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Abstract

Several pretrained word embeddings have recently been published, and recent develop-
ment in the field of NLP is the use of contextualized word embeddings. This thesis ex-
plores the use of a pretrained, multilingual version of the BERT model, as well as pre-
trained word2vec embeddings for Norwegian. The BERT embeddings are combined with
a simple feed-forward neural network (FFNN), and the word2vec embeddings with both
an FFNN and an LSTM model. Naı̈ve Bayes is used as a baseline model.

The task on which they are evaluated is hierarchical text classification of short Norwegian
texts, specifically messages from the customer support chat of a Nordic bank. Addition-
ally, the multilingual aspect of BERT is tested by training an FFNN model on exclusively
Norwegian data, and subsequently testing the model on similar English and Finnish texts.

The main findings are that the BERT embeddings performs slightly better than the word2vec
embeddings for the task, and the performance of the latter is highly dependent on model
choice and dimensionality of the embeddings. BERT was also able to correctly classify
some English examples, but made close to none correct predictions on Finnish examples.
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Sammendrag

Det har nylig blitt publisert flere ferdigtrente word embeddings, og en ny utvikling innen
fagfeltet er bruken av kontesktualiserte word embeddings. Denne oppgaven utforsker en
ferdigtrent, flerspråklig versjon av BERT-modellen, i tillegg til ferdigtrente word2vec em-
beddings for norsk. BERT embeddings blir kombinert med et feed-forward neuralt nett
(FFNN), og word2vec embeddings blir kombinert med en FFNN-modell og en LSTM-
modell. Naı̈ve Bayes brukes som en baseline-modell.

Oppgaven som embeddingene vurderes på er hierarkisk tekstklassifisering av korte norske
tekster, som består av meldinger fra kundestøtte-chatten til en bank. I tillegg testes det fler-
språklige aspektet av BERT ved at en FFNN-modell trenes utelukkende på norske data, og
deretter testes på tilsvarende tekster på engelsk og finsk.

De viktigste resultatene er at BERT embeddings er litt bedre for denne oppgaven enn
word2vec embeddings, og ytelsen til sistnevnte avhenger av modellvalg og embeddin-
genes dimensjonalitet. BERT har noen svake overføringsevner i den flerspråklige testen
når den testes på engelske data, men nesten ingen når den testes på finske.
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Chapter 1
Introduction

This chapter provides an introduction to important aspects of the thesis, namely the moti-
vation, project goal and approach, as well as a short summary of the results.

1.1 Motivation

The development of the Internet has changed how companies interact with their customers,
and banks are no exception. A prime example of this is the ongoing development of on-
line customer support chat at DNB, Norway’s largest bank1. Although it is still possible
to contact their customer support by phone, many of these customer interactions are now
done through chat on their website. A substantial amount of resources is needed to ensure
relatively quick answering of these messages, but not every question asked by a customer
is so complex or unusual that it needs a custom human response, which is where automa-
tion comes into play in the form of a chatbot. The implementation and operation is a
cooperation between DNB and a third-party vendor, Boost.ai2, but much of the chatbot’s
operation all intents and purposes a black-box AI, as the classification model it uses is a
trade secret of the vendor. Currently 51% of interactions through the chat interface are
automated.

The chatbot is already in production, but there are continous developments in the field
of NLP that may be beneficial. there is still room for improvement, which is where re-
cent developments in NLP may be beneficial. There are potential application benefits of
improving the chatbot, which could potentially automate even more of the current chat
interactions with human customer support agents, and could give the customer a quicker
and more accurate response to their questions.
It is also of interest to see how new developments in NLP perform on quite domain-specific
data in a relatively low-resource language. There have been some promising results lately

1https://www.dnb.no/en/about-us/about-the-group.html
2https://www.boost.ai/

1
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Chapter 1. Introduction

on pre-trained models. However, much of the work is done on English, a high-resource
language, although there has been some research done on other languages as well. Of
particular interest is BERT, a new pre-trained model released for over 100 languages that
has shown good results for some tasks[5, 4].

1.2 Project goal and research questions
The goal of this thesis is to explore how different pretrained embeddings for Norwegian
perform in a text classification problem, where the examples are very domain-specific and
there are a lot of classes.
The research topics of interest for this are

1. What are the most efficient ways of classifying text into DNB’s class hierarchy?

2. How can word embeddings improve the classification?

3. How do different pretrained embeddings compare to each other?

4. To what extent are trained classification models using BERT embeddings transfer-
able to other languages?

1.3 Approach
The goal of the experiments in this thesis is to classify text messages, called examples,
into one of the many pre-defined classes. The main approach for this classification task is
to predict all classes at once, without taking the provided class hierarchy into account, but
one experiment also considers utilizing the hierarchy. Different classifications methods
are used, namely Naı̈ve Bayes, feed-forward neural net (FFNN), Long Short-Term Mem-
ory (LSTM) and a most-common default classifier. The neural network architectures, i.e.
FFNN and LSTM, use embeddings of the examples from either pretrained BERT or pre-
trained Norwegian word2vec models. Each classification model is evaluated using 10-fold
cross-validation. One experiment also examines the performance of a trained classifica-
tion model using BERT embeddings when classifying data from another language than
Norwegian.

These experiments are all performed on the training data from the chatbot, but another
example trains the models on the training data and tests them on the data which the chat-
bot uses for testing itself. This data is quite different from the training data.
The final experiment uses the local approach to classification, which incorporates the class
hierarchy in the classification, instead of the flat approach of the other experiments. The
model used for this experiment is Naı̈ve Bayes.

1.4 Results
The results of the cross-validation is that the FFNN model using BERT embeddings has the
best performance for classifying the Norwegian text messages, closely followed by LSTM

2



1.5 Thesis outline

using word2vec embeddings. The baseline of a most-common predictor has terrible results
with close to 0% accuracy, but Naı̈ve Bayes, the other baseline model, shows surprisingly
good results despite the model’s simplicity. FFNN with word2vec embeddings has better
results than the baseline models, but is worse than the two top models.

The BERT embeddings combined with an FFNN model managed to correctly classify
a few English examples when trained on exclusively Norwegian texts, but made close to
none correct predictions on Finnish examples.

The relative differences in performance between models when tested on the chatbot’s orig-
inal test data were consistent with the results of cross-validation on the training data, but
every model performed much worse on the former. However, there are several differences
between the test data and the training data of the chatbot, which likely explains the differ-
ent results.

The experiment with using the local approach to hierarchical classification, i.e. utiliz-
ing the hierarchy, showed a slight improvement in prediction quality for the Naı̈ve Bayes
classifier. However, a flat approach together with models using embeddings had much
better results than both experiments with Naı̈ve Bayes.

1.5 Thesis outline
Chapter 1 - Introduction The current chapter gives an introduction to the thesis, includ-

ing its motivation, approach and a short summary of the results.

Chapter 2 - Background This chapter provides a theoretical introduction to the tech-
niques used in the experiments, such as the different word embeddings and the
different classification models used.

Chapter 3 - Related work An overview of published work related to hierarchical text
classification and different forms of pretrained word embeddings is presented in this
chapter.

Chapter 4 - Data A description of the data and its source is presented in this chapter,
including the classes and their hierarchy as well as the text examples themselves.
The differences between the chatbot’s training and test data are also presented here.

Chapter 5 - Method This chapter presents the methods used, both in the implementation
with regards to preprocessing the data and using the models, and evaluating the
results.

Chapter 6 - Experiments This chapter shows the results from all experiments performed
in this thesis, and a discussion and comparison of their results.

Chapter 7 - Conclusion The final chapter provides a conclusion of the discussion and a
summary of the project, as well as suggestions for further work.
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Chapter 2
Background

This chapter discusses the theory of various techniques used in the experiments and some
general theory relating to the task itself. First an overview of document representation is
presented, followed by how the specific representation of embeddings may be generated.
Subsequently the theory of some problem characteristics and how they affect what ap-
proaches are available is discussed. Finally the classification models used and their theory
are presented.

2.1 Document Representation

An essential part of any language-related task, or indeed any machine learning problem, is
how the data is represented. The choice of representation, and how the raw data is trans-
formed into that representation, can have a large impact on the final results, as well as
which methods can be applied.

Some restrictions on the representation are imposed by which algorithms are chosen, with
different algorithms requiring different types of input. Some algorithms, such as decision
trees, allow almost any representation form, such as categorical data, continuous values or
discrete values. Others, such as neural networks, require that the input is vectors of values,
sometimes also requiring that the values be within a specific range such as vi ∈ [−1, 1].
The choice of algorithms used in this thesis, namely Naı̈ve Bayes and different forms of
neural networks, means that different forms of vectors with values will be used, and the
discussion below is therefore limited to this representation form.

Assume for the following discussion that the documents have already been transformed
from raw text to a list of tokens, with one list per document and each token corresponding
to a word. Please see section 5.3 for details of this process.
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Chapter 2. Background

2.1.1 Bag-of-words
Document representation using bag-of-words is a way of looking at and treating a docu-
ment, and as the name suggests disregards the position of the words and treats them as a
”bag” [11, p. 65]. The document is represented as simply an unordered set of words, along
with the frequency of each word in the original document.
Some model types, such as decision trees, might be able to handle data in this form, but
most require it to be in the form of a vector of values. If the vocabulary is known and of
size |V |, the document may be represented as a sparse vector of length |V |, where each
position represents a word in the vocabulary and each word in the document is represented
in the vector with its frequency. A vocabulary is in this context the set of all words that
are present in any document in the dataset, and a sparse vector is a vector where most of
the entries are zero. This way of representing the documents may for instance be used
together with Naı̈ve Bayes, which is described below in section 2.4.1.

If the document for example consisted of the sentence Information about mortgages, the
bag-of-words approach transforms it into {about : 1, Information : 1,mortgages :
1}. This may be vectorized into [1, 0, 0, 1, 1] if the vocabulary consisted of the words
{about, how, I, Information,mortgages}. This is a toy example, as a vocabulary is
typically much larger.

2.1.2 One-hot encoding
One-hot encoding is arguably the simplest type of document representation, as it repre-
sents each word as a vector of length |V |, where the dimension corresponding to the word
index is the only element set to 1, the rest of the elements of the vector being 0 [11, p.147].
Word index is in this case the index of the word in the vocabulary, not its index in the docu-
ment. The representation of the entire document, using this method, is thus a sparse matrix
of dimensions |d| × |V |, with |d| being the number of words in the document and |V | the
size of the vocabulary. This representation form is quite useful for despite its simplicity,
such as used for input to neural networks, for example those generating embeddings.

One of the disadvantages of one-hot encoding, which embeddings attempts to alleviate,
is that each word vector is orthogonal to every other word vector in the vector space
made up of these vectors.This means that using a metric to measure similarity, such
as the cosines similarity cos(~x, ~y), any word is equally similar, or rather dissimilar as
∀~x, ~y : cos(~x, ~y) = 0, to every other word in the vocabulary with respect to their represen-
tation. This is regardless of the actual meanings of the words, for example the word cat is
equally similar to the word dog as it is to the word anomaly. Additionally, the document
matrix might become very large if the vocabulary is large.

The example from the previous section, i.e. the document Informationaboutmortgages,
would be transformed into the encoding∣∣∣∣∣∣

0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

∣∣∣∣∣∣
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when using the same vocabulary as before.

2.1.3 Embeddings
Both bag-of-words and one-hot encoding treats the words of a document as symbols, with-
out the meaning of the words included in the representation itself. Additionally, the re-
sulting vectors are both sparse and high-dimensional, in particular when the vocabulary
size |V | grows large. Word embeddings, also called dense word vectors, on the other
hand, represent each word as a dense vector in a n-dimensional space[7], where typically
n� |V |. The shorter vectors offer a computational advantage, and might also be better at
generalization[7].

There are different models that may be used to achieve this, two of which are described
below, but the general principle is that words that are similar in meaning should have simi-
lar representations. To continue the example above, this entails that the words cat and dog
should have embeddings that are more similar than the words cat and anomaly. It is also
possible to have a single embedding that represents a sentence or even a document [12],
but this thesis will focus mainly on word embeddings.

Representing the document in the example above using word embeddings would result
in one vector of values per word, that could be aggregated in some way or used as-is. An
example of a representation of the words is the matrix∣∣∣∣∣∣

0.1836 0.7487 0.1364 −0.9831
0.9385 0.3452 −0.3465 −0.1275
0.7435 −0.1627 −0.4675 0.5268

∣∣∣∣∣∣
or [0.6219, 0.3104,−0.6776,−0.5838] if aggregated using the mean when using toy em-
beddings of length 4. The shortest embeddings used in this thesis is of length 100.

2.2 Generating Word Embeddings
As discussed briefly above in section 2.1.3, embeddings attempt to represent the meaning
of the words rather than simply the words themselves. The meaning in question should
be interpreted not as an absolute meaning of the word, but rather its relative meaning in
relation to the other words in the vocabulary.

The famous linguist John R. Firth wrote

”You shall know a word by the company it keeps.”[6],

and both models discussed below embody this thought, as they use the surrounding words
of the word in question to generate embeddings for it. While it is certainly possible to train
these models from scratch, they may also be used as pretrained models. The approach
of using pretrained models is equivalent to the principle of using transfer learning, i.e.
training a model on general data and fine-tuning it afterwards on task specific data. This
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(a) CBOW (b) Skip-gram

Figure 2.1: Word2vec architecture used for training vector representation of words. The examples
here correspond to a window size of 2.

has been used with great success for image recognition [20], and has gained traction for
NLP as well [5, 9, 17].
A basic introduction to artificial neural networks (ANNs) is presented in section 2.4.2, as
both word2vec and BERT belong to this algorithm type.

2.2.1 Word2vec

Word2vec is two very similar models proposed by Mikolov et al. [13], used for computing
vector representations of words. They require very large collections of texts to train, but as
word2vec models uses unsupervised learning when training the data sets do not have to be
annotated. Large text collections such as Wikipedia articles or digitized book collections
can therefore be used without human annotation. The original paper uses a data set of 1.6
billion English words to train the models, but nevertheless reported a training time of only
less than a day for some configurations.

The two versions of word2vec, called skip-gram and continuous bag-of-words (CBOW),
both use a shallow neural network architecture for learning the vector representations of
the words in the dataset, i.e. the embeddings. Skip-gram is trained by taking a word w0

from a text as input, and trying to predict the n next and the n previous words. n is called
the window size, and is typically small. CBOW, on the other hand, takes the words in
the window as input and tries to predict the word w0 from those. The words are one-hot
encoded, a representation form described in section 2.1.2, i.e. as sparse vectors of length
|V |, where |V | is the size of the vocabulary. The two architectures are shown in figure 2.1.

The simplicity of the architecture means that by training the model on predicting these
words, the projection layer is forced to find a good representation for the words in the
training data. The layer is represented by a weight matrix W of dimensionality |V | ×D,
where |V | is the size of the vocabulary as before, and D is the desired vector dimension-
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ality of the embeddings. When the architecture has been trained, this matrix becomes
essentially an embedding lookup table, because the one-hot encoding representation of
the input means that multiplying the representation of a word in the vocabulary, ~w, with
the weight matrix W gives the embedding for that word. Notice how this entails that any
word not found in the vocabulary of the training data, typically called an out-of-vocabulary
word (OOV), cannot get an embedding from this model. In applications this is handled
by either ignoring the word, or assigning it the zero-vector ~0. It should be noted here that
the embedding for a specific word is the same regardless of context after training has been
finished, in contrast to contextualized word embeddings such as BERT.

It has been shown, by [13] and others, that simple algebraic operations can be performed
on the embeddings to answer the question ”What is the word that is similar to word z in
the same sense as word x is similar to word y?”. For example, it is possible to use addition
and subtraction to perform the following reasoning:

vector(cat)− vector(feline) + vector(canine) = vector(dog). (2.1)

As semantic relationships between words are captured by the embeddings, they are used
in many different NLP applications, such as machine translation and information retrieval,
and their dense, numerical nature make them ideal for use with algorithms such as artificial
neutral networks.

2.2.2 BERT
BERT is an abbreviation for Bidirectional Encoder Representations from Transformers,
and is a recent language representation model proposed by Devlin et al. [5] that builds
upon the Transformer architecture proposed by Vaswani et al. [24].

The Transformer architecture

The original Transformer architecture is a form of artificial neural network built upon an
encoder-decoder structure. In such structures the encoder maps the input data to a different
representation, typically some form of continuous representation, and the decoder converts
these representations to output of the same form as the input. The model is autoregressive,
which means that it consumes the output from the previous step as input, but it should be
noted that it is trained exclusively left-to-right, i.e. uni-directionally.
The model architecture of the Transformer is shown in figure 2.2. There might be several
encoder and decoder blocks in the model, the original paper uses 6 identical layers of each.

An important aspect that distinguish the Transformer from recurrent architectures, which
are discussed in section 2.4.2, is the use of attention. Recurrent architectures look at
just the previous state when predicting the output, which means that the model needs to
encode both long-distance and short-distance dependencies into its state, represented by
one or more fixed-length vectors. Attention mechanisms, on the other hand, looks at the
entire input sequence at once, and ”attends” to different parts of the sequence. What to
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Figure 2.2: The Transformer architecture from the original paper [24]. The right half of the model
is the encoder and the left half is the decoder. Image source: [24]

attend to is one of the things the model learns during training. Where the output used to
depend on the last state, it now depends on a weighted combination of all input states, and
the weights can be learned just like all other weights in the model.

BERT’s architecture

The model architecture of BERT consists of several layers of Transformer encoders, and is
bi-directional, in contrast to the original Transformer model that is uni-directional. There
exists models that are bi-directional by combining independently trained left-to-right and
right-to-left uni-directional models, such as ELMo [16] that uses bi-directional LSTMs,
but BERT is truly bi-directional in all layers. A condensed figure of BERT’s architecture
is shown in figure 2.3, but the actual model is much larger.

BERT requires the input to the model to be in a very specific format, which requires that
text be tokenized using WordPiece [25], as well as using embeddings for segment and
position. The input representation is shown in figure 2.4. Segment embeddings are em-
beddings that allow for a pair of sentences to be given as input in a single sequence, while
position embeddings denote the position of the word or token in the sequence. WordPiece
tokenization start with a pre-determined vocabulary of tokens, and every word in the text
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Figure 2.3: BERT uses a bidirectional Transformer encoder, with more layers than are shown here.
Trm denotes Transformer blocks, Ei are input embeddings and Ti is the output of the model.

Figure 2.4: The input representation used by BERT. The segment embeddings are just EA if only
one sentence is passed to the model. Image source: [5]

is either matched with a single existing token, or split into parts until it does. Split word
pieces are denoted with ##. There are thus no out-of-vocabulary words, an advantage if
a language has many compound words, such as German and Norwegian. The resulting
token sequence is also expanded with two special tokens, [CLS] and [SEP ], that are used
for classification and separating sentences respectively.

Training and generating embeddings

BERT is trained using two different tasks and a lot of data, as there are many weights in the
model that need to be trained. As it is bi-directional it cannot use the traditional training
task of predicting the next word in a sequence, because it uses the words both proceeding
and following a word in its operation. The first task is therefore a modification of the tra-
ditional approach, called masked LM (MLM). 15% of the WordPiece tokens are chosen at
random in this task, and most of them are replaced in the sequence by a [MASK]-token,
and the model tries to predict the original word given the entire sequence. As this special
token is never seen outside of this particular task, only 80% of the words chosen are re-
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placed. Of the rest, half are replaced by a random word the other half is not replaced by
anything at all, but allowed to retain the original token. As only 15% of the tokens are
predicted instead of all of them in the traditional training task, the model may converge
slightly slower, but the authors assert that MLM is empirically better.

The second training task is called Next Sequence Prediction, and consists of trying to pre-
dict whether sentence B is the sentence that follows sentence A in the dataset, i.e. IsNext
or NotNext. This forces the model to look at the relationship between sentences, not only
between words. Half of the examples provided to the model have the IsNext relationship,
and the other half are sentences chosen at random. The decision of which relationship a
specific pair of sentences have is taken by using the special [CLS]-tag.

As previously mentioned, word2vec generate word embeddings that can be viewed as
a word vector lookup table after training, which makes the embedding independent of the
current context of the word. BERT, on the other hand, generates contextualized word em-
beddings, which is dependent on not only the historical context of each word, but also its
current one. This is particularly useful with words that may have very different meanings
depending on context, for example the word bark, which might mean the sound of a dog
or the outermost layer of a tree. A disadvantage however, is that it takes much longer to
generate embeddings for an example by passing it through a large BERT model versus
simply using a lookup table of word2vec embeddings.

Using BERT

There are two ways of using BERT, namely to either use it to generate embeddings or
directly for classification, but in either case the entire sequence is passed as input at once.
As discussed above BERT is trained on a binary classification task as well as a word pre-
diction task, and the first task of the two used a special tag [CLS] for classification. When
using BERT it is possible to build a shallow neural network on top of the BERT model,
and use this tag for classification.

There are many alternative ways of extracting embeddings from BERT. There are sev-
eral layers in the architecture, and the output of any layer for any part of the input may
be taken as an embedding, and used in some other model. The embedding for a single
token from a single layer is a vector with dimensionality equal to the size H of the layer,
and so the embedding for the entire sequence from that layer is a matrix of dimensionality
|d| × H , where |d| is the length of the sequence. It is possible to take embeddings from
different layers and combine them in some way, but this thesis only uses embeddings from
the last layer.

2.3 Characteristics of classification tasks
The choice of document representation is certainly one of the more important choices that
need to be made in the process of designing a classification solution, but of equal impor-
tance is the choice of algorithm for the classification itself. There are a lot of different

12



2.3 Characteristics of classification tasks

algorithms of varying complexity within the field of Machine Learning as a whole, how-
ever the choice is narrowed down by three central characteristics of the problem at hand.

The first is the question of whether the task is considered as unsupervised or supervised
learning. Supervised learning is when the algorithm learns from examples where each
example has both features and labels, and the goal of the task is to predict the labels based
on the features [8, p. 101-104]. Depending on the problem there might be one or several
labels per example, and the labels might have continuous or discrete values. Unsupervised
learning also learns from examples that consists of features, but the difference is that no
labels are provided, and the task is instead to learn useful characteristics of the data [8, p.
102]. There is also a third and more unusual option called semisupervised learning, where
some examples include labels and some do not.
This thesis concerns itself almost exclusively with supervised learning, although it should
be noted that training embeddings is a somewhat special case, as the algorithms used for
this generate the labels themselves rather than being provided them.

Predicting the classes of input data, which is the main problem of this thesis, is super-
vised learning, which leads to the second characteristic that limits model choice: if it is a
classification or regression problem [19, p. 696]. Both are types of supervised learning,
and the distinction is based by what type of values the labels have. A task is regarded as
classification if the goal is to predict what class an example belongs to, where the number
of classes are finite. Regression, on the other hand, seeks to predict a numerical value.
This project is exclusively a classification problem, as the label to be predicted has a finite,
albeit large, set of potential classes.

A third characteristic of the problem, following from the fact that it is a classification
task, is precisely what type of classification task it is. There are three major types: binary,
multi-class and multi-label classification [11, p. 55]. Binary and multi-class refer to a
task where each example belongs to a single class, where the number of potential classes
is two in the case of binary classification, and more than two in the case of multi-class
classification. Multi-label, on the other hand, allows for an example to belong to multiple
classes at once.
The precise nature of the classification problem described in this thesis is surprisingly
hard to determine, as it depends on how one takes the class hierarchy into account. This
is described in further detail below in section 2.3, but the approach used here is that of a
multi-class classification task.

Hierarchical Classification
The classes of the data used in this thesis are organized in a hierarchy, described in section
4.3, and so an introduction to hierarchical classification (HC) is presented here. It should
be noted that most experiments in this thesis ignore the hierarchy, which is a valid ap-
proach in hierarchical classification, but the hierarchy is nevertheless an inseparable part
of the relationship between the classes.

There are three characteristics of a task of this classification type that need to be taken
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into consideration: the type of hierarchy, the objective of the classification, and how the
hierarchy is used by the approach [23].

Types of Hierarchies

There are typically only two options for the type of class hierarchy, namely either a tree or
a directed acyclic graph (DAG), although the two types are quite similar [21]. Examples
of both are shown in figure 2.5.

(a) Example of a tree hierarchy. (b) Example of a DAG hierarchy.

Figure 2.5: The most common types of hierarchies are trees and directed acyclic graphs (DAGs).
Note that the root node R is typically implicit in applications, as no example is usually only a member
of the root node.

The main different between a tree and a DAG hierarchy is that a node in a tree may only
have a single parent, while a node may have one or more parents in a DAG. Most current
literature focus on tree hierarchies, as it is typically a simpler problem, and this thesis
is no exception. The hierarchy may be either provided at the outset or derived in some
other way, such as through clustering of the classes, or through a combination of the two
possibilities. The hierarchy in this project is a tree that is exclusively designed by humans,
and described in section 4.3.

Classification Objective

The same types of classification are present here as in non-hierarchical problems, with the
exception of binary classification, as that would be a rather trivial hierarchy. To summarize
the earlier discussion, multi-class classification is when an example may be classified as a
single class, but the number of potential classes are larger than two. Multi-label classifica-
tion, on the other hand, allow for an example to be classified as multiple classes at once.
One may in fact consider any hierarchical classification to be multi-label, as any example
classified as a member of a non-root node may be considered a member of all the parents
of that node as well. Therefore, in the case of hierarchical classification, multi-label is
typically defined as a problem where an example may be classified as a member of more
than one of the classes at the same level of the hierarchy, and the problem is considered of
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the multi-class type if that is not the case [21].

Another aspect of the problem that needs to be taken into consideration, which is unique
to HC, is whether the examples must be classified to a leaf-node, or if the classifier may
terminate on a non-leaf node. The abbreviations used in the literature is typically MLNP
for mandatory leaf-node prediction, and NMLNP for non-mandatory leaf-node prediction.
In the case of the example hierarchy shown in figure 2.5a, the former category would only
predict membership of the classes {D,E,B, F}, i.e. the leaf nodes, while the latter would
have all nodes in the hierarchy as potential classes for the classification. It is possible to
transform an NMLNP problem into a problem of type MLNP by adding so-called virtual
nodes as children of all non-leaf nodes, with only examples that terminate at the virtual
node’s parent being classified as terminating at this new node.

The classification objective in this thesis is multi-class when using the definition described
above, and allows for the classification to terminate at any node, regardless of its status as
leaf- or non-leaf-node, i.e. NMLNP.

Utilizing the Hierarchy

There are three main approaches for using the hierarchy, characterized by how the hierar-
chy is utilized, if at all, during the classification. The three categories are called flat, global
and local approaches, and the category of local has additional subcategories. This thesis
mainly uses the flat approach, but briefly experiments with a local approach, namely using
a local classifier per parent node.

Flat classification approach is the simplest of the three, in that it does not consider the
hierarchy at all, but rather simply treats the problem as if it was a traditional multi-class or
multi-label classification problem. This means that it considers all classes at once, and the
number of classes might be very large which makes the problem rather challenging. The
flat approach typically works better when the classification is only allowed to terminate at
leaf-nodes, which makes the problem purely multi-class, rather than having to distinguish
between non-terminating and terminating classification of a non-leaf class node. In the
latter case it is possible to treat the problem as either multi-class or multi-label.
The advantage of using the flat classification approach is that is comparatively fast at both
training and classifying, as well as allowing traditional classification methods to be used
as-is. However, as it ignores the hierarchy it also ignores the information present therein.

Global classification approach learns a single model just as the flat approach, but in-
corporates the hierarchy. It might therefore be considered as a compromise between the
flat approach and the local approach, which is described below. There exists algorithms
that modify traditional classification algorithms so that they are able to take the hierarchy
into account, but as this thesis will only look at flat and local approaches they will not
be discussed here, and the interested reader should instead consider [21] and the models
therein.

Local classification approaches are different approaches that all have in common that
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they use local information in some way, but differ in exactly how they achieve this. The
standard ways are to either have a local classifier per node (LCN), a local classifier per
parent node (LCPN) or a local classifier per level (LCL). The LCN approach is essentially
a binary classifier at each node, that determines whether or not an example is a member
of that node, while LCPN uses a multi-class classifier instead to determine which child of
the parent node the example should be classified as. The final type of approach, local clas-
sifier per level, is the method closest to a flat approach of the three, as it uses a multi-class
classifier per level of the tree, and considers the entire level at once. LCN and LCPN are
both common approaches, while LCL is quite uncommon.

2.4 Classification Models
There are a lot of different classification algorithms available, each with different advan-
tages and disadvantages, and they vary wildly in complexity. The algorithms used for clas-
sification during in this thesis are Naı̈ve Bayes, feed-forward neural network and LSTM,
and all of them are presented here.

2.4.1 Naı̈ve Bayes
Naı̈ve Bayes is a rather simple algorithm that makes some significant simplifications in
its approach, which makes it rather suitable for use as a baseline model. As the name
suggests it is a Bayesian classifier, which means that it is based on the idea of Bayesian
inference which uses Bayes’ rule to calculate probabilities. It is called naı̈ve because of
how it simplifies the relationship between the features [11, p.65-68].

The approach of Naı̈ve Bayes is that of a probabilistic classifier, i.e. a classifier that cal-
culates the likelihood of an example d belonging to class c ∈ C based on its features X .
As any non-trivial classification problem has more than one possible class, the example is
classified as the class that has the highest probability given the features, i.e.

ĉ = argmax
c∈C

P (c|X). (2.2)

The probability P (c|X) is calculated by using Bayes’ rule

P (c|X) =
P (X|c)P (c)

P (X)
, (2.3)

and since the probability for an example P (X) does not change for each class the expres-
sion in eq. 2.2 simplifies to

ĉ = argmax
c∈C

P (X|c)P (c)
P (X)

= argmax
c∈C

P (X|c)P (c). (2.4)

The simplifying assumption made by Naı̈ve Bayes is that all features x ∈ X are condition-
ally independent of each other given the class, although it is quite unrealistic, especially
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in natural languages. This assumption means that equation 2.4 further simplifies into the
final equation of the classifier

ĉ = argmax
c∈C

P (c)
∏
x∈X

P (x|c). (2.5)

The probabilities are calculated from frequencies in the data through the equations

P̂ (c) =
|{d ∈ c}|
|D|

, P̂ (x|c) = count(x, c) + 1∑
x∈V (count(x, c) + 1)

, (2.6)

where D is the set of all examples, and V contains all possible values of x, i.e. the vo-
cabulary in the case of text classification. The equations here use add-one smoothing,
also called Laplace smoothing, which is used to avoid zero-probabilities in the case that
count(x, c) = 0, which otherwise would result in the probability for the class being 0.

In text classification the documents are represented using the bag-of-words approach de-
scribed in section 2.1.1, which ignores the position of the words within the texts.

2.4.2 Artificial Neural Networks
Artificial neural networks (ANN) are a group of machine learning algorithms built upon
the artificial neuron. There exists a lot of different variants, from the simple feed-forward
neural network to the amazingly complex LSTM and BERT. The three mentioned variants
are all used during the course of this thesis. ANNs are only capable of accepting vec-
tors of numerical values, and so in the case of language and text the input has to first be
transformed into this representation. For a discussion of representation forms see section
2.1.

The artificial neuron

The basic building block of ANNs is the artificial neuron, also known as the perceptron,
which is inspired after biological neurons in the brain. A diagram of a perceptron is shown
in figure 2.6.

An ANN is typically built up of several connected layers of artificial neurons, with differ-
ent architectures depending on what type of ANN it is, but the neurons are typically the
same regardless of type. It is provided by a vector of input ~x, and the output of neuron j
is described by

aj = σ(zj), zj =

n∑
i=0

wj,i · xj,i. (2.7)

The output a may be passed onward to other neurons, and equivalently the input ~x may
come from other neurons. σ(·) is called the activation function, as it controls the ”activa-
tion” or output of the neuron, which is comparable to how biological neurons only activate
if their stimulus exceed a limit. The activation function is fixed in the initialization of
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Figure 2.6: A schematic of an artificial neuron, also called a perceptron.

the ANN, but may be of different types for neurons in different layers. Learning is done
by updating the weights wi through a process called backpropagation, which is discussed
further below.

Activation Functions

There are several different types of activation functions, although they have in common
that they are typically derivable and monotonically non-decreasing. A very popular acti-
vation function is the rectified linear unit, which is defined by the function

σ(z) = max(0, z) =

{
0, z < 0

z, z ≥ 0
(2.8)

This function has the advantage that its derivate is equal to 1 if x ≥ 0, and 0 otherwise.

Another activation function is the softmax function, which is typically used in the last
layer when using the ANN for multi-class classification. This function is different than
most other activation functions, as it depends on the all other neurons in the same layer as
the neuron where it is applied. Its value at neuron k is

σ(~z)k =
ezk∑H
j=1 e

zj
, (2.9)

where H is the total number of the neurons in the layer and zj is defined in equation 2.7.
An interesting property is that the sum of the output of all neurons in the layer sum to
1, which means that the output of a single neuron in the final layer can be viewed as the
probability of the example belonging to the class corresponding to that node. The neuron
with the highest value is therefore the likeliest class.

Backpropagation

The output for an example is calculated using an ANN by transforming the example to
the input representation used, passing the resulting vector or vectors through the network,
and taking the output. The value of the output depends on among other things the weights
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of all the neurons, which are typically the only changeable parts of the architecture, and
learning is done by changing these weights during training.

This process is called backpropagation, as the errors of wrongly classified examples, in
the case of classification, or wrong values in the case of regression, are propagated back-
wards through the layers of neurons. The weights are changed accordingly to how much
they affected the final result. As there are typically a lot of weights that affect the re-
sult each weight only has a very small impact on the result, and is therefore just changed
slightly.
With the final output ŷ, where the correct output would have been y, the error is quantified
by some loss function L(y, ŷ). How much each weight is updated, and if it should be
increased or decreased, is determined by the gradient ∂

∂wj,i
L(y, ŷ).

Training and regularization

ANNs are trained by changing the weights of the neurons through backpropagation of er-
rors, as described above. More neurons in the architecture naturally leads to more weights
that need to be trained, and therefore training larger architectures requires both more time
and more examples. The entire dataset used for training is typically used several times,
and each iteration where the dataset is used exactly once is called an epoch.

A problem when using ANNs, or indeed any machine learning algorithm, is how to avoid
the problem known as overfitting. This refers to the fact that an algorithm might at some
point become too good at predicting the training data, and in the process get worse at
generalizing, i.e. predicting previously unseen examples. The opposite problem of un-
derfitting, i.e. not being good enough on the training data, is remedied by training more,
while overfitting may be remedied by training less. The balance between these two is
therefore to some degree a Goldilocks problem with respect to how much training should
be performed. However, there are a collection of techniques known as regularization that
are intended to increase its generalization capabilities without at the same time increasing
the errors it makes on the training set.
One of these techniques is called batching, and refers to strategy of not updating the
weights after every example, but rather after a small group of examples. The errors from
this group of examples are combined and used for training through backpropagation.

Another regularization method is called dropout, and affects the architecture of the ANN.
The layers are usually fully connected, i.e. every neuron in a layer is connected to every
neuron in the previous and proceeding layers, but when using dropout this is no longer
true. This technique entails that some percentage of connections are removed when train-
ing, but not during testing, to make the model less dependent on each weight. As random
connections are removed the model is forced to learn using more neurons, resulting in a
reduction in the generalization error.
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Recurrent neural networks

Recurrent neural networks (RNNs) are a comparatively complex subcategory of ANNs
that are designed for dealing with data in the form of sequences, such as time series or text
in the form of sequences of words. As the name suggests, these networks utilize a tech-
nique called recurrence, which attempts to capture dependencies across time or sequence
position. A general overview of the structure of an RNN is shown in figure 2.7.

Figure 2.7: The basic structure of a neural network. The black square denotes a connection across
a timestep.

The state of a recurrent network at time t depends on the state of the network at time t− 1
as well as the input xt, as shown in the figure. The weights, denoted w, u and v, are shared
across the states. Note that the state is only dependent on the state at time t − 1, and
given that state is conditionally independent of all states before t− 1. This means that any
long-term dependencies needs to be encoded in the state, but also allows the system to be
represented by just

ht = f(ht−1, xt, θ), (2.10)

where θ is a set of parameters, instead of the cumbersome representation without recur-
rence as

ht = gt(xt, xt−1, ..., x1). (2.11)

Training an RNN is done through backpropagation, with the modification that the net-
work is unrolled, like on the left half of figure 2.7, and since the output at every timestep
has an effect on the loss they need to be taken into account. This is known as backprop-
agation through time. As the unrolled network of a standard RNN is in practice a very
deep neural network if the sequence length is high, it suffers from the same problem of
gradients tending to vanish in the lower layers of deep networks. Modifications on the
standard RNN using gates, such as with LSTM described below, attempt to counteract this
problem.

LSTM

The structure of an LSTM cell is shown in figure 2.8. Like other types of RNNs it uses
recurrence to capture and generalize dependencies across time, and as the state only de-
pends on the previous state in addition to the current input, any long-term dependencies
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need to be encoded in the state in some way. This encoding of information acts in essence
as a memory, and one of the features of an LSTM cell is that it can both forget information
as well as add more to it.

Figure 2.8: The structure of an LSTM cell at time t. Image source: http://colah.github.
io/posts/2015-08-Understanding-LSTMs/img/LSTM3-chain.png

Information from the previous state is transferred in two ways, namely through the output
at time t− 1 as well as through the cell state ct−1. The cell state is modified at each time
step by passing the output from the previous step as well as the current timestep to a forget
gate, one of the three gates of an LSTM cell, and this gate may remove some information.
Current information is later added to it.
The other two gates are the input and output gates, which modify the information added to
the cell state and what is passed along as output respectively.

The LSTM cell described above and shown in figure 2.8 can be used alone, but is typically
used as part of a greater architecture. There may be several layers of LSTM cells and
several cells in each level, as well as regular fully connected layers of standard neurons.
Additionally, while the cell here is shown depending on the previous timestep and passing
information along to the next, it is also possible to reverse the sequences and potentially
combine both unreversed and reversed to make a bidirectional architecture. However, the
standard configuration is uni-directional.
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Chapter 3
Related Work

Both Natural Language Processing (NLP) in general and text classification in particular
are areas where a lot of research is being done, and the volume of papers published is
astounding. This chapter should therefore not be taken as an exhaustive guide to the field,
but rather aims to provide an introduction to the fields of study that underpin this thesis.

3.1 Hierarchical text classification
Hierarchical text classification (HTC) is perhaps one of the less popular areas of research,
but here has been some work done during the last years. The Large Scale HTC challenge
[14] was organized between 2009 and 2014, and included several large-scale datasets that
had class hierarchies, with some having a very large number of classes. Unfortunately, the
data is provided in a quite heavily preprocessed form, with lemmatization and stop-word
removal already performed and the documents are represented using bag-of-words. A to-
tal of 150 teams participated in the challenge, using a variety of different models, but an
ensemble of multinomial Naı̈ve Bayes models were among the top ten contenders.

[23] used corpora provided by Reuters, consisting of news articles with topic labels at-
tached, where the topics are organized in a hierarchy. They tested different combinations
of classification models and models for training and generating word embeddings, using
both flat and local HTC approaches. Their results show that the local approach was better
than the flat one, but the size of the difference was dependent on classification model. Ad-
ditionally, they found that the embeddings from word2vec were slightly better than from
GloVe.

[2] performed text classification on biomedical papers, using the skip-gram version of
word2vec together with SVMs with linear kernels. They used different methods of ag-
gregating the word embeddings for each word in a document into a single embedding,
namely taking the maximum, minimum or average of the embeddings. They show that
these aggregated representations perform better on shorter documents, and embeddings

23



Chapter 3. Related Work

with higher dimensionality consistently perform better than those with lower, regardless
of document length. They also show that averaging has consistently the best results out of
the three methods, but that concatenating the result of the three aggregating methods works
better if the training dataset is sufficiently large. Although the classes are hierarchical they
only use the flat approach.

3.2 Pretrained embedding models

There are many different models designed for training word embeddings, and several have
been published quite recently. A very popular model of the comparatively older ones is
word2vec, both in the skip-gram and CBOW version, which has a single, static word em-
bedding for each word in the vocabulary after training has been finished[13]. Another
model with the same type of word embeddings is GloVe [15], which uses an approach
based on frequencies rather than the predictive approach of word2vec. Also notable is
fastText [10], which is very similar to CBOW word2vec but also incorporates N-grams
when training.

A new development in the field is the use of pretrained contextualized word embeddings.
With this type of embedding a word has an embedding that is generated from itself and its
current context, instead of being a static vector once training has finished as in the case of
the previously mentioned models.
The break-through in the use of attention-based models for NLP came with the Trans-
former [24], and several other models build upon this work in some way. Although there
are several different model architectures being explored at the moment, some of which
are mentioned below, they all have in common that they use pre-training on more general
datasets.

BERT [5] is one of models that utilizes the Transformer [24], and is the model used in
this thesis for generating contextualized word embeddings. This model combines aspects
of the Transformer architecture with bi-directionality in every layer, and has shown very
good results on several benchmark tasks. Code and pre-trained versions of BERT has
been published by the authors1, among others two models in different sizes for English
only, and a multilingual model that is pretrained for 100 languages, including Norwegian
Bokmål and Nynorsk. The latter model is the particular version used in this thesis, and
is equivalent in size to the smaller of the two English models. No larger version of the
multilingual model has been published at the time of writing.
Two models recently published by OpenAI [17, 18] are also based on the Transformer
architecture.

Another model that uses pre-training to train contextualized embeddings is ELMO [16],
which uses bi-directional LSTMs instead of Transformers. Also of some interest is the
ULMFiT model [9]. It does not provide pretrained word embeddings per se, nor does is it
based on a Transformer model. However, it uses the same principle of pre-training as the

1https://github.com/google-research/bert
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other models mentioned here to trained a language model based on an LSTM architecture,
which is then later fine-tuned on target task data.

3.3 Pretrained embeddings for Norwegian
Norwegian is a rather low-resource language, especially compared to English, which is
quite evident if one considers that Norway has around 5.3 million inhabitants2, compared
with English being used as a lingua franca by most of the world. It is therefore not un-
expected that the amount of research published on NLP in general and word embeddings
in particular that concerns itself mostly with English is much larger that the amount of
research being done on Norwegian. However, there has been some recent developments
of interest that are relevant for application in Norwegian.

As already mentioned, the authors of [5] have published code and pretrained models, and
the multilingual version supports both Norwegian Bokmål and Nynorsk, the two versions
of written Norwegian. However, no results of experiments with this model on Norwegian
data has been published.

There has also been several pretrained word embedding models for purely Norwegian pub-
lished recently [22], using different model types such as word2vec, fastText and GloVe3.
The datasets used for pre-training are different combinations of three Norwegian corpora,
consisting of news articles (NNC), downloaded web sites (NoWaC) and digitalized books
(NBDigital) respectively. The evaluation of the word embeddings, which were tested on
recognizing analogies and extracting synonyms, showed that no single model was best, but
that fastText yielded best results on analogies and word2vec CBOW was best at synonym
extraction.
[3] used these embeddings together with a convolutional network in order to perform sen-
timent analysis on Norwegian documents.

2https://www.ssb.no/befolkning/statistikker/folkemengde
3http://vectors.nlpl.eu/repository/
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Chapter 4
Data

The data used in this thesis is all from the current chatbot solution used for customer sup-
port by the Norwegian bank DNB. The entire dataset, both the examples and the classes,
where gathered from the chatbot solution in February and March of 2019. Work is contin-
uously being done on the original data, so all characteristics of the dataset and ultimately
the results of the experiments themselves may be different if completely up-to-date data is
used to replicate the work of this thesis. No messages from real customers are included in
the dataset, just examples that are constructed to be similar to such messages.

The first section in this chapter presents the chatbot solution and its origin. The sec-
ond section provides a more in-depth presentation of the text messages that make up the
dataset, while the third provides the same for the classes and their hierarchy. The fourth
section presents the dataset used for testing by the chatbot, and how it differs from the
training data. The final section provides a summary of this chapter.

4.1 Data source
The current chatbot solution in use, from which the data used in this thesis originate, is a
product from the company Boost.ai1, with modifications done by employees of DNB. The
purpose of this chatbot is to act as a first-line responder for DNB’s customer support chat,
answering many of the common questions that are asked, and leaving the more complex or
uncommon questions to human staff. The chatbot, called Aino, has automated 51% of the
chat traffic on the bank’s website2. It should be noted that the current state of the chatbot
is a result of much work done by DNB, such as modification of the solution architecture
and the data used for training and testing. The employees doing this work are known as
AI trainers, and all have a background from customer facing roles in the company.

1https://www.boost.ai
2https://www.boost.ai/articles/2019/2/14/how-scandinavias-biggest-bank-

automated-51-of-their-chat-traffic-with-ai
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The product from Boost.ai is a package with everything needed to run a chatbot in produc-
tion for customer support, such as data to train and test the chatbot, responses to different
questions, a hierarchy for question types, and more. At the core of the chatbot is a model
that classifies an incoming message as question type, called an intent, which has a pre-
defined answer, or as a question it cannot answer. Templates for both the intents and the
corresponding answers are a part of the provided package, and information is filled out
by DNB’s employees, who also add and remove intents as needed. The model itself is
somewhat of a black box, as little information about it has been made public. However,
it is known that is uses a synonym wordlist and performs spell-checking as part of the
preprocessing.

Each intent has training and test data associated with it, which consists of examples of
questions which should be answered with its corresponding answer. The chatbot is a
single-turn system, which means it only considers the current message when deciding on a
response, in contrast to systems that may be consider earlier messages in the conversation
as well. The original language of the chatbot model is English, but the main language of
the chatbot in production is Norwegian.

4.2 Text examples and their characteristics
The data itself consists of text messages, called examples, in different languages though
mostly Norwegian, and they emulate questions from customers about different topics.
Each example is already labeled with both class and language. It should be noted that
the data does not contain any messages from real customers, as all examples have been
constructed manually by either DNB’s or Boost.ai’s employees, so there are no applicable
restrictions from GDPR or similar directives. An example is a single message, which typ-
ically consists of a single sentence.

There are a total of approximately 267, 000 examples in the dataset, and the language
distribution is shown in figure 4.1. The main focus is on the Norwegian messages, which
make up 72.5% of the dataset, i.e. approximately 193, 000 in total. Apart from Finnish
and English messages, which are used in one experiment, there also exist a few messages
in other languages such as Swedish and Danish.

Typical messages about for example information relating to mortgages may be

• Can you tell me about house loans?

• Can you give me information about mortgages?

• House loan

• Tell me about mortgages

The length of the messages varies a lot, and they do not necessarily consist of full, gram-
matically correct sentences. Some statistical measures for the length of the Norwegian
examples in the dataset are shown in table 4.1. The length is the number of words in the
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Figure 4.1: The language distribution of the messages. Other refers to languages which are not
considered in this thesis, such as Swedish and Danish.

message, where a word is a token from the regular tokenization method described in sec-
tion 5.3.1. As seen here a message may consist of just a single word, or up to over 50
word, but the average number of words is 9.6. Just 21% of the examples consist of more
than 12 words, and only 1% consist of over 20 words.

Statistical
measure Value

Average 9.6
Standard
deviation 4.1

Minimum 1
25th percentile 7
50th percentile 9
75th percentile 12
Maximum 51

Table 4.1: The length of the Norwegian messages in the dataset, measured in number of words.

The vocabulary of the dataset is not quite as varied as the message length. There are a total
of 8790 distinct words in the Norwegian part of the dataset, although that includes different
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grammatical forms of the same word, such as the past and present tense of verbs. There
exists techniques for reducing a word to its base form, namely stemming and lemmatiza-
tion, but they are not used in this thesis.
The frequencies of each word varies greatly, with the most common word being the Nor-
wegian word for I, ”jeg”, with frequency 82, 679. The average frequency for a word is
210, but the standard deviation is 2, 060, which illustrates the great variance. Additionally,
65% of the words in the vocabulary have a frequency of less than 10, and half of these have
a frequency of 1, which has a challenging implication that will be discussed in chapter 6.

4.3 Classes and their hierarchy
The classes are called intents by the current chatbot solution, but the subsequent discussion
will use the term class instead to conform with standard terminology in the literature.

4.3.1 Classes
As mentioned briefly in section 4.1, each message from a customer is classified as a ques-
tion type or intent, where all question types that can be found in the chatbot solution make
up the set of classes C. There is no class for the question types that are not supported, so
in the real world there will always exist question types that are not in C. However, all data
used in this thesis belong to one of the known classes.

A question type has a quite narrow definition in this context. It refers to a generalized
form of a question, which allows for different formulations of questions as long as they
are approximately equal in meaning. For example, of the three questions

1. Can you tell me about house loans?

2. Can you give me information about house loans?

3. Is it possible to open a savings account?

only 1. and 2. ask for the same thing. They are therefore the same question type or intent,
and should be classified as the same class, although the exact wording of the two is differ-
ent. Question 3. asks about something different, and therefore belongs to a different class.

The classes are designed by humans, and each corresponds to an answer the chatbot may
make, as mentioned in the first section of this chapter. In the case of question 1. and 2.
above, the class may be House loan, and the response some general information about the
house loans the bank provides. The class for the third question may be Opening a savings
account, and the answer either information about this or a link to the website where the
customer may open such an account.

There is a total of 1716 classes in the dataset used, which are organized in a hierarchy
that is described below. All of these classes have training data in Norwegian, and some of
them also have data in either English or Finnish, or both. The percentage of classes that
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have data in the different languages is shown in figure 4.2. The main focus of the thesis
will be on the Norwegian data, but the Finnish and English data will also be used briefly
when evaluating the performance of BERT.

Figure 4.2: The percentage of the 1716 classes that have data in the different languages. NOR refers
to Norwegian, FIN to Finnish and ENG to English.

4.3.2 Class hierarchy
There are a lot of classes in the dataset, but fortunately there is some additional structure to
the classes in the form of a class hierarchy. This hierarchy is a tree, the theory of which is
explained in section 2.3 and illustrated in figure 2.5a. The actual hierarchy is much larger
than in that simple example, far too large to be shown in its entirety as there are over 1700
classes, so a textual description shall have to suffice.

There are only 22 classes at the top level of the hierarchy, with all other classes being
descendants of these. Around 80% of the classes are leaf nodes, i.e. they have no descen-
dants, so the hierarchy is very wide but quite shallow. In fact, the maximum depth of the
hierarchy tree is 6, and the average level of the tree at which a class is located is 3.44. The
number of classes located at each tree level is shown in figure 4.3.

The top-level classes mostly corresponds to product categories of the bank, such as insur-
ance and loans, with some other more service-related categories such as general questions
and questions regarding log-in. The different categories are not equally represented, as
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Figure 4.3: The number of classes which are located at each level in the class hierarchy tree.

shown by figure 4.4, which show the number of descendants per top-level class. Out of
the 22 classes only 8 have over 50 descendants.

As mentioned above around 80% of the classes are leaf nodes as they have no descendants,
but all classes have associated training data, and an example may be classified as any class
in the hierarchy when testing. The classes represent more specific or detailed question
types the further down in the hierarchy they are located, but as the customer is not restricted
to only asking about the more specific topics, a text message may be classified as one of
the more general categories although it is not a leaf node. This makes the classification
objective of the type non-mandatory leaf-node prediction, the theory of which is described
in section 2.3.

4.3.3 Class balance

There is a large variance in the size of the sub-trees beneath each top-level class in the
hierarchy, as shown in figure 4.4 and discussed above, which means that some high-level
topics are over-represented in the set of classes. However, that does not say much about
the class balance in the dataset itself. Figure 4.5 shows the total number of examples that
belong to either a top-level class or one of its descendant classes, along with the average
number of examples per class in this category. The average for the whole dataset is 113
examples per class, but the figure shows how some categories have much higher or lower
averages. Additionally, whether a category has a high or low average per class cannot
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Figure 4.4: The number of descendant classes for each top level class, sorted according to the total
number of examples in the category. The class names are from the original chatbot solution, and
therefore in Norwegian. A translation of the names can be found in Appendix B.

necessarily be seen from the total number of examples of that category, or the number of
classes for that category.

While it is evident from this that some categories of classes are more common than others,
it is also of interest to look at the class balance irrespective of the class category. The total
number of examples for each class is shown in figure 4.6. The example count is not quite
equal for the different classes, in fact the maximum count is 682 and the minimum is 10.
However, the most common class only makes up 0.4% of the dataset, so no single class
can be said to dominate the dataset completely.

4.4 The chatbot’s test data

The previous sections in this chapter have only discussed the data which the chatbot so-
lution used for training. However, it also has a separate dataset which is used for testing
the performance of the implemented chatbot, which consists of approximately 18, 000 ex-
amples. Note that this thesis mostly performs the experiments on the training data using
10-fold cross-validation, but the performance of classification on the test data is also re-
ported.
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Figure 4.5: The total number of examples that are classified as either a top-level class or one of its
descendants, as well as the average number of examples per class in that subtree.

Figure 4.6: The total number of examples per class.
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4.4.1 Differences in the examples

The training data, which this thesis focuses on, assumes ideal operating conditions, where
the text examples are written completely in Norwegian without any spelling errors. The
test examples however are not constructed under this assumption, and are potentially closer
to representing the messages written by actual customers. They include both spelling er-
rors and a few English, Swedish and Danish words. The vocabularies of the two datasets
are therefore naturally not identical.

The difference between the two vocabularies lies both in their size and their content. The
vocabulary of the training data Vtrain has 8788 words, while the vocabulary of the test data
Vtest has 4487 words. Note however that the number of training examples is much larger
than the number of test examples, namely approximately 193, 000 Norwegian examples
and 18, 000 examples respectively, so some difference is to be expected here.
Although Vtrain is nearly twice as large as Vtest, the latter still contains a lot of words
that are not present in the former. To be precise 22% of its words are not found in Vtrain.
However, only 7% of the test examples contain a word not found in Vtrain. Some of those
words are misspellings of Norwegian words, either unintentional or written as they are
spoken, and some are words from other languages such as English or Swedish. Some of
the words however are correctly spelled Norwegian words that are simply not found in the
training data.

Another difference between the training and test examples are in their length, as measured
by the number of tokens in each message. The training examples have an average length
of 9.6, while the test messages are 8.5, a reduction in length of 11%. Other statistical
measures of their length is shown in table 4.2.

Statistical
measure

Training
data

Test
data

Average 9.6 8.5
Standard deviation 4.1 4.1
Minimum 1 1
25th percentile 7 5
50th percentile 9 8
75th percentile 12 11
Maximum 51 30

Table 4.2: The difference of the length of the Norwegian messages in the training and test datasets,
measured in number of tokens.

4.4.2 Difference in class balance

There is some difference in the class balance between the training and test datasets, in the
form of how many examples each class has. The classes and their hierarchy are identical
for the two datasets, it is only the amount of data that differs. The class balance of the

35



Chapter 4. Data

training set is discussed in some detail in section 4.3.3.
In the experiments using training data the testing is performed using cross-validation, i.e.

Figure 4.7: The average number of examples per class in a validation group, and the total number
of examples for the same class in the test data.

tested on a subset of the data. The splitting into groups take into account the classes, so
each class should have the same number of examples in each subset. Figure 4.7 shows
the difference in the class balance between the test data and the average of a validation
subset. The average count for a class in the test data is 10.6, while the average for the
same in a validation group is 11.2. The test data has a better class balance, as its standard
deviation is 3.0 and the standard deviation for a validation group is 7.8. However, as the
figure shows any given class that has more or less examples than the others in one dataset
does not necessarily have the same in the other dataset.

4.5 Summary of data
This chapter has provided an overview of the dataset used in this thesis.
The dataset originates in the current chatbot solution in use by the Norwegian bank DNB
for its customer support. Both the classes and their hierarchy, as well as the text messages
themselves, are gathered from its data.
The data itself consists of approximately 267, 000 text messages in mainly Norwegian,
English and Finnish, although the main focus of this thesis is on the Norwegian data.
72.5% of the messages are in Norwegian, 15.8% in Finnish and 9.81% in English. The
examples have varying length, but are generally quite short.
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There are a lot classes, 1716 in total, all of which are organized in a wide but shallow
tree hierarchy. An example may be categorized as any category in the hierarchy, not only
leaf-nodes. There are 22 top-level categories into which the classes are organized, and
these categories are unequally represented in the dataset. There is some imbalance in the
number of examples per class as well, but no single class dominates.
The chatbot solution uses a separate dataset for testing, with 18, 000 examples in total.
This data is different from the training data, as it contains spelling errors and words that
are not found in the training data. The class balance is also different.
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There are many different components that are combined in order to perform the exper-
iments, and the configuration of each is presented in this chapter. First an overview of
the different libraries used for the implementation is presented, followed by an overview
of how the data was gathered. Next the tokenization process performed on the text doc-
uments is discussed, followed by the main focus of this thesis, namely the embedding
models and their configuration. The different classification models are discussed next,
followed by a description of the evaluation metrics. A summary of the methods used is
presented in the final section.

5.1 Tools and libraries

Several Python libraries have been used for the experiments in this thesis, and they are all
listed below, apart from those that are a part of Python itself.

Numpy1 This library is used for representing and manipulating multi-dimensional
arrays.

Pandas2 Pandas contains objects for storing one- and two-dimensional data ta-
bles, as well as analyzing and manipulating their content. Both the object
types DataFrame and Series are used extensively in the experimentation.

Scikit-learn3 Scikit-learn, also called sklearn, is a library for Machine Learning, with
implementation of different algorithms, as well as functionality for pre-
processing and evaluation of the result. The experiments with Naı̈ve
Bayes uses the implementation from this library.

1https://www.numpy.org
2https://pandas.pydata.org
3https://scikit-learn.org/stable/index.html
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Keras4 This library is an API for other libraries that contain implementations
for neural networks of various types. The library used for the actual
implementation in this thesis is TensorFlow, which Keras is an interface
to.

TensorFlow5 TensorFlow contains efficient implementations of neural networks, ca-
pable of running on GPU or purely on CPU. It is used by Keras for the
actual implementation of the neural network classifiers.

Pytorch6 Pytorch is similar to TensorFlow, in that it contains implementation of
neural networks. The pretrained BERT library is implemented using this
library, and so it is used for generating embeddings from BERT.

Pytorch
pretrained
BERT7

This library contains both reimplementation and pre-trained models for
several pretrained Transformer-based models, such as BERT and Ope-
nAI’s GPT model, which is built upon the Pytorch library. The pre-
trained BERT model provided is the original model that was pretrained
by the authors of BERT. This model is kept static throughout this the-
sis, i.e. no further training of this model is performed, and is used for
generating embeddings.

Gensim8 Gensim is a library that contains various functionality for Natural Lan-
guage Processing (NLP). The word embedding models provided by [22],
included the word2vec model used here, is implemented and provided
using this library.

5.2 Gathering the data
This section presents an overview of how the data was gathered. The data itself and its
source are described in detail in chapter 4.

Both the data itself and the class hierarchy was gathered by an automated web scrap-
ing script operating on an internal administration tool for the current chatbot solution.
This tool gives access to all training and test data, where every example is labeled with its
language and organized according to its class. The class hierarchy itself is also available
through this tool.

The gathered data was first split into a training set that consisted of 90% of the exam-
ples, and a development test set with the remaining 10% of the data. The results reported
in this thesis is on the basis of k-fold cross validation, where the whole dataset is first shuf-
fled and then split into k parts with k = 10. The split is stratified, meaning that a class has
the same number of examples in each part, so that the problem of classes being present in

4https://keras.io
5https://www.tensorflow.org
6https://pytorch.org
7https://github.com/huggingface/pytorch-pretrained-BERT
8https://radimrehurek.com/gensim/
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the training set but not the test set and vice versa is avoided. Cross-validation entails that
a model is trained on k − 1 parts of the data, and tested on the single remaining part. This
is repeated k times, so that a model is tested on any given data subset exactly once. The
final result of the evaluation metrics is the average of the score for all k tests.

5.3 Tokenization
The first step of a natural language processing (NLP) task is typically tokenization. Tok-
enization is the process of grouping characters together into tokens, where a token typically
corresponds to a distinct word or a punctuation mark, although that is not always the case.
To a machine the raw text of a document is just a string of characters, numbers, punctu-
ations and whitespaces, with no additional structure between the character and document
level. This is assuming that the document is on a simple text format, without any addi-
tional structural information such as html tags, which is the case in this thesis. As a result
of tokenization each document is transformed from a string to a list of tokens. Any further
preprocessing depends on the classification model used, such as transforming the token
list into the vector representation used by Naı̈ve Bayes. The relevant steps for each model
are therefore discussed in the sections covering it.

5.3.1 Regular tokenization
The tokenization used as part of the preprocessing before classifying with Naı̈ve Bayes or
generating word2vec embeddings is a very simple method; iterating over a text using the
regular expression ((\w)+). In Regex for Python 3 the character \w means any character
that is a Unicode letter, an ideogram, a digit or an underscore, and the + sign is a quantifier
that means one or more. Each continuous group of these characters is therefore returned
as a single token by the tokenizer, and each text is transformed into a list of such tokens.
Additionally all characters are lowercased as part of the tokenization process.

5.3.2 Tokenization for BERT
The BERT model is rather particular in what tokens it will allow, and requires a particular
tokenization method, namely using WordPiece Tokenization. This process is as follows:

1. Accent removal

2. Punctuation splitting

3. Whitespace tokenization

4. WordPiece tokenization

The accent removal step may also include lower-casing if required by the version of BERT
used, but that is not the case for the model used in this thesis. The punctuation splitting
adds whitespace around all punctuation characters, which are defined as any character that
is not a letter, number or space character, i.e. characters such as ´, . and #.
At this point the original text sequence is still a single sequence of characters, but with
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application of whitespace tokenization every subsequence of characters that is bounded by
whitespace is designated as a single token.
WordPiece tokenization takes these tokens and transforms them into tokens that can be
found in the provided vocabulary of WordPiece tokens. This algorithm takes each to-
ken and searches the vocabulary for an exact match. If no match is found the algorithm
searches the vocabulary for the longest match, splits the matching substring from the token,
and repeats the process with the remaining substring. Any token that is not the beginning
of a word is denoted by ##. For example the word unaffable may be split into the
tokens {un, ##aff, ##able}.

The tokenization for the input passed to BERT is implemented in the Pytorch pretrained
BERT library introduced in above in section 5.1, using the library’s BertTokenizer class
with the vocabulary for the multilingual BERT model. The WordPiece vocabulary used
by this tokenizer consists of around 110, 000 WordPiece tokens, and contains tokens for
all languages the model supports, i.e. tokens for languages such as Thai and Chinese in
addition to Indo-European languages such as English and Norwegian.

5.4 Generating embeddings
The theoretical foundations and architectures of word2vec and BERT are discussed in sec-
tions 2.2.1 and 2.2.2 respectively, and is not repeated here. However, the precise details
of how these models are used for generating embeddings as discussed below. Both mod-
els are already trained, and are kept unchanged throughout the experiments, although it
would have technically been possible to fine-tune the BERT embeddings. However, as
the word2vec model provided by [22] is in a format that does not easily allow for further
training the two are both kept static to ensure a fair comparison. Also, the BERT model
is quite large and would therefore require both time and a lot of computational power to
finetune, so finetuning BERT itself is outside the scope of this thesis.

5.4.1 word2vec
The word2vec model used is the CBOW type, introduced in section 2.2.1, and the model
itself and its training is described in section 3.3. Two versions are used, one where the
embeddings have vector length 300, and another with length 100. The model with vec-
tor length 300 is only trained on the Norwegian Newspaper corpus, as that is the only
one that has been made available for the model type. The one with vector length 100 is
trained on all three corpora, and therefore has a vocabulary that is more than twice as large.

The model itself is provided using the gensim library, which makes it very easy to get
the embedding for any word found in the vocabulary, as the model is in essence a dictio-
nary with words as the key and their embedding as the value. However, the model cannot
return an embedding for a word not found in the vocabulary, and the embedding for these
OOV words are therefore set to~0.

The final embeddings for an example is dependent on what classification model it is passed
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as input to. In the case of feed-forward NN, the word embeddings are averaged to generate
a single embedding for the entire text sequence, which has the same vector length as the
original word embeddings. In the case of LSTM, however, the word embeddings are kept
unchanged and stored as a sequence of embeddings that match the sequence of tokens. As
the LSTM model expects the sequences to be of an uniform length, they are padded at the
beginning of the sequence with zero vectors.

5.4.2 BERT
As mentioned above in section 5.1, the actual BERT model used in this thesis is pro-
vided through the library Pytorch pretrained BERT, and is the bert-base-multilingual-
cased version, which is the most recent and recommended multilingual model at the time
of writing[4]. This model is pretrained on the Wikipedia9 articles of 104 languages, and
support Norwegian, Danish, Finnish, English, and many other languages. The model is
cased, which means no lowercasing is performed on the words, and the size is the smaller
of the two sizes mentioned in [5].

The embedding for an example is generated by first passing the raw text through the tok-
enization process described in section 5.3. The result is a list of WordPiece tokens, which
is transformed into one-hot encoding, where the vocabulary for the encoding is the same
as the WordPiece vocabulary, and passed to the BERT model. This encoding corresponds
to token embeddings in figure 2.4. The segment embeddings in that figure can be ignored
here, as there is only a single segment and they therefore have no impact on the result. The
model expects the input to be of an uniform length, and the input sequence is therefore
either padded to reach the length, or reduced by removing the last tokens. Along with the
token embeddings a vector called an input mask is also passed as input. This vector is
of the same length as the token sequence, and contains a 0 on the indices that have been
added through padding, and 1 otherwise. The model ignores any element whose value in
the input mask is 0.

The embeddings are generated by passing this input through BERT and taking the val-
ues for each token from the final layer of the model. This results in a contextualized
embedding for each word, with a vector length of h = 768. For a given sequence with
k WordPiece tokens, including the two [CLS] and [SEP ] tags, the word embeddings to-
gether make a matrix with dimensionality k × h. This is the same as (d + 2) × h if the
number of tokens is the same as the number of words. The final embedding for an exam-
ple is generated by taking the average of all word embeddings, so that the final result is a
vector of length h.

5.5 Models
The main focus of this thesis on the embeddings, i.e. on BERT and the Norwegian
word2vecmodel, rather than the models used for the actual classification. Still, to eval-
uate the performance of the embeddings on the classification task at hands requires some

9www.wikipedia.org
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models to be implemented, and those are described below.

The most simple baseline used is not a Machine Learning model, but rather a simple
algorithm, namely to just predict the most common class regardless of input. There is
another baseline implemented, however, which also acts as a baseline against the use of
embeddings, and that is Naı̈ve Bayes.

5.5.1 Naı̈ve Bayes

The theory of Naı̈ve Bayes is discussed in section 2.4.1, and is therefore not repeated here.
The input data is tokenized using the regular tokenization method described in section
5.3.1, which means that the input is transformed from a text sequence into a list of tokens.
This list is transformed again using the bag-of-words approach described in section 2.1.1,
with the result being one vector per each example which containts the word frequencies.
The classification model used is multinomial Naı̈ve Bayes, which is suitable for multi-class
classification, and uses the implementation MultinomialNB from the library scikit-learn.

5.5.2 Feed-forward NN

The most simple neural network architecture used is a small feed-forward neural network,
which is provided embeddings as input, either from word2vec or BERT. The generation of
word embeddings for each example is discussed above in section 5.4. The configuration
of the network is kept identical regardless of where the embeddings originated and of their
vector length, in order to facilitate a comparison between the performance of different em-
beddings.
There are three layers in the architecture, which are shown in figure 5.1, namely the input
layer, the hidden layer and finally the output layer.

The input layer has the same size as the length of the embeddings, which varies in the

Figure 5.1: The structure of the feed-forward NN used in the experiments.
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experiments. The hidden layer has size 256 and uses the identity function f(x) = x as its
activation function, while the output layer has the same size as the number of classes in the
training data and uses the softmax activation function described in equation 2.9. Dropout
is used between the hidden and output layer so that 20% of the connections between the
two are dropped at random during training and no connections are dropped when testing.

The optimizer used is Adam[8, p.301,413], and the loss function is categorical cross en-
tropy, which is defined as

L(y, ŷ) = −
∑
i∈|C|

yilog(ŷi). (5.1)

|C| is here the number of classes, y is a one-hot encoding of the true class, and ŷ is a vector
of probabilities for the classes, where ŷi is the predicted probability of class i. Batch size is
set to 64, and the number of epochs is 10 for the experiments using word2vec embeddings,
and 6 for the experiments using BERT embeddings.
Note that no finetuning of these hyperparameters or the architecture itself has been per-
formed, which is one of the tasks suggested for future work in section 7.1.

5.5.3 LSTM
The implementation of LSTM is quite similar to the feed-forward neural network (FFNN).
They both use the embeddings from either word2vec or BERT as input, but while the
FFNN just receives one single embedding per example the LSTM model instead receives
a sequence of embeddings. This sequence mirrors the sequence of tokens that was passed
to the embedding model. As the LSTM classifier requires the sequence to be of a uniform,
predefined length, the sequence is either padded with zero-vectors if too short, or cut off
if too long. Any padding is added at the beginning of a sequence, since the LSTM model
used is uni-directional and receives each entry in the sequence in left-to-right order.

The architecture of the model consists of an input layer, followed by a layer of LSTM
cells, and finally the output layer. Recurrent dropout is applied to the LSTM layer, which
means that dropout is applied at the recurrance connections, i.e. connections between the
architecture at different time steps.
The output layer is identical to the output layer of the FFNN model, i.e. it has the same
size as the number of classes. The layer uses the softmax function as its activation func-
tion, described in 2.9. The loss function is categorical cross entropy as defined in equation
5.1, and the optimizer used is Adam.

5.6 Utilizing the class hierarchy
Almost all of the experiments in this thesis use the flat approach to hierarchical classifica-
tion, as described in section 2.3. However, a secondary experiment explores the hypothesis
that incorporating the class hierarchy in the classification process may improve the quality
of the predictions. The approach chosen is local classifier per parent node (LCPN), which
is one of the local approaches, together with the Naı̈ve Bayes model described above. The
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classification proceeds in a top-down manner through the tree that represents the class
hierarchy, and one classifier is trained for each non-leaf node to determine which of its
children the example should be classified as. The algorithm terminates when either a leaf
node is reached, or the example is classified as a member of a virtual node as described in
section 2.3. All other details, such as the preprocessing and the configuration of the model,
are kept exactly the same as in the experiment with the flat approach using Naı̈ve Bayes,
in order to ensure a fair comparison.

5.7 Evaluation metrics

There are several ways of evaluating the classifying ability of a model, and different met-
rics typically give a slightly different view of the model’s performance. This thesis there-
fore uses four different metrics, namely precision, recall, F1 and accuracy, each of which
is described below.

It is useful to establish a common terminology before the metrics are described, and a good
starting point is the contingency table [1, p.325-326], the structure of which is shown in
table 5.1. There are four group of examples for a given class ci after the classification has
been performed. True positives, denoted tp, is the group of examples that are classified
as belonging to class ci, and they actually belong to that class. If for instance the task
is to classify pictures as being of one of the animals {cat, dog, horse}, and the class
ci is the cat pictures, then true positives tp are the cat pictures that are classified as such.
False positives tn are the examples that are classified as belonging to the class ci although
they are actually not, i.e. pictures of either dogs or horses that are classified as being of
cats. Equivalently, true negatives tn are examples correctly classified as not belonging to
the class, while false negatives fn are incorrectly classified as not belonging to the class
although they actually do.

y ∈ ci y /∈ ci
ŷ ∈ ci

true positive
tp

false positive
fp

ŷ /∈ ci
false negative

fn
true negative

tn

Table 5.1: Contingency table for class ci. y is the true class of the examples and ŷ is the predicted
class.

5.7.1 Accuracy

Accuracy measures the fraction of correct classifications, either for a single class or for the
entire dataset [1, p.326]. It is calculated by

A(ci) =
tp+ tn

tp+ fp+ tn+ fp
(5.2)
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when measuring accuracy for a single class ci. Sometimes the error is used instead, which
is the fraction of incorrectly classified examples, i.e. 1 − A(·), but only accuracy is used
here.

Accuracy is a common metric, but should be used with caution when there is a class
imbalance, i.e. some classes are much more common than others. If for example a dataset
of pictures has the class distribution {cat: 80, dog:10, horse:10}, a classifier could
get 80% accuracy by simply classifying a picture as cat, regardless of content. Another
classifier with the same accuracy, but that also classified some examples as the other two
classes, could be considered a better model although the metric does not reflect this. It is
therefore to combine the use of accuracy with other metrics, such as the ones discussed
below.

5.7.2 Precision and recall
Two metrics commonly used in tandem are precision and recall, which are quite similar
to the metrics of the same names that are used in information retrieval [1, p.327]. They
measure the quality of the classification for a single class ci using the equations

P (ci) =
tp

tp+ fp
(5.3)

R(ci) =
tp

tp+ fn
(5.4)

where P is precision and R is recall.
Precision measures what percentage of examples classified as a class actually belong to
that class, while recall measures the percentage of members of a class that were correctly
classified as belonging to that class. The two metrics thus balance each other, and are more
robust in the face of potential class imbalance than accuracy.

5.7.3 F1

The F1 metric, or Fβ in its more general form, combines recall and precision into a single
metric [11, p.74]. The general formula is

Fβ =
(β2 + 1)PR

β2P +R
, (5.5)

where β is a constant that governs the balance between precision and recall in their impact
on the metric. The typical value is β = 1, which gives both equal weight, and the resulting
F1 metric is thus

F1 =
2PR

P +R
. (5.6)

The metric is derived from the harmonic mean of precision and recall, which is a more
conservative metric than the common arithmetic mean. This entails that the lower number
of the two has a heavier impact on the result.
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5.7.4 Macro, micro and weighted averages

In the case of more than two classes, i.e. when the classification problem is not binary,
it is necessary to combine the results for each class into a single metric [11, p.75]. This
is especially true when the number of classes grows large, as it does in this project, when
using one metric per class results in a quite unwieldy collection of metrics. There are two
main ways of combining these values, namely macro-averaging and micro-averaging. For
a given metric m(·), macro-averaging computes the metric for each class first, and then
takes the average of the results. Micro-averaging, on the other hand, computes the metric
just once for the entire classification.

The difference between the two averaging methods when comparing results is that micro-
average gives the same importance to each example, while macro-average gives the same
importance to each class. The distinction is unimportant if the classes are well balanced,
i.e. the sets of examples belonging to each class are approximately equal in size, but should
be considered closer if there is a class imbalance.

There standard way of calculating the macro-average is to take the arithmetic mean of
the metric result for each class, which means that each class has the same impact on
the average, regardless of how many examples they contain. Another way is to take the
weighted macro-average. This entails calculating the metric for each class, and weighing
their average according to the number of examples they have in the dataset. The weighted
macro-average and the micro-average are therefore quite similar in what they measure, but
are calculated differently.
The averaging methods that will be used are macro average and weighted macro-average.

5.7.5 Confusion matrix

A confusion matrix is not quite a metric but simply a count of errors, but is nevertheless
useful for examining a classification result in depth. A confusion matrix contains a count
of the number of times one thing was confused with another, with the thing being a class
or a class category. For example, say the classes are cat, dog and horse, then the resulting
confusion matrix may be like the one shown in table 5.2. The rows are the predicted class
and the columns are the true class.

cat dog horse
cat 60 5 2
dog 10 2 1
horse 10 3 7

Table 5.2: An example of a confusion matrix. The predicted class is represented by the rows, and
the true class by the columns.
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5.8 Summary of methods
All data used was gathered from the current chatbot solution, already labeled with their
language and class. The data is split into 10 groups using stratified splitting so that it may
be used for k-fold cross validation, where k = 10.
The tokenization performed on the data depends on what embedding model, if any, is used.
For word2vec embeddings or when Naı̈ve Bayes is the current classification model the to-
kenization is performed using simple regular tokenization, while when BERT embeddings
are used the tokenization is performed using WordPiece.
There are two different models used for generating embeddings, namely word2vec and
BERT. These embeddings are passed to either a feed-forward neural network, or an LSTM-
based architecture. Naı̈ve Bayes is used as a baseline model, which does not use embed-
dings but rather count vectorization.
The results of the experiments are evaluated using the metrics accuracy, precision, recall
and F1.
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Chapter 6
Results and discussion

This chapter presents the results of the experiments performed, as well as a discussion of
each result and a comparison of the different models. The theory behind both the classifi-
cation models and embedding models used is discussed in chapter 2, and the methodology
of the experiments can be found in chapter 5. The evaluation metrics are also presented
in the latter chapter, although how they relate to the task at hand is discussed below. The
different data used in the experiments are discussed in chapter 4.

All experiments described in this chapter are evaluated using 10-fold cross-validation un-
less stated otherwise. This technique splits the data into 10 groups, and tests a model on
one group after it has been trained on the remaining nine groups. This is repeated so that
the model is tested on each group exactly once, and the reported evaluation scores are an
average of the 10 results.
All experiments except the last one uses the flat approach to classification, which is ex-
plained in section 2.3.
The classes in the dataset all have Norwegian names, but a translation into English can be
found in Appendix B for the top-level classes, which are also defined as the main class
categories due to their position at the first level of the hierarchy.

6.1 Observations on the evaluation metrics
There are several metrics that are used for evaluating the results of the different exper-
iments in this thesis, namely accuracy, precision, recall and F1, and different ways of
calculating their average are used. The metrics and how they are calculated are discussed
in section 5.7. These metrics are all widely used in the literature, not only for hierarchical
text classification which is the task in this thesis. The different characteristics of this type
of task are described in section 2.3. It is useful to discuss how the evaluation metrics are
affected by the characteristics of the task before the results of the experiments are pre-
sented.
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Of particular relevance to how the evaluation metrics should be interpreted is the pres-
ence of a class hierarchy. The metrics do not take this hierarchy into account, although
some classes are more closely related to others as represented by the hierarchy. One might
consider a misclassification as a class that is wrong, but close to the true class in the hi-
erarchy, can be considered less wrong than if the predicted class further away from the
true class. However, the metrics do not take this into account as each misclassification is
regarded as equally wrong, so no partial credit is given for an answer that is almost but not
exactly correct. The judgement of classification quality inherent in the metrics is therefore
quite harsh. They nevertheless give a good indication of each model’s performance, and
as the same metrics are used regardless of experiment the comparisons made should also
be valid.

The main discussion uses the proper evaluation metrics, i.e. accuracy, precision, recall
and F1, but confusion matrices are also used for some of the main experiments. Keep in
mind that the confusion matrices show classifications according to main class category,
and there are several classes in each category. This means that only misclassifications as
classes in the wrong category are shown as such, while examples predicted as an incorrect
class which is in the same category as the correct class are counted as the same as a correct
classifications. However, one might consider the cross-category misclassifications as more
severe mistakes, as they are further away from the correct class in the hierarchy.

Keep in mind for the following discussion that accuracy is calculated from the total num-
ber of true and false predictions made by each model, while precision, recall and F1 are
calculated first for each class, and then averaged using the average calculations described
in section 5.7.4.

6.2 Baseline models

When making any observation about the quality of a classification model it is useful to
have something to compare it to, in particular as it is difficult to say whether a given model
is good or not without knowing how a bad model would perform. Good and bad are
relative terms, but in general a good model makes more correct predictions, and is able to
learn to do good classifications for many classes. It is also often desirable to choose the
simpler alternative if two models are equal in performance but unequal in complexity, and
a comparison between a simple and a complex model should give some indication as to
whether its complexity is needed.
Two baseline models are used in this thesis, namely Naı̈ve Bayes and a simple model that
just predicts the most common class.

6.2.1 Predicting the most common class

This approach can hardly be called a machine learning model, as effectively no learning is
being done. It is simply a counting algorithm, that counts the classes of the experiments in
the training data, and always predicts the most common class of this dataset, regardless of
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input at the time of testing. The evaluation scores of this approach is shown in table 6.1.

Evaluation
metric

Average
calculation Score

Accuracy - 0.004
Precision Macro 0

Weighted 0
Recall Macro 0.001

Weighted 0.004
F1 Macro 0

Weighted 0

Table 6.1: The evaluation scores of always predicting the most common class regardless of input.

The class balance of the dataset is discussed in some detail in chapter 4, and it shows that
while there is not a perfect balance between the the amount of data each class has in the
dataset, there are nevertheless no single class that completely dominates the others. There
are a lot of classes, and the most common class accounts for only 0.4% of the examples. It
is therefore as expected that the approach of always predicting this class yields an identical
accuracy as its frequency, namely 0.004 or 0.4%, and that the other metrics are extremely
low. There is obviously much room for improvement with these scores.

6.2.2 Naı̈ve Bayes
Naı̈ve Bayes is perhaps a more sensible approach than the first baseline, as it actually
attempts to learn from the data. A theoretical description of the model can be found in
section 2.4.1. The evaluation scores from training and testing the model using 10-fold
cross-validation are shown in table 6.2, as well as in figure 6.1.

Evaluation
metric

Average
calculation Score

Accuracy - 0.516
Precision Macro 0.567

Weighted 0.668
Recall Macro 0.337

Weighted 0.516
F1 Macro 0.396

Weighted 0.507

Table 6.2: The evaluation scores of Naı̈ve Bayes. Also shown in figure 6.1.

As seen from these results, the model is surprisingly competent despite its simplicity, with
an accuracy of 51.6%, much higher than the previous baseline accuracy of 0.3%. Although
every example has only one correct class, and there are 1715 other classes it can be clas-
sified as that are incorrect, the model still predicted the correct class about half the time.
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Figure 6.1: The evaluation scores of Naı̈ve Bayes, also shown in table 6.2. The accuracy score is
calculated once for the entire classification, so unlike with the other metrics no average calculation
is applied.

The possible reasons for this result are discussed below.

The precision and recall metrics show a more detailed picture. The precision is higher
than recall, regardless of how the average is computed. This means that on average the
percentage of examples that belong to a given class and is classified as it, is lower than the
percentage of examples classified as that class which truly belong to it.

Note how the weighted average of all metrics are higher than the macro average. When
using the macro average each class has equal impact on the score, regardless of support in
the data set, i.e. its number of examples in the data. The weighted average, on the other
hand, weights the metric score of each class according to its support, and so a class with a
higher number of examples has a larger effect on the result than one with a smaller amount.
That the weighted averages are higher is not surprising, as classes with more training data
available should be easier to later correctly classify. There is some class imbalance in the
dataset, i.e. some classes have more data than others, which is described in section 4.3.3.

There are too many classes to make examining each individual class a viable approach,
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and so instead the classes are organized into categories according to which of the 22 top-
level class in the hierarchy they are a descendant of. The accuracy for each is shown in
figure 6.2, and a confusion matrix is not shown here due to its size, but can be found in
table A.1.

Figure 6.2: The accuracy scores calculated for each top-level class and its descendants, i.e. each
main class category, when classifying using a Naı̈ve Bayes model. The categories are sorted accord-
ing to the total number of examples in each.

Figure 6.2 shows that the accuracy varies a lot between the different categories. There may
be several reasons for this. One is that different categories contain very different numbers
of classes, as shown in figure 4.4. Another is that some classes have more data than others,
and the average number of examples per class varies quite a lot, as shown in figure 4.5.
As mentioned above, the weighted averages are higher than the macro averages, which
indicate that the model performs better on larger classes.
Note that accuracy is calculated from the total number of correct classifications, and does
not take the size of the classes into account. The larger classes therefore have a larger
impact on the accuracy, and the model is better at predicting those than the smaller ones.

There may be another underlying reason for the large differences, namely that some cat-
egories may be easier to correctly classify than others. This may again be the result of
several factors.
There is a possibility that the classes of some categories are more well-defined and sep-
arated, i.e. more different from the other classes, than in other categories. The class
hierarchy and the classes themselves have after all been constructed over a long time by
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several different people.

Another factor may be that the examples of some classes are easier to recognize than
others, due to for instance the presence or absence of certain keywords. Naı̈ve Bayes can
after all be considered as a sophisticated keyword classifier, as it only looks at the words
present in an example when predicting its class. This is due to the central assumption
of Naı̈ve Bayes, namely that words are conditionally independent of each other given the
class. If some words are highly indicative of a single class this class should be relatively
easy to predict. It is important to note here that Norwegian, the language of the examples
in most of the experiments, is a language with a lot of compound words, so it is likely
that there are more single words in the data that are highly indicative of classes than what
would be the case with English examples.
It is very likely that this is the case with some classes. If the example for instance contains
the words innvilge, huslån, which means grant and mortgage respectively, it is almost cer-
tain that the example is about granting a mortgage. There might be only one class that
corresponds to this topic or question, but if there are several classes that concerns this the
model may be confused, and make a wrong prediction.

The confusion matrix in table A.1 shows some interesting behaviour with respect to what
mistakes the model makes. For instance, more examples of the category Forsikring (insur-
ance) are classified as the category Generelle spørsmål (general questions) than the total
number of examples in the latter category. However, no example in the latter category was
classified as another category. The Generelle spørsmål category nevertheless has quite low
accuracy, which means that all the misclassifications were as classes that were a part of the
same category, i.e. about a similar topic, but nevertheless were incorrect. It may be that
some of the classes within the category are so similar that the model becomes confused
and unable to distinguish properly between them. It is also worth noting that this category
has a quite low number of examples compared to the number of classes, so the model has
perhaps too little data to properly distinguish them.

In general, when examples are wrongly classified, the predicted class is most often in
one of the categories with the most examples in the data set. It might be that the model
favours the classes with the most data if there are too little information that distinguish two
or more classes, so that the result of the classification is the majority vote of the possible
classes, given the words in the example. This makes intuitively sense, as the larger classes
have a higher probability of being the true class if no information is known, or if the words
present are equally likely in the different classes, and so are more likely to be predicted.
Equation 2.5 which defines the Naı̈ve Bayes classifier supports this intuition.

6.3 Word2vec embeddings
There are two versions of the word2vec embeddings trained by Stadsnes [22] that are used
in the experiments, namely one with vector length 100 and one with length 300. The exact
details of how the embeddings are generated for an example are described in section 5.4.1.
[22] contains a detailed evaluation and discussion of these embeddings, which will not be
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repeated here.

6.3.1 Feed-forward Neural Network
The first experiment that uses the word2vec embeddings combines them with a feed-
forward neural network (FFNN). Its architecture and other information about its config-
uration can be found in section 5.5.2. The evaluation scores for this experiment can be
found in table 6.3, as well as in figure 6.3.
There are two models that have been trained, and they are identical to each other in all ways
except that the first uses the embeddings of length |v| = 100, and the second uses the ones
with length |v| = 300. Since they are very similar in both behaviour and performance they
are presented together here.

Evaluation
metric

Average
calculation

Score for
|v| = 100

Score for
|v| = 300

Accuracy - 0.673 0.703
Precision Macro 0.701 0.721

Weighted 0.711 0.742
Recall Macro 0.660 0.678

Weighted 0.673 0.703
F1 Macro 0.657 0.677

Weighted 0.670 0.702

Table 6.3: The evaluation scores of FFNN using the different word2vec embeddings, also shown in
figure 6.3. |v| is the vector length of the embeddings used.

Both versions of the model show quite good results, with an accuracy of 67.3% and 70.3%
for the one using the short and the long embeddings respectively, and the small difference
between their accuracies illustrates how similar they are in performance. Just as with the
experiment with a Naı̈ve Bayes model the precision is higher than the recall, but the dif-
ference is quite small.

Interestingly, the weighted averages are almost equal to the macro averages for all metrics
and regardless of embedding length. This indicates that the classes with more data in the
dataset perform on average only slightly better than the ones with less data, although one
might expect that a model is better at recognizing a class when it has had more opportu-
nities to learn how to do so. It is also a fact that a class with more examples has a higher
probability of being the true class than one with fewer if no other information is present, or
the information available to the model does not distinguish between the classes. However,
the amount of data per class does not appear to have much of an impact on the quality
of the classification for that class, since the differences between the average types are so
small. Still, the difference is not exactly zero, so one cannot conclude that it has no impact
at all, just that the impact is likely very small.

Note that there is much information inherent in the word embeddings, so the model is
given a head start when it comes to encoding information, and can concentrate on using
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Figure 6.3: The evaluation scores of FFNN using the different word2vec embeddings, also shown in
table 6.3. The numbers in the legend refers to the vector length |v| of the embeddings. The accuracy
score is calculated once for the entire classification, so unlike with the other metrics no average
calculation is applied.

the difference between the examples to distinguish between classes. Also, since these em-
beddings are trained on quite general texts such as news articles and not on the current
dataset, the information inherent in them is independent of the amount of data per class.

The longer embeddings have three times as much space available for encoding informa-
tion, as the long embeddings have vector length |v| = 300 and the short have length
|v| = 100. [22] found that the embeddings of length |v| = 300 were better at determining
semantic and symantic relationships than those of length |v| = 100, although embeddings
of length |v| = 600 were slightly worse overall than those of length |v| = 300.
One might therefore expect that the longer embeddings tested, which are of length 300,
perform better than the shorter. To be fair they do perform better, but as shown in table 6.3
and figure 6.3 the improvement is very small.
Note that in this thesis, as described in section 5.4.1, the word embeddings are averaged
when predicting using FFNN, so that each example is represented by a vector of length |v|.

There may be several reasons for why the improvement is so small. It is possible that
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since the embeddings are not trained on domain-specific documents, such as chat logs or
financial documents, the embeddings simply cannot perform better in the current domain,
regardless of an increase in the vector size. It is also a factor here that Norwegian contains
a lot of compound words, so not all words have available word embeddings. Those words
are by the original configuration of the training of the word2vec embeddings either very
infrequent or not present in the corpora used. It is reasonable to assume that these words
are quite specific to the banking domain, and give a good indication of what class an ex-
ample belongs to, so the removal of those words will impact the result negatively.

Another reason may be the Curse of Dimensionality [8, p.151], which indicates that if
the dimensionality is increased, then the model needs more data for training. The dimen-
sionality is increased by a factor of 3 when using the longer embeddings as opposed to the
shorter ones, but the amount of training data available stays the same. Each class has an
average of 113 examples, but the lowest number for a single class is 10, so there is perhaps
too little data available for the model to improve on the results.

Figure 6.4 shows the accuracy for each main class category. The last category, Arbeid-
savklaringspenger, is a special case as it contains only a single class and few examples,
but otherwise the results here support the observations above. The longer embeddings
perform only slightly better than the shorter in some categories, and in some they even
perform worse. However, the differences are so small that no distinction between their
performance can be made.

There is a large variance between the performance of the models when classifying exam-
ples of different categories. There are many possible explanations for this, so it is difficult
to conclude why the differences between the accuracy scores are so large. However, some
observations may be made as to what reasons there may be.
One possible answer lies in the dataset itself rather than the model. Some categories may
be more difficult than others to predict, or some categories may contain only a few classes
with high or low accuracy, while other contain a larger or more varied mix. As discussed
in section 4.3.3 there is certainly a large difference between categories as to how many
classes they contain.

Another possible reason lies with the embeddings themselves. It is possible that the em-
beddings are better for some words that are more often present in some category than
others, and so make the classes of those categories easier to correctly predict. Both the
categories Vipps and BSU refers to banking products, and are some of the categories with
lowest scores. The lack of domain-specific training data for the training of the embeddings
themselves is likely to have affected the embedding quality for these categories. On the
other hand, Saga is also a banking product, but has one of the best results. However, there
may be some cross-domain influence from other meanings of the word here, as the word
saga may also mean a Norse legendary tale, and thus probably has a word embedding quite
far from more banking-related words in the vector space of embeddings.

A confusion matrix for the different main categories is shown in table A.2. It shows
that no category is only misclassified as another category, but the misclassifications have
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Figure 6.4: The accuracy scores calculated for each top-level class and its descendants, i.e. each
main class category, when classifying using FFNN with word2vec embeddings. The long embed-
dings have vector length |v| = 300 and the short ones have |v| = 100. The categories are sorted
according to the total number of examples in each. The last class, Arbeidsavklaringspenger, is a
special case as it contains only a single class and few examples.

a tendency to be one of the more populous categories. This is as expected, because as
previously stated any class with more examples is more likely to be true than one with
fewer in the absence of information, or if the uncertainty as to which is correct is high.

6.3.2 LSTM

The second experiment that utilizes word embeddings trained by Stadsnes [22] uses the
same embeddings as the previous example. However, this time the word embeddings are
used to construct sequences that corresponds to the list of tokens for each example, as de-
scribed in section 5.4.1. These sequences are used to train an LSTM neural network, and
the configuration of this model is described in section 5.5.3. The results of the evaluation
metrics for this model are shown in table 6.4, as well as in figure 6.5.

The accuracy of the LSTM model is quite high, in particular when it uses embeddings of
length |v| = 100 as input, which results in an accuracy of 86.8%. Precision is still slightly
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Evaluation
metric

Average
calculation

Score for
|v| = 100

Score for
|v| = 300

Accuracy - 0.868 0.807
Precision Macro 0.870 0.809

Weighted 0.883 0.828
Recall Macro 0.848 0.778

Weighted 0.868 0.807
F1 Macro 0.849 0.781

Weighted 0.868 0.808

Table 6.4: The evaluation scores of LSTM using the different word2vec embeddings, also shown in
figure 6.5. |v| is the vector length of the embeddings used.

Figure 6.5: The evaluation scores of LSTM using the different word2vec embeddings, also shown
in table 6.4. The numbers in the legend refers to the vector length |v| of the embeddings. The
accuracy score is calculated once for the entire classification, so unlike with the other metrics no
average calculation is applied.

higher than recall, but all in all they are quite balanced for this model.

The weighted averages are again just slightly higher than the macro averages, which
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echoes the relationship between the two average types in the previous experiment. This
means that the classes with a greater number of examples still on average have a slightly
better result than those with a lower number. The difference has not increased though,
so the relative amount of data compared to the other classes is still likely to have a small
impact on the results.

Surprisingly, all the metric scores are lower for the model using the longer embeddings,
although the scores are by no means low when compared to the baseline models of Naı̈ve
Bayes and the most common class predictor. There may be several reasons for this, and
the Curse of Dimensionality is a likely candidate. As mentioned in the previous section,
it indicates that the model needs more data for training if the dimensionality is increased.
In the previous experiment the dimensionality of the input for each example was (|v|),
where |v| is the length of the embeddings. However, when using an LSTM-based ar-
chitecture the input is transformed into sequences, and the dimensionality in this case is
(sequence length, |v|). The sequence length is here set to 12, because around 80% of the
examples consists of 12 words or less. This means that in the case of some examples not
all words are included, but also that very short messages are not unnecessarily dwarfed by
padding.
The dimensionality is therefore already quite high when the embeddings have length
|v| = 100, and an increase in this length to |v| = 300 represents an increase in dimension-
ality by a factor of 3. This may explain why the increase in the length of the embeddings
provides a small benefit in the case of a model based on FFNN, but a comparatively larger
detriment in the case of an LSTM-based one.

Another factor that probably impacts the results is the relative small amount of training
data per class, and LSTMs are a quite complex type of architecture. This means that it
needs more resources for achieving good results, both in the form of training data and
computing resources. Note that this does not necessarily mean that it needs more data than
a simpler model to become better than it, only that it needs this to achieve the optimal
results for the particular configuration of the model.

This complexity of the model also means that LSTMs are prone to overfitting, i.e. training
until the training error decreases but the generalization error starts to increase. ANN-based
architectures such as the FFNN model in the previous example may also overfit, which is
why dropout is applied as a regularization technique, but LSTMs have a particular ten-
dency to do so. It may be that the LSTM model of this experiment overfits to some degree
on some classes, but perhaps not on others.

The average scores for each main class category are shown in figure 6.6. The categories
all have quite high accuracy, which is expected when the overall accuracy of the model is
so high, although there are still minor differences between the classes in the model’s per-
formance. The accuracy of the model using the longer embeddings are less than or equal
to the accuracy for the model using the shorter ones, for all categories except one, but the
difference between the accuracy of each varies greatly between categories.
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Figure 6.6: The accuracy scores calculated for each top-level class and its descendants, i.e. each
main class category, when classifying using LSTM with word2vec embeddings. The long embed-
dings have vector length |v| = 300 and the short ones have |v| = 100. The categories are sorted
according to the total number of examples in each. The last class, Arbeidsavklaringspenger, is a
special case as it contains only a single class and few examples.

There may be several reasons for this, such as perhaps the embeddings for the words found
only in some categories are better than others. As mentioned above, the model might over-
fit on some categories, while underfitting on others. However, it is also a possibility that
some of the classes are easier to predict than others, and that only some of the difference
in scores can be attributed to the model itself.

The confusion matrix for the model using embeddings of length |v| = 100 can be found
in table A.3. Most of the entries here are quite similar to the confusion matrix, only lower
in number of misclassification, but the category of Bli kunde has an interesting behaviour.
It misclassifies a lot of examples as the category Betaling, but there are hardly any mis-
classifications the other way. This relationship between the two classes is not present in
the confusion matrices of the previous experiments, so it may be just a quirk of the model,
arising out of some combination of the embeddings and the model architecture used.
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6.4 Norwegian BERT embeddings
All previous experiments have only concerned themselves with the Norwegian part of the
dataset, and the word2vec embeddings used are only trained for Norwegian. The current
experiment uses the same Norwegian data as the other experiments, although BERT itself
is pretrained for around 100 languages at the time of writing. An experiment involving
this multilingual aspect can be found in section 6.6.2.

There are many ways of extracting embeddings from BERT,described in section 2.2.2,
such as using the [CLS]-tag, or extracting the output of some of the layers of the archi-
tecture and combining these in some way. This experiment uses the method described in
section 5.4.2, i.e. extracting the output of the final layer and taking the average. The em-
beddings are therefore comparable to the word2vec embeddings used together with FFNN,
an experiment described in section 6.3.1.
The results of training an FFNN architecture with BERT embeddings can be found in table
6.5, as well as in figure 6.7.

Evaluation
metric

Average
calculation Score

Accuracy - 0.911
Precision Macro 0.906

Weighted 0.921
Recall Macro 0.887

Weighted 0.911
F1 Macro 0.886

Weighted 0.909

Table 6.5: The evaluation scores of FFNN using embeddings from BERT, also shown in figure 6.5.

The model has an impressively high accuracy of 91.1%, especially if one takes into ac-
counts the quite low amount of training data available per class, and the high number of
classes. There are 1715 incorrect classes and only one correct for the classification of any
given example, and the model still manages to predict the correct class in more than nine
out of ten cases.
The precision is just as before slightly higher than the recall, but the difference is quite
small and both scores are quite good, as evidenced by the F1 score.

The weighted averages are all somewhat higher than the macro averages, which indicates
that this model, like the others, also has a tendency to perform better when predicting
on classes with more training data than others. This is by no means surprising, and only
confirms the well-established rule of thumb that more data tends to give better results, re-
gardless of task or choice of model. This should of course be taken with a grain of salt, as
the results also depends on the quality of the data, such as the presence of incorrect labels
or a few examples that are very different from the others.
Note however that the differences between the averages are quite small, so there is no large
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Figure 6.7: The evaluation scores of FFNN using embeddings from BERT, also shown in table 6.5.
The accuracy score is calculated once for the entire classification, so unlike with the other metrics
no average calculation is applied.

difference in the prediction quality of larger versus smaller classes.

The accuracy for each main class category is shown in figure 6.8. The scores are generally
quite high, although a couple of the smaller categories have lower accuracy than others.
However, there is no clear tendency of smaller categories having consistently lower scores
than the larger. This observation, together with the fact that the weighted averages are only
slightly higher than the macro averages, indicates that the models finds some categories
more difficult than others, and the reason may not necessarily be the amount of data avail-
able for each.
The confusion matrix for the main categories can be found in table A.4. The categories all
have quite high accuracy, which means that there are few misclassifications to be found in
the matrix, but the mistakes that have been made are quite evenly distributed. No single
category has a clear tendency to be misclassified as another specific category.

The BERT architecture, from which the embeddings are generated, is trained on quite
general data, which is likely to have an impact on the current classification result. It is
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Figure 6.8: The accuracy scores calculated for each top-level class and its descendants, i.e. each
main class category, when classifying using FFNN with BERT embeddings. The categories are
sorted according to the total number of examples in each.

trained on all data available from Wikipedia1 in the languages the model supports, which
is the 100 languages with the largest Wikipedia database. The language used in the arti-
cles on that site is typically a quite formal style, but the examples in this dataset, i.e. from
the chatbot solution of DNB, are of a more informal nature. This is highly evident in for
instance the length of the examples, described in section 4.2, as the average length of an
example is only 9.6 words. This means that the style of language in the examples used to
train the embeddings is different from the style of the examples for which to generate em-
beddings. It also means that since the messages are so much shorter, there is less context
from which to generate an embedding. This may impact the quality of the embeddings,
and therefore the classification model, but the model nevertheless shows quite good results.

The only language in the dataset used in this experiment is Norwegian, but, as previ-
ously mentioned, BERT is trained on several other languages as well. The examples are
all written in Norwegian bokmål, but BERT also has support for Norwegian nynorsk, Dan-
ish, Swedish, English and others. Norwegian bokmål and nynorsk are formally considered
two different languages, but they are very similar, and Norwegian and Danish is very sim-

1www.wikipedia.org
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ilar as well. The BERT model does not distinguish between languages at the input, and
trains a single model for all languages it supports. It is highly likely that as it supports
all these languages the quality of the Norwegian BERT embeddings is better than it would
have been if the model was monolingual. However, there does not exist a pretrained model
of BERT exclusively for Norwegian, and so a possible way of improving the results is to
train such a model, alternatively improve the existing BERT model by finetuning using
Norwegian data.

As mentioned earlier and described in section 5.4.2, the vector given as input to the clas-
sification model is an average of the word embeddings for an example, and are generated
from BERT. The act of averaging the word embeddings may cause some information in-
herent in the embeddings to be lost, as they are compressed down into a single vector. This
loss could negatively impact the result. However, it is also possible that the overall effect
is positive, since the dimensionality is reduced and the Curse of Dimensionality, which
is discussed in previous sections, may have less of an impact. Furthermore, the good re-
sults of BERT in the literature [5] are reported on architectures combining BERT with a
simple FFNN architecture like the one in this experiment. It would however be an inter-
esting avenue of research to combine word embeddings from BERT with a classification
model that does not require aggregation of the embeddings, for example an uni-directional
LSTM-based architecture as it showed quite good results with word2vec embeddings as
described in section 6.3.2, or a bi-directional LSTM.

6.5 Comparison of the models
The previous sections have presented and discussed the results of the different models that
have been tested, and the purpose of this section is to compare them to each other. Note
that the experiments with word2vec embeddings of length |v| = 300 are not included here,
only those with embedding length |v| = 100, but a discussion and comparison of both can
be found in sections 6.3.1 and 6.3.2.

The evaluations of the different experiments can be found in table 6.6, and in figure 6.9.
Note that everything except the models themselves and the choice of embeddings is iden-
tical for each experiment, i.e. they are all tested using 10-fold cross-validation on the same
dataset.

It is quite clear from the results that BERT, which refers to a model using BERT embed-
dings together with an FFNN architecture, is the best model overall. It has better results
across all evaluation metrics, although the LSTM model using word2vec embeddings is
quite close in performance.

Naı̈ve Bayes is the worst model in overall performance, especially when the performance
is measured using the recall metric, although it has a weighted precision that is almost
as high as the FFNN model with word2vec embeddings. It is not surprising that such a
simple model as Naı̈ve Bayes has the lowest results of the models tested. However, it is a
bit surprising that its results is not worse than they are, in particular as there are so many
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Evaluation
metric

Average
calculation

Most common
class predictor Naı̈ve Bayes

word2vec
FFN

word2vec
LSTM BERT

Accuracy - 0.004 0.516 0.673 0.868 0.911
Precision Macro 0 0.567 0.701 0.870 0.906

Weighted 0 0.668 0.711 0.883 0.921
Recall Macro 0.001 0.337 0.660 0.848 0.887

Weighted 0.004 0.516 0.673 0.868 0.911
F1 Macro 0 0.396 0.657 0.849 0.886

Weighted 0 0.507 0.670 0.868 0.909

Table 6.6: Comparison of the evaluation of the previous experiments. Only the evaluations of the
models using the word2vec embeddings of length |v| = 100 are included here, not the models using
those of length |v| = 300. The comparison is also shown in figure 6.9.

Figure 6.9: Comparison of the evaluation of the previous experiments. Only the evaluations of the
models using the word2vec embeddings of length |v| = 100 are included here, not the models using
those of length |v|. The comparison is also shown in table 6.6.

classes. Also, one should keep in mind that the comparison between Naı̈ve Bayes and the
embedding-based models is a bit unfair when it comes to the total amount of training data
that has been available. After all, the embeddings are pretrained, while the Naı̈ve Bayes
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model is only trained using the data found in the chatbot dataset. The embeddings have in
effect learned the language first through pretraining, and the classification model uses its
general knowledge to make specific conclusions about the domain. However, Naı̈ve Bayes
has to start completely from scratch, without any knowledge of the language other than a
list of the possible tokens it may encounter in examples.

That the results of Naı̈ve Bayes is so much better than expected may therefore indicate
that some examples are quite easy to classify, and the improvement the other models make
are in classifying the more difficult examples. For instance, figure 6.10 shows that Naı̈ve
Bayes has very low accuracy scores in some categories but not in others. The other models
are a particularly high improvement compared to Naı̈ve Bayes in those categories, bring-
ing the accuracy up to be approximately equal to the other categories for the given model.
This is despite the fact that some of those categories have quite few training examples, and
no modifications of the examples themselves have been performed.

Another interesting result is that the same word2vec embeddings give a much better result
when combined with an LSTM model than with an FFNN model. The difference would
have been slightly less pronounced if the longer embeddings were used, i.e. |v| = 300,
since the LSTM model using those has slightly worse results than for the shorter embed-
dings, and the FFNN model with the longer embeddings has almost identical results to the
current version. However, the LSTM model would still have been best, as the difference
in performance between the two LSTM models is quite small.
Note that although the original word2vec embeddings are the same, the vector given as
input to the FFNN model is an average of the word embeddings of an example, while the
LSTM is given a sequence of all embeddings without any aggregation. It is likely that the
act of compressing the embeddings down to a single vector causes some information to be
lost. However, if that was the only reason for the difference in the results, one might ex-
pect the longer embeddings to be more resilient to information loss in the compression, as
there is three times as much space for the information to be encoded. However, the results
for the different lengths are nearly identical with the FFNN model, so it is unlikely that
the whole difference in results between FFNN and LSTM models can be explained by this.

While there is a large difference between the LSTM and FFNN models using word2vec
embeddings, there is only a small difference in performance between the LSTM model
with word2vec embeddings and the FFNN model using BERT embeddings.
A possible explanation for this is that the LSTM augments the word embeddings with
contextual connections, as it is recurrent in nature and trained on sequences, with one
embedding per token in an example. The BERT embeddings are contextualized word em-
beddings, and it so it might be that the LSTM model learns the context already present
in the BERT embeddings. However, the LSTM model used here is uni-directional while
BERT is bi-directional. This means that the LSTM model may only learn from the words
preceding the current word, instead of both the words preceding and succeeding the word
as in the case of BERT.

Another factor that may have an impact on the relatively similar results of the two best
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models, is that the BERT model that generates the embeddings is multilingual, while the
word2vec model is only for Norwegian. Although the creators of BERT have not pub-
lished a scientific paper about the multilingual version of their model, they have indicated
that a monolingual model performs slightly better than a multilingual one for the same lan-
guage [4]. The FFNN model using the BERT embeddings may therefore have performed
slightly better if the BERT architecture was either pretrained exclusively on Norwegian, or
finetuned using additional Norwegian texts. However, this is a process that demands both
significant computing resources and a lot of training data, so is outside of the scope of this
thesis.

A comparison of the accuracy for each main category is shown in figure 6.10. BERT
is interestingly not always the best model for the categories, as the LSTM model with
word2vec embeddings is better at classifying some of them. Also interesting is that differ-
ent models struggles with different categories, so the difference in accuracy between the
categories is evidently not only dependent on the amount of data for each.
There may be another reason for why a specific model struggles with a given category.
Perhaps the quality of embeddings it uses is worse for those categories than the other em-
beddings, and the other way around, and so the model that uses the embeddings finds the
category difficult.

Although the BERT embeddings with FFNN shows comparable results to word2vec with
LSTM, it is worth noting that BERT is able to achieve good results with a very sim-
ple model, as its results when using an FFNN model is much better than when using
word2vec embeddings with the same. It is difficult to continue improving the result of us-
ing word2vec embeddings when the best model is already quite complex, while the success
of the simple model for BERT raises the possibility that its performance may be further
improved by experimenting with differences in the classification model itself.
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Figure 6.10: Comparison of the accuracy of each models classifications for the main class categories. The categories are sorted according to the total
number of examples in each.
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6.6 Secondary experiments
The previous experiments are all evaluated by running cross-validation on the chatbot’s
Norwegian training data, and all use the flat approach to hierarchical classification. This is
the main focus of this thesis, but some additional experiments have also been run that do
not conform to this description.

The first of these secondary experiments trains the model on the training data, but tests
it on the original test data from the chatbot. The second experiment uses BERT embed-
dings together with an FFNN model to test the multilingual property of BERT, by training
on exclusively Norwegian data, and testing on English and Finnish data. The final exper-
iment tries the local approach to hierarchical classification, which incorporates the class
hierarchy into the classification process, both at the time of training and testing. The model
type used for this experiment is Naı̈ve Bayes.

6.6.1 Testing on the chatbot’s test data
The original chatbot solution has two datasets that are kept separate, one which is used
for training and one for testing. The differences between the two datasets are described in
section 4.4. The main models of the primary experiments, i.e. all models that are com-
pared with each other in section 6.5, have been tested by training on the original dataset
meant for training, and tested on the chatbot’s test data. The results of this are presented in
table 6.7, and in figure 6.11, together with the results from the previous experiments with
the same models. Note that the models tested on the test data have been trained using the
same amount of data as during the cross-validation in order to keep the comparison fair,
as the amount of data available for training may have some impact on the result.

Model
Result of
cross-validation

Result on
test data

Naı̈ve Bayes 0.516 0.302
word2vec FFNN 0.673 0.501
word2vec LSTM 0.868 0.674
BERT 0.911 0.691

Table 6.7: Accuracy of the different models when tested using cross-validation, versus when trained
on the chatbot’s training data and tested on its original test data. The results are also shown in figure
6.11.

These results show that every model is consistently much worse when tested on the orig-
inal test data, independent of model type, than when tested using cross-validation on the
training data. A likely reason for this is that the examples contained in the training and
test data are quite different from each other. Table 4.2 shows that on average the examples
in the training data are over a word longer than the examples in the test data, and all of
the percentiles reported are higher as well. Additionally, over 20% of the words in the test
data vocabulary are not present in the training data.
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Figure 6.11: Comparison of the performance of the different models on the training data and the
original test data. Only the evaluations of the models using the word2vec embeddings of length
|v| = 100 are included here, not the models using those of length |v|. The comparison is also shown
in table 6.7.

It is only to be expected that a model struggles to classify data that is different from the
data it was trained on, including containing words it has never seen before, and in addition
to this challenge it needs to determine class membership based on fewer words than what
it was trained for.
Note that if a word is missing from the training vocabulary, it may nevertheless be present
in the vocabulary of the word2vec embeddings, and BERT has no vocabulary restriction
as it can generate embeddings for any word due to its WordPiece tokenization. However,
some of the words in the test vocabulary are spelling mistakes or from another language
than Norwegian, and those words are highly unlikely to be found in the word2vec vocab-
ulary.

Another factor that affects the result is that the test data has a different class balance from
the training data. The different number of examples for the datasets are shown in figure
4.7. The models have during the earlier experiments show a tendency to perform better
on classes with more data, as the weighted averages are a little bit higher than the macro
averages, but as the differences are only small the tendency is weak. That the different
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number of examples per class in the test data is more uniform than in the training set
therefore probably has some small effect on the result, but not enough to explain all of the
difference.

It is important to note the purpose of the datasets in the original chatbot solution. There
are multiple components in the chatbot, such as a spell-checker, a synonym wordlist and
the classifier itself, and the training data is only meant for training the classifier. The pur-
pose of the test data, however, is to test the entire system, not only the performance of
the classifier. These results therefore indicate that the models trained during the course
of this thesis cannot compete with the entire chatbot solution, as they either need addi-
tional preprocessing such as correction of spelling errors, or to be trained on data that is
more similar to the test data. However, the good results of the models BERT with FFNN,
and word2vec with LSTM, on the cross-validation, show that they may be able to handle
real-world data if modifications are made or additional training performed.

6.6.2 BERT embeddings for other languages
The version of the BERT model used for generating embeddings is multilingual, which
means it support several languages, including Norwegian, English and Finnish. Those
three languages are the most frequent in the training data, although by far the most exam-
ples are in Norwegian.
This experiment looks at the multilingual aspect of BERT, and attempts to classify English
and Finnish examples after training the model on only Norwegian examples. The results
of this are shown in table 6.6.2, and in figure 6.12.

Evaluation
metric

Average
calculation Norwegian English Finnish

Accuracy - 0.911 0.094 0.020
Precision Macro 0.906 0.066 0.023

Weighted 0.921 0.228 0.047
Recall Macro 0.887 0.033 0.014

Weighted 0.911 0.094 0.020
F1 Macro 0.886 0.033 0.012

Weighted 0.909 0.107 0.017

Table 6.8: The performance of FFNN with BERT embeddings when trained on Norwegian and
tested on other languages. The result is also shown in figure 6.12.

The model performs very well on the Norwegian data, an experiment which is discussed
in detail in section 6.4, but its performance on both English and Finnish is abysmal. Its
performance on English is overall a little better than on Finnish, but still very far away
from the Norwegian results.
It is probably a factor here that English and Norwegian have some words and grammar
in common, as they are both considered Germanic languages, while Finnish belongs to a
completely different language family.
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Figure 6.12: The performance of FFNN with BERT embeddings when trained on Norwegian and
tested on other languages. The result is also shown in table 6.8.

Surprisingly, the weighted precision of the classification on English is much higher than
the other metrics, including the macro precision. This might indicate that the model per-
forms very well on some comparatively frequent classes, and perhaps those classes typ-
ically contains examples with words that are similar or identical in Norwegian and English.

There may be several underlying reasons for why there seems to be very little transferable
learning from Norwegian to the other languages. Although BERT supports a lot of lan-
guages, it might be that the resulting embeddings are good for representing words within
a single language, but that the relationship between the embeddings breaks down when
there are several languages involved. However, it might be that the relationship between
embeddings is something that can be learned, which requires that the languages are all
present in the training data for the classification model.
It is also worth noting that BERT is trained on articles from Wikipedia, not on chatlogs or
financial documents, so perhaps the result would have been different if it had been trained
on documents that are closer related to the banking and customer support domain.

An important reason to consider here is the work that DNB has performed on its datasets.
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They focus on improving the Norwegian version, as that is the main language of its cus-
tomers that access the support chat, and so the Finnish and English examples are not
necessarily similar to the Norwegian ones. This makes the task doubly difficult, as not
only is the language itself different, the content of the examples themselves are also prob-
ably different. Note how much worse the FFNN model with BERT embeddings performs
on the original test data from the chatbot, although the test language is only Norwegian.
It might therefore be the case that it is not the BERT embeddings themselves that are at
fault here, but rather the nature of the examples themselves. However, the results here
are not sufficient to conclude that this is the only reason for the low metric scores of this
experiment.

6.6.3 Utilizing the hierarchy
All the other experiments use the flat approach to classification, which means that they do
not take the class hierarchy into account, and instead considers every class as a possibility
when classifying an example. This experiment uses the local approach, which consists
of training a classifier for every non-leaf node in the hierarchy that classifies which child
node the experiment belongs to. A more detailed description of the approach can be found
in section 2.3.
The experiment uses a Naı̈ve Bayes model for each classifier, and its results, as well as a
comparison to the flat approach using Naı̈ve Bayes, can be found in table 6.9 and in figure
6.13.

Evaluation
metric

Average
calculation

Flat
approach

Local
aproach

Accuracy - 0.516 0.579
Precision Macro 0.567 0.592

Weighted 0.668 0.645
Recall Macro 0.337 0.477

Weighted 0.516 0.579
F1 Macro 0.396 0.470

Weighted 0.507 0.539

Table 6.9: The performance of Naı̈ve Bayes when using the flat approach to hierarchical classifica-
tion versus the local approach. The results are also shown in figure 6.13.

The results show overall a slight increase in all metrics except the weighted precision. The
metric with the largest increase is the macro average of the recall, although the increase
in the weighted average of recall does not increase as much. This means that classes with
relatively few examples have a higher recall than before, but that the benefit to the other
classes is not as pronounced. This is very likely the effect of the local approach on the
amount of data available for each class at the time of training. The classifier at a node
has to decide which of its child nodes the classification should continue through, or if the
classification should terminate with the current class. The set of examples for each child
node is expanded with all the examples for the child node’s descendants as well, which
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Figure 6.13: The performance of Naı̈ve Bayes when using the flat approach to hierarchical classifi-
cation versus the local approach. The results are also shown in table 6.9.

likely improves the result for classes that had too little data in the flat approach.
However, note that around 80% of the classes are leaf nodes, and a class is located on
average at level 3 in the tree hierarchy. The shallow and wide class hierarchy means that
the classifier at each node has to decide between a lot of different classes, and there are few
steps in the classification before the it terminates, so the possible improvement by using
the local approach instead of the flat approach is likely quite small.

Figure 6.14 shows the accuracy for each main category when classifying using either the
flat or the local approach. Most categories show a small improvement when using the
local instead of the flat approach, but there are some exceptions. The category Generelle
spørsmål shows a particularly large improvement, and interestingly that category has a lot
of descendants compared to its total number of examples, as shown in figures 4.4 and 4.4.
It might be that these properties mean that the benefits of utilizing the hierarchy are par-
ticularly beneficial for this category, in this case the benefit of exploiting the information
inherent in the hierarchy in the absence of sufficient examples for a flat approach.

Also worth noting is the fact that the categories with little to negative improvement in
the accuracy are all those with very few examples in total and very few descendants. It is
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Figure 6.14: Comparison of the accuracy of Naı̈ve Bayes for the main class categories using the flat
approach to hierarchical classification versus the local approach. The categories are sorted according
to the total number of examples in each.

probably the case that those categories are disadvantaged at the first classification node,
i.e. the first level of the class hierarchy, as the larger categories have more data and are thus
more likely choices for the classifier. There is in essence a very large class imbalance at
the first level, which biases the final classification against those categories. It is therefore
highly likely that the local approach would work better if the class hierarchy itself was
better balanced, i.e. with more similar number of descendants and number of examples for
the different branches of the tree that makes up the hierarchy.

The small improvement when using the local instead of the flat approach comes at a high
cost. It needs more time for training, as there are several models that need to be trained,
one for each non-leaf node. Additional time is also needed when the class of an example
is predicted, as there are often several models that need to classify it before the algorithm
terminates at the correct class in the hierarchy. Additional memory is also needed for stor-
ing all the models and the hierarchy structure that connects them, which also makes the
implementation much more complex. It is therefore doubtful that the small improvement
that results from using the local approach is sufficient to justify its use for the classification
task in this thesis. It might however be different for a hierarchical classification problem
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with a deeper hierarchy.

6.7 Final reflections
A more complex model generally means that more data is required to train it. However, a
too simple model is likely to not be able to capture and learn all the nuances of the data
well enough. The FFNN architecture itself, used in this experiment and the one in section
6.3.1, is very simple, with just one hidden layer and dropout applied on the connections
between it and the output layer. A closer description of the entire model can be found
in section 5.5.2. One might therefore consider the complexity of the model to be in the
embeddings themselves, and consider those embeddings an integral part of the model.

BERT is clearly a more complex model than word2vec, as the former generates contex-
tualized word embeddings for any input, and the latter just has static embedding for a
word in its vocabulary once its training is finished, regardless of the context of the word.
Increased complexity is not always beneficial, but it does allow the embeddings to poten-
tially capture more information than it would otherwise have been able to.

BERT has some additional advantages over word2vec beyond its performance in the clas-
sification due to its properties. It has support for several languages and can generate an
embedding from any word, while the word2vec embeddings used in this thesis are re-
stricted to a single language and can only generate embeddings for words found in its
vocabulary. Additionally, BERT can easily be finetuned to generate better embeddings for
the domain or language if provided with enough related documents and computing power,
while the pretrained word2vec embeddings are provided as a static model.
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Chapter 7
Conclusion

This thesis has explored the use of pretrained word embeddings for classifying mainly
short Norwegian texts, where both the classes and the data itself originate in the customer
support chatbot solution of a bank. The main experiments compare different models and
embeddings, namely the static word2vec embeddings of length |v| = 100 and |v| = 300,
and embeddings extracted from the last layer of the BERT model. Neither the word2vec
embeddings nor the BERT model have been trained beyond their pretrained state, only the
classification models themselves.

An FFNN model with BERT embeddings as input performs the best of all the models
in the experiments, although LSTM with the shorter word2vec embeddings comes a close
second. However, the LSTM model with longer word2vec embeddings performs worse
than the LSTM model with shorter embeddings. The FFNN model with word2vec model
performs the worst of all the models using embeddings, but still yields a significant im-
provement over a Naı̈ve Bayes model.

The results demonstrate that using the word2vec embeddings may at best perform on par
with BERT embeddings, given good choices of model and embedding dimensionality.
BERT embeddings performs well even when using a very simple classification model as
opposed to the complexity of the LSTM. Furthermore, the BERT embeddings are more
versatile and easier to continue training than the word2vec embeddings. One may there-
fore conclude that the BERT embeddings are superior, and that its results are more robust
than the results of word2vec embeddings.

The multilingual aspect of BERT was tested in a separate experiment, where an FFNN
model was trained with BERT embeddings exclusively on Norwegian data, and subse-
quently tested on English and Finnish data. The model was able to produce some cor-
rect predictions on the English examples, but almost close to none correct predictions on
Finnish examples. This indicates that it is not sufficient to train BERT embeddings on
one language only, if its purpose is to be used on other languages later on, although the
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BERT model is able to generate embeddings for languages on which it has not priory been
exposed to, apart from its pretraining. However, there are aspects of the data that compli-
cate the situation, such as potential differences in the content and quality of the messages,
which means that one cannot make a conclusive judgement on the multilingual ability of
BERT.

A secondary experiment used the local approach to hierarchical classification, as it con-
sisted of training a multi-class Naı̈ve Bayes classifier for every non-leaf node in the class
hierarchy. This resulted in a small overall improvement compared to the Naı̈ve Bayes
classifier used in the main experiment, which classified for all classes at once, i.e. a flat
approach. The model performance was significantly improved for some of the class cate-
gories when using a local rather than a flat approach, but all the models combining word
embeddings and a flat approach outperformed the local approach. Furthermore, the local
approach have several drawbacks as it requires more time both to train the model and to
generate predictions. It is more complex to implement and requires more memory to store
the model.

Hence, the conclusion is that the flat approach using BERT embeddings with an FFNN
model, alternatively word2vec embeddings with an LSTM model, performs the best of all
the models tested in this thesis at correctly classifying short Norwegian texts.

7.1 Further work
There are several interesting avenues of research that arise from the results of this thesis,
and some of those are listed below.

Train domain-specific embeddings The embeddings used in this thesis, both word2vec
and BERT, are trained on quite general datasets. While the best results are very
good, they may become even better with embeddings trained on domain-specific
documents. This is typically done through unsupervised learning, which means that
the documents do not need to be annotated, but requires large amounts of data.

Finetuning BERT A more accessible alternative to training domain-specific embeddings
from scratch is to finetune an already trained model. The BERT model has been
published by its authors in such a way that it is possible to finetune the model by
continue training the pretrained model. This also requires potentially large amounts
of data, but likely requires less than training from scratch before the results may
start to improve.

Finetuning hyperparameters and model architecture The experiments in this thesis did
not include finetuning of the hyperparameters or the model architectures, and so it
is likely that the results may be improved at least somewhat by performing this.

Different types of BERT embeddings The BERT embeddings used in this thesis were
simply an average of the word embeddings for each token in an example, where
the word embeddings were extracted from the output of the model’s final layer.
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There may be that other ways of combining these, such as taking the maximum or
minimum, or a mix of these as in [2], may improve the result. Embeddings from
other layers or combinations of layers may also be of interest.

Further testing of the multilingual aspect of BERT The multilingual experiment in this
thesis did not show particularly good results when testing on previously unseen lan-
guages, but it might be possible to make the classification model multilingual if it is
trained on the languages as well. Such a model would be very versatile and useful,
able to handle different languages in the input without first needing to determine the
language as long as it supports it.

Embeddings with bi-directional LSTMs Most experiments in this thesis used a simple
feed-forward neural network, but the best results for word2vec embeddings were
with a uni-directional LSTM. It may be possible to improve the results of this ex-
periment by using a bi-directional LSTM architecture instead, or combine BERT
embeddings with either uni- or bi-directional LSTMs.
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Appendix A
Confusion matrices

This appendix includes the confusion matrices for some of the experiments presented
and discussed in chapter 6. The matrices report the result of one iteration of the cross-
validation, i.e. the result of training on nine out of ten parts of the dataset, and testing on
the remaining part. The split of the dataset into these parts is a stratified split, which means
that each class has as close as possible to an equal number of examples in each part.
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Forsikring Lån Betaling Innlogging Kort Konto Pensjon
Generelle
spørsmål Vipps Aksjer

Bank-
tjenester Fond

BSU -
Boligsparing
for
ungdom

BSU -
Bli
kunde

Sparing
Endre
kontaktinfo

Bytte
bank Valuta

Arv og
dødsbo Saga Vergemål

Arbeids-
avklarings-
penger

Forsikring 4941 117 27 4 9 78 36 0 1 2 0 0 35 5 0 2 0 0 0 0 0 0
Lån 382 3359 33 4 5 25 67 0 1 1 0 1 37 5 0 0 0 0 0 0 0 0
Betaling 354 89 1153 8 22 50 51 0 19 4 1 0 71 14 0 0 0 0 0 0 0 0
Innlogging 261 38 90 1020 18 66 34 0 32 2 3 1 35 6 0 3 1 0 2 0 0 0
Kort 258 100 43 18 1055 38 33 0 11 2 7 0 51 1 0 2 0 0 0 0 0 0
Konto 221 72 35 1 5 1033 63 0 3 3 0 1 89 8 0 0 0 0 3 0 0 0
Pensjon 94 55 6 2 0 13 1080 0 0 1 0 0 10 0 0 0 0 0 0 0 0 0
Generelle
spørsmål 247 32 14 8 17 17 21 175 2 0 8 1 42 12 0 0 0 0 1 0 0 0

Vipps 51 14 13 2 3 7 24 0 294 0 0 0 11 1 0 0 0 0 0 0 0 0
Aksjer 77 27 15 8 0 13 8 0 0 246 0 0 14 0 0 0 0 0 0 0 0 0
Bank-
tjenester 70 25 5 0 1 6 5 0 1 0 228 1 6 0 0 0 0 0 0 0 0 0

Fond 70 14 16 0 1 11 7 0 0 3 0 176 8 2 0 0 0 0 0 0 0 0
BSU -
Boligsparing
for
ungdom

15 22 0 3 0 1 10 0 0 0 0 0 238 0 0 0 0 0 0 0 0 0

Bli kunde 44 9 1 0 1 22 4 0 0 2 0 0 8 118 0 0 0 0 0 0 0 0
Sparing 37 9 3 3 1 7 20 0 0 3 0 3 7 0 48 0 0 0 0 0 0 0
Endre
kontaktinfo 16 4 2 1 2 1 12 0 1 1 2 0 3 0 0 41 0 0 0 0 0 0

Bytte bank 13 18 5 0 1 11 3 0 0 0 0 0 3 1 0 0 29 0 0 0 0 0
Valuta 15 4 0 0 0 1 3 0 0 5 0 0 3 0 0 0 0 29 0 0 0 0
Arv og
dødsbo 13 4 2 0 0 1 2 0 0 0 3 0 1 0 0 0 0 0 33 0 0 0

Saga 5 2 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0
Vergemål 2 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0
Arbeids-
avklarings-
penger

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.1: Confusion matrix for classification using Naı̈ve Bayes. The results of the experiment are described in section 6.2.2.
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Forsikring Lån Betaling Innlogging Kort Konto Pensjon
Generelle
spørsmål Vipps Aksjer

Bank-
tjenester Fond

BSU -
Boligsparing
for ungdom

Bli
kunde Sparing

Endre
kontaktinfo

Bytte
bank Valuta

Arv og
dødsbo Saga Vergemål

Arbeids-
avklarings-
penger

Forsikring 4747 148 98 11 20 121 37 2 14 19 9 5 5 6 11 1 0 0 3 0 0 0
Lån 85 3605 61 11 12 70 21 4 4 9 8 1 13 2 10 1 2 0 1 0 0 0
Betaling 67 65 1354 23 27 167 29 4 21 22 10 2 8 2 30 0 1 3 1 0 0 0
Innlogging 21 31 59 1396 17 32 6 1 31 3 2 3 6 1 2 1 0 0 0 0 0 0
Kort 27 44 44 28 1365 56 14 4 7 3 4 4 5 4 6 1 1 2 0 0 0 0
Konto 31 58 61 7 13 1267 17 4 6 28 5 2 14 2 17 2 0 0 3 0 0 0
Pensjon 21 20 14 4 1 59 1094 3 3 14 1 3 18 1 5 0 0 0 0 0 0 0
Generelle
spørsmål 2 4 14 4 5 5 7 543 1 2 7 0 0 0 2 0 0 1 0 0 0 0

Vipps 13 9 46 26 11 32 11 0 260 5 2 0 1 0 3 0 0 1 0 0 0 0
Aksjer 5 22 13 6 0 26 17 0 0 305 0 3 10 0 1 0 0 0 0 0 0 0
Banktjenester 5 6 6 5 1 3 2 1 0 1 315 0 1 1 0 0 0 1 0 0 0 0
Fond 4 5 6 3 0 6 7 2 2 6 1 259 1 1 4 0 0 0 1 0 0 0
BSU -
Boligsparing
for ungdom

6 11 6 11 5 32 8 1 1 4 1 1 194 0 8 0 0 0 0 0 0 0

Bli kunde 3 9 6 3 1 11 3 0 2 0 1 2 2 163 1 0 2 0 0 0 0 0
Sparing 2 12 3 1 2 8 4 2 0 0 0 1 0 0 106 0 0 0 0 0 0 0
Endre
kontaktinfo 2 1 0 6 3 0 0 0 0 0 0 0 0 0 0 74 0 0 0 0 0 0

Bytte bank 3 4 2 1 1 4 0 0 0 0 0 0 2 1 0 0 66 0 0 0 0 0
Valuta 1 4 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 52 0 0 0 0
Arv og
dødsbo 0 1 0 0 1 2 0 0 0 2 0 0 0 1 1 0 0 0 51 0 0 0

Saga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0
Vergemål 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0
Arbeids-
avklarings-
penger

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Table A.2: Confusion matrix for classification using word2vec embeddings of length 100 together with FFNN. The results of the experiment are discussed
in section 6.3.191



Forsikring Lån Betaling Innlogging Kort Konto Pensjon
Generelle
spørsmål Vipps Aksjer

Bank-
tjenester Fond

BSU -
Boligsparing
for ungdom

Bli
kunde Sparing

Endre
kontaktinfo

Bytte
bank Valuta

Arv og
dødsbo Saga Vergemål

Arbeids-
avklarings-
penger

Forsikring 5133 34 27 2 1 7 1 0 13 14 7 2 2 8 5 0 0 0 1 0 0 0
Lån 55 3769 16 6 7 13 7 5 9 12 1 3 2 9 5 0 0 0 0 0 1 0
Betaling 36 17 1598 8 12 13 2 8 10 16 4 2 8 99 0 0 3 0 0 0 0 0
Innlogging 5 10 5 1552 9 5 1 4 5 9 2 1 1 2 1 0 0 0 0 0 0 0
Kort 10 9 17 10 1523 11 7 2 4 5 2 3 1 8 3 3 1 0 0 0 0 0
Konto 10 6 11 2 11 1446 4 0 13 16 3 6 5 1 2 1 0 0 0 0 0 0
Pensjon 2 1 2 1 1 4 1241 0 2 0 0 2 2 1 1 1 0 0 0 0 0 0
Generelle
spørsmål 1 0 7 3 1 1 1 571 1 6 1 1 1 2 0 0 0 0 0 0 0 0

Vipps 6 3 6 6 3 12 2 0 375 6 0 0 0 1 0 0 0 0 0 0 0 0
Aksjer 5 10 2 1 2 8 5 0 2 364 0 2 1 4 2 0 0 0 0 0 0 0
Banktjenester 1 4 8 0 2 1 0 2 1 3 323 1 0 0 0 0 2 0 0 0 0 0
Fond 1 3 2 2 1 3 0 0 1 1 0 291 1 0 1 1 0 0 0 0 0 0
BSU -
Boligsparing
for ungdom

1 4 2 2 3 7 4 0 0 1 1 0 264 0 0 0 0 0 0 0 0 0

Bli kunde 4 5 4 0 0 0 0 3 0 0 0 0 1 192 0 0 0 0 0 0 0 0
Sparing 1 3 0 0 0 3 2 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0
Endre
kontaktinfo 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 85 0 0 0 0 0 0

Bytte bank 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 79 0 0 0 0 0
Valuta 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 58 0 0 0 0
Arv og
dødsbo 0 0 0 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 55 0 0 0

Saga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0
Vergemål 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 13 0
Arbeids-
avklarings-
penger

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Table A.3: Confusion matrix for classification using word2vec embeddings of length 100 together with LSTM. The results of the experiment are discussed
in section 6.3.2
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Forsikring Lån Betaling Innlogging Kort Konto Pensjon
Generelle
spørsmål Vipps Aksjer

Bank-
tjenester Fond

BSU -
Boligsparing
for ungdom

Bli
kunde Sparing

Endre
kontaktinfo

Bytte
bank Valuta

Arv og
dødsbo Saga Vergemål

Arbeids-
avklarings-
penger

Forsikring 5217 15 5 2 2 2 2 2 0 2 2 0 1 1 2 1 1 0 0 0 0 0
Lån 6 3886 6 1 2 2 5 0 0 0 5 3 1 1 2 0 0 0 0 0 0 0
Betaling 5 15 1774 13 6 5 7 1 0 0 2 0 2 0 3 1 0 0 0 1 0 1
Innlogging 2 9 10 1566 7 5 2 1 1 0 1 0 0 1 2 2 1 2 0 0 0 0
Kort 5 5 13 3 1571 6 5 3 1 1 1 0 0 0 1 4 0 0 0 0 0 0
Konto 2 8 13 7 6 1485 2 1 0 3 1 1 3 1 2 1 1 0 0 0 0 0
Pensjon 0 3 1 3 1 1 1250 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
Generelle
spørsmål 4 7 6 5 2 2 2 559 0 0 2 0 0 4 1 0 0 0 0 1 0 0

Vipps 1 0 2 1 0 0 1 0 413 1 0 0 0 0 1 0 0 0 0 0 0 0
Aksjer 1 1 2 0 1 2 0 0 0 398 0 1 0 1 0 0 0 0 0 0 0 1
Bank-
tjenester 1 2 1 1 1 0 0 4 0 2 332 0 0 2 1 1 0 0 0 0 0 0

Fond 1 1 1 1 1 1 3 0 0 0 0 298 0 0 1 0 0 0 0 0 0 0
BSU -
Boligsparing
for ungdom

2 1 0 0 0 1 0 0 1 0 0 0 284 0 0 0 0 0 0 0 0 0

Bli kunde 1 2 0 1 1 3 0 1 0 0 0 1 0 195 0 1 3 0 0 0 0 0
Sparing 0 1 0 0 0 0 2 0 0 0 0 0 0 0 138 0 0 0 0 0 0 0
Endre
kontaktinfo 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 83 0 0 0 0 0 0

Bytte bank 0 0 0 0 0 1 0 0 0 0 2 0 0 0 1 1 78 1 0 0 0 0
Valuta 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 57 0 0 0 0
Arv og
dødsbo 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0

Saga 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0
Vergemål 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 11 2
Arbeids-
avklarings-
penger

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Table A.4: Confusion matrix for classification using BERT embeddings together with FFNN. The results of the experiment are discussed in section 6.493
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Appendix B
Translation of names of main class
categories

Original name English translation
Aksjer Stocks
Arbeidsavklaringspenger Work assessment allowance
Arv og dødsbo Inheritance and estate
BSU - Boligsparing for ungdom BSU - Home savings scheme for young people
Banktjenester Bank services
Betaling Payment
Bli kunde Become a customer
Bytte bank Change bank
Endre kontaktinfo Change contact information
Fond Fund
Forsikring Insurance
Generelle spørsmal General questions
Innlogging Login
Konto Account
Kort Card
Lån Loan
Pensjon Pension
Saga Saga (a product specific to DNB)
Sparing Savings
Valuta Currency
Vergemål Guardianship
Vipps Vipps (a mobile payment application)
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