
M
arit G

. Ytterland, Tone K
. E. W

insnes
R

etrieval of Sheep U
sing U

nm
anned A

erial Vehicles

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marit Gjøstøl Ytterland
Tone Kathrine Ervik Winsnes

Retrieval of Sheep Using
Unmanned Aerial Vehicles

Master’s thesis in Computer Science
Supervisor: Svein-Olaf Hvasshovd

May 2019

Marit Gjøstøl Ytterland
Tone Kathrine Ervik Winsnes

Retrieval of Sheep Using
Unmanned Aerial Vehicles

Master’s thesis in Computer Science
Supervisor: Svein-Olaf Hvasshovd
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Farmers spend a lot of time every fall collecting sheep from the mountains. This process
needs to be done more efficient using modern information technology, as existing solutions
are not satisfactory. In this paper we propose a system analyzing images taken with an
Unmanned Aerial Vehicle(UAV) to detect sheep-like objects, and this system could be
used with any off-the-shelf UAV. We present different solutions for object detection using
the OpenCV library with traditional computer vision methods and image processing that
can be helpful in retrieving sheep more efficiently. In these solutions we study the outcome
of applying different filters and thresholding methods to the images, as well as detecting
colours and contours. We also discuss the positive aspects and drawbacks of the solutions,
and compare the effectiveness of the best solutions. More specifically we compare the
amount of sheep found with the total amount of sheep in the images. The results show
that detecting non-white sheep is difficult, especially concerning the high amounts of false
positives. By combining one of the most successful solutions with a thermal camera, one
could achieve satisfactory results when detecting sheep.

Sammendrag

Bønder bruker mye tid hver høst på å hente inn sauene sine fra fjellet. Denne prosessen
bør effektiviseres med moderne informasjonsteknologi, da eksisterende løsninger ikke er
tidsmessig tilfredsstillende. I denne artikkelen presenterer vi et system som analyserer
bilder tatt med en Unmanned Aerial Vehicle(UAV) for å detektere saueliknende objek-
ter, og dette systemet kan brukes med hvilken som helst UAV. Vi legger fram forskjellige
løsninger for objektdeteksjon ved å bruke OpenCV sitt bibliotek med tradisjonelle data-
synmetoder og bildeprosessering, som kan være nyttige til å finne sau på en mer effektiv
måte. I disse løsningene studerer vi utfallet av å bruke ulike filtre og tersklingsmetoder på
bildene, i tillegg til detektere farger og konturer. Vi diskuterer også de positive aspektene
og ulempene med de tre løsningene, og sammenligner effektiviteten til de beste løsningene.
Mer spesifikt sammenligner vi antallet sauer metodene finner med det totale antallet sauer
i bildene. Resultatene viser at deteksjon av ikke-hvite sauer er vanskelig, spesielt på grunn
av store mengder falske positive. Ved å kombinere en av de mest suksessfulle metodene
med et infrarødt kamera, vil man kunne oppnå et tilfredsstillende resultat når man detek-
terer sau.

Problem Description

Finding sheep at the end of summer that have been grazing freely in the mountains, is a
lengthy manual process. It often takes the farmers several weeks to find them, and even
then not all are necessarily found. Previous research has indicated that it is possible to
use traditional computer vision methods in combination with a UAV (Unmanned Aerial
Vehicle) to search for such sheep. Firstly, computer vision methods have to be developed
and tested on images with sheep, to find out if they produce satisfactory results.

i

ii

Preface

This paper has been a master thesis at NTNU as part of the M.Sc. programme in Computer
Science during spring 2019, and is a continuation of a Project Assignment [30] written by
us during fall 2018. It has been supervised by Professor Svein-Olaf Hvasshovd.

We would direct a significant thank you to farmer Steingrim Horvli who let us come to
his farm in Oppdal to acquire our dataset, to Frank Lindseth who lent us his UAV, and last,
but not least, a huge thank you to our supervisor for inspiration and guidance throughout
this project.

iii

iv

Table of Contents

1

Abstract 3

Summary 5

Problem description i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Outline . 2

2 State of the Art 3
2.1 Detecting Black Sheep . 5

3 Implementation 9
3.1 Dataset . 9
3.2 Thresholding . 10

3.2.1 Preprocessing . 10
3.2.2 Finding Edges and Contours . 11
3.2.3 Binary Thresholding [32] . 12
3.2.4 Truncated Thresholding [32] . 13
3.2.5 Threshold To Zero [32] . 14

v

3.2.6 Otsu Segmentation [31] . 15
3.2.7 Adaptive Mean Thresholding [31] 18
3.2.8 Adaptive Gaussian Thresholding [31] 18

3.3 Edge Detection On Preprocessed Images 19
3.3.1 Dilation [46] . 20
3.3.2 Meanshift Filter [34] . 21
3.3.3 Shadow Removal . 21
3.3.4 Histogram Equalization [37] . 22

3.4 Bounding Rectangle [41] . 23
3.5 Color Detection . 23

3.5.1 Searching For Black Areas . 24
3.5.2 Removing Irrelevant Colors . 24
3.5.3 Negative Colors . 25
3.5.4 Hue Saturation Value Color Space [43] 25

4 Results and Discussion 69
4.1 Dataset . 69
4.2 Method Evaluation . 70
4.3 Previous Solutions . 72
4.4 Thresholding . 73

4.4.1 Binary Thresholding . 73
4.4.2 Truncated Thresholding . 74
4.4.3 Threshold To Zero . 74
4.4.4 Otsu Segmentation . 74
4.4.5 Adaptive Mean Thresholding . 75
4.4.6 Adaptive Gaussian Thresholding 75

4.5 Edge Detection on Preprocessed Images 75
4.5.1 Dilation . 75
4.5.2 Meanshift Filter . 76
4.5.3 Shadow Removal . 77
4.5.4 Histogram Equalization . 77

4.6 Bounding Rectangle . 77
4.7 Color Detection . 78

4.7.1 Searching For Black Areas . 79
4.7.2 Removing Irrelevant Colors . 79
4.7.3 Negative Colors . 79
4.7.4 Hue Saturation Value Color Space 80

4.8 Review Of Results . 80

5 Future Work 93
5.1 Detecting Brown Sheep . 93
5.2 Thermal Imagery . 93
5.3 Flight Path Generation . 94
5.4 Developing the System . 95

6 Conclusion 97

vi

Bibliography 99

vii

viii

List of Tables

3.1 Images in dataset . 10

4.1 Results from previous solutions. 72
4.2 Results from Solution using Dilation with Bilateral Filter. 76
4.3 Results from Bounding Rectangle solution. 78
4.4 Results for Solution Removing Irrelevant Colors 79
4.5 Summarized results from the most decent solutions. 82

ix

x

List of Figures

2.1 Cellular coverage in Norway provided by Telia [9]. 4
2.2 Cellular coverage in Oppdal, Norway provided by Telenor [10]. 5
2.3 Results from M. Israels study [21] on thermal imaging with UAVs. 6
2.4 Results from detecting potato defects. 6
2.5 Image sequence of La Sagrada Familia. 7
2.6 The 3D reconstruction of La Sagrada Familia. 8

3.1 Resized image used for the initial testing of our solutions. 11
3.2 Plot of Binary Thresholding. 12
3.3 Plot of Truncated Thresholding. 13
3.4 Plot of Threshold To Zero method. 15
3.5 Binary Thresholding on grayscale image. 16
3.6 Binary Thresholding on Gaussian filtered grayscale image. 27
3.7 Binary Thresholding in Bilateral filtered grayscale image. 28
3.8 Contours found in image with Binary Thresholding applied to Bilateral

filtered grayscale image. 29
3.9 Truncated Thresholding on grayscale image. 30
3.10 Truncated Thresholding on Gaussian filtered grayscale image. 31
3.11 Truncated Thresholding on Bilateral filtered grayscale image. 32
3.12 Contours found in image with Truncated Thresholding applied to Bilateral

filtered grayscale image. 33
3.13 Threshold To Zero method on grayscale image. 34
3.14 Threshold To Zero method on Gaussian filtered grayscale image. 35
3.15 Threshold To Zero method on Bilateral filtered grayscale image. 36
3.16 Contours found in image with Threshold To Zero method applied to Bilat-

eral filtered grayscale image. 37
3.17 Histograms of the image in Figure 3.1 with different filters applied. . . . 38
3.18 Otsu Segmentation on grayscale image. 39
3.19 Otsu Segmentation on Gaussian filtered grayscale image. 40
3.20 Otsu Segmentation on Bilateral filtered grayscale image. 41

xi

3.21 Contours found in image with Otsu Segmentation applied to Bilateral fil-
tered grayscale image. 42

3.22 Adaptive Mean Thresholding on grayscale image. 43
3.23 Adaptive Mean Thresholding on Gaussian filtered grayscale image. . . . 44
3.24 Adaptive Mean Thresholding on Bilateral filtered grayscale image. 45
3.25 Contours found in image with Adaptive Mean Thresholding applied to

Bilateral filtered grayscale image. 46
3.26 Adaptive Gaussian Thresholding on grayscale image. 47
3.27 Adaptive Gaussian Thresholding on Gaussian filtered grayscale image. . . 48
3.28 Adaptive Gaussian Thresholding on Bilateral filtered grayscale image. . . 49
3.29 Contours found in image with Adaptive Mean Thresholding applied to

Bilateral filtered grayscale image. 50
3.30 Dilation applied to image without and with Bilateral Filter. 51
3.31 Edges detected in Dilated images without and with Bilateral Filter. 52
3.32 Contours found in the Dilated image, with and without Bilateral Filter,

after filtering out the discontinuous edges. 53
3.33 Meanshift Filter applied to the original image without and with Bilateral

Filter. 54
3.34 Edges found in Meanshift filtered images, without and with Bilateral Filter. 55
3.35 Contours found in image with Meanshift Filter, without and with the Bi-

lateral Filter. 56
3.36 Images with shadows removed using the method explained in Section

3.3.3, without and with the Bilateral Filter. 57
3.37 Edges detected in images with shadows removed. 58
3.38 Contours found after removing the shadows, without and with the Bilateral

Filter. 59
3.39 Histogram Equalization applied to image after converting it into two dif-

ferent color spaces. 60
3.40 Histogram Equalization applied to the image as in Figure 3.39, but after

applying the Bilateral Filter first. 61
3.41 Edges detected in Histogram equalized and Bilateral filtered images. . . . 62
3.42 Contours found in Histogram equalized and Bilateral filtered images. . . . 63
3.43 Result after removing all other colors than black or white using a binary

mask. 64
3.44 Edges detected and contours found in the image in Figure 3.43b. 65
3.45 Negative of the image in Figure 3.1. 66
3.46 Comparision on contours found in image after applying Bilateral Filter and

Dilation with the same parameters, with original color values and negative
color values respectively. 67

3.47 HSV and RGB color spaces. 68
3.48 Lower and upper black boundary colors used to find sheep with the HSV

colorspace. 68
3.49 Lower and upper brown boundary colors used to find sheep with the HSV

colorspace. 68

xii

4.1 Color difference in images taken only seconds apart, due to change in
lighting. 70

4.2 Illustration of defect on the camera lens with a blurry lower right corner. . 71
4.13 The color named ”brown”. 80
4.3 Results with Binary Thresholding on Bilateral filtered grayscale image. . 83
4.4 Results with Truncated Thresholding on Bilateral filtered grayscale image. 84
4.5 Results with the Thresholding To Zero method on Bilateral filtered grayscale

image. 85
4.6 Result with the Thresholding To Zero method on Bilateral filtered image. 86
4.7 Example of contours found after applying Dilation and Bilateral Filter to

images with and without sheep. 87
4.8 Example of contours found in images after applying the Meanshift Filter

and the Bilateral Filter. 88
4.9 Example of contours found in images after applying the Shadow Removal

solution. 89
4.10 Example of false positives found in the same image before and after adding

the Bounding Rectangle limitations. 90
4.11 Results from Solution Searching For Black Areas. 91
4.12 Mask image after the other HSV colors are removed, and only the color

we were looking for are the small white dots. 92

5.1 Waypoint Editor[21]. 94

xiii

xiv

Chapter 1
Introduction

1.1 Motivation

In Norway, sheep farmers let their sheep graze freely in the mountains during summer.
They release them some time in late May and collect them again during the fall. During
the retrieval 5-6% of the sheep never return [1], and only one of many reasons for this is
predators. This means that one of the other reasons sheep never come back is because the
farmers cannot find them.

In other words thousands of sheep are never found in time for winter. Sheep with less
than 10 cm of fleece does not tolerate the wet and cold winters in Norway [2]. This is not
only a financial problem for the farmers, but also an ethical issue. In addition the farmers
get attached to their animals, and consequently do not want to lose them.

Farmers have therefore expressed their need for a system that can help them with the
retrieval, ideally using modern information technology in an effective and affordable way.
Search in the mountains with quadcopter drones is a possible solution which we will study
in this paper.

We will use different computer vision methods to analyze the images to detect sheep. The
idea is that we will develop software farmers can use with an off-the-shelf drone, which
will make this an accessible solution to their problem. That way the farmers can buy their
own drone, with a regular color camera, and apply it with our software.

1.2 Objective

As we developed solutions for finding white sheep in our Project Assignment [30], and
the results were relatively good, we now want to move on to the other colors. Therefore,
based on what we discussed in the previous section, and based on what we did in our

1

Project Assignment [30] we have decided on one primary research question that we will
try to answer in this paper. We also added two secondary research questions that we will
have in mind throughout our research;

Primary research question: How can computer vision methods and image processing
be used to detect black sheep-like objects in images captured with unmanned aerial vehi-
cles?

Secondary research question 1: How can computer vision methods and image process-
ing be used to detect brown sheep-like objects in images captured with unmanned aerial
vehicles?

Secondary research question 2: How can the solutions from our Project Assignment
[30] be improved to get better results when searching for white sheep?

These research questions was decided upon because of our work in our Project Assign-
ment [30] and the fact that far from all sheep are white. Therefore we want to develop
solutions to detect other colored sheep as well. We prefer not to use a thermal camera
because we want it to be easy and accessible for farmers.

We will focus mainly on the black sheep as our earlier research indicates that they are
somewhat easier to detect than brown sheep. However we will also test all the researched
solutions on brown sheep as well as black sheep. In addition we want try to improve the
solutions for finding white sheep as our previous solutions are not optimal. For that rea-
son, we will also test if any new solutions can be adapted to detect white sheep with better
results than in our earlier research.

1.3 Outline
In Chapter 2, State of the art, the previous work in this field of study is presented. It
includes other similar research projects, as well as existing solutions solving this problem.

Chapter 3, Implementation, describes how the different solutions were implemented and
justifies the choices made along the way. We experiment with Thresholding, Preprocess-
ing Methods, Object Dimensions and Color Detection.

In Chapter 4, Results and discussion, here the results are presented and discussed, in-
cluding a section where we compare and summarize the researched solutions.

Chapter 5, Future work, suggests the next step and potential future research opportu-
nities.

Finally, in Chapter 6, Conclusion, we summarize our study and answer the research
questions.

2

Chapter 2
State of the Art

There have been attempts to solve this problem before, and one example is the Norwegian
company Telespor [6]. They have made a solution called Radiobjella [7] that uses GPS
tracking and has a two-way communication between the farmer and the sheep by the use
of regular mobile telecommunications technology. The issue with this kind of technology
is the fact that there are a lot of mountain areas and other remote areas in Norway that
have low or no cellular coverage, as we can see in both Figure 2.1 and Figure 2.2. The
different colors illustrate the different coverage levels. In both maps, no color means no
coverage. Although most of Norway has cellular coverage, there are some significant ar-
eas that are lacking, and these are usually areas where sheep wander. This means that the
existing solutions that use GPS tracking have the potential to be excellent solutions for the
sheep farmers, but due to the lack cellular coverage there are some farmers that cannot
take advantage of the technology.

Some sheep farmers in this situation wanted to make a solution which they could use,
that did not require cellular coverage. They developed their own tracking system similar
to the ones mentioned previously, called Findmy [11]. It uses satellite technology instead
of GPS tracking and can be used for other animals as well as sheep. However it is signif-
icantly more expensive than the previously mentioned solution. It is a bell, much like the
traditional ones, except it uses global Low Earth Orbit satellite technology [12] to send
satellite signals to the farmer who can monitor their animals using a PC or tablet.

Also the company Nortrace [3] in cooperation with Telia [4], have made a tracking sen-
sor for sheep. They were first to launch a new technology called Narrowband Internet
of Things (NB-IoT) [5] that is especially developed for sensors and computers so that all
kinds of items can communicate over the telecommunications network. They used this
technology in a pilot project in the summer of 2017 to track 1000 sheep in Rogaland, Nor-
way [8]. The sheep got sensors which send GPS signals back to the farmer, who can track
them on a computer or tablet.

3

Figure 2.1: Cellular coverage in Norway provided by Telia [9]. The non-colored areas have no
cellular coverage.

There have been numerous studies trying to count and/or find animals using Unmanned
Aircraft Systems/Unmanned Aerial Vehicles (For the rest of the paper we will use the
term UAV). In one of the studies a UAV with a thermal camera was used to count seals,
and this was compared to manually counting seals [19]. They photographed two different
locations and set a temperature threshold to detect the seals. Their results were good; in
the first location they detected 91% of the manually counted seals, and 96% in the other
location. When using thermal imagery one also has to take into account the illuminat-
ing conditions, meaning that the surroundings are not giving out any warmth and thus will
look like an animal in the images. If these are not optimal, it will be reflected in the results.

Martin Israel studied how thermal imagery and UAVs can be used to detect roe deer fawns
from being killed in pastures during mowing [21]. He found that this approach involved
false positives, which again raises the issue of having to identify what or which animal you
have found. For example, as we can see in Figure 2.3, it could be a challenge to separate
the fawns from other animals, such as rabbits and foxes. Also, when the conditions were
not optimal, only one fawn was found.

4

Figure 2.2: Cellular coverage in Oppdal, Norway provided by Telenor [10]. The non-colored areas
have no cellular coverage.

This implies that thermal imagery presents some challenges, as one would have to de-
velop a way to separate the sheep from other animals in addition to using the camera’s
thermal function. Thermal imagery would have been a possible solution for us, but for the
reasons stated above, and the fact that thermal cameras are especially expensive, we chose
to focus on image analysis and detecting the sheep through their color and shape.

2.1 Detecting Black Sheep
Detecting black sheep is a complex problem. For inspiration we look to an article about
a methodology for potato defects detection using computer vision methods [28]. Their
problem has similarities to ours in that the defects are usually dark gray or black. They
propose two new methods, fixed and adaptive intensity interception method. They did this
by simulating the characteristics of the human vision system. When we as humans focus
on a particular object the other parts of it is out of focus. In their case, the objects in focus
would be the dark spots and the rest of the potato would be out of focus. In Figure 2.4

5

Figure 2.3: Results from M. Israels study [21] on thermal imaging with UAVs. It shows the images
taken with thermal camera, and the similarity in the images when there are fawns in the images
(image d, e, f) and when there are not (image a, b, c).

are the results from their experiment. The first column are the original images, the sec-
ond column shows the images with fixed intensity interception applied, the third column
shows the images with Otsu Segmentation applied and the fourth and last column are the
images with the dark spots marked in red. To apply the Fixed Intensity Interception (FII)

Figure 2.4: The columns are as follows: (1) are the original images, (2) is fixed intensity intercep-
tion, (3) Otsu Segmentation and (4) are the images with the dark spots marked in red. These images
show the different steps in finding the dark spots on the potatoes.

they used a lighting chamber and a Charged-Couple Device camera in automatic shooting
mode. This will be not be possible in our case as our images are captured in the mountains

6

with a UAV. However the Otsu segmentation in the third column can be applied to our
images. This is something we will study in Chapter 3.

Another option for finding sheep could be to create a 3D reconstruction of the sheep.
This is something we would be able to do using OpenCV [29]. In this example they have
used four images in Figure 2.5 of La Sagrada Familia to create the 3D reconstruction in
Figure 2.6. As we can see, the reconstruction is not a good 3D model of the church, so the

Figure 2.5: Image sequence of La Sagrada Familia. This was used to compute the 3D reconstruction.

first step would probably be to acquire more images from different angles. In addition, the
camera’s focal length and the center projection coordinates need to be specified and opti-
mized for the reconstruction. The challenging factor in our case will be to collect enough
images to get a good reconstruction of the sheep. We could have been able to get four
different angles, but more than that will be unrealistic to acquire. Especially as the sheep
are moving. We aim to find a relatively simple solution, so because of this and the factors
mentioned above, we will not pursue 3D modelling of the sheep as a possible solution as
it will be too time consuming and complex.

Because of the fact that the solutions using GPS cannot be used by all farmers as not
all areas in Norway have sufficient cellular coverage, there is a market for a simpler so-
lution that requires only a UAV and a software program. As mentioned, there are also a
solution using satellite technology, but this is expensive and we want to develop a more
affordable solution. A thermal camera would have been a possible solution, but again this
is expensive compared to a regular color camera. In addition, as mentioned previously, we
would probably have to use some sort of solution that can distinguish sheep from other
animals when using a thermal camera. Regarding the labeling of dark spots on potatoes,
the Fixed Intensity Interception would be impossibly for us to apply, but the Otsu Seg-
mentation is a method we will experiment with. Lastly, a 3D reconstruction of the sheep
would be too complicated and time consuming for it to be a realistic possibility.

7

Figure 2.6: The 3D reconstruction of La Sagrada Familia. It is hard to make out that it is the church,
which means they should have used more images to make the reconstruction.

8

Chapter 3
Implementation

To develop our solutions we chose Python 3.7 as our development language and OpenCV
2 as our library. We used Visual Studio Code for editing and Gitlab for version control.
We experimented with basic computer vision methods and image processing to find the
sheep.

Finding black sheep is a challenging task because the black sheep are often very simi-
lar to other objects in nature and blends into the background more than the white sheep.
There are more terrains and objects in nature that are black than white. The same goes for
brown sheep. Because of this we tried a lot of different methods and solutions within the
field of image analysis in order to be able to find the sheep.

We have divided this chapter into four sections. Each section covers different solutions
within a certain topic. In each section we explain why we chose to implement these meth-
ods and solutions. We show how each solution is applied to the images, using the image in
Figure 3.1 as an example. We will not discuss the results of the applications in this chap-
ter, as they will be presented in Chapter 4. However, some observations are introduced
when considering whether to continue developing a solution or not.

We have included numerous images and illustrations in this chapter. The reason is sim-
ply to show how the different solutions and methods separate from one another, and also
to show how effective they are. The illustrations are also useful to understand how the
methods work and why we use them.

3.1 Dataset
Using a DJI Mavic Pro drone, we captured 824 pictures on a farm in Oppdal, Sør-Trøndelag
in October of 2018. The pictures include white, brown, black and gray sheep. The weather
conditions were optimal, meaning that is was sun from clear sky. We also got an assorted
dataset when it comes to terrains: Forest, pasture, buildings, rocks and mountains. In ad-

9

White sheep Non-white sheep
Amount in dataset 4343 1125
Percentage in dataset 79.4% 20.6%

Table 3.1: This table shows the composition of sheep in the images in our dataset. There is a total
of 5468 sheep in the images, where 4343 of them are white. This means that 79.4% of the sheep in
our dataset are white, and 20.6% are of other colors.

dition, we captured other animals such as cows, to test if we could make a system that
only finds sheep. We experimented with different heights when capturing the pictures, but
decided beforehand to capture most of them at about 50 metres above ground level. This
was based on a previous study using a similar type of UAV concerning the same problem
[22], where they found this to be most efficient.

The colors of the sheep in the captured images are summarized in Table 3.1. We have
a dataset containing 5468 sheep in total, distributed across 361 images. This gives us 463
images not containing any sheep. Of these sheep, 4343 of them are white, while 1125 are
of other colors. Put differently, we have 79.4% white sheep and 20.6% non-white sheep
in our dataset.

For the initial testing of the solutions covered in this chapter, we chose the image in Fig-
ure 3.1 from the dataset which includes white, brown and black sheep. The image is also
captured quite close to the ground, a factor which makes it generally easier to find sheep.
We chose this image because it is good for checking if the solution works well enough to
run on the entire dataset. If the results are poor with this image, most likely it will generate
poor results for the rest of the dataset as well.

3.2 Thresholding

We decided to experiment with different methods for thresholding an image. That means
that if the pixel value is greater than the threshold value, it is assigned a certain value, in
our case white, and else it is regarded as black [31]. The reason for doing thresholding
operations on images is to segment different colors and highlight the colors we are looking
for. That way we can say that if the pixels are lighter than a certain RGB (Red, Green,
Blue) value it is considered white. Therefore we do this to hopefully make the black sheep
more distinct and easier to find in the images. If the thresholding operations are successful
we will get an image showing just the black sheep.

3.2.1 Preprocessing

To make it easier to perform computer vision methods on the images we preprocessed
them. We did this in the same way as described in detail in our Project Assignment [30].
All the images are converted to grayscale in order to apply thresholding methods.

10

Resizing

To resize the image we used the method cv2.resize(input image, output image,
interpolation method) [13], computed the ratio we wanted in the new image and
ended up with the image in Figure 3.1.

Figure 3.1: Resized image used for the initial testing of our solutions.

Filtering

There is much noise in the images, which means that there are many elements in nature
that are disturbing when detecting sheep. Such disturbance and noise will lead to false
positives. We therefore apply filters as described in our Project Assignment [30]. We
decided to apply the same two filters here, Bilateral [15] and Gaussian [15], with the same
parameters as they seemed to work quite well for their purpose.

3.2.2 Finding Edges and Contours

To find edges in the image, we used Canny Edge Detection [18], as described in our
Project Assignment [30] with the same parameters. After this we applied the method
cv2.findContours() to find the contours [23] in the image. We used the same pa-
rameters as described in our Project Assignment [30] and sorted them, only this time

11

around we kept most of the contours to see what results the thresholding gave us. After
that we used cv2.drawContours(), as also described in our Project Assignment [30]
to draw the contours on the resized image to see if we found any sheep.

3.2.3 Binary Thresholding [32]
We apply the Binary Thresholding to the image with the method cv2.threshold(input
image, threshold, maxVal, threshold type) [32]. In our case the input
image is our preprocessed image. We chose the threshold value to be 60 to minimize
the false positives, the maxVal is 255, and the threshold type is THRESH BINARY. The
Binary Thresholding can be described with Equation 3.1 [32].

dst(x, y) =

{
maxV al if src(x, y) > thresh

0 otherwise
(3.1)

If the intensity of the pixel is higher than the given threshold value, then the pixel intensity
is set to maxVal. Otherwise the pixel intensity is set to 0. In Figure 3.2 the Binary
Thresholding is plotted. The blue line represents the threshold value, the x-axis represents
the different pixels in the image and the y-axis is the intensity of the pixel.

Figure 3.2: Plot of Binary Thresholding. The blue line represents the threshold value, the x-axis
represents the different pixels in the image and the y-axis is the intensity of the pixel. If the intensity
of the pixel is higher than the given threshold value, it is set to maxVal.

No Filter

First we applied the Binary Thresholding to the resized image in grayscale with no filter,
the result is in Figure 3.5a. After this we applied cv2.Canny() to find possible edges
in the image. The result is in Figure 3.5b. There are loads of noise in the image, meaning
that the solutions finds too many edges which again generates many false positives. This
means that if we would try to find contours, we would end up with a lot more contours
than just the contours of the sheep. For this reason we stopped implementing this solution.

Gaussian Filter

We then applied the Binary Thresholding to a Gaussian filtered grayscale image, the result
is in Figure 3.6a. After this we applied cv2.Canny() to find possible edges in the

12

image. The result is in Figure 3.6b. As we see in the images, there are a lot of noise
which leads to false positives when finding contours. However there is less false positives
than for the solution with no filter. Many false positives is undesirable and therefore we
stopped the implementation after this step.

Bilateral Filter

Then we tried applying a Bilateral Filter to the grayscale image, the result is in Figure 3.7a.
The next step was applying cv2.Canny() to find possible edges in the image. The result
is in Figure 3.7b. This combination seemed promising, because there are significantly
less noise in the image after finding edges, which again will lead to less false positives.
Therefore we continued with finding and drawing contours in the image, as described in
Section 3.2.2. The result can be seen in Figure 3.8.

3.2.4 Truncated Thresholding [32]
We apply the Truncated Thresholding to the image with the method cv2.threshold(input
image, threshold, maxVal, threshold type) [33]. In this case the input
image is our preprocessed image, we chose the threshold value to be 80 to minimize the
false positives, maxVal is naturally 255 and the threshold type is THRESH TRUNC. The
binary thresholding can be described with Equation 3.2 [32].

dst(x, y) =

{
threshold if src(x, y) > thresh

src(x, y) otherwise
(3.2)

The maximum intensity value for the pixels is thresh and if the pixel value is greater
than this threshold, the value is truncated. In Figure 3.3 the Truncated Thresholding is
plotted. The blue line represents the threshold value, the x-axis represents the different
pixels in the image and the y-axis is the intensity of the pixel.

Figure 3.3: Plot of Truncated Thresholding. The blue line represents the threshold value, the x-axis
represents the different pixels in the image and the y-axis is the intensity of the pixel. If the pixel
value is greater than the threshold value, it is truncated.

No Filter

We applied the Truncated Thresholding to the resized image in grayscale with no filter,
the result is in Figure 3.9a. After this we applied cv2.Canny() to find possible edges

13

in the image. The result is in Figure 3.9b. As we can see from this image, the amount of
noise in the image is high. This will lead to finding more contours than there are sheep.
As that will lead to many false positives, we chose not to go forth with this combination.

Gaussian Filter

The next thing we did was apply a Gaussian Filter to the grayscale image, before applying
the Truncated Thresholding. The result can be seen in Figure 3.10a. After this we applied
cv2.Canny() to find possible edges in the image. The result is in Figure 3.10b. Here
we can see that there are somewhat less noise than in Figure 3.9b, but still a high amount.
It will lead to finding a lot of false positives, which we want to avoid. Because of this we
stopped the implementation after this step.

Bilateral Filter

Then we applied a Bilateral Filter to the grayscale image, before applying the Truncated
Thresholding. The result is in Figure 3.11a. After this we applied cv2.Canny() to find
possible edges in the image, and the result is in Figure 3.11b. Here we can see there is
almost no noise in the image, which means that there will probably be few false positives.
In addition the solution has found the edges of many of the sheep. Therefore we went on
with finding and drawing contours in the image, as described in Section 3.2.2. The result
is in Figure 3.12.

3.2.5 Threshold To Zero [32]

We apply the Threshold To Zero method [32] to the image with the method cv2.threshold(input
image, threshold, maxVal, threshold type) [33]. In this case the input
image is our preprocessed image, we chose the threshold value to be 60 to minimize the
false positives, maxVal is naturally 255 and the threshold type is THRESH TOZERO.
This method can be described with Equation 3.3 [32].

dst(x, y) =

{
src(x, y) if src(x, y) > thresh

0 otherwise
(3.3)

If src(x,y) is lower than thresh, the pixel value will be set to 0, else it is not changed.
In Figure 3.4 the Threshold to Zero method is plotted. The blue line represents the thresh-
old value, the x-axis represents the different pixels in the image and the y-axis is the
intensity of the pixel.

14

Figure 3.4: Plot of Threshold To Zero method. The blue line represents the threshold value, the
x-axis represents the different pixels in the image and the y-axis is the intensity of the pixel. If the
pixel value is lower than the threshold value, it is set to 0, else it is not changed.

No Filter

We applied the Threshold To Zero method to the resized image in grayscale with no filter,
the result is in Figure 3.13a. After this we applied cv2.Canny() to find possible edges
in the image, and the result is in Figure 3.13b. We can see from the image that the solution
finds many edges that are not sheep. This will lead to many false positives when finding
contours in the image, which we want to avoid. Therefore we stop the implementation of
this solution.

Gaussian Filter

The next thing we did was adding a Gaussian Filter to the image, before we applied
the Threshold To Zero method. The result is in Figure 3.14a. After this we applied
cv2.Canny() to find possible edges in the image. The result is in Figure 3.14b. As can
be seen from the image, there are somewhat less noise than the for the solution with no
filter, however there is still a high amount. For this reason we stopped the implementation
here.

Bilateral Filter

The last thing we tried was applying a Bilateral Filter to the image, before we applied
the Threshold To Zero method. The result is in Figure 3.15a. After this we applied
cv2.Canny() to find possible edges in the image, and the result is in Figure 3.15b.
The solution find significantly less edges in the image than for the Gaussian Filter, and the
edges it does find look much like the sheep. It seemed like this would not generate many
false positives, therefore we decided to find and draw contours in the image, as described
in Section 3.2.2. The result is in Figure 3.16.

3.2.6 Otsu Segmentation [31]
We apply the Otsu Segmentation to the image with the method cv2.threshold(input
image, threshold, maxVal, threshold type) [32]. In this case the input
image is our preprocessed image, the threshold value is 0, maxVal is naturally 255 and

15

(a) Binary Thresholding applied to grayscale image.

(b) Edges found in image with Binary Thresholding applied to grayscale image.

Figure 3.5: Binary Thresholding on grayscale image. Here we can see too much noise in the images.

16

the threshold type is THRESH BINARY+THRESH OTSU. The Otsu Segmentation calcu-
lates a threshold value from the image histogram of a bimodal image [31]. A bimodal
image is an image whose histogram has two peaks. The histograms for our image is in
Figure 3.17. Because the method calculates its own threshold value, we simply pass in 0
as threshold value so the algorithm finds the optimal value. The algorithm tries to find a
threshold value which minimizes the weighted within-class variance given by Equation
3.4 where the parameters are as in Equation 3.5, 3.6 and 3.7. It finds a value of t that lies
between two peaks so that the variance in both of them are minimal.

σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t) (3.4)

q1(t) =

t∑
i=1

P (i) & q2(t) =

I∑
i=t+1

P (i) (3.5)

σ2
1(t) =

t∑
i=1

[i − µ1(t)]
2 P (i)

q1(t)
& σ2

2(t) =

I∑
i=t+1

[i − µ2(t)]
2 P (i)

q2(t)
(3.6)

µ1(t) =

t∑
i=1

iP (i)

q1(t)
& µ2(t) =

I∑
i=t+1

iP (i)

q2(t)
(3.7)

No Filter

We applied the Otsu Segmentation [31] to the resized image in grayscale with no filter, the
result is in Figure 3.18a. Next we applied cv2.Canny() to find potential edges in the
image, and the result is in Figure 3.18b. There are too much noise in the image, and the
solution has detected too many edges that are not sheep. This will lead to false positives
when finding contours. Therefore we stopped the implementation of this solution.

Gaussian Filter

Then we applied a Gaussian Filter to the image, before we applied the Otsu Segmentation.
The result is in Figure 3.19a. Next we applied cv2.Canny() to find potential edges
in the image, and the result is in Figure 3.19b. Here we can see that there are less edges
found than for the solution with no filter, but there are still many edges detected that are
not sheep. Again, it will lead to many false positives when finding contours. We are trying
to minimize the number of false positives, and because of this we did not develop this
solution further.

Bilateral Filter

We tried applying a Bilateral Filter to the grayscale image, before we applied the Otsu
Segmentation. The result is in Figure 3.20a. Next we applied cv2.Canny() to find
potential edges in the image, and the result is in Figure 3.20b. With this solution, there
are far less edges found than with the two previous solutions. This again leads to less false
positives, and therefore we went on with finding and drawing contours in the image, as
described in Section 3.2.2. The result is in Figure 3.21.

17

3.2.7 Adaptive Mean Thresholding [31]
We apply the Adaptive Mean Thresholding to the image with the method
cv2.adaptiveThreshold(input image, maxVal, adaptive method,
threshold type, blockSize, constant subtracted from the mean)
[33]. For the maxVal we again naturally chose 255, and ADAPTIVE THRESH MEAN as
the adaptive method, THRESH BINARY as the threshold type to keep it simple, 11 as
block size and 2 as the constant. What the Adaptive Mean Thresholding does is calculate
the threshold for small regions of the image based on the mean value of the neighborhood
area, which means we get different thresholds for different regions. This will give us a
better result for images with varying illuminations [31].

No Filter

We apply the Adaptive Mean Thresholding to the resized image in grayscale with no filter,
and the result is in Figure 3.22a. After this we applied cv2.Canny() to find possible
edges in the image. The result is in Figure 3.22b. If we look at all the edges in this image,
it is hard to make out the edges that form the sheep. That will not only lead to many false
positives, but we may not find any sheep at all. That is why we stopped implementing this
solution after this step.

Gaussian Filter

Next we applied a Gaussian Filter to the grayscale image, before we applied the Adaptive
Mean Thresholding. The result is in Figure 3.23a. Next we applied cv2.Canny() to
find potential edges in the image, and the result is in Figure 3.23b. As in the previous
solution with no filter, there are many edges and hard to make out the sheep’s edges from
the rest. Although it is somewhat easier to see the sheep’s edges here than for the solution
with no filter. Nevertheless, it will lead to many false positives, and because of that we do
not continue with the implementation.

Bilateral Filter

The last thing we tried was applying a Bilateral Filter to the image, before we applied the
Adaptive Mean Thresholding. The result is in Figure 3.24a. Next we applied cv2.Canny()
to find potential edges in the image, and the result is in Figure 3.24b. This solution found
less edges in the image, and it is easier to see the sheep’s edges. Although there are quite
a lot of noise in the image which will lead to false positives, we still go on with finding
contours, as described in Section 3.2.2, in the image because it is the combination with
Adaptive Mean Thresholding that has shown the most potential. The result is in Figure
3.25.

3.2.8 Adaptive Gaussian Thresholding [31]
We apply the Adaptive Gaussian Thresholding to the image with the method
cv2.adaptiveThreshold(input image, maxVal, adaptive method,
threshold type, blockSize, constant subtracted from the mean)

18

[33]. For the maxValwe again naturally chose 255, and ADAPTIVE THRESH GAUSSIAN
as the adaptive method, THRESH BINARY as the threshold type to keep it simple, 11 as
block size and 2 as the constant. What the Adaptive Gaussian Thresholding does is cal-
culate the threshold for small regions of the image based on the weighted sum of the
neighborhood values where the weights are a Gaussian window, which means we get dif-
ferent thresholds for different regions. This will give us a better result for images with
varying illuminations [31].

No Filter

We applied the Adaptive Gaussian Thresholding to the resized image in grayscale with
no filter, the result is in Figure 3.26a. After this we applied cv2.Canny() to find
possible edges in the image. The result is in Figure 3.26b. The image is full of edges,
and it is impossible to make out the sheep’s edges. That will lead to many false positives
and the solution will probably not find any of the sheep. Therefore we do not continue
implementing this solution.

Gaussian Filter

Then we applied a Gaussian Filter to the grayscale image, before applying the Adaptive
Gaussian Thresholding. The result is in Figure 3.27a. Next we applied cv2.Canny()
to find potential edges in the image, and the result is in Figure 3.27b. Here we can barely
make out the sheep’s edges, but similar to the previous solution with no filter, there is too
much noise. It will generate too many false positives and probably not find the sheep.
Because of this we stop the implementation of this solution.

Bilateral Filter

We tried applying a Bilateral Filter to the image, before we applied the Adaptive Gaussian
Thresholding. The result is in Figure 3.28a. Next we applied cv2.Canny() to find
potential edges in the image, and the result is in Figure 3.28b. This solution generates less
edges than the two previous solutions, and we can see the edges that make up the sheep.
There are still a lot of noise in the image which will give us many false positives, however
it is the most promising solution using Adaptive Gaussian Thresholding and therefore we
find contours, as described in Section 3.2.2. The result is in Figure 3.29.

3.3 Edge Detection On Preprocessed Images
One of the main problems with finding brown or black sheep is that they are more similar
to the background than white sheep are, so we decided that it could be useful to look at
different filters and preprocessing methods to see if we could make the objects in an image
appear more clearly. In our Project Assignment [30] we had already been experimenting
with the Gaussian Filter and the Bilateral Filter, but we wanted to test if applying other
filters could provide better results, both on their own and in combination with the others.

For comparison, all methods mentioned below were performed on the image in Figure

19

3.1 in the same way as with the Solution Using Bilateral Filter in [30]. Meaning that we
used Canny Edge Detection and OpenCV’s cv2.findContours() method to find the
contours of objects, but we applied other preprocessing methods and/or filters than we did
in the previous solutions.

As we had good experiences with the Bilateral Filter from our earlier work, we tested
all the methods listed in this section on both the original image and on a Bilateral fil-
tered image. This was done because we noticed that the Bilateral Filter removed a lot of
small and unwanted disturbances in the image while keeping the important features of the
objects.

3.3.1 Dilation [46]
The Dilation method in OpenCV dilates an object in an image by using a specific structur-
ing element. This means that the method makes the objects in the image bigger by using
a matrix of the neighboring values of each pixel to calculate the new value of the pixels.
The maximum value of the neighboring pixels is chosen, which makes the objects become
larger, and removes small holes in the image which again makes it smoother. This method
can be applied iteratively, that is to say that we specify the amount of times we want to
perform the Dilation in the method’s parameters.

The reason why we chose to try the Dilation, was that it is going to make objects ap-
pear bigger while removing disturbances by evening out the image. We thought this could
be good for our purpose, as we wanted the objects to stand out more from the background
so that they are easier to detect.

In OpenCV, the method used for Dilation is the cv2.dilate(image,
structuring element, iterations) [46] where the image is the image on
which we want to perform the Dilation, the structuring element is given by
cv2.getStructuringElement(type, size) and is used to expand the objects
with a similar shape and size in the image, and the iterations specify the number of
times the method is run on the image.

The type parameter in the cv2.getStructuringElement() method defines the
shape of the structuring element, for example rectangular, and the chosen shape helps
differentiating an object from the others. The size parameter defines the size of the
structuring element.

For our objects, we found that a 3x3 rectangular structuring element was preferable. When
we applied the Dilation method with our chosen parameters and with one iteration, we ob-
tained the dilated image in Figure 3.30a. If combining the Dilation with the Bilateral
Filter [15], we get the image as seen in Figure 3.30b.

When applying the Canny Edge Detection [18], we obtained the edges seen in Figure
3.31a and 3.31b, and after applying the cv2.findContours() method and filtering
out the unwanted contours, the detected objects was as seen in Figure 3.32a and 3.32b.

20

3.3.2 Meanshift Filter [34]
Applying the Meanshift Filter to our images works by replacing each pixel in the image
with the mean pixel value within a given neighborhood of pixels. This leads to an image
with less noise, and make the objects stand out more from the background, which is what
we want to achieve.

The Meanshift Filter function cv2.pyrMeanShiftFiltering(image,
spatial window radius, color window radius) [34] in OpenCV, implements
the filtering stage of the Meanshift segmentation. This means that it returns an image with
less colors and less texture than the original image, as it at every pixel in the original image
executes meanshift iterations as explained below. The output image is more blurry with
fewer details, depending on the parameters.

The Meanshift iterations replace each pixel in the image with the mean of the pixels within
a neighborhood of a given size (spatial window radius (sp)) that are within a given color
range (color window radius(sr)). A higher spatial window radius gives an image that
looks smoother, and a higher color window radius gives an image with fewer colors.

In other words, for each pixel p in the image, the pixels around p are considered if they are
located closer to the original pixel than sp, and differ less in color from the original pixel
than sr. The considered neighboring pixels of the pixel(X,Y) can also be described as
in Equation 3.8

(x, y) : X−sp ≤ x ≤ X+sp, Y −sp ≤ y ≤ Y +sp, ‖ (R,G,B)−(r, g, b) ≤ sr ‖ (3.8)

where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y)
respectively. By experimentation, we found that the parameters that smoothed the distur-
bances in the image while keeping the important details of the objects best in our case
was sp = 15 and sr = 60. The Meanshift Filter with these parameters applied to the
original image can be seen in Figure 3.33a, while the filter applied to a Bilateral filtered
image can be seen in Figure 3.33b.

The effect of applying the Canny Edge Detection to the images in Figure 3.33 can be
seen in Figure 3.34, and the contours found can be seen in Figure 3.35.

3.3.3 Shadow Removal
As some of the sheep in our images are hard to distinguish from the background because
of their shadows, we considered the possibility to remove these shadows. To do so, we
tried to use a method that can remove shadows on scanned pages of text. [35]

We started by splitting the image into the three different color planes in the RGB color
space(Red, Green and Blue) by using cv2.split(image). Then, we iterated over the
planes and performed actions on each of them. First, we dilated the image to get rid of the
small details, using cv2.dilate(plane, structuring element, iterations)
as in Section 3.3.1. Secondly, we performed a Median Blur on the image to further remove

21

unwanted details from the image. This was done using the method cv2.medianBlur
(dilated plane, kernel size) [36] which replaced every pixel in the plane with
the median of the pixel values under the kernel area.

Then, we calculated the difference between the new, blurred plane and the original plane
to keep only the details. This was done using cv2.absdiff(plane, new plane),
and subtracting it from 255 as identical bits are shown as black as default, while we prefer
them to be white.

After iterating through the color planes, they were merged back to one image. We ex-
perimented with using different structuring elements (as explained in Section 3.3.1) and
different kernel sizes to obtain different results. One example of the Shadow Removal
applied to our image without and with the Bilateral Filter can be seen in Figure 3.38a and
Figure 3.38b respectively. When applying Canny Edge Detection, we get the edges seen
in Figure 3.37, which again gives us the contours seen in Figure 3.38.

3.3.4 Histogram Equalization [37]
One way to create bigger differences between light and dark objects in an image is to use
Histogram Equalization [37]. As we wanted to increase the differences between the sheep
and the background, it could be an idea to increase the contrast. To do so, we applied the
cv2.equalizeHist(image) function to the image. The image histogram is a graph-
ical representation of the intensity values in an image, and it presents the number of pixels
of each of the intensity values. Performing Histogram Equalization means to redistribute
these intensity values more evenly across the whole range.

The cv2.equalizeHist(image) can be performed using different color spaces, and
one of the preferred ones for Histogram Equalization is the YUV color space as it keeps a
separate intensity channel.

The YUV color space is commonly used for TV broadcasting and other applications where
compression is important [38]. Compared to RGB, the YUV color space separates the
color information into one luminance(intensity) channel, Y, and two chrominance(color)
channels, U and V. The positive aspect of this is that we can do operations on the intensity
channel without impacting the colors in the image. That is ideal when performing His-
togram Equalization, as we want to even out differences in the luminance in the image.

It is not possible to perform Histogram Equalization in a good way in the RGB color
space, as we have to consider the intensity in the whole image, and that is not reflected in
each of the three color channels [39]. So to not disturb the color balance in the image we
have to perform Histogram Equalization in a color space with a separate intensity channel.

We tried to perform Histogram Equalization on our images both using the YUV color
space and on a grayscale version of the image. This can be seen in Figure 3.39a and Fig-
ure 3.39b respectively. If we apply the Bilateral Filter to the image, we get the result seen
in Figure 3.40 with the edges in Figure 3.41 and the contours found in Figure 3.42.

22

3.4 Bounding Rectangle [41]
When applying some of these blurring filters mentioned in the previous section, we had
an increased number of false positives. Therefore, to try to limit the amount of contours,
we wanted to apply some kind of limitation on the size of the detected objects. One idea
was to use the height above ground to estimate the real size of the object. It is possible to
extract data from the UAV images containing the height above ground, but the problem is
that this height is just at the exact point where the UAV take off. As we were operating
in the terrain, there were big height differences from one image to another as we flew the
UAV over large areas, so the indicated height above ground is very imprecise.

It is also possible to extract the GPS coordinates from the images. These can be used
to calculate the height above ground if we know the meters above sea level(from now on
referred to as MASL) at both the starting position and the position of the UAV when the
image was taken. We tried using the Open-Elevation API [40] to get the MASL, but it
lacks data at our location, and we had problems finding good alternative APIs to get the
information needed to do the calculations.

As an alternative we tried to use the rotated Bounding Rectangle method
cv2.minAreaReact(contour) [41]. This makes the smallest possible rectangle
around an object found using the cv2.findContours() method as described in [30].
Then we calculated the relationship between the width and the height of the Bounding
Rectangle to check if the object’s dimensions could resemble the ones of a sheep.

From studying the average size of sheep, we found that they usually range in length from
120-180cm and in width from 65-127cm [42]. By experimenting with these values, we
found that it was good to exclude all contours where the relationship between the width
and height was over 2,0 and less than 1,4. The relationship R is given by Equation 3.9,
and the contour was kept if R was between 1,4 and 2,0. As we had seen that the Solution
using Dilation with Bilateral Filter seemed promising, we added the Bounding Rectangle
to that solution, and compared the results.

R =

width
height if width > height

height
width if width ≤ height

0 if width = 0 or height = 0

(3.9)

3.5 Color Detection
Detecting certain colors in the images is naturally a possible solution for us as we are
looking for sheep-like objects in a specific color. In earlier research, we experienced that
looking for white pixels in the images gave good results when looking for white sheep
[30]. Therefore, we wanted to try if this was possible to extend to other colors. It was
probably easier to do with white pixels as there are not too many white objects in nature
except sheep, but with black and especially brown there are a lot of other objects with

23

similar colors. Hence, the challenge is to pick the right colors and methods that minimize
the number of false positives.

3.5.1 Searching For Black Areas
We tried the most basic solution, namely searching for black areas in the same way we
searched for white areas in our earlier research [30]. We used the exact same solution
as before, where we checked the color of each pixel and the neighboring pixels to see if
they were within a given color interval. Here, we just changed the color interval from
white to black. We chose to search for the color values between RGB(0,0,0) and
RGB(60,60,60) as it goes from completely black to dark gray. That is an advantage
because the black sheep vary in color, and some are mostly dark gray instead of completely
black.

3.5.2 Removing Irrelevant Colors
Other than just iterating through the image to find pixels of a given color, we explored a
method that removes all other colors than the one we are looking for. In other words, only
the pixels with a color value inside a given RGB-interval were kept, while the others were
set to black.

We started by using the cv2.inRange() method which expects three parameters: the
input image, the lower boundary and the upper boundary of the color that we want to de-
tect. The output is a binary mask, meaning that the image is split into black or white. The
white pixels represent the pixels within the boundaries, and the black pixels represent the
ones outside the limits.

To get the image showing only the given color, we made a call to cv2.bitwise and()
which returns an image showing only the pixels in the image corresponding to the white
pixels in the binary mask obtained above.

Then, we used the Canny Edge Detection method [18] to obtain the edges, found the con-
tours using cv2.findContours() and drew the detected edges on the original image
using cv2.drawContours() [23]. We wanted to try this for brown, black and white
sheep separately, but found that it was difficult for black and brown sheep.

For black sheep, the problem is that there are a lot of other dark objects and shadows in the
image, and also that the background in the result image is black. As the sheep are rather
very dark gray than completely black, we chose the interval to go from RGB(0,0,0), to
a more grayish black, RGB(60,60,60). The result when applying this to the image in
Figure 3.1 can be seen in Figure 3.43a.

When it comes to brown sheep, it is nearly impossible to set an interval for the color
brown in the RGB color space. We experimented with a couple of different intervals, but
this was very difficult as every interval we tried that detected the brown sheep also in-
cluded grass and trees.

24

It worked better on white sheep, although it was quite hard to find a good interval for
the white values, because the sheep are not always completely white. After spending the
summer in the mountains many of them get quite dirty, and changes in lighting can also
impact how the colors appear. Then again, if we make the interval too big, we detect
more irrelevant objects. Therefore, by experimenting, we ended up with an interval go-
ing from completely white, RGB(255,255,255), to a color that is a bit more gray,
RGB(190,190,190). This seemed to detect a decent amount of sheep while avoiding
too many false positives.

Applying the above explained procedure to the image in Figure 3.1, gives us the images in
Figure 3.43. The image in Figure 3.43a shows the result of removing every color except
black to dark gray, while the image in Figure 3.43b shows the result of removing all other
colors than white.

As the image in Figure 3.43a is very dark, we had problems detecting edges. There-
fore we have chosen to only present the results of applying Canny Edge Detection to the
image in Figure 3.43b, as well as the contours found. This can be seen in Figure 3.44.

3.5.3 Negative Colors
As most of the objects we detected where white, we considered the possibility that the
color of the object was taken into account when looking for edges. Therefore, we wanted to
try if it made any difference if we did Canny Edge Detection followed by finding contours
using cv2.findContours() as described in [30] on the negative of the image. The
negative of an image implies that every color in the image is set to its opposite. Meaning
that for the RGB color space, we get that R = 255-R, G = 255-G and B = 255-B.
The negative of the image in Figure 3.1 can be seen in Figure 3.45.

To compare the contours found in the negative image with the contours found in the orig-
inal image, we ran it with the same parameters and filters as in Section 3.3.1, meaning
that we applied the Bilateral Filter and Dilation, and used Canny Edge Detection. This
comparison can be seen in Figure 3.46.

3.5.4 Hue Saturation Value Color Space [43]
We exerimented with the Hue Saturation Value (HSV) color space to make it easier to find
the black and brown sheep. The HSV color space model represents the color spectrum
similar to the RGB model [43]. In HSV color space it is the hue channel that represents
the color space, contrary to RGB where every channel represents a color. That means it
can be useful to segment objects in images based on color. The saturation channel goes
from unsaturated shades of gray to fully saturated and the value channel represents the
intensity of the color. In Figure 3.47 we can see the HSV color space model compared to
the RGB color space model [43].

To test this implementation we used the same resizing as described in Subsection

25

3.2.1. Then we applied the function cv2.cvtColor() which converts an image from
one color space to another [33], in our case from RGB to HSV. It takes two input parame-
ters, input image and a color space conversion code, in this case it is COLOR BGR2HSV.
Then we define the lower and upper range of the color we are looking for. For
black we chose lower black = numpy.array([0,0,0]) and upper black
= numpy.array([0,0,48]) which corresponds to the colors in Figure 3.48,
and for brown we chose lower brown = numpy.array([21,43,63]) and
upper brown = numpy.array([21,58,42]) which corresponds to the colors
in Figure 3.49.

Next we create the mask image [44], which means that it is a binary image con-
sisting of only black and white. To create the mask image we use the cv2.inRange()
function [45]. It takes in three parameters: input array, lower boundary (array
or scalar) and upper boundary (array or scalar). In our case the input array is: the
output of cv2.cvtColor(), lower brown or lower black, and upper brown
or upper black. The function checks if the input array, namely the colors in the image,
lies between the two boundaries given. The function checks the range for every element of
a single-channel array according to Equation 3.10 and checks the range for two-channel
arrays according to Equation 3.11.

dst(I) = lowerb(I)0 ≤ src(I)0 ≤ upperb(I)0 (3.10)

dst(I) = lowerb(I)0 ≤ src(I)0 ≤ upperb(I)0 ∧ lowerb(I)1 ≤ src(I)1 ≤ upperb(I)1
(3.11)

26

(a) Binary Thresholding applied to Gaussian filtered grayscale image.

(b) Edges found in image with Binary Thresholding applied to Gaussian filtered grayscale image.

Figure 3.6: Binary Thresholding on Gaussian filtered grayscale image. There is too much noise in
the image for it to give good results when finding contours.

27

(a) Binary Thresholding applied to Bilateral filtered grayscale image.

(b) Edges found in image with Binary Thresholding applied to Bilateral filtered grayscale image.

Figure 3.7: Binary Thresholding in Bilateral filtered grayscale image. The noise in these images is
significantly reduced, which makes it eligible for finding contours.

28

Figure 3.8: Contours found in image with Binary Thresholding applied to Bilateral filtered grayscale
image. Here we find all the sheep’s shadows and also some false positives.

29

(a) Truncated Thresholding applied to grayscale image.

(b) Edges found in image with Truncated Thresholding applied to grayscale image.

Figure 3.9: Truncated Thresholding on grayscale image. There is too much noise in the images, and
thus we do not go forward with this solution.

30

(a) Truncated Thresholding applied to Gaussian filtered grayscale image.

(b) Edges found in image with Truncated Thresholding applied to Gaussian filtered grayscale image.

Figure 3.10: Truncated Thresholding on Gaussian filtered grayscale image. There is too much noise
here, because of this we do not find contours.

31

(a) Truncated Thresholding applied to Bilateral filtered grayscale image.

(b) Edges found in image with Truncated Thresholding applied to Bilateral filtered grayscale image.

Figure 3.11: Truncated Thresholding on Bilateral filtered grayscale image. The results here are
promising, there are no noise.

32

Figure 3.12: Contours found in image with Truncated Thresholding applied to Bilateral filtered
grayscale image. Good results after finding contours, the solution found all the black sheep and one
brown sheep.

33

(a) Threshold To Zero method applied to grayscale image.

(b) Edges found in image with Threshold To Zero method applied to grayscale image.

Figure 3.13: Threshold To Zero method on grayscale image. There is too much noise with this
solution.

34

(a) Threshold To Zero applied to Gaussian filtered grayscale image.

(b) Edges found in image with Threshold To Zero method applied to Gaussian filtered grayscale
image.

Figure 3.14: Threshold To Zero method on Gaussian filtered grayscale image. There is too much
noise in the image.

35

(a) Threshold To Zero method applied to Bilateral filtered grayscale image.

(b) Edges found in image with Threshold To Zero method applied to Bilateral filtered grayscale
image.

Figure 3.15: Threshold To Zero method on Bilateral filtered grayscale image. Almost no noise, a
good basis for finding contours.

36

Figure 3.16: Contours found in image with Threshold To Zero method applied to Bilateral filtered
grayscale image. It finds all the sheep’s shadows and some false positives.

37

(a) Histogram for grayscale image.

(b) Histogram for Gaussian filtered grayscale im-
age.

(c) Histogram for Bilateral filtered grayscale im-
age.

Figure 3.17: Histograms of the image in Figure 3.1 with different filters applied. The Otsu Seg-
mentation calculates a threshold value from these histograms, and the ideal histogram for this seg-
mentation is a histogram with two peaks.

38

(a) Otsu Segmentation applied to grayscale image.

(b) Edges found in image with Otsu Segmentation applied to grayscale image.

Figure 3.18: Otsu Segmentation on grayscale image. There is too much noise in the image.

39

(a) Otsu Segmentation applied to Gaussian filtered grayscale image.

(b) Edges found in image with Otsu Segmentation applied to Gaussian filtered grayscale image.

Figure 3.19: Otsu Segmentation on Gaussian filtered grayscale image. There is too much noise in
the image.

40

(a) Otsu Segmentation applied to Bilateral filtered grayscale image.

(b) Edges found in image with Otsu segmentation applied to Bilateral filtered grayscale image.

Figure 3.20: Otsu Segmentation on Bilateral filtered grayscale image. There is quite a lot of noise
in the image.

41

Figure 3.21: Contours found in image with Otsu Segmentation applied to Bilateral filtered grayscale
image. It does not find any black sheep, and there are many false positives.

42

(a) Adaptive Mean Thresholding applied to grayscale image.

(b) Edges found in image with Adaptive Mean Thresholding applied to grayscale image.

Figure 3.22: Adaptive Mean Thresholding on grayscale image. There is too much noise in the
image.

43

(a) Adaptive Mean Thresholding applied to Gaussian filtered grayscale image.

(b) Edges found in image with Adaptive Mean Thresholding applied to Gaussian filtered grayscale
image.

Figure 3.23: Adaptive Mean Thresholding on Gaussian filtered grayscale image. There is too much
noise in the image.

44

(a) Adaptive Mean Thresholding applied to Bilateral filtered grayscale image.

(b) Edges found in image with Adaptive Mean Thresholding applied to Bilateral filtered grayscale
image.

Figure 3.24: Adaptive Mean Thresholding on Bilateral filtered grayscale image. There is too much
noise in the image.

45

Figure 3.25: Contours found in image with Adaptive Mean Thresholding applied to Bilateral filtered
grayscale image. It does find one black sheep, but also many false positives.

46

(a) Adaptive Gaussian Thresholding applied to grayscale image.

(b) Edges found in image with Adaptive Gaussian Thresholding applied to grayscale image.

Figure 3.26: Adaptive Gaussian Thresholding on grayscale image. There is too much noise in the
image.

47

(a) Adaptive Gaussian Thresholding applied to Gaussian filtered grayscale image.

(b) Edges found in image with Adaptive Gaussian Thresholding applied to Gaussian filtered
grayscale image.

Figure 3.27: Adaptive Gaussian Thresholding on Gaussian filtered grayscale image. There is too
much noise in the image.

48

(a) Adaptive Gaussian Thresholding applied to Bilateral filtered grayscale image.

(b) Edges found in image with Adaptive Gaussian Thresholding applied to Bilateral filtered
grayscale image.

Figure 3.28: Adaptive Gaussian Thresholding on Bilateral filtered grayscale image. There is too
much noise in the image and the sheep’s edges are hard to make out in Figure 3.27b.

49

Figure 3.29: Contours found in image with Adaptive Mean Thresholding applied to Bilateral filtered
grayscale image. It finds some of the black sheep, but also many false positives.

50

(a) The result of applying Dilation to the original image in Figure 3.1. It makes the objects appear
bigger.

(b) The result of applying both Dilation and Bilateral Filter to the original image. It makes the
objects appear bigger as well as smoothening the background.

Figure 3.30: Dilation applied to image without and with Bilateral Filter.

51

(a) Edges detected when applying Canny Edge Detection to the Dilated image in Figure 3.30a. We
can see that there are a lot of disturbances caused by the uneven background.

(b) Edges detected when applying Canny Edge Detection to the Dilated and Bilateral filtered image
in Figure 3.30b.

Figure 3.31: Edges detected in Dilated images without and with Bilateral Filter. As seen in the
images above, the result is much better when applying the Bilateral Filter.

52

(a) Contours found in the Dilated image.

(b) Contours found in the Dilated and Bilateral filtered image.

Figure 3.32: Contours found in the Dilated image, with and without Bilateral Filter, after filtering
out the discontinuous edges. We can see that there are quite a few irrelevant edges found in Figure
3.32a without the Bilateral filter, while in Figure 3.32b all the found edges are relevant, but not all
sheep are detected.

53

(a) Meanshift Filter applied to the image in Figure 3.1.

(b) Meanshift Filter and Bilateral Filter applied to image in in Figure 3.1.

Figure 3.33: Meanshift Filter applied to the original image without and with Bilateral Filter.

54

(a) Edges Found when applying Canny Edge Detection to the Meanshift filtered image in Figure
3.33a.

(b) Edges found when applying Canny Edge Detection to the Meanshift- and Bilateral filtered image
in Figure 3.33b.

Figure 3.34: Edges found in Meanshift filtered images, without and with Bilateral Filter. We can
see that applying the Bilateral Filter reduces the noise.

55

(a) Contours found in the image after applying the Meanshift Filter to the image in Figure 3.1.

(b) Contours found in the image after applying the Meanshift Filter and the Bilateral Filter to the
image in Figure 3.1.

Figure 3.35: Contours found in image with Meanshift Filter, without and with the Bilateral Filter.
From these images we can see that we have problems detecting some of the sheep even after applying
the Meanshift Filter.

56

(a) Shadow Removal as explained in Section 3.3.3 applied to the image in Figure 3.1.

(b) Shadow Removal as explained in Section 3.3.3 applied to the image in Figure 3.1 after applying
the Bilateral Filter.

Figure 3.36: Images with shadows removed using the method explained in Section 3.3.3, without
and with the Bilateral Filter.

57

(a) Edges detected using Canny Edge Detection in image from Figure 3.38a with shadows removed.

(b) Edges detected using Canny Edge Detection on the Bilateral filtered image from Figure 3.38b
with shadows removed.

Figure 3.37: Edges detected in images with shadows removed. We can see that applying the Bilat-
eral Filter removes a lot of noise from the background while detecting most of the important edges.

58

(a) Contours found in the image in Figure 3.1 after removing the shadows. We can see that the noise
from the background is so prominent that we achieve bad results.

(b) Contours found in the image in Figure 3.1 after applying the Bilateral Filter and removing the
shadows.

Figure 3.38: Contours found after removing the shadows, without and with the Bilateral Filter. We
can see that the method detects most of the sheep, and even two of the black ones.

59

(a) Histogram Equalization applied to the image in Figure 3.1, done over the intensity channel in
the YUV color space.

(b) Histogram Equalization applied to the image in Figure 3.1 after converting it to grayscale.

Figure 3.39: Histogram Equalization applied to image after converting it into two different color
spaces.

60

(a) Histogram Equalization applied to the image in Figure 3.1, done over the intensity channel in
the YUV color space, after applying the Bilateral Filter.

(b) Histogram Equalization applied to the image in Figure 3.1 after converting it to grayscale and
applying the Bilateral Filter.

Figure 3.40: Histogram Equalization applied to the image as in Figure 3.39, but after applying the
Bilateral Filter first.

61

(a) Edges detected in the Bilateral filtered image from Figure 3.40a, with Histogram Equalization
over the intensity channel in the YUV color space.

(b) Edges detected in Histogram equalized grayscale image from Figure 3.40b with Bilateral Filter.

Figure 3.41: Edges detected in Histogram equalized and Bilateral filtered images. Here, we have
only shown the Edge Detection after applying the Bilateral Filter, as Edge Detection on the images
in Figure 3.39 contains even more noise, and leads to no good results.

62

(a) Contours found in the image in Figure 3.1 after applying the Bilateral Filter and Histogram
Equalization over the intensity channel in the YUV color space.

(b) Contours found in the image in Figure 3.1 after converting it to grayscale and applying the
Bilateral Filter and Histogram Equalization.

Figure 3.42: Contours found in Histogram equalized and Bilateral filtered images. As seen in these
images, Histogram Equalization seem to create more noise without detecting more sheep.

63

(a) Black and dark gray in the image after removing all other colors. As seen can only the shadows
be recognized.

(b) White areas in the image after removing all other colors. Most of the white sheep are still in the
image.

Figure 3.43: Result after removing all other colors than black or white using a binary mask.

64

(a) Edges detected in the image in Figure 3.43b using Canny Edge Detection.

(b) Contours found using the method of removing all other colors than the desired one, drawn on the
original image. As we can see are all the white sheep detected in this image.

Figure 3.44: Edges detected and contours found in the image in Figure 3.43b.

65

Figure 3.45: Negative of the image in Figure 3.1. Every pixel in this image has the opposite color
value compared to the original image.

66

(a) Contours found in the image in Figure 3.1 after applying the Bilateral Filter and Dilation.

(b) Contours found in the image in Figure 3.1 after applying the Bilateral Filter and Dilation, and
setting every pixel value to its opposite value, (R,G,B) = (255-R,255-G,255-B).

Figure 3.46: Comparision on contours found in image after applying Bilateral Filter and Dilation
with the same parameters, with original color values and negative color values respectively. We can
see that the contours are identical in both images.

67

(a) HSV color space model. The hue channel is
the color channel, the saturation channel shows
how saturated the color is and the value channel
represents the color intensity.

(b) RGB color space model. One channel
represents the level of blue in the color, the
other the level of red in the color and the last
the level of green in the color.

Figure 3.47: HSV and RGB color spaces.

(a) HSV color 0◦,0%,0%. (b) HSV color 0◦,0%,48%.

Figure 3.48: Lower and upper black boundary colors used to find sheep with the HSV colorspace.

(a) HSV color 21◦,43%,63%. (b) HSV color 21◦,58%,42%.

Figure 3.49: Lower and upper brown boundary colors used to find sheep with the HSV colorspace.

68

Chapter 4
Results and Discussion

In this chapter, we present the results from the solutions researched in Chapter 3. Fur-
thermore, we discuss the positive and negative aspects of each solution, and the reasons
why the solutions are effective or not. We have presented numerical results for only the
solutions that showed promising results when we applied them to a couple or more dif-
ferent images from the dataset. In other words, if the solution detected more than 50%
of the sheep in the test image in Figure 3.1 and detected objects in less than 75% of our
images, we have presented the results numerically. These results are presented in Table
4.5, in addition to in each of the subsections.

In the following sections, as well as in Chapter 3, we have included a number of im-
ages. This is to show the results in more detail, and to better explain why the solutions
work well, work or do not work.

4.1 Dataset
Before we collected the dataset we had decided on a flight height for the UAV of 50 me-
ters above ground for capturing of the majority of our images. This turned out to be a
challenge, as the terrain was more varying than we anticipated, and for this reason, the
images are taken at many different heights. A lot of the images were actually captured
much higher than our preferred height, as we were standing at the top of a hill most of the
time. This made it a challenge to implement the solutions, as we had to consider images
taken at different heights and consequently of sheep at different scales when adjusting the
methods and parameters.

It is important to take the varying altitude into account, as a good number of the sheep
in Norway are wandering in mountain terrains which are very varying in altitude. With
the UAV you can adjust the desired height, but when you fly it out of sight it is hard to
know if it flies over a hill or mountain. A solution to this problem could be to find a way
the program could adjust the height automatically if it flies over mountains or down hill-

69

(a) (b)

Figure 4.1: Color difference in images taken only seconds apart, due to change in lighting.

sides etc. That way the farmer could know that all the images are taken under consistent
conditions. If the images would have been captured at more similar heights, our solutions
would possibly have given better results.

Another solution is to take the altitude into account when choosing the range at which
we want to capture the contours. We could do this by using the GPS coordinates from the
captured image to extract the height above sea level for that exact position. This height
could in turn be compared with the height above sea level of the UAV, to know the height
above ground at that exact point. One way to get the height above sea level from GPS
coordinates is to use the Open-Elevation API [27], but in our case, the API is not able to
extract the desired height data at our exact location. We have not yet found a way to do
this, but both of these solutions could be interesting to look at in future work.

When we collected the images, the autofocus feature was activated. This made the colors
appear very different in many images, as shown in the two images in Figure 4.1 which
were taken two seconds apart. This could probably be solved by either using manual fo-
cus instead of autofocus, or by preprocessing the images in some way. We believe that
by making the images more similar in color, it would be easier to develop a solution with
good results.

Another source of error is a problem with the quality of the UAV camera we used to
capture the images in the dataset. The problem is a slight blur in the lower right corner,
as seen in the cropped image in Figure 4.2. This is not a general problem, but might have
affected our results in a negative way.

4.2 Method Evaluation
When we evaluate how good the solutions we have implemented are, we look at a few dif-
ferent aspects. The most important factor is how many black sheep we have found using

70

Figure 4.2: Illustration of defect on the camera lens with a blurry lower right corner.

the solution. This can be measured in a few different ways. One way is to just count how
many sheep that are found in each image and then sum it up and compare the total number
of sheep with the number of sheep found.

A second way is to count distinct sheep, namely if a sheep is found once in the dataset
we do not have to look for that specific sheep in the rest of the images because we have al-
ready located the sheep. In other words, if we had found Sheep001 in one image, it would
be labeled as ”found” for the entire dataset, so we would only have to look for Sheep002,
Sheep003, Sheep004 and so on, in the rest of the images. The challenge with this method
is to identify the different sheep in all the images, which we have found almost impossible
and very time consuming. Because of this, we did not count the sheep in this way.

A third way to count how many sheep have been found, is to decide that if one sheep
is found in the image, then the rest of the sheep in the image is also marked as found.
Meaning that it will be sufficient to detect one sheep in each image. This tactic can be
used because naturally if you find one sheep you will find the one next to it as well when
manually bringing the sheep home. As sheep are flock animals and travel in herds, they
will most likely stay together when they move. We will refer to this method of counting
as Any sheep found.

71

Percentage of non-white sheep found Any sheep found
Bilateral Filter 2,2% 86,7%
White Areas N/A 96,9%

Table 4.1: The left column shows the percentage of non-white sheep found with the previous solu-
tions implemented in our Project Assignment [30]. The right column shows how many sheep were
found with our previous solutions when assuming that we find all the sheep in the image if we find
at least one.

Both the first and third way of counting have been included in Table 4.1 for the solu-
tions where running it on the entire dataset was expedient.

The last aspect we consider when evaluating our solutions is the number of false posi-
tives. A solution may find almost all the black sheep, but if it finds every tree in the forest
as well, it might not be a good solution after all. A false positive is the same as a falsely
detected object, namely anything that is found that is not a sheep. Some false positives are
of course not a problem. A high number is however a problem.

We evaluate the false positives by counting the number of images in the dataset where
at least one object is detected and compare it to the total number of images. This will
later be referred to as Objects found. This is not the best way to evaluate the number
of false positives, as one image is likely to contain more than one falsely detected ob-
ject, but it gives us an indication. Counting every detected object would be too big of a job
as some of our images contained more than 50 objects. We therefore decided not to do this.

Unlike with the other evaluated aspects, having a high number of objects found is bad
because it indicates many false positives, but so is a low one because that indicates few
sheep detected. The dataset consists of 43.8% images containing sheep, so that would be
the ideal value of objects found. In general this problem could have been avoided with a
thermal camera. We could have eliminated the false positives by using a combination of
that and the solutions we describe in this chapter.

4.3 Previous Solutions
In our Project Assignment [30] we developed a solution using Bilateral Filter and ran this
solution on the dataset. We calculated the results based on our goal of finding the white
sheep. If we change the focus and calculate the results based on black and brown sheep,
we can see how effective our previous solutions are for our current problem. As we can
see from Table 4.1 only 2.2% of the non-white sheep were found with the solution using
Bilateral Filter. This is of course unfortunately a very poor result. It means that out of the
1128 non-white sheep, we found 25. The reason we divide the sheep into white and non-
white sheep is that the black, brown and gray sheep can be hard to separate and classify.

Another way of viewing the results, as discussed in Section 4.2, is to consider the fact

72

that sheep live in herds. We can therefore look at the results from the two previous so-
lutions, and decide that if we managed to find at least one sheep in an image, we have
found all the sheep in that image. In Table 4.1 we can see the results using this strategy.
As we then can see, the percentage of Any sheep found have increased to 86.7% with
the solution with Bilateral Filter and 96.9% with the solution searching for white areas.
This means that of all of the 5472 sheep in the images, we have been able to find 5302
of them with the best solution. This is a very good result considering the brown and gray
ones are really hard to find. This way of analysing the result will probably be the most
realistic way of finding the sheep, since you just need to find one in a herd. Then you have
found them all.

4.4 Thresholding
As the results in Section 3.2 show, the images with no filter and Gaussian Filter applied,
have too much noise. For this reason and previous experience with filtering in our Project
Assignment [30], we decided not to find contours in these images. On the contrary, the
results in Section 3.2 where we applied Bilateral Filter to the images gave promising re-
sults. Therefore we chose to find contours in images where we applied the Bilateral Filter.
Hence, these are the results we address in this section.

To make the solutions more effective we could have chosen the parameters more carefully.
We experimented with different options, but more trying and failing would most likely
have given a more optimal solution. In addition the color difference discussed in Section
4.1 will affect these solutions more than others, because we look for a certain color value.
If we had a consistent color, it would be easier to adjust the parameters according to the
background and optimize the solutions.

4.4.1 Binary Thresholding
In Figure 3.7 we see there is a lot less noise which makes it easier to find contours. As
we can see from Figure 3.8 the solution finds all the black sheep in the image, but it also
finds the sheep’s shadows. Because of this we not only found the black sheep, but the
brown and the white as well. In this particular terrain and weather it worked out really
well. However, if it would have been cloudy or in a forest area, the shadows wouldn’t be
that visible. And there are many other elements in nature that create shadows, for example
other animals, trees, bushes etc. Removing the shadows from the image could have been a
solution, but as discussed in Section 4.5.3, this is complex. In addition, in this image the
pasture has a very light color, meaning that it is easy to use thresholding. Also, even this
image has some false positives, that are just dark spots in the pasture.

We ran the solution on the entire dataset, and found that it returned 99.9% detected ob-
jects. This means that it detects objects in 823 of the 824 images. Therefore we did not
count the number of sheep detected. As we can see in Figure 4.3a we find black sheep in
the pasture, which is good, but it also finds several other contours and treetops. In Figure
4.3b we see another result with more trees in the image. It would be a significant problem

73

with using this solution. To prevent too many false positives it would have been an advan-
tage to have a thermal camera we could capture images with as well, in order to only find
the sheep.

4.4.2 Truncated Thresholding
As we see in Figure 3.11 the thresholding works quite well, because we do not find any
other edges than the sheep’s. In addition in Figure 3.12 we see by the contours that it
actually finds all the black sheep, which is our primary goal. It also finds one of the brown
sheep, which is a plus. When we ran the solution on the entire dataset, the results showed
that there are a lot of false negatives. False negatives mean that there are sheep in the
image that the solution does not detect as sheep. Figure 4.4a is a good example. Here it
does not find any black sheep at all, but one white. And in most of the images, it does not
find any sheep at all. Figure 4.4b is an image taken at the same height above ground, as
Figure 3.12 where it finds all the black sheep, but in this case it only finds one of the three
black sheep. This means that although the solutions seemed to work well on these images,
it might also be coincidental.

4.4.3 Threshold To Zero
From Figure 3.15 we see that the thresholding works quite well, but it still gives us some
noise in the image. It finds all the edges of the sheep, but also many other objects that are
not sheep. And from Figure 3.16 we see that all the black sheep are found. But it still
detects a lot of the noise as well. This image has quite a light colored background and no
trees and other elements that can be disturbing. We ran the solution on the entire dataset
and there are 99.9% detected objects. This means that the solution detects objects in 823
og the 824 images. They are mostly detected in the areas where there are trees. Figure
4.5a is an example of just that. Because of this we did not find it expedient to count how
many sheep were detected with this solution.

As mentioned earlier, if we had images captured with a thermal camera as well we could
have eliminated most of the false positives. In Figure 4.5b all the black sheep are found,
which is very good. It also detects a lot of noise here, but it would not be a big problem
in this particular image as there are sheep that are found as well. In Figure 4.6 however,
there are no sheep, and still there are many contours. This means that even though the
solution actually finds quite a lot of the black sheep, considering all the false positives we
get, it is not an optimal solution.

4.4.4 Otsu Segmentation
From Figure 3.20 we see that there is still a lot of noise in the image after applying the
filtering and segmentation. In Figure 3.21 this is more clear, since there are a lot of
contours in the pasture which are not non-white sheep. The main problem here is that it
does not find any of the non-white sheep which is why we did not run the solution on the
entire dataset. One potential reason for this solution not working all that well, is probably
because of the image’s histogram as seen in Figure 3.17c. The Otsu Segmentation is

74

specifically developed for bimodal images, images with histograms that have two peaks.
This means that there are a high number of pixels for two different pixel values. Our test
image only has one peak in its histogram. Considering the fact that the solution both does
not detect any non-white sheep and generates many false positives it is not a good solution
to our problem.

4.4.5 Adaptive Mean Thresholding
From Figure 3.24 we see that the Adaptive Mean Thresholding gives us too much noise. It
find some of the edges of the sheep, but also a lot of other edges. We see this more clearly
in Figure 3.25 where it only finds one of the black sheep, and a great number of contours
in the pasture. Also we notice that the contours are found quite randomly in the image,
which leads us to believe that the one non-white sheep it found was by accident. For this
reason we did not see it expedient to go further and test it on the rest of our images.

4.4.6 Adaptive Gaussian Thresholding
For this last method we found the same as for the Adaptive Mean Thresholding. It pro-
duces too much noise in the image, as seen in Figure 3.28. Here it is very hard to make out
the edges of the sheep in Figure 3.28b. In Figure 3.29 we see that it actually finds two out
of three black sheep. The contours found quite randomly in the image, as in Subsection
4.4.5 leads us to believe that it might be a coincidence that the solution found the non-
white sheep. In addition the amount of noise it detects is too great for it to be beneficial
for us to run it on the rest of the images in our dataset.

4.5 Edge Detection on Preprocessed Images
As seen in Section 3.3, the tested methods for preprocessing had varying results. Because
of promising results in earlier research [30], we chose to apply the methods to be tested on
a Bilateral filtered image in addition to the original one. This seemed to give a smoother
image and more precise object detection in most cases.

4.5.1 Dilation
Applying dilation to the image seemed to have a positive effect, especially in combination
with the Bilateral filter. Without the Bilateral filter we had too many false positives due
to disturbances from the background, as can be seen in the image with detected edges in
Figure 3.30a.

When running the method on our entire dataset, with both the Bilateral filter and dila-
tion and using canny edge detection, we obtained the result presented in Table 4.2. We
were able to find 79.0% of the white sheep in the dataset, meaning that we found 3432
sheep out of 4343 white sheep. Of all the sheep, regardless of color, we were able to find
65.4% of the sheep in the dataset, which is 3584 sheep out of 5468. An example of sheep
detected in a different environment can be seen in Figure 4.7a.

75

Non-white sheep White sheep Any sheep Any object
Number of objects found 152 3432 353 765
Percentage of objects found 13.5% 79.0% 97.8% 89.2%

Table 4.2: The amount and percentage of sheep detected using Dilation together with Bilateral
Filter. The column presenting ”Any sheep” shows the number of images in which at least one sheep
was found, and the percentage of these images out of all the images containing sheep. The ”Any
object” presents the number of images where at least one object was detected, and the percentages
of images form the dataset where at least one object was detected. This counts both the sheep and
all other objects found, and gives an indication on the amount of false positives in the image.

As explained earlier, we have assumed that if we find one sheep in the image, we be-
lieve that we in practice would be able to find all of them. For this method, we were able
to find at least one sheep in 354 of the images, which gives us 97.8% of the sheep.

There is still a problem with finding sheep with other colors than white. We have 1125
colored sheep in our collection, and using this method, we were able to detect 152 of these,
giving us just a hit rate of only 13.5%.

Nevertheless, we have the problem with false positives also in this solution. As can be
seen in Figure 4.7b, other objects with a similar shape are detected as well, for example
gray rocks. We believe that these will always be a problem as long as we avoid using
thermal cameras as they can resemble sheep both in shape and color, but different methods
will provide different amounts of false positives. Using the dilation method, we find at
least one object in 765 of the 824 images, while there are sheep in only 361 of them.

4.5.2 Meanshift Filter

The effect of applying the Meanshift Filter to our example image seems promising, both
with and without the Bilateral Filter, as it reduces a lot of noise and evens out the colors.
In spite of that, we can see that if we apply the filter to other images with the same param-
eters, we have problems detecting the sheep, as seen in Figure 4.8a. Even if no sheep are
detected, we still have the problem with false positives, and as can be seen in Figure 4.8b.

Because of these bad signs, we decided not to evaluate this method by counting the found
sheep, as it seems to perform so much worse than the previous one. Adjusting the param-
eters might help us find more of the sheep in Figure 4.8a, but then we recieve even more
false positives. The main problem with this method might be that all the images are taken
at different heights above ground, and the amount of details we would like to keep in each
image would therefore be different. So if we decide to smoothen the image less to find
the sheep in this exact image, we would keep other disturbing details that keeps us from
finding sheep in other images or lead to more false positives.

76

4.5.3 Shadow Removal

The method we used to try remove shadows was originally meant for removing shadows
on scanned images of text. It was not working the way we intended it to.

The result we got when applying our method is the image seen in Figure 3.36, where
everything except for the objects appear foggy. It seems to detect the white sheep, but has
more problems detecting the brown and gray/black ones as they are more similar to the
background in color. It seems to detect the sheep quite well, but it also detects every other
object, so it gives a tremendous amount of false positives. Both an example of the detected
sheep and the false positives can be seen in Figure 4.9 where the shadow removal method
is applied together with the Bilateral Filter.

From researching shadow removal in photographs, we found that this is much more com-
plex than we first thought. What is said to be Simple Shadow Removal [48] consists of
multiple mathematical calculations, and as this is supposed to be a preprocessing step be-
fore actually doing the object recognition, it was not our top priority. Our main problem is
that we get too many false positives, so if we could reduce the amount of falsely detected
objects, removing the shadows would most likely not be necessary. Although if the images
are captured on a cloudy day, there would be no shadows and we would avoid the problem
completely.

4.5.4 Histogram Equalization

Applying Histogram Equalization is supposed to increase the global contrast in the image
by spreading out the most frequent intensity values [37]. We decided that this sounded
like a good idea for our purpose, to make the objects in our images appear more clearly.
Unfortunately, the method makes the background more disturbing than earlier and gives us
very poor results as can be seen in Figure 3.42. Based on these observations, we decided
not to proceed further with this solution.

4.6 Bounding Rectangle
As mentioned earlier, one of our biggest problems when detecting sheep in the images is
the amount of false positives. In all the methods with decent results, we have high amounts
of false positives. By this we mean that even if we are able to detect a high amount of sheep
in the data set, we also detect a lot of other objects. We could always accept a few false
positives, as it is better for the farmer to find many sheep and a couple of rocks, than to not
find the sheep. But if we find objects in every image, the solution is useless.

The solution with the Bounding Rectangle was an idea to try to limit the amount of con-
tours found. In our earlier solutions, we had filtered the contours on length and area, but
we wanted to see if it made a difference if we also filtered the contours on the relationship
between the width and the length of the object. As the preprocessing method giving the
best results was the Dilation with Bilateral Filter as seen in Section 4.5.1, we chose to

77

Non-white sheep Any sheep Any object
Number of objects found 47 339 698
Percentage of objects found 4.2% 93.9% 84.7%

Table 4.3: The amount and percentage of sheep found using the Bounding Rectangle together with
the Solution using Dilation with Bilateral Filter. The column showing ”Any sheep” presents the
number of images in which at least one sheep was found, and the percentage of these images out of
all the images containing sheep. The ”Any object” column presents the number of images where
at least one object was detected, sheep or not, and the percentage of images from the dataset where
at least one object was detected. This last percentage indicates the amount of false positives found
using this solution.

combine this with the Bounding Rectangle solution to try to limit the huge amount of false
positives.

The results of adding the Bounding Rectangle are presented in Table 4.3. We can see
that the amount of images where at least one object is found is a bit lower, with 84.7%
compared to 89.2%. However, this is not a very precise measure for the false positives, as
one image can contain more than one detected object. An example is presented in Figure
4.10, where we can see that most of the false positives in that image are removed after ap-
plying the limitations using the Bounding Rectangle. There are 0 sheep in this image, but
some of the white rocks has a sheep-like shape, and are therefore hard to avoid detecting.

Nevertheless, adding the Bounding Rectangle limitations, we also lower the total amount
of sheep found. One reason for this is that sheep are not always standing up straight. If
a sheep is lying down, for example, they have a different shape seen from above, which
can impact the height and width of the sheep in the image. The same yields for sheep
standing together in a cluster. Also, we can see that the amount of non-white sheep found
is much lower after adding the Bounding Rectangle limitations. This can be explained
by the darker colored sheep somewhat being detected together with their shadows as one
single object, which again cause them to appear in a different shape.

To summarize, adding the Bounding Rectangle limitations to the Solution using Dilation
with Bilateral Filter decreases the amount of detected false positives as desired, but by
doing so it also excludes a lot of sheep. Depending on what is valued higher, one has to
decide whether adding these limitations is useful or not.

4.7 Color Detection

To use the colors in the image to find the sheep seemed to work quite well in our earlier
research [30], but it does not seem to work well for sheep of other colors than white.

78

Non-white sheep Any sheep Any object
Number of objects found N/A 324 532
Percentage of objects found N/A 89.8% 64.6%

Table 4.4: Here we can see the amount and the rate of objects found in using the Solution Removing
Irrelevant Colors. Any sheep shows the amount of images where at least one sheep was found, and
Any object presents the amount of images in which at least one object was found, sheep or not. This
last rate indicates the amount of false positives found using this solution. Non-white sheep is not
relevant here, as we studied the solution thoroughly only after removing all other colors than white.

4.7.1 Searching For Black Areas
When searching for black areas by iterating through the pixels in the image and look for
regions of multiple black pixels, we saw that there are too many black areas in the image
that are not sheep. The results showed way too many false positives and it found ”sheep”
in all the images. In Figure 4.11 there are two examples from the dataset.

4.7.2 Removing Irrelevant Colors
When we tried to remove everything from the image except for the colors inside a desired
color interval, we found that it was difficult to filter based on black or brown sheep. There
are a lot of dark objects in the images, so this works poorly for detecting objects, as when
searching for black areas in Section 4.7.1. Regarding brown sheep, it is difficult to distin-
guish brown from gray when it comes to RGB values, as there is no clear interval of which
the color is brown.

Although, we found that this method worked quite well for detecting white sheep, as
seen in Table 4.4. It did not detect nearly as many sheep in total as the Solution using
Dilation with Bilateral Filter in Section 4.5.1, but if we assume that detecting any sheep
in an image means that we’ll find all of them, we found 89.8% of the sheep in the dataset
applying this solution.

This method avoided a lot of the previously detected false positives, as they often had
other colors than white. Although false positives is still a problem, as there is at least one
object detected in 532 of the 824 images in our dataset, resulting in 64.6%. There are
sheep in 361 of the images, and out of the images containing sheep, this method found
at least one sheep in 324 images. This means that in addition to detected objects in the
images actually containing sheep, there are false positives in 208 images where no sheep
are detected. This gives us false positives in 25% of the images, which still is a lot.

4.7.3 Negative Colors
We wanted to study if changing the color values in the image to the opposite would make
any difference, meaning to set the value to (R,G,B) = (255-R,255-G,255-B) for
every pixel in the image. Applying the Canny Edge Detection method to the image with
original color values compared to applying the same method to the image with negative

79

color values can be seen in Figure 3.46. By studying these two images, we can see that
the contours found in the two images are identical.

This observation shows that the color has no impact on how the objects are detected, so
dark objects on light background is detected as easily as light objects on dark background.
The reason why the white sheep are detected more easily than black or brown ones seems
to be simply because the color difference between the sheep and the background is greater.

4.7.4 Hue Saturation Value Color Space
In Figure 4.12 we can see the mask image where the targeted color found in the image
is in white and the other colors are removed. As we can see the results are quite poor,
there are some spots detected in the mask image, but they are few. For the brown colors,
it did not detect anything even though there are brown sheep in the image. There may be
several reasons why the results were insufficient. The choosing of the lower and upper
color boundaries is the factor with the biggest impact.

For the black boundaries, it is easier to choose, we simply chose the darkest color and
another one which was dark gray as can be seen in Figure 3.48. Of course the gray color
could have been chosen differently, but it is just the value channel that varies. For the
brown, there are a vast number of browns in the color spectrum, and to choose the right
brown for the sheep is tricky. For this we simply chose brown colors that we found sim-
ilar to the sheep we had captured in the dataset as in Figure 3.49. To illustrate the color
problem, Figure 4.13 shows the color named ”brown” [47].

Figure 4.13: The color named ”brown”. For most people it looks red, therefore to choose a well
suited brown color is hard.

It is red and would be a bad choice when looking for brown sheep. This shows that to
find the brown sheep is very hard, even if we use color detection and the HSV color space.
Therefore we do not proceed with this solution.

4.8 Review Of Results
In general, the Thresholding methods gave too many false positives, with Otsu Segmenta-
tion, Adaptive Mean Thresholding and Adaptive Gaussian Thresholding giving the worst

80

results. Binary Thresholding and Threshold To Zero has somewhat lower number of false
positives, but they detect the shadows of the sheep rather than the actual sheep when look-
ing for dark objects. The last method, Truncated Thresholding, has nearly no false posi-
tives. It detects very few black and brown sheep, and just a few white sheep.

When it comes to the Edge Detection On Preprocessed Images, we found that none of
the researched methods worked well for finding neither black nor brown sheep. Shadow
Removal detected a lot of sheep, but also basically every other object in the images. How-
ever, using a more complex method for removing shadows might improve the detection of
sheep. This is time consuming, and therefore we did not research this further.

Applying Dilation together with the Bilateral Filter performs better than any of the previ-
ous solutions as discussed in Section 4.3 for white sheep, but still has a high amount of
false positives. Meanshift filtering with Bilateral Filter detects fewer sheep than Dilation,
and detects even more false positives.

Using the Bounding Rectangle to limit the amount of false positives works to a certain
degree, but the main problem is that we lack information about the flight height above
ground. Therefore we have problems adjusting the parameters, as the sheep differ in size
throughout the dataset.

Color Detection seemed to be a good solution for white sheep, but extending this to other
colors turned out to be difficult. Neither when explicitly searching for black areas in the
RGB color space or black and brown areas in the HSV color space, were we able to dis-
tinguish sheep from the background. Detecting edges after inverting the colors to their
negatives gave the exact same results as when detecting edges with original colors.

As for the solution removing irrelevant colors, we still had problems with detecting black
and brown sheep. Although, this worked reasonably well for white sheep, but as for most
of the other methods it also detects a lot of other white objects.

Quantitative results from the most successful methods are summarized in Table 4.5. The
first column presents the amount of non-white sheep found in the dataset applying the rel-
evant methods, and we can see that the Solution using Dilation with Bilateral Filter finds
the highest amount with 13.5%. However, this is not a high rate of colored sheep detected.

Secondly, the table shows the percentage of images in which at least one sheep is found.
This is shown in the Any sheep found column, and we can observe that in all the tested
solutions where this is relevant, the solutions has detected at least one sheep in more than
86% of the images containing sheep. This is a decent result, and the best results are also
in this case provided by the Solution using Dilation with Bilateral Filter.

The last column presents the percentage of images in the dataset where at least one object
is detected. In this case a high number, for example 99.9%, is negative, as that shows that
the solution detects objects in almost every image in the dataset. A high number indicates

81

Non-white sheep found Any sheep found Objects found
Bilateral Filter 2.2% 86.7% N/A
White Areas N/A 96.9% N/A
Binary Thresholding N/A N/A 99.9%
Threshold To Zero N/A N/A 99.9%
Dilation + Bilateral Filter 13.5% 97.8% 89.2%
Bounding Rectangle 4.2% 93.9% 84.7%
Removing Irrelevant Colors N/A 89.8% 64.6%

Table 4.5: The results obtained when running each of the solutions on our dataset. Non-white sheep
found shows the percentage of the amount of non-white sheep found in our dataset. Any sheep found
shows the amount of images in which we found at least one of the sheep, assuming that if we find
one sheep, we also find the other nearby sheep. Objects found presents the percentage of images
where the solution found at least one object.

that the solution finds a lot of false positives and not only sheep. As a reference, there are
sheep in 43.8% of the images in the dataset. From these numbers, we can come to the
conclusion that the Solution Removing Irrelevant Colors detects the highest rate of rele-
vant objects, but it also has a lower rate of sheep found in total.

To put it concisely, the general problem with all these solutions is that they generate too
many false positives. If using any of these solutions, one has to consider whether finding
the highest amount of sheep or finding them as effective as possible is more important.
As a possible solution to the problem of falsely detected objects, we propose the use of a
thermal camera, as discussed further in Chapter 5.

82

(a)

(b)

Figure 4.3: Results with Binary Thresholding on Bilateral filtered grayscale image. It finds the two
black sheep in the pasture, but it also finds many false positives in both images, especially in Figure
4.3b.

83

(a)

(b)

Figure 4.4: Results with Truncated Thresholding on Bilateral filtered grayscale image. It found one
black sheep and some white, but in Figure 4.4a taken farther away, it does not find anything.

84

(a)

(b)

Figure 4.5: Results with the Thresholding To Zero method on Bilateral filtered grayscale image.
Once again, if finds a lot of false positives in both images, but also finds all the black sheep in
Figure 4.5b.

85

Figure 4.6: Result with the Thresholding To Zero method on Bilateral filtered image. There are no
black sheep in the image, and therefore there are many false positives in this image.

86

(a) Example of sheep detected when using Dilation with Bilateral Filter. As we can see, most white
sheep are detected, but it has problems detecting black sheep.

(b) Example of false positives found when using Dilation with Bilateral Filter. We can see that a lot
of irrelevant objects, mostly rocks, are detected.

Figure 4.7: Example of contours found after applying Dilation and Bilateral Filter to images with
and without sheep.

87

(a) Example of poorly detected sheep using Meanshift Filter with Bilateral Filter.

(b) Example of irrelevant objects detected using Meanshift Filter with Bilateral Filter.

Figure 4.8: Example of contours found in images after applying the Meanshift Filter and the Bilat-
eral Filter. We can see that this solution detects a lot of false positives, but has problems detecting
the actual sheep.

88

(a) Example of detected sheep using the Shadow Removal solution.

(b) Example of irrelevant objects found using the Shadow Removal solution.

Figure 4.9: Example of contours found in images after applying the Shadow Removal solution.
We observe that a lot of sheep are detected, but so are a lot of other objects. Also, sheep are here
sometimes detected in clusters, not always as single objects.

89

(a) Example of falsely detected objects using the Solution using Dilation with Bilateral Filter.

(b) Example of falsely detected objects after adding the Bounding Rectangle to the Solution using
Dilation with Bilateral Filter.

Figure 4.10: Example of false positives found in the same image before and after adding the Bound-
ing Rectangle limitations to the Solution using Dilation with Bilateral Filter, meaning that we ex-
clude objects that has a width/height relationship over 2.0 and under 1.4.

90

(a)

(b)

Figure 4.11: Results from Solution Searching For Black Areas. As we can see, there are false
positives in both images and it finds the sheep’s shadows in 4.11b.

91

Figure 4.12: Mask image after the other HSV colors are removed, and only the color we were
looking for are the small white dots.

92

Chapter 5
Future Work

There are still significant work to be done in this field of study, especially since we did not
find any optimal solution to the researched questions.

5.1 Detecting Brown Sheep

Finding brown sheep is something we tried briefly during our research, but we did not
get any good results with any of our solutions. As far as we are concerned, it is the most
difficult colored sheep to find as there is so much terrain that also has a shade of brown.
Therefore this is a challenge that needs to be addressed further to explore if there can be
developed any good solutions to find these sheep. Although there are not many of them,
they still need to be found. However if we combine our solutions with a thermal camera,
as we discuss in Section 5.2, the task of finding them may be a lot easier.

5.2 Thermal Imagery

As mentioned in Chapter 2 thermal imagery has been used to find animals previously.
We believe that if we put our solutions to use and combine them with images taken with
a thermal camera, we can use that data to eliminate most false positives. For example, all
the trees and pasture spots found, will not be returned as sheep detected, if we cross check
it with the thermal images. That means some of the solutions that gave a great number of
false positives, but also a lot of true positives will be good solutions in practice. Of course,
as also mentioned in Chapter 2 thermal imagery can also give us false positives, but this
again can be ruled out by using the solutions we have developed in this paper.

93

5.3 Flight Path Generation

If we are to develop a working system to run on UAVs we also need to generate a flight path
so that the farmers do not have to control the UAV manually. The goal is to make a system
that the farmer can start up and it would fly over an area given by the farmer and come
back and land. Henceforth the farmer would transfer the images to a tablet or computer
and the program will give the farmer the GPS coordinates where the sheep are located.
Ideally we propose to develop something similar to what they used for fawn detection[21]
as seen in Figure 5.1. They used the Google Maps Application Programming Interface to

Figure 5.1: Waypoint Editor[21]. With the use of Google Maps Application Programming Interface,
they developed a program that allowed them to mark the area they wanted to search with the UAV.

develop a program which allows you to mark the area you want the UAV to search and it
will calculate the optimal flight path relatively fast.

94

5.4 Developing the System
If succeeding in developing a satisfactory solution for sheep detection, a complete system,
including a flight path program, would need to be developed. Ideally the UAV would send
the images to a tablet or computer whilst searching, together with the location of the sheep.

95

96

Chapter 6
Conclusion

The objective of this paper was to study how traditional computer vision methods and
image processing could be used to find sheep in UAV images taken in different terrains,
focusing mainly on black sheep.

We experimented with many different solutions within different topics of computer vi-
sion. Firstly we looked at various ways of thresholding an image, secondly we researched
Edge Detection On Preprocessed Images, thirdly we tried to take the size of the objects
into account and lastly we experimented with different kinds of Color Detection.

Most of the Thresholding solutions had problems finding the sheep or gave too many false
positives. Some of them were able to find quite a few of the black sheep, with the Binary
Thresholding solution and the Threshold To Zero solution as the most effective. Although,
none of the Thresholding solutions detected the desired amount of sheep.

Neither of the Preprocessing solutions seemed to make a significant difference when de-
tecting black or brown sheep, compared to the earlier researched solutions. Dilation was
the most successful and found many of the white sheep, but it also detected a lot of false
positives.

When adding the Bounding Rectangle to the Solution using Dilation with Bilateral Fil-
ter, we were able to filter out some of the false positives by limiting the dimensions of the
contours. Although, this would have worked better if we were able to calculate the true
size of the sheep.

From studying the detection of colors, we learned that it is very difficult to distinguish
black and brown sheep from other colors in nature. However, as there are fewer white ob-
jects in mountain areas, white sheep are easier to find using Color Detection. In particular
we found that the Solution Removing Irrelevant Colors provided satisfactory results with
one of the lowest amounts of false positives.

97

To summarize, our research shows that none of the solutions we implemented gave ad-
equate results when looking for black or brown sheep. The highest amount of non-white
sheep found was by applying the Solution using Dilation with Bilateral Filter to the im-
ages in the dataset, detecting 13,5% non-white sheep.

The Solution using Dilation with Bilateral Filter also generated great results when search-
ing for all colored sheep, finding at least one sheep in 97,8% of the images containing
sheep. By adding the Bounding Rectangle, we were able to somewhat reduce the amount
of false positives. Furthermore, Removing Irrelevant Colors also detected a high number
of sheep, with less false positives.

The biggest drawback with all the solutions is the high number of false positives. Of all
the solutions we studied, the lowest number of false positives was 64,6% in the Solution
Removing Irrelevant Colors. These falsely detected objects consist mainly of rocks and
other sheep-like objects, both in shape and color, but also of other objects like trees and
man-made items. Separating the sheep-like rocks from sheep is nearly impossible without
using a thermal camera.

In conclusion, we believe that detecting sheep in a satisfactory way is difficult using a
regular UAV color camera alone. Although, the problem with false positives can be solved
by combining the Solution using Dilation with Bilateral Filter with the use of a UAV with
a thermal camera. Detecting non-white sheep will still be challenging, but finding most of
the white sheep would be very helpful for the farmers. As thermal cameras have become
more available throughout our research, we consider this to be the next step in the retrieval
of sheep using UAVs.

98

Bibliography

[1] Dyrebeskyttelsen Norge: Fanesak tap av sau på beite
https://www.dyrebeskyttelsen.no/tap-sau-pa-beite/,
accessed 24.10.2018

[2] Effect of Environment on Nutrient Requirements of Domestic Animals
https://www.ncbi.nlm.nih.gov/books/NBK232324/,
accessed 15.05.2019

[3] Nortrace AS,
http://www.nortrace.no/, accessed 20.10.2018

[4] Telia,
https://www.telia.no/, accessed 20.10.2018

[5] Telia, NarrowBand Internet of Things
https://old.telia.no/bedriftsmagasinet/telia-forst-i
-norden-med-fremtidens-teknologi, accessed 20.10.2018

[6] Telespor,
https://telespor.no/, accessed 10.10.2018

[7] Radiobjella,
https://telespor.no/produkt/, accessed 10.10.2018

[8] Telia, Verdens største IoT-pilot: skal gjre 1000 sauer smartere
https://old.telia.no/bedriftsmagasinet/verdens-storste-
iot-pilot, accessed 10.10.2018

[9] Telia Dekningskart,
https://old.telia.no/dekningskart, accessed 10.10.2018

[10] Telenor Dekningskart,
https://www.telenor.no/privat/dekningskart//#map,
accessed 10.10.2018

99

[11] Findmy,
http://findmy.no/om-oss/, accessed 21.11.2018

[12] Findmy: Produkter,
http://findmy.no/produkter/bjeller/, accessed 21.11.2018

[13] OpenCV Geometric Image Transformations,
https://docs.opencv.org/2.4/modules/imgproc/doc/geometric
transformations.html, accessed 03.12.2018

[14] OpenCV Basic Operations on Images,
https://docs.opencv.org/3.0-beta/doc/py tutorials/py core/
py basic ops/py basic ops.html, accessed 03.12.2018

[15] OpenCV Image Filtering,
https://docs.opencv.org/2.4/modules/imgproc/doc
/filtering.html?highlight=bilateralfilter#bilateralfilter,
accessed 03.12.2018

[16] OpenCV Image Filtering,
https://docs.opencv.org/3.1.0/d4/d86/group imgproc
filter.html#gaabe8c836e97159a9193fb0b11ac52cf1,

accessed 03.12.2018

[17] OpenCV Smoothing Images,
https://docs.opencv.org/3.1.0/d4/d13/tutorial py
filtering.html, accessed 03.12.2018

[18] Canny Edge Detection,
https://opencv-python-tutroals.readthedocs.io/en/latest/py
tutorials/py imgproc/py canny/py canny.html,

accessed 03.12.2018

[19] A. C. Seymour, J. Dale, M. Hammill, P. N. Halpin, D.W. Johnston,
Automated detection and enumeration of marine wildlife using unmanned aircraft
systems (UAS) and thermal imagery, 2017

[20] John Canny,
A computational approach to edge detection, 1986

[21] Martin Israel,
A UAV-based Roe Deer Fawn Detection System, 2011

[22] Even Arneberg Rognlien, Tien Quoc Tran,
Detecting Location of Free Range Sheep, 2018

[23] OpenCV Contours: Getting Started,
https://docs.opencv.org/3.4/d4/d73/tutorial py contours
begin.html,

accessed 05.12.2018

100

[24] OpenCV Contours Hierarchy,
https://docs.opencv.org/3.4/d9/d8b/tutorial py contours
hierarchy.html,

accessed 05.12.2018

[25] OpenCV Contour Features,
https://docs.opencv.org/3.1.0/dd/d49/tutorial py contour
features.html,

accessed 05.12.2018

[26] David H. Douglas, Thomas E. Peucker,
https://utpjournals.press/doi/10.3138/FM57-6770-U75U-7727,
accessed 09.12.2018

[27] Open-Elevation API,
https://open-elevation.com/,
accessed 10.12.2018

[28] J. Jin, J. Li, G. Liao, X. Yu, L. C. C. Viray,
Methodology for Potatoes Defects Detection with Computer Vision, 2009

[29] OpenCV: Scene Reconstruction,
https://docs.opencv.org/3.4.3/d4/d18/tutorial sfm
scene reconstruction.html,

accessed 14.03.2019

[30] Marit Gjøstøl Ytterland, Tone Kathrine Ervik Winsnes,
Retrieval of sheep using UAVs, 2018

[31] OpenCV Image Thresholding,
https://docs.opencv.org/3.4/d7/d4d/tutorial py thresholding.html,
accessed 27.03.2018

[32] OpenCV: Basic Thresholding Operations,
https://docs.opencv.org/2.4.13.7/doc/
tutorials/imgproc/threshold/threshold.html,
accessed 28.03.2019

[33] OpenCV: Miscellaneous Image Transformations,
https://docs.opencv.org/3.4.3/d7/d1b/group imgproc
misc.html#gae8a4a146d1ca78c626a53577199e9c57,
accessed 29.03.2019

[34] OpenCV: Image Filtering,
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/
filtering.html#pyrmeanshiftfiltering,
accessed 09.04.2019

[35] Zhang Zheng,
Document Image Restoration, 2005

101

[36] OpenCV: Median Blur,
https://docs.opencv.org/3.1.0/d4/d86/group imgproc filter.html
#ga564869aa33e58769b4469101aac458f9,
accessed 02.05.2019

[37] OpenCV: Histogram Equalization,
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/
histograms/histogram equalization/histogram equalization.html,
accessed 09.04.2019

[38] A. Ford, A. Roberts,
Colour Space Conversions, 1998

[39] Histogram Equalization Of RGB Images,
https://prateekvjoshi.com/2013/11/22/histogram-
equalization-of-rgb-images/,
accessed 24.05.2019

[40] Open-Elevation API,
https://open-elevation.com/,
accessed 10.04.2019

[41] OpenCV: Bounding Rectangle,
https://docs.opencv.org/3.1.0/d3/dc0/
group imgproc shape.html#ga3d476a3417130ae5154aea421ca7ead9,
accessed 10.04.2019

[42] Facts About Sheep,
https://www.livescience.com/52755-sheep-facts.html
accessed 22.05.2019

[43] OpenCV: Thresholding Operations Using inRange,
https://docs.opencv.org/3.4.3/da/d97/tutorial threshold
inRange.html,

accessed 26.04.2019

[44] OpenCV: Changing Colorspaces,
https://docs.opencv.org/3.4.3/df/d9d/tutorial py colorspaces.html,
accessed 26.04.2019

[45] OpenCV: Operations On Arrays,
https://docs.opencv.org/3.4.3/d2/de8/group core array.html
#ga48af0ab51e36436c5d04340e036ce981,
accessed 29.04.2019

[46] OpenCV: Dilation,
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/
filtering.html#dilate,
accessed 30.04.2019

102

[47] Named Colors,
https://convertingcolors.com/named-colors.html,
accessed 30.04.2019

[48] G. Finlayson, C. Fredembach,
Simple Shadow Removal, 2006

103

M
arit G

. Ytterland, Tone K
. E. W

insnes
R

etrieval of Sheep U
sing U

nm
anned A

erial Vehicles

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Marit Gjøstøl Ytterland
Tone Kathrine Ervik Winsnes

Retrieval of Sheep Using
Unmanned Aerial Vehicles

Master’s thesis in Computer Science
Supervisor: Svein-Olaf Hvasshovd

May 2019

