
R
ickard H

ole Falck
P

rediction of Illness in Sheep on B
ody Tem

perature

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r 

Sc
ie

nc
e

M
as

te
r’

s 
th

es
is

Rickard Hole Falck

Prediction of Illness in Sheep on Body
Temperature

Master’s thesis in Datateknologi
Supervisor: Svein-Olaf Hvasshovd

May 2019





Prediction of Illness in Sheep on
Body Temperature

Rickard Hole Falck

May 2019





Abstract

Each year thousands of sheep are free range grazing during the summer.
While this practice is good utilization of land and has many health benefits
for sheep, it is not without it’s troubles. When the sheep are on free range
pastures it becomes incredibly difficult to have a good understanding of the
individual sheep’s health and welfare, and to detect illness or injuries. Illness
can lead to slower growth, and in serious cases to death, which both would
cause loss of revenue for the farmer.

Tools that could predict, warn, and give information of the health and
welfare of the grazing sheep could be of immense value to farmers, especially
as farms and the amount of livestock per farmer is increasing. Not only could
such tools improve animal welfare, but also possibly lead to increased farmer
revenue.

In this thesis we have analyzed temporal data, collected from lamb during
a period where the lamb were on a free range pasture. Based on these
analyses we have tried to make models and software that could be able to
detect abnormalities and detect illness in sheep. These models were tested
against benchmarks and compared, showing advantages for models that take
the circadian rhythm and its changes in consideration.
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Sammendrag

Hvert år gresser tusenvis av sau p̊a sommerbeite. Mens denne praksisen er
god utnyttelse av utmark og har gode helsefordeler for sauen er det ikke uten
problemer. N̊ar sau er p̊a beite blir det vanskelig å ha en god oversikt over
sauens helsetilstand og å oppdage sykdom eller skade. Sykdom kan medføre
nedsatt vekst og i alvorlige tilfeller død. B̊ade nedsatt vekst og dødsfall sørger
for nedsatt omsetning for bonden.

Verktøy som kan forutsi, varsle og gi informasjon om helsen til gressende
sau kan være til stor hjelp for bonden. Antall dyr per bonde er økende i
forbindelse med økte krav om effektivitet og sammensl̊aing av g̊arder, hjelpemi-
dler for overv̊aking av sauens helse blir da mer nødvendig for å sørge for god
dyrevelferd. Hjelpemidler kan ogs̊a lede til økt omsetning for bonden dersom
de forhindrer dødsfall og/eller nedsatt vekst.

I denne tesen har vi analysert temperatur data, innsamlet fra lam p̊a
sommerbeite. Basert p̊a disse analysene har vi forsøkt å lage modeller og
programvare for å detektere unormaliteter og sykdom i sau. Disse modellene
er testet og sammenlignet, og viser nytte av å modellere for den circadiske
rytmen og dens endringer over tid.
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Chapter 1

Introduction

Every summer thousands of sheep are released to free-range pastures for
grazing all over Norway, so each year thousands of sheep are grazing on free-
range pastures. While this practice has many good health benefits for the
sheep, and utilizes land that is not usable for other agricultural purposes, it
is not without risks. Each year many of the grazing sheep die of injuries and
illnesses, and some are killed by predators. Sheep illness can be a direct cause
of death, can lead to slowed down growth, weakening, and making them easier
prey. All resulting in loss of revenue for the farmer, as well as loss of food and
resources. Farmers reported in 2016 a total loss of 75,275 sheep, of which
17,794 were compensated, in other words less than 24% of the lost sheep
were compensated. Of all the lost sheep, less than 3,000 had a documented
cause of death [1]. For reporting causes of death to authorities or insurance
companies, the current situation could be improved by a computer system
that creates a report based on the data that is collected on the individual.

Loss of sheep is naturally varying from year to year, however the yearly
loss of lamb has been between 5 % and 7 % since 2010, and in some grazing
areas ranging above 30 % [1]. This is quite a substantial amount of loss, and
tools that would decrease this, would be very helpful.

The pastures are often huge, in which the sheep move a lot, and the sheep
usually don’t go in one big herd. Once they are spread it can be difficult to get
up close to them. This makes it almost impossible to systematically locate
and inspect all the sheep. Finding visual illness signs in the sheep can also be
seriously difficult. Diagnosing is also something that might require medical
knowledge, which we can’t expect a general farmer to possess. There is also a
general trend of increased productivity and increased farm sizes, which leads
to more animals per stockperson [2]. Farmers will need help of tools to keep
control of the health and welfare of the increasing size of his livestock.

In order to have an accurate idea of the health of the animals we deem
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it necessary to use sensors that are able to detect and communicate this
information to the farmers. Sensors would be able to follow the individual
animal, and control its status at any time of the day. If the farmers then
could be warned when their sheep get ill, it could result in getting the sheep
help when needed, ensuring fewer deaths, and stronger and quicker growing
animals.

Our work is based on data, that is collected and used in an ongoing
research project [3]. The aim of the research is to investigate the potential
for early detection of Tick Born Fever in sheep. In the project they also
attempt to establish baseline values for the diurnal- and seasonal trends of
core temperature and heart rate for domestic, free-ranging sheep. They also
aimed to estimate the impact of the implantation process on the growth
performance of sheep, and the quality of the heart rate measurements.

The study found a difference between the heart rate of adult females and
the heart rate of juvenile females and males [3]. The results suggested a slight
seasonal effect on the core temperature in the second half of July. The core
temperature displayed significant rhythmicity in all lambs. 24-hour circadian
rhythms were present in 80.7% of the periods, and 12-hour ultradian rhythms
in 9.9% of the periods [3] .

We also see a use of this type of sensor technology outside the field of
sheep. There are more farmed animals it could be useful for, such as e.g.
cows, who also have a much higher value. This type of technology could
also be used on humans, e.g. patients, elderly, infants, and possibly used in
popular technology such as training watches. Our goal is to discover more
about the temperature of sheep, how it changes, how it is affected, and if it
is possible to predict illness based on disturbances in the core temperature of
the animals. We will investigate whether it is possible to make this type of
software for the sensors, and in that case see whether we can make a general
model or if the model would need to be individually fitted.
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Chapter 2

Total System

In this thesis we will explore the possibilities of making a system that is able
to detect illness in sheep. This is meant to be part of a bigger system that
will aid and help farmers to look after their sheep, and to give information
about the animals well-being and status. Due to limitations of both time
and resources we narrow down the problem which we address and attempt
to solve.

2.1 This Subsystem

The part of the entire system we focus on is illness detection. To detect illness
we will use sensors measuring the core temperature of the sheep. These
measurements will be analyzed to check if the sheep is ill or not. These
measurements will be transmitted so that the farmer can be informed of the
illness, and be given the opportunity to take appropriate actions. We will
only be able to detect illnesses that have an impact on the core temperature
of sheep.

We would also like to be able to give a possible prediction of the illness,
and to mark the illness’ severity. This is because not all illnesses are critical,
and they might therefore need to be treated differently.

2.2 Bigger Picture

When the sheep are on free range pastures it experience more dangers than
illnesses. It could therefore be useful for the farmers with more information
than the health of the sheep. Knowing the position of the sheep can be
very important; the pastures are often very large, and aimlessly looking for
a specific sheep can be very demanding if not almost impossible. It can be
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important to be able to locate a specific sheep for several reasons; if it is
hurt, ill, has been attacked, etc. It will be important to find this sheep to
inspect and/or treat it. Also, when sheep are dead it can be important to
find them to find the reason of death.

Predator attacks also kill many grazing sheep each year, so knowing that
sheep are attacked can be important so that one can perform preventive mea-
sures against more attacks. These measures can be to increase surveillance
of the sheep, increase the presence of humans in the area, and/or make the
sheep leave the area where these attacks occur.

The sheep will have a radio sender around their neck that collects the rel-
evant information, and at specific time intervals broadcast this information.
These signals will be traveling via relays until it reaches an end-station. The
data will then be available for the farmer through an interface, giving them
an overview of the status of his sheep, and their location.
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Chapter 3

State of the Art

3.1 Illnesses Affecting Sheep

As we are trying to detect sheep illness we need to know what illnesses
are likely to affect free ranging sheep. We will focus on the illnesses that
are relevant to the breed of sheep and the geographical locations we have
covered. Useful information about illnesses that are likely to affect sheep in
Norway was provided by Lise Grøva [4] and Kristin Sørheim [5].

Tick born fever (TBF) is one of the illnesses that affect lamb in parts of
Norway. This is a very prevalent disease in coastal areas, like Tingvoll. Lamb
can also suffer from listeriosis, arthritis, pneumonia, and poisonings.
For adult sheep, illnesses such as mastitt can also occur, however as all the
sheep we have data on are lamb this will not be relevant for us.

Cocciosis is a parasitic disease that occurs mainly in lamb between the
age of 1 and 6 months [6], and is usually contracted orally through infected
feces. In sheep this disease is caused by the parasite genus Eimeira, which is
harboured by other sheep. Lamb, that are previously unexposed to the geuns
Eimeira parasite, can develop cocciosis from exposure to large amounts of this
parasite [7]. After having suffered the disease, they will become resistant to
it in the future, however can still harbour the parasite, infecting other sheep.
This disease can often affect a high percentage of the herd, and can be difficult
to get rid of, as medicine is needed to be given orally for 3-7 days [7].

Sheep suffering from cocciosis often don’t show signs of illness, but gen-
erally suffer from reduced food consumption. If the condition worsens the
lambs can get diarrhea with streaks of blood. Cocciosos can be a deadly dis-
ease, and should be treated at first signs [6] [7], however most sheep survive
it.

Pneumonia in sheep comes in different forms, and can cause symp-
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toms such as fever, weight loss, coughing, isolation from the herd, and quick
breathing. Acute pneumonia can lead to life-long effects on sheep, such as
reduced lung capacity and reduced weight gain, and can in worst case lead
to death. Chronic non-progressive pneumonia (CNP) is a form of pneumonia
that affects for the most part lambs between 3 and 10 months of age. CNP
has few clinical signs and can be difficult to detect [8]. Pneumonia is known
to reduce weight gain by up to more than 50 % [9].

Arthritis in sheep affects especially lamb, and can cause fever, depres-
sion, less movement, and lessen the appetite leading to lower weight gain.
Joints that are affected will often be painful, swollen and warm. Arthritis is
caused by bacteria entering the blood stream, often from cuts, but can also
accompany TBF. When arthritis accompany TBF, the sheep can suffer from
both illnesses at the same time [10].

Bacteria causing listeriosis can be found in the soil, and can affect sheep
of all ages. Symptoms of listeriosis in sheep can include walking in circles,
partial facial paralysis, inability to drink and eat, fever, confusion, and unco-
ordinated motion [11]. Listeriosis can be transmitted to humans, which can
be sever in case of children, elders, and pregnant women [12].

Lamb are also considered to be at greater risk of hypothermia. Lamb
are more vulnerable to the weather as they have less fat reserves than adult
sheep. This makes it more difficult for the lamb to maintain a stable core
temperature in especially cold weather [13].

3.2 Effects of Illness on Sheep Core Temper-

ature

The normal temperature range for sheep is [38.5◦C − 40◦C], however lamb
can have a somewhat higher temperature range [14]. Signs of illness in sheep
are often deviations from the norm. These deviations can be with regards
to the behavior and the values such as the temperature and heart frequency
[14].

High temperatures can be observed in cases of infections and severe in-
juries, however can also occur due to stress, physical activity, and high,
environmental temperature [14]. Low temperature in sheep might be due en-
vironmentally induced hypothermia. For lamb a low temperature might be
an indication that it has received too little milk. Illnesses or other cases that
cause low blood circulation will at the same time cause low temperatures.
Sheep in the death phase can also have low temperatures [14].

TBF is known to be characterized by a sudden onset of very high fever,
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with temperatures above 41◦C [15]. Pneumonia can be an acute illness that
cause high fever temperatures [8], listeriosis cause fever [11], and arthritis
can cause fever, normally up to 40.5 ◦C [10].

As we started to read up on other illnesses, we noted, not surprisingly,
that the core temperature often was affected by illness. In one paper, [16],
they described how an infection of the Bhanja virus effected sheep. The
body temperature of the infected sheep were significantly higher than that
of the control specimen, and the temperature rise was visible before other
symptoms were visible. However the temperature difference wasn’t constant,
and varied how much it differed from day to day. This paper also only
presented us with one measurement a day, and we can see from the graph
that the different animals had different core temperature already from the
start, in addition there was a relatively small sample size, so it is difficult to
say whether these differences are purely because of the infection or whether
individual differences has also played a role. It is also not certain if these
results are based on this specific illness, which will not be especially prevalent
in our groups of sheep.

Another paper we looked at was investigating the effects of sheep- and
goatpox, [17], in both sheep and goats. This paper showed that the body
temperature started differentiating from the control animals after 3-4 days
after inoculation, and the biggest difference occurred around 6-7 days after
which the temperature started to drop.

Sheep-pox is shown to affect the core temperature in sheep [17]. The body
temperature of infected sheep start to differ to that of healthy sheep after 3-4
days of inoculation. The biggest difference of the core temperature between
infected and healthy animals occurred 6-7 days after inoculation, after which
it started to decrease. The infected sheep had elevated temperature compared
to the healthy sheep. Mortality in the animals was observed after 7 days, and
not all animals survived the experiment. From this we can see that mortality
was observed shortly after reaching the maximum core temperature, which
means that, in case other illnesses follow the same pattern in regards to
temperature difference and mortality, we have to be able to detect differences
from the normal quite early in order for our model to be able to save the
sheep. Also this decease is not likely to have affected our groups of sheep,
and it is not certain that the results can be generalized to be accurate for
other deceases, although they do seem to co-align with the other information
we have gathered so far.
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3.3 Other Effects on Sheep Core Tempera-

ture

As well as the differences in body temperature due to illness, we were also
interested in which other factors could effect the core temperature of sheep.
In [18], they found that the body temperature changed with the season on
sheep in tropical climates; in the summer the body temperature was higher
than in the winter. The change throughout the year of the environmen-
tal temperature was similar to that of the body temperature, however the
maximum- and minimum points of the environment was shifted somewhat in
relation to the body temperature, suggesting that maybe the light has more
impact on the circadian rhythm than the temperature.

These finds are interesting, and something we might have to take into
consideration when developing our models. If our models are to change based
on the length of day, it will likely need to take the latitude into consideration
as well. The phase shift between summer and winter, as seen in the study,
was approximately 1.5 hours [18]. This is not a lot, and considering we have
data from an 3 month period we might not see a big change. In this study
they used one breed of sheep, and only in one location with a specific climate,
thus it is difficult to say if these finds would have been the same had one used
a different breed in different climate zones and longitudes. Similar changes
can also be seen in related species such as alpine ibex [19] and red deer [20].
We might need to take the seasonal changes in consideration later.

The effects of shearing sheep were investigated in another of the papers
[21]. In this paper they showed that the shearing had significant effect on
the circadian rhythm of the sheared sheep, that lasted for at least a month.
They discussed the change in temperature most likely was an adaptation to
the new circumstances as the sheared animals no longer had their fleece that
insulated them, however the stress of having been sheared might also have
had some influence, at least in the first hours or days after shearing. These
finds are interesting as it shows that outer conditions can influence the core
temperature in sheep. However we are unsure whether this will be relevant
for our study as our sheep are not shared before going to the pasture.

Starvation was also found in another paper [22] to lower the core tem-
perature. This was tested in both goats and sheep, and although they had
some difference in the reaction to starvation, both animals got a lower core
temperature. While we would expect the sheep that are grazing to always
have enough food, some illnesses might make the sheep eat less, as seen in
Chapter 3.1, and starvation symptoms might occur because of that.
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3.4 Other Findings of Effects on Core Tem-

perature of Illness

A paper, [23], we found quite interesting looked at the change of body tem-
perature before minor illnesses in (human) infants. They were able to see
differences from the normal core temperature during night up to 7 days before
other symptoms were visible, and the biggest difference was 3 days prior. The
abnormal temperatures were usually within the normal temperature range,
however it didn’t fit the pattern of temperature oscillation. We find this very
interesting as it might tell us that illnesses can be (at least in some cases)
detected by temperature oscillation abnormalities before other symptoms are
visible, even when the temperature isn’t high enough to be categorized as
fever [23]. It was also mentioned that before sudden-infant-death, similar
changes had been observed. How useful this paper will be for us is debatable
as this concerns human infants, and not sheep. However as the circadian
rhythm is present in all animals it is not unimaginable that similar reactions
to illnesses are present in different species.

Poisonings can have severe effects on animals, and possibly lead to death.
Some cases of poisonings can lead to the animal not eating and being inactive
[24], not eating/starvation can induce hypothermia in sheep [22]. Severe
poisonings have also been showed to cause hypothermia in both people and
animals, even in conditions where development of hypothermia would be
unlikely [25] [26]. In humans we know that different poisonings have different
effect on the core temperature. While some poisonings cause hypothermia,
some cause fever [27]. Similar effects might be present in sheep.

3.5 Existing Digital Tools for Looking after

Sheep

While we don’t expect to end up with a finished product, it can be useful
to see what tools are already in place to help the farmers to look after their
sheep while they are on pasture. This can also serve as inspiration for which
technologies we might pair the illness detection with.

We found two products, that are rather similar, that offer the farmers help
in the form of GPS-tracking. These products are Findmy [28] and Telespor
[29]. Both these products use GPS senders that are mounted around the
neck of the sheep, and send information about the individuals location at
a specified and adjustable time interval, for example once a day. These
products also offer additional features like alarms that notifies the farmer
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in case an individual has been moving too little and/or is going towards
boundaries that are digitally set.

These products can be very helpful for the farmers as it can help locating
the sheep, and the added functionalities of the alarms can give some rudi-
mentary surveillance of the sheep. The location becomes especially useful at
the end of the grazing season, when the sheep are going to be retrieved from
the pastures.

While these products can be of great help, they have some limitations.
The sampling frequents is low, at most a few readings a day, which makes it
difficult to pinpoint the exact position of the animal at all times. While the
frequency is changeable, an increased frequency comes at the cost of lowered
battery life, which can result in the need of changing batteries through the
grazing season. The senders and the equipment that is needed is costly,
especially considering that sheep are not of great value, so only a minority
of the sheep will be equipped with the senders.
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Chapter 4

Data

The data we used for our analysis, was provided by the Norwegian Institute of
Bioeconomy Research (NIBIO), and contained about 4.3 million records. The
temperature was recorded once every minute for each of the sheep throughout
a period, in which the sheep were grazing. There were some variations when
the period started and ended, but generally the period was from the first half
of June until the first half of September.

4.1 Study Animals

The data was collected from selected lamb in two different herds. The specie
was Norwegian White Sheep (NWS)[3], and the two herds were located at
Tingvoll (62.9861 N, 8.2482 E), and Tynset (62.3169 N, 10.9534 E). Tingvoll
is a coastal area, while Tynset is an inland mountain area, thus the climate
and conditions are somewhat different. Another difference between the loca-
tions is that Tingvoll has a high incidence of tick-born fever, while Tynset
has no incidences of this illness [30].

There were surgically implanted temperature and heart rate sensors in
the sheep. However, as we only look at temperature in this thesis, we will
only be discussing the data collected by the temperature sensors.

The temperature sensor (Centi-T version 14, Star Oddi, Gardabaer Ice-
land) was sterilized by using a 12 hour gas sterilizer that used propylene gas,
and then surgically implanted [3]. The sensors were retrieved at slaughter.
The herd at Tingvoll had the sensors implanted at a mean age of 49 days,
while for the herd at Tynset the mean age was 51 days. The sex distribution
was 11 females and 9 males at Tingvoll, and 8 females and 12 males at Tynset
[3].

At slaughter not all sensors were found. From the Tingvoll herd 17 out
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of 20 sensors were found, and from the Tynset herd 15 of 20 sensors were
found. The mean age at slaughter were 136 and 144 days respectively for the
Tingvoll and Tynset herds. The data was retrieved from the sensors using
a communication box and the Mercury software 4.5 (Star Oddi, Gardabaer
Iceland) [3].

4.2 Follow-up of the Test Animals

After the insertion of the sensors, the lamb were kept for observation and
looked after. The herd at Tingvoll was first kept in a barn for two days
post-operation, and then kept in a fenced pasture for 4 more days. During
this period the sheep were clinically examined morning and evening. After
these six days, the lamb were collected and examined. If the lamb showed
signs of TBF, they were treated with antibiotics. The same procedure was
repeated fifteen days post-operation. The lambs were observed every morning
and evening until they were moved to a summer range pasture, where they
stayed until the end of August. During the time the lamb were at the summer
pasture, they were observed 2-3 times a week [3].

The herd at Tynset was kept in a fenced pasture until they were released
on the free-range pasture. During the initial, post-operation period, they
were looked after twice a day, and were given antibiotics to prevent inflam-
mation in the surgery wounds [3].

4.3 Structure of Data Set

The data set that was provided consisted of records of the temperature.
Each record had information of the ID of the sheep, its gender, the time
of recording, date of birth, herd, and the ID of its mother. This is quite
a lot of information, and gives us the ability to analyze the temperature in
regards to several different variables, and thus we might be able to discover
dependencies that can be crucial in order to make an accurate model.

4.4 Evaluation of Data Set

Our data set is quite big and contains a lot of measured temperatures. It
also contains information that allows us to analyze on attributes, such as age,
gender, location, etc., which is very positive. However we think this data set
is still too small to give any definitive conclusions as the number of animals
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is only 31, data is only collected from 2 herds/locations, and we only have
data from lamb and not fully grown sheep.

In an ideal world we would have had access to more data, however this
would demand more time for analysis, and possibly more computing power
than we have available. We think, despite our objections, that the data set
is big enough to at least give a picture of the situation, and give us some
valuable information about the nature of temperature in lambs and how
illness affects it.
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Chapter 5

Analysis

We analyze the data set to find evidence supporting or contradicting the
information we have found. Through analysis we want to find dependencies
and factors that influence the temperature and circadian rhythm of the sheep.
In order to make an effective model for predicting illness in sheep, based on
temperature alone, we need to know what to look for, and what would be
considered normal and abnormal.

5.1 Tools and Methods used for Analysis

In our analyses we use Python[31] as a tool for modifying, extracting and ana-
lyzing the data. For visualization of the results we use the plugin PyPlot[32].
We use these tools during the analysis as they offer good support for our
intended analyses, and because we are already familiar with the use of these
tools.

Our analyses are for the most part directed towards the circadian rhythm,
and changes/differences in this. As we want to find a general solution that
will fit all sheep, our analyses often revolve around group differences, and
trying to define what is a normal pattern. Our analyses do however also
include more individualistic and long-term analyses.

5.2 Initial Experimental Analysis

Our first analyses must be seen as experimental as we were still trying to
find out how we were to analyze the data, and what we were trying to find.
In this early period of analysis we were also still getting to know the data.
Nevertheless some of our results seem to be of importance, especially as they
made the foundation of our later analyses.
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Figure 5.1: Changes of body temperature throughout season

This figure plot the maximum, median, mean, and minimum temperatures of all
the sheep throughout the season.

5.2.1 Entire Season

In Figure 5.1 we have plotted maximum, minimum, mean and median values
from the data from all the sheep for the entire period we have measurements.
As we can see from this the maximum and minimum measurements each day
vary a lot, however the mean and median temperatures seem more stable.
The minimum temperatures sometimes go so low that they are not even in
the plot, and the maximum temperatures are also very high. We also see that
there are a lot of these very high and low values, implying that there are lots
of outliers in our data set. Something we think is very interesting is how the
variance in temperature is much lower at the beginning and at the end of
the measured period. Our assumption is that the procedure of inserting the
sensors has affected the sheep in the first days after the insertion. We know
that the sheep were retrieved from pasture, and eventually slaughtered at the
end of the period, something that also likely have affected their temperature.
We know from earlier that the circadian rhythm and the core temperature
can be affected by shearing, see Chapter 3.3. In the beginning of the depicted
period, we only have data from the herd at Tingvoll, while at the end we
only have data from the Tynset herd. This might have had an effect.
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Figure 5.2: Temperature changes through week

This depicts a ”typical” week for all individuals. It shows the maximum, median,
mean, and minimum temperatures of the week.

5.2.2 Weekly Temperature Oscillation

We also analyzed how the temperature oscillated through a typical week, the
results of which is depicted in Figure 5.2. In this analysis we put all the
records from the entire period into a time frame of one week, preserving the
original time of each record.

The temperature oscillation through the week seems quite stable, and
follows a clear pattern, with the daily maximum being recorded during the
day, and the daily minimum during the night. This strongly indicates that
the circadian rhythm is both present and stable in the lambs. The problem
with this analysis where we have combined data from different periods and
individuals, is that the pattern we have is only an average. This might not fit
the individuals patterns if they seem to differ to a large degree. This analysis
will neither take the possible development in the circadian rhythm over time
into account.

5.2.3 Abnormalities in Data

As we started to look at the temporal history of the individual lamb, we
noticed that there were several periods that differed significantly from what
could be described as a normal temperature. We also noticed that the tem-
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Figure 5.3: All temperature data of Ti60023 through the season

This is temporal data for the individual Ti60023. It shows how the temperature
has changed throughout the season

perature the first 2 weeks at the beginning and last 2 weeks at the end of the
measured period were quite low for all lamb. This is might be due to the sen-
sor being implanted, and the lamb getting slaughtered. Figure 5.3 illustrates
this, where we show the temporal history of the individual Ti60023 through
the season. We see from this that the temperature has been in periods sig-
nificantly elevated in rather large parts of the measured time period. If we
want to define a normal daily oscillation, these abnormalities can undermine
our results as they are present to such a large degree.

In order not to let abnormal records, of which we know there are many,
affect our data, we decided to created a new data set. The new data set
would be based on the existing one, and differ by removing the abnormal
periods. We selected these periods based on simple visual analysis. We have
depicted the mean and average temperature through a day, based on all the
data, for both the data sets in Figure 5.4.

When using the full data set we can see from the figure that the mean
value is too much affected by the outliers to be a good representation of a
normal day, the median value is more robust against these outliers, so it gives
a better representation we will therefore used the median value of analysis on
the full data set. When comparing the mean and median value of the data
set without abnormal periods, we see that there is not so much difference.
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Figure 5.4: Comparison of mean and median temperature through day

This figure compares the average daily oscillation by using the mean values or the
median values for both the full data set and the data set in which all abnormal
periods are removed.

Here we chose to continue with using the mean value as it seems to give a
smoother curve.

5.2.4 Individual Differences

In Figure 5.5 we have depicted an average daily oscillation of all the individual
lambs. As we have data from 31 lambs, we decided to depict the curves
in several plots, as plotting all 31 curves in a single plot would be very
difficult to read. We can’t see anything in great detail in this figure, however
we are able to see that the average day for the different individuals vary
greatly. Between some of the individuals the temperature varies by half a
degree, which is quite significant. We can also by this figure see that the
amount of oscillation and the nature of the curve is different from individual
to individual. These big individual differences might mean that in order to
efficiently and accurately detect illness in sheep, we might have to fit the
prediction algorithm to each individual. These changes might also be caused
by other factors. Some individuals were more sick than others, so this might
have affected the results of the analysis greatly.

19



Figure 5.5: Comparison of an average day for all individuals

The average daily oscillation for each individual. This illustrates how great the
individual difference is.

5.2.5 Average Core Temperatures

We computed the mean temperature by using the data set where the abnor-
mal periods are removed. The mean temperature for all lamb was 39.52◦C
with a standard deviation of 0.17◦C. The mean standard deviation for the in-
dividuals average temperature is 0.3◦C, implying some variation is normal as
seen in Figure 5.4. However, in Figure 5.4 we see that the difference between
the maximum and the minimum is approximately 0.35◦C. This difference
gives a variation from the average temperature of approximately half that
of the mean standard deviation. We can therefore expect there to be larger
differences than what we see for the average temperature curves.

We did also calculate the mean temperature for both herds and discovered
a rather large difference. The Tynset herd had a mean temperature of 39.6◦C
with a standard deviation of 0.17◦C and a mean standard deviation from the
individuals average temperature of 0.25◦C. The Tingvoll herd had a mean
temperature of 39.46◦C with a standard deviation of 0.13◦C and a mean
standard deviation from the individuals average temperature of 0.34◦C.

The mean temperatures differ significantly between the herds. A possible
explanation is that they have been exposed to illnesses at a different rate
as discussed in Chapter 3.1. Interestingly we see that while the Tynset herd
has standard deviation from the mean temperature, the individuals standard
deviation from its mean temperature is lower than for the Tingvoll herd.
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When comparing results for the two herds, we must take into considera-
tion that the amount of illness was likely different for the herds, see Chapter
3.1, and we might therefore have less data for one of the herd as abnormal
periods had been removed.

5.3 Age Group Based Analyses

We analyzed the data to see if there was changes in the temperature and
circadian rhythm as the lamb grew and got older. As the lamb grow they
get fattier and bigger[13], something which might have had an affect on the
core temperature and its oscillation. The nature of the fleece also changes a
bit, which is another possible cause for change.

5.3.1 Average Temperature for Age Groups

We divided the temperature records into age groups, of the size of one week,
and measured the average for these. This way we wanted to see if the temper-
ature generally changed through the season, and the results of this analysis
can be seen in Figure 5.6. Throughout the season there is little change in
the average temperature, with the exception of the very beginning and end
of the period, where the temperature is elevated. The difference of the start
and end of the period to the rest of the period, might be explained by what
happened in both these periods. During the start it is likely that the tem-
perature has been elevated due to light infections, and other causes related
to the operation, while the elevation at the end is probably due to stress and
other causes related to retrieval from pasture, shearing, transport, handling,
and eventually slaughter.

There might be fewer individuals in the youngest and oldest age groups
as the lamb were born on different days. A smaller sample size at the ends
of the age spectrum could have influenced these results.

5.3.2 Daily Oscillation in Age Groups

Possible change in the daily oscillation of the core temperature was also
something of great interested to us. We analyzed to look for signs of changes
in our data set. We sorted the temperature records in age groups, that were
3 weeks long, and compared their daily oscillation. Part of the reason to now
use larger age groups was to get more data forming the foundation for each
group, and to easier compare the groups. Results of this analysis can be seen
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Figure 5.6: Average temperature based on age

The plot shows the average temperature for each week of age, excluding all tem-
peratures above 41◦C, or below 37◦C. Temporal data from all individuals from
both herds are included.

in Figure 5.7. We calculated the average of one hour intervals through the
day, and left out values that were over 41.0◦C or under 37◦C.

Younger age groups have a lower amplitude than older groups, indicating
a change in the amplitude over time. The change in amplitude will not by
itself create a change in the average temperature, so this result is consistent
with our previous discoveries. The oscillation seem to become smoother with
age.

We notice in our results a clear change in the phase of the oscillation,
where young lambs reach their maximum and minimum temperature later
in the day than the older sheep. This change, especially regarding the maxi-
mum, is interesting, as the phase seems to be shifted approximately 5 hours.
While we see a change as the lamb age, it is not certain whether this is a
causality or a correlation. The lamb are born in a relatively short time frame,
so the changes we see over time could very well simply be caused by seasonal
variance that happen to correlate with the aging in our case.

During the year, it is normal that the temperature changes, most likely
due to the change of length of day [18]. However seasonal change was found
to be around 1.5 hours between winter and summer, which is much less than
the change we observe. It could be that the seasonal change in sheep in
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Norway are different, due to different lighting and climate conditions. The
seasonal change of length of day is much greater in Norway than it is in a
tropical environment as seen in the paper, [18].

Figure 5.7: Comparison of daily oscillation differences based on age groups

The average daily temperature oscillation for different age groups of lamb. The
average temperature was measured per hour, and only temporal data in the range
of [37◦C - 41◦C] were used in the analysis.

5.3.3 Differences of Average Temperature Change be-
tween the Herds

In Figures 5.8 and 5.9 we have depicted how the average temperature changes
for the different herds through out the season. While we didn’t find this type
of plot as shown in Figure 5.6 very helpful, however we see here that there
are some differences between the herds. Most notably there are differences
at both ends of the periods; in the start the herd at Tynset, see Figure 5.9,
has an elevated average temperature, while the average temperature of the
herd at Tingvoll, see Figure 5.8, seems normal. At the end of the period
the average temperature of the herd at Tingvoll increases, while the average
temperature of the herd at Tynset decreases. We find these differences rather
puzzling.

The difference that we see at the ends of the measured periods is the most
puzzling; both herds experience a change in the average temperature, but the
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Figure 5.8: Average temperature based on age - Tingvoll

The average temperature per week of age for the herd at Tingvoll. Only temporal
data in the range of [37◦C - 41◦C] were used in the analysis.

changes are opposite of each other. Maybe this could be caused by different
handling before slaughter and different pre-slaughter conditions? We know
that the herd at Tynset was slaughtered in a large scale facility, while the
herd at Tingvoll was slaughtered in a small scale slaughterhouse.

From both figures we see that there are relatively few data points at
the youngest and oldest age groups. This suggest comparably little data
for these periods, making them less reliable and individual differences and
outliers have greater impact.

5.3.4 Differences of Changes of Daily Oscillation be-
tween the Herds

We did also plot the changes of the daily temperature oscillation for both
the herds, the results of which can be seen in figures 5.10 and 5.11. In these
plots we have shown the average temperature for 1-hour intervals through
a day for each of the age groups of each of the herds. We did not include
temperatures that were over 41◦C or under 37◦C.

Straight away we can see that there are clear differences in the change
of the daily oscillation between the herds, and we also see that these plots
doesn’t resemble the change for both herds combined as shown in Figure 5.7.
We don’t see the steady phase shift and change in amplitude in Figure 5.10

24



Figure 5.9: Average temperature based on age - Tynset

The average temperature per week of age for the herd at Tynset. Only temporal
data in the range of [37◦C - 41◦C] were used in the analysis.

and 5.11 as we do in Figure 5.7.

We do see change in the amplitude for the herd at Tingvoll, see Figure
5.10; with age the amplitude increases, which coincides with the results for
the analyses in figure 5.7. However, it doesn’t change as much for most of the
age groups. There is some change in the phase, however not as much as we
have previously seen, and it seems to stabilize already after 9 weeks of age.
We also see that the oldest age group is the one that differs the most from
the others, and the temperatures here are quite high; at the maximum the
average temperature is 39.9◦C. This is reflected in the results we see in figure
5.8 where the average temperature in the last weeks are higher than normal.
We can therefore consider it likely that the curve we see for the age group
”18-21” is abnormal, and that it has been influenced by outer factors as we
have previously discussed regarding gathering the sheep from the pastures,
shearing and eventually slaughter. In Figure 5.8 we see that there are no
lamb over the age of 19 weeks, telling us that there are few data points in
this age group.

In the results for the herd at Tynset, see Figure 5.11, we also see that
it is the last age group that differs the most from the others. Here the
temperatures in the last age group is much lower than the other, and also
in this herd this coincides with the average temperature in the last weeks,
however we think it is strange that the temperature drops for one of the herds
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while it increases for the other. As we discussed in Chapter 5.3.3, there are
less data at both ends of the age spectrum, making the results for these ages
less reliable. Similarily to the Tingvoll herd there are no lamb in the Tynset
herd above the age of 19 weeks, as cen be seen in Figure 5.9.

For the herd at Tynset we do also see a slight phase shift, however unlike
the herd at Tingvoll it doesn’t change as early, and for the majority of the
periods it remains un-shifted. If we compare the two herds we see that in the
age group ”15-18”, the temperature has a similar range [39.2◦C−39.7◦C] for
the herd at Tingvoll and [39.4◦C−39.8◦C] for the herd at Tynset. The same
age group has it’s peak at slightly different times, approximately 15.00 for
the herd at Tingvoll and 17.00 for the herd at Tynset, which is a difference
of 2 hours. This difference indicates that age alone is not responsible for the
phase and temperature change in the circadian rhythm, but that it is affected
by other factors as well.

5.3.5 Differences between the Herds During Same Time
Periods

As previously discussed it is assumed that the amount of daylight plays a
bigger part in the seasonal change in the circadian rhythm than the environ-
mental temperature [18]. The herd at Tynset was younger than the herd at
Tingvoll, however the amount of recorded time, and age of insertion were ap-
proximately the same. This would lead the age groups of the herd at Tynset
to be shifted later than the same age group of the herd at Tynset. As most
of our records are from after summer solstice, a certain age group of the herd
at Tingvoll would for the most part have longer days than that of the same
age group at Tynset. Thus when we compare the circadian rhythms of the
different herds we would expect the herd at Tynset to reach its maximum
temperature earlier than the herd at Tingvoll, however we see the opposite
happening. Does this mean that the amount of daylight is irrelevant for
the circadian rhythm, or are other factors simply more important or more
pronounced in our data?

We have previously shown that there are quite a lot of individual differ-
ences, and in this analysis we are splitting our data into two groups, consisting
approximately of 15 sheep in each, we then break down the data into even
smaller groups based on the age. What’s more is that there are large amounts
of abnormal temperature records, that we remove so that the abnormalities
doesn’t influence the results too much, resulting in even less amount of data
for the analysis. We must therefore ask ourselves if the data we use for these
analyses are sufficient, and whether or not the data set is big enough to hide
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Figure 5.10: Differences in daily temperature oscillation between different
age groups - Tingvoll

The average daily temperature oscillation for different age groups of lambs at
Tingvoll. The average temperature was measured per hour. The abnormal periods
were removed.

the individual differences.

To easier compare the change and the temperature oscillation between the
herds, we selected two time periods, in which we measured the average daily
oscillation for each of the herds, and plotted them together. The results can
be seen in Figure 5.12. In this analysis we tried to choose time periods that
were far apart in order to maximize the potential change, and at the same
time we tried to avoid the periods we had seen giving abnormal temperatures,
which were visible for both herds at the ends of the collection of data. For
this analysis we used the data set without abnormal periods. We decided not
to use the full data set because we didn’t want the results to be affected by
abnormalities, although this comes at the cost of less data for our analyses
which is unfortunate considering the already relatively small sample size.

In the results from this analysis we see that the different curves show more
similarities with the other curve of the same herd than any of the curves for
the other herd. We do also see some changes in both the herds with time,
however this change is slight. Strangely the amplitude of the herd at Tynset
seems to decrease rather than to increase as we would have expected based
on our previous analyses. We find this rather strange. Because of this we
decided to do the same analysis, but this time we would use the entire data
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Figure 5.11: Differences in daily temperature oscillation between different
age groups - Tynset

The average daily temperature oscillation for different age groups of lambs at
Tynset. The average temperature was measured per hour. The abnormal periods
were removed.

set including the abnormalities. The results can be seen in Figure 5.13.

In this new analyses we see that the different time periods for the same
herd are now more similar to each other than they were previously. We
also see that the lowered amplitude in the herd at Tynset seems to have
disappeared, we therefore think that by removing all the abnormal periods,
we probably removed too much data for that time period for the herd at
Tynset.

We see in both Figure 5.12 and 5.13 the phase is changed for both herds;
for the herd at Tingvoll the maximum is shifted to a bit later in the day,
however this is hard to see as the top of the curve for the latest period for
the herd at Tingvoll is quite flat. For the herd at Tynset the change is
opposite; the maximum is shifted a bit earlier, approximately an hour. The
minimum for both the herds in both the analyses seems not to change at all,
which is interesting. This leads us to think that while the circadian rhythm
has a period of 24 hours, it doesn’t follow that the temperature rises and
falls for an equal amount of time. So that if we imagine the rising period
to be the day and the falling period to be the night, day and night isn’t of
equal length and does vary with time.

It is very difficult to draw conclusions based on these age based analyses

28



Figure 5.12: Comparison of average daily oscillation between the herds during
same intervals

Comparison of average daily oscillation for both the herds over two different time
periods. Data sets used do not include abnormal periods.

both due to the small sample set, but also as the results are ambiguous and
sometimes contradict each other. However, the fact that the different herds
had quite different profiles during the same time periods, and in areas with
very similar amount of daylight, leads us to think that while the amount of
daylight do influence the circadian rhythm, there are also other important
factors. It is hard to say how much of these changes are due to age, if anything
at all, as the aging of the sheep coincides with the change in season. There
might be other factors that also change with time, such as availability and
quality of food, downfall, and so on. Although we do see a change with age
here, we cannot be sure if this is caused by or coincides with age.

5.4 Gender Based Analyses

We thought that it might be interesting to see if there is any differences
based in the gender of the lambs. We therefore made a graph showing the
differences through out an average day. We have the results depicted in
Figure 5.14, here we have used both the full data set, and the data set
where the abnormalities are removed. From the graph we can see that for
the full data set there are some differences; the female lambs have a lower
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Figure 5.13: Comparison of average daily oscillation between the Herds dur-
ing same intervals with abnormal values

Comparison of average daily oscillation for both the herds over two different time
periods. The full data set is used.

amplitude than the male lambs, however when we remove the abnormalities
this difference almost disappears. After removing the abnormalities we can
still see some difference in the low point. The male lambs have, during the
night, a lower temperature than the female labs, however this difference is
approximately 0.05◦C. As we have in total data from 31 lambs, where about
half were female and the other half naturally were male, we are fortunate
that both sides are approximately evenly represented. However we don’t have
enough data to be able to definitively state that there in fact are differences
between the genders. As we have earlier stated, the individual difference
is quite big, so such a small difference is well within the natural individual
variance.

5.5 Analyzes Based on Herds

Analysis on differences in the daily oscillation specifically on the two groups,
without regarding age, were also performed. We wanted to see if there were
any significant changes from one herd to another, not taking age into consid-
eration, as they were exposed to a different climate, surroundings, and most
likely faced different illnesses. The results from this analysis can be seen in
Figure 5.15 where we have compared the results with the full data set and
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Figure 5.14: Comparison of gender differences based on different data sets

Comparison of the average daily oscillations between the genders. Comparison
with both the full data set and the data set without abnormal periods. For the
full data set median values are used, while for the data set without abnormalities
mean values are used.

the data set where we had removed the abnormalities. We do see in these
results a quite significant difference between the herds both when using the
full data set and when using the data set where we had removed the abnor-
malities. The herd that was on Tynset had a higher temperature through
out the day than the herd at Tingvoll. Whats more is that the herds have a
different phase; compared to the phase of the herd at Tingvoll, the herd at
Tynset have a phase that is shifted significantly forward. These results was
also seen in Chapter 5.3.2.

It might be outer factors of these locations that have affected the herds
into having both different temperatures and phases, or maybe this is just a
result of individual variances. We know that the lambs at Tingvoll had the
sensors inserted around 2 weeks before the herd at Tynset, this was because
the lambs had been born at different dates, so they were approximately the
same age at insertion of the sensors. This shift can have caused these herds to
differ at least in the phase; we have read [18], and discussed that the change
in phase might be due to differences in the length of the day. In this case the
herd at Tynset would have gotten the sensors implanted just before summer
solstice, while the herd at Tingvoll would have already been measuring more
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data before summer solstice. Thus this difference in the phase might be
caused by a difference in the period that was measured. We also know that
both herds were measured for about the same amount of time, however it
might be that measuring 2 weeks at the beginning of June and 2 weeks in
the beginning of September will give different records.

What is more puzzling is the difference in temperature; it is quite sig-
nificant, and is constant through out the day. The question is whether this
is caused by the same factors we have discussed that might have caused the
difference in the phase, or if this is caused by something else. In the com-
parison of the different age groups we did see a clear difference in the phase,
however the difference in temperature was nowhere near what we see here.
This leads us to think that there are other factors that are to blame for the
temperature difference, and that this is, at least to a degree, a separate is-
sue. It might also be that this temperature difference is caused by individual
differences as the difference in temperature we can see here is less than the
difference we saw between individuals. Given the relative small sample size
of each location we cannot rule out that individual differences has caused the
average measurements to be different between the herds.

Figure 5.15: Comparison of differences in location based on different data
sets

Comparison of the average daily oscillation between the herds. Comparison with
both the full data set and the data set without abnormal periods. For the full
data set median values are used, while for the data set without abnormalities
mean values are used.
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5.6 Period Based Analysis

After doing several group based analyses we started to look at the individual
lamb, and comparing different periods of the individuals. By doing this
individual comparison we look for patterns that otherwise would be lost due
to averaging.

In Figure 5.16 we have compared two periods in which there are fever,
and a seemingly normal period for the individual ”Ti60023”. We can here
quite clearly see that the fever periods substantially differ from the normal
period, both in terms of the lack of any daily rhythm and in terms of the
elevated temperature.

We do also see quite a big difference in the different fever periods, and
we see that they are very different. The 2nd fever period (green) seem to
last longer and have a temperature that climbs and stay more steadily than
that of the 1st fever period (blue). The 1st fever period is characterized
by sudden big changes to the temperature, and we can see that some days
before the first sudden temperature increase the circadian rhythm is off, and
the nightly temperature is much higher than normal. We can also see that
the temperature lowers just before the first sudden increase. We don’t see
the same in the 2nd fever period.

In the 2nd period we see that the temperature drops half way through
the period but then climbs again, at at a certain point it suddenly reaches
temperatures well above 42◦C before plummeting to temperatures under 40
◦C, and then going back up to around 41◦C. This probably isn’t a good sign
for the lamb’s health.

The big variation between the two fever periods leads us to think that
the sheep was suffering from different illnesses during these two periods, and
that different illnesses will have a different temperature pattern. This might
mean that there is no one way to predict all illnesses, but it can also mean
that it might be possible to predict the illness based on the temperature. If
this is the case, and if we would be able to implement it, we could give the
farmers even more information, easing the decision making and ensure that
the sheep can get the most efficient care.

In Figure 5.17 we have compared one period where there was fever, one
normal period, and one period where there were a lot of low temperatures
for the individual ”Ty60001”. The period that differ the most from the
others here is the period with fever, where we can clearly see the elevated
temperature.

The fever period begins with a rapid increasing temperature that reaches
almost 42◦C. The temperature stays high for some time before it slowly starts
to decline. We see that after the temperature has declined within the normal
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temperature range, it still takes a few days for the temperature to stabilize.
Before the temperature starts to rise, we do not see any big disturbance.
This fever period is also rather different from both the fever periods depicted
in Figure 5.16. The temperature climbs quicker, seems more stable at the
top, and falls quicker. Whether these differences are due to the periods being
caused by different illnesses, or if it is due to different individual responses is
difficult to say and based on our data we cannot make an informed conclusion
on this.

The period with low temperatures doesn’t differ much from the normal
period; it follows more or less the same pattern. We see that the low tem-
peratures happens usually around the expected minimum from the circadian
rhythm, and they don’t last long. In the period with low temperatures we see
that on one occasion the temperature drops as low as 38◦C, while it doesn’t
last long, it last for enough time for us not to assume it was an error. Before
this temperature drop there seems to be a slight disturbance in the circadian
rhythm a day before it occurs. We also see some slight disturbance at the
end of this period. Whether or not these disturbances are of any significance
is hard to say, as there are some differences from day to day even in the
normal period. We also see that the abnormally low temperatures occurs
during the night, when the core temperature of the sheep is supposed to be
low. During the night, the environmental temperature is also at it’s lowest,
so it would make some sense that the temperature sometimes drops lower
than usual due to inactivity and low environmental temperature.

As we know, low temperatures can be a sign of very poor health and/or
very serious illness as discussed in Chapter 3.1, however due to the short
periods and no sign to fever before and after each temperature drop, we do not
think that illness is the cause for these low temperatures. Poisoning can also
cause lowered temperatures, see Chapter 3.3, and in case of food poisoning
the short time frame could possibly be explained by the time this poisonous
food is in the digestive system, however this builds on the assumption that
the sheep only reacts to the food as long as it is in the digestive system.
Another similar possible explanation could be that the short time frame is
related to the time it takes for the body to break down the toxins. Both
of these possible explanations are purely hypothetical, and we have no data
supporting these hypotheses as we don’t know what they were eating before
and around the time of these incidents.

Outer factors such as temperature, humidity, wind, and downfall could
possibly also have an effect on the temperature of the lamb. The incidences
of low core temperatures might just have been cases where the lamb were
simply cold, without any causes related to the lamb’s general health.

34



Figure 5.16: Comparisons of different periods for Ti60023

Comparison between 3 different time periods for the individual Ti60023. Plotted
are two periods, in which there were fever, compared to a seemingly normal period.
The labels on the time axis does not show the actual date of the recordings, but
is related to the amount of time after the first record in each of the time periods.
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Figure 5.17: Comparisons of different periods for Ty60001

Comparison between 3 different time periods for the individual Ty60001. It con-
tains one period, in which there were fever, one normal period, and a period, in
which there were several occasions of abnormally low temperatures. The labels on
the time axis does not show the actual date of the recordings, but is related to the
amount of time after the first record in each of the time periods.
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5.7 Individual Analysis of Sheep Ti60097

We wanted to take a deeper look at some of the individuals in order to see if
we found interesting data that would have been lost in our previous analyses
as we used the average values for several individuals.

Different illnesses might have different temporal finger prints. These
would be difficult to see if we are just looking at average illness periods. Look-
ing at individual cases of fever can therefore give us greater understanding
in how illness periods differ.

The individual sheep we found the most interesting was Ti60097, as this
was the only sheep to die of other causes than slaughter, more specifically the
cause of death was coccidiosis [3]. As we want to be able to detect illness, and
first and foremost serious illnesses, finding the symptoms of such a serious
decease is for us very important.

5.7.1 Method

In Figure 5.18 we have depicted the temporal history of Ti60097 from the
sensor insertion to the death of the animal. We have in this figure also
depicted some lines representing the fever threshold, a base temperature,
and a lower threshold for what we consider normal temperatures. The fever
threshold was chosen considering the works of Grøva et.al.[15]. The base
temperature was chosen based on what we had seen in Chapter 5.2.5; the
temperature was often oscillating around a temperature around 39.5◦C. The
lower threshold was chosen to be 38.5◦C, as the normal range of temperature
is above 38.5◦C, as discussed in Chapter 3.2.

5.7.2 Discussion

The first aspect that strikes us as strange about the temporal history of this
sheep is that it has barely had fever, however as cossidiosis have few clinical
signs this might be expected, see Chapter 3.1. The temperature reaches
temperatures above the fever threshold only for a short time, not more than
2 days before it’s death. After it reaches the threshold the temperature
quickly starts to decline steadily to around 38.5 ◦C where it, after some
time, suddenly drops, indicating death. The temperature drops sometimes
under the lower threshold for short periods of time, but the temperatures we
see are in no way extreme, and there is nothing that immediately indicates
illness.

We noted that the temperature seems a bit low; for most of the time the
temperature is below the base temperature. Not including periods of illness,
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this lamb had an average temperature of 39.34◦C and a standard deviation
of 0.27◦C. The average temperature if all sheep, except this individual and
not including illness periods, is 39.53◦C with a standard deviation of 0.17◦C,
giving us a range of [39.36◦C , 39.70◦C]. From Chapter 5.2.5, looking only at
the Tingvoll herd we get an average temperature of 39.46◦C with a standard
deviation of 0.13◦C, giving us a range of [39.33◦C , 39.59◦C]. We see that the
average temperature of this individual is barely within the standard range of
average temperatures for the Tingvoll herd and falls just short for the range
of both herds combined.

During the last week we also see that there is little oscillation, and the
changes doesn’t seem to fit any pattern. It seems that the natural circadian
rhythm had broken down. We know from Chapter 3.1 that low temperatures
could be a sign of very serious illness, as this could be an indication of failing
circulation. During the last 4 days we also see some very sudden changes
in temperatures. The temperature jumps with almost 1 degree in a short
amount of time. We are also quite certain that these jumps are not due
to measuring errors as the temperature stays at the new temperature for
a while. This coincides with what we read about illness in human infants
[23], where they stated that they were able to see differences in the circadian
rhythm days before illness occurred, without the observed temperatures to
be outside the normal range. In that paper it was also stated that similar
disturbances had been observed in relation to sudden infant death.

One would naturally assume that very high temperature would be what
we were looking for in order to see if a sheep is seriously ill. However we see
that several sheep get temperatures above 42◦C, as we can see in figure 5.16,
and they all survive the season, although several of them receive treatment.
For the lamb at Tingvoll, these illness periods are caused by TBF [4] [5].
These results show that not all serious illnesses has fever as a symptom, and
in order to detect illnesses like that one would need to detect small changes
and abnormalities.

5.8 Comparison to Journal

As we had access to the journal of the follow-up of the lamb at Tingvoll,
we thought it would be interesting to compare the observations with the
temporal data. In this part of the analysis we chose some individuals we
that had interesting observations, and compared these observations with the
temporal data of that sheep in the time frame of the observations.
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Figure 5.18: Entire period for Ti60097

Shows all the temporal records for Ti60097. Included are lines for the thresholds
for fever, at 40.5◦C, a base temperature, at 39.5 ◦C, and threshold for abnormally
low temperatures, at 38.5◦C.

5.8.1 Comparison for Ti60026

We started our analysis with the individual ”Ti60026” as it had some minor
symptoms according to the journal, and we wanted to see how these symp-
toms would be reflected in the temperature of the sheep. Figure 5.19 depicts
the temporal data for this individual in the time frame of [11.06.2016 −
23.06.2016], and the observations that were noted in the journal, [33], during
this period.

The first symptom that was noted in the journal during this period, was
a small swelling around the wound where the temperature sensor was im-
planted. This was treated with penovet [33]. In the figure we see that 2 days
before this swelling was discovered the temperature had been above 40.5◦C,
and around the time of discovery we see that the temperatures are somewhat
high. After the treatment there are signs that the temperature is lowering,
except for a peak a day later, which was almost 40.5◦C. Shortly after this
peek we see some low temperatures, followed by a period with fever.

The period with fever was first noticed when the temperature already had
started to decrease, where it was noted that the sheep was ”a bit slow”. The
sheep was at this time treated with Terramycin [33], and later that same day
the sheep seemed normal again. It seems a bit odd that the sheep first seemed
tired or slow after the peak temperature of the fever period, however it could
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Figure 5.19: Comparison to journal data for Ti60026

Shows the temporal data for Ti60026, during the period [11.06.2016−23.06.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.
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Figure 5.20: Comparison to journal data for Ti60111

Shows the temporal data for Ti60111, during the period [02.07.2016−26.07.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.

suggest that the tiredness is not directly a symptom of illness, but rather
exhaustion from the body fighting the infection. What’s more is that the
sheep seemed fine shortly after being treated, even though the temperature
is still quite high.

5.8.2 Comparison for Ti60111

Figure 5.20 shows the registration of symptoms related to the core tempera-
ture of the individual ”Ti60111”. In the beginning of this period it is noted
that the lamb seems fine. In the temporal data we see nothing to contradict
this. The temperature seems to oscillate evenly from day to day, and the
temperatures seems to be well within a normal range. Two days later we see
that the temperature oscillation begins to be uneven, and we get some very
low temperatures (< 38◦C) at times. The temperature then transcends into
a fever period.

During the fever period the lamb almost reaches 42◦C at the peak. How-
ever, it is first after the peak, when the temperature is decreasing, that the
first symptoms are noted. Here it is noted that the lamb was laying, and
moving slowly. It was at this point treated with Terramycin [33]. Later the
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same day the lamb was noted to be rather ill, and had to be given water. At
this time the temperature is still dropping.

The temperature continues to drop for another day, where the next follow-
up occurred. It was at this time noted that the lamb was better and now
eating a bit. This observation happened at around 7 o’clock in the after-
noon, during this time, the temperature of the lamb was of a local minimum,
something which is quite strange as, from our other analyses, the temper-
ature normally peaks sometime in the afternoon. It is clear that this lamb
has been quite sick, so it shouldn’t be surprising that the temperature is
abnormal, however it is worth noting as it seems like the circadian rhythm
had completely broken down during this period of illness. If the lamb had
stopped eating as a result of the illness, that could also have affected the
temperature [22]. After the lamb starts eating, the temperature rises and we
see temperatures above the fever threshold (> 40.5◦C) 3 days later. We see
that the lamb regains a circadian rhythm, and the temperature is within the
normal range again. Although it seems healthy at this point, we see that the
curve looks different after the illness than a week before the illness occurred.
This can indicate either that the lamb still hadn’t recovered fully, or that the
incubation period can be very long.

5.8.3 Comparison for Ti60097

To get a deeper understanding of what happened to Ti60097, the lamb that
died, we decided to compare its core temperature to the observations that
were noted in the journal. Figure 5.21 depicts the results from this analysis.

During the beginning of the depicted period, the lamb is noted to seem
fine. From the figure we can see that the temperatures are well within a
normal range and there are no clear indications that something is wrong.
We note that there are not much oscillation, something that, at least in
human infants, can be part of the incubation phase of illness [23]. About a
day later we see a sudden increase in temperature. This new temperature
is not alarmingly high, however we once again see little oscillation over the
next days.

During the next increase in temperature it is noted that the lamb seems a
bit tired. Shortly after the temperature reaches it peek, at just above 40.5◦C,
it starts to steadily decline. During this decline the lamb is observed again,
and it seems to be doing fine, this is just hours after the peak. Less than two
days later the lamb dies.

Both in regards to the journal and the temporal data, there are few signs
that the lamb is ill, however considering the illness it was suffering from,
cocciosis, symptoms are often not present as discussed in Chapter 3.1. It is
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Figure 5.21: Comparison to journal data for Ti60097

Shows the temporal data for Ti60097, during the period [14.06.2016−22.06.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.
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Figure 5.22: Comparison to journal data for Ti60151

Shows the temporal data for Ti60151, during the period [15.07.2016−30.07.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.

therefore not surprising that we don’t find obvious signs, such as very high
fever for instance. If we would be able to detect illnesses like this, by using
sensors and temporal data, we would have been able to provide a very useful
service as this would drastically improve the detection rate and ability.

5.8.4 Comparison for Ti60151

While on pasture the individual Ti60151 became very ill, in fact so ill that it
had to be taken in and treated. Signs of illness were discovered the 21.07.2016
[33]. The lamb survived, and was after some days re-released to the pasture.
In Figure 5.22 we have depicted the temporal data of the period of which we
speak, and the documented observations of the lamb.

The figure shows that the lamb had very high fever (> 42◦C), that de-
veloped quickly. Signs of illness was first discovered later than the peak, at
which time the lamb was in a poor condition. The lamb had a heavy, quick,
and irregular breath, and had dark red mucous. At this time it was so ill that
it was just laying on its side. It was treated with Tribrissen and Terramycin
[33].

Shortly after the sheep was taken inn and treated, the temperature drops.
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At first the temperature drops to a normal level, where it stays for about
a day, and then it drops again to subnormal levels (∼ 38.5◦C). The lamb
has this low temperature even during the day, where the daily maximum is
supposed to occur. This doesn’t seem to be a good sign, and is probably
a sign that the sheep was near death. As discussed in Chapter 3.2, low
temperatures can indicate circulation failure.

The temperature increases again, and reaches normal levels. At this time
the lamb seems to be in good condition, and is released to the pasture again.
After the lamb is released to the pasture the temperature increases a bit,
and its oscillation seems a bit off. Four days after being released on pasture
the temperature reaches a temperature above 41◦C, however this is only for
a short amount of time. It’s strange that these abnormalities occur after
the sheep has been treated and seems to have recovered. The abnormal
temperature after the sheep is released on the pasture again could be caused
by stress from transportation, acclimatization, reduced health after illness,
or other causes. It might also be that the sheep quickly became ill after
returning to the pasture as the immune system probably wasn’t in a good
condition at this point.

5.8.5 Comparison for Ti60080

The individual Ti60080 was the 7th of August recorded to have been very ill,
laying down, and not eating, and was at this point treated with Terramycin
[33]. We wanted to see how the temperature had been around the time of
this observation, to look for patterns in very ill sheep.

In the days before the observation, the temperature seems to be oscillating
normally, however the temperatures are generally low. The daily maximum
is under 39.5◦C, so the maximum is lower than the daily average of a healthy
sheep. During the night, the temperature falls well below 38.5◦C, which is
unusual for a healthy lamb.

The day after the lamb is treated we see a large range in temperature.
The temperature varies with approximately 2◦C. This large variance is also
very unusual, however it could have been caused by the medicine that was
administered it. We are unsure if this is a sign of the medication starting to
work, and therefore a good sign, or not.

Two days after the the treatment, the temperature has decreased to
around 38◦C, and at times going below 37◦C. This is, from what we have
seen, very low temperatures, that are seldom present in the data we have.
Why the temperatures are this low is hard to say. This could be an effect of
the treatment that was received, however it could also be an indication that
the health of the lamb was very poor. It was noted that the lamb was not
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Figure 5.23: Comparison to journal data for Ti60080

Shows the temporal data for Ti60080, during the period [05.08.2016−18.08.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.
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Figure 5.24: Comparison to journal data for Ti60080 during a longer period

Shows the temporal data for Ti60080, during the period [15.07.2016−12.08.2016].
Clinical observations that were done, regarding the health of this individual, is
represented by vertical lines, and placed at the time of the observations. The
observations are differentiated with colors.

eating at the time of treatment, so if the lamb still had not started eating
sufficiently, this lowered temperature could be due to starvation, which can
cause hypothermia [22] .

After the period of low temperatures, the temperature of the sheep starts
to slowly increase. This process takes days, but it reaches a normal range of
temperature, and the circadian rhythm starts to return to normal. At this
point, the lamb has probably recovered, or at the very least is getting better.
We don’t in this case have other records of the health of the lamb shortly
before and after the treatment.

In Figure 5.24 we have once again depicted the analysis for the individ-
ual Ti60080, however this time we extended the amount of time before the
observation we included in the graph. Before the period of low temperatures
in Ti60080, there was a period of illness/fever. The fever period had ended
more than a week prior to the observation, however we see that after the ill-
ness period, the temperature drops, and it doesn’t recover until the lamb has
been treated. This can indicate that the illness was still present even though
the temperature was lowered. It seems therefore likely that the illness had
been a direct cause for this period of lowered temperature.
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5.8.6 Comparison and Discussion of Results

In the periods and individuals, that we chose for these analyses, there are
differences in the temperature, and in the situations that occurred. How-
ever we still do see some patterns. In the cases of fever, clinical signs were
first discovered relatively late after the peak temperature, and the sheep
were considered to be in good shape already before abnormalities in the core
temperature disappeared.

The fever periods for individuals Ti60111 and Ti60151 seem quite similar.
Both fever periods develop quickly, and after the peak both of them drop to
subnormal temperatures. Both sheep were described to be quite ill when
they were diagnosed to be ill. Had these not received treatment it is likely
that they could have died. We can see that if we had warned as soon as
the temperature get above 40.5 ◦C for both of these, we would have been
able to detect the illness approximately 3 days before illness was clinically
discovered.

In the case of the individual Ti60080, we see that the temperature was
very low during the time of the observed illness. This shows us that we must
consider the abnormally low temperatures as well as the abnormally high.
Arguably if the fever, that precedes the period of low temperatures in this
individual, was detected and treated, the lamb may not have become so ill
that the temperature dropped so significantly.

What seems to be in common for these, is that the circadian rhythm
breaks down during time of illness, which can be an important aspect to take
in consideration when predicting illness. Especially in the case of Ti60097,
and to some degree also for Ti60026, as its temperature was, for most of the
time during the period with illness, under 40.5◦C.

In the beginning the sheep were kept in a fenced in pasture, receiving
regular care and were observed regularly, as discussed in Chapter 4.2. After
the sheep were moved to the free-range pasture they were observed for only
2-3 times a week. This must be taken into consideration when discussing how
early the signs of illness were observed. Most of the cases we have depicted
here are in the beginning of the season, and we see that the sheep have been
regularly observed. However the illness incidence of Ti60080 occurred late
in the season. It might seem unfair to compare this to the other periods as
they were less looked after, however this serves to prove a point; when the
sheep are at free-range pasture, signs of illness are harder to observe and our
system would be even more useful.

During the first weeks, the lamb were kept in a fenced in pasture and
received systematic inspections twice a day. When the sheep were moved to
the free-range pasture they were looked after at a normal rate, 2-3 times a
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Tingvoll
Mean Amount of Moderate Fever 2.19

Mean Amount of High Fever 2.75
Mean Amount of Fever 4.94

Tynset
Mean Amount of Moderate Fever 1.67

Mean Amount of High Fever 0.533
Mean Amount of Fever 2.20

Table 5.1: Comparison of amount of fever periods

week, and not as throughout as previously. This change in how they were
looked after, likely is the reason illnesses were earlier detected late in the
season compared to early in the season. This shows how much harder it is
to detect illness in sheep at free-range pastures.

5.9 Fever Periods and Sick Time

The sheep of the different herds likely suffered from different illnesses, and
for a different amount of time. To investigate this we visually inspected our
data for fever periods. We classified the fever periods in two groups, namely
moderate- and high fever. Moderate fever was fever periods that had low
fever temperatures [40.5◦C − 41◦C], and high fever were fever periods where
the temperature was above 41◦C.

Results from this analysis presented in Table 5.1. The mean amount of
fever periods in the Tynset herd is less than half that of the mean amount of
fever periods for the Tingvoll herd. The biggest difference between the herds
is the mean amount of periods of high fever. This result indicates, not only
that the herds were differently exposed to illness, but also that they were
likely exposed to different illnesses. Lamb in Tingvoll were expected to suffer
more from TBF, which is characterized by high fever temperatures [15], this
difference is visible in our results.

These results are merely indicative, and was quickly visually analyzed.
The reader should therefore take these results with some skepticism.

In the analyses of Kjell Bratbergsengen, [34], a clear difference between
the herds emerge with regards to the amount of time the sheep are ill. In
these analyses, the sheep of the herd at Tingvoll are ill between 10% and
20% of the recorded time with few exceptions. The herd at Tynset is ill
between 0% and 3% of the recorded time. This difference is quite significant.
A consequence of this difference is that we have less reliable data for the herd

49



at Tingvoll, and there are more uncertainties with regards to the results of
our analyses for this herd.

5.10 Summary of Analysis

From these analyses we find there is a clear presence of a circadian rhythm
in sheep, and that illnesses can have a huge impact on the temperature, and
circadian rhythm of sheep. We have found there to be a lot of variance, not
only between individuals, but also between herds, gender, season, and age
groups. We have also found there to be indications that disturbances in the
circadian rhythm can be a sign of illness, or predicate illness in sheep. There
are also indications that clinical signs off illness in sheep, usually is first
visible after the peak temperature of a fever period, in other words relatively
late in the illness period.

We find these results promising. It seems that the ability to detect fever
alone could improve detection rates, and ensure that illness is detected at
an earlier stage than what is possible at the time being. Deviation from the
circadian rhythm also seems like a useful metric for detecting illness, however
deciding what is a normal rhythm, and what is within the normal deviation
is still difficult to determine. If we are to make a model that is based on the
circadian rhythm, we might need to individually fit the model. The model
would also likely need to be relatively complex, however such a model seem
to hold the most potential regarding finding all different types of illness, and
regarding predicting illness at a stage as early as possible.
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Chapter 6

Developing Software for Illness
Detection

In this Chapter we develop models for detection of sheep illness. We base our
models on what we found out through our analyses. We will not program
sensors, but make programs to run as computer simulations. As we are only
in an initial stage, and we want to be able to easily test our models.

6.1 Methods

To make software, we used Python[31] as a programming language. We
would likely not make the software to be run on actual sensors in Python,
however Python is perfectly adequate for our use, developing and testing
models locally on our computer. This first development is for investigating
what model works, and have an idea of the possible results, we are not to
actually program sensors at this point. Another important point for our
choice regarding the programming language is that it is easy to use, and we
are comfortable using this. Python also has good possibilities for illustrating
results, and using machine learning plugins if that would be necessary.

For simulations and testing of our software we will use the full data set,
which was also used for our analyses. The results from the simulations will be
compared to hand-picked, abnormal periods, and to periods that are picked
out by the machine. Sadly we do not have knowledge about which periods
that are actually times of illness, part of the incubation period, or in other
ways differ from the norm. We will therefore do our best to correctly identify
illness periods by ourselves. This becomes another source of errors, as there
will likely be errors in our marking of the data. We do have a log of clinical
signs of illness in the lambs, however this is only for the lambs at Tingvoll,
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and mostly for the first weeks post implantation. It is highly likely that not
all signs of illness had been detected.

6.2 Constraints

In the imagined complete product, these models would run on sensors. The
sensors would have limited computing power, and preferably use little power
for the battery to last as long as possible. This means that the models for
detecting illness can’t be too complex, and when developing our models we
have to consider the constraints the hardware imposes.

We will not perform complexity tests and comparisons, or check how much
power each model uses, however we will prefer the simplest models. More
complex models will naturally be considered and developed, as we want to
see the performance difference between a complex and a simple model. A
complex model could be preferred over a simpler, if the increased performance
outweighs the increased cost.

6.3 Problems that Need to be Solved

There are a lot of problems we have to attempt to solve in order to make a
good model. As we could see in Chapter 5, there are significant differences
based on individuals and age groups. Our first problem then arises; is it
possible to make a general model that fit all individuals? If this is not
possible, we have to find a way to fit the model to the individual without the
software becoming overly complicated.

From our analysis we also see that not all periods of illness are character-
ized by a very high temperature. In some cases some lamb are seriously ill,
while their core temperature is within a normal temperature range. There
are some signs that it could still be possible to detect illness based on

Even if we manage to make a general model that works, we might need
to change it with time, as the circadian rhythm changes with age. If we have
a model that fits itself to the individual it’s certain that we have to change
the model while it’s running. For these changes it will be very important to
know what we have to tweak, how we should tweak it, how often we should
tweak it, and how periods of fever and abnormal periods are to be handled
considering this adaption. We can see from the data that some individuals
have had fever and abnormal periods for large parts of the measured time
period.

Sensitivity could also be a problem we might need to work on. We do
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not want the model to be too sensitive, such that it warns about illness too
often. If it warn about illness to often, and when there is no illness in the
lamb, it will cause distrust to the system, and its users will likely stop caring
about and believing in the warnings from the sensors. While we don’t want
the sensors to be too sensitive, we don’t want them to be too insensitive
either. If they are too insensitive they might not warn about important signs
of illness, that can in worst case be fatal illnesses.

6.4 Simple Threshold Model

We start by making a very simple model that is based on a threshold value.
This model would consider temperatures above the threshold as a sign of
illness. In order to filter out measurement errors and sudden spikes in the
temperature, we introduced a counter. With the counter the temperature
would have to be above the threshold for a certain amount of time.

The counter would store an integer value in the range [0 - X], where X is
the number of minutes required for the model to consider the deviation to be
a sign of illness. For each measurement that was above the threshold value,
the counter would increase with one until X was reached. Measurements
under the threshold value would decrease the counter, until 0 was reached.
Once the counter would reach X, the sheep would be classified as ill, and it
would not be classified as healthy before the counter had reached 0 again.
By using a counter like this, we avoid the problem of sudden measurements
that are above/under the threshold changing the status.

In Figures 6.1, 6.2, and 6.3 we show the results for a simulation run, using
this model, for the individuals respectively Ty60001, Ti60097, and Ti60007.
In these simulations we used 40.5◦C as the threshold value, and we set X
equals 30. This means that the temperature had to be above 40.5◦C for at
least 30 minutes for the model to consider the lamb ill.

We did a quick test of the model, where we compared the warnings issued
by the model with the periods that we have previously marked as abnormal.
For this model, with the parameters as discussed over, we usually got an
accuracy in the range [70%− 75%]. It should also be noted that the periods,
that we had hand-picked as abnormal, can by no means be considered a
perfect benchmark, however we will use these periods as a benchmark for
now.
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Figure 6.1: Results of the Simple Threshold Model for Ty60001

Simulation for the individual Ty60001 by using the Simple Threshold Method.
The graph shows the actual core temperature of the lamb at the given time, and
the colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

6.4.1 Simulation for Ty60001

In Figure 6.1 we see the results for the simulation for the individual Ty60001.
This individual had one fever period, which was quite distinct in the dataset,
and is easily visible by eye. The model did detect this fever period, however
we see that the temperature rises quickly, even during the night, before it
reaches fever temperature. This sign of illness appear approximately a day
before the fever threshold is reached.

We do not have any journal data for this individual, however one trend we
saw when comparing the journal data to the temporal data, was that clinical
signs of illness usually was first visible when the fever was decreasing. Here
we are able to detect illness even when the temperature is rising, so this
seems like quite the improvement, as we will be able to detect illness days in
advance.
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6.4.2 Simulation for Ti60097

Figure 6.2: Results of the Simple Threshold Model for Ti60097

Simulation for the individual Ti60097 by using the Simple Threshold Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

In the simulation for the individual Ti60097, shown in Figure 6.2 , we
see that the fever has barely been registered by our model. The problem
with this individual, or rather the illness it was suffering from, is that it
shows few symptoms. While we can see that there are some disturbances
in the circadian rhythm, our model is not able to detect the illness, as the
temperature, for most of the time, is within a normal range.

We see that the model detects fever, however this is just barely and occurs
near the end of the life of the lamb. Cocciosis, which the lamb in this case
suffered from, needs to be treated early, so despite the fever was detected as
we see here, it could already be too late for treatment.
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Figure 6.3: Results of the Simple Threshold Model for Ti60007

Simulation for the individual Ti60007 by using the Simple Threshold Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

6.4.3 Simulation for Ti60007

The results from the simulation for individual Ti60007, as shown in Figure
6.3, is somewhat similar to that of the results for individual Ti60001, see
Figure 6.1. The fever periods are detected, however there are visible signs of
illness before the model are able to detect the illnesses.

We also see that the first fever period of individual Ti60007, while it is
detected it seems to barely have been so. This indicates that illnesses that
have a fever around the threshold value will be more difficult to detect for
this model. Due to measurement errors, or other causes, the temperature
can suddenly drop repeatedly below the threshold, leading to an increment
in the number of minutes the temperature needs to be above the threshold
for illness to be detected.
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6.4.4 Thoughts on Performance

All in all we think this model seem to work surprisingly well despite its
simplicity. It is able to detect most cases of fever, however we see that cases
of low fever can be difficult for the model to detect, and might possibly
go undetected. The threshold and counter can be adjusted as to detect
more cases of illness, however this can lead to an increased number of false
positives.

We also see that disturbances in the circadian rhythm, which can be
important for illness detection, is not addressed by the model. In case of
illnesses as cocciocis, as we see in Ti60097, we saw that the model barely
discovered the decease. A positive aspect of this model is that we seem to
have few false positives.

6.5 Simple Cosine Model

As we had discovered, the core temperature of sheep follows a circadian
rhythm, and some illnesses creates disturbances in this rhythm. For this
reason we wanted to make a model that takes this rhythm into consideration,
and that would be able to detect these disturbances. This model will be a
general model, and not fitted to each individual.

We based our model on a cosine function, that would try to emulate the
circadian rhythm. The model would calculate what would be an expected
temperature, given the time of day, and deviation over a margin of error
would be considered sign of illness. We used a counter, that demanded
deviation from the norm for a certain amount of time, as we did in the
Simple Threshold Model.

The function we used to calculate the expected temperature is depicted
in Equation 6.1. The mesor is the base temperature, around which the
temperature would oscillate. A is the amplitude, and X was the number of
minutes passed since the start of the phase. The X value would be initialized
for each individual based on the time of insertion. At the end of each phase,
X would be set to 0 again. In this model we assume 24-hour cycles, where
the maximum and minimum are 12 hours apart.

In these simulations we used the parameters given in Table 6.1.

temperature = mesor + A · cos (2π · X

24 · 60
) (6.1)

In simulations using this model, we did also use the hand-picked, abnor-
mal periods as a benchmark. To easier compare the performance here we
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Parameters
Base Temperature 39.5

Amplitude 0.4
Counter 180

Error Margin 0.4
Start of Phase 22.30

Table 6.1: Parameters for the Simple Cosine Model

decided to showcase the same individuals we showed for the Simple Thresh-
old Model. A general thing we see is that this model manages to detect the
abnormal periods at an earlier stage than the Simple Threshold Model, how-
ever this comes at the cost of a very high number of false positives, which is
unfortunate.

6.5.1 Simulation for Ty60001

Figure 6.4 shows the simulation for individual Ty60001. We see that the ab-
normal/fever period is well detected, however there is a lot of false positives.
We see a lot of false positives especially during the first two weeks, which
could be an indication that the insertion of the sensors had a relatively long
lasting effect on the circadian rhythm. We also note that the temperatures
are somewhat low during this period. This might be an indication that the
lamb was actually ill during this period. In the days leading up to the fever
period, we also see a large number of false positives. This could indicate
disturbances in the circadian rhythm during the incubation period of the
illness. These positives could also just be caused by the model not fitting the
rhythm well, or that it is overly sensitive.

6.5.2 Simulation for Ti60097

The simulation of individual Ti60097 is depicted in Figure 6.5. Compared
to the Simple Threshold Method, this model is much better at detecting
illness in individual Ti60097, however we do also see that there is a high
number of false positives. These false positives could be caused by actual
disturbances caused by insertion of sensors, or illness. We know that this
lamb was suffering from cocciosis, of which it died, so it is not unthinkable
that it was ill, and affected, for a longer time than the period we had marked
as abnormal.
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Figure 6.4: Results of the Simple Cosine Model for Ty60001

Simulation for the individual Ty60001 by using the Simple Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

6.5.3 Simulation for Ti60007

In the simulation for individual Ti60007 we see the same as we do for the two
previous simulations. This model is better at detecting the periods of illness
than the Simple Threshold Model, however at the cost of many false positives.
This simulation gives us far more false positives than the simulation for
Ty60001, but this individual is also much more sick than Ty60001. We don’t
know enough about the effects that illness can have on the circadian rhythm,
and for how long before and after a period of illness the circadian rhythm
will be affected. Previously we have seen that there are huge individual
differences, the increased number of false positives for Ti60007, compared to
Ty60001, could be due to the model fitting the individual rhythm of Ty60001
better than that of Ti60007.

59



Figure 6.5: Results of the Simple Cosine Model for Ti60097

Simulation for the individual Ti60097 by using the Simple Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

6.5.4 Thoughts on Performance

Based on our simulations of this model, we see that this is not usable, at least
not with the configurations that we have used here. There are simply far too
many false positives for this model to work in a ”real” scenario. This model
do however seem promising, as it seems to be better at finding the illnesses
than the Simple Threshold Model, also when the temperature is within a
normal range.

6.6 Complex Cosine Model

The Simple Cosine Model did not very accurately simulate the actual tem-
perature oscillation. We therefore made a new model, which is a bit more
complex, however still based on a cosine function. The new model would
change with time. The changes would be a phase shift, increased amplitude,
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Figure 6.6: Results of the Simple Cosine Model for Ti60007

Simulation for the individual Ti60007 by using the Simple Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model compared to our benchmark.
Periods that are marked dark red are true positives, meaning that the lamb is ill
both according to the model and the benchmark. Dark blue are true negatives,
meaning that both the model and benchmark consider the lamb healthy. False
negative is when the model think the lamb is healthy, but the benchmark thinks
it’s ill. False positive is opposite of false negative.

and decreased base temperature. We changed these aspects of the model
based on what we learned through our analyses.

In this model we change some parameters with regards to the age of the
sheep based on the changes with age we saw in Chapter 5.3. We do not
know if these changes are caused by age necessarily, however these changes
correlates at least to some degree with the age. Age was therefore used as
an approximate metric for these changes.

For determining the expected temperature we still use the Equation 6.1,
however we will now change the variables mesor, A, and X, on a weekly
basis. Equation 6.2 shows our method for the weekly change in amplitude,
where A stands for amplitude, and weeks is the age of the sheep in number
of weeks. We decided to let the amplitude gradually increase until an adult
amplitude would be reached, which it would at 13 weeks of age in this model.

The mesor would also change on a weekly basis, and the method for
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Parameters
Start Amplitude (A) 0.15

Margin of Error 0.35
Counter 180

Start Base Temperature (mesor) 39.65
Start Phase Start 03.30

Table 6.2: Parameters for the Complex Cosine Model

changing it is shown in Equation 6.3. This method simply lower the mesor
by a small value each week. We have not set an age limit for the change of
this value. Thus the longer the sheep lives, the lower the value would be. For
our case, and in testing on our individual lamb, this works well. However we
assume that the base temperature would not be forever decreasing and it’s
lowering should probably have a lower limit. It might even be the case that
we would need to increase and decrease the base temperature for different
times of year.

The period was shifted using the method as seen in Equation 6.4. The
variable X defines the number of minutes passed since the start of the last
cycle. We changed the model by adding 60 minutes to the counter. In that
way we shifted the phase. Our model would change the phase until the sheep
had reached 13 weeks of age, at which point they would be assumed to have
adopted an adult rhythm.

This model takes into consideration the change in temperature, and tem-
perature oscillation, with age. However, it doesn’t take into consideration
the change caused by season, individual differences, and other causes. It is
therefore also just a simple approximation of the circadian rhythm of sheep.

In the following simulations we used the parameters given in Table 6.2.
After the lamb had reached an age of 13 weeks the amplitude would have
risen from 0.15 to 0.35. The phase start would have been shifted to 22.30.
The base temperature would have been lowered to approximately 39.59. We
see that the parameters grow closer to what we used for the Simple Cosine
Model, as seen in Table 6.1.

A = A+ change ·min(
weeks− 3

10
, 1) (6.2)

mesor = mesor − 0.01 (6.3)

X = X + 60 (6.4)

62



6.6.1 Simulation for Ty60001

Figure 6.7: Results of the Complex Cosine Model for Ty60001

Simulation for the individual Ty60001 by using the Complex Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model.
Periods that are marked red are periods where the model deem the individual to
be ill, and blue periods are periods where the individual is deemed to be healthy.
The green curve depicts the expected temperature of the model. The light blue
line has the value of 40.5, which is our threshold for fever. The light red line has
the value 38.5, and is a temperature we consider abnormally low.

When simulating this model for the individual Ty60001, the results is
depicted in Figure 6.7. We see that the model is able to detect the clear
fever period and even warns about the health of the individual several days
before the fever starts. Compared to the simulation using the Simple Cosine
Model for the same individual, as depicted in Figure 6.4, we see that there
are fewer warnings about the health of the individual. This can be considered
as a good thing, as there were a lot of false positives using the Simple Cosine
Model.

In the beginning of the simulation we see that this model consider the
individual ill in a period that we have previously considered normal. Upon
closer inspection we noticed that there are some disturbances to the circadian
rhythm during this period, and the temperatures are lower than normal. It
might very well be that this individual was ill during this period, just that

63



it wasn’t easy to detect as the temperature is within the normal range. We
have already seen in the case of Ti60097, that a sheep can be very ill and yet
show little indications of this except disturbances in the circadian rhythm.

6.6.2 Simulation for Ty60021

Figure 6.8: Results of the Complex Cosine Model for Ty60021

Simulation for the individual Ti60097 by using the Complex Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model.
Periods that are marked red are periods where the model deem the individual to
be ill, and blue periods are periods where the individual is deemed to be healthy.
The green curve depicts the expected temperature of the model. The light blue
line has the value of 40.5, which is our threshold for fever. The light red line has
the value 38.5, and is a temperature we consider abnormally low.

Looking at the temporal data of the individual Ty60021, we see that it
has several periods of moderate fever. In these periods the fever doesn’t
last long, and it could possibly have been caused by other factors such as
activity, however as the temperature seems somewhat abnormal around these
peeks, and that these peeks sometimes occurs within a short time period, we
believe these peeks are caused by illness. The temporal data, as well as the
simulation using this model, can be seen in Figure 6.8.

This model is able to detect these periods of moderate fever, something
we doubt the Simple Threshold Model would be able to do. We do see some
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warnings from the model in periods where the temperature is within the
normal range, however it is hard to say if these are signs of illness that we
don’t see, or if they are false positives.

6.6.3 Simulation for Ti60007

Figure 6.9: Results of the Complex Cosine Model for Ti60007

Simulation for the individual Ti60007 by using the Complex Cosine Method. The
graph shows the actual core temperature of the lamb at the given time, and the
colors show the result of the model.
Periods that are marked red are periods where the model deem the individual to
be ill, and blue periods are periods where the individual is deemed to be healthy.
The green curve depicts the expected temperature of the model. The light blue
line has the value of 40.5, which is our threshold for fever. The light red line has
the value 38.5, and is a temperature we consider abnormally low.

When we compare the results of simulating for individual Ti60007 by
using this model, as shown in Figure 6.9, and the Simple Cosine Model, as
shown in Figure 6.6, we notice there are differences. We haven’t presented
the results in the same way for both simulations, however we are still able
to compare them. This model seem to have far fewer false positives than
the Simple Cosine Model, and is still able to detect all periods of illness,
of which there are many for this individual. Still we see a lot of periods of
illness according to this model.
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What remains up for discussion is what is, and what is not an abnormal
period, and for how long before and after a period of illness can we expect to
see disturbances in the temperature and the circadian rhythm. It might be
that some of the cases of false positives actually are early signs of illness, or
effects of a previous illness. There is also a chance that some of the periods
we consider abnormal, and a sign of illness, is simply an abnormality and has
nothing to do with illness at all.

6.6.4 Evaluation of Performance

The few cases we have depicted here of the performance of this model is
promising. This model seem to detect periods that are abnormal with ease.
It seems to be better in detecting periods of illness than the Simple Threshold
Model, and seem to have a better accuracy than the Simple Cosine Model.
Here we have only shown tentative results, and it is not possible to make a
great conclusion based on these alone. We will have to do more analyses on
the performance of this model, and experiment with different parameters to
see how this affects the performance of this model.

6.7 Evaluation Model for Solutions

The only benchmark we had so far was the hand-picked abnormalities. We
wanted to develop a program that would mark periods as abnormal to ensure
objectivity, and to judge all periods by the same standards. These machine
picked periods would still be influenced by our choices as of what is abnormal,
how long these abnormalities would have to be present, and other parameters
and their values set by us.

Our model for classifying periods would operate with 4 different type
of periods, namely normal-, incubation-, illness-, and post-illness periods.
Normal periods are periods where we assume the individual is healthy. The
incubation periods are periods where we assume early signs of illness appear,
and is therefore tied to the illness periods. Illness periods are periods in which
we assume the individual is ill. Post-illness periods are periods in which we
assume abnormalities are to be expected, however the illness is considered
ended.

If the sensor-models during testing warns about an illness in a normal
period we would view this as a false positive. Warnings that occur either
during the incubation period or the illness period would be considered as
successful warnings of an illness. During post-illness periods we didn’t care
whether the sensors warned of illness or not as we assumed this stage would
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be too late for treatment. We were not interested in false negatives, however
we would record the number of illness periods that were not detected.

In order for the false positives not to simply be the number of minutes
that the sensor warned about illness outside of the selected periods, we used
an error margin. A new false positive would only be counted if it was further
from the last recording of a false positive than the error margin. If however
the last recording is within the margin of error, we would update the time
of the last recording to the current time and consider it part of the same
”illness” period.

For detecting the illness periods we operated with a base temperature and
deviation from this above a margin of error would constitute an incidence of
illness. This illness would last until the temperature was within the margin
of error. After detection all such incidences we would aggregate our list of
illnesses, where periods that happened within the time of incubation would
be joined to one incidence lasting from the earliest to the latest date of the
dates of these periods. After we had aggregated the illness periods we added
the incubation periods and the post-illness periods. The normal periods
would then simply be the periods that are not present in the incubation-,
illness-, or post-illness periods.

This model would take in some parameters so that we could alter the
way this method selected the periods. We had parameters for the base tem-
perature, the margin of error, the number of days prior to an illness we
expect early signs, and the days after an illness we would expect there to be
disturbances.

This way of categorizing the illness periods gives us an uniform way of
evaluating the models on different individuals and takes into consideration
both abnormally high and abnormally low temperatures. What this method
does not take into consideration is the circadian rhythm. We have earlier
discussed the effects illness might have on the circadian rhythm, and tried
to model with regards to the circadian rhythm, however we still don’t know
enough to use this to create a benchmark for evaluating our models.

Figure 6.10 depicts how this program would partition the temporal data
into the categories, and how we would evaluate the our models to these
machine picked periods. In this example we have used 4 day long incubation
periods, and 2 day long post-illness periods. We used 39.5 degrees as a basis,
and allowed 1.0 degree deviation. The model we evaluate here is the Complex
Cosine Model with the same parameters as we used for this earlier in Chapter
6.6.

We see that the machine found 3 periods of illness, out of which all were
detected. The model had 2 false positives, where one was just before an
incubation period.
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Figure 6.10: Test and evaluation of the Complex Cosine Model on Ty60001

This is an illustration of how our program for period classification work, and how
we would compare the results from our simulations to these periods.
The blue, purple, and yellow parts show the actual temperature of the individual.
The blue are normal periods, the purple is the incubation periods for the illnesses,
and the yellow show the illness periods, including the post-illness periods. The
green and red are the expected temperatures according to our model, where green
are when the model consider the individual healthy, and red when the model
consider the individual ill. Brown dots are when the model detects an illness for
the first time, and light purple dots are false positives. The two horizontal lines
depicts the lower- and upper thresholds for our categorization.
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Chapter 7

Results

While we in the previous chapter briefly looked at the performance of the
different models, more systematic testing needs to be done, and we cannot
look at this on an individual level. We also need to tweak our parameters
to see what works best, and try to optimize our models with regards to our
benchmarks.

For comparing the different models and different set-ups, we measure the
mean detection rate, number of false positives, number of true positives, and
the percentage of the the healthy periods that are mislabeled. The detection
rate is the percentage of the illness periods that were detected. True positives
might seem redundant given that the detection rate is given, however to same
number of true positives can give different detection rates, and vice verso.

The number of false negatives can be misleading in that we measure
periods of illness according to the sensor and not the time it indicates wrongly.
The healthy periods are measured from the time we start evaluating the
sensor readings until an illness is detected.

In all the following tests we use the parameters shown in Table 7.1 for
the machine picked benchmark.

Good results would be to have a high detection rate (Mean Detection
Rate % ) and few false positives as well as a low percentage of mislabeled
healthy periods (Mean False Illness % ). Results showing a high detection
rate shows that most of the illness periods were detected, while few false
positives and a low percentage of mislabeled healthy periods imply that the
model seldom is wrong.
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Machine Benchmark Parameters
Days Prior 4
Days After 2

Error Margin 1

Table 7.1: Parameters for the machine picked benchmark

7.1 Results from Simple Thresh Method

The first of our models we decided to test was the Simple Threshold Model.
The results for this model would then act as sort of a benchmark for the other
models. For us to consider the other models better, they would need to per-
form considerably better than this model to compensate for their increased
complexity.

Our earlier test simulations with this model indicated that it was the
model with the lowest number of false positives, which is an important point
for us. In our tests of this model we have tweaked which base temperature
to use and the error margin in order to see what combination would give the
best results.

The Simple Threshold Model is tested with regards to both the hand
picked benchmark and the machine picked benchmark. In both cases the
counter was set to 30 minutes.

7.1.1 Results Compared to Machine Picked Periods

Results for the tests of the Simple Threshold Model to the machine picked
benchmark can be seen in Table 7.2. The mean detection percentage stayed
relatively stable in the range [83% , 85%] for all iterations. The mean number
of true positives also stayed stable at approximately 5. The mean number of
false positives and the percentage of mislabeled healthy periods were chang-
ing the most when adjusting the variables.

This model works much in the same way as the software for picking
illness periods, the difference is that this model needs to observe temperatures
outside the normal range for an extended period of time. The margins of error
we have used in testing this model is approximately half of what the machine
picked benchmark use.

The smallest number of false positives and percentage of wrongful fever
periods were observed when using a base temperature of 39.55 and an error
margin of 0.54.

Generally for all the base temperatures the lowest number of false pos-
itives were observed with a high margin of error, and the highest detection
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Base Temperature/Error Margin 0.54 0.5 0.44 0.38 0.32

39.65

Mean Detection % 83 84 84 85 85
Mean False Positives 14 17 22 26 31
Mean True Positives 5 5 5 5 5
Mean False Ilness % 4.9 7.9 12 19 29

39.6

Mean Detection % 83 83 84 85 85
Mean False Positives 13 16 22 26 30
Mean True Positives 5 5 5 5 5
Mean False Ilness % 3.9 6.5 11 18 27

39.55

Mean Detection % 83 83 85 85 85
Mean False Positives 12 17 22 26 30
Mean True Positives 5 5 5 5 5
Mean False Ilness % 3.4 6.0 11 17 26

39.5

Mean Detection % 83 84 84 85 85
Mean False Positives 14 18 22 27 31
Mean True Positives 5 5 5 5 5
Mean False Ilness % 3.9 6.5 11 18 27

39.45

Mean Detection % 84 84 85 85 85
Mean False Positives 15 19 24 28 31
Mean True Positives 5 5 5 5 5
Mean False Ilness % 4.8 8.2 13 20 29

Table 7.2: Comparison of different temperature and error margin combina-
tions with the Simple Threshold Model and machine picked benchmarks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and
worst results for the given base temperature. The number of true positives are

not marked, as this didn’t change for the different configurations.

rates were observed when a small margin of error was used. This is not very
surprising as a smaller margin of error would result in more of the temper-
atures to be marked as illness and then it follows that both the chance of
detecting illness, and false positives increase.

The best results were observed with a base temperature of 39.55. It
is close to the mean temperature, see Chapter 5.2.5, and might therefore
work well. Having a base temperature close to the mean temperature might
make it is able to equally well detect abnormally high and low temperatures.
Another reason is that if it is too high, the threshold for detecting abnormally
high temperatures would be elevated and the threshold for abnormally low
temperatures would similarly set too low. When the base temperature is set
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too low the opposite would happen.

7.1.2 Results Compared to Hand Picked Periods

Base Temperature/Error Margin 0.56 0.5 0.44 0.38 0.32

39.65

Mean Detection % 97 97 97 97 97
Mean False Positives 28 32 38 43 48
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 13 17 22 28 38

39.6

Mean Detection % 97 97 97 97 97
Mean False Positives 27 31 38 43 47
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 12 15 21 28 36

39.55

Mean Detection % 97 97 97 97 97
Mean False Positives 26 32 38 43 48
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 10 14 20 26 35

39.5

Mean Detection % 97 97 97 97 97
Mean False Positives 27 33 38 44 48
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 11 14 19 27 35

39.45

Mean Detection % 97 97 97 97 97
Mean False Positives 28 34 40 44 48
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 11 15 21 28 36

Table 7.3: Comparison of different temperature and error margin combina-
tions with the Simple Threshold Model and hand picked benchmarks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and

worst results for the given base temperature. The detection rate and the number
of true positives are not marked as they did not change for the different

configurations.

Compared to the results using the machine picked benchmark, see Table
7.2, results using the hand picked benchmark, see Table 7.3, has a much
better detection rate. However, healthy periods are mislabeled for a higher
percentage of the time than when we use the machine picked benchmark.

Similarly to the previous results, the model performs best with a high
margin of error, and a base temperature of 39.55. The results might have
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changed if we changed the counter, or if we used substantially different values
for the amplitude and error margin than we have here. However, as with the
previous test, we see that the number of false positives and percentage of
mislabeled healthy periods increase both when we increase the base temper-
ature, and decrease the base temperature with regards to a base temperature
of 39.55. This is further indication that this model works best with a base
temperature close to the mean temperature.

7.2 Results from Experimenting with Differ-

ent Error Margins and Amplitudes for

the Simple Cosine Model

The Simple Cosine Model was also tested against both the benchmarks. In
all tests we use 39.65 as a base temperature, and 180 minutes for the counter.
The counter is much larger than what we use for the Simple Threshold Model,
this is due our experiences from earlier test runs.

7.2.1 Results Compared to Machine Picked Periods

In the results, see Table 7.4, the detection rate stayed quite stable for the
different configurations, however there were some changes. A lower margin
of error usually results in a higher detection rate, however also results in
a higher number of false positives. This coincides with the results for the
Simple Threshold Model.

Best results, in regards to false positives, are seen when using a small
amplitude. This is both surprising and disappointing, as we had hoped em-
ulating the circadian rhythm would yield better results. The lowest number
of false positives for this model is high compared to the Simple Threshold
Model, and has a worse detection rate.

From the results it might seem as the results gets better the closer it gets
the Simple Threshold Model, as the most reliable results are obtained with a
low amplitude. However, comparing the combination of an amplitude of 0.35
and an error margin of 0.56 to an amplitude of 0.25 and an error margin of
0.44, the detection rates are the same, but the configuration with the highest
amplitude is more reliable. This indicates that the emulation of the circadian
rhythm might have some benefit.

The poor results can be a consequence of how the machine picked bench-
mark is picked, and it might favor a threshold model over this type of model.
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Amplitude/Error Margin 0.56 0.50 0.44 0.38 0.32

0.45

Mean Detection % 85 85 85 85 85
Mean False Positives 26 31 33 34 35
Mean True Positives 5 5 5 5 5
Mean False Ilness % 24 32 41 51 64

0.40

Mean Detection % 85 85 85 85 85
Mean False Positives 23 28 31 34 35
Mean True Positives 5 5 5 5 5
Mean False Ilness % 20 28 36 46 58

0.35

Mean Detection % 85 85 85 85 85
Mean False Positives 20 24 28 32 34
Mean True Positives 5 5 5 5 5
Mean False Ilness % 17 23 31 41 52

0.30

Mean Detection % 83 85 85 85 85
Mean False Positives 17 21 25 30 33
Mean True Positives 5 5 5 5 5
Mean False Ilness % 13 19 26 36 47

0.25

Mean Detection % 81 84 85 85 85
Mean False Positives 13 18 22 27 31
Mean True Positives 5 5 5 5 5
Mean False Ilness % 10 15 22 30 42

Table 7.4: Comparison of different results with different start amplitudes and
error margins with the Simple Cosine Model and machine picked benchmarks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and

worst results for the given start amplitude. The number of true positives are not
marked as they did not change for the different configurations.

In these results, the base temperature was unchanged, as was the counter.
There might be better configurations than those we have tested here. Further
testing would be needed to discover the best combinations, however these
results give some insight on the performance of this model.

7.2.2 Results Compared to Hand Picked Periods

As for the Simple Threshold Model, the results compared to the hand picked
benchmark, as seen in Table 7.5, shows a higher detection rate. However, the
number of false positives and the percentage of mislabeled healthy periods
are also significantly higher.
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Amplitude/Error Margin 0.56 0.5 0.44 0.38 0.32

0.45

Mean Detection % 97 97 97 97 97
Mean False Positives 43 48 50 52 53
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 31 38 46 55 66

0.40

Mean Detection % 97 97 97 97 97
Mean False Positives 38 44 48 51 52
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 27 34 42 51 62

0.35

Mean Detection % 97 97 97 97 97
Mean False Positives 35 40 46 49 51
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 24 30 38 47 57

0.30

Mean Detection % 97 97 97 97 97
Mean False Positives 30 36 42 47 50
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 21 27 34 43 53

0.25

Mean Detection % 97 97 97 97 97
Mean False Positives 26 32 37 44 48
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 18 24 31 39 49

Table 7.5: Comparison of different results with different start amplitudes and
error margins with the Simple Cosine Model and hand picked benchmarks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and
worst results for the given start amplitude. The detection rates and number of

true positives are not marked as they didn’t change for the different
configurations.

Best results were achieved by using a small amplitude and a high margin
of error, as it was when using the machine picked benchmark. It might
be caused, as previously discussed, by the benchmarks favoring a threshold
model, or that the benchmarks does not take into consideration signs of
illness that this model is able to detect, but get counted as a false positive.

When decreasing the amplitude, this model gets closer and closer to the
Simple Threshold Model. An amplitude of 0.0 (zero) would give us a flat line,
just as the base temperature of the Simple Threshold Model. However, as we
use a base temperature of 39.65 for this model, an amplitude of zero would
make this model similar to the worst configuration for the Simple Threshold
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Model that we tested, with the exception of the counter, which is 6 times as
long.

7.3 Results from Experimenting with Differ-

ent Error Margins and Amplitudes for

the Complex Cosine Model

For all the following tests of the Complex Cosine Model, we use a base tem-
perature of 39.65 and a counter of 180 minutes, as we did for the Simple
Cosine Model. The base temperature will however, in difference to the Sim-
ple Cosine Model, change with time, so even though this might start with
the same base temperature as the Simple Cosine Model, at the end of the
simulation the base temperatures would differ.

The start amplitudes might seem low compared to the amplitudes used for
the Simple Cosine Model. However, as stated in Chapter 6.6, the amplitude
increase by age. I case of a start amplitude of 0.0 the amplitude end up at
0.20. Considering this change, the amplitudes used here are not that far of
the ones used for the Simple Cosine Model.

7.3.1 Results Compared to Machine Picked Periods

The results for the Complex Cosine Model, as seen in Table 7.6, is better
than any of the results we have seen so far with regards to having few false
positives. The downside is that the detection rate is lower than that of
the previously tested models against the machine picked benchmark. This
number of false positives, and percentage of mislabeled healthy periods, is
half that of the best results we have for the Simple Threshold Model, which
is very promising results in terms of accuracy.

The highest detection rate we get with this model, against the machine
picked benchmark is 84% . The lowest number of false positives we get, while
having a detection percentage of 84% , is 16. The Simple Threshold Model
get 18 false positives with a detection rate of 84% with the machine picked
benchmark. The amount of the healthy periods that are mislabeled for this
model is 20% , for the Simple Threshold Model we get 8.2% . Even though
this model had fewer false positives, the false warnings lasted for much longer.
In this regard, this model is outperformed by the Simple Threshold Model
for this detection rate.

The range of the detection rates is [70%, 84%], which is a far bigger range
than we have previously seen. This model is more vulnerable to changes in
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Start Amplitude/Error Margin 0.56 0.50 0.44 0.38 0.32

0.0

Mean Detection % 71 74 77 81 82
Mean False Positives 2.6 4.5 6.9 10 15
Mean True Positives 4.2 4.4 4.5 4.8 4.9
Mean False Ilness % 1.5 3.3 6.6 11 19

0.04

Mean Detection % 70 76 78 81 84
Mean False Positives 3.3 5.2 7.7 11 16
Mean True Positives 4.1 4.4 4.6 4.8 5.0
Mean False Ilness % 1.9 3.8 7.0 12 20

0.08

Mean Detection % 73 77 79 81 84
Mean False Positives 4.1 5.9 8.9 13 17
Mean True Positives 4.3 4.5 4.7 4.8 5.0
Mean False Ilness % 2.4 4.5 8.2 14 22

0.12

Mean Detection % 73 78 80 82 84
Mean False Positives 4.7 7.1 10 14 19
Mean True Positives 4.4 4.6 4.7 4.9 5.0
Mean False Ilness % 3.1 5.5 9.3 15 25

0.16

Mean Detection % 76 79 81 83 84
Mean False Positives 5.7 8.5 12 16 22
Mean True Positives 4.5 4.7 4.8 4.9 5.0
Mean False Ilness % 3.8 6.8 11 18 28

Table 7.6: Comparison of different results with different start amplitudes and
error margins with the Complex Cosine Model and machine picked bench-
marks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and

worst results for the given start amplitude.

the parameters than the two other models. This can be both good and bad.
This allows us to tweak the performance to larger degree. However, wrong
parameters will also have a greater effect.

7.3.2 Results Compared to Hand Picked Periods

As for the previous models, the detection rate and number of true positives
are remarkably stable when comparing to the hand-picked benchmark. This
model performs rather well in terms of number of false positives and percent-
age of healthy periods that are mislabeled compared to the other models.

When we compare the results seen here compared to the results to the
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Start Amplitude/Error Margin 0.56 0.50 0.44 0.38 0.32

0.0

Mean Detection % 95 95 97 97 97
Mean False Positives 10 13 18 23 29
Mean True Positives 2.4 2.4 2.5 2.5 2.5
Mean False Ilness % 8.0 11 17 23 32

0.04

Mean Detection % 95 96 97 97 97
Mean False Positives 11 14 19 24 30
Mean True Positives 2.4 2.5 2.5 2.5 2.5
Mean False Ilness % 8.5 12 17 24 33

0.08

Mean Detection % 96 97 97 97 97
Mean False Positives 12 16 21 26 33
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 9.1 13 19 26 36

0.12

Mean Detection % 97 97 97 97 97
Mean False Positives 13 18 23 28 35
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 10 14 20 27 38

0.16

Mean Detection % 97 97 97 97 97
Mean False Positives 15 20 25 31 38
Mean True Positives 2.5 2.5 2.5 2.5 2.5
Mean False Ilness % 11 16 21 29 40

Table 7.7: Comparison of different results with different start amplitudes and
error margins with the Complex Cosine Model and hand picked benchmarks

Dark green- and red fields mark respectively the best- and worst results for the
given metric. Light green- and light red fields mark respectively the best- and

worst results for the given start amplitude. The number of true positives are not
marked as they had almost no change for the different configurations.

machine picked benchmark, we see the same pattern as with the previous
models. The detection rate goes up together with the number of false posi-
tives and the percentage of healthy periods mislabeled.

7.4 Comparison on Model Effectiveness be-

tween the Herds

In Chapter 5 we saw that the herds had relatively large differences in the core
temperature and its oscillation. We wanted therefore to see if there were large
performance differences between the herds. We do the comparisons for all
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Parameters - Simple Threshold Model
Base Temperature 39.55

Error Margin 0.56
Counter 30

Table 7.8: Parameters for the Simple Threshold Model when comparing per-
formance on herds

Tingvoll - Machine Picked
Mean Detection % 88

Mean False Positives 6.9
Mean True Positives 5.8
Mean False Ilness % 3.5

Tynset - Machine Picked
Mean Detection % 78

Mean False Positives 18
Mean True Positives 4.1
Mean False Ilness % 3.4

Tingvoll- Hand Picked
Mean Detection % 95

Mean False Positives 18
Mean True Positives 3.6
Mean False Ilness % 14

Tynset - Hand Picked
Mean Detection % 100

Mean False Positives 35
Mean True Positives 1.3
Mean False Ilness % 6.7

Table 7.9: Herd comparison on the Simple Threshold Model to the machine
picked benchmark

Comparison of the Simple Threshold Models performance on the herds. Results
from sensor is compared to both the benchmarks.

Green- and red fields mark respectively the best and worst results. Light green-
and light red fields mark respectively the best and worst results in regards to its

benchmark.

the models and using both benchmarks.
For generating the machine picked benchmarks we use the same param-

eters as used previously, shown in Table 7.1.
In the results of these tests we will include the number of true positives.

This metric informs us of how many periods are detected. This is not a metric
for comparison as we have seen that the different benchmarks have a different
amount of illness periods and in Chapter 5.9 we saw that the different herds
have a different number of illness periods. Although we cannot compare this
metric, we still think it provides the reader useful information.

7.4.1 Comparison on the Simple Threshold Model

When comparing the performance of our Simple Threshold Model we used
the parameters shown in Table 7.8. These parameters were chosen as they
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Parameters - Simple Cosine Model
Base Temperature 39.65

Error Margin 0.56
Counter 180

Amplitude 0.25

Table 7.10: Parameters for the Simple Cosine Model when comparing per-
formance on herds

had previously given us the best results.
Table 7.9 contains the results of our comparison for the Simple Threshold

Model. We see here that there are clear differences. For both herds we see
that results for the machine picked benchmark has a lower detection rate
than for the hand picked benchmark. This coincides with previous results.
Similarly to previous results, we see that testing in regards to the machine
picked benchmark gives us a lower amount of false positives than the hand-
picked benchmark.

Interestingly we see that when testing to the machine picked benchmark,
the Tingvoll herd has the highest detection rate, while when we test to the
hand picked benchmark it is the Tynset herd that has the highest detection
rate.

For both the benchmarks we see that the herd at Tynset gets a higher
amount of false positives, however has a lower percentage of healthy periods
that are mislabeled as illness. In Chapter 5.9 we saw that the herds have
differences in the number of illness periods, this is supported in these results,
where we see that for both benchmarks the herd at Tynset has far fewer true
positives i.e. number of detected illness periods. This explains how the herd
at Tynset can have a higher number of false positives and at the same time
have a smaller amount of the healthy periods mislabeled.

7.4.2 Comparison on the Simple Cosine Model

For the comparison of the herds we used the parameters given in Table 7.10
for the Simple Cosine Model for both the benchmarks. These parameters
were chosen based on our previous results.

The results of this comparison is given in Table 7.11. The results are quite
similar to what we got for the Simple Threshold Model, given in Table 7.9,
although generally with slightly worse detection rates and higher numbers
of false positives. We see that this model performs worse in all aspects
compared to the Simple Threshold Model for both the herds and with both
the benchmarks.
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Tingvoll - Machine Picked
Mean Detection % 87

Mean False Positives 10
Mean True Positives 6.0
Mean False Illness % 13

Tynset - Machine Picked
Mean Detection % 74

Mean False Positives 17
Mean True Positives 3.9
Mean False Illness % 7.4

Tingvoll - Hand Picked
Mean Detection % 95

Mean False Positives 21
Mean True Positives 3.6
Mean False Illness % 26

Tynset - Hand Picked
Mean Detection % 100

Mean False Positives 31
Mean True Positives 1.3
Mean False Illness % 11

Table 7.11: Herd comparison on the Simple Cosine Model

Comparison of the Simple Cosine Models performance on the herds. Results
from sensor is compared to both the benchmarks.

Green- and red fields mark respectively the best and worst results. Light green-
and light red fields mark respectively the best and worst results in regards to its

benchmark.

Parameters - Complex Cosine Model
Start Base Temperature 39.65

Error Margin 0.56
Counter 180

Start Amplitude 0.0

Table 7.12: Parameters for the Complex Cosine Model when comparing per-
formance on herds

7.4.3 Comparison on the Complex Cosine Model

For these comparisons we used the parameters given in Table 7.12 for the
Complex Cosine Model. These parameters were chosen based on our previous
results, as this combination gives us the lowest number of false positives of
all the combinations we have tested.

The results for this comparison, given in Table 7.13, is rather different
from the results for the two other models, however some trends remains.
As for the previous results, we see that the herd at Tingvoll has the best
detection rate when using the machine picked benchmark, and when using
the hand picked benchmark the herd at Tynset has the best detection rate.

A difference from the previous comparisons is that the herdt at Tynset
has a lower number of false positives than the herd at Tingvoll when using
the hand picked benchmark. This is interesting as it differs from the previous
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Tingvoll - Machine Picked
Mean Detection % 81

Mean False Positives 2.3
Mean True Positives 5.3
Mean False Illness % 2.0

Tynset - Machine Picked
Mean Detection % 59

Mean False Positives 2.7
Mean True Positives 2.9
Mean False Illness % 0.94

Tingvoll - Hand-Picked
Mean Detection % 93

Mean False Positives 11
Mean True Positives 3.5
Mean False Illness % 12

Tynset - Hand-Picked
Mean Detection % 97

Mean False Positives 9.5
Mean True Positives 1.3
Mean False Illness % 3.9

Table 7.13: Herd comparison on the Complex Cosine Model

Comparison of the Complex Cosine Models performance on the herds. Results
from sensor is compared to both the benchmarks.

Green- and red fields mark respectively the best and worst results. Light green-
and light red fields mark respectively the best and worst results in regards to its

benchmark.

results.
Generally we see that this model has worse detection rates for both herds,

and both benchmarks than both the other models. When using the hand
picked benchmark, the difference is not great. However, when using the
machine picked benchmark we see bigger differences. For the Tingvoll herd
the Simple Threshold Model and the Simple Cosine model have detection
rates of 88% and 87% respectively, while this only detect 81% . For the
Tynset herd, the Simple Threshold Model and the Simple Cosine Model
have detection rates of 78% and 74% respectively, while this model has a
detection rate of 59% . This might be a good thing. As we have discussed,
the software for picking illness periods might be too sensitive. Using this
model we get a mean number of 2.9 true positives, i.e. detected periods.
Looking at our analysis in Chapter 5.9 we have found the mean number of
fever periods to be 2.2 for the Tynset Herd. This might be an indication that
this model is more accurate than the others.

From these results we see that this model outperforms the other models
in regards to the mean number of false positives and percentage of healthy
periods that are mislabeled. Now this might be because we accidentally
found the ideal parameters for this model, and for the other models used less
than ideal parameters.
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Chapter 8

Discussion

In our analysis we see clear indications of a circadian rhythm in sheep. We do
also see indications of individual differences, and changes with time. There
are also strong indications that disturbances of the circadian rhythm can
indicate illness in sheep, and that periods with fever has a core temperature
elevated far over the normal range of temperature.

Temporal signs of illness also seem to appear at an earlier stage than clin-
ical signs appear. It seems very likely that it is possible to develop models
based on temperature that detect illnesses before one is able to do so manu-
ally. We see also that when sheep are at free-range pastures, it is increasingly
difficult to inspect and detect illness manually, increasing the usefulness of
our proposed system.

As we have seen in Chapter 5, the circadian rhythm is clearly present in
sheep, and illnesses can cause abnormalities in this rhythm. The results of
our analyses seem therefore positive to the possibility of creating a model for
detection sheep illness based on the temperature.

There are however also indications that approximating the circadian rhythm
can be more difficult than expected. There are huge individual variations,
and we see changes with time. There is some doubt whether these changes
are caused by aging, seasonal changes, both, or other unknown causes. These
uncertainties can also have affected our results from our analyses.

Our data set consisted of 31 individuals in total. These individuals were
from two different herds, at two different locations. Approximately half of
the individuals were males, and the other half females. All together we have
approximately 4.3 million records. Although there seem to be a lot of data,
which it was, it might not have been enough. Some of the individuals were
sick for a quarter of the time, creating either a lack of data, or a lot of
abnormalities for our analyses.

As all our data is from lambs, we have no data to say anything about
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adult sheep. We can neither compare the daily oscillation and temperature
in general between lambs and adult sheep. The change with time in the
lambs might have impacted our results, and we cannot compare these data
with the data of adult sheep. This makes it more difficult to make decisions
based on our data.

From the journal data we have regarding signs of illness in sheep, we see
that detection of clinical signs of illness can be difficult, and clinical signs
of illness usually appear later than temporal signs. When the sheep are at
free-range pastures, observing clinical signs of illness is extremely difficult.
We see this in part in the journal data, as there are fever records of illness in
the journal, however we see in the temporal data that there has been a clear
presence of illness also when the sheep were free-range grazing. This implies
that the current way of detecting illness in sheep in free-range pastures is
inefficient and inaccurate.

Our results from testing our models are promising. They detect most
of the illness periods, however not all of them are detected. This might
be due to the benchmarks marking healthy periods as illness periods, or
other mislabeling. We see that for some of the models and configurations,
a relatively high amount of the healthy periods are mislabeled as illness
periods. An example is seen in the results of the simulations of the Simple
Cosine Model to the hand picked benchmark, seen in Table 7.5. The worst
configuration mislabel 66% of the healthy periods as illness. This is far too
much mislabeling, and this model with this configuration could not work in
a real world scenario. On the other hand, some of the models show very
low amount of mislabeled periods. The Complex Cosine Model mislabel
only 1.5% of the healthy periods when comparing to the machine picked
benchmark, as seen in Table 7.6.

False positives would be a problem if there are many of them. A high
number of false positives could force the farmer to check in on healthy sheep
more than needed, and thus cause an unnecessary amount of extra work
for the farmers. If the farmers are forced to check in on healthy animals
too often, this might cause distrust in the system, leading the farmers to
stop controlling the sheep in case of warnings, or stop using the system all
together.

The results surprise us a bit, as we thought that the handpicked peri-
ods would be harder to detect than the machine picked. However, in the
results we see that the opposite is true. We see that the mean number of
true positives, i.e. the number of detected illness periods is higher for the
machine picked threshold than for the hand picked benchmark, despite the
higher detection rate on the hand picked benchmark. This shows that the
machine picked benchmark has far more illness periods than the hand picked
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benchmark.
This rather large difference between the benchmarks might explain the

differences we see between the performance to the benchmarks. As the hand
picked benchmark might include mainly illness periods that are easy to de-
tect, leading to a high detection rate, however at the same time leading to a
high number of false positives as there are illness periods that are not marked
in the benchmark so detection of these result in false positives. Another pos-
sibility is that the software for detecting illnesses is too sensitive and includes
periods deviating from the base temperature that are not caused by illness.

We saw in the analyses that the periods of illness looked different. We
also saw that in some cases, where the sheep had been very ill, that the
temperature was abnormally low right after a fever period. Some illnesses
were characterized by disturbances in the daily oscillation alone, and did
not have elevated temperature. This indicates that different illnesses can
cause different footprints on the temperature and its oscillation, and on the
seriousness of the illness. However, we do not have information about which
illness the sheep suffer from in each case of illness, so it is not possible
for us to state anything specifically about this based on our analyses and
our knowledge at this point. However it seems like it would be possible to
predict, if not the specific illness, at least a group of illnesses, and possibly
an approximate severity level of the illness based on temperature alone.

The Simple Threshold Model seem to catch most of the illness periods,
and seemingly at an earlier stage than clinical signs start to appear. This is
a simple model, and should be easy to implement in sensors. It does however
not take into consideration disturbances in the circadian rhythm, and as
we have seen in our analyses, deadly deceases can have seemingly normal
temperatures, however with disturbed rhythms. We have also seen that it
can have trouble detecting light fever, which is just around the threshold
temperature. This model seem to have a low number of false positives,
making it a very trustful method.

The Simple Cosine Model tried to emulate the circadian rhythm, without
taking into consideration the changes over time. We thought this would be
better at detecting illnesses than the Simple Threshold Model, however it was
worse at detecting illnesses and had a far higher number of false positives.
This model did not work well, and it worked best, the closer it got to the
Simple Threshold Model.

Our last model, namely the Complex Cosine Model, is based on emulating
the circadian rhythm. However, it was not a constant model as the Simple
Cosine Model, but changed to accommodate the changes we observed in
the temperature and circadian rhythm as seen in Chapter 5. This model
had a worse detection rate than both the previous models, something that
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surprised us a bit, however it fared way better in terms of low amount of
false positives than both the previous models. Although we haven’t tested
all possible configurations for our models, and there are some uncertainties
in regards to our benchmarks, this model seem to be working rather well.

The Complex Cosine Model changed as the lamb aged. This was due
to our findings of change that coincided with the aging of the lamb. This
change seemed to be working well, judged by our results. However, as we
have previously discussed, we do not know the reason for the change, as there
are many possible causes for the change. In this case it do work, however it
is not certain that it would work as well for other herds or for adult sheep.

Professor Emeiritus Kjell Bratbergengen shared with us a model he had
developed [34]. This model would be tweaked based on the sensor readings
and deviations, and would in that way over time be fitted to the individual.
This has several benefits as it solves the problem of individual differences,
and we don’t need to know what causes change over time, it would change
with the changes. Using this model, we would not have to use calibrated
sensors, as it is the relative temperature that is important in this case. The
problem arises when dealing with large differences, if one should adjust the
model also when the difference is large or not. Large differences can be signs
of illness, so if we adjust for them, it might make the model inaccurate.
However, if we do not adjust for large differences we have a problem if the
starting point is far of the individual’s values.

Kjell’s model, [34], have good results, and seem to be a step in the right
direction. One would have to address how to deal with large deviations and
needs to be tested. However, its results are promising, and the individually
adapting nature of the model might solve many of the problems we uncovered
in Chapter 5.

For evaluation of our models, we had both hand-picked abnormal periods,
and used a program that would select abnormal periods. This was done as
we didn’t have a blueprint telling us when the illness periods started, how
long they lasted, and for how long time the temperature and the tempera-
ture oscillation was affected. We might have wrongfully marked periods as
abnormal and normal. It is therefore not certain that all our results depict
the true performance of our models. It might be that they perform worse or
better than what we have recorded.

Sheep are a relatively low cost livestock. Margins for profit for each
individual sheep are therefore slim. As the herds often are of considerable
size, and there is a trend of an increasing livestock size per farmer [3] the
sensors and the insertion needs to be cheap and efficient. The insertion of
the sensors took around 15 minutes and a team of trained veterinarians were
needed. While this might seem like a short time for a surgical process, this
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is not possible to do on a large scale [3] . The sensors would also be too
expensive. The majority of the sheep do survive, however illness might slow
growth, and loss in revenue must also consider this lost weight at slaughter.
At the moment, this process would be too costly, however it could possibly
be used in other livestock that have a higher value, but then new analyses
for these animals would be needed. It could also be possible to use different
sensors, that have a lower cost, and that are easier to install. With time it
is not unthinkable that new, cheaper sensors will be available, that can be
more easily inserted in the sheep.
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Chapter 9

Conclusion

While there are a lot of uncertainties concerning our results, we are confident
that our work support some hypotheses. We have found clear support for
a circadian rhythm in sheep, and that illness often impact the temperature
and its oscillation. Our results also seem to support the theses that the
temperature and its oscillation changes with time, however the cause is not
clear. We found that aging in our lamb was related to changes, however
we cannot say if this is caused by aging or if it just coincides with aging.
There are many factors that might affect the temperature of sheep and its
oscillation, and it is known that the temperature and circadian rhythm of
animals have seasonal changes.

Our simple threshold model will be able to detect illness at a far better
rate than what is today possible, and it could help save both income for
the farmer and lives of sheep. Although this method has its drawbacks, it
would improve detection of illness in sheep on free-range pastures drastically
compared to the situation of today.

Our Simple Cosine Model was not very successful. However, it serves to
prove that when making models that try to emulate the circadian rhythm,
one needs to take the changes that occur into consideration. The circadian
rhythm change with time and if one does not take these changes into consid-
eration, one’s model will become unreliable.

Our results indicates that the Complex Cosine Model is a good choice for
a detection model. It has a low number of false positives and has a decent
detection rate. It is far from certain that this model would work on other
herds, if it was implemented at a different time, etc. However, it shows that
a model that emulates the circadian rhythm, and that changes accordingly to
the changes that is expected of the circadian rhythm will be of great utility.

Based on our results, we are convinced it is possible to detect illness in
sheep, by looking at the temperature only. We are also convinced that a
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model based on the circadian rhythm, that takes changes of the rhythm into
consideration would be a good model for detecting sheep illness. As we do
not fully understand the causes for the change we saw, we think an approach
like that of Kjell’s model, [34], is the way to go.

As of right now, we don’t think our proposed system would be feasible to
develop. The components would be too expensive, and the implantation to
complicated, costly, and time consuming. For this system to be feasible, we
would need to look at alternative methods of measuring the core temperature,
or an approximate of it. We strongly believe that sensor technology will
evolve such that sensors will become cheap enough, and possible to install
with ease, so that this system will be feasible to develop in the future.
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Chapter 10

Future Work

There is still a lot of work that needs to be done before it will be possible
to develop our proposed system. We need to do more analyses, like we have
done here, with more sheep to verify our results. We would also prefer to
do the same analyses with more animals to see if this changes the results.
Further more, it would be very useful to analyze the circadian rhythm of
adult sheep, and measure the temperature for a longer time period to better
understand how the temperature and its oscillation changes with age, and
the season. It would also be interesting to investigate the impact climate and
weather can have on the sheep, and if there are differences between different
breeds of sheep.

We should analyze whether it is possible to differentiate different illnesses,
and its severity, by the temperature alone. Illnesses should be analyzed from
a temperature point of view, and the different phases of the illness should
be compared to the temporal data, in order to learn the affects of different
phases of the illnesses have on the temperature, and if it is possible to find a
pattern that indicates a illness ”fingermark” on the temperature.

There are similar products available for other types of livestock, such as
FEVERTAGS [35]. We should compare our results with existing solutions
and how well these work. We could use this information to aid decisions on
our product, draw inspirations, and discover what can be improved.

More development and testing is needed for the models for detecting
illness in sheep, in order to make them more reliable and accurate. When
a reliable and accurate model is found, it should be tested in real-life on
sensors in living sheep over an extended time period. Preferably one would
be able to equip some of the sheep in an area with these sensors, and see
whether there are significant differences between these and the unequipped
sheep. Differences that might be interesting to look at are mortality rate,
weight at slaughter, and quality of the meat.
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