work
it should be noted that copies of individuals are migrated and not the individuals
themselves. Both migration policies are synchronous, meaning that all the islands
migrate individuals between themselves in parallel and all the islands migrate their
individuals to the master in parallel. A synchronous policy over a potential asyn-
chronous policy was chosen for simplicity.

Slave Migration

As stated, many IGAs employ an elitist migration. However, such a strategy
assumes that each individual represents a solution to the task in hand. In this
work, an individual is one AB, one component of the complete solution. The
quality of the individual may be assessed in terms of the accuracy of the AB or its
fitness (see section 3.2.7). However, even if the AB is of high quality it does not
indicate that it is a good solution to the problem, as it is only one part of a whole.
Subsequently, there is likely little to gain from an elitist migration strategy based
on these values as a component of low quality might very well be vital parts of the
solution. Consequently, given the challenges of elitist migration and the benefits of
random migration in terms of efficiency and enhancing diversity (see section 2.2.1),
random migration was chosen between slaves.

Generally, slave migration on an islands involves cloning of x randomly selected
individuals and transfer of the cloned individuals to the neighbouring island con-
nected through migration. Further, two different random slave migration polices
are proposed and tested for the algorithm.

The first alternative operate by having each slave island select random ABs and
send them to its receiving neighbour without deleting anything. In the other policy
a random set of ABs are selected for migration and another random set is selected
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for deletion. This is illustrated in figure 3.3 where the green individuals are selected
for migration, the red individuals are selected for removal and the blue individuals
are selected for both migration and removal. This is to illustrate that the selection
of individuals to migrate and to remove, are two separate selection processes which
both are random. The number of individuals to migrate, x, is defined by MR as
explained in table 3.1. To keep a stable population size, the number of individuals
to remove will always be the same as the number of migrants.

The second alternative is a policy presented specifically for the this work and
relies on migrating  random individuals, but without deleting any. Subsequently
after a round of migration each island has a population of IP+xz. Thus IP+x ABs
are migrated to the master providing IV -z more genetic material for the evaluation
of F(P) (see section 3.2.7) at this iteration. Thus, if the current P is better than
the best P so far, the updated best will hold P+ (n-xz) ABs rather than P. In the
following iteration of the AIS, each IP has the population I P + x at the start but
only I P ABs are selected for survival and the islands return to populations of size
IP on the next iteration with the master returning to P the next time the best
P is updated. Further, this approach was proposed because each island contain
one partial solution to the problem, consisting of all its ABs, and not I P different
solutions as in a traditional IGA. Subsequently, deletion of ABs may have severe
effects on the partial solution by potentially removing vital ABs. Consequently, a
random policy that simply increases the population for one iteration was instead
proposed. The different policies are tested in section 4.5.3.

) Antibodies Selected for migration
Antibodies Selected for removal
o Antibodies Selected for migration and removal

Figure 3.3: Visualisation of migration between slave islands.



38 Chapter 3. Algorithmic Model

Master Migration and Recombination

The master migration and recombination process is visualised in figure 3.4. The
master island is here incorporating all the subpopulations from all slave islands
into one complete solution. As mentioned, the master island contains both the
current best population and the newly gathered one. After recombination the new
population or solution is evaluated and if it attains a higher accuracy over the
validation set than the best population, it is kept as the new current best.

Q Current best population

‘.Q. Newly gathered population

Migration\

Figure 3.4: Visualisation of migration from slaves to master.

3.2 MAIM Components and Configurations

The AIS employed is inspired from the work in VALIS. More specifically, this means
that it evolves a population of ABs at each iteration in order to classify a set of
AGs. The AGs are created from the dataset passed to the proposed algorithm,
as one AG is created from one data sample. Further, the AGs are initialised with
normalised feature values between 0 and 1. AGs remain static over the course of
the algorithm.

3.2.1 MAIM Parameters

The parameters of the MAIM algorithm are as presented and explained in table
3.1.



3.2 MAIM Components and Configurations 39

IGA Parameters

Number of Slave Islands (N)

The number of slave islands to initialise and employ. The
master island will always be initialised in addition to these.

Population Size (P)

The total population size. The master island have the full
population size, while each slave island have a population

size of:
IP = — 3.1
N (3.1)

Migration Rate (MR)

The percentage of the island’s population that are to be
selected for migration. For example, if the given island’s
population is 100 and the MR is 0.1, the number of ABs
selected for migration is 10.

Migration Frequency (MF)

The rate at which migration occur between slave islands,
which is every X iteration as determined by equation 3.2.

X=—= (3.2)

AIS Parameters

Mutation Rate

The chance that a newly created AB is mutated.

Tournaments The number of tournament rounds used in tournament
selection (see 3.2.6).
General Algorithm Parameters
Iterations The total number iterations.
AGs Set of AGs with normalised feature values created from

the data set provided.

Feature-class Intervals

A set of feature intervals, i.e. the lowest and highest
possible feature values, for each feature-class combination
in the dataset (see section 3.2.3).

Classes

The set of different classes in the data set.

Training and test split (79)

The percentage split of all AGs between the test and
complete training sets. T'S AGs are assigned to test and
1 =TS to training.

Validation split (VS5)

The percentage split of the complete training set between
training and validation sets. 1 — V.S AGs are assigned to
validation and V'S to training.

Table 3.1: MAIM parameters.
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3.2.2 Chromosome Structure

There are two different chromosome types employed, one for the AG and one for
the AB. For the AB the chromosome consists of one feature vector, a class and a
recognition radius, as visualised in figure 3.5. A hypersphere RR was selected for
its efficiency and simplicity. Further, the RR is defined by the recognition radius
while the feature vector corresponds to its position in feature space. Any AG which
has a euclidean distance from an AB less than the recognition radius of the AB is
said to be within its RR. Finally, the class determines what class the AB belongs
to, as well as what class it will cast during the voting process (see section 3.2.7).

Similarly, the structure of the AG chromosome consists of a feature vector and a
class label determining the true class of the AG, as MAIM is a supervised learning
algorithm. Further, the AB and AG feature vectors are always of equal lengths,
meaning that the structure of the AG chromosome will look like the feature vector
and class in figure 3.5, but without the RR.

recognition radius

Figure 3.5: Visualisation of the AB chromosome.

The affinity between an AB, b, and an AG, ¢ is defined as the inverse euclidean
distance between them as long as the AG is within the RR of the AB and otherwise
zero. This is defined as in equation 3.3 where d(b,g) is the euclidean distance
between the AB and the AG and r is the recognition radius.

1 .
Wiy = { 09 if d(b,g) <r (3.3)
' 0, otherwise
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3.2.3 AIS Initialisation

As mentioned, each AIS is initialised with TP, ABs (see equation 3.1). Upon cre-
ating a new AB in the initialisation procedure, a random class from the set of AG
classes (the different classes provided with the dataset used) is selected. All ABs
have a fixed amount of features and each feature value is randomly selected from
within a preset interval for each feature and class combination. Here, each feature
has an interval for each class. Further, this means that if the classification prob-
lem has three different classes there are three different intervals for each feature,
corresponding to each of the three classes. These intervals starts as 10% below
the smallest value for that feature-class combination and ends at 10% above the
highest value for the same feature-class combination. In this way the AB is either
initialised somewhere within the sub-space where the AGs of its given class resides
or slightly outside in order to create a smarter an slightly less random initialisation.

Figure 3.6: AB initialisation example.

Figure 3.6 illustrates the class initialisation area. AGs are shown as small
squares and their class is depicted by their colour. Furthermore, the large squares
corresponds to the sub-spaces of each class. Subsequently, ABs of class red will
be initialised randomly within the large red square while ABs of class blue will be
initialised in the large blue square. Also as shown in the figure, these sub-spaces are
calculated by the AGs possessing the largest and smallest values of each feature,
indicated by the arrows.

An AB’s recognition radius is set as the distance to a random AG of its class.
Originally in MAIM, ABs were not guaranteed to interact with AGs after initial-
isation as their recognition radius were simply set as a random value within the
sub-space of its class. However, during experiments (see section 4.5.1) the smarter
initialisation was shown to generally be a better choice.



42 Chapter 3. Algorithmic Model

3.2.4 Crossover

As stated in section 2.2.2, crossover is not common in AIS. It is implemented in
VALIS but not in AIRS, CLONALG and AISLFS. However, if mutation alone was
implemented in the proposed algorithm the effect of migration between the islands
would have little impact on the evolving IPs as ABs from different islands would
not interact and combine. Crossover enables the migrating individuals to spread
their genetic material through the other IPs.

A uniform crossover is employed for its simplicity where two parents create two
children as visualised in figure 3.7. The first child, shown as Child 1 in the example
is created from combining random features from both parents. Further, the second
child will be the complement of this, shown as Child 2 in the figure, where the
features from the parents not picked for the first child is used to create the second
child. Similarly, the recognition radius for the first child is taken randomly from
from one of the parents and the second child receives the remaining recognition
radius that was not selected. Lastly, in this work only ABs of the same class
are selected for crossover with each other through a restrictive form of tournament
selection (see 3.2.6), meaning that the classes of the parents are equal and therefore
both children receive this class. This approach is further investigated in section
4.2.2.

Parent 1

0.2 0.5 0.3 0.1 0.7
Parent 2

0.3 0.6 0.9 1.0 0.4
Child 1

0.2 0.6 0.9 0.1 0.7
Child 2

0.3 0.5 0.3 1.0 0.4

Figure 3.7: Uniform crossover example.

3.2.5 Mutation

A uniform mutation operator is employed for its simplicity, which is controlled
by the mutation rate parameter as shown in table 3.1. Furthermore, when the
mutation operator is applied every feature value in a feature vector of n dimensions
has a chance of being mutated with a probability of 1/(1+n). When a feature
value is selected for mutation it is multiplied by a random real number between
0.1 and 2 based on results of section 4.2.1. Additionally, the recognition radius
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of the AB will be multiplied by a number within the same interval. This process
is illustrated in figure 3.8 where features selected for mutation are highlighted in
green and subsequently mutated, incidentally resulting in one feature having its
value increased while the other is decreased.

0.3 0.6 0.9 1.0 0.4

0.3 0.9 0.9 1.0 0.3

Figure 3.8: Uniform mutation example.

3.2.6 Antibody Selection

In the proposed algorithm both parent and survivor selection for ABs are employed.

Parent Selection

For parent selection, a tournament selection approach has been chosen for its prop-
erties and adjustable parameter (see 2.1.1). The selection process is controlled
by the tournament size parameter of table 3.1. Additionally, crossover is only per-
formed between ABs of the same class, which means that each tournament selection
process only creates and selects from tournament sets with ABs of the same label.
The class to select an AB from is therefore passed as a parameter to the tourna-
ment selection process. This means that in order to select two parents of the same
class, the tournament selection process will have to be conducted two times with
the same class. Further, in order to efficiently select ABs of a specific class, ABs
are split into separate selection pools through a hashmap structure using classes as
keys and same-class AB arrays as values.

The first selected parent will be passed as a parameter to the tournament selec-
tion process for the second parent. This is done in order to avoid selecting the same
parent twice. Finally, according to the clonal selection principle only ABs that in-
teract with at least one AG should be selected for reproduction. In the event that
the selection process returns a non-interacting AB (i.e. affinity is null, see equation
3.3) it will subsequently be discarded and a completely new AB will be created and
initialised to at least interact with one AG through the AB initialisation process
explained in section 3.2.3. This approach was selected to avoid potentially running
multiple tournaments where the winner has an affinity of null.

Survivor Selection

For survivor selection, a fitness proportionate selection approach has been chosen
(see 2.1.1) after reportedly achieving good results in VALIS. The selection process
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selects IP individuals from a combined selection pool of parents and children. Ad-
ditionally, in order to enhance diversity by removing redundant ABs, an apoptosis
process similar to the one used in AISLFS (see section 2.2.2) is simultaneously
conducted. If, during the selection process, an AB is selected for survival that is
the same (i.e. contains exactly the same feature values) as an already selected AB
it will subsequently be removed entirely form the population and not included as
a survivor. This is implemented through calculating, storing and comparing hash
values of the feature vectors.

3.2.7 Fitness Evaluation and Classification

Fitness evaluation occurs in two stages; fitness of the individual ABs b, (F'(b)), and
the fitness of the population P, (F'(P)).

Antibody Fitness Evaluation

(F(b)) is adapted from VALIS for its flexibility and ability to encourage exploration.
It constitutes three main components; sharing factor, weighted accuracy and AG
interactions. The fitness is calculated as in equation 3.4:

_ SharingFactor(b) - Weighted Accuracy(b)
B AG_Interactions(b)

F(b) (3.4)

The main fitness function components include several smaller components which
are summarised in table 3.2.

b The AB getting its fitness calculated.

b’ One specific AB.

B The set of all ABs.

g An AG.

G The set of all AGs.

Gy The set of all AGs with true class being the same class as AB b.

Wiy | The affinity between AB b and AG g (see equation 3.3).

k The number of different classes in the classification problem.
Table 3.2: Fitness formula components.

F(b) is applied during parent selection (see figure 3.2), to select the best anti-
body of each tournament. Following the crossover and mutation, F'(b) is calculated
for each new AB of the resulting child population. In addition, F'(b) is recalculated
for each AB of the parent population to ensure that the sharing factor component
(see equation (3.7)) reflects the ABs in the combined parent and child population.
The updated F(b)s are then applied in the survivor selection process. To avoid
a second F'(b) update in a single iteration, F'(b)s are not updated to reflect the
surviving IP on any island. Subsequently, the already existing F'(b) values are ap-
plied during parent selection on the next iteration. This decision does not affect
the fitness evaluation at the master island.
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It should be noted that all ABs and AGs have fixed positions in the feature
space. Therefore the components WeightedAccuracy and AG_Interactions (see
equation 3.10 and 3.8 respectively), are unchanged during the lifetime of a given
AB. Subsequently, to recalculate F(b) for a given AB, only the sharing factor
component is recalculated to reflect the updated sharing of AGs at each iteration,
between the current ABs in either the I P, when using local AB_interaction or P,
when using local AB_interaction.

Sharing Factor

The sharing factor calculation of an AB, b, is as presented in equation 3.7. Fur-
thermore, the sharing factor is the sum of all the AB’s interaction shares, which is
the portion of the an AG’s total interaction belonging to the AB. This is presented
in equation 3.6, which is calculated and summed for every AG to create the sharing
factor. Subsequently, for every AG, its affinity with the AB needs to be calculated
and squared before being divided by the affinity sum between all ABs in the IP
(or P) and the same AG. Further, this is refereed to as the AB interactions (see
equation 3.5) of the AG.

AB_interactions(g) = Z Wiig (3.5)

b'eB
InteractionShare(b Wiy 3.6
nteractionShare(b, g) = AB_interactions(g) (36)
SharingFactor(b) = Z InteractionShare(b, g) (3.7)

geG

The effect of the sharing factor is that, when it is small the AG is shared with
a lot of other ABs which is punished. Some AGs may have many AB connections,
while others may have none. Therefore, the sharing factor encourages exploration
for such AGs through the punishing effect of the AB_Interactions component. As
a result, ABs connecting to an AG that is already interacting with a large amount
of other ABs is not as favoured as connecting to one interacting with less.

Notice that in the sharing factor formula, the affinity of the AB is squared in
the enumerator to give the it a greater impact in the calculation and encourage
some sharing. Voting requires that ABs to some extent share AGs, so that more
than one AB can vote on a given AG and more accurately determine its class.
Subsequently, while exploration should be encouraged, sharing should not be com-
pletely discouraged. Further, since each AG is shared, the sharing factor provides
the AB with its share of the potential reward [19].

In the default in the model the AB_Interactions component is calculated locally
on each island and reflects sharing in the sub population, I P, of ABs on the
island. However, optionally the master can provide global information about the
AB connections to any given AG in P. This parameter, the global A B_interactions,
is then sent from the master to all slaves to replace the local AB_interactions
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component in the sharing factor calculations. Subsequently, global AB_interactions
represents AG sharing across all islands.

It should be noted that when the sharing factor is not used in the fitness calcu-
lation the AB population will converge to areas of high AG density, which severely
degrades the accuracy of the algorithm, (see 4.2.4).

AG Interactions

The AG interactions of an AB, b, is as presented in equation 3.8. This is the sum
of the AB’s affinities with all AGs.

AG_Interactions(b) = Z Wy (3.8)
geG

The other fitness function components are divided by the AG interactions, which
means that interacting with a lot of AGs while having low sharing factor and
weighted accuracy is subsequently punished.

Weighted Accuracy

The weighted accuracy of the AB, b, is presented in equation 3.10. The weighted
accuracy is calculated as the affinity sum of all the AGs it correctly classifies (found
by comparing the AGs’ true class to the class of b). Further, this is referred to as
the Correct_AG_Interactions as presented in equation 3.9 which is divided by b’s
AG interactions (see equation 3.8). Additionally, Laplacian smoothing is performed
on the component by adding 1 in the numerator and k, the number of different
classes in the classification problem, in denominator. This is performed in order to
prevent overfitting.

Correct_AG_Interactions(b) = Z W (3.9
geGyp
1 _AGT )
WeightedAccuracy(b) — + Correct_AG_Interactions(b) (3.10)

k+ AG_Interactions(b)

The effect of the weighted accuracy term on F(b) is that high-affinity connec-
tions between ABs and AGs of the same class are favoured, while high-affinity
connections of different classes are subsequently punished. This means that ABs
are preferred that reside as close as possible to AGs it correctly classifies while at
the same time favouring antibodies with connections to more than one AG of its
class, because it reduces the punishing effect of the k term.

It should be noted that the weighted accuracy term is specifically introduced
for this work, in order to better suit the proposed algorithm, that allocates a single
static class to each AB, as opposed to VALIS that uses class distributions (see
4.5.1) which subsequently changes their accuracy term.
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Antibody Fitness Evaluation Example

AB;
W11
ABy AGy
W, Wa;
Wat1
W22
ABg AGj
W32
(Wg:)? . W

Sharing factor of AB3 =
W31+ Woy + Wig +Wyy W3z + Wop

AG interactions of ABg = Wa, + Wy,

1+ Wsy
Weighted accuracy of AB3 =
2+ Wzq+ W3

Figure 3.9: Visualisation of F(b) component calculations.

Figure 3.9 presents an example of calculating the three main components of the
fitness function. In the example, AGs are shown as squares and ABs as circles.
Additionally, connections between AGs and ABs are shown as two parallel lines
and denoted as a weight, W,,,, where x is the AB number and y is the AG number
in the connection. Furthermore, different classes are denoted by their colours.

In the figure the fitness components of AB ABj3 is being calculated, firstly
by looking at its sharing factor. ABj is connected with two different AGs, AG;
and AG5. The interaction shares of AB ABj for these AGs are therefore calculated
based ABj3’s affinities with the connected AGs, divided by all the AGs’ connections,
i.e their AB interactions, and subsequently added together, as shown in the figure.

The next element to be calculated is the AG interactions. In the figure this is
calculated by adding all the affinities of AB AB3, namely W3; and W3, together.

Finally, the weighted accuracy for ABj is calculated. As shown in the figure,
ABj5 is only connected to one AG of its class, AG1, as AG5 does not share its colour,
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meaning that Ws; is the only correct interaction of the AB. Its weighted accuracy
is therefore calculated as W31 + 1 and divided by AG_Interactions(ABs) + 2, as 2
is number of different classes in the classification problem.

Voting and Class Assignment

Ve = 3 Wiege - Ape (3.11)

beeBgye

The voting function can be seen in equation 3.11, where b¢ and g¢ are ABs and
AGs of class c, respectively, and Aye is the weighted accuracy of b°.

The population of ABs involved in the voting process is the current population
P on the master. MAIM employs a voting function for determining what class
to allocate to an AG at a particular generation. Every AB, b, of the population
competes to allocate its current class to all AGs in its RR. In other words, for each
AG, g, all local ABs vote to give it their class. Further, when all local ABs have
cast their vote, g is classified as the class with the highest tally. For a given class,
¢, the tally resulting from the vote may be calculated as in equation (3.11). As
shown, the vote strength of and an AB, b, of class ¢ for AG g includes the current
affinity between b and ¢ in addition to the weighted accuracy, Ay. Subsequently,
more accurate ABs will be enabled to have a greater impact on the vote. When all
antibodies have cast their votes, the AG is classified as the class with the highest
tally, which is the highest V.

An example of calculating vote tallies can be seen in figure 3.10 where the blue
circles are ABs of class a and the red circles are ABs of class b. The resulting
classification of the AG, AG, will subsequently be determined by which of V{.
and V3 is greater.
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AB,2

AB,* . AG ABgP
W2 W3

Vag® = (W1-Aag1) + (Wo-Apgp)

Vag? = (WgApgg)

Figure 3.10: Visualisation of voting tally calculations.

One issue with using RRs for voting is that when an AG is not within the RR
of any AB it will not be classified. To select a class for a such AGs, kNN is applied.
This approach is selected based on tests conducted in section 4.2.3.

Classification Accuracy and Population Fitness

During the voting procedure, classes are allocated to AGs and the allocated class
of each AG is compared to its true class included in the data set. Subsequently,
population fitness, F/(P), corresponds to the classification accuracy of the current
population in the master and is expressed as in equation 3.12.

F(P) = — (3.12)

In equation 3.12, ¢, is the number of AGs correctly classified by the current
population of ABs and T is the number of AGs in the data set to be classified.
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Chapter 4

Experiments and Results

This chapter will present the algorithm simulator as well as all experiments con-
ducted on MAIM. Firstly the simulator will be explained in section 4.1, followed
by preliminary tests conducted during development in section 4.2. Further, in sec-
tion 4.3 the experimental plan is presented, followed by the experimental setup in
section 4.4 and lastly the results are presented in section 4.5.

4.1 Experiment Simulator and Visualisation

A simulator has been created in order for the proposed algorithm to be accurately
monitored and tested, which is available at GitHub !. This includes a graphical
user interface that allows for the user to input the algorithm’s parameters and
select data set. During the run of the algorithm a graph interface is shown and
updated live in order to reflect the current accuracies on slaves and master. Addi-
tionally, the AG and AB population at all iterations on all islands can be visualised
once the algorithm has finished. Accuracy graphs for a thousand iterations of the
algorithm with 3 slave islands, one master island and global AB_interaction (see
section 3.2.7) is shown in figure 4.1. Here the respective islands are named with
bold text at the top of each graph and the highest achieved accuracy for each island
is written below each graph. Iterations where migration takes place between the
slave islands are marked in the graphs as red lines while no migration are marked
as blue. Classification accuracies are shown from voting using the training set, but
optionally the validation set can be shown.

Notice how the slave accuracies fluctuates between iterations as a result of
creating new IPs at every run. Additionally, employing the global AB_interaction
parameter makes each island vary widely in accuracies as they all search different
and smaller parts of the search space, subsequently specialising on a subset of AGs
(while being evaluated on all by the simulator). On the other hand, the master only
switches populations when a new best P is found, making the graph much more
stable. For comparison, a run of the same data set using local AB_interaction is

Thttps://github.com/InfintieEvolution/MATM

o1
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included in figure 4.2. Here it is shown that when only employing local information
each island cover larger parts of the complete function, individually achieving higher

accuracies.
Slave 1 Slave 2
0% 0%
50% 50%
90% 90%
100% 100%
Highest achieved accuracy: 97.94% Highest achieved accuracy: 98.24%
Slave 3 Master island
0% 0%
50% PP (I [ 0%
90% | 90%
100% 100%

Highest achieved accuracy: 98.53%

Highest achieved accuracy: 99.07%

Figure 4.1: MAIM with 3 slaves, 1 master and global AB_interaction.

slave 1 slave 2
0% 0%
50% 50%
90% 90%
100 100%

Highest achieved accuracy: 98.97% Highest achieved accuracy: 99.27%

Slave 3 Master island

0% 0%
50%. 50%
90% 90%
100% 100%

Highest achieved accuracy: 99.12% Highest achieved accuracy: 99.66%

Figure 4.2: MAIM with 3 slaves, 1 master and local AB_interaction.

Figure 4.3 is an example of visualisation of the master-island (corresponding
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slave island visualisations can be found in appendix .3) population at iteration
51 on an artificially generated two-dimensional spirals data set gathered from the
work of VALIS. The image contains 1000 ABs and 680 AGs. AGs are depicted as
squares, AB RRs as circles and different classes as different colours. Controls at
the top of the image indicates which iteration and which island is currently being
viewed. Further, through the controls at the top of the figure, the population of
every island can be viewed at every iteration. The master island is here island 4
because the algorithm is ran with 3 slaves. Further, the bottom text indicates the
training accuracy achieved at the current iteration as well as what iteration the
best accuracy was achieved. In addition, by typing "test” into the ”view iteration”
field at the top, the population’s accuracy over the test set will be shown and
visualised. Parameters are input at the left which includes the parameters of table
3.1 as well as some additional parameters for testing and visualisation. Another
visualisation, using local AB_interaction can be seen in figure 4.4 where four slaves
and their master are displayed.
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Iterations:
1000
Population size:
1000
Mutation rate:
0.7
Number of tournaments:
4
Number of islands:
3
Migration frequency:
0.1
Migration rate:
0.1
Name of dataset:
[ spirals.txt v
Dataset split:
0.1
Validation split:
03
k-fold cross validation:
0
PCA projection
0
\1\ Plot radius
[V Plot solution

\\7\ Global AB Interaction

|V/| Master valdidation

View iteration 0-1000: 51 atisland: | 4 ~

Accuracy of set shown: 99.28%

Highest accuracy achieved over training set: 99.28%, at iteration 51

Figure 4.3:
ample.

Proposed algorithm simulator with user interface and solution ex-



4.1 Experiment Simulator and Visualisation 55

(e) Master island

(c) Slave 3 (d) Slave 4

Figure 4.4: Four slave islands and master at iteration 217 using local
AB_interaction.

As stated all iterations can be viewed and therefore also the evolution and
convergence of the respective slave and master populations. Figure 4.5 shows 4
different iterations of a run of the algorithm on the Wine data set with visualised
RRs.
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(a) (b)

. .'-':. vt :-“..-..
- . ﬁ;- =
L R
(c) (d)

Figure 4.5: Evolution of MAIM on the Wine data set. (a) Generation 0 (b)
Generation 5 (c¢) Generation 50 (d) Generation 347

Alternatively ABs can be visualised as small circles with thin lines indicating
connections as in figure 4.6. Additionally, four different iterations of the Iris data
set is here displayed. Visualisations have been inspired from the work done in

VALIS.
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Figure 4.6: Evolution of MAIM on the Iris data set. (a) Generation 0 (b)
Generation 5 (c) Generation 45 (d)
Generation 317

4.2 Preliminary Tests Conducted During Devel-
opment

This section will constitute experiments conducted while developing the proposed
algorithm. These was conducted in order to make sure that the model components
would benefit the algorithm. All preliminary tests used the same set of parameters
which is defined in table 4.1 and run with ten-fold cross-validation averaging over
five runs (see section 2.1.3). Notice that # AG indicates that the number of AGs in
the data set. Furthermore, only the AIS components of the algorithm were tested,
likely making the island model unnecessary for these experiments. Therefore, to
avoid factoring in the effect of islands, all preliminary tests were conducted running
AIS only, i.e. without any additional slave or master islands. Subsequently, there
are no defined MR and MF for theses tests. The preliminary tests are conducted
on 3 different data sets, namely Pima Indians Diabetes (Diabetes), Iris and Wine
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(see table 4.6), all selected for their different properties. Iris was selected for its
small size both in terms of feature space and AG population. Further, Wine was
selected for its slightly larger feature space and being easily separable. Finally,
diabetes was selected for its larger size and harder difficulty. Finally, results of all
accuracy testing in this work is presented as accuracies returned from the MAIM’s
voting function (see section 3.2.7) with standard deviations (SDs) in parentheses.

4.2.1 Mutation Multiplier Range

Parameter Value
Islands 1
Population Size | # AG
Mutation Rate 0.8
Iterations 600
Tournaments 5
Validation Split 0.3

Table 4.1: Parameters used for testing the mutation operator.

Multiple tests were conducted to find the best and most stable value for the range of
possible feature multiplier values for the mutation operator, as indicated in section
3.2.5. The results presented in table 4.2 are some examples of results from the tests
ran. The different value ranges give quite similar results, with minor individual
differences. The individual differences indicates that different data sets might, to a
lesser degree, benefit from different ranges in mutation multipliers. It was assumed
that a larger multiplier range allows for more exploration and higher, but less stable
results because of large range of possible values to select from. However, any range
from the ones tested achieved satisfactory results. Subsequently, the tests in this
work use the range of 0.1 — 2.0 as it on average gave the most stable results (0.008
SD).

Value Span of Mutation Operator T Wine Result Diabetes Tverage
09-1.1 0.945 (0.013) 0.96 (0.015) 0.714 (0.003) 0.872 (0.01)
0.1-2.0 0.947 (0.009) | 0.948 (0.009) | 0.72 (0.004) | 0.871 (0.008)
0.1-3.0 0.947 (0.007) 0.956 (0.016) 0.721 (0.003) 0.875 (0.009)

Table 4.2: Preliminary mutation multiplier testing.

4.2.2 Effects of Crossover Inside and Across Classes

The following test was conducted to identify whether the crossover function should
be conducted between ABs of same or different classes. This was proposed in order
to achieve faster convergence as same-class parents were assumed to create better
same-class children. The results are presented in table 4.3. As shown, no big
difference between the two different crossover approaches were found. It should
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be noted that with the random class crossover the SD is a bit smaller, indicating
that the algorithm may be more slightly more stable with this approach. Finally,
because of the results showing no great differences, the crossover approach was kept
between same classes as in the original model.

Data set Result
Equal Class Crossover | Random Class Crossover
Iris 0.953 (0.008) 0.959 (0.007)
Wine 0.948 (0.011) 0.941 (0.006)
Diabetes 0.724 (0.015) 0.725 (0.009)

Table 4.3: Preliminary tests of crossover across classes versus equal classes.

4.2.3 Comparing Voting with the KNN-Rule

Tests following were concocted to investigate the effect using kNN and voting in
the propsed algorithm.

Data set . Results -
Voting Only | KNN(k=5) Only | KNN(k=5) and Voting
Tris 0.929 (0.010) | 0.955 (0.011) 0.951 (0.015)
Wine | 0.938 (0.014) |  0.96 (0.011) 0.958 (0.017)
Diabetes | 0.706 (0.019) |  0.72 (0.006) 0.725 (0.009)
Table 4.4: Preliminary testing on the difference between the voting function and
kNN.

It is clear from Table 4.4 that voting alone results in lower accuracy compared
to the other approaches. This is a consequence of AGs that are not in the RRs
of any AB and are therefore not allocated a class. As stated in section 3.2.7, the
combined approach is a voting approach where kNN is only applied to those AGs
that are not assigned a class during voting. As shown, this ensures an accuracy on
par with kNN. However, kNN alone is challenged in terms of efficiency.

To investigate run times with the different approaches, the Diabetes data set
was applied as it is the largest of the data sets used and therefore is very dependant
on an efficient classification strategy. The results clearly showed kNN alone to be
inefficient with 6.57 minutes run time, compared to that of a combined voting and
kNN of 2.26 minutes and voting alone of 2.15 minutes.

KNN may be said to be a lazy learning approach, requiring no training at
the cost of being computationally heavy during classification. On the other hand,
voting is an eager learning approach that is computationally heavy during training,
but provides fast classification. AIS, is also an eager learning approach so when
combined with kNN, efficiency is negatively impacted. However, when combining
MAIM’s voting with the kNN, efficiency is similar to that of voting alone and
while simultaneously enabling the increased accuracies shown. Subsequently, a
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combined kNN and voting approach was chosen for its compromise in performance.
Additionally, as it is not guaranteed than every AG will always be within an RR
it is likely a good idea to use kNN as a backup regardless.

It should be noted that the poor performance of voting only is likely due to
insufficient exploration and some AGs not residing within an AB RR. Further
work has been done that improves exploration in section 4.5.1.

4.2.4 Effects of Sharing Factor

Data set Result
With Sharing Factor | Without Sharing Factor
Iris 0.953 (0.007) 0.943 (0.019)
Wine 0.948 (0.011) 0.938 (0.011)
Diabetes 0.724 (0.012) 0.723 (0.009)

Table 4.5: Preliminary testing of sharing factor.

The effects of the sharing factor (see section 3.2.7) has been found by testing the
proposed algorithm, with and without sharing factor. The results are presented in
table 4.5. As the results indicate, the algorithm obtains better results with sharing
factor than without. Furthermore, The sharing factor has a substantial impact
on how the algorithm evolve over time. Figure 4.7 presents two graphs of how
the algorithm is evolving with and without sharing factor, showing the algorithm
converging to better accuracies with sharing factors while diverging without. Fur-
thermore, figure 4.8 shows a visualisation of how the AB population looks after
evolving without sharing factor. By comparing this figure to 4.10, which is the
same data set, one can see that the sharing factor has a big impact in how ABs
position themselves. From comparing the figures one can see that without sharing
factor many more connections are calculated as AG sharing is not punished, al-
lowing AGs to position themselves in areas of high AG density while having large
RRs. Consequently, this impacts the efficiency of the algorithm. On one hand,
when calculating sharing factor, but not using it in the fitness function, F(b), the
average time training time for the Diabetes data set was 07:15 minutes. On
the other hand, when both calculating and using the sharing factor in the fitness
function, the average time dropped to 02:26 minutes. Subsequently, when too
many ABs connect to too many of the same AGs it is referred to as AB congestion,
resulting in exponential amount of connections and calculations. This concept is
further investigated and explained in section 4.5.2.
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(a) With sharing factor enabled (b) Without sharing factor enabled

Figure 4.7: Visualisation of sharing factor effects on the Diabetes data set.

(a) Iris dataset with antibody radius drawn (b) Iris dataset with antibody to antigen connection

Figure 4.8: 2D solution plots of the Iris data set, without sharing factor.

4.3 Experimental Plan

The experiments present an analysis of some of the key decisions behind the model
and their effect on accuracy and/or efficiency. Further, The research questions for
this thesis are separated into three areas of enhancing accuracy and efficiency as
well as the impact of migration. Based on these questions, the experiments will be
conducted in three respective phases.

The first phase, T1, will be focused on testing classification accuracy. In order
to accurately test the performance of the algorithm, different tests will be done one
several datasets with varying properties. Further, the results will be compared to
state of the art classification algorithms.
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The second phase, T2, of testing will be focused towards efficiency. Efficiency in
this context corresponds to the training times or run times of the MAIM algorithm.
However, the state of the art classifiers introduced do not provide any measures
of their efficiency. Subsequently, the efficiency tests will be conducted by running
the proposed algorithm with different island numbers and population sizes and
comparing the different results with each other. For instance, by comparing the
AIS model by itself against MAIM with different island numbers, one can examine
the effects of the island model on the AIS.

The third phase, T3, will investigate the impact of migration, through MF, MR,
and policy in terms of accuracies achieved.

Data set Samples Attributes Classes Source
Iris 150 4 3 UCI
Wine 178 13 3 UcClI
Pima Indians Diabetes 768 8 2 UCI
Sonar 208 60 2 UCI
Glass 214 9 6 UcCl
Heart Statlog 270 13 2 UCI
Tonosphere 351 34 2 UCI
Breast Cancer Wisconsin 699 9 2 [8[@11

Table 4.6: Data sets used for testing.

The data sets that will be used for testing are presented in table 4.6, and is taken
from the UCI Machine Learning Repository [7]. Further, VALIS, ARIS and AISLFS
are all tested against some of these data sets. This allows for a comparison of the
proposed algorithm with several state of the art AIS classifiers. The properties of
the data sets are also varies, spanning from 2-6 classes, 4-60 dimensions and 150-
768 samples. The chosen data sets also have a big variation on sizes and difficulties
and each one were selected for their unique properties in order to challenge the
algorithm. Iris and Wine are both fairly easily separable datasets. However, Iris
was selected for having few AGs and a small feature space, and Wine, which is also
small, for having a larger feature space than Iris. Further, Breast Cancer Wisconsin
(Breast Cancer) is a data set with a large sample size that was selected for being
somewhere in between easy and difficult to separate. This is because it consists
of a combination of easily classifiable samples while also containing a few that are
very difficult. Further, Diabetes and Heart Statlog were selected for being quite
difficult data sets with fairly small feature spaces and few classes. Additionally,
Diabetes was also selected for having a large sample size. Further, Sonar and
Ionosphere were selected for being somewhat difficult while having large feature
spaces. However, Sonar has a substantially larger feature space and is generally
harder than Ionosphere. Finally, Glass was selected for being a difficult data set
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with many classes and few cases per class.

4.3.1 Overview of Test Plan
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Table 4.7 presents an overview of the test plan. All tests marked with TL means
that they are conducted with local AB_interaction, while the tests marked with
TG are conducted with global AB_interaction. Tests are initially conducted with
local AB_interaction, but some are redone using global AB_interaction in order to
evaluate its effects.

Test Overview

Hypotheses

Phase One - T1

Testing of classification accuracy with comparisons
with classifiers.
e T(L/G) 1.1 - Tests on fairly separable data.

e T(L/G) 1.2 - Tests on more difficult non-
separable data.

e T(L/G) 1.3 - Tests on difficult non-separable
data with many classes.

e T(L/G) 1.4 - Tests on data with large feature
spaces.

e T(L) 1.5 - Tests with new radius initialisation
and higher populations and iterations.

e T(L) 1.6 - Test with class distributions.

The proposed algorithm will provide results which
are mostly on par with the other classifiers for
tests 1.1, 1.2 and 1.3. Further, global informa-
tion, G, is expected to perform better than local
information, L, as it becomes a more informed
search.  However, since the proposed algorithm
does mnot contain any sort of feature selection,
results from tests, T1.4, are expected to be worse.
Furthermore, results are expected to improve when
the MAIM is given better exploration capabilities
through initialisation, iterations and population
sizes in test T1.5. Finally, in test TL1.6 class
distributions are expected to overall perform worse
than static classes, as a result of less specialised ABs.

Phase Two - T2

Efficiency testing in terms of run times and compared
against itself.

e T(L/G) 2.1 - Tested with P as 500, using AIS
only, four, eight and twelve islands.

T(L) 2.2 - Tested with P as 1000, using AIS
only, four, eight and twelve islands and com-
pared to a single AIS.

T(L) 2.3 - Tested with P as 1500, using AIS
only, four, eight and twelve islands.

T(L/G) 2.4 - Tested with P as 2000, using AIS
only, four, eight and twelve islands.

T(L) 2.5 - Tested with P as 4000 and 6000 on

the diabetes dataset, using AIS only, four, eight
and twelve islands.

e T(L) 2.6 - Tested with P as #AGs, using three
and four islands.

The proposed algorithm is expected to perform some-
what better with an island structure than without on
T2.1 and T2.2, but not by a large margin. How-
ever, the more islands the algorithm are initialised
with, the better the efficiency on large populations
because of the increased distribution, which will be
seen in tests T2.3, T2.4 and T2.5. However, with
very small population sizes in T2.6, the efficiency en-
hancements will be either be relatively small or, for
many islands, cause extra overhead that will make
MAIM less efficient. Finally, local information, L,
is assumed to be slightly more efficient than global
information, G, because master computation is re-
duced.

Phase Three - T3

Migration testing in terms of MR, MF and policy and
their effect on accuracy.
e T(L/G) 3.1 - Parameter sweep on the Wine
data set with non-deletion migration.

e T(L/G) 3.2 - Parameter sweep on the Diabets
data set with non-deletion migration.

e T(L/G) 3.3 - Parameter sweep on the Heart
Statlog data set with non-deletion migration.

e T(L) 3.4 - Parameter sweep with deletion
migration on Diabetes, Wine and Heart data
sets.

The proposed algorithm is expected to achieve better
results with migration than without. Further, it will
perform the best with small values for both MF and
MR in tests 3.1, 3.2 and 3.3. This is because as
more and larger migrations occur the likelihood of
MAIM never converging increases. Further, local
information, L, is expected to benefit more from
the diversity provided by migration than global
information, G. This is because global information
already makes the islands significantly different from
cach other. Finally, migration without deletion is
expected to perform better than with, in test T3.4,
as AB deletion may destroy valuable parts of the
sub-solutions.

Table 4.7: Test overview and hypotheses.
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4.4 Experimental Setup

The following section will describe the experimental setup for the different tests for
the proposed algorithm. Generally, in all tests, the AG population is divided into
complete training and test sets, proportional to the cross-validation fold, which is
always generated with random splits. Further, SDs are presented in parenthesis
next to accuracy and efficiency results. Finally, the number behind MAIM is
indicating the number of islands initialised for the given test, i.e. meaning MAIM-
3 is the test with three slave islands.

4.4.1 Phase One - Accuracy Testing

Accuracy tests will be conducted in order to evaluate MAIM’s generalisation abil-
ity. In order to accurately measure its performance, test results will be compared
against results from AIRS [24], VALIS [19] and AISLFS [8], as well as MAIM-AIS
which is the MAIM AIS model running by itself. For AIRS, two common config-
urations is used for comparison, AIRS-1 and AIRS-7, where the numbers indicate
how many of the nearest neighbours are used when classifying an AG. Further, the
data sets tested are all the sets of table 4.6, which is selected for their different
properties (see section 4.3). As described in table 4.7, the accuracy tests will be
divided into the six cases from T1.1-T1.6 with hypotheses as presented in table
4.7. Additionally, in the tests the data sets will be visualised with solutions con-
taining both AGs and ABs after 600 iterations of training by projecting them in
two dimensions using principle component analysis (PCA ). Further, this is meant
to serve as an indication of the degree of separability and layout of the different
data sets, which is visualised through the two different visualisations available in
the simulator (see section 4.1). Some data sets may be better visualised with one
method over the other, which is why they were both included.

The population size for each test will be equal to the number of initialised AGs
(see table 4.6). A full list of parameters used can be found in table 4.8. None of the
parameters for the test setup are fine tuned for obtaining high accuracies. Further,
all accuracy results presented are the average of five ten-fold cross-validation runs.
Finally, results highlighted in bold are the best of each column.
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Parameter Value
Iterations 600

Total Population Size | #AGs
#Islands(range) 1-12
Mutation Rate 0.7
#Tournaments 4.0
Migration Frequency 0.2
Migration Rate 0.1
Validation Split 0.3

Table 4.8: Parameter setup for accuracy tests.

4.4.2 Phase Two - Efficiency Testing

The efficiency tests will focus on how different number of islands will effect the
efficiency of the algorithm, as populations increase. Therefore the tests will be
separated into six parts, T2.1-T2.6. Each part will be tested with AIS only
(MAIM-AIS), four, eight and twelve slave islands. Further, the populations tested
are 500, 1000, 1500, 2000, 4000, 6000 and # AG with hypotheses as presented in 4.7.
A full list of parameters used can be found in table 4.9. The tests will be conducted
on four data sets; Wine, Iris, Diabetes and Sonar. The sets are chosen for their
variability in sizes, both in terms of samples and feature space, as well as varying
level of complexity (see section 4.3) in order to see the impact of the different set
properties on efficiency. Further, the efficiency tests are conducted with an Intel
Core i7-4790 CPU (3.60GHz, 4 cores) processor. Additionally, the run time results
are displayed as the average in seconds of five ten-fold cross-validation runs, i.e.
each result is the cumulative time of ten runs of the algorithm. Finally, results
highlighted in bold are the best of each row.
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Parameter Value
Iterations 600
Population Size(range) | 500-6000
#Islands(range) 1-12
Mutation Rate 0.7
#Tournaments 4
Migration Frequency 0.2
Migration Rate 0.1
Validation Split 0.3

Table 4.9: Parameter setup for the efficiency tests.

4.4.3 Phase Three - Effects of Migration Policy, Rate and
Frequency

The tests for migration effects will be conducted by accuracy parameter sweeping,
of MF and MR. Further, sweeping will be conducted for both deletion an no-
deletion migration (see section 3.1.3). Further, the sweeping range will span from
0 to 1, and increase in 0.1 increments. The tests will be ran on three different
data sets for tests T3.1-T3.3 in order to see the effect of migration on data sets of
varying properties. The data sets selected are Iris for its small size and separability,
Heart Statlog for its complexity and Diabetes for both its complexity and large size.
Additionally, a test, T3.4, is employed to test the effect of migration with deletion.
Further, a full parameter list can be found in table 4.10. Finally, accuracies are
indicated in by their colour intensity in the heatmaps, corresponding to the average
of five ten-fold cross-validation runs. A random split of the data sets is generated
for every ten-fold cross-validation run conducted.
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4.5 Experimental Results and Evaluation

The following sections will present and evaluate results of MAIM testing.

Parameters for Master Slave
Parameter Value
Generations 600

Population Size #AGs
Mutation Rate 0.7
#Tournaments 4
#Islands 4

Migration Frequency(range) | 0.0-1.0

Migration Rate(range) 0.0-1.0
Validation Split 0.3

Table 4.10: Parameter setup for migration tests.

4.5.1 Results Phase One - Accuracy Testing
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The following section concerns the accuracy results of tests T1.1-1.5 (see ta-
ble 4.7) with setups as presented in section 4.4.1. Further, test using only local
AB_interaction, TL1.1-1.5, will first be conducted followed by tests using global
AB_interaction, TG1.1-1.5.

Accuracy With local AB_interaction

Algorithm Wine Iris
VALIS 0.972 (0.005) 0.956 (0.005)
AIRS-1 na 0.96 (0.0560)
AIRS-7 na 0.953 (0.055)
AISLFS 0.9776 (0.0058) | 0.957 (0.0038)

MAIM-AIS 0.958 (0.017) 0.951 (0.0153)
MAIM-3 0.966 (0.006) 0.964 (0.006)
MAIM-4 0.967 (0.003) 0.965 (0.006)
MAIM-5 0.963 (0.008) 0.948 (0.011)
MAIM-6 0.969 (0.003) 0.937 (0.008)
MAIM-7 0.967 (0.007) 0.945 (0.014)
MAIM-8 0.972 (0.007) 0.943 (0.012)

Table 4.11:
rable data.

TL1.1 Accuracy test with local AB_interaction, on partially sepa-
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The results for test TL1.1 are presented in table 4.11 which contains data sets
where classes are fairly easily separable. First off, for the Wine data set, seen
in figure 4.9, the proposed algorithm performs on par with VALIS and AISLFS,
performing just as well as VALIS on eight islands, and almost as good as AISLFS.
These results are as expected, as MAIM is assumed to perform well on separable
data, as IGA is shown to be good at easily separable problems (see section 2.2.1)
and from the facts that UCI defines Wine as a ”well behaved” data set, which is
good for testing new classifiers [7]. Furthermore, the most interesting thing about
this particular data set is that MAIM provided the best results with eight islands.
This is the only accuracy test with local AB_interaction where 8 islands have proven
to be the best. Additionally, 4 and 6 islands also perform well and accuracies seem
to somewhat increase with more islands for this particular dataset. This may
indicate that the genetic isolation and convergence provided by employing islands
is positive.
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Figure 4.9: 2D solution plots of the Wine data set.

To see whether the Wine data set specifically prefers 8 islands or simply a large
island number, a test, TL1.1.1, for 10 and 12 islands were conducted with results
in table 4.12.

Number of Islands | Accuracy
10 0.966 (0.009)
12 0.96 (0.009)
Table 4.12: TL1.1.1 Accuracy tests for the Wine data set employing 10 and 12

islands.

The results does not indicate that increasing the number of islands will further
enhance the results. Rather, it seems like the accuracies slightly decrease while SDs
slightly increase when population distribution becomes greater. This might indi-
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cate that when IPs become too small it makes the results more unstable. To further
investigate this another test, TL1.1.2, was conducted, with ten islands while dou-
bling the population size from 178 to 356 individuals. The results are as presented
in table 4.13 and show that increasing the population slightly increases accuracy
while decreasing SD, stabilising the population and subsequently the results. How-
ever, the differences are almost negligible and further testing should be done to
draw any conclusions. Subsequently, further tests are done on larger population
sizes in tests TL1.3 and TL1.5. Furthermore, based on the fact that accuracies
do not continue to increase it seems that the Wine data set prefer exactly 8 islands
over other numbers, indicating that it provides a good level of genetic isolation for
this data set (see section 2.2.1). This could also indicate that these properties are
more easily exploitable by easily separable data.

Number of Islands | Total AB Population | Accuracy
10 356 0.969 (0.005)

Table 4.13: TL1.1.2 Accuracy test for the Wine data set employing 10 islands
and 356 ABs.

The Iris data set is much like the Wine data set with easily seaparable data.
As seen in figure 4.10, one class is linearly separable from the other two which are
more overlapping. Also here MAIM presents promising results, beating the other
AIS classifiers by a small margin, with both 3 and 4 islands. It is worth noting
that for this data set, as opposed to Wine, increasing the number of islands seem
to worsen the results. This is possibly due to Iris being the smallest set being
tested, with only 150 samples, making it vulnerable to extensive distribution when
only 150 ABs are employed. Similarly to test TL1.1.1 this might indicate that IPs
should not get too small in order for an island structure to be effective.
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(a) Iris dataset with antibody radius (b) Iris dataset with antibody to antigen connections

Figure 4.10: 2D solution plots of the Iris data set.
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To test this assumption, another test, TL1.1.3, was conducted with 8 islands
and double P. Table 4.14 presents the results of this experiment where accuracies
are shown to increase with larger IPs at the same time as SDs decrease, further
indicating that when IPs become too small it may in fact worsen the performance.
This is consistent with the results of test TL1.1.2. Subsequently, the worsening
accuracies can be counteracted by employing larger IPs while concurrently stabil-
ising the results. However, at what point the distribution of the total population
becomes too great seems to be vary depending on the data set, as the Wine and
other subsequent tests will show that some data sets benefit from more distribution
than others.

Parameters Values
Islands 8
Population Size 300
0.965
Result (0.003)
Table 4.14: TL1.1.3 Accuracy test for the Iris data set with 8 islands and 300

ABs

Algorithm | Pima Indians Diabetes | Heart Statlog | Breast Cancer Wisconsin
VALIS na na na
AIRS-1 0.674 (0.046) na 0.961 (0.018)
AIRS-7 0.736 (0.035) na 0.962 (0.019)
AISLFS 0.742 (0.009) 0.8177 (0.0103) 0.9642 (0.0026)

MAIM-AIS 0.725 (0.009) 0.798 (0.003) 0.962 (0.0013)
MAIM-3 0.751 (0.006) 0.805 (0.006) 0.969 (0.001)
MAIM-4 0.757 (0.006) 0.813 (0.008) 0.969 (0.001)
MAIM-5 0.747 (0.006) 0.807 (0.011) 0.968 (0.002)
MAIM-6 0.742 (0.004) 0.799 (0.001) 0.969 (0.002)
MAIM-7 0.748 (0.004) 0.806 (0.01) 0.969 (0.002)
MAIM-8 0.750 (0.019) 0.802 (0.01) 0.967 (0.003)

Table 4.15: TL1.2 Accuracy tests with local AB_interaction, on non-separable
data.

The table 4.15 presents results for test TL1.2, on difficult to separate data of
varying difficulty. Figure 4.11 is a 2D plot of the Diabetes data set where one can
see that the two classes overlap significantly. However, the results for this data
set is very promising. MAIM performs the same or better than both AIRS and
AISLFS on every island number tested. Further, the best result, MAIM-4, is better
than both AIRS and AISLFS by 2.1% and 1.5%, respectively.
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(a) Diabetes dataset with antibody radius (b) Diabetes dataset with antibody to antigen connections

Figure 4.11: 2D solution plots of the Diabetes data set.

The Heart Statlog data set look a lot like the diabetes data set when plotted in
two dimensions (see figure 4.12) with significantly overlapping classes. Further, as
seen of the results in table 4.15, MAIM performs well on this data when compared
to AISLFS, especially when looking the best-performing island number, MAIM-4.
Here, the results of the two algorithms are quite similar, with AISLFS having a
slightly higher accuracy, while MAIM-4 has a slightly lower SD.

(a) Heart Statlog dataset with antibody radius (b) Heart Statlog dataset with antibody to antigen connections

Figure 4.12: 2D solution plots of the Heart Statlog data set.

The Breast Cancer Wisconsin data set is one of the easier data sets where most
classification algorithms achieve around 96%. It consists of two classes that are
mostly easily separable as shown in figure 4.13. However, it also contain a few
cases of the two classes that are almost indistinguishable, making anything higher
than 96% hard to achieve. MAIM performs well on this data set, better than AIRS
and AISLFS on all island numbers, although only slightly, as seen in table 4.15.
Furthermore, 3 and 4 islands is shown perform the best also here.
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6 ©

(a) Breast Cancer Wisconsin dataset with antibody radius (b) Breast Cancer Wisconsin dataset with antibody to antigen connections

Figure 4.13: 2D solution plots of the Breast Cancer Wisconsin data set.

From the results of table 4.15 one can conclude that MAIM perform well on
these types of data sets which have larger sample sizes, are harder to separate,
contain only two classes and does not have particularly large feature spaces. Fur-
thermore, the results of MAIM is significantly better than the results of MAIM’s
AIS by itself. This indicates that the properties of the island model is positive
for these data sets. Through the enhanced exploration and convergence provided
by a migrating island structure, better results can be found. Further, diversity is
likely important for these data sets, as they all contain regions with AGs that are
particularly hard to correctly classify. Therefore, the island structure employed
provide the islands with enough new genetic material to over time create really
well-performing ABs for the particularly difficult regions. Additionally, 4 islands
performs the best on all data sets, indicating that it provides a good compromise
between genetic isolation and interconnection (see section 2.2.1).

Algorithm Glass
VALIS 0.689 (0.024)
AIRS-1 na
AIRS-7 na

AISLFS | 0.754 (0.0161)
MAIM-AIS | 0.619 (0.021)
MAIM-3 0.640 (0.025)
MAIM-4 0.640 (0.021)
MAIM-5 0.619 (0.019)
(0.011)

(0.018)

MAIM-6 0.646 (0.011
MAIM-7 0.642 (0.018
MAIM-8 0.641 (0.019)
Table 4.16: TL1.3 Accuracy tests with local AB_interaction, on non-separable
data with many classes.
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The test TL1.3 investigates performance on the Glass data set, containing
many classes with few AGs of each class. Glass is a very difficult to solve for the
proposed algorithm, with 6 classes and 9 features and where one class only consti-
tutes 9 of the 214 total samples. Additionally, as seen in figure 4.14, the classes
are quite overlapping and inseparable. The results of the test can be seen in table
4.16 where MAIM is shown to perform a bit worse than VALIS and substantially
worse than AISLFS. This could indicate that MAIM struggles with generalisation
when one or more classes contain few samples and particularly when there are also
few ABs per AG.

A new experiment, test TL1.3.1, have been conducted with larger population
sizes. Here, the number of islands is set to 6 as this it what preforms best in test
TL1.3, population sizes are increased as shown in table 4.17, while all other pa-
rameters remain the same. The new results indicates that the assumption could
be correct. Every new test has increased the population size by 214 (#AGs) in-
dividuals it is clear that the algorithm performs better as the population grows.
However, after reaching 1070 individuals, it seems that there is not much to gain
by continuing to increase the population. Further, as the population increase, the
SDs decrease, which is consistent with tests TL1.1.2 and TL1.1.3, indicating that
it is stabilising for larger populations. Further, while MAIM’s performance was in-
creased it was not able to perform better than VALIS. This is likely a consequence
of VALIS using class distributions instead of static classes, which is further investi-
gated in test TL1.6. AISLFS, on the other hand, achieve much better results than
both VALIS and MAIM, indicating that the results on Glass significantly benefit
from feature selection. However, feature selection is outside the scope of this work,
but is proposed as future work in section 5.3.1. Finally, tuning of population sizes
shows promising results, which is further investigated in section test TL1.5.

(a) Glass dataset with antibody radius (b) Glass dataset with antibody to antigen connections

Figure 4.14: 2D solution plots of the Glass data set.
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Population Size

Results

428

0.659 (0.019)

642

0.665 (0.013)

856

0.675 (0.016)

1070

0.677 (0.013)

1284

0.674 (0.01)

Table 4.17:

TL1.3.1 Accuracies for the Glass data set with 6 islands and in-

creasing population sizes.

Algorithm Sonar Ionosphere
VALIS 0.818 (0.020) 0.928 (0.007)
AIRS-1 0.841 (0.074) 0.869 (0.031)
AIRS-7 0.765 (0.084) 0.886 (0.050)
AISLFS 0.881 (0.0118) | 0.9437 (0.0049)

MAIM-AIS 0.619 (0.099) 0.641 (0.001)
MAIM-3 0.657 (0.067) 0.673 (0.006)
MAIM-4 0.675 (0.085) 0.671 (0.021)
MAIM-5 0.659 (0.085) 0.680 (0.01)
MAIM-6 0.632 (0.008) 0.662 (0.012)
MAIM-7 0.629 (0.017) 0.675 (0.007)
MAIM-8 0.608 (0.031) 0.657 (0.007)

Table 4.18:

TL1.4 Accuracy tests with local AB_interaction, on data with big

feature spaces.

The test TL1.4 evaluates the last two data sets; Sonar and Ionosphere. Further,
both data sets have quite large feature spaces with Sonar having 60 and Ionosphere
34 features. Both sets have 2 classes. Additionally, as seen in the PCA projection
in figure 4.15 and 4.16, the areas of the two classes in both data sets overlap quite

a bit.
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(a) Sonar dataset with antibody radius (b) Sonar dataset with antibody to antigen connections

Figure 4.15: 2D solution plots of the Sonar data set.
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(a) lonosphere dataset with antibody radius (b) lonosphere dataset with antibody to antigen connections

Figure 4.16: 2D solution plots of the Ionosphere data set.

The results are presented in table 4.18. As seen, the results of MAIM are very
poor compared to the other classifiers. One reason for the poor performance may
be due to the lack of any feature selection for the proposed algorithm. However,
AIRS and VALIS do not report any feature selection used, indicating that this is
not the only cause of the poor performance as they both still achieve good results
on these data sets.

There are a few distinct differences between MAIM and algorithms like AISLFS
and AIRS. The AISLFS and AIRS algorithms evolve ABs that are targeted at
specific AGs. This means that every AG is eventually specifically selected and AB
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candidates are cloned and mutated to best connect to these AG. On the other hand,
MAIM evolve ABs in a way similar to traditional GAs (see section 2.1.1) where
a new population is generated and selected at each iteration. Subsequently, ABs
in MAIM are not generated and specialised to recognise specific AGs and is only
selected based on their fitness. However, because of this approach, as opposed to
ATRS and AISLFS, this means that there is no guarantee that every AG receives
a connection from an AB. Subsequently, in large feature spaces there is a good
chance that some AGs are left out of the final function approximation, as a result
of insufficient exploration of the search space. This is further substantiated by the
very large SDs on the Sonar datasets indicating very unstable results due to luck
of whether all AGs are found or not.

It is interesting that VALIS, which is the algorithm that MAIM is the most
similar to, performs much better on these data sets. This might be partially due
to VALIS’ having an initialisation method that set the radius of a newly generated
AB’s RR as the distance from the AB to a randomly selected AG. Subsequently,
every AB is guaranteed to be connected to at least one AG, and over time, as
more ABs are generated, every AG is likely to receive a connection. MAIM, on
the other hand, randomly initialises the radiuses of the RRs and is therefore much
more dependent on being lucky in having the initial ABs covering enough of the
search space. These assumptions are further investigated in test TL1.5.

The preceding tests show promising results regarding the classification accuracy
of MAIM using local AB_interaction. MAIM generally performs better than the
AIS model running by itself. This indicates that the properties of the island model
is positive. Table 4.19 gives an overview of minimum and maximum accuracy
differences between MAIM with islands and and MAIM-AIS. The minimum column
is the accuracy difference between the worst performing island number and MAIM-
AIS, while the maximum column is the difference between best performing island
number and MAIM-AIS. Here it is shown that MAIM is generally able to improve
results on all data sets, with just a few setups being worse than MAIM-AIS. For
Sonar the worsening performance is likely a consequence of the unstable results
(see test TL1.4) and for Iris it is a consequence of too much distribution (see test
TL1.1.3).

Data set Min. Accuracy Diff. | Max. Accuracy Diff.
Iris -1.4% 1.4%
Wine 0.5% 1.4%
Diabetes 1.7% 3.2%
Heart Statlog 0.1% 1.5%
Breast Cancer Wisconsin 0.5% 0.7%
Glass 0% 2.7%
Tonosphere 1.6% 3.9%
Sonar -1.1% 5.6%

Table 4.19: Maximum and minimum accuracy differences between MAIM and
MAIM-AIS, using local AB_interaction.
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To summarise; as expected MAIM performs very well on easily separable data.
Further, it is also proving to be good on the more difficult data sets with many
samples of each class and smaller feature spaces. This is likely because of the
enhanced exploration capabilities of the island model. However, for difficult data
sets with many classes and few of each class it is shown to struggle, something which
can be counteracted to a certain degree by increasing the population. However, the
lack of feature selection is likely also a limitation here. Finally, MAIM is struggling
with high dimensional data sets because of insufficient exploration of the search
space. The results are generally in line with the hypothesis for these tests (see
table 4.7).

It is clear that varying the number of islands changes the results. However,
there is no clear trend to whether increasing or decreasing the number of islands
is beneficial, aside from avoiding that the IPs become too small. Subsequently,
having the right number of islands an IP sizes for the data set is important and
results can often by improved by tuning the population sizes. Further, an approach
to dynamically tuning island numbers and population sizes is discussed in section
5.3.3. Finally, 4, 6, 7 and 8 islands seem to give the best performance. 6 islands
is best for Glass, 5 for Ionosphere, 8 for Wine and finally; 4 for Iris, Diabetes,
Heart Statlog, Breast Cancer, and Sonar, making it the best overall. This is,
as mentioned, likely due to its compromise between isolated and connected IP
evolution.

Accuracy With global AB_interaction

The following tests will be conducted using global information through the global
AB_interaction parameter. As explained in section 3.2.7, when this is enabled the
interaction of the AGs across all islands is calculated at the master and commu-
nicated to the slaves where it is used in the sharing factor calculation (see sec-
tion 3.2.7). However, in order to reduce the amount of tests conducted only 4, 6
and 8 islands was selected as they all gave good overall performance in the local
AB_interaction tests.

The table 4.20 presents the results of TG1.1 on fairly easily partially separate
data. As seen from these results, the tests conducted with local AB_interaction
overall performed better. However, on the Iris data set, the results obtained from
test TG1.1 running with six islands are equal to test TL1.1 running with four
islands, which were the best results of the test. However, by comparing the SD
of TG1.1 with that of TL1.1, it indicates local AB_interaction is more stable for
this data set. Finally, while Wine performs better with local information on all
tests, it should be noted that also here 8 islands are the best.
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Algorithm Wine Iris
MAIM-4 0.96 (0.011) 0.949 (0.012)
MAIM-6 0.96 (0.009) 0.965 (0.017)
MAIM-8 0.966 (0.015) 0.941 (0.009)
Table 4.20: TG1.1 Accuracy tests with global AB_interaction on partially sep-
arable data.

Table 4.21 presents the results of test TG1.2 on more difficult, non-separable
data. Again, by comparing these results to test TL1.2, local AB_interaction over-
all performs the best. However, for 6 islands there are slight improvements to
be achieved over local information on the Diabetes and Heart Statlog data sets.
Finally, 4 islands perform the best on all data sets, similarly to test TL1.2.

Algorithm | Pima Diabetes | Heart Statlog | Wisconsin Breast Cancer
MAIM-4 | 0.744 (0.005) | 0.806 (0.011) 0.966 (0.001)
MAIM-6 0.743 (0.007) 0804 (0.004) 0.964 (0.002)
MAIM-8 0.743 (0.006) 0.797 (0.007) 0.964 (0.003)

Table 4.21: TG1.2 Accuracy tests with global AB_interaction on non-separable
data.

The table 4.22 presents the results of test TG1.3 on the non-separable data
containing many classes. By comparing the results of this test to TL1.3 once again
the test with local AB_interaction is overall performing better. Further, also for this
test a higher number of islands is showing the best results. The result with eight
islands is close to the results obtained with six islands in TL1.3. Subsequently,
another test, TG1.3.1, have been conducted with increased population size to
see if the results are improved. As a population of 1070 proved the best in test
TL1.3.1, this was also be selected for test TG1.3.1. The results are presented in
table 4.23. Further, the results are almost identical to the results obtained in test
TL1.3.1, with a slightly smaller SD.

Algorithm Glass
MAIM-4 0.621 (0.021)
MAIM-6 0.639 (0.008)
MAIM-8 | 0.640 (0.016)
Table 4.22: TG1.3 Accuracy tests with global AB_interaction on non-separable
data with many classes.
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Population Size Result
1070 0.674 (0.0018)

Table 4.23: TG1.3.1 Accuracy test on the Glass data set, with global
AB_interaction, eight islands and large population.

The last test with global AB_interaction, TG1.4, is presented in table 4.24.
Yet again, the global AB_interaction overall does not perform as well as the corre-
sponding local tests of TL1.4. However, 6 and 8 islands with global information
on Sonar perform better than their local counterparts. Additionally, for these tests
SDs are generally lower with global information than with local.

Algorithm Sonar Ionosphere

MAIM-4 0.631 (0.011) 0.641 (0.0001)
MAIM-6 0.646 (0.029) | 0.641 (0.0001)
MAIM-8 0.629 (0.018) 0.641 (0.0001)

Table 4.24: TG1.4 Results from accuracy tests with global AB_interaction on
data with large feature spaces.

Overall, it can be seen that employing an island structure is beneficial also here,
when compared to the MAIM-AIS results of TL1.1-1.4. However, perhaps sur-
prisingly, global information has a limited positive impact on performance, as seen
from comparisons between the best results achieved with the different approaches
in figure 4.17. For 4 islands the performance is worse than with local information
on all tests, making local information the overall best performer and indicating
that island independence is important. This is contrary to the hypothesis for these
tests in table 4.3.1. However, with 6 islands, Iris, Diabetes, Heart Statlog and
Sonar all show a slight improvement over the results with local information and
specifically for Sonar, the performance on 8 islands is also improved. Furthermore,
for Glass and Wine, 8 islands overall performed the best, 6 for Iris and Sonar, 4 for
Diabetes, Heart Statlog and Breast Cancer and Ionosphere performs the same on
all tests. This indicates that the optimal number of islands fluctuates more with
global information, as 4 islands is overall the best with local information. Further,
the SDs of Ionosphere, Glass and considerably also for Sonar are reduced with
global information, suggesting the reliance on good initialisation might be reduced
as opposed to with local information. This is likely due to the search being directed
by the master island when using global information, forcing each island to explore
separate parts of the search space.
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Comparisons of best accuracies obtained with local and global information

100.0

Accuracy (%)

Iris

= Best Local = Best Global

Wine Diabetes

Glass Sonar

Data set

lonsphere Heart statlong

Breast Cancer

Figure 4.17: Comparisons between best accuracies achieved with local and global

information.

MAIM-4 in Comparison with Non-AIS Classifiers

After tests conducted on both local and global AB_interaction it can concluded that
overall, MAIM-4 using local AB_interaction achieves the best results. Therefore,
the results of MAIM-4 with parameters as in table 4.8 are compared to the results
of kNN, support vector machine (SVM) and random forest (RF) gathered from the
work of AISLFS [8]. The comparisons can be seen in table 4.25.

Data Set MAIM-4 KNN SVM RF
Tonosphere | 0.671 (0.021) | 0.862 (0.009) | 0.952 (0.004) | 0.935 (0.004)
Glass 0.640 (0.021) | 0.696 (0.014) | 0.682 (0.02) | 0.788 (0.014)
Breast Cancer | 0.969 (0.001) | 0.967 (0.003) | 0.976 (0.003) | 0.962 (0.003)
Iris 0.965 (0.006) | 0.954 (0.008) | 0.951 (0.005) | 0.951 (0.007)
Wine 0.967 (0.003) | 0.964 (0.006) | 0.985 (0.005) | 0.981 (0.003)
Dabetes 0.757 (0.006) | 0.752 (0.006) | 0.767 (0.005) | 0.767 (0.005)
Heart Statlog | 0.813 (0.008) | 0.83 (0.013) | 0.843 (0.007) | 0.827 (0.009)
Sonar 0.675 (0.085) | 0.86 (0.015) | 0.844 (0.012) | 0.0834 (0.012)

Table 4.25: MAIM-4 comparisons with kNN, SVM and RF.

Not surprisingly, MAIM-4 is challenged on the Ionosphere, Sonar and Glass
data sets as a consequence of a lack of exploration in larger feature spaces and
poor performance with many classes, as highlighted in tests TL1.3 and TL1.4.
However, on the other data sets MAIM-4 arguably achieves results on par with the




4.5 Experimental Results and Evaluation 81

other algorithms while achieving the overall best results on Iris. The results are
generally promising and indicates that the algorithm posses a good generalisation
ability which can likely be further improved through improving AB exploration
and tuning parameters.

Accuracy Tests With New Initial Radius

The results of test TL1.4 showed that further work was needed on large feature
spaces. Therefore, a new initial radius for the ABs, similarly to what VALIS is
doing, was implemented in MAIM. Subsequently, new radiuses are initialised as
the distance between the AB and a random AG of its class. This approach was
investigated in test TL1.5.1 with standard parameters as in table 4.8 and extensive
accuracy results in appendix .1.1. Incidentally, the new tests were conducted on
all data sets with up to 12 islands showing some interesting results. For instance,
for 9 islands Wine achieved an accuracy of 0.9755, for 10 islands Heart Statlog
achieved an accuracy of 0.8303 and for 11 islands Diabetes achieved an accuracy
of 0.7581. These are the highest accuracies achieved for these sets, indicating their
preference for high genetic isolation and showing there is a point to testing large
island numbers, in terms of accuracy.

Through the new accuracies achieved it was clear the change also gave better
results on the Sonar and Ionosphere data sets. This is visualised in figure 4.18,
where the best results with new initial radius are compared against the best results
obtained from local AB_interaction in TL1.4. Furthermore, it should be noted
that even with the change 4 islands remain the best for the Sonar data set and 5
for Ionosphere. Furthermore, in TL1.3.1 it was shown that a larger population
improved the accuracy on the Glass data set. Consequently, new tests, TL1.5.2
and TL1.5.3, were conducted on both the Sonar and Ionosphere data sets with
4 and 5 islands, respectively. Additionally, since the feature space of these data
sets were very large, it was also assumed that more training time (iterations) could
enhance the results and give the algorithm sufficient time to explore the search
space.
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Random RR init. compared to AB RR set to a random AG of the AB's class
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Figure 4.18: TL1.5.1 Comparison of accuracies between random RR initialisa-
tion and AB RRs initialised to a random AG of the AB’s class.

The new tests were conducted by parameter sweeping the population size and
iterations of the algorithm. The results are presented in heat maps in see figure 4.19
and 4.20. Here, more red indicate worse results, while more green indicate better.
These tests shows that MAIM is performing better than VALIS on the Sonar data
set and AIRS on Ionosphere. That such a small change of the algorithm, along
with increases in iterations and population sizes, is providing such improvements
in the results is promising. Further, it goes to show just how important AB initial-
isation and sufficient exploration is for the search. Moreover, a substantial amount
of new radiuses created are larger than the old, as there is no longer any limit to
their initialised range (see section 3.2.3). Subsequently, with the change the RR
cover larger parts of the search space and include more AGs in the function ap-
proximation. Consequently, it can be concluded that new initialisation and larger
radiuses, along with more exploration through iterations and population sizes, are
thus positive.
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Figure 4.19: TL1.5.2 Accuracy heatmap of the Ionosphere data set.
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Figure 4.20: TL1.5.3 Accuracy heatmap of the Sonar data set.

Additionally, the results indicate that performance can be improved from in-
creasing just the iterations and population sizes by themselves. Further, when
increased in conjunction they complement each other and even further improve the
results. Through this one can conclude that these parameters are very important
for the search and subsequently the result, indicating that when one is increased
the other may reasonably be increased as well. So far increasing the population
has generally been shown to have positive affect on both accuracies and stability
(SDs), as seen in TL1.1.2, TL1.1.3 TL1.3.1. Consequently, it would be inter-
esting to see just how far the results can improve by continuing to increase these
parameters. Unfortunately, this is outside the scope of this work, but could be
investigated through a dynamic island approach, as discussed in 5.3.3.

It should be noted that such large population sizes an iterations are not required
to achieve similar results with VALIS and AIRS, indicating that their exploratory
ability is not as dependent on these parameters. Subsequently, it is reasonable to
assume that MAIM could benefit from forcing a wider exploration of the search
space, either through increasing the punishment of AG sharing or the integration
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of a feature selection approach (see section 5.3.1).

Accuracy Tests With Class Distributions

In the VALIS algorithm ABs employ class distributions instead static classes as in
this work. This means that the ABs receive several different accuracies depending
on the distribution of AGs they connect to. An example of this is an AB covering
3 AGs in total; 1 AG of class a and 2 AGs of class b. This gives the AB a class
distribution of % for a and % for b, which are subsequently their accuracies for the
respective classes. Further, these distributions are used in both the AB fitness and
voting function, making each AB able to recognise more than one class of AG at
once, something not possible with the static class approach of MAIM. By using
this approach in MAIM, voting and fitness is calculated identically to VALIS.

Comparisons of best accuracies obtained with static and distributed classes

= Best Static = Best Distributed
100 96.57096:534 97-55096:536 96.86096.828

75.81074.944

Accuracy (%)

Iris Wine Diabetes Glass Sonar lonsphere Heart statlong Breast Cancer
Data set

Figure 4.21: Comparisons between static and distributed classes.

An additional test was conducted to compare static and distributed classes,
TL1.6, using local AB_interaction, class distributions and the initialisation method
on TL1.5. Extensive accuracy results from testing the class distribution technique
can bee seen in appendix .1.2. Based on the results, a comparison between the
results from the static class approach of TL1.5 in appendix .1.1 was compared to
the distributed class approach in figure 4.21. Note that the results were selected
from the best-performing island numbers of each approach. Further, it is shown
that the static class approach in test TL1.5, generally performs better than the
class distribution approach on most of the data sets tested. However, some benefit
can gained from using class distributions, specifically on the Glass data set where
it is shown to perform better than all other approaches tested. While MAIM with
static classes is able to achieve an accuracy of 64.19%, class distributions achieve
66.6%. Furthermore, while the differences are arguably not large, it indicates that
class distributions are better on data sets with many classes that are hard to
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separate. This is perhaps not surprising as class distributions are able to classify
AGs of several different classes at once. Subsequently, class distribution ABs are
likely better at classifying AGs in areas containing many overlapping and hard to
separate classes, making it difficult for ABs to only interact with AGs the same
class. However, static classes still seem to be the best-performing approach overall.
This is in line with the hypothesis of table 4.3.1, indicating that the static classes
makes the ABs more specialised and subsequently better at its assigned task, which
is to correctly classify only one class of AGs.

4.5.2 Results Phase Two - Efficiency Testing

This section will present and elaborate on the results of the efficiency tests, and
are separated into six different parts, T2.1 - T2.6, as described in table 4.3.1 with
setups as described in section 4.4.2.

Efficiency Tests with local AB_interaction

The first test, TL2.1, with a population size of 500 is presented in table 4.26 and
visualised in figure 4.22. As the results show, MAIM is performing better than AIS
only on all island numbers for Sonar and Wine. Further, on Iris it performs better
with 4 and 8 islands and finally, on Diabetes, it only performs better with 4.

This indicates that the overhead of migrating between twelve islands on 20% of
the iterations, gives a substantial amount of overhead when the population size is
small. This is especially true for the Diabetes data set which is substantially larger
than the others.

data set / Islands | AIS Only 4 Islands 8 Islands 12 Islands
Iris 16.2 (0.25) | 14.64 (0.19) | 15.56 (0.19) | 17.06 (0.24)

Wine 28.06 (0.13) | 22.76 (0.27) | 23.89 (0.12) | 26.66 (0.34)
Diabetes 81.29 (0.69) | 79.78 (1.33) | 91.31 (1.17) | 104.99 (0.63)
Sonar 85.97 (1.61) | 71.07 (0.55) | 76.34 (1.30) | 83.04 (1.02)

Table 4.26: TL2.1 Efficiency tests with population size 500 and local
AB_interaction.
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Figure 4.22: TL2.1 Efficiency tests comparisons with population size 500 and

local AB_interaction.

The test TL2.2 with a population size of 1000 is presented in table 4.27 and
figure 4.23. The results indicate that the island setups perform increasingly better
than AIS only as the population increase. Further, in this test all the different
island setups perform better than AIS only. 12 islands is still not as favourable on
the Diabetes data set, but the overhead of migration has proportionally become

smaller.

data set / Islands | AIS Only 4 Islands 8 Islands 12 Islands
Iris 46.5 (0.27) 31.56 (0.38) 29.47 (0.27) | 29.99 (0.17)
Wine 78.51 (0.55) 48.21 (0.34) 47.30 (0.34) | 48.26 (0.25)
Diabetes 193.33 (1.73) | 152.65 (1.43) | 168.24 (2.08) | 179.06 (0.67)
Sonar 197.47 (4.47) | 142.60 (1.21) | 143.81 (0.82) | 149.94 (1.35)

Table 4.27: TL2.2 Efficiency tests with population size 1000 and local

AB_interaction.
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Figure 4.23: TL2.2 Efficiency comparisons with population size 1000 and local

AB_interaction.

The test TL2.3 for a population size of 1500 is presented in table 4.28 and
figure 4.24. Further, the results are consistent with assumptions of test TL2.2,
showing clear indications that MAIM perform increasingly better than AIS only
for larger populations. Further, the higher island numbers seem to do increasingly
well in relation to other numbers as population increase. Training time of MAIM
here is reduced by 59% on Iris running twelve islands compared to AIS only.

data set / Islands | AIS Only 4 Islands 8 Islands 12 Islands
Iris 110.53 (1.28) 52.9 (0.7) 48.99 (1.18) 45.03 (0.32)
Wine 168.38 (2.81) 78.48 (0.86) 77.73 (1.04) 74.98 (0.88)
Diabetes 376.67 (6.24) | 231.28 (1.12) 251.24 (3.42) 265.23 (1.03)
Sonar 352.25 (6.54) 222.62 (1.1) 214.42 (2.42) | 218.24 (2.07)

Table 4.28: TL2.3 Efficiency tests with population size 1500 and local

AB_interaction.
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Figure 4.24: TL2.3 Efficiency test comparisons with population size 1500 and
local AB_interaction.

The test TL2.4 for population size of 2000 is presented in table 4.29 and figure
4.25. The results further indicate that that MAIM become increasingly efficient
with larger populations simultaneously as increased distribution through employing

more islands become increasingly effective. This is in line with the hypothesis of
table 4.7.

data set / Islands | AIS Only 4 Islands 8 Islands 12 Islands
Iris 215.5 (9.68) 72.49 (5.38) 68.12 (1.3) 64.07 (1.89)
Wine 301.81 (9.86) 113.26 (1.9) 105.7 (1.27) 101.6 (0.84)
Diabetes 604.20 (1.59) | 316.25 (1.23) | 334.38 (3.72) 343.43 (1.4)
Sonar 556.69 (8.91) 301.95 (2.52) 288.02 (1.44) | 287.18 (5.07)
Table 4.29: TL2.4 Efficiency tests with population size 2000 and local

AB_interaction.
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Figure 4.25: TL2.4 Efficiency test comparisons with population size 2000 and
local AB_interaction.

As seen for a population of 2000, 12 islands is best-performing on Iris and Wine
and second best on Diabetes. It is likely safe to assume that for Sonar 12 islands
will perform the best by simply increasing the population a little more. However,
for Diabetes 12 islands still perform worse than both 4 and 8. This might be
a consequence of the size and AG layout in the Diabetes data set. With many
AGs in a normalised space it is likely to contain areas of higher AG density than
the other sets. This in turn leads to a greater risk of AB congestion for higher
populations (see section 4.2.4). However, this can be counteracted by increasing
the distribution. Further, following this assumption the difference between the
island setups will continue to grow as populations increase, eventually making 12
islands better. To test this assumption, a new test, TL2.5, was conducted with
population sizes of 4000 and 6000 on the Diabetes data set with results in table 4.30
and figure 4.26. The results indicate that the assumption is true, as the difference
between the setups increase in relation to the distribution. Consequently, for a
population size of 6000, 12 islands performs the best overall, while the difference
between 4 and 8 has also increased in favour of 4. Finally, it can be seen that
training times for AIS only has almost doubled from 4000 to 6000.

data set / Islands

AIS Only

4 Island

8 Island

12 Island

Diabetes (4000)

1615.902 (4.1)

761.321 (3.44)

651.743 (4.44)

653.163 (5.31)

Diabetes (6000)

3225211 (6.21)

1302.02 (5.224)

1064.125 (5.952)

980.128 (7.44)

Table 4.30: TL2.5 Efficiency tests with population sizes of 4000, 6000 and local
AB_interaction on the Diabetes data set.
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Extra Test on the Diabetes Data set
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Figure 4.26: TL2.5 Efficiency test comparisons with population sizes of 4000,
6000 and local AB_interaction on the Diabetes data set.

It should be noted that the increase in population for these particular data sets
does not necessarily improve the accuracy of the classification as optimal population
sizes vary between data sets (detailed accuracy results can be found in appendix
.2). However, it does prove that if high population sizes are necessary, like for
instance as in section TL1.5, an increased distribution through deploying more
islands is beneficial.

A population size of 500 was determined to be a small population in the tests
conducted, but this is only relative to the other population sizes tested. 500 is not
necessarily a small population size for data sets that are already small and easily
separable. For instance, Iris only contain 150 cases and 4 features while also being
relatively easily separable. Consequently, a population size of 500 might be an
unnecessarily high for this data set. Subsequently, it would be interesting to look
at the run times for Iris with different island setups using a population size of 150.
According to the hypothesis of 4.7 the overhead of using islands is likely to become
too big for smaller populations.

An additional test, TL2.6, has been conducted for all the data sets using pop-
ulation sizes of #AGs. The results are presented in table 4.31 and figure 4.27 for
three and four islands. Three islands have here been added to this experiment to
see if it is more efficient than four islands for these populations sizes. The Results
indicate that the hypothesis of overhead does in fact become an increasing problem
for smaller population sizes. With a population of 150, Iris is more efficiently ran
on a AIS only than on both 3 and 4 islands. However, the differences in run times
are almost negligible. Additionally, three islands is slightly faster than four, as a
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result of having slightly more overhead. In all likelihood two islands would further
decrease the run times for MAIM on Iris, but at that point the properties of the is-
land model will likely diminish and negatively impact accuracies (see section 4.5.1).
Finally, for all data sets tested except Iris, three islands is, to varying degrees, more
efficient when using #AGs ABs.

data set (population size) AIS Only 3 Islands 4 Islands

Iris (150) 4.79 (0.075) | 5.01 (0.0094)

5.41 (0.0037)

Wine (178)

9.50 (0.1312)

9.28 (0.0026)

9.95 (0.0048)

Diabets (768)

150.017 (1.37)

124.85 (0.0043)

127.19 (0.931)

Sonar (208)

3418 (1.12)

30.67 (0.497)

33.203 (0.293)

Table 4.31: TL2.6 Efficiency tests with population size #AGs and local
AB_interaction.

Population size equal to #Antigens

200 =AlS Only =3 Islands =4 Islands
150
50.017
/c-g\ 127.19;
124.85 .
& 100
(8]
(O]
@2
[0}
E 50
|—
34.18 30,67 FERAE
0 . - [ L

T 5.41

Iris (150) Wine (178) Diabetes (768) Sonar (208)

Data set (population size)

Figure 4.27: TL2.6 Efficiency test comparisons with population size #AGs and
local AB_interaction.

Run Time Graphs - Figure 4.28, 4.29, 4.30 and 4.31 illustrates the run time
graphs for different datasets and islands setups, gathered from data in TL2.1-2.5.
As the figures shows, the different island setups have closer to linear increases,
while AIS only have much more exponential increases. However, much like the
diagrams in the preceding tests, the graphs vary depending on the data set. For
instance, AIS only on the Sonar data set have a more drastic increase early, making
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an island structure beneficial right from the start at 500 ABs. On the other hand,
for Diabetes, islands are not beneficial before employing around 1000 ABs. Further,
for sonar, 12 islands become better than 4 at population sizes of around 1500, while
for Diabetes 12 islands is still the worst-performing island setup at 2000.

Efficiency tests for the Iris data set
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Figure 4.28: MAIM run time graph for the Iris data set.
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Efficiency tests for the Wine data set
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Figure 4.29: MAIM run time graph for the Wine data set.
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Figure 4.30: MAIM run time graph for the Sonar data set.
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Efficiency tests for the Diabetes data set
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Figure 4.31: MAIM run time graph for the Diabetes data set.

In addition to in tests TL2.1-2.4, Diabetes was, as the only set, further tested
in test TL2.5. Therefore, figure 4.31 presents the combined data from all efficiency
tests on Diabetes. Here it can be seen that linear efficiency is obtained with 4 islands
until the population reaches 4000. At this point, the islands become congested as
there are too many concurrent AB-AG connections, exponentially increasing the
computational burden of the fitness calculation. However, when this happens,
further spreading the population over 8 islands reduces the AB congestion on each
island and subsequently the computational burden. As a consequence, for the case
of population sizes of 6000 or above, employing 12 islands is the most efficient.

The exponential increases in run times are a result of too many ABs interacting
with too many of the same AGs, i.e. too much AG sharing between ABs. This
is a result of the AB to AG ratio becoming too large. Subsequently, increasing
the population sizes increases the amount of ABs having to reside in areas of high
AG density, resulting in the total number of interactions exponentially increasing
as increasing amounts of ABs interact with the same AGs. Further, this heavily
impacts the number of calculations having to be done for all affinities and sharing
factors to be determined at each iteration. In absolute worst case n? affinities
and n? interaction shares have to be calculated at each iteration if every AB is
connected to every AG (see section 3.2.7).

For smaller IPs the sharing factor cause the ABs to sufficiently spread out and
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connect to fewer AGs on average, alleviating the computational burden. How-
ever, for larger IPs this is not possible. Subsequently, at this point and for larger
populations, the increase in the number of islands counteracts the inevitable expo-
nential increase in run times by increasing the distribution of the ABs and avoiding
congestion.

Efficiency Tests With global AB_interaction

The efficiency tests conducted with global AB_interaction are only conducted for
population sizes 500 in TG2.1 and 2000 in TG2.4, as indicated by table 4.7 with
setups as described in section 4.4.2. This is because the tests are conducted in order
to compare efficiency with local AB_interaction. Additionally, the Sonar data sets
is not included for these tests, as it seemed unnecessary since same trend could be
seen in all datasets of TL2.1-2.4.

Results of TG2.1 are shown table 4.32 and figure 4.32. Similarly, TG2.4 is
shown in table 4.33 and figure 4.33. Both tests perform worse than their local
AB_interaction counterparts, in terms of efficiency, with corresponding accuracy
results in appendix .2.

Data set AIS Only 4 Islands 8 Islands 12 Islands
Iris 16.2 (0.25) 18.54 (0.26) 19.7 (0.3) 21.04 (0.22)
wine 28.06 (0.13) | 29.49 (0.34) | 32.08 (0.23) 34.41 (34)
Diabetes | 81.29 (0.69) | 96.20 (0.9) | 106.58 (0.14) | 119.65 (1.47)
Table 4.32: TG2.1 Efficiency tests with population size 500 and global

AB_interaction.
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Figure 4.32: TG2.1 Efficiency test comparisons with population size 500 and
global AB_interaction.

Data set | AIS Only 4 Islands 8 Islands 12 Islands
Iris 215.5 (9.68) 90.48 (1.73) 87.23 (1.31) 83.43 (2.25)
wine 301.81 (9.86) | 141.51 (1.19) | 132.76 (3.37) | 141.85 (0.44)

Diabetes 604.20 408.04 (6.14) | 460.15 (8.77) | 482.25 (2.64)

Table 4.33: TG2.4 Efficiency tests with population size 2000 and global
AB_interaction.
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Figure 4.33: TG2.4 Efficiency test comparisons with population size 2000 and
global AB_interaction.

Local AB_interaction perform better than global for both smaller and larger
population sizes, as indicated by figure 4.34 where the best-performing island se-
tups of 500 and 2000 ABs using local and global information are compared. Here,
local information is around 20% faster on all setups shown. Further, it is par-
ticularly clear that local information performs better when looking at the smaller
population sizes in comparison with AIS only. In test TG2.1, AIS only is per-
forming better than all island setups on all data sets, where in TL2.1 4 islands is
the best. Further, the increased run times from employing global AB_interaction
is likely a consequence two things: Firstly, the increased computation needed for
calculating the parameter on the master. Secondly, when the master directs the
search it forces each island to explore different and more condensed parts of the
search space. Subsequently, AB congestion increase with global information as ABs
are forced into smaller areas on the islands. On the other hand, with only local
information the search is not directed and ABs are free to spread over the whole
search space, decreasing AB congestion and consequently run times.
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Best efficiency comparisons of local and global information with 500 and 2000 ABs
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Figure 4.34: Efficiency test comparisons between local and global
AB_interaction.

The efficiency results achieved align with the hypothesis of table 4.7 where it
was indicated that global AB_interaction would be less efficient. Further, results
from all tests conducted so far indicates that overall local AB_interaction performs
the best, both in terms of accuracy and efficiency. As a result, there may not be a
reason for employing global AB_interaction in the search, except for a few special
cases of data set and island number combinations, as discussed in section 4.5.1.
Regardless, it is promising that independence between islands is as beneficial as the
tests indicate, performing the overall best both in terms of accuracy and efficiency.

4.5.3 Results Phase Three - Effects of Migration Frequency,
Rate and Policy

This section will present the results obtained by looking at the effects of MF, MR,
and policy through parameter sweeping tests. Further, the tests have been con-
ducted over three different data sets, with parameters and setup as explained in
section 4.4.3. Every figure in the following chapter displays an accuracy heatmap
where more green indicate higher accuracies and more white indicating lower ac-
curacies, as shown by the gradient bar below. Green and white were here selected
as the accuracy differences achieved from the parameters are not as great as in
test TL1.5. Remember, that in the following tests MR refers to what percentage
of the population is sent during migration and MF refers how often migration is
conducted (see table 3.1).



4.5 Experimental Results and Evaluation 99

IGA Effects with local AB_interaction

The following tests present migration effects using local AB_interaction and no-
deletion migration.

The figure 4.35 presents the results as a heatmap for test TL3.1 on the Wine
data set. Here, the runs using no migration results in an accuracy of 0.925.
As the figure indicate, although there is no particularly strong trend, the higher
accuracies seem to mostly be achieved for lower values of MFs and higher values of
MRs. However, migration seem to overall have a substantial positive impact on the
result, as a MR of 0.1 and a MF of 0.5 achieves an accuracy of 0.965, improving
accuracies by a whole 4% over no migration.

0.92 0.97

Figure 4.35: TL3.1 Heatmap for the Wine data set using no-deletion migration
and local AB_interaction.

The figure 4.36 presents the results as a heatmap for test TL3.2 on the Diabetes
data set. The accuracy obtained from no migration was 0.734. This test presents
a clearer trend than TL3.1, that higher accuracies are obtained with lower values
for both parameters. Additionally, the Diabetes data set is considered harder than
Wine, indicating that for more difficult data, the migration parameters used may
have a larger impact on the result. This might not be as surprising as the harder
data sets require more exploration to find better solutions, something which is
helped by migration. Further, a MR of 0.1 and a MF of 0.5 obtains and accuracy
of 0.758, also here improving on the results without migration.
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Figure 4.36: TL3.2 Heatmap for the Diabetes data set using no-deletion migra-
tion and local AB_interaction.

The figure 4.37 presents the results as a heatmap for test TL3.3 on the Heart
Statlog data set. The accuracy obtained with no migration was 0.821. This is
one of the highest accuracy results achieved by MAIM on this data set, beating
AISLFS with its score of 0.818. Further, this indicates that Hart Statlog might
not be as dependent on migration at all, as islands seem to be better of evolving in
complete isolation. However, for when migration is employed, the trend is similar
to Diabetes in TL3.2, but with larger values for MF and MR here being more
beneficial. Further, as long as one of the parameters have a low value, the other
one can reasonably be high. However, for very high values of both, the results
seem to somewhat degrade. Finally, with a MR set to 0.1 and MF to 0.6, the best
accuracy with migration was achieved as 0.818.

0.76 0.82

Figure 4.37: TL3.3 Heatmap for the Heart Statlog data set using no-deletion
migration and local AB_interaction.

Overall, the best results with migration was achieved with MR of 0.1 and MF
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of 0.4 — 0.6. This indicates that MR is best kept low while MF can be higher.

The hypothesis, as outlined in table 4.7 indicated that the results would be
better with migration than without. However, this was only true for two of the
three data sets tested. Further, it indicated that lower migration values would
perform better than higher, which partially came true as a combination of one
parameter having a low value while another was high also gave good results.

It is interesting that the Heart Statlog dataset perform better without migra-
tion. This might be a consequence of the set’s properties, preferring high amounts
of genetic isolation, as seen in TL1.5, were Heart Statlog achieved an accuracy of
0.830 with 10 islands (see appendix .1.1).

Global AB_interaction

The following tests present the migration effects using global AB_interaction and
no-deletion migration.

The figure 4.38 presents the results as a heatmap for test TG3.1 on the Wine
data set. The accuracy obtained by running the algorithm with no migration was
0.941. By comparing these results with the ones obtained in TL3.1, one can see
that they are quite similar which the exception of global information favouring
somewhat larger MFs. However, the results are better for no migration with global
information than for no migration with local information. This is perhaps not so
surprising, since the search is directed by the master when global information is
enabled, likely reducing the need for diversity in the IPs, as islands are forced into
exploring different parts of the search space regardless. Consequently, results was
improved with a maximum of 1.5% from no-migration to migration, when using
global information, and 4% with local information. However, migration still seems
to overall be positive, with the best results achieved as 0.956 with MRs of 0.3 and
MFs of 0.9.
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Figure 4.38: TG3.1 Heatmap the for Wine data set, using no-deletion migration
and global AB_interaction.
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The figure 4.39 presents the results as a heatmap for test TG 3.2 on the Diabetes
data set. The accuracy obtained by running the algorithm with no migration was
0.727. By comparing the results with the results obtained of TL3.2, one can
see that also here the trends are similar, as lower values of either MR or MF
is favoured. However, when using global information it seems that higher MF's
are preferred, similar to what was seen in TG3.1. Finally, migration was shown
to be positive, achieving an accuracy of 0.742 at MRs of 0.2 and MFs of 0.7,
indicating that, while positive, the introduction of migration has a smaller impact
when employing global information. This assumption is based on the fact that
accuracies was improved by a maximum of 1.5% from no-migration to migration,
when using global information, as opposed to 2.4% with local information.
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Figure 4.39: TG3.2 Heatmap for the Diabetes data set, using no-deletion mi-
gration and global AB_interaction.

The figure 4.40 presents the results as a heatmap for TG3.3 on the Heart Stat-
log data set. The accuracy obtained by running the algorithm with no migration
was 0.796. When comparing the results to TL3.3 there seems to also here be a
stronger preference for higher MFs. However, the trend is comparatively not as
strong with global information, but it indicates a preference for values in the lower
or middle of the map. However, as opposed to TL3.3, the introduction of mi-
gration seems to improve the results, rather than degrade them, with a maximum
accuracy improvement of 1.7%. Subsequently, migration is positive on the Heart
Statlog data set with global AB_interaction, achieving an accuracy of 0.813 on
MRs of 0.1 and MFs of 0.4.
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Figure 4.40: TG3.3 Heatmap for the Heart Statlog data set, using no-deletion
migration and global AB_interaction.

Overall, with global AB_interaction the best results with migration was achieved
with MRs of 0.1 — 0.3 and MFs of 0.4 — 0.9. The trend is similar, although with
greater variance, to the results when using local AB_interaction, indicating a pref-
erence for lower MR and higher MF.

Generally, migration with global information is positive, while not being as
impactful as with local information, which is likely a consequence of the master-
directed search not being as dependent on diversity. Further, this is consistent with
the test hypothesis of table 4.7. Additionally, while the trends are similar to that of
local information, they seem to be less clear and vary more in optimal values. This
is likely also consequence of the IPs exploring different parts of the search space,
resulting in migration between islands whose ABs are meant to solve completely
different sub-problems. Subsequently, this reduces the impact of migration.

IGA Effects with Local AB_interaction and Deletion Migration

While the previous section looked at a combination of MR and MF using non-
deletion migration, this section will evaluate tests for migration with deletion (see
section 3.1.3). As such it will suffice to look at overall accuracies and patterns
for the following heatmaps in comparisons with tests TL3.1-3.3. Here only local
AB_interaction is included as they were shown to be the most stable in tests T'3.1-
3.3.

The results of TL3.4 is presented in figure 4.41, 4.42 and 4.43. Interestingly,
the Wine data set shows different patterns than what was seen in TL3.1, with
stronger accuracies towards the middle of the map, indicating that too high and
too low MRs might not be as favourable. However a MR and MF of 0.9 achieves
the best accuracy overall of 0.972
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Figure 4.41: Heatmap for the Wine data set with deletion migration and local
AB_interaction.

The Diabetes data set shows strong patterns, clearly favouring lower MRs.
However, MF can be higher as long as the MRs are lower, achieving an accuracy
of 0.752 at MRs of 0.1 and MF's of 0.9.

Figure 4.42: Heatmap for the Diabetes data set with deletion migration and
local AB_interaction.

Heart Statlog show no clear trend, but seem to also favour lower MR. However,
the best result was 0.817 achieved at both MR and MF of 0.5.
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Figure 4.43: Heatmap for the Heart Statlog data set with deletion migration
and local AB_interaction.

Overall, stronger results was achieved without deletion for Diabetes with a
total average of the no-deletion accuracies as 0.741 and a higher max accuracy,
while deletion-migration had an average of 0.735. Further, with deletion the Wine
data set performed better with a total average of 0.959 and a higher max than
no-deletion which averaged 0.953. Finally, for Heart Statlog both the max and
overall were about the same with an average of 0.803 for no-deletion and 0.804
with deletion. However, while it could be argued that the differences are not great,
it does show that there is some merit to selecting the right policy for the task.
Migration with deletion further enhances diversity by deleting random individuals
at the risk of destroying sub-solutions. Further, Wine was the data sets to best
exploit this extra diversity property without being too punished for it, possibly
because of good sub-solutions not being hard to find for an easy data set. Subse-
quently, a harder data set such as Diabetes might be more heavily affected as good
solutions are harder to find and ABs should preferably not be deleted. Finally,
Heart Statlog seem to not be as positively affected by migration by either policies,
indicating that it may be better off without it, further showing that the optimal
policy is very problem dependent.

The hypothesis of table 4.7 indicated that migration without deletion would
perform better because deleting ABs was assumed to have negative effects. How-
ever, as the tests show what policy perform better is dependent on the properties
of the data set, where some data sets are able to benefit from deletion of random
ABs.
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Chapter 5

Conclusions and Future
Work

The following chapter presents an overall discussion and goal evaluation in section
5.1, followed by the contributions in section 5.2. Finally, future work is presented
in section 5.3.

5.1 Discussion and Goal Evaluation

The overall objective or goal for this thesis was to investigate how artificial immune
systems could be combined with the island model to create an accurate and efficient
novel hybrid classification algorithm. The goal was subsequently divided into three
research questions, as will be discussed below:

Research question 1 How can the island model combined with artificial immune
systems be used to increase the accuracy of the classification?

In terms of accuracy, MAIM has showed clear indications that the island model
positively effect the developed AIS. Consequently, results show that higher classifi-
cation accuracies are obtained by combining IGA and AIS compared just the AIS
model by itself.

The intention was to exploit properties of IGA that help convergence and di-
versity through sub-populations, migration and genetic isolation. Results conclude
that these properties are in fact positive for the model, as several migrating smaller
populations together have a stronger generalisation ability than one large popula-
tion. Further, the level of achieved benefit does vary, as AIS only was able to
perform better than a few island setups on some data sets. However, with some
tuning of island numbers, MAIM was shown to always perform better than its
single AIS counterpart, with 4 islands overall achieving the best results with local
AB_interaction, providing a reasonable compromise between genetic isolation and
interconnection.

107
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The use of global and local information was tested and compared in terms of
accuracies. Further, while one would assume that a more directed search through
global information would be beneficial, this was not shown to be the case. The
combined generalisation ability of islands evolving mostly separately over the whole
space was shown to be better than islands specialised on different parts. Subse-
quently, some level of independence between islands is assumed to be beneficial in
improving accuracies.

MAIM was able to perform on par with other established algorithms, both on
separable and non-separable data sets of smaller feature spaces. Particularly on
some of the more difficult data sets MAIM showed enhanced exploration leading
to better results than other established AIS algorithms, with and without feature
selection schemes. However, on data sets with many classes or large feature spaces
MAIM was shown to struggle as a result of insufficient exploration in large spaces
and static AB classes not being efficient for many classes. However, the worsening
performance was shown to be avoided by employing a smarter AB RR initialisa-
tion and increasing the population, simultaneously achieving higher accuracies and
making the results more stable.

Research question 2 How can the island model combined with artificial immune
systems be used to increase the efficiency of the classification process?

In terms of efficiency, MAIM has shown that the combination of an AIS and
IGA is generally more efficient than AIS only, because of its distributed properties.
Furthermore, because of local information causing each island to cover larger parts
of the search space, it is more efficient than its global information counterpart
where IPs are more condensed in smaller areas resulting in higher levels of AB
congestion.

While MAIM is generally more efficient than it’s single AIS counterpart, there
are cases where efficiency worsens rather than improves. This is the case for very
small populations distributed over many islands, where the overhead of migration
becomes proportionally high in comparison to the rest of the computation. Simul-
taneously, AB congestion is not a problem for smaller populations resulting in the
properties of IGA negatively affecting efficiency for such setups.

In most of the cases tested a large enough population was employed where
MAIM’s efficiency properties was shown to be positive. Further, MAIM has an in-
creasingly positive effect as populations increase in conjunction with islands, as the
increasing level on distribution provided by employing more islands is able to keep
runtimes linearly increasing longer. Subsequently, this counteracts the inevitable
exponential increases in runtimes as islands become congested, making the pro-
posed algorithm very efficient for larger populations. Furthermore, while optimal
population sizes and island numbers vary between data sets, several tests indicate
that higher populations and higher island numbers are beneficial for enhanced ex-
ploration. Subsequently, there is a point to using larger populations and island
numbers and further exploit MAIM’s properties of enhanced efficiency.

Research question 3 How does the migration configuration used impact the ac-
curacy results of the algorithm?
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In terms of migration, it was shown to overall have positive impact on accu-
racies. However, its level of impact is dependent on the properties of each data
set, with one data set tested preferring no migration at all and subsequently total
genetic isolation. Further, local information was shown to benefit more from migra-
tion than global information, while also having less variance in optimal parameters
for each set. Using lower values of either MF or MR while the other being higher
generally achieved good results. However, too high values of both worsened the
results. Consequently, while migration should not simultaneously be performed
often and for large parts of the IPs, one at the time may be beneficial. Addition-
ally, it was concluded that the optimal migration policy is also something that is
dependent on the data set being solved. Furthermore, the higher diversity achieved
from deletion migration was more easily exploitable by the easily separable data
set Wine. Diabetes, being a substantially harder data set, was likely punished to
a greater degree by having important ABs deleted, subsequently favouring the use
of migration without AB deletion.

Through the results achieved it can be concluded, when the AB population is set
to the number of AGs and a small and easily separable dataset (e.g. Iris, Wine) is
used, the algorithm might compromise between accuracy and efficiency. However,
if the number of islands are kept low the decrease in efficiency is almost negligible
while accuracy is still improved. However, if larger populations are used for these
data sets MAIM clearly improves efficiency also here. Further, for larger and more
complex datasets (e.g. Diabetes, Sonar) it becomes apparent that no compromise
is necessary and both enhancements can be achieved concurrently even when the
population was no larger than the number of AGs. Therefore, the proposed algo-
rithm can be said to achieve the thesis’ goal of simultaneously being both more
accurate and more efficient than its non-distributed counterpart.

The accuracy tests have shown that the AIS implemented for the MAIM have
some limitations. This becomes evident when comparing the results of AIS only
with other established AIS algorithms (see section 4.5.1). However, the AIS model
is only tested with one set of parameters, none which are optimised. Therefore,
it is likely that some increase in accuracy could be expected by fine-tuning these
parameters. However, it is uncertain whether the accuracy of the MAIM would
further improve if the accuracy of AIS only had been better. Consequently, there
is a chance that the addition of an IGA technique simply makes up for the short-
comings of searching in the implemented AIS model, and will not improve an AIS
algorithm already proficient at searching the whole feature space by itself. Addi-
tionally, large population sizes and iterations are required to achieve good results
for some datasets where other algorithms perform well with smaller parameter val-
ues. This indicates that their exploratory ability is not as dependent on these
parameters and sufficient exploration is achieved regardless. Fortunately, increas-
ing the number of islands counteracts much of the negative effects of increasing the
population size, making large populations feasible.

Overall, the MAIM algorithm shows promising results for classification, per-
forming on par with many state of the art algorithms while providing a solution for
exponentially increasing runtimes. Subsequently, it can be said that the proposed
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algorithm sufficiently exploits the inherently distributed nature of the IS, arguably
moving AIS algorithms further towards a more defined niche.

5.2 Contributions

The contribution of this work is the successful combination of the AIS and IGA
techniques, resulting in the proposed algorithm, MAIM, for supervised classifica-
tion. Through this work, several discoveries have been made.

The proposed hybrid algorithm generally achieves improved accuracy and effi-
ciency compared to the AIS alone and thus shows that such a hybrid does provide
the advantages sought and AIS is able to effectively exploit the properties of IGA.
The enhanced exploration and convergence provided by the combination of IGA
and AIS is therefore positive.

A novel topology of combining a directed ring model with a master slave ap-
proach is presented. The results show promising results for such a topology as the
algorithm is able to exploit the properties of both. Enhanced genetic isolation and
diversity is achieved through the ring model and solution recombination and search
control through the master-slave approach.

Varying degrees of genetic isolation provided by the number of islands employed,
has been shown to be favourable for AIS classification, depending on the dataset
used. However, it is clear that separately evolving and occasionally combining
chromosomes from different sub-populations enhances the search process over time.

Independence between islands is shown to be important. When global AB_interaction
is employed (less independent island evolution) the results are worse than when only
local AB_interaction is used, both in terms of accuracy and efficiency. Through this
it was concluded that a combination of sub-populations evolving in almost com-
plete isolation is better at generalising than a combination sub-populations evolving
dependent on each other, at least in the case of global and local AB_interaction.

Migration is shown to positively affect the accuracies achieved. However, the
optimal migration parameters and policy varies depending on the properties of
each dataset, but generally migration has a positive impact. This shows that while
some level of independence is important, the sub-populations still benefit from
exchanging genetic material.

5.3 Future Work

The following section will present potential extensions to this work which could
be used for further research. Further, figure 5.1 displays a brief overview of the
project’s future work and process.
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5.3.1 Integrated Feature Selection

A feature which is not included in the proposed algorithm, but is generally an im-
portant component of machine learning algorithms is the feature selection process.
The AISLFS algorithm has successfully integrated a feature selection process into
an AIS (see section 2.2.2) and achieved enhanced results because of it. Further, the
results indicate that feature selection is important for achieving the best results on
difficult sets like Glass and Sonar [8]. Consequently, it was originally intended for
MAIM to employ a LFS approach, similar to the one in AISLFS. However, when
attempting to integrate LFS into MAIM it became clear that it would severely
affect the efficiency of the algorithm. Feature subset selection methods, which LFS
is a part of, are NP-hard problems that with a complexity of O(2™) where m is the
total number of features [34]. This makes exhaustive feature subset searches im-
practical for a large m. Further, LFS is a subset selection method that attempts to
find subsets for n different parts of the search space which increases the complexity
even further to O(n2™). When implementing LFS into MAIM, it was realised that
LFS had detrimental effects on the efficiency of the algorithm. Because of this, it
was concluded that LFS should not be implemented into the base algorithm in this
thesis, but rather suggested as future work where it could possibly be implemented
in a more efficient way.

For LFS to not degrade the efficiency of the algorithm it needs to be imple-
mented in such a way that it exploits the inherent distributed and parallel nature
of the model. Therefore, future work should be conducted on a feature selection
island running asynchronously in parallel to the rest of the algorithm. Such an
extension could be as presented in figure 5.2 where an additional third layer is
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introduced, running in parallel to the other islands, in order to handle the feature
selection process. Subsequently, its is possible to achieve the same performance as
in the original MAIM, with the addition of occasional feature subset input from the
feature selection island. In such an approach MAIM would have to run a separate
algorithm for finding different feature subsets. The feature selection island could
be ran with an AIS approach or with a completely different optimisation method,
as it its task is only to communicate what feature subsets are preferred for what
parts of the search space.

First Layer

Slave Migration

Third Layer

-| Feature subsets I—

-

@y

Figure 5.2: Proposed model extension incorporating feature selection.

Master Migration

A

Slave

5.3.2 Recognition Region Shapes

Alternative recognition regions, here meaning regions with geometric shapes that
differ from a hypersphere, is something that have shown promising results under
certain conditions (see section 2.2.2). Due to the efficiency and simplicity benefits
of hyperspheres, alternative recognition regions were not implemented into MAIM
for this work, but it is something that may enhance the classification process, due
to the algorithm’s distributed nature. More specifically, it would be interesting to
see if each island could be further specialised by employing and evolving ABs with
different recognition region shapes. Future work should therefore be conducted
to see if a combination of different AB shapes could potentially be used to more
accurately classify difficult and non-separable regions of a dataset, especially in high
AG density regions of many classes where hyperspheres makes separation difficult
(see TL1.6 in section 4.4.1).

Future work should see what properties different shapes have for AIS classifi-
cation specifically, both in terms of convergence and accuracy. However, it should
be noted that that while hyperspheres have their own problems in higher dimen-
sions (see section 2.2.2) so does other shapes. For instance, for hypercubes, it
would require 2™ points to define a hypercube in n dimensions, as opposed to to
a hypersphere that always only require an RR radius regardless of n. Therefore
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alternative RRs might not be very practical with datasets with large feature spaces.
However, if local feature selection is employed (see section 5.3.1) this problem could
be handled as in the work of AISLFS, where hypercubes are only available to ABs
with a certain dimensionality. Subsequently, future work on alternative recognition
regions should ideally be conducted together with the LFS technique.

5.3.3 Dynamic Islands

Both the results from the accuracy tests (see section 4.5.1) and the efficiency tests
(see section 4.5.2) have shown that the number of islands and populations sizes
have an impact on the performance of the proposed algorithm. The accuracy
tests shows that different data sets benefit from the different number of islands.
Additionally, datasets like Glass, Sonar and Ionosphere achieve higher accuracies
as the population sizes increase over #AGs.

Future work should be conducted on dynamic islands in order to optimise both
efficiency and accuracy of the proposed algorithm. This can be implemented in
multiple ways. One approach would be to keep the same total population size
as the number of islands dynamically change and redistribute the population over
a new set of islands. This way, accuracy and efficiency could be incrementally
optimised during the course of the algorithm in relation to island numbers.

Another approach that should be investigated is to increase the population size
as new islands are initialised, similar to the work of Huang [17]. This approach
would likely not optimise much in terms of efficiency, IP populations would remain
the same. However, it could potentially help finding the optimal popualtion size in
relation to accuracy. Results indicate that accuracies increase and results stabilise
as populations increase up to a certain point (see test TL1.3 in section 4.4.1),
indicating that a dynamic island approach could be used to tune population sizes.

5.3.4 Migration Policies and Island Topologies

The migration policies defined for the salve islands in this work, as discussed in
section 3.1.3, are based on random selection of migrants. Further, results of section
4.5.3 indicate that the different policies are more easily exploitable by different
data sets. Subsequently, other policies, like the what is discussed in section 2.2.1,
should also be implemented to evaluate their properties and effect on the result.
The most common approach to migration is an elitist selection scheme, indicating
that future work should be conducted to evaluate the effect of migrating sets of
the fittest individuals.

The chosen topology for MAIM in this work is a directed ring topology. How-
ever, as discussed in section 2.2.1 several other topologies can be implemented.
The directed ring topology is, of the ones discussed, probably the one were the is-
lands are the most isolated from each other. This is favourable in terms of keeping
diversity and avoiding premature convergence, at the cost of possible slow conver-
gence. Therefore, future work should study the effects of different topologies, such
as the bidirectional or fully connected topology, in terms of accuracy, efficiency and
convergence.
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5.3.5 Heterogeneous Islands

When comparing different AIS algorithms in section 4.5.1, it is clear that the algo-
rithms possess different strengths and weaknesses in terms of performance on the
data sets. As MAIM employs multiple AISs, future work should be conducted on
implementing truly heterogeneous islands through completely different AIS algo-
rithms on the slaves. This way, much like ensemble methods (see section 2.1.3)
the different AISs could be proficient at different types of AGs and data sets.
Consequently, a better generalisation ability could be achieved through having the
different AISs vote on classifications, much like in the original MAIM. However,
it is important to note that the ABs on the different islands in such an algorithm
would need to use the same, or at least sufficiently similar, structure and data
types. ABs, which are shared between the slaves, needs to be usable on all the
different AIS algorithms employed. The model extension proposed in section 5.3.1
is an example of such an algorithm, where one island (the feature selection island)
employ a different algorithm than the slaves.

5.3.6 Parallel Efficiency

The proposed algorithm employs a distributed architecture and therefore also pos-
sess an inherent parallel nature that allows islands to iterate independently of each
other. Subsequently, future work should be conducted on using these properties
for creating a parallel version of the MAIM algorithm. Further, when only local
AB_interaction is employed islands and migration may run asynchronously as no
islands would be required to wait for communication from the master. While such
an implementation may not achieve better accuracies it could potentially achieve
promising levels of parallel efficiency.
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Appendices

.1 Results Accuracy Tests

Additional accuracies are here presented with SDs in parenthesis.

.1.1 Tests Conducted with New Initial Radius

Table 1 presents the results obtained from the tests conducted with a new radius
initialisation.

Data sets — Islands 1 4 5 6 7
Iris 0.9613 (0.0056) 0.9600 (U 0094) 0.9657 (0.037) 0.9533 (0.0067) 0.9547 (0.0056) 0.95¢ H ( 15) 0.9573 ((l 0060)
Wine 0.9663 (0.0045) 0.9597 (0.0026) 0.9651 (0.0048) 0.9698 (0.0059) 0.9637 (0.0053) 0. 24) 0.9703 (0.0052)
Diabetes 0.7304 (0.7304) 0.7429 (0.0043) 0.7509 (0.0046) 0.7509 (0.0032) 0.7506 (0.0072) 0.7525 il)l)l()) 0.7500 (0.0032)
Glass 0.6301 (0.0215) 0.6094 (0.0134) 0.5917 (0.0076) 0.5750 (0.0098) 0.5933 (0.0152) 0.5974 (0.0103) 0.6007 (0.010)
Sonar 0.7364 (0.0066) | 0.7341 (0.0154) 0.7107 (0.071) 0.6992 (0.0232) 0.7078 (0.0158) 0.7042 (0.0195) 0.6980 (0.0168)
Tonsphere 0.8610 (0.0117) 0.8713 (0.0210) 0.8074 (0.0189) 0.8741 (0.0159) | 0.7903 (0.0163) 0.8479 (0.0112) 0.7768 (0.053)
Heart statlong 0.7919 (0.0134) 0.8163 (0.0042) 0.8266 (0.0084) 0.8163 (0.0096) 0.8237 (0.0056) 0.8178 (0.0195) 0.8266 (0.0092)
Breast Cancer Wisconsin 0.9625 (0.0012) 0.9660 (0.0012) 0.9653 (0.0021) 0.9665 (0.0023) 0.9651 (0.0035) | 0.9686 (0.0015) | 0.9645 (0.0006)

Table 1: Tests on all data sets with RRs set to a random AG of the AB’s class
(up to eight islands).

Data set / Islands 9 10 11 12
Iris 0.9520 (0.0087) 0.9547 (0.0073) 0.9547 (0.0073) 0.9587 (0.0056
‘Wine 0.9755 (0.0028) 0.9715 (0.0046) 0.9722 (0.0040) 0.9730 (0.0050
Diabetes 0.7516 (0.0032) 0.7500 (0.0025) 0.7581 (0.0087) | 0.7462 (0.0031

—~|=|=]=

(

E
0.0223) | 0.6419 (0.0190) | 0.6224 (0.0142

(

(

(

)

)

)

Glass 0.6146 (0.0098) 0.6306 )
Sonar 0.6971 (0.0171) 0.6841 (0.0039) 0.6842 (0.0062) | 0.6644 (0.0051)
Ionsphere 0.7930 (0.0054) 0.7818 (0.0081) 0.7824 (0.0112) | 0.7737 (0.0048)
Heart statlong 0.8074 (0.0037) | 0.8303 (0.0071) | 0.8266 (0.0061) | 0.8281 (0.0042)
Breast 0.9663 (0.0049) 0.9651 (0.0055) 0.9634 (0.0050) | 0.9620 (0.0008)

Table 2: Tests on all data sets with RRs set to a random AG of the AB’s class
(from nine to twelve islands).
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Population Size / Iterations 500 1000 1500 2000
500 0.733 (0.014) | 0.746 (0.014) | 0.746 (0.015) | 0.749 (0.017)
1000 0.737 (0.006) | 0.780 (0.010) | 0.785 (0.009) | 0.800 (0.016)
1500 0.768 (0.006) | 0.796 (0.012) | 0.800(0.011) | 0.820 (0.006)
2000 0.789 (0.07) | 0.823 (0.018) | 0.803 (0.010) | 0.827 (0.012)

Table 3: Accuracies on the Sonar data set on four islands with iterations and
population sizes spanning 500 to 2000.

Population Size / Iterations 500 1000 1500 2000
500 0.868 (0.008) | 0.896 (0.003) | 0.899 (0.007) | 0.908 (0.007)
1000 0.892 (0.011) | 0.903 (0.009) | 0.900 (0.011) | 0.911 (0.006)
1500 0.876 (0.014) | 0.898 (0.009) | 0.902 (0.012) | 0.899 (0.007)
2000 0.860 (0.011) | 0.891 (0.010) | 0.908 (0.006) | 0.918 (0.007)

Table 4: Accuracies on the Ionosphere data set on five islands with iterations
and population sizes spanning 500 to 2000.

1.2 Tests Conducted with Class Distribution

Table 5 presents the results obtained from the tests conducted with a class distri-
butions.

1 3 4 5 6 7 8
Iris 0.9560 (0.0037) 0.9653 (0.0056) | 0.9627 (0.0076) 0.9600 (0) 0.9613 (0.0073) 0.9640 (0.0037) 0.9640 (0.0089)
‘Wine 0.9524 (0.0030) 0.9600 (0.9600) 0.9540 (0.0073) | 0.9548 (0.0012) 0.9563 (0.0075) 0.9654 (0.0079) | 0.9628 (0.0105)
Diabetes 0.7189 (0.0060) 0.7466 (0.0067) 0.7395 (0.0017) | 0.7440 (0.0060) 0.7494 (0.0046) 0.7449 (0.0012) 0.7473 (0.0050)
Glass 0.6728 (0.0078) | 0.6660 (0.0073) | 0.6572 (0.0160) | 06606 (0.0091) | 0.6652 (0.0185) 0.6582 (0.0048) | 0.6335 (0.0074)
Sonar 0.7602 (0.0248) | 0.7166 (0.0108) | 0.7043 (0.0326) | 0.7110 (0.0167) | 0.6876 (0.0100) 0.6794 (0.0277) | 0.6801 (0.0098)
Tonsphere 0.8336 (0.0083) | 0.7801 (0.0076) | 0.7198 (0.0032) | 0.7345 (0.0033) | 0.7073 (0.0086) 0.7033 (0.0078) | 0.6885 (0.0040)
Heart statlong 0.7748 (0.0151) | 0.8052 (0.0132) | 0.8096 (0.0056) | 0.8141 (0.0061) | 0.8074 (0.0069) | 0.8192 (0.0041) | 0.8155 (0.0112)
Breast Cancer Wisconsin | _0.9631 (0.0027) | 0.9654 (0.0021) | 0.9649 (0.0032) | 0.9663 (0.0022) | 09677 (0.0026) | 0.9683 (0.0011) | 0.9671 (0.0023)

Table 5: Accuracies using class distributions.

.2 Results Efficiency Tests

The following sections will present more details about the efficiency tests conducted
in section 4.5.2. Table 6 to 9 are presenting all results, including the accuracies
obtained during the efficiency tests conducted with local AB_interaction. Table 10
and 11 are presenting all results including accuracies, obtained during the efficiency
tests conducted with global AB_interaction. All values in the time columns are
representing seconds, with standard deviation (also in seconds) in the following
parenthesis. The values in the accuracy columns are representing percentage, with
standard deviation in the parenthesis. As mentioned in section 4.5.2, all tests are
conducted 5 times as ten-fold cross validation and averages are presented.
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.2.1 Tests Conducted with local AB_interaction
AIS Only 4 Islands 8 Islands 12 Islands
Data set / Islands Time Accuracy Time Accuracy Time Accuracy Time Accuracy
Tris 16.2 (0.25) | 95.05 (0.74) | 14.64 (0.19) | 94.93 (0.76) | 15.56 (0.19) | 95.73 (0.76) | 17.06 (0.24) | 95.87 (1.1)
Wine 28.06 (0.13) | 95.44 (0.9) | 22.76 (0.27) | 96.08 (0.87) | 23.89 (0.12) | 94.91 (1.33) | 26.66 (0.31) | 95.03 (1.39)
Diabetes S1.20 (0.69) | 7143 (2.19) | 79.78 (1.33) | 74.09 (0.54) | 91.31 (1.17) | 74.61 (0.86) | 104.99 (0.63) | 74.64 (1.3)
Sonar 85.97 (1.61) 76.78 (1.51) | 71.07 (0.55) 71.88 (3.13) 76.34 (1.30) 67.43.61 ("1.8'1) 83.04 (1.02) 66.94 (1.35)
Table 6: TL2.1 Accuracies on efficiency tests with population 500 and local

AB_interaction.

AIS Onl 4 Islands 8 Islands 12 Islands
Data set / Islands Time j’ccumcy Time Accuracy Time Accuracy Time Accuracy
Tris 465 (0.27) | 956 (0.89) | 3156 (0.38) | 94.3 (0.76) | 29.47 (0.27) | 95.07 (0.76) | 20.99 (0.17) | 95.2 (1.1)
Wine 7851 (0.55) | 96.84 (151) | 48.21 (0.34) | 95.42 (0.99) | 47.30 (0.34) | 95.76 (0.98) | 48.26 (0.25) | 96.67 (0.82)
Diabetes 193.33 (1.73) | 71.16 (1.31) | 152.65 (1.43) | 75.12 (0.44) | 168.24 (2.08) | 75.38 (0.61) | 179.06 (0.67) | 74.96 (0.49)
Sonar 197.47 (4.47) | 79.39 (2.76) | 142.60 (1.21) | 76.38 (2.70) | 143.81 (0.82) | 73.53 (2.17) | 149.94 (1.35) | 72.33 (2.10)
Table 7: TL2.2 Accuracies on efficiency tests with population 1000 and local

AB_interaction.

AIS Only 4 Islands 8 Islands 12 Islands
Data set / Islands

Time Accuracy Time Accuracy Time Accuracy Time Accuracy
Iris 110.53 (1.28) | 95.33 (0.82) 52.9 (0.7) 94.93 (0.76) 48.99 (1.18) 94.80 (0.87) | 45.03 (0.32) 87 (1.19)
Wine 163.38 (2.81) | 96.78 (1.14) | 78.48 (0.86) | 96.70 (1.13) | 77.73 (1.04) | 96.30 (1.03) | 74.98 (0.83) | 95.20 (1.64)

Diabetes 376.67 (6.24) | 71.33 (1.44) | 231.28 (1.12) | 73.20 (0.5) | 251.24 (3.42) | 75.03 (0.63) | 265.23 (1.03) | 74.8 (0.7)
Sonar 352.25 (6.54) | 7.07 (2.76) | 222.62 (1.1) | 78.33 (2.8) | 214.42 (2.42) | 75.7 (3.13) | 218.24 (2.07) | 71.06 (1.74)

Table 8: TL2.3 Accuracies on efficiency tests with population 1500 and local

AB_interaction.

Data set / Tslands AIS Only 4 Islands 8 Islands 12 Islands
Time Accuracy Time Accuracy Time Accuracy Time Accuracy
Tris 2155 (9.68) | 94.67 (1.94) | 72.49 (5.38) | 95.2 (0.73) | 6812 (1.3) | 95.47 (0.87) | 64.07 (1.89) | 95.20 (0.56)
Wine 301.81 (9.86) | 96.21 (0.67) | 113.26 (1.9) | 97.10 (0.85) | 105.7 (1.27) | 96.36 (1.19) | 101.6 (0.84) | 96.52 (0.77)
Diabetes 604.20 (1.59) | 70.76 (1.44) | 316.25 (1.23) | 73.2 (1.38) | 334.38 (3.72) | 74.52 (0.66) | 343.43 (1.4) | 74.70 (0.92)
Sonar 556.69 (8.91) | 80.74 (1.0) | 301.95 (2.52) 79.5 (2.1) 288.02 (1.44) 76.3 (1.3) 287.18 (5.07) 74.0 (3.0)
Table 9: TL2.4 Accuracies on efficiency tests with population 2000 and local

AB_interaction.

.2.2 Tests Conducted with global AB _interaction

Data set AIS Only 4 Islands 8 Islands 12 Islands
Time (seconds) | Accuarcy Time (seconds) | Accuarcy Time (seconds) | Accuarcy Time (seconds) | Accuarcy
Tris 16.2 (0.25) | 95.05 (0.74) | 1854 (0.26) | 94.8 (0.26) 19.7 (0.3) 95.40 (1.01) | 21.04 (0.22) | 94.27 (1.92)
wine 28.06 (0.13) | 9544 (0.0) | 29.49 (0.34) | 95.48 (0.33) | 32.08 (0.23) | 95.58 (0.45) | 3441 (34) | 95.62 (0.76)
Diabetes | 81.29 (0.69) | 7143 (2.19) | 9620 (0.9) | 74.27 (0.59) | 106.58 (0.14) | 72.93 (0.75) | 119.65 (L47) | 73.42 (1.76)

Table 10: TG2.1 Accuracies on efficiency tests with population 500 and global

AB_interac

tion.
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Data set AIS Only 4 Islands 8 Islands 12 Islands
Time (seconds) Accuarcy Time (seconds) Accuarcy Time (seconds) Accuarcy Time (seconds) Accuarcy
Tris 2155 (0.68) | 94.67 (1.94) | 90.48 (1.73) | 94.53 (0.73) | 87.23 (131) | 93.86 (1.66) | 83.43 (2.25) | 94.03 (1.74)
wine 301.81 (9.86) | 96.21 (0.67) | 14151 (1.19) | 96.87 (0.65) | 132.76 (3.37) | 97.06 (0.29) | 141.85 (0.44) | 96.4 (0.95)
Diabetes | 604.20 (1.59) | 70.76 (1.44) | 408.04 (6.14) | 72.80 (0.73) | 460.15 (8.77) | 73.66 (1.25) | 482.25 (2.64) | 73.76 (1.77)

Table 11: TG2.4 Accuracies on efficiency tests with population 2000 and global
AB_interaction.
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.3 Slave Islands Population Visualisation

View iteration 0-1000: 51 at island:

Accuracy of set shown: 94.27%

Highest accuracy achieved over training set: 98.83%, at iteration 318

Figure 3: Population of slave island 1.
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View iteration 0-1000: = 51 atisland:

Accuracy of set shown: 91.48%

Highest accuracy achieved over training set: 98.68%, at iteration 910

Figure 4: Population of slave island 2.
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View iteration 0-1000: = 51 atisland:

Accuracy of set shown: 90.16%

Highest accuracy achieved over training set: 98.68%, at iteration 157

Figure 5: Population of slave island 3.



