
H
åvard O

la Eggen &
 K

ristian A
ndersen H

ole
A

n evaluation of join-strategies in a distributed M
ySQ

L plugin architecture

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Håvard Ola Eggen & Kristian Andersen Hole

An evaluation of join-strategies in a
distributed MySQL plugin architecture

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid

June 2019

Håvard Ola Eggen & Kristian Andersen Hole

An evaluation of join-strategies in a
distributed MySQL plugin architecture

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Join-queries in distributed database systems can be executed using a number of
strategies that vary in communication requirements, compute-heaviness, and com-
plexity. An evaluation of several join-strategies in a distributed MySQL system is
presented. The design and implementation of 5 methods, inspired by literature
and state-of-the-art, and a plugin system enabling distribution in MySQL are de-
tailed. Data-to-query, semi-join, bloom-join, hash redistribution, and sort-merge
are tested in a number of scenarios, leading to a discussion about their relative
performance and viability. In the results, the benefits of parallelism are displayed
through hash redistribution. And semi- and bloom-join show how being clever with
resources can lead to great performance in distributed systems, and how distributed
joins can benefit from different approaches than centralized joins. The more bottom-
up implementation of sort-merge shows the value of using a specialized join algo-
rithm in terms of processor utilization. And the more naïve data-to-query strategy
is shown to be consistent, but generally the slowest. A discussion about the via-
bility of the plugin architecture is also provided, with potential avenues for further
development laid out in future work.

iii

Sammendrag

Join-spørringer i distribuerte database-systemer kan utføres på forskjellig vis ved
bruk av ulike strategier. De ulike strategiene kan variere i kommunikasjons-,
prosesserings-behov, og kompleksitet. Vi presenterer i denne rapporten en sam-
menlikning av flere ulike join-strategier i et distribuert MySQL system. Designet og
utviklingen av 5 metoder inspirert av litteratur og aktuelle systemer blir fremlagt,
samt et plugin-system for å fasillitere distribusjon i MySQL. Data-to-query, semi-
join, bloom-join, hash redistribusjon og sort-merge blir testet gjennom flere sce-
narioer, med en diskusjon rundt deres relative ytelse og egenskaper. I resultatene
vises fordelene med å parallellisere utføringen ved hash redistribusjon. Semi- og
bloom-join sin gode ytelse viser hvordan smart ressurshåndtering kan påvirke ytelse
i distribuerte systemer, og hvordan distribuerte join-spørringer er tjent med å bruke
andre teknikker enn sentraliserte joins. Implementasjonen av sort-merge, som er
laget mer fra bunnen opp, viser verdien av å bruke en spesialisert join algoritme
når det kommer til prosessor-utnyttelse. Og den naive strategien data-to-query
viser seg å være stabil, men er totalt sett den treigeste. En diskusjon rundt plugin-
arkitekturen blir også fremlagt, samt tanker rundt fremtidig utvikling.

iv

Acknowledgement

First of all, we would like to give a special thanks to Jon Olav Hauglid for provid-
ing guidance and conducive discussions throughout this project. Furthermore, the
MySQL team at Oracle for hosting us, providing office space, equipment, and a
productive environment. We want to specifically acknowledge a few key players
of the Oracle staff. We would like to thank Terje Røsten for technical support and
making sure we always had a functional setup. Eivin Hatvik for providing access to
and assistance with Oracle Cloud. Norvald Ryeng for helping us in corporate and
organizational matters at Oracle. Rafał Somla, Luis Silva, and Bogdan Degtyariov
in the Connector/C++ team for always answering our technical questions and for
being great sparring partners during the implementation phase. And the rest of the
MySQL team in Trondheim for moral support and interesting lunch conversations.

v

Contents

List of Tables ix

List of Figures ix

1 Introduction 1
1.1 Problem . 2

2 Theory 3
2.1 Distributed database systems . 3
2.2 Distributed queries . 4
2.3 Distributed join-queries . 4
2.4 Previous work . 5
2.5 Methods . 6

2.5.1 Distributed hash-join . 6
2.5.2 Distributed sort-merge join . 7
2.5.3 Semi- and Bloom-join . 7

3 State-of-the-art 9
3.1 ClustrixDB . 9
3.2 MySQL Federated Storage Engine . 10
3.3 MySQL Cluster . 10
3.4 CockroachDB . 11
3.5 Google Spanner . 11
3.6 MemSQL . 12
3.7 Apache Ignite SQL . 12
3.8 Conclusion . 13

4 Design 14
4.1 Legacy system architecture . 14

4.1.1 Life of a query . 15
4.1.2 Plugin overview . 16
4.1.3 Metadata model . 16

4.2 Join types . 17
4.3 Join strategies . 17

vi

CONTENTS vii

4.4 Node communication . 18
4.5 Data-to-query . 19
4.6 Semi-join . 20

4.6.1 Relational algebra . 20
4.6.2 Our semi-join method . 21
4.6.3 One partitioned table . 22
4.6.4 Multiple partitioned tables . 22

4.7 Bloom-join . 24
4.7.1 Bloom-join master . 24
4.7.2 Bloom-join slave . 25

4.8 Hash redistribution strategy . 25
4.8.1 Hash function . 26

4.9 Sort-merge join . 27
4.9.1 Sorting . 27
4.9.2 K-way merge . 28
4.9.3 Merge-join . 29

4.10 Architectural changes to support the join strategies 29
4.10.1 Modularization . 30
4.10.2 Modifications to the execution model 31

4.11 Hypotheses . 32
4.11.1 Join selectivity . 32
4.11.2 Value distribution . 33
4.11.3 Data distribution skew . 33
4.11.4 Slow networks . 33

5 Implementation 35
5.1 Architectural changes . 35

5.1.1 New execution model . 36
5.2 Data-to-query . 36
5.3 Semi-join . 38

5.3.1 One partitioned table (n=1) . 38
5.3.2 Recursive distributed queries (n=2) 39

5.4 Bloom-join . 40
5.4.1 Bloom-filter library . 40
5.4.2 Shipping the filter . 41
5.4.3 Bloom-join master . 41
5.4.4 Bloom-join slave procedure . 42

5.5 Hash redistribution . 43
5.5.1 Master . 43
5.5.2 Slave . 44
5.5.3 Hash function . 45

5.6 Sort-merge join . 47
5.6.1 K-way-merging . 47

CONTENTS viii

5.6.2 Merge joiner . 48
5.7 Optimization . 50

5.7.1 Parallelization of interim table insertion 51

6 Evaluation 52
6.1 Measuring performance . 52
6.2 Dataset . 53

6.2.1 Selectivity of join . 54
6.2.2 Distribution of values . 54

6.3 Test setup . 55
6.3.1 Automation of tests . 56

6.4 Results . 56
6.5 Virtual machines on a local network 56

6.5.1 Horizontal scalability . 57
6.5.2 Vertical scalability . 60
6.5.3 Distribution of values . 61
6.5.4 Selectivity . 63
6.5.5 Semi vs Bloom . 65

6.6 Slow network simulation . 67
6.6.1 Bandwidth . 67
6.6.2 Latency . 67

6.7 Physical machines . 68
6.8 Discussion . 70

7 Conclusion 72

8 Future work 74
8.1 Further testing . 74
8.2 Speeding up inserts . 74
8.3 Closer integration with MySQL . 75
8.4 Join algorithms . 76
8.5 Hybrid join strategies . 76
8.6 More Join types . 76
8.7 Consistency . 77

Bibliography 79

Appendix A Lundgren plugin source code 83

Appendix B Test system source code 144

List of Tables

5.1 Output size for the different hash algorithms 47

6.1 Specification of the VMs . 55
6.2 Average percentage standard deviation for each strategy in figure 6.4 57
6.3 Comparison of the specifications of the physical and virtual machines . 69

List of Figures

4.1 Life of a query . 15
4.2 Architectural overview of the plugin . 16
4.3 Metadata model . 17
4.4 Different communication modes . 19
4.5 Sequence diagram of data-to-query 20
4.6 Relational algebra of semi-join with 2 nodes 21
4.7 Sequence diagram of a semi-join with 3 nodes and 1 partitioned table 22
4.8 Sequence diagram of n = 2 semi-join with 3 nodes and 2 partitioned

tables . 23
4.9 Sequence diagram of n = 1 bloom-join with 3 nodes and 2 partitioned

tables . 25
4.10 Sequence diagram of hash redistribution 26
4.11 Sequence diagram of sort-merge . 28
4.12 Relational algebra of sort-merge join 29
4.13 Architectural changes to support multiple strategies 31
4.14 Sequential stages of semi-join . 32

5.1 Problems with not including all nodes containing a partition of A, B or
both . 45

ix

LIST OF FIGURES x

5.2 Time usage for different hash algorithms 46
5.3 Merge joiner diagram . 48
5.4 Iterative data flow of sort-merge . 49
5.5 Indices improvement with 2 x 1000 rows, average of 5 runs 50
5.6 Parallel insertion speedup with 2 x 217 rows, average of 5 runs, data-

to-query strategy . 51

6.1 Measuring points timeline . 53
6.2 Selectivity columns plot with 10 rows 54
6.3 Sample of 215 rows, 50% probability of match 55
6.4 Scaling number of nodes with the 60% selectivity column, with 219 rows 57
6.5 Scaling number of nodes with the 10% selectivity column, with 220 rows 58
6.6 One partitioned table, scaling number of nodes with the 50% selec-

tivity column, with 219 rows . 59
6.7 Varying datasize with 16 nodes and the 50% selectivity column . . . 60
6.8 Results for normal and uniform distribution, as well as 50% selectivity

on up to 16 nodes, with 219 rows . 61
6.9 Varying selectivity with 16 nodes and 219 rows 63
6.10 Sort-merge with and without indices. Varying selectivity with 16 nodes

and 219 rows . 64
6.11 Semi- and Bloom-join with 16 nodes, using the normal distribution

join column . 65
6.12 Extra rows included due to bloom false positive with normal distribu-

tion join column for the different data sizes tested 66
6.13 Scaling number of nodes with the 50% selectivity column, with 218 rows 68
6.14 Comparison of VMs vs physical machines, varying selectivity with 4

nodes and 219 rows . 69
6.15 Varying selectivity with 4 nodes and 219 rows 70

Chapter 1

Introduction

The volume of traffic and data on the internet is increasing. Popular applications
have to handle millions of concurrent users, who might be located anywhere on the
globe. As scaling up single servers to tackle this load requires expensive specialized
hardware, or in some cases simply cannot be done with current technology, the focus
has shifted towards distributed systems and the potential they have for scalability.
Distributed systems are systems that reside and operate on multiple machines.

They are typically built on a shared-nothing architecture in which the only com-
munication between nodes is message-passing over a network. For databases this
approach has become very popular, giving rise to new paradigms of database sys-
tems. Modern database systems attempt to be distributed, while still retaining the
functionality of traditional Relational Database Management Systems (RDBMS) [1].
This can be a non-trivial task as it involves upholding the rich functionality of the
Structured Query Language (SQL), whilst operating on datasets split across a num-
ber of nodes. The goal of many such systems is to surpass traditional systems in
scalability and performance. They do this by using parallel processing techniques,
and co-operation between nodes to benefit from the added compute power.
Common performance problems in distributed database systems are related to

data locality, i.e. how close data is to where it is going to be processed. Usually one
wants to maximize utilization of all the nodes in the system by having them all work
in parallel. In order to do this, all of the nodes need to have a piece of the problem
to work on. When talking about databases, this means having tables and rows. This
cost of transferring data can vary based on how closely the nodes are linked, i.e. on
a local network, or geographically spread out on a WAN.
Joins, in particular, tend to be greedy, with regards to data and can cause trouble

in distributed databases. This is due to the fact that joins compare all the rows from
two or more tables against each other. With a partitioned data set, spread across
multiple nodes, naïve strategies for executing joins are bound to generate a lot of
network traffic.

1

CHAPTER 1. INTRODUCTION 2

1.1 Problem

Joins in distributed database systems require a plan of execution. The plan needs
to dictate the distribution of operators, operands, and data in order to coordinate
the cooperative execution of a single join between multiple nodes. We will refer to
these plans as ”join strategies”.
Different strategies from literature and state-of-the-art vary in complexity and

traits such as parallelism and network requirements. The decision about what strat-
egy to use in a given context is based on a number of factors, everything from the
hardware used to what data and queries a system encounters. The goal of this
project is to evaluate multiple join strategies in a distributed MySQL system. The
distributed system for which we will be evaluating join strategies is based on a sys-
tem we developed for our specialization project. In that project we presented a
plugin for MySQL, extending MySQL with a distribution layer capable of executing
a limited set of distributed queries. While in this project we will be looking at ways
to implement joins in that architecture and evaluate the different strategies against
each other.

Chapter 2

Theory

Before delving into existing systems, design, and methods, we will first present
some fundamental theory about distributed database systems, queries, and joins.
This is to refresh the reader on what distributed database systems are, how they
perform queries in general, and why join queries present a problem for these sys-
tems. Further on we will present some previous research done in this area, and
investigate different distributed join strategies and how they operate.

2.1 Distributed database systems

A distributed database is a network of logically connected databases. Distributed
database management systems manage these databases, providing a common in-
terface making the distribution transparent to the outside. ”Distributed database
system” refers to both of these together [2].
Common for distributed database systems is a shared-nothing architecture. This

means no nodes overlap in any way with any hardware resource. This has the ben-
efit of simplifying the handling of failures and allowing for higher scalability. It does,
however, have its disadvantages, namely requiring data transfers over some a net-
work for most tasks, which is an expensive operation. Data locality in distributed
database systems is, therefore, an important topic. As each node only handles a
subset of the data, communication between the nodes is key. How the data conse-
quently is partitioned among the nodes determines the cost/complexity of accessing
and maintaining it, which is a sought-after cost to minimize.
It is this distribution of data which allows for the scalability. With each node

handling only a subset, the computational cost per node decreases as the number
of nodes increases.

3

CHAPTER 2. THEORY 4

2.2 Distributed queries

Queries in a distributed database may target data on multiple nodes in the system.
To access this data, queries, or parts of queries, need to be conveyed to all the
relevant nodes.
The simplest way of executing a distributed query is to request all the data ref-

erenced by a query from the nodes, and executing the query once all the data is
gathered on one node. We will refer to this as data-to-query. The other class of
strategies, called query-to-data, involve the nodes receiving and executing part of
the query, and returning the resulting data [3]. Strategies belonging to this cate-
gory have the potential for greater parallelism where nodes can share the workload.
This is the most interesting area as there are a lot of different possible strategies
and opportunities for optimization.
When multiple nodes execute different parts of the query you get partial results

spread throughout the system. If the system is to be transparently distributed and
act as one logical database, the results need to be combined before sending it to the
client. Aggregation of the results presents a challenge, in that a divided result needs
to come together over the network, but also an opportunity in that the aggregation
work itself can be parallelized. The partial results of a query may have a much
smaller cardinality compared to the tables they are from, e.g. a partially computed
average query wherein the nodes return the sum of their rows.

2.3 Distributed join-queries

Join-queries in a distributed system presents a challenge as the entirety of the data
being joined need to be cross-compared somehow. This might result in a lot of
network traffic, which can be a great bottleneck of distributed systems. A common
goal for distributed query strategies is therefore to reduce the number of network
messages needed to complete the join [4].
Types of strategies for distributed join-queries:

1. Parallel algorithms
There exist three different classes of parallel join algorithms: nested-loop joins,
hash-joins, and sort-based joins [5]. Some algorithms allow for a greater de-
gree of parallelization than others, e.g. the work of a hash join can be shared
between nodes by having them hash their local partitions. This is categorized
as intra-operator parallelism. They are often designed with pipelining in mind
as well, allowing for different operations to be executed in parallel, also called
inter-operator parallelism [6].

2. Knowledge about data locality
Strategies can exploit the properties of tables. Such as the distribution of
values based on statistics or a predetermined partitioning scheme. Joining on

2.4. PREVIOUS WORK 5

the partition column of two tables might not require the transfer of any tuples
to complete the join, because the system knows the location of those values.
E.g. a Person table partitioned on person ID and a Wallet table partitioned on
its foreign key relation Person.ID, placing all the matches on the same nodes.

3. Redistributing the data
Redistributing data before executing joins can be a viable strategy and can
result in less overall messaging between nodes. A common way of placing
data evenly is to use hashing on the join-columns. The goal of the redistribution
operation is to have all matching tuples be placed on the same nodes, making
it possible to, in parallel, execute the join locally on the nodes [7].

4. Distributing the work
Distributing the actual work of the queries can be done in several ways. It is
possible to do work before sending any or little data, depending on how data
resides in the system. A semi-join can achieve this by having join-columns
shipped and joined with rows locally on other nodes. Other ways include sort-
ing tables in parallel before doing a merge-join, or hashing tables before ship-
ping them in a hash-join. The order of query operators can play an important
role also. Doing selections and projections on each node before sending the
operands to the join operators can reduce network traffic when transferring
tables used for joins. Join-ordering is a well-known join-optimization as well.
When you factor in network messaging in a distributed system the impact can
be even larger.

In this project we will be focusing on both intra- and inter-operator parallelization
of joins, as well as data (re)distribution strategies for optimization. However, we
will be using MySQL’s native nested-loop join on the local level at each node. This
because nested-loop is the only join algorithm available in MySQL. This means that
our focus is mainly on orchestrating the distribution of operators, operands and data,
and not on implementing parallel versions of serial join algorithms.

2.4 Previous work

Distributed join methods have been discussed and compared in previous research.
Some prominent efforts include:

• Some experimental results on distributed join algorithms in a local network [8],
by Lu, Hongjun and Carey, Michael J., contains a comprehensive evaluation
of different types of optimizations such as pipelining, semi-join strategy, and
different local join algorithms. They compared the performance of these tech-
niques to what they call ”traditional” join (joins without the optimizations), and
found that, in general, network communication is not a dominating factor in a
local network scenario.

CHAPTER 2. THEORY 6

• A Performance Evaluation of Four Parallel Join Algorithms in a Shared-Nothing
Multiprocessor Environment [9], by Schneider, Donovan A. and DeWitt, David
J., looks at parallel variants of popular join algorithms such as hash-join, sort-
merge and compares their performance and memory usage when completing
joins on various datasets. They found that a parallel hybrid hash-join delivered
the strongest performance peaks, while a parallel sort-merge was the most
stable throughout the different tests.

• Advanced Join Strategies for Large-Scale Distributed Computation [10], by
Bruno, Nicolas and Kwon, YongChul and Wu, Ming-Chuan, looks at join graph
topologies involving multiple joins to find the best execution order for a parallel
system. They also introduce methods to perform ”SkewJoins”, which are join
methods that seek to reduce the impact that significant data skew can have.

These research efforts have investigated distributed joins using a top-to-bottom
implementation approach where algorithms specialized to handle distribution has
been deployed. Our project seeks to provide join strategies on top of a regular
MySQL instance, thereby foregoing any local algorithm optimizations and rather
exploring the movement of data and operators between the nodes. Although, some
aspects of the methods used and results in these papers are still interesting and
valuable to our efforts.

2.5 Methods

We will in this section present a few different methods from research on distributed
joins. The methods highlighted are the methods we found to be the most interesting
and applicable to this project.

2.5.1 Distributed hash-join

A simple way of executing a distributed join is through hashing. A hash-join on one
machine works by reading one set, R, building a corresponding hash table, and then
passing/looping through another set, S, and continuously joining matches from S in
the hash table [7]. When building the hash table it may overflow, meaning there
is not enough room in the working space for it. In this case, overflows are written
to an interim file to be processed later on. Incoming records from S not matching
in the current hash table will also be written to an interim table to be processed
later. The distributed algorithm is very similar in its workings, except it also has to
distribute data to nodes [9]. This distributed hash-join works by:

1. Hash join-column of table R to route tuples to nodes.

2. Build hash tables of R at each node. Overflows are written to a local file.

2.5. METHODS 7

3. Route rows from table S using the same hash function.

4. Join immediately on arrival at a node, mismatches written to overflow file.

5. Move on to the next chunk of R from overflow file and repeat join with S over-
flow.

As hash-joins are not supported in any current version of MySQL, a full parallel
hash join implementation is out of scope for this project. Looking at the paral-
lel hash-joins in research is still worth-while as the techniques employed for data
redistribution and partitioning are still highly relevant for our project.

2.5.2 Distributed sort-merge join

Sort-merge join works by sorting the tables on the join column, and merging to-
gether the ordered sets, creating matches as it goes. One distributed variant, as
described in [9], parallelizes the work by having each involved node sort its part of
the tables locally. They include an initial data redistribution step, using hashing, to
be able to complete the join locally on the nodes. The nodes then perform a simple
merge-join locally and can ship its part of the final result.
But it is also feasible without the hashing step. If the data is not aligned by join

column values, an n-way merge of the sorted data streams from the nodes can be
performed, and matches can be produced continuously by the merging node [11].
”Interesting order” is a shortcut when performing merge-joins. If the system

has information about the ordering of the table, and they happen to be sorted by
the join columns, the sorting step can be bypassed. This also allows for pipelining,
which otherwise is not possible as sorting is a blocking operation [12].

2.5.3 Semi- and Bloom-join

Semi-join is a reduction operator that works by joining two tables on a column, but
only leaving the matched result of one table as opposed to retrieving the aggregated
result from both. For distributed databases, this reduction is handy as only the join-
column needs to be sent from a node to another to retrieve matches. This means
smaller message sizes, thus, reducing the network volume. When the result of a
semi-join is returned the full join can be finalized with the rest of the columns on
the first node [13].
The idea of semi-joins and sending a minimum amount necessary to execute a

join has been expanded upon in research. Instead of sending the columns them-
selves, methods for sending only a bit array representation functioning as a filter
has been presented.
A bloom filter is a bit array generated by passing elements of a set through

multiple hash functions denoting which bits to flip ”on”. When all the elements of
a set have been passed through, we can use the same algorithm to determine if

CHAPTER 2. THEORY 8

an element is a member of the original set. If an element is hashed to a position
containing a zero by any of the hash functions, it is not part of the original set. False
negatives are not possible with bloom filters, but false positives are. Thus, a bloom
filter can attribute membership to an element not actually in the set, but will never
claim a member is not one [14].
Bloom-join is a variant of semi-join using bloom filters to reduce the opposite

table’s join-column to what the filter deems potential matches [15]. It works by:

1. Generating a bloom filter of table S’s join-column.

2. Shipping the filter to the other node.

3. Pruning the join-column of table T on the second node by applying the filter.

4. Shipping back the potential matches, and joining them with table S.

Semi- and Bloom-joins are very interesting strategies for our project as they are
inter-operator optimizations, but still, very much affect the execution of the joins
themselves by splitting them into multiple join operations.

Chapter 3

State-of-the-art

In this chapter, we will look at modern distributed database systems supporting
SQL and explore the different strategies they employ for executing distributed join
queries. Looking at contemporary systems can give us an insight into what strate-
gies are used and tested in the real world, and can impact the choices we make
about what methods to pursue in this project.

3.1 ClustrixDB

ClusterixDB is a distributed relational database, based on a shared nothing archi-
tecture, aiming for great scalability by using highly parallel querying methods1.
ClustrixDB optimizes their distributed joins by having tables’ columns indexed by

means of a hash function. Indices are placed on nodes using the hash function and
serve as pointers to the rows. When a primary key is indexed, the index is stored
on the same node as the row it points to. This means that when joining two tables,
by means of hash-join, the hashed values already exist on the correct nodes and
simply need to be paired. This also means that if a join is on two tables’ primary
keys there is no need to move any data between nodes to complete the join[16].
If a join is between table A’s primary key and a non-primary key index of B,

the join operator is shipped to the node containing the rows for A. This way A can
execute the join based on A’s rows and the indices of B. At the end the only data
that needs to be sent between the nodes are the rows of B that satisfy the join
condition. This is a semi-join, but with the performance improvement of having the
join-columns already in place on the nodes. The work can be done in parallel, with
minimum messaging, as the hashed indices ensure that each node already has the
information to complete its part of the join. In the end, unicast messaging is used
to move the required data directly to the designated manager node[17].

1http://docs.clustrix.com/display/CLXDOC/Frequently+Asked+Questions

9

http://docs.clustrix.com/display/CLXDOC/Frequently+Asked+Questions

CHAPTER 3. STATE-OF-THE-ART 10

With this strategy, ClustrixDB demonstrates the value of preparation and mainte-
nance of strict and plentiful metadata in a system. Every subsequent query receives
the performance payoff, from this initial and ongoing survey of the data.

3.2 MySQL Federated Storage Engine

The MySQL Federated storage engine is a storage engine which ships with MySQL,
and can be used as a replacement for e.g. InnoDB. Its purpose is to enable simple
remote access to tables residing on other MySQL servers. When enabling the fed-
erated engine, users can reference non-local tables in queries. This is achieved by
creating a local reference to the table with the network location, database name, and
the table schema. When a query targets a federated table, MySQL fetches all the
rows from the remote server that the table resides on. In other words, it brings the
data to the query [18]. This is a simplistic approach, of the form ”data-to-query”, in
which any query, including joins, can be executed on a distributed dataset without
modification, but it also has downsides. This method can potentially lead to network
overload and/or running out of memory, having to write to disk when the dataset is
big.

3.3 MySQL Cluster

MySQL Cluster is a system providing sharding and clustering of MySQL through the
use of the Network Database (NDB) engine. This is a shared-nothing distribution
aware storage engine2.
To parallelize the work of a distributed join, MySQL Cluster uses something they

call Adaptive Query Localization (AQL). It works by querying the storage-engine
nodes with a specification of the needed data. This specification includes what tables
and columns are being accessed, access type (primary key, full table scan, etc.),
any relations between the tables. They also push down selection and projection
operators [19]. This means much of the work of the join can be done in parallel on
the nodes.
MySQL cluster’s distribution capabilities live in the storage engine layer, using

their distributed storage engine NDB. Since our project operates on levels above the
storage layer, the methods are not directly applicable, but some important aspects
to take away is the effect of pushing down the knowledge of the data and query to
the distribution aware components.

2https://www.mysql.com/products/cluster/faq.html

https://www.mysql.com/products/cluster/faq.html

3.4. COCKROACHDB 11

3.4 CockroachDB

CockroachDB is a distributed SQL database built on top of a strongly consistent key-
value store3. It focuses on consistency and reliability and aspires to be ultra-resilient
against all types of failures.
For its distributed joins, CockroachDB uses a combined hash-redistribution and

sort-merge join strategy. To use this method CockroachDB requires both tables of
a join to be indexed and sort on the join-columns to be used.
The first step it takes is to redistribute the data of its sorted table partitions

using a hash function. Each node then sets up a merge joiner and starts receiving
the data streams of its designated hash value range. Merging happens by comparing
the rows from both tables until a match is found. Once a match is found it keeps
reading rows to find all the rows that match with the currently matched value. When
no more matches for the current value is found, the merge joiner returns a cartesian
product of all the matching rows and then moves on to the next set of matches. The
incoming data streams are thereby continuously merged, joined and streamed to
the master node. If a partition is not sorted the receiver node needs to wait for the
entire stream to then sort it, thereby blocking the pipeline. This is acceptable for
small tables, but for large unsorted partitions, Cockroach uses a hash join instead
[20]. This indicates that sort-merge join is a limited strategy, as CockroachDB only
uses it in situations where there are heavy constraints on the data.

3.5 Google Spanner

Spanner is a cloud database focused on delivering high scalability and strong con-
sistency throughout Google Cloud4.
When joining two independently distributed tables, Spanner employs a data re-

distribution strategy to reduce the overall number of messages between nodes.
First, it analyzes the query to figure out what shard key ranges are in the scope
of the join, and by extension which nodes need to be sent a part of the left join-
operand. It then makes a set of subqueries to retrieve the needed rows in batches
from the nodes, called a distributed union. These queries are modified by pushing
down operators, like projections and selections, to reduce the size of the result. The
distributed union is then broken into shard specific minimal batches, based on shard
key ranges, and sent out to the relevant nodes. The nodes now receive a minimal
set of rows needed to execute the join with their local set of rows [21].
Spanner’s strategy is based on doing preliminary redistribution work in order to

align the data before executing the join. It is a simple and general strategy that
does not alter the join execution itself, and it aligns well with partitioning schemes
and metadata about data-locality. However, it is limited in that it is only a data

3https://github.com/cockroachdb/cockroach
4https://cloud.google.com/spanner/

https://github.com/cockroachdb/cockroach
https://cloud.google.com/spanner/

CHAPTER 3. STATE-OF-THE-ART 12

redistribution strategy, and is not participating in the work of the join itself, like e.g.
a distributed hash-join.

3.6 MemSQL

MemSQL is a distributed main memory SQL database using RAM as its primary stor-
age, and logs for durability5. Ir provides row storage tailored towards transactional
workloads (OLTP) and column storage for analytical workloads (OLAP).
MemSQL operates with a concept called ”reference tables” to provide efficient

distributed joins. The reference tables are fully replicated on every node, meaning
that a join between a table and any number of reference tables can be executed
locally on the nodes using the replicas [22]. This method, however, requires some
planning on the users’ part in deciding which tables are reference tables. When join-
ing a table with a non-reference table MemSQL needs to move data about, however,
they try to minimize the amount by aligning shard-keys between big tables. This is
done by looking at the signatures of the shard keys and aligning them such that as
much of the join as possible is done locally on the nodes. Users can influence this
as well in choosing shard keys.
Giving users the ability to impact join performance and distribution strategy is

smart as it takes advantage of advanced human knowledge about the query patterns
and use-cases that need to perform well, especially for an OLTP workload where the
set of queries is predictable and rarely change.

3.7 Apache Ignite SQL

Ignite SQL is a distributed SQL database, using tiered storage layers, meaning it
prefers to store data in main memory, but also has full support for using disks6.
Ignite SQL supports distributed joins in three different capacities. Similar to

MemSQL, if a table is replicated, it can immediately be joined with any table as one
of the operands exists on every node. The next level is referred to as collocated
joins. Instead of replicas of tables, here they require that the keys being joined on
are collocated. Meaning an index of the keys is replicated on every node. This way
the join operation can be completed using the local copy of the index. Then the
rest of the requested data and the final join result can be aggregated at the master.
This is similar to the way ClusterixDB does it, which is to say it is a pre-shipped
semi-join.
The final variety is non-collocated joins. This is when a join between partitioned

tables without replicas or collocated keys is requested. In this case, the system
requests all the needed data from the other nodes, just like the MySQL Federated

5https://docs.memsql.com/introduction/latest/memsql-faq/
6https://apacheignite-sql.readme.io/docs

https://docs.memsql.com/introduction/latest/memsql-faq/
https://apacheignite-sql.readme.io/docs

3.8. CONCLUSION 13

Engine. This is not enabled by default and needs to be activated upon configuring
the system. This is because it is considered to have really bad performance due to
the network round-trips and traffic it can generate [23].

3.8 Conclusion

Looking at the systems in this section has shown us that processing and keeping
knowledge about data is valuable. As well as the fact that no single join strategy is
a solution to every problem. Supporting multiple strategies, choosing the best one
for a particular query, and/or storing data in a way that suits a particular strategy
are common denominators to the way many of these systems operate. We will use
the knowledge of these systems when designing our join strategies, partitioning
schemes and overall architecture.

Chapter 4

Design

In this chapter, we will present the design of a distributed MySQL solution based on
plugins, capable of performing selected JOIN statements using different strategies.
First, we will talk about the legacy system from our specialization project and how
it works, before presenting the design of the different strategies, and why they are
interesting, and lastly discuss how the legacy system must be extended to handle
the strategies.

4.1 Legacy system architecture

The system we will make for this project is based on the system we made for our
specialization project. In this section, we present a birds-eye-view of the legacy
system’s design. The system we made then was a MySQL plugin enabling distribu-
tion by connecting multiple MySQL instances, keeping metadata about partitioned
data and rewriting queries to run distributed on all nodes. It was made using the
plugin API exposed by MySQL. This means the plugin can access some MySQL in-
ternals, e.g. the parse-tree for a query, through the plugin interface. So it is tighter
integrated than an application layer system, but not completely integrated with the
DBMS itself either. Communication between nodes is done using the MySQL proto-
col, and queries target the MySQL instances directly.
The design choices in the rest of this chapter are made in the context of the plugin

architecture, and the inherited philosophy of the legacy system design. This means
using existing MySQL functionality to do the heavy lifting, avoiding re-inventing
functionality and keeping the plugin a lightweight distribution layer.
At the end of the specialization project, the system was capable of handling a

limited set of distributed queries, more specifically SELECT, COUNT, SUM, and AVG,
but no joins. Thus, we need to extend it with implementations of the different join
strategies.

14

4.1. LEGACY SYSTEM ARCHITECTURE 15

4.1.1 Life of a query

An overview of how the legacy system is put together is best explained with how
a query passes through the system. A diagram of this process can be seen in
figure 4.1.
Initially, it starts like any other query in a normal MySQL environment. A user

opens a connection to a MySQL instance, which in this case is an arbitrary node in
the system that has the plugin installed. From here a query is entered and sent to
the query parser. An Abstract Syntax Tree (AST) is created before triggering and
passing the result to the plugin. The normal flow is then interrupted and blocked,
and the distributed system takes over.
From here on a multitude of different operations are performed. The plugin starts

by checking whether the tables in the query are known to the distributed system.
Further on it evaluates which nodes to include, queries the relevant nodes, creates
interim tables and stores the results in them, and finally rewrites the original query
to instead target these.
After this, the blocking is released and the execution continues as normal, but

with the rewritten query instead.

Client

Partitions Metadata Interim tables

Query parser

Query

Plugin

AST

MySQL

Executor

Blocked

Rewrite

Execute distributed

Gather result

Plan

External node

External node

Query

Result

2. Continue

Rewritten
query

Result

1. Insert

Figure 4.1: Life of a query

CHAPTER 4. DESIGN 16

4.1.2 Plugin overview

Figure 4.2 shows the overall architecture of the system where the green area is
the plugin, consisting of four components: distributed query rewriter, distributed
query manager, plugin hooks and MySQL driver. The Distributed Query Rewriter
(DQR) walks the parse tree and plans the execution of a distributed query. The
Distributed Query Manager (DQM) is responsible for overseeing the execution of the
node-specific queries generated by the distributed query rewriter. The plugin hooks
represent the modules interfacing with the API, e.g. internal queries, defining the
plugin. The MySQL driver, namely Connector/C++1, is used to query external nodes.
Also shown in the figure are the different databases defined. One for metadata, one
for interim tables, and the last one for the user data partitions.

MySQL

Storage

Query Parser

Plugin

Partitions

Plugin Hooks

MySQL driver

Distributed Query Rewriter

Distributed Query Manager

Metadata
Interim
tables

Nodes

Partitions

Figure 4.2: Architectural overview of the plugin

4.1.3 Metadata model

The metadata model consists of three entities: nodes, partitions and shard keys.
A shard key in our system is defined by a column name, a start value, and an end
value. A partition can be any subset of rows in a table, including the complete set
of rows, and will have exactly one shard key denominating which ones. Thus, in
our metadata, a partition is defined by a shard key id, a table name, and a node
ID. A node is defined by a vector of host IP address, port, database name, and user
credentials. This addressing scheme is similar to MySQL Federated Engine’s (sec-
tion 3.2), and gives our system the ability to refer to any MySQL table in existence.
This opens up for a lot of additional use-cases outside of partitioning a database.

1https://dev.mysql.com/doc/connector-cpp/8.0/en/connector-cpp-introduction.html

https://dev.mysql.com/doc/connector-cpp/8.0/en/connector-cpp-introduction.html

4.2. JOIN TYPES 17

For example, logically linking two existing databases with no previous relationship
and executing queries across the two.
The information about partitions is stored on the MySQL instances as tables,

referred to as the metadata tables. The plugin accesses and manages these tables
through internal querying. There is one table for nodes that exist in the system,
one table for partitions, and one for shard keys. The model for these tables can be
seen in figure 4.3. Given that the metadata tables are regular SQL tables we are
able to use the full expressiveness and power of SQL when accessing them. This
means that we can, based on an incoming query, select only the partitions that are
targeted by it.

Node
PK id

host											
port
database
user

Partition
PK id
FK1 nodeId
FK1 shardKeyId

tablename

ShardKey
PK id

shard_column
range_start
range_end

* 1 1 1

Figure 4.3: Metadata model

This marks the end of the section about the legacy system, serving as a basis
for the new system. Further on in this chapter, we present the design of all new
developments.

4.2 Join types

There is a multitude of possible join queries available in a typical relational database
system. Inner join, left-, right- and full outer join, comparator-based join and so
forth2. As complete support for SQL is not a goal of this project, we will focus
our efforts on the typical and implicitly inferred inner join. In addition to this, we
must also evaluate all methods on the same basis, thus, we need to perform joins
which are supported by all the methods. E.g. once hashing is involved you are
limited to equi-joins, because once you hash a sequence of numbers the transitive
relationships of the < and > operators cannot be guaranteed. Therefore we will be
limiting our design to inner equi-joins.

4.3 Join strategies

To decide which strategies we will implement and evaluate, we have taken applicable
strategies from both the theory and state-of-the-art chapters and categorized them
into 5 types of ”pure” strategies. For example, the hybrid strategy of CockroachDB
is a combination of two ”pure” strategies; hash redistribution and sort-merge join.

2https://dev.mysql.com/doc/refman/8.0/en/join.html

https://dev.mysql.com/doc/refman/8.0/en/join.html

CHAPTER 4. DESIGN 18

This is to make our research more informative in terms of the specific strengths and
weaknesses of a strategy in and of itself.
The 5 main join strategies we have landed on are the following:

1. Data-to-query A simple method serving as a baseline for evaluation.

2. Semi-join A method that is well suited to reducing network in a distributed join.

3. Bloom-join A modified semi-join using Bloom filters to reduce network volume
in exchange for generating and processing the filters.

4. Hash redistribution A data-redistribution strategy for parallelizing the work of
the joins.

5. Sort-merge join A method making use of the existing data distribution and
parallelizing its work by sorting data in place on each node.

We will not evaluate external products, but rather evaluate the methods and
strategies they utilize. This is because the project is about comparing strategies
against one another in the plugin architecture. E.g. MySQL Federated Engine works
similarly to what we will make for our data-to-query strategy, but since it is not using
the plugin architecture we will be using for the other strategies we will not be testing
it.

4.4 Node communication

As this is a distributed system it consequently requires some sort of communication
between the nodes. The legacy system relied on sending regular SQL queries to the
nodes in the system to orchestrate its distributed execution. This worked fine for
the limited subset of queries it supported, however, some of the join strategies we
will explore in this project have more complex networking requirements.
Some strategies can be purely expressed using SQL syntax and subsequently only

need the plugin-to-mysql contact, like in the legacy system. These strategies can
be implemented using proper queries between the nodes, communicated through
the MySQL protocol. E.g. a semi-join can be easily expressed in SQL as it is built
using only projections, joins and unions.
Other strategies’ requirements go beyond the functionality offered by SQL. E.g.

bloom-join cannot be communicated using only SQL, because of the use of the
bloom filter data-structure and functions not present in SQL. To accommodate these
strategies we had to create an extra-SQL communication mode, we will refer to this
as plugin-to-plugin communication.
An illustration of the two communication modes can be seen in figure 4.4.

4.5. DATA-TO-QUERY 19

Plugin Plugin

MySQL

Plugin

MySQLMySQL

(a) Plugin-to-plugin

Plugin

MySQLMySQLMySQL

(b) Plugin-to-MySQL

Figure 4.4: Different communication modes

For plugin-to-plugin we considered a couple of options. Namely a custom protocol
using TCP or using the SQL comment syntax and piggyback queries between the
nodes.
Using TCP would allow us to reliably send any data, at any time, between the

plugins, but would likely add a lot of complexity as we would have to keep TCP
servers and clients, and by extension the plugin, alive outside of the duration of a
query. It would also require us to implement the transportation of result-sets, which
are already first-class citizens in the MySQL protocol.
So, keeping by our philosophy of utilizing MySQL as much as possible, taking

advantage of the pre-existing client-server communication offered by MySQL makes
more sense. The MySQL protocol deals in queries and result sets, which is what our
nodes will be sending most of the time. It would also simplify the life cycle of the
plugin as it would only be active in the ”call and response”-context of a query. For
the extra-SQL communication, we will expand on the MySQL protocol by encoding
data into comments in our SQL statements. These comments will then be parsed
by the plugin on the receiving end of the query.

4.5 Data-to-query

The most naïve method of performing distributed joins is data-to-query. It works
by simply retrieving the relevant data from external nodes, and joining once all the
data is collected. MySQL Federated Engine is, as mentioned earlier, one system using
this approach. The drawback of this approach is, instead of utilizing the combined
potential processing power in the distributed system, it uses it solely as distributed
storage space, only requesting data for local processing. One consequence of this
is it involves a lot of networking, which can be expensive.

CHAPTER 4. DESIGN 20

SELECT

Node B
p: S2, T2

Node A
p: S1, T1

Create interim tables

Node C
p: S3, T3

result

Insert result into
interim tables

Execute join on
interim tables

Figure 4.5: Sequence diagram of data-to-query

Figure 4.5 illustrates the sequence of operations and communication for the data-
to-query strategy. To handle all returning datasets the master node first needs to
create interim table(s) for temporary storage. It can then perform its requests to-
wards nodes containing wanted partitions, and store the results. Only after receiving
all requested data can it perform the join query. One optimization our data-to-query
will have is projection push-down. By pushing the projections of the original query
to all sub-queries the master node will only retrieve the columns needed to com-
plete the query. This is similar to what MySQL Cluster (section 3.3) does, and its a
general optimization we will apply to all strategies.
The benefit of the data-to-query strategy, with regards to evaluation, is that it

serves as a good benchmark against other methods. This is because of the ease of
implementation and the fact that it immediately supports all of SQL, compared to
the more intricate methods which will be further discussed in the sections below.

4.6 Semi-join

The idea behind semi-join is to limit data transfer by only sending the join-column,
instead of the whole table. This tackles the main disadvantage of Data-To-Query,
namely data transfer. To illustrate how semi-join works we will look at it from both
a relational algebra and design perspective.

4.6.1 Relational algebra

A semi-join can be expressed in relational algebra, as can be seen in figure 4.6.
The diagram shows the distribution of operators between nodes A and B, and which
nodes that are responsible for performing the operation. In the depicted scenario

4.6. SEMI-JOIN 21

there are two tables, T and S, with T partitioned into T1 and T2 and placed on node
A and B, and S residing solely on node A.

1 SELECT * FROM S JOIN T ON S.j = T.j;

Node A Node B

⋈

⋊

Π
j

S

T
2

S
∪

T
1

Figure 4.6: Relational algebra of semi-join with 2 nodes

The first operator is a projection of table S returning only the join-column. This
result is joined with the partial table T2 on the join operator on node B, the semi-join
operator. The resulting set of rows is the minimum amount of rows that need to be
transferred from B to A to complete the join on A. A union of the semi-joined T2

rows and the T1 partition on node A is performed and finally is joined with table S.

4.6.2 Our semi-join method

How our semi-join method works is dependant on how the involved tables are par-
titioned and distributed. There are two cases it must solve. It is the case where one
of the two tables in a join is partitioned, and the case of both of the tables being
partitioned. Both of these cases will be elaborated upon in the sections to come.

CHAPTER 4. DESIGN 22

4.6.3 One partitioned table

In the case of only one being partitioned, we have the same scenario as depicted
for the relational algebra, and we get the sequence diagram 4.7. All queries are
initiated by node A, with node B and C simply fulfilling them and responding as
normal MySQL servers.

Node B
p: T2

Node A
p: S, T1

Insert join column

Join

Return rows

Create interim table

Insert rows from B, C in interim table

Projection on S

Execute join between interim and S

Node C
p: T3

Figure 4.7: Sequence diagram of a semi-join with 3 nodes and 1 partitioned table

Node A will first perform a projection of table S on the join-column specified by
the query. Then it connects to the nodes that have a partition of table T, creates
an interim table, and inserts the result from the projection of S. When it receives a
response from the insert query, it queries the nodes with rewritten variants of the
original join query targeting the interim tables and the T partitions. This query will
project table T through the selectors of the original join query to reduce the size
of the shipment to the bare minimum. Upon receiving these subsets of T, node A
inserts them into its interim table. Finally, node A rewrites the original join query to
target the interim table instead of T, and lets MySQL return the result to the client.

4.6.4 Multiple partitioned tables

If both tables involved in the join are partitioned and distributed, the problem be-
comes more complex. This because there is not one single join-column to send out
to the nodes for the semi-join operation.
Our solution to this is using recursion, calling the method again, but with one less

active partition. Sequence diagram 4.8 is an example of this, with two partitioned
tables. Using this method incoming queries accessing n partitioned tables can be
broken into m number of n = n−1 queries, where n is the number of accessed tables

4.6. SEMI-JOIN 23

which are partitioned, and m is the number of nodes a selected partitioned table
resides on. In the case of n = 2, this means it creates m = 3 queries, treating each
local Sn partition as a ”complete” S, and performing a semi-join on this as explained
in the previous section. After each node completes, the union of results is returned
to the initial node A. It is worth noting that to distribute the workload the table which
is partitioned across the most nodes is the one chosen for each step to be treated
as ”complete”.

Node B
p: S2, T2

Node A
p: S1, T1

Dist. join query [ignore S]

Union results

Node C
p: S3, T3

N=1 step

Figure 4.8: Sequence diagram of n = 2 semi-join with 3 nodes and 2 partitioned
tables

This design utilizes a simple form of plugin-to-plugin communication. Using re-
cursive distributed queries means the only extra communication is a simple argu-
ment containing a table name. Therefore, using comments to encode this commu-
nication makes sense for this strategy.
To explain how the recursion in this method works we can look at the pseudo

code in figure 1.

1 semi_join(partitions):
2

3 n = count_non_local(partitions)
4

5 n == 1:
6 return execute_semi_join(partitions)
7

8 n > 1:
9 set_ignore_non_local_flag(partitions[0])
10 result_set = []
11 for node in nodes:
12 result_set += node.semi_join(partitions)
13 return result_set

Listing 1: Pseudo code for recursive semi-join

CHAPTER 4. DESIGN 24

4.7 Bloom-join

Like semi-join, bloom-join’s purpose is to reduce data transfer. However, bloom-
joins’ angle of approach is a bit different. While semi-join sends a join-column,
bloom-join instead generates and sends a bloom filter of the join-column. This is
more space efficient, but may result in more returned rows because of false posi-
tives.
The methods have many similarities in how they work, in fact the n > 1 steps

are identical for both. They differ however on the n = 1 step, where the method-
specific operations are performed. We will focus on the n = 1 step for the design of
bloom-join, as n > 1 is already discussed in section 4.6.4.
Since bloom filters are not natively supported by MySQL, plugin-to-plugin com-

munication is required. This means the filtering algorithm will reside in the plugin
itself and be remotely invoked by other instances of the plugin. An effect of this is
a requirement of a master/slave configuration. This is because some plugins need
to perform operations for others, contrary to MySQL supported operations where
MySQL can be invoked instead.
Below we will design the processes in this step. We will design the two roles,

master and slave, separately.

4.7.1 Bloom-join master

The bloom-join master’s responsibility is to coordinate the execution of the bloom-
join. These responsibilities can be divided into two main steps: Firstly the creation
and distribution of both the bloom filter and interim table names for the results to
be stored in. Secondly the retrieval of results from slaves and execution of the join
on the retrieved data. The processes can be seen in figure 4.9 from the view of
node A.

4.8. HASH REDISTRIBUTION STRATEGY 25

Node B
p: T2

Node A
p: S, T1

Ship filter w/ select query

Insert result in interim

Insert rows from B, C in interim table

Projection on S

Execute join between interim and S

Node C
p: T3

Generate filter

Apply filter

Figure 4.9: Sequence diagram of n = 1 bloom-join with 3 nodes and 2 partitioned
tables

We will use comments as the mode of communication for this strategy as well,
even though we are sending a lot more non-SQL data than in the semi-join strategy.
This is for simplicity of implementation, and because of the fact that the extra-SQL
communication is done in one request, like the recursive semi-join step, making the
call-response context of a query a good fit. This means the master can query the
slave, and the slave can perform necessary operations to both create and populate
the denoted tables before the master moves on to its join.

4.7.2 Bloom-join slave

The slave is a small remote procedure at the nodes invoked by the master’s query.
Its task is to read a local partition, filter it with the received bloom filter, and then
to place the results in an interim table as specified by the master. This can be seen
in figure 4.9 from the view of node B and C.

4.8 Hash redistribution strategy

Hash redistribution works by moving corresponding data to the same node. It is an
elegant way of evenly distribute data (as long there is no large skew in values) to all
nodes involved in the join, thus, it can utilize the combined power in the distributed
system well. It does, however, have the drawback of it potentially requiring the
movement of a lot of data around the network before executing the join.
The method is divided into two steps: first performing the redistribution, and then

executing the join. It consequently starts off by having every node relevant to the

CHAPTER 4. DESIGN 26

query hashing its partition(s) and transferring the results to the hash’s corresponding
node. When everything is redistributed the actual join can be performed. Since
everything that could match in the join now is on the same node, each node can
work separately, hence the utilization of resources, before returning the result to
the initial node. This can be seen in figure 4.10.

sendInterimNames()

Node B
p: S2, T2

Node A
p: S1, T1

Assign ranges for nodes

Node C
p: S3, T3

hash_tables()

Insert row ranges into interim tables

redist_done()

join()

result

Figure 4.10: Sequence diagram of hash redistribution

Similar to bloom-join, the hash redistribution strategy uses the master/slave
pattern for plugin-to-plugin communication. The master is responsible for initiating
both the redistribution and the join on each node, with the slaves actually performing
the operations.

4.8.1 Hash function

Important for hash-based methods are, of course, the hash algorithm used. These
come in different flavors, all depending on the task they are used for. They range
from those designed to be secure, to those meant for general usage and to simply be
fast. Secure algorithms are mainly used for cryptography applications, which have
requirements for algorithms being both computationally heavy andmemory heavy to
safeguards against attacks. Example of these are bcrypt[24] and scrypt[25]. These
are, however, not interesting for this redistribution method, namely because they
are designed to be slow. This is not ideal as there will be performed a lot of hashing,

4.9. SORT-MERGE JOIN 27

which will cause unnecessary overhead. This leaves the algorithms designed to be
fast. Since we will use the hash to nothing more than placing data, these suits
the redistribution method well. In section 5.5.3 we will evaluate a few different
algorithms and choose a specific one.

4.9 Sort-merge join

Sort-merge is similar to data-to-query in that it retrieves all the data as its first
step, however, it does it a bit more cleverly. It performs a sorting operation on
all nodes in parallel so it can perform a join contiguously when retrieving the data,
not afterward as is the case with data-to-query. Sort-merge also differs from all
the other strategies in a very important aspect; it can not use the native MySQL
nested-loop join at the local level. Due to the nature of sort-merge, a nested-loop
would make it exactly like data-to-query where the order of rows does not matter. So
instead, our sort-merge will offer its own merging algorithm to do the join operation.
This makes sort-merge more of a top-to-bottom strategy, similar to ones from earlier
research (see section 2.4), in comparison with the rest. This is interesting because it
offers an insight into the differences between our lightweight orchestration strategies
and a more specialized one, in both implementation and evaluation. The design is
divided into three parts: Sorting, K-way merge, and finally, merge-join. We will
address each of these in the sections to come.

4.9.1 Sorting

The sorting work of the sort-merge strategy will be done in parallel between all the
nodes that have active partitions of the join tables. This will be achieved by concur-
rently sending out ORDER BY SQL statements targeting the partitions. For example:

1 SELECT {projections} FROM Person ORDER BY Person.homeworld;
2 SELECT {projections} FROM Planet ORDER BY Planet.id;

The master sends out these queries and processes the results as they arrive. The
sequence of this strategy can be seen in figure 4.11.

CHAPTER 4. DESIGN 28

orderBy()

Node B
p: T2

Node A
p: S, T1

Node C
p: T3

result

K-way-merge join into interim table

SELECT *

Figure 4.11: Sequence diagram of sort-merge

4.9.2 K-way merge

When querying k partitions with the ORDER BY queries we will receive k streams of
ordered rows, belonging to either table S or T. In order to join the tables, we first
need to unify the streams, making two total result streams, one for each table,
where we contiguously can fetch the next row in the correct order. We will do this
first step using a k-way merge algorithm.
A k-way merge is described as the process of combining k ordered sequences

into a single ordered sequence. The core of the problem is the comparison of k
sequences when selecting the next output. The simplest approach is comparing the
top of all the sequences each time. Doing this results in a cost of k− 1 comparisons
to find the next output. However, there is a better way. Using a binary heap reduces
the number of comparisons needed by keeping sequences with ”better” next values
near the root of the heap. With a binary heap, we need a maximum of log2 k number
of comparisons for each fetched row to maintain correct heap order[26]. We will
use a heap to get an efficient k-way merge.

4.10. ARCHITECTURAL CHANGES TO SUPPORT THE JOIN STRATEGIES 29

Node A Node B

τ
j

S
2

T
2

S
1

T
1

τ
j

τ
j

τ
j

k-way
merge

⋈

k-way
merge

Figure 4.12: Relational algebra of sort-merge join

4.9.3 Merge-join

The input for the merge-join procedure are the two heaps created in the previous
step. When called, the procedure will pick the heap with the largest value (in an
ascending sort-merge join) and then skip ahead in the other heap until it reaches
a value that is greater than or equal to the current value. It will then buffer rows
from the heaps as long as the value is equal to the current element. If either of
the buffers is empty after this, we empty both buffers, move on to the next value,
and run the procedure again. Once both the buffers have values the procedure will
return those buffers. Pseudo-code for this procedure can be seen in listing 2.
The sort-merge strategy module will iteratively call this procedure and loop the

two output buffers to insert the rows joint into an interim table. And when there
are no more matches coming from the merge joiner, it will send off a final SELECT *
query to return the join result to the client.

4.10 Architectural changes to support the join strate-
gies

To be able to implement the join-strategies in accordance with their designs, the
legacy system has to be heavily modified. The strategies rely on functionality beyond

CHAPTER 4. DESIGN 30

1 lhs_heap = heapify(left_operand_streams)
2 rhs_heap = heapify(right_operand_streams)
3

4 get_next_matches:
5 while is_empty(lhs_buffer) or is_empty(rhs_buffer):
6 empty_buffers()
7

8 if lhs_heap.peek() >= rhs_heap.peek():
9 current_value = lhs_heap.peek()
10 while rhs_heap.peek() < current_value:
11 rhs_heap.pop()
12 else:
13 current_value = rhs_heap.peek()
14 while lhs_heap.peek() < current_value:
15 lhs_heap.pop()
16

17 while lhs_heap.peek() == current_value:
18 lhs_buffer.push(lhs_heap.pop())
19

20 while rhs_heap.peek() == current_value:
21 rhs_buffer.push(rhs_heap.pop())
22

23 return lhs_buffer, rhs_buffer

Listing 2: K-way merge join pseudo code

what was implemented for the specialization project. In this section, we will present
some of the larger modifications required.

4.10.1 Modularization

In the legacy system, the DQR module was responsible for both walking the parse-
tree to gather data about queries, and making distributed execution plans (gen-
erating distributed query sets). As the distributed query plans are going to differ
between the strategies it makes sense to separate these responsibilities into distinct
modules. Walking the parse tree and gathering data about the tables and queries
is now going to be handled by the parse-tree-walker module (PTW), and the dis-
tributed query plans will be generated in separate modules. These modifications
can be seen in figure 4.13.

4.10. ARCHITECTURAL CHANGES TO SUPPORT THE JOIN STRATEGIES 31

MySQL

Query parser

Plugin
Distributed Query Rewriter

Distributed Query Manager

Plugin hooks

MySQL driver

Storage

Interim
tables

Metadata

PartitionsNodes

Partitions

(a) Original architecture

MySQL

Query parser

Plugin

Parse tree walker

Distributed Query Manager

Plugin hooks

MySQL driver

Storage

Interim
tables

Metadata

PartitionsNodes

Partitions

Strategy planner

(b) Modified architecture

Figure 4.13: Architectural changes to support multiple strategies

Each of the main strategies will have its own module using the same interface.
Namely a function receiving data from the parse-tree-walker as input, and returning
a distributed query set containing at minimum a ”final rewritten query” to be exe-
cuted, and return a result directly to the client. This pluggability will make it simpler
to switch between strategies in a running instance of the system. We will also need
a strategy entry point, which is just a point in the execution where different strate-
gies will be invoked based on a condition in the system. To simplify, the choice of
strategy will be user-specified.

4.10.2 Modifications to the execution model

Sequential stages

Some of our strategies are described as several sequential queries, waiting for the
response of a query before sending the next one out. The legacy execution model
has no support for this, and currently just executes all the queries of a distributed
query set in parallel. This gives rise to the concept of stages in the execution model.
We will extend the distributed query model with the ability to define discrete stages
of execution, each containing their own set of queries. Stages are to be executed
one after the other in the order in which they lie. The queries within a stage are to be
executed in parallel as they are not dependent on the completion of each other. For
example, in the semi-join strategy, the queries shipping the join-column to external
nodes can all be done in parallel. The same applies to the semi-join queries joining
the join-column with the remote partitions on the nodes. But, the semi-join queries
cannot be executed before shipping of the join-columns has completed. Thus, these
two query sets needed to reside in separate stages in the model. An illustration of
these stages can be seen in figure 4.14.

CHAPTER 4. DESIGN 32

STAGE 2

Node B
p: T

Node A
p: S

Ship join column

Join

Return rows

Projection on S

ok
STAGE 1

Figure 4.14: Sequential stages of semi-join

Remote interim targets

Another design specification of our strategies requiring modifications of the execu-
tion model is the ability to specify remote targets for interim storage of results. E.g.
in semi-join, the ability for the join-column projection query to have the relevant re-
mote nodes as destinations, i.e. shipping the join-column, without requiring another
set of intermediary queries.

4.11 Hypotheses

Before talking about the implementation of the different methods, we will discuss
some predictions about their scalability/performance. In general, we think it is likely
that when adding more nodes the strategies will be able to divide up the labor and
perform better together, giving near-linear scalability of the system. As each method
works differently we suspect they will have strengths and weaknesses depending on
the data processed. This can be the results of skew in the dataset, the number of
matches, etc. This is important to keep in mind when evaluating each method
against one another to better understand and explain the results.

4.11.1 Join selectivity

Join selectivity is a measure of how many of the rows between two tables being
joined match, i.e. how many rows are selected by the join. Using join-columns
between which there are few matches, we believe semi-join and bloom-join will do
well. This because they reduce the amount of data being sent by sending only the

4.11. HYPOTHESES 33

join-column before executing the join, meaning it will be sending a smaller dataset
due to there being few matches. Bloom-join uses a compressed representation of
the join-column, trading extra processing for a smaller network volume, thus we
think that at some size of the dataset bloom will surpass semi-join. Conversely,
when using join-columns which generate a lot more matches than operand rows put
in, we believe data-to-query or sort-merge will perform best. This because they
fetch all the relevant data prior to executing the join.

4.11.2 Value distribution

Using columns with a certain distribution of values can also affect the performance
of strategies. We believe using join-columns with a significant number of duplicate
values, per table, will boost the performance of semi-join and bloom-join as it means
they will ship and process a compressed, smaller join-column set.
On the other hand, we believe duplicates may have a negative impact on hash

redistribution. This is due to the probability of a skewed distribution increasing as the
number of duplicate values goes up. Duplicates will be hashed to the same nodes,
and if several sets of duplicates get assigned the same node, that node might have
to do a larger share of the work, causing the strategy to tend towards the data-
to-query strategy. Although, for the most part, we believe hash redistribution will
perform consistently. This because it shapes the distribution of the dataset and
divides up the work, thereby shaping the environment for its execution each time.
It doesn’t make any assumptions about the properties of the data.

4.11.3 Data distribution skew

Another factor that we believe can have an effect on the strategies is skew in the
distribution of partitions themselves. Unevenly dividing data between the nodes we
believe can put extra strain on some of the nodes when using hash redistribution
and sort-merge, and that these strategies work best when data is evenly spread out.
We believe semi- and bloom-join can be served best using an uneven configuration,
specifically having a full table on a single node, and the opposing table partitioned.
This because they then avoid the recursive step required when having multiple par-
titioned tables. It simplifies their execution while still retaining the essence of their
parallel qualities, the semi-join operation itself.

4.11.4 Slow networks

We believe using a high latency or small bandwidth network between the nodes
will make the differences between the network heavy strategies and the less so,
much more prominent. Specifically, we think semi-join and bloom-join will be the
least affected by the throttling, while data-to-query and hash redistribution will get

CHAPTER 4. DESIGN 34

a severe performance penalty. This can be tested by using a network with high
latency and low bandwidth.

Chapter 5

Implementation

In this chapter, we will discuss the implementation of the different strategies, and
how we have evolved the plugin to support them. Each strategy was developed
separately, and exist as separate modules in the plugin. Development of the plugin
is done in C++. All of the examples in this chapter will be based on variations of
this join query:

1 SELECT Person.name, Planet.name
2 FROM Person JOIN Planet ON Person.homeworld = Planet.id;

5.1 Architectural changes

To implement the architectural changes needed to support the join strategies we
had designed, we first split the DQR module in two. The parse-tree walker module
was created and we moved all the code concerning parsing and walking the query
parse tree to it. We then neatly packaged this information into a data structure to
pass on to the strategy modules.
The rest of the DQR, which previously created the distributed query plan was

moved to the data-to-query strategy module as this query plan was to be used as
a basis for the DTQ join strategy (section 5.2).
To adhere to the design specifications about the pluggability of strategies, and

user-specified join strategies, we needed to implement a strategy entry point. To
avoid the plugin infinitely invoking itself with every query, the legacy system already
had support for an inline comment flag specifying whether or not a query should be
ignored: /*distributed*/ <QUERY GOES HERE >. We extended this comment flag to
include a key-value pair indicating the preferred join strategy. This argument is
read by the plugin and based on it the main function of the designated strategy
module is called. As some strategies require additional information, the key-value

35

CHAPTER 5. IMPLEMENTATION 36

argument parser is general and able to contain any number of arguments. The
chosen data structure is of the form /*distributed <join_strategy={strategy_id},
key=value,key=value >*/. All arguments beyond the join-strategy flag are passed to
the active join-strategy module.

5.1.1 New execution model

The design specified some changes to the execution model to facilitate some of the
more advanced operations of the strategies, e.g. hash redistribution placing data on
other nodes and needing to await completion of redistribution before performing a
distributed join. To enable this we changed the structure of the distributed query to
include remote interim targets and sequential stages.
We then needed to change the DQM to execute this new model. This entailed

using Connector/C++ and remote target credentials to connect and insert rows into
interim tables. And for the stages, we simply wrapped the entire execution logic of
the DQM in a stage iteration.

5.2 Data-to-query

The plugin already supported simple queries of the form: SELECT projections FROM
Table; using a data-to-query execution strategy. So to support data-to-query joins,
we expanded on the existing code.
The first problem we encountered was detecting whether a query contained a

join-statement. We did not find any consistent way of telling if something is a join
statement using the parse-tree, so we resorted to a simple string search for the
keywords involved in the types of joins we support, more specifically ”join”.
The next step was to make the parse-tree walker capable of parsing queries with

multiple tables. Previously it had assumed the first table it encountered to be the
only one. This made the code simpler for the purpose of supporting single-table
query distribution as we could assume every column reference to refer to a column
in that table.
We started by making an array of all the tables in the query and ran the partition

query generation code for every table. This seemed to work fine, and it returned
a set of queries targeting all the existing partitions of both tables. Here is an ex-
ample of one of the partition queries generated at this stage: SELECT Person.name,
Planet.name FROM Planet;. Alongside this, we also generated interim table names for
every table involved to store the result of the partition queries together. Meaning
that the union of the partitions of Planet gets stored in one interim table, and Person
in another.
There was however a problem with the partition queries generated. The previous

assumption that any field applies to the table of the partition query was no longer
a safe one. We had projections meant for the Person table in the partition query

5.2. DATA-TO-QUERY 37

for the Planet table, namely Person.name. As we quickly learned, this crashes when
executed.
To avoid this issue we had to determine which fields belong to which table. The

solution we decided to go for was requiring that column names always are refer-
enced using the table name prefix. That makes distinguishing them a trivial pattern
matching problem. This, of course, limits the range of queries we support, but be-
cause wide query support is not the purpose of this research, this is not an issue.
After this, the partition query for Planet became simply: SELECT Planet.name FROM
Planet;.
The next step was to create the final join query between the interim tables. For

this, we captured the join-condition from the parse-tree, where it is represented as
a where-clause, and replaced the table names with the interim table names. It was
then a simple matter of using the information from the parse-step to build a query
string of the form:

1 SELECT {interim_table1.projections}, {interim_table2.projections}
2 FROM interim_table1
3 JOIN interim_table2
4 ON interim_table1.join_column {=|>|<|...} interim_table2.join_column;

The procedure we wrote returned a well-formed query like expected, but when
we ran it we received an error from MySQL stating that the columns referenced in the
join-condition did not exist. The reason for this then occurred to us. The partition
queries had projections that were subsets of the projections from the original join-
query. This meant that fields referenced in the join-condition got pruned and were
not placed in the interim tables unless they also were part of the projection.
To fix this we needed to modify the parse-step to also take note of all the fields

referenced in the join-condition. We grouped these properties by table, like the reg-
ular projections, labeling them as ”where-transitive projections”. This allowed us to
include them in the generation of the partition queries’ projections, and leave them
out of the final query. Here is an example of the partition query for Planet with the
where-transitive projections added: SELECT Planet.name, Planet.id FROM Planet; A
nice side effect of adding this was that selection push down for select-queries be-
came as simple as adding one line of code, as the planner now knew which table
each selection applied to. At this point, we had a distributed query plan consisting
of well-formed queries in accordance with our design.
We then went on to ensure correct execution of the plan. As the data structure

used to communicate the distributed query plan to the DQM remained unchanged,
there should not have been much of an issue making this work. However, there
were some hurdles.
The DQM was, like the original DQR, initially built to perform single table queries,

and consequently assumed all queries to access the same interim table. Because of

CHAPTER 5. IMPLEMENTATION 38

this, it needed to be extended with support for handling multiple tables to support
joins. Instead of retrieving the first interim table name it finds among the incoming
queries, it instead reads all interim table names from the incoming queries. These
names are further used to build individual queries for both the creation of interim
tables and the insertion of result sets from external nodes into these.

5.3 Semi-join

When implementing the semi-join strategy we decided to first implement the non-
recursive version, meaning the n = 1 step. This is the case where one of the tables
exist fully on the master node receiving the query. This is a natural starting point
for implementation as it ensures a simple vertical which can be expanded upon.

5.3.1 One partitioned table (n=1)

We started off by implementing the strategy module, whose output was expected
to be a distributed query set for the DQM to execute.
The module first needed to do some reconnaissance work to figure out which

partitions were located where, and if the n = 1 step would apply. We did this by
querying the metadata for all the partition information about the tables handed
down by the parse-tree-walker. If one of the tables had only one partition locally
on the self-node we marked this as the ”stationary” table and sent it along with the
partition info about the other table, now dubbed ”the remote table”, to the n = 1

planner logic.
The ”stages” feature in the distributed query model added earlier would now

come in to play.
The first stage of the strategy we completed was the projection of the station-

ary table’s join column, where the result of the query was to be placed on the
nodes containing partitions of the remote table, including the self-node if need be.
We wrote the simple projection query: SELECT stationary_join_column FROM station
ary_table_name and added the remote targets, together with the intended interim
table names, to the distributed query’s interim target list.
We discovered that we were generating duplicates during our semi-join and fig-

ured out that the cause was duplicate join-column entries. This was fixed by adding
the ”distinct” keyword to the query, resulting in this being the new projection query:
SELECT DISTINCT stationary_join_column FROM stationary_table_name
We then moved on to the next stage; the semi-join queries. The semi-join queries

were written as join-queries between the interim tables at the remote targets and
the partition of the remote table residing on that node. It was a simple matter of
constructing a join between these, applying the projections and the where-transitive
projections concerning the remote table from the original query. We constructed it
in this fashion:

5.3. SEMI-JOIN 39

1 SELECT {remote_table_projections} {remote_table_where_transitive}
2 FROM remote_table->name
3 JOIN stationary_table->interim_name
4 ON stationary_join_column = remote_join_column

We then added an interim target on the self-node to gather all the semi-joined
results in an interim table.
Those were the two steps that required sequential execution in the DQM. After

that, we wrote the final join-query to be executed locally and return the result to
the client. It was generated similarly to the data-to-query one, with the difference
being that the stationary table now was referenced as is, and the remote table was
replaced by the interim table reference. As opposed to the final join with data-to-
query, which is a join between two interim tables.

5.3.2 Recursive distributed queries (n=2)

For the recursive case, i.e. having more than one partitioned table in the join, we
went on to generate recursive queries using the query comment flags and arguments
implemented earlier.
First, we wrote the logic for deciding which table was to be designated as the

stationary table in the next step, making it n=1. We choose to designate the table
with the most partitions for this. This made sense to us as this would result in the
greatest distribution of work, given a fairly even distribution of that table’s partitions.
Each of the nodes holding one of these partitions were then to receive a modified
version of the original join query, with the ”ignore partitions of table”-flag added.
The set of distributed queries were generated like this:

1 /*distributed<join_strategy=semi, ignore_table_partitions=Person>*/
2 SELECT {projections} FROM Person JOIN Planet ON {join_condition}

We then had to modify the reconnaissance logic to ignore the partitions of the
ignore-partitions table in the argument. When this was in place the new queries were
processed as n=1 queries even with partitions of both Person and Planet present.
We still used the execution model of the DQM to execute these queries and gather
the results together in a single local interim table.
We did, however, run into an issue with colliding table names. A join result in

MySQL can have multiple equal column-names stemming from the different tables
in the query. The recursive querying strategy invokes the complete plugin life cycle
in multiple steps, this meant that the intermediary results were the user-facing
results and that we could not easily mess around with this without breaking the
MySQL-conforming results generated by the final query. We solved this by adding

CHAPTER 5. IMPLEMENTATION 40

plugin-wide support for aliases, such that the recursive queries could be aliased for
the intermediary result.

1 -- alias for intermediary result
2 SELECT {projections} FROM Person.id AS personId, Planet.id AS planetId JOIN

Planet ON {join_condition}↪→

5.4 Bloom-join

When implementing the bloom-join strategy, because they are closely related, we
made use of as much of the existing semi-join implementation as possible. We
went on to identify the bloom-join specific points of the strategy. As described in
the design the recursive step of both strategies would be exactly the same, this
is natural as the recursive step is purely orchestrational and does not get involved
with the actual semi-join logic. The reconnaissance logic of determining the level
of recursion and which tables to be labeled stationary and remote would also be
shared between the two strategies. This meant we only needed to implement a
bloom-join replacement for the actual planning and execution steps of the semi-
join itself, the core of the strategy. In the design stage, we determined that we
would need to have remote procedures callable by a master of the query. The
master is analogous to the semi-join strategy module, and where semi-join relied
on the general execution model of the DQM to execute its queries, the bloom-join
would require the implementation of a slave procedure on the target nodes to help
it complete the requests.

5.4.1 Bloom-filter library

For the bloom filter data structure and algorithms we used an open source C++ li-
brary called ”bloom”1. The library offers a bloom filter class and a data structure for
setting the parameters of the filter. Some of the parameters that can be set are: ex-
pected element count, false-positive-probability, the maximum number of hashes,
etc. These parameters can impact the size and accuracy of the filter. The library
also offers a function compute_optimal_parameters() that helps with constructing the
optimal parameters based on only false-positive-probability and expected element
count. In our implementation, we relied on this function to set the remaining pa-
rameters.

1https://github.com/ArashPartow/bloom

https://github.com/ArashPartow/bloom

5.4. BLOOM-JOIN 41

5.4.2 Shipping the filter

To be able to send the filter from one node to another we needed to be able to
serialize it. The filter itself was an object containing a bit-table, some hash-salts
and parameters about its size and number of inserted elements. Through some
experiments, we were able to recreate a read-only duplicate of a filter by only using
the bit-table, and the number of inserted elements. This meant we only needed to
serialize the bit-table and send the number of inserted elements as an argument
to ship an applicable filter. As stated in the design we wanted to use comments as
the method of communicating the filter to other nodes. In other words: strings.
With this in mind, we landed on Base64 as the encoding scheme for the bit-table.
Base64 is a common compact binary-as-text format using 64 ASCII characters as
its index. The MySQL source tree also happens to contain an implementation of
Base64 encoding. Using this module we were able to encode the filter into ASCII
and append it as an argument in the distributed-query comment.

5.4.3 Bloom-join master

We implemented the bloom-join master strategy as two stages. Structurally it is very
similar to the implementation of the non-recursive case in the semi-join strategy,
and it shares the reconnaissance logic for the selection of the stationary and remote
tables. One important difference is that the first stage of the bloom-join strategy
does not fit into the general distributed execution model of the DQM. Therefore, we
implemented the first stage as a custom procedure called the bloom-join executor.
This procedure is responsible for the functionality of the strategy not available in
SQL, namely the generation of the bloom filter. This procedure has a complementary
component, the slave procedure, responsible for applying the filter on the receiving
end of a bloom filter query. We will describe the implementation of the slave in
section 5.4.4.
We set up the entry point to the bloom-join executor by having it take a table

name and a join column. We then wrote the setup logic for the bloom filter. We
made queries to read the join column, as well as the number of rows.
We then made the bloom filter by using the class from the library and gave it the

appropriate parameters, such as how many elements it expects to insert (the row
count). The filter library could then optimize for the number of hashes to use, as
well as the size of its internal bit-table. Then, with a prepared filter, we iterated over
the join column, inserting the elements. After the filter was complete the executor
calls upon the Base64 encoder of MySQL to return a Base64-serialized version of
the bit-table for the strategy module to use.
We could then move on to the next stage of the bloom-join strategy module,

stage 2. We named the second stage the ”bloom filter query”, as all of stage 2 could
be achieved using one query.
To generate this query, we started by making interim table names for the target

CHAPTER 5. IMPLEMENTATION 42

nodes to place their filtered results in. This interim name was encoded into the
comments of the query along with the bloom filter to be applied. The query was
generated like this:

1 /*distributed<join_strategy=bloom,
2 table_name={remote_table_name},
3 filtered_interim_name={interim_name},
4 bloom_filter={BASE64_FILTER}>*/
5 SELECT {projections} FROM {interim_name};

Giving the interim name as an argument serves as a command to the bloom slave
about where to place its filtered data as to fulfill the query after the comment. We
then placed these interim targets in the distributed execution model in the same
way as the semi-join strategy, as everything after this point is the same in both
strategies.

5.4.4 Bloom-join slave procedure

On the receiving end of the ”bloom filter query”, we needed a custom procedure to
apply the filter before responding to the query. We implemented the slave procedure
very straightforward as its instructions are given by the arguments generated by
the master. We decoded the filter using the Base64 module. Queried the specified
table, with a simple SELECT {projections} FROM {remote_table_name}. The rows were
then passed through the filter’s membership test returning either true or false. The
decision of the filter was then used to either insert the row into the specified interim
target table on the master or to discard it. When all the rows have been tested,
the rows that passed the filter have all been placed on the master’s interim table.
So, after this the bloom slave returns a NO-OP query, signaling to MySQL that it
can continue with the execution, but with a query that does nothing, and returns an
empty result to the master signaling that the stage is complete.

5.5. HASH REDISTRIBUTION 43

5.5 Hash redistribution

The hash redistribution method is made up of two main parts. There is the master
that resolves which nodes to include, plans the redistribution and initiates the join,
and there are the slaves which actually executes the redistribution and joins.

5.5.1 Master

To start off, the master was implemented. It builds two stages for the strategy: one
for the redistribution and one for the join.
Firstly it must figure out which nodes to include. To do this it analyses the tables

queried and resolves which partitions exist of the table, and where they are located.
This is done through a lookup in the metadata. From this, it builds individual query
comments for each node relevant for the query. These comments contain, like in
Bloom-join, a slave flag used for plugin-to-plugin communication to trigger the slave,
e.g. /*distributed <join_strategy=hash_redist,hash_redist_slave=true >*/. Further
on, for each slave to do their job they need to know which local table to query, in
which interim table to place the result, and which column is to be joined on. This is
additional information placed into the query comment in the format:

1 tables=[
2 table_1_name:interim_1_name:table_1_join_column,
3 table_2_name:interim_2_name:table_2_join_column
4]

An example of a complete query comment:

1 /*distributed<
2 join_strategy=hash_redist,
3 hash_redist_slave=true,
4 tables=[Person:af9d3:homeworld,Planet:37f4a:id]
5 >*/

It is worth noting that what makes these query comments individual for each
node, is that the tables parameter will be populated by tables local on that node.
Thus, no node will try to query tables not present on itself.
Initially, the query performed with the query comments was a no-op SELECT 1

WHERE false;. This was because we thought there was no reason to perform any
query, as this step was simply plugin-to-plugin communication to move data around.
However, this was changed to passing the actual user query instead. The reason for
this is explained in section 5.5.2.

CHAPTER 5. IMPLEMENTATION 44

The final join stage is quite simple. Since the interim tables holding the data on
each node corresponds, the same join statement can be used on all nodes. The
generation of the join query is done in the same way as in both semi-join and
bloom-join. The result of the different join queries are placed into an interim table
on the master, before rewriting the original user query to a simple SELECT * FROM in
terim_table;. The reason for the simple select-statement is that the returned result
already is joined, thus, it needs only be returned to the user.

5.5.2 Slave

The slave starts by parsing the query comment. This involves generating projection
strings for each table and query the metadata for nodes to involve. It is the latter
which could cause problems as it could potentially lead to an incomplete result, and
the reason we had to switch from a query no-op to the original user query.
To understand the cause of the problem we will look at what is passed to the

slave. As mentioned earlier the slaves receive a tables list in the query comment,
containing all the partitions that given node itself holds. We simply queried the
metadata for all nodes containing that partition and hashed the data to those nodes,
which can be seen in figure 5.1a. The problem with this approach is that there could,
and probably would exist node(s) containing only a partition of one of the tables,
thus, would not receive data coming from tables it did not previously hold a partition
of. When entering the join stage none of these nodes would have any other tables to
match results towards, hence the incomplete result to the user. The problem boils
down to the set of nodes containing a partition of A is not being the same as for
B. The solution for this problem is to ensure that the nodes the data is hashed to
are the set of all nodes containing a partition of one of the tables in the query, as
seen in figure 5.1b. There are two ways of rectifying this problem: either having
the master generate the set and pass it as an additional parameter in the query
comment, or passing the original query and leaving it up to each node to generate
the set. We chose the latter. This also has the added benefit of simplifying retrieval
of projections as well, which comes in handy when generating the hash queries later
on.

5.5. HASH REDISTRIBUTION 45

Node A Node B Node C

Table A

Table B

(a) Node set not equal

Node A Node B Node C

Table A

Table B

(b) Node set equal

Figure 5.1: Problems with not including all nodes containing a partition of A, B or
both

After the parsing step the slave starts to generate individual query strings for all
nodes in the node set for each partition the slave contains. These query strings are
of the form:

1 SELECT projections
2 FROM table_name
3 WHERE conv(substr(MD5(join_column), 1, 6), 16, 10) % size_of_node_set = node_i;

The WHERE clause is the interesting part of the queries generated, as this is
where the hash redistribution is actually performed. Initially we used
WHERE MD5(join_column) % size of node set = node_i to determine the receiving node.
This did, however, skew the distribution of data among the nodes quite heavily, with
nearly half of the data being placed on one node, and the remainder more evenly
divided among the rest. The cause of this problem is rooted in the output of MD5
and the operation done on the output. MD5 outputs a hex value represented as a
string. When performing a modulo on this output it is evaluated by its ASCII values,
and not as hex. As it only contains the characters 0-9 and A-F only a small subset
of all ASCII characters is ever used. These two character ranges are not continuous
either. Thus, it will leave large gaps of unused values. The solution to this was to
take a substring of the MD5 hash, parse it as a hex-value, before performing the
modulo operation. Doing this ensures the use of the whole value range in regards
to the modulo function.

5.5.3 Hash function

As mentioned in the design, what we are interested in are fast hash algorithms, not
algorithms designed for security. MySQL itself supports multiple hash algorithms2

2https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html

https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html

CHAPTER 5. IMPLEMENTATION 46

21
7

21
8

21
9

22
0

22
1

Datasize

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
(s

)

MD5
SHA1
FNV1-64
FNV1-32

Figure 5.2: Time usage for different hash algorithms

that fit our requirements and are easy to use since they can be used directly in SQL
queries. An alternative to using these would be to either implement some hash func-
tion directly in the query, such as WHERE CUSTOM_HASH_FUNCTION(join)%size_of_node_set,
or using User Defined Functions (UDF)3, which would provide the same interface as
the built-in hash functions.
To verify that the hash redistribution strategy would not be negatively impacted

by a slow hash function, we did some testing. The test involved the two natively
supported functions, SHA1 and MD5, and a third one. The third one was chosen on
the basis of being considered fast, namely the FNV hash function [27].
We used an existing wrapper for FNV to a UDF4. The wrapper uses the

C-implementation5 of FNV by one of the original authors, Landon Curt Noll. The
algorithms were tested by running each function against a table of varying size
and looking at the time usage. Each hash function was run five times, with the
average time as the result, and with an initial warm-up, for a total of six runs. This
was performed for each size tested. The query performed was SELECT rhs_normal,
HASH_FUNCTION(rhs_normal) AS hash FROM rhs;. The results can be seen in figure 5.2.
It is worth noting that the different algorithms create different size hashes as can
be seen in table 5.1.

3https://dev.mysql.com/doc/refman/8.0/en/adding-functions.html
4https://github.com/mjradwin/fnv-mysql-udf
5http://www.isthe.com/chongo/tech/comp/fnv/index.html

https://dev.mysql.com/doc/refman/8.0/en/adding-functions.html
https://github.com/mjradwin/fnv-mysql-udf
http://www.isthe.com/chongo/tech/comp/fnv/index.html

5.6. SORT-MERGE JOIN 47

Algorithm Hash size (bits)
SHA-1 160
MD5 128
FNV1-64 64
FNV1-32 32

Table 5.1: Output size for the different hash algorithms

As expected the hash functions perform nearly linearly. This is because there
is no additional cost to hashing e.g. two attributes over just one, other than the
time it takes to hash another attribute. An interesting thing, however, is that FNV
only has a slight improvement over SHA1 and MD5, which indicates that the built-in
methods in MySQL would do fine. The choice of hash method, therefore, falls on
MD5, as it is available in MySQL out-of-the-box, slightly faster than SHA1, and that
the difference in performance over FNV is small.

5.6 Sort-merge join

For the sort-merge strategy, we built a custom join algorithm and made a separate
module for all of its execution. This made sense as it has very little in common with
the other strategies after the parse-tree walker has done its reconnaissance.
To begin with, we generated the ORDER BY queries for each table read by the

parse tree walker. The queries were generated like this: SELECT {projections} FROM
table_name ORDER BY {join_column} ASC where the join column is the property to be
ordered by. We choose ascending order for the queries as primary keys are of-
ten generated by incrementing an integer, making an ascending order of IDs. We
then iterated over known partitions and sent off the queries to the nodes that held
them. We then placed pointers to the result streams in arrays for the heap merge
to consume. None of the results were read yet at this stage of the implementation,
meaning nothing waited for results to be transferred back yet.

5.6.1 K-way-merging

We implemented a k-way-merger using a heap in accordance with our design. Since
we were operating on Connector/C++ result stream iterators and row objects we
could not use the standard library heap implementation, as the templating in this
is not quite flexible enough to enable join column access and iterator style heap
generation. To have these properties for our heap, we implemented our own binary
heap construct. Our heap was implemented using an array representing a binary
tree, with simple arithmetic addressing to retrieve left-child, right-child, and parent.
The heap constructor takes an array of result streams as input and moves them
around by using an iterative sift down heap construction method. At this point, only

CHAPTER 5. IMPLEMENTATION 48

the first row of the streams was read. The next read occurs when taking a row out
of the root of the heap, causing the root stream to fetch the next row. The root node
is then sent into the sift-down procedure to correct the heap. This is the extent of
functionality we implemented for the heap, as it was all we needed.

5.6.2 Merge joiner

Nested loop

Outer
Inner

Heap - Person table streams

next: 1
node C

next: 2
node B

next: 5
node A

Heap - Planet table streams

next: 2
node A

next: 5
node C

next: 15
node B

Match
buffer

Match
buffer

Merged row

Figure 5.3: Merge joiner diagram

The merge join operation itself was implemented as a class keeping two heaps and
two buffers, similar to the pseudo code for it in the design chapter. A diagram of the
implementation can be seen in figure 5.3. The current value was assigned by taking
the top of the heap with the largest value, as the smaller of the two would not match
anything with ascending ordered streams. All the rows, from both heaps, with join
columns matching the current value were then buffered. This procedure was then
repeated until both buffers had values, meaning some matches were found. This
discovered set of matches were then returned to the caller, pausing the merging
process until the caller asks for more matches. The caller, which is the strategy

5.6. SORT-MERGE JOIN 49

module then proceeded to insert these matches into an interim table by looping
both buffers and firing off insert statements containing the combined rows.
To keep a low memory footprint and allow for pipelining, we used iterators all

the way through the merging processes. The streams coming into the heap are
iterators, so we made the heap like an iterator. The heaps coming into the merge-
joining algorithm were then iterators, so we made this process iterative as well, only
having to keep currently matching rows in memory. This way we could contiguously
generate matches and place them in an interim table, without running out of memory
with large result sets. This is illustrated in figure 5.4.
We keep the chain of iterators down to ”Connector/C++” and made the strategy

reliant on its buffering mechanisms. The benefit of this is that it keeps the imple-
mentation small as well as more robust. The mechanisms of ”Connector/C++” are
probably more reliant than anything we would have time to create for this project,
which gives the implementation a better chance to keep up with more rigorous test-
ing involving large amounts of data.

Iterative heaps

iterator

Connector/C++

Buffers MySQL results

Iterative Merge joiner

Interim

Figure 5.4: Iterative data flow of sort-merge

CHAPTER 5. IMPLEMENTATION 50

5.7 Optimization

In preparation for the evaluation of our system, we did some preliminary testing
using bigger datasets than before. We tested the robustness of our implementa-
tion, looked for anomalies, and validated the cardinality of the join-results returned
from all strategies. During this period we uncovered a number of bugs relating to
memory-usage, blocking calls, lack of indices for interim tables, and more.
The most significant improvements were; indices for all interim tables involved

in joins, switching to Connector/C++ CRUD API for generating insert statements,
as well as implementing batch inserts, removing the blocking fetchAll() call when
handling interim results, replacing it with an iterative generation of batches of
BATCH_SIZE.
Batch insertion allowed the system to handle much bigger datasets. Previously

it attempted to insert all the rows it handled with one insert statement, no matter
the size of the dataset, and predictably this led to very high memory pressure and
ultimately failure. With the fix of reading and inserting rows in batches, the system
does not run out of memory, as only BATCH_SIZE number of rows is kept in memory
at the same time.
Adding indices to the interim tables before using them in joins was a game

changer in terms of performance. With a dataset consisting of two tables, with
1000 rows each, we observed a decline in query duration of up to 46%. The re-
sults from this sample can be seen in figure 5.5. As can be seen from the figure,
the sort-merge strategy was unaffected by the change, this is because sort-merge
does not use interim tables for its joining operation, but rather its own join algo-
rithm, and therefore does not need nor use indices. Using other larger datasets the
improvement was even bigger, and it became clear that indices are crucial to join
performance in MySQL.

data_to_query semi bloom hash_redist sort_merge
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

D
u
ra

ti
o
n

no indices
w/ indices

Figure 5.5: Indices improvement with 2 x 1000 rows, average of 5 runs

5.7. OPTIMIZATION 51

5.7.1 Parallelization of interim table insertion

Initially, insertions of results into interim tables were done sequentially. After each
thread has performed their task, result-sets were returned to the main thread and
inserted from there. This was unnecessary because all the infrastructure of multi-
threading for the execution of queries was already in place, and MySQL supports
concurrent inserts. So instead of the threads just performing the queries, they
were extended to also insert the query results into interim tables.

Sequential Parallel
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
(s

)

Figure 5.6: Parallel insertion speedup with 2 x 217 rows, average of 5 runs, data-to-
query strategy

The effect of this redesign can be seen in figure 5.6. It shows a decrease of ~23%
in time usage. This is a notable decrease and confirms the redesign was worth the
effort.

Chapter 6

Evaluation

In this chapter, we will evaluate and compare the different strategies we have imple-
mented. The goal of the evaluation is to investigate the strengths and weaknesses
the strategies have in different scenarios, and create a basis for a discussion around
the viability of the different strategies in a plugin architecture. We will present the
test suite created for the project, the datasets used for testing, our results and a
comprehensive discussion around them.
To test the hypotheses from section 4.11, we will put the strategies through a

number of trials. We will test

• Horizontal scalability of the strategies by adding nodes to the system.

• Vertical scalability by increasing the size of the datasets used.

• One partitioned table vs two partitioned tables

• Datasets with different characteristics to see the effects they have on the strate-
gies.

• Network effects by using a slower network, i.e. adding latency and lowering
bandwidth

6.1 Measuring performance

Our main measure of performance will be query completion time, that is to say, the
duration of time it takes to perform a query and return the result. More specifically
this window of time is defined by two points, illustrated in figure 6.1, where t1 is the
moment right before a query is sent to MySQL, and t2 is the moment the client starts
to receive a result from that query. This is so that we only measure the execution
time of the query and not the time it takes to ship the entire result to the client. This
way we can increase the data size without polluting our results with uninteresting
and increasing shipping times of the end result.

52

6.2. DATASET 53

Start receiving resultStart sending query

t
1

t
2

t time

Figure 6.1: Measuring points timeline

All queries will be sent from a client program local to the node receiving the
query, so any network delays for sending queries or receiving the start of a result
are negligible.
As MySQL has some clever tricks concerning memory usage, such as keeping

recently accessed tables in buffer pools in memory1, every query that we measure is
preceded by a warmup-query whose time measurement we discard. We will then run
several instances of that query measuring their completion time now that relevant
data likely resides in the buffer pools of the nodes. This means that all instances
of that query, run after the warmup-query, will run under similar conditions, and
produce more consistent results.
To produce our results each query will be run 1+5 times, where the representative

duration of a query will be the mean of the duration of the 5 last runs.

6.2 Dataset

The join columns are the pivot points to most of our hypotheses. To ensure coverage
of all the scenarios described we needed to have columns with the described prop-
erties. Such as selectivity (how many matching rows between two columns) and
different distributions of values. We also needed the dataset to be size-adjustable
and partitionable. This, so we could generate a variable number of rows and dis-
tribute them to the nodes while still retaining the distinct properties of the columns.
With these requirements, as well as a wish to have control over the granularity

of the data, we found that traditional database testing tools, such as TPC-H2 did not
quite fit the bill. Therefore, we decided to generate our own dataset using Numpy3.
Numpy is a numerics library for Python allowing generally well suited for generating
sequences of numerical data, as well as matrices and tabular data. We made use
of the statistics functionality provided by Numpy to make sure our dataset had the
required properties, at every size and partitioning.
The entire dataset consists of two tables, the left hand side (lhs) table and the

right hand side (rhs) table. These represent the operands of the join, one on each
side. Columns in each of these tables will be used to provide properties of the
individual operand inputs as well as the combined properties of the joined result.
For most of the tests, both tables will be split into equal size partitions, one lhs and

1https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html
2http://www.tpc.org/tpch/
3http://www.numpy.org/

https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html
http://www.tpc.org/tpch/
http://www.numpy.org/

CHAPTER 6. EVALUATION 54

rhs partition for each node. E.g. if lhs and rhs contain a million rows each, and we
are testing with 4 nodes, each node gets an lhs partition containing a quarter million
rows and the same for rhs. We will also test having only one partitioned table, in
that case, rhs will reside in full on one node.

6.2.1 Selectivity of join

To test how the selectivity of the joins would affect the strategies we generated
multiple columns containing a variable number of matches between the tables. We
generated selectivity columns going from 10% matching rows to 100%, in steps of
10%. An illustration of the different selectivity levels with a small sample of 10 rows
can be seen in figure 6.2.
We did this simply by generating two sequences of integers, one column for each

lhs and rhs, with an offset between them determining the selectivity level. These
columns have no duplicates within themselves. After generating the sequences we
shuffled the order so that the partitions do not have any unwanted or unexpected
properties, e.g. sorted order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Values

lhs

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
el

ec
ti
vi

ty

rhs
lhs

Figure 6.2: Selectivity columns plot with 10 rows

6.2.2 Distribution of values

To test how the distribution of values within a column would affect the performance
of the different strategies we generated two different distributions. The motivation
behind this being the predictions we made about semi- and bloom-join performing
better in the presence of multiple duplicate values, as these need to send less infor-
mation in order to filter the other table. We also predicted that hash redistribution
might suffer from this due to the increased probability of skewed redistribution when
there are duplicates.

6.3. TEST SETUP 55

The two distributions we generated were: Normal distribution, which has a high
density of values near the mean, decreasing as it moves away on either side, see
figure 6.3a. Uniform distribution, which has duplicate values uniformly distributed
across a range, see figure 6.3b.
The columns with the distributions are put only in the rhs table, while the lhs

table column remains a sequence of integers. This was so we could control the
number of matches generated between them. We decided to go with 50% overlap
of the values, as this is the median of our selectivity datasets. Important to note is
that rhs is the outer relation in all our test queries. This is significant for semi- and
bloom-join as it ships the join column of the outer relation when all else is equal.
We do not believe it to have any significant impact on the other strategies.

0 200 400 600
Column value

0.000

0.002

0.004

0.006

0.008

D
en

si
ty

 (
%

)

lhs
rhs

(a) Normal distribution

0 250 500 750 1000 1250
Column value

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

D
en

si
ty

 (
%

)

lhs
rhs

(b) Uniform distribution

Figure 6.3: Sample of 215 rows, 50% probability of match

6.3 Test setup

To test the methods we have had access to 16 virtual machines (VM) in Oracle
Cloud dedicated to this project. The VMs were provisioned with the same template,
VM.Standard1.24, resulting in a homogeneous system.

Shape OCPU5 CPU Model Memory (GB) Network Bandwidth
VM.Standard2.1 1 Intel Xeon 8167M 15 1Gbps

Table 6.1: Specification of the VMs

We then optimized our build of MySQL and the plugin by enabling compiler op-
timization and setting the limits for buffer-pool size and heap-size for in-memory

4https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm
5An Oracle Compute Unit (https://cloud.oracle.com/compute) is a physical CPU core, including the

hyperthreading unit. It is linked to that VM only, and not shared with others.

https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm
https://cloud.oracle.com/compute

CHAPTER 6. EVALUATION 56

tables to the maximum allowed values. This was to reduce the probability of the
system hitting any of those limits when we scale up the dataset.

6.3.1 Automation of tests

To make testing on 16-machines practical we automated as much of the test pro-
cess as possible. We used the cloud automation tool Ansible6 to set up the test
environment and run tests across the nodes. This included: installing MySQL with
our plugin as well as all dependencies, setting up user-credentials, loading datasets,
partitioning data, running tests, as well as a clean teardown of the nodes after the
tests.
The tests are broken into steps of number of nodes and size of the dataset. When

increasing the size of the dataset, the old data is deleted from the nodes, and the
new dataset is uploaded to the node, partitioned according to the number of nodes,
and inserted into the MySQL instances. When increasing the number of nodes the
MySQL servers are restarted. The result of this was a reproducible test suite that
ran autonomously.

6.4 Results

In the following sections, we will present our results using multiple graphical plots.
The y-axis for most plots is a measure of performance denoted by either ”Time
spent” or ”Throughput”. Time spent is the simple measure of query execution time,
while throughput is the measure of rows processed per second. ”Rows” in this case is
effectively all rows that have been scanned in the execution of the query. The results
are divided into sections for VMs on a local network, simulated ”slow” network, and
”physical machines”.

6.5 Virtual machines on a local network

This section presents the results of the strategies running on an uninhibited local
network between the VMs in a data center. To measure the stability of our results
we computed the mean and the standard deviation of the series of 5 runs for each
unique query and dataset. We did this to gauge the level of confidence in our results
in order to be able to make sound conclusions about them.

6https://www.ansible.com/

https://www.ansible.com/

6.5. VIRTUAL MACHINES ON A LOCAL NETWORK 57

Strategy Standard deviation (%)
data-to-query 0.77

semi 0.57
bloom 0.63

hash redistribution 1.01
sort-merge 0.59

Table 6.2: Average percentage standard deviation for each strategy in figure 6.4

Table 6.2 shows the average standard deviation of the data points for each strat-
egy in the first plot (figure 6.4). The average is, for the most part, less than 1
percent, meaning the results are representative of the actual performance and al-
low for valid comparisons of the strategies. The standard deviation for all our results
lie around and below these averages.

6.5.1 Horizontal scalability

We have tested the scalability of the methods with regards to various node sizes.
The result of variable nodes for 60% selectivity, figure 6.4, and 10% selectivity fig-
ure 6.5, show how the performance of the different strategies evolves when adding
more nodes.

data to query semi bloom hash redistribution sort merge

2 4 8 16
Node Count

26

28

30

32

34

36

38

40

T
im

e
sp

en
t

Figure 6.4: Scaling number of nodes with the 60% selectivity column, with 219 rows

CHAPTER 6. EVALUATION 58

data to query semi bloom hash redistribution sort merge

2 4 8 16
Node Count

20

25

30

35

40

45

50

55

60
T
im

e
sp

en
t

Figure 6.5: Scaling number of nodes with the 10% selectivity column, with 220 rows

In the results, we can see that data-to-query is the slowest strategy. And even
though the data-to-query master receives the same amount of data regardless,
it displays a performance decrease when adding nodes. This is due to the extra
overhead of querying and handling incoming results from an increasing number of
nodes.
For bloom and semi, the scalability plot is flat. Adding nodes neither increases nor

decreases the time used for each query. Having no performance gain when adding
nodes to a parallel strategy indicates that the sequential part of the execution grows
inversely to the performance gained by parallelizing the work. This might be due
to the added overhead of managing more nodes, the relative complexity of the
strategies (e.g. number of messages, sequential steps, etc), or a bottleneck in the
implementation. We will look into some of the limitations of the architecture in
section 6.5.4.
Sort-merge also does not display any performance boost when adding nodes.

This is most likely due to the fact that the parallel part of the strategy, the sorting,
is relatively small compared to the sequential merging when using the dataset sizes
we have tested.
For hash redistribution, the story is another. With a sufficiently high number of

rows and participating nodes hash redistribution begins to overtake every strategy.
This is because the overhead of redistributing the data gets relatively smaller to
the payoff of doing most of the work in parallel. Important to note here is that the
redistribution work itself is also done in parallel. So when adding more nodes the
number of messages goes up, but the volume of data handled by each node goes
down. Hash redistribution is overall the most parallel strategy we have implemented,

6.5. VIRTUAL MACHINES ON A LOCAL NETWORK 59

and the benefit of this becomes clear as we scale.

1 partitioned table

To investigate our hypotheses regarding the strategies’ ability to handle uneven
partition distributions, i.e. one node having a larger share of the data, we tested
with only partitioning and distributing one table, the lhs, leaving the rhs table to
reside solely on the node receiving the query.

data to query semi bloom hash redistribution sort merge

2 4 8 16
Node Count

0

10

20

30

40

50

60

70

80

90

T
im

e
sp

en
t

Figure 6.6: One partitioned table, scaling number of nodes with the 50% selectivity
column, with 219 rows

The results of this test can be seen in figure 6.6.
In this test case hash redistribution has lost its scalability in comparison to what

it showed in figures 6.4 and 6.5. This is because of the skewed distribution of data,
making one node responsible for redistributing 50% of the total amount, instead of
many nodes performing smaller redistributions like in earlier scenarios.
The workload of the redistribution is skewed to such a degree that the benefits of

executing the join in parallel get overshadowed. This is in line with our hypothesis
for hash redistribution in this scenario.
The elephant in the room is the divergence between bloom and semi, which other-

wise performs similarly given partitioning of all tables. Like with hash redistribution
semi suffers when having to deal with one large table. Its initial step is to distribute
the join column to all nodes, which in this case is a large dataset. This is the only
place where bloom and semi differ. Bloom’s filter representation of the join column
is far more efficient to transfer than a large column. One would think the culprit
of this effect is network, but in these tests, this looks to be caused by the method

CHAPTER 6. EVALUATION 60

of which rows are received and inserted onto nodes in the plugin architecture. We
discuss this further in section 6.5.4.
Bloom, however, performs the best of all strategies in this test. This is because,

as discussed in our hypotheses, bloom and semi are well suited to this configu-
ration. Their main mode of operation is sending out a representation of the join
column to the other nodes so they can perform a halfway join. So this configuration
saves them from executing the recursive step ensuring all the nodes’ join columns
are considered. Bloom capitalizes well on this, and semi would too if not for the
architectural limits it encountered in this test.
Sort-merge is still parallel in sorting the partitioned table, but now has become

single-node bound in sorting the unpartitioned table. Having this sequential sort
stage on one node limits the benefits of parallelism to the time it takes to perform the
sequential step. Meaning that no matter how many nodes are working in parallel on
the partitioned table, the execution time will converge to the time of the sequential
step. This limit is known as Amdahl’s law [28]. In our hypotheses, we predicted
that this would negatively affect sort-merge, and it has lost its lead to bloom-join,
but there is not any big loss in performance. This might be due to the dataset not
being sufficiently large to make the sorting operation the bottleneck.

6.5.2 Vertical scalability

data to query semi bloom hash redistribution sort merge

21
4
21

5
21

6
21

7
21

8
21

9
22

0

Number of rows

0

10

20

30

40

50

60

70

T
im

e
sp

en
t

Figure 6.7: Varying datasize with 16 nodes and the 50% selectivity column

6.5. VIRTUAL MACHINES ON A LOCAL NETWORK 61

Figure 6.7 shows the vertical scalability of the strategies when using the 50% se-
lectivity column. In it, we can see that the strategies scale linearly and that none of
the strategies encounter any obstacles up to 220 rows. We also see that the query-
to-data strategies and sort-merge showcase better scalability than data-to-query,
with sort-merge having the best. This is due to the overhead of the parallelization
and data-movement these perform becoming a smaller portion of total time spent
as the size of the dataset increases. Thus the payoff of this initial work becomes
larger.

6.5.3 Distribution of values

data to query semi bloom hash redistribution sort merge

2 4 8 16
Node Count

27

30

33

36

39

42

45

48

51

54

57

T
h
ro

u
g
h
p
u
t

(T
h
o
u
sa

n
d
 r

o
w

s/
s)

(a) Normal distribution

2 4 8 16
Node Count

27

30

33

36

39

42

45

48

51

54

57

T
h
ro

u
g
h
p
u
t

(T
h
o
u
sa

n
d
 r

o
w

s/
s)

(b) Uniform distribution

2 4 8 16
Node Count

27

30

33

36

39

42

45

48

51

54

57

T
h
ro

u
g
h
p
u
t

(T
h
o
u
sa

n
d
 r

o
w

s/
s)

(c) 50% selectivity

Figure 6.8: Results for normal and uniform distribution, as well as 50% selectivity
on up to 16 nodes, with 219 rows

In figure 6.8, a comparison of the strategies when using the normal distribution,
uniform distribution and 50% selectivity dataset can be seen. It is important to
note that the selectivity of the joins performed on all of these datasets is 50%, the
difference between them being that the normal and uniform distribution dataset con-
tains a significant number of duplicate values, while the selectivity column contains
strictly unique values.

CHAPTER 6. EVALUATION 62

In the results, we see that semi, bloom, and sort-merge significantly improve in
the presence of duplicates. While hash redistribution and data-to-query stay mostly
the same for each plot.
This means the experiment to produce a skewed distribution in order to negatively

affect the performance of hash redistribution has not yielded positive results. From
this, we can deduce that hash redistribution has been able to redistribute the data
with little to no skew, even with the big groups of duplicate values present in the
normal distribution, or that the skew produced was not big enough to significantly
impact performance.
Data-to-query was also not affected in any way by the different distributions, this

was expected.

Semi- and Bloom-join redundancy reduction

In the results, we see that semi, bloom, and sort-merge significantly improve when
duplicates are introduced to the dataset. It is clear that both semi and bloom have
expressed the necessary information in a compressed manner, namely, the join
columns they ship are significantly smaller and allow for more efficient filtering of
the opposing table, and thus have been rewarded with greater performance. This
aligns with the hypothesis, from section 4.11, about semi and bloom-join being
able to take advantage of duplicate values in the join columns. Another interesting
aspect of these results is that semi-join has surpassed bloom-join in the transition
from the 50% selectivity column to the normal distribution, we will explore this
further in section 6.5.5.

Sort-merge with duplicate values

Sort-merge also shows an increase in performance when using the duplicate value
distributions. This is likely due to the merging implementation processing larger
buffers of matches at once. In the unique value distributions, sort-merge has to
retrieve a set of matches, there only being 1 from each table each round, generate
combined rows and insert statements before getting the next set of matches. With
the duplicate value distributions, more rows are processed in each one of these
stages, reducing the total overhead of building up match buffers and moving back
and forth. Sort-merge’s overall performance lead for this sample, and in general, is
more closely investigated in the section about selectivity 6.5.4.

6.5. VIRTUAL MACHINES ON A LOCAL NETWORK 63

6.5.4 Selectivity

data to query semi bloom hash redistribution sort merge

10 20 30 40 50 60 70 80 90 10
0

Selectivity (%)

10

15

20

25

30

35

40

45

50

T
im

e
sp

en
t

Figure 6.9: Varying selectivity with 16 nodes and 219 rows

The selectivity result graph, which can be seen in figure 6.9, shows the performance
of the strategies through different levels of selectivity in the joins. As expected data-
to-query is not affected much. This because it does most of the heavy lifting before
any join is executed.
The strategies performing the join before shipping entire rows, namely semi and

bloom, perform well and use very little time when there are fewer rows in the end
result. This is in line with our predictions. When moving towards full selectivity the
performance of these strategies decreases and at 100% lose their advantage, and
due to the overhead and relative complexity of their methods, perform worse than
data-to-query. Hash redistribution follows a similar trend to bloom and semi, for a
similar reason. The redistribution step of this strategy remains constant throughout,
but the result being shipped back to the master becomes significantly larger as
selectivity increases. Sort-merge also degrades as the selectivity goes up, but is
still able to be faster than data-to-query in this test.

Investigating sort-merge advantage

The great performance of sort-merge throughout this test and others was a bit of
a mystery at first because sort-merge collects just as much data as data-to-query

CHAPTER 6. EVALUATION 64

before actually joining any rows. However, upon further investigation, we discovered
that the adverse effects displayed by the strategies in this test were not due to
network shipping times, but rather time spent inserting rows into interim tables.
The sort-merge algorithm only inserts matching rows, unlike data-to-query, and

therefore is able to significantly outperform it.
As for the other strategies, the reason was not as apparent and needed some fur-

ther investigation. The query-to-data strategies do not do nearly as much insertion
as data-to-query and do their work in parallel on multiple nodes.
One possible explanation was the fact that sort-merge does not use indices upon

inserting rows, because it never uses a nested loop join like the other strategies.
To test this, we added an unnecessary index to its final interim table. All the other
strategies use indices because they all rely on a nested loop join at some point
in their execution. The results of this can be seen in figure 6.10. As the graph
shows there is a very small negative effect of generating the extraneous index in
sort-merge. It does not, however, come close to explaining the performance gap
between sort-merge and the query-to-data strategies.

sort merge sort merge with indices

2 4 8 16
Node Count

0

4

8

12

16

20

24

28

32

T
im

e
sp

en
t

Figure 6.10: Sort-merge with and without indices. Varying selectivity with 16 nodes
and 219 rows

What it comes down to is the fact that insertion is a performance bottleneck
in these tests. And when strategies make heavy use of inserts in their sequen-
tial stages they are punished for it. Sort-merge inserts the theoretical minimum
amount, so is, therefore, the least affected by this issue. This is a limitation of the
design/architecture of the system as insertion statements need to be parsed, and at
the plugin architecture/abstraction level that is the only way to insert rows. It is also
likely that the hardware used for these test magnify this effect, as all the nodes have

6.5. VIRTUAL MACHINES ON A LOCAL NETWORK 65

only one core, thus limiting the parallelism of our insertion logic. This is explored
in section 6.7. The performance hit of row insertion can also be looked at as a sort
of simulated network delay when looking at all strategies, except for sort-merge.
Though, to get a clearer picture of the networking efficiency of all the strategies we
have to introduce a significant network delay. This is explored in section 6.6

6.5.5 Semi vs Bloom

As seen in the previous results, such as figure 6.4, bloom-join generally performs
better than semi-join. This is due to bloom using fewer inserts than semi. Specif-
ically when it ships the filter instead of the join column. However, in the plot 6.8
showcasing the results of the normal and uniform value distributions, we see the
opposite, semi having better throughput than bloom. Figure 6.11 shows the inter-
section of the two strategies, where semi surpasses bloom in performance.

semi bloom

2
14

2
15

2
16

2
17

2
18

2
19

Number of rows

0

5

10

15

20

25

T
im

e
sp

en
t

Figure 6.11: Semi- and Bloom-join with 16 nodes, using the normal distribution join
column

An important aspect of the normal and uniform distributions is that when the
size of the dataset increases the value range stays the same. This means that for
a given node size the overhead of shipping the distinct values of the join column in
semi-join, and generating and shipping the filter of bloom stays constant.
So to explain this we needed to look at why the characteristics of these datasets

CHAPTER 6. EVALUATION 66

negatively affected bloom and not semi. As the difference in the two strategies is
the use of a bloom filter, this was the obvious area to investigate.

False positive rates for bloom filters

21
4

21
5

21
6

21
7

21
8

21
9

Data size

0

5

10

15

20

25

30

E
xt

ra
 r

o
w

s
(%

)

Figure 6.12: Extra rows included due to bloom false positive with normal distribution
join column for the different data sizes tested

In figure 6.12 we can see a small sample of the number of rows wrongly included
in the output of the Bloom filter. Here, the false positive rate of the filter produces,
with the normal distribution dataset, up to 30% extra rows. This can be a problem
when shipping the rows over a network. However, in this case, and the result in
figure 6.11, the rhs normal column is used to create the filter and the filter is applied
on the lhs table.
The lhs column used is a sequence of integers overlapping the ”rhs normal” col-

umn from the center, meaning it overlaps in the value range 300 to 500. Given this,
the maximum number of true positives that can come from the filter is 200 rows.
This gives the high sample of 30% false positives only 60 extra rows. And this
remains constant through the increase in dataset size, as explained earlier. There-
fore we can conclude that neither the network traffic of shipping the extra rows nor
the insertion mechanism is to blame for the decrease in performance in relation to
semi-join. The reason for this degradation is the extra processing of the nested loop
performing the final join between the filtered rows and the original rhs table. Like
the original, in this case comparatively large, rhs table is not guaranteed to be in-

6.6. SLOW NETWORK SIMULATION 67

dexed, even a small number of extra rows can have a large impact on performance.
This becomes a bigger problem as the dataset size increases as well, as can be seen
in the plot. This highlights an issue with using Bloom filters in that with certain
configurations and data distributions the false positive rate of the filter can degrade
performance significantly, either through extra processing or network volume.
We will review the possibilities for better tuning a bloom filter for use in joins in

(the discussion) section 6.8.

6.6 Slow network simulation

To investigate network effects on the strategies and attempt to answer some of the
hypotheses regarding networks, we in this section simulated decreased bandwidth
and increased latency. This was also, in part, an effort to mitigate the large factor
of insertion statements present in previous results.

6.6.1 Bandwidth

To test the effects of slower networks on the strategies we decreased the bandwidth
between the nodes by throttling the network interface on each of the 16 virtual
machines. We were, however, not able to produce an environment, with the VMs, in
which the bandwidth of the network sufficiently starved the insertion logic used by
the strategies, without rate limiting to an unusable rate where other mechanisms
started to break down. This, as discussed earlier, might be a problem with the small
number of cores given to the VMs, limiting the parallelism of the insertion logic. This
is investigated in section 6.7. Thus, the results we produced in this test all showed
the same trends as the previous virtual machine tests.

6.6.2 Latency

For this test, we added artificial latency to the network interface of each of the
16 virtual machines. We did this to see how the different strategies respond to
networks with higher latency. Specifically, we added a variable delay of 10ms± 5ms

with a 25% correlation between the delay of the previous and current packet delay.
The tc-netem7 command we used is shown here:

1 tc qdisc add dev ens3 root netem delay 10ms 5ms 25%

7http://man7.org/linux/man-pages/man8/tc-netem.8.html

http://man7.org/linux/man-pages/man8/tc-netem.8.html

CHAPTER 6. EVALUATION 68

data to query semi bloom hash redistribution sort merge

2 4 8 16
Node Count

0

2

4

6

8

10

12

14

16

18

20
T
im

e
sp

en
t

Figure 6.13: Scaling number of nodes with the 50% selectivity column, with 218

rows

The results of the latency test can be seen in figure 6.13. Here, data-to-query
performs relatively better compared to earlier tests. This is because data-to-query
sends out a small number of large requests, making it less sensitive to increased
round-trip times. While other strategies have sequential stages and queries that
they have to wait for in order to continue with execution, making latency a bigger
pain point. This has impacted hash redistribution, semi, and bloom, weakening
their performance and placing them right next to data-to-query. Sort-merge has
been especially punished by the added latency, but for a different reason. As the
Connector/C++ library does not support asynchronous execution of queries, sort-
merge’s order-by queries are sent out sequentially. Note that this does not mean it
needs to fetch the entire result between each query, but it has to wait for a query
to respond before sending out the next one. This makes sort-merge very sensitive
to increased round-trip times, and explains why it displays poor performance in this
test, but not in others.

6.7 Physical machines

In section 6.5.4, we suspected that the insertion logic was slowed down by only run-
ning on one core. The reasoning behind this comes from the fact that the insertion
logic is written to be concurrent and utilize multiple threads to handle the result sets
coming from the other nodes. To get a more balanced picture of performance, and
to try to mitigate the insertion factor, we decided to give the test suite a run on a
couple of physical machines.

6.7. PHYSICAL MACHINES 69

We ran tests on two machines, with each machine serving two MySQL instances,
for a total of four MySQL instances. Both the machines have four-core processors,
meaning one more core per MySQL instance compared to the virtual machine setup.
In addition, the processor cores of the physical machine are notably faster, as can
be seen in table 6.3.

Machine type CPU Model (Intel) Memory (GB) Freq (GHz)
Physical Core i7-77008 32 3.60
Virtual Xeon Platinum 8167M910 15 2.00

Table 6.3: Comparison of the specifications of the physical and virtual machines

data to query semi bloom hash redistribution sort merge

10 20 30 40 50 60 70 80 90

Selectivity (%)

0

5

10

15

20

25

30

35

40

45

50

T
im

e
sp

en
t

(a) Virtual machines

10 20 30 40 50 60 70 80 90

Selectivity (%)

0

5

10

15

20

25

30

35

40

45

50
T
im

e
sp

en
t

(b) Physical machines

Figure 6.14: Comparison of VMs vs physical machines, varying selectivity with 4
nodes and 219 rows

In figure 6.14, VM results and physical machine results of the same test case
are displayed. Between them we see that the physical machines have been able to
complete the queries in a much shorter timespan, indicating that the queries running
on the VMs are CPU bound.
10https://ark.intel.com/content/www/us/en/ark/products/97128/intel-core-i7-7700-processor-8m-cac

he-up-to-4-20-ghz.html
10https://cloud.oracle.com/compute/virtual-machine/features (Accessed: 2019-05-24)
10Each virtual machine only have one OCPU (see section 6.3).

https://ark.intel.com/content/www/us/en/ark/products/97128/intel-core-i7-7700-processor-8m-cache-up-to-4-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/97128/intel-core-i7-7700-processor-8m-cache-up-to-4-20-ghz.html
https://cloud.oracle.com/compute/virtual-machine/features

CHAPTER 6. EVALUATION 70

data to query semi bloom hash redistribution sort merge

10 20 30 40 50 60 70 80 90

Selectivity (%)

4

6

8

10

12

14
T
im

e
sp

en
t

Figure 6.15: Varying selectivity with 4 nodes and 219 rows

When zooming in on the physical machine results, see figure 6.15, it becomes
apparent that adding more cores changes the landscape between the strategies a
bit as well. Insertion is no longer as dominating of a factor. This is clear to see
as bloom, semi, and hash-redistribution, are able to outperform sort-merge, even
though all of them have more insert statements.
As explained in design, bloom-join spends processing time in order to lower the

total amount of data sent. And we can see that when using machines with more
available processing power bloom-join is rewarded for this tactic.
The parallelism of semi, bloom, and hash redistribution gets less hampered by

the insertion overhead of previous tests, and they are therefore able to beat the less
parallel sort-merge strategy.
Adding more power to the nodes increases the favorability of the more parallel

and processing heavy strategies.

6.8 Discussion

Through the evaluation of the strategies, we have highlighted strengths and weak-
nesses in the theory, design, and implementation of all the strategies. We have
shown the merits of parallelism through the results of hash redistribution, show-
ing that doing some work upfront, in order to parallelize execution, can be very

6.8. DISCUSSION 71

beneficial when there are multiple nodes that can contribute.
We have shown indications as to how network communication can be expensive

and impact performance in a distributed system, but in most of our tests, this was
not a dominating factor. This means that with a sufficiently speedy network, e.g. a
data center setting, network cost is not likely to be a big concern when choosing a
join strategy and that the weight should really be put on maximizing utilization of
processing power in the system. This is in line with earlier research on the subject,
see section 2.4.
We looked at how the strategies deal with different datasets, and how different

properties affect the strategies. Semi and bloom-join are able to capitalise on dupli-
cates in the dataset, i.e. the uniform and normal distributions. All the query-to-data
strategies are inefficient at executing joins that have 100% selectivity, but perform
better than data-to-query when selectivity is lower. Hash redistribution is mostly
unaffected by the different dataset properties in our tests, showing it to be a very
general strategy that fits many cases.
We also investigated the differences between semi- and bloom-join, and showed

that bloom is able to outperform semi through its usage of the filter to represent
the join column, but also that in some cases produces a significant number of false
positives, making it less reliable and predictable.
Using the VMs, we uncovered some of the limitations of the plugin architecture

we used. The biggest one being the insertion-bottleneck, which ended up becoming
a dominant factor in many of the VM tests. We were, however, able to produce tests
with more powerful machines that dampened the insertion-factor, and gave a more
nuanced perspective of the relative performance of the strategies.
We compared a more specialized algorithm, sort-merge, to the lightweight data

movement strategies. We found that our sort-merge implementation was demon-
strably more suited to the distribution problem space, but was still outperformed
when using more powerful nodes. This tells us that the data movement strategies,
using nested-loop at the local level and the plugin philosophy in general, all show
promise.

Chapter 7

Conclusion

Join-queries in distributed systems can be executed using a number of strate-
gies that vary in communication requirements, compute-heaviness, and complexity.
Evaluating different ways to facilitate distributed join query execution has been the
goal of this project.
We have looked at previous research into the field of distributed joins, and in-

vestigated existing products and how they handle them. From that process, we
selected five strategies to investigate: data-to-query, semi-join- bloom-join, hash
redistribution, and sort-merge. And have presented the design, implementation,
and evaluation of these five join-strategies in a distributed MySQL plugin based sys-
tem.
Through the design phase, we have presented the architecture of the plugin and

the design of the different strategies. The design details a plugin system enabling a
distribution layer for the strategies to operate over multiple MySQL instances. It was
designed to allow swapping between multiple strategies. Each strategy was modeled
and detailed in sequence diagrams, through several iterations and discussions. The
time spent on this allowed for a better understanding of how each strategy works
and thoughts on how to best implement them. The resulting design served as a
great basis for the implementation.
Even given a good design there are almost always some compromises that have

to be made during implementation. Our development process has been an iter-
ative one, with a focus on code reusability and modularity between the different
strategies. During it, we have encountered limitations in the plugin architecture
and devised solutions and workarounds to make our strategies work. We have got-
ten to know MySQL well and explored its plugin API extensively. When preparing
for tests we optimized the system and fixed outstanding problems to ensure that
the evaluation would work smoothly. This has resulted in a plugin system capable
of executing all our strategies in a distributed environment.
The results of the evaluation have shown how the strategies perform in relation

to each other and exposed some of their strengths and weaknesses.

72

73

The data-to-query strategy, being the simplest strategy, had the overall poorest
performance. However, its simplicity made it very consistent and in some of the
corner test cases, e.g. joins with 100% selectivity it prevails. The consistency
displayed by data-to-query shows the value that can come from using a simpler and
more general strategy.
Hash redistribution was consistently able to evenly distribute the workload and

performed well when adding more nodes to the system. Showing that doing some
work upfront in order to maximize parallelity is worth it in the long run, especially
when adding more nodes.
Semi- and bloom-join did generally well, especially in when running on more

powerful machines. Showing the cleverness of these strategies, and their viability
when processing power is more abundant. They are also better suited to certain
configurations. E.g. they do great with a normal distribution of values.
When comparing semi and bloom against each other, we discovered a few key

differences. Semi sends more data and therefore hits the architectural limits sooner
than bloom. Bloom can sometimes produce false positives, making it less pre-
dictable.
Sort-merge, being a more bottom-up strategy using its own join algorithm, had

the best performance in the virtual machine tests. Highlighting the difference be-
tween a specialized strategy versus the lighter weight data-movement strategies.
The fact that a simple, but more specialized strategy, did so well challenges the
lightweight plugin philosophy. It indicates that a more powerful plugin interface
might be needed to make the lightweight plugin a viable solution. Although, when
adding more power sort-merge was beaten by all the query-to-data strategies. Dis-
playing that the theory, design, and implementation of these are sound.
In total, we have shown that no one strategy fits all and that the choice of strategy

depends on what topology, data, hardware, etc, are available. Any system should be
explicit in the choice of an appropriate strategy given a certain problem. Distributed
database systems built from top-to-bottom have the advantage of controlling the
problem space to a higher degree, thus allowing it to make decisions ahead of time
to facilitate a certain execution strategy. While a plugin-based system, like ours,
needs to be able to adapt more to the environment in which it runs. For MySQL, this
means using the strategies that are best able to take advantage of the parser-access,
the indexed nested loop join, and get around the limitations concerning mutating
data in the fastest way. Namely, hash redistribution, bloom-join, and sort-merge.
Although, in general, a system should support multiple strategies either as a user
choice, a runtime decision, or as a hybrid solution.

Chapter 8

Future work

We will in this section present proposals for future work to improve and expand
upon the plugin system, the evaluation process and the project as a whole. We will
present potential solutions to standing problems, optimizations, new features and
interesting avenues for further development. Mainly focusing on the aspects of this
project, and beyond, which are the most interesting to us, and that we wish to see
completed.

8.1 Further testing

When testing a system like ours there is always the possibility of adding more nodes,
bigger datasets, more powerful machines, etc. Our resources were limited, however.
We completed the test cases we set out to do and expanded on the test cases
that produced interesting or ambiguous results to properly highlight the differences
between the strategies. Although, there are some aspects we would like to look
further in to. We would like to closer investigate bloom filters and find the most
efficient configuration of it in different join scenarios. And we would like to test
with several more powerful machines, up to 16 perhaps, to get a more complete
picture of the scalability and network effects when insertion is less of a factor. Other
possibilities for testing include running an industry standard benchmark, or using
production data, to get an idea of how the strategies perform with data representing
real-life use cases.

8.2 Speeding up inserts

As discussed in the evaluation chapter 6 our strategies were often performance
bound by the insertion of data when running on the slow virtual machines. Having
to parse and process our insertions as SQL statements certainly did not help in this

74

8.3. CLOSER INTEGRATION WITH MYSQL 75

regard. Optimizing inserts in our system is, therefore, a potentially fruitful avenue
for further development of this project.
One potential immediate solution is to use a plugin for the InnoDB storage en-

gine called ”innodb-memcached”. This plugin hosts a Memcached server and allows
a client to mutate InnoDB tables by sending commands through the Memcached
protocol 1. By itself, Memcached is a high-performance in-memory key-value store
intended to lighten database load by serving as a cache 2. In the innodb-memcached
plugin the in-memory storage of memcached is replaced by the InnoDB buffer pool.
This way Memcached commands can be used to manipulate the consistent and reli-
able storage of InnoDB through a simpler and highly performant interface. For our
plugin, this could allow inserts to bypass all the layers of the MySQL server, e.g.
parsing, before being stored in interim tables 3.
However, this solution creates some dependencies. The plugin becomes depen-

dent on the InnoDB storage engine, breaking the abstraction of the plugin. And it
becomes dependent on Memcached, which does not support all platforms, the big
one missing being Windows. A more general and plugin-esque (not breaking ab-
straction and not dependent on the storage engine) solution would require a more
powerful plugin API.

8.3 Closer integration with MySQL

Developing a system using the plugin-architecture for MySQL, without breaking the
abstractions and conveniences of a plugin, places you at the mercy of the plugin
API available. If you need anything beyond the offered functionality, you are left to
either modify the MySQL server and break compatibility and the abstraction, or use
cumbersome workarounds.
In our plugin, we made use of the interface for traversing and reading the parse-

tree generated for a query. While this part worked nicely, we did find the overall API
to be lacking in functionality when it came to performing other tasks. For example,
the fact that there is not an interface in regards to querying and mutating tables. To
get around this we ended up creating new application-level sessions to the MySQL
server for simple queries and, as previously discussed, insert statements, which was
sub-optimal.
A remedy to this could be to expand the plugin API by giving it more functionality.

We would like to see something like a Object relational mapping (ORM) style inter-
face for constructing parse-trees. By directly building parse-tree structures, or close
relatives, a plugin would have more fine-grained control over querying at a lower
cost. Allowing plugins to affect query plans and lower level optimizations of query
execution makes sense because a plugin is very different from a user application,

1https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached.html
2https://www.memcached.org/about
3https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-intro.html

https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached.html
https://www.memcached.org/about
https://dev.mysql.com/doc/refman/8.0/en/innodb-memcached-intro.html

CHAPTER 8. FUTURE WORK 76

as it is loaded as a compiled component of the MySQL server itself. As discussed
earlier, the innodb-memcached plugin provides an alternative interface to interact
with InnoDB. A similar interface in the plugin API providing CRUD operations on the
SQL level could also be very useful.
Changes like these could allow for more powerful plugins in the future, and make

a distribution plugin a viable solution to add a distribution layer to MySQL.

8.4 Join algorithms

Natively MySQL supports only one join algorithm, a sequential nested-loop join. So
in our plugin, this was used for every strategy, except for sort-merge. In theory,
though, nested loop joins can be parallelized to an extent, by using pipelining on the
inner relation [8]. However, this means you need to have the entire outer relation
before starting the loop.
Other joins algorithms can also be parallelized in different ways, and some to a

greater extent. We investigated sort-merge in our project, and seeing how well it
worked it makes sense to investigate the other major one we covered in the theory
chapter 2, namely the hash join algorithm.
As seen in the state-of-the-art chapter 3 it is a common method in distributed

database systems. It lends itself well to parallelism in that nodes can hash rows as
it receives them.
Implementing a distribution aware pipelined nested-loop and a distributed hash-

join goes beyond scope and philosophy of this project, but could be interesting as a
further comparison of the lightweight plugin architecture to a heavier one.

8.5 Hybrid join strategies

Looking at hybrids of the strategies we have evaluated through this project might
yield a better strategy than either of them by themselves. As stated in the state-
of-the-art chapter 3 it is common for systems to combine different techniques to
create a general and efficient solution for real-world use. One example being the
hash redistribution + sort-merge join hybrid of CockroachDB. An investigation into
the different possible hybrids might prove useful as an extension of this project.

8.6 More Join types

In our research, we have been looking at one specific type of join, inner equi-joins.
Other common join types are outer- and full joins, as well as joins with join-clauses
using other operators than equality, e.g. ”greater-than” 4. It could be interesting to

4https://dev.mysql.com/doc/refman/8.0/en/join.html

https://dev.mysql.com/doc/refman/8.0/en/join.html

8.7. CONSISTENCY 77

devise and evaluate strategies for these as they might have different performance
shortcuts and pitfalls compared to inner equi-joins. One example is that for greater-
and less-than operators hash redistribution and hash joins become useless. This is
because, as mentioned in the design phase, once you hash a sequence of numbers
the transitive relationships of the < and > operators cannot be guaranteed. An-
other case is full outer joins. When doing full outer joins the result can potentially
contain twice the number of rows as the input tables. It is, therefore, reasonable
to assume that the strategies performing data-retrieval before any joins will prevail
here, e.g. data-to-query and sort-merge. Other cases might be more nuanced and
an investigation into them might uncover interesting results.

8.7 Consistency

An important aspect of RDMBSs is consistency. This is however an ambiguous term
when talking about distributed databases, as it might refer to either consistency
in ACID [29] (Atomicity, Consistency, Isolation, Durability) or in CAP theorem [30]
(Consistency, Availability, Partition tolerance). ACID properties are required of a
database system if it is to perform transactions. The CAP theorem talks about the
fundamental properties of a distributed system, and how only two of the three prop-
erties can be guaranteed.
As part of ACID - consistency is a guarantee that data that can be read from the

database always is in a valid state according to the rules put in place both by the
user and the database system. E.g. upholding primary and foreign key relations or
ensuring a unique value is actually unique.
When distributing a database consistency in CAP comes into play. It states that

all the replicas of a row have the exact same value at all times. This becomes a chal-
lenge when introducing replication into the system. Replication is a common feature
used for availability and load-balancing, by introducing replicas of records/values
which can be used in parallel. This opens up for another avenue of inconsistencies
as changes to any replica need to be propagated to all other replicas.
In distributed systems, all of these become more difficult to maintain, because

there are multiple fully autonomous nodes operating in parallel. Of course, this only
becomes an issue when mutating data or tables, which has not been a part of this
project. If one is to make a full-fledged system one needs to address these issues
at some point.
To solve it, there needs to be some type of locking or consistent sequence of

operations between the nodes, keeping operations from interfering with each other.
Ensuring that multiple operations are performed atomically, consistent, isolated

and durable across several nodes is a problem discussed in a lot of research, under
the name of distributed concurrency control. There exist several different mecha-
nisms and strategies, some using locks like 2 phase locking (2PL) and CALVIN. Some
have a planning phase in which an execution order is determined using timestamps

CHAPTER 8. FUTURE WORK 78

or logic (CALVIN and Timestamp ordering). While some, like ”Optimistic concur-
rency control”, execute the operations first, and then validate if it was done in a
serializable manner after-the-fact [31]. What they all have in common is that they
produce a sequence of operations upholding the ACID properties, or they abort the
transaction and try again later. Implementing a mechanism like one of these is
required to maintain strict consistency in a distributed database system.

Bibliography

[1] A. Pavlo and M. Aslett, “What’s really new with newsql?”, SIGMOD Rec., vol. 45,
no. 2, pp. 45–55, Sep. 2016, ISSN: 0163-5808. DOI: 10.1145/3003665.30036
74. [Online]. Available: http://doi.acm.org/10.1145/3003665.3003674.

[2] M. T. Özsu and P. Valduriez, Principles of distributed database systems, 3rd ed.
Springer-Verlag New York, 2011, ISBN: 978-1441988331.

[3] D. Kossmann, “The state of the art in distributed query processing”, ACM
Comput. Surv., vol. 32, no. 4, pp. 422–469, Dec. 2000, ISSN: 0360-0300.
DOI: 10.1145/371578.371598. [Online]. Available: http://doi.acm.org/10.1145
/371578.371598.

[4] K.-U. Sattler, “Distributed join”, in Encyclopedia of Database Systems, L. LIU
and M. T. ÖZSU, Eds. Boston, MA: Springer US, 2009, pp. 904–908, ISBN:
978-0-387-39940-9. DOI: 10.1007/978-0-387-39940-9_705. [Online]. Avail-
able: https://doi.org/10.1007/978-0-387-39940-9_705.

[5] G. Graefe, “Parallel hash join, parallel merge join, parallel nested loops join”,
in Encyclopedia of Database Systems, L. LIU and M. T. ÖZSU, Eds. Boston,
MA: Springer US, 2009, pp. 2029–2030, ISBN: 978-0-387-39940-9. DOI:
10.1007/978-0-387-39940-9_1086. [Online]. Available: https://doi.org/10.100
7/978-0-387-39940-9_1086.

[6] D. A. Schneider and D. J. DeWitt, “Tradeoffs in processing complex join queries
via hashing in multiprocessor database machines”, in Proceedings of the 16th
International Conference on Very Large Data Bases, ser. VLDB ’90, San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 469–480, ISBN:
1-55860-149-X. [Online]. Available: http://dl.acm.org/citation.cfm?id=6459
16.672141.

[7] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A.
Wood, “Implementation techniques for main memory database systems”, in
Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data, ser. SIGMOD ’84, Boston, Massachusetts: ACM, 1984, pp. 1–
8, ISBN: 0-89791-128-8. DOI: 10.1145/602259.602261. [Online]. Available:
http://doi.acm.org/10.1145/602259.602261.

79

https://doi.org/10.1145/3003665.3003674
https://doi.org/10.1145/3003665.3003674
http://doi.acm.org/10.1145/3003665.3003674
https://doi.org/10.1145/371578.371598
http://doi.acm.org/10.1145/371578.371598
http://doi.acm.org/10.1145/371578.371598
https://doi.org/10.1007/978-0-387-39940-9_705
https://doi.org/10.1007/978-0-387-39940-9_705
https://doi.org/10.1007/978-0-387-39940-9_1086
https://doi.org/10.1007/978-0-387-39940-9_1086
https://doi.org/10.1007/978-0-387-39940-9_1086
http://dl.acm.org/citation.cfm?id=645916.672141
http://dl.acm.org/citation.cfm?id=645916.672141
https://doi.org/10.1145/602259.602261
http://doi.acm.org/10.1145/602259.602261

BIBLIOGRAPHY 80

[8] H. Lu and M. J. Carey, “Some experimental results on distributed join algo-
rithms in a local network”, in Proceedings of the 11th International Conference
on Very Large Data Bases - Volume 11, ser. VLDB ’85, Stockholm, Sweden:
VLDB Endowment, 1985, pp. 292–304. [Online]. Available: http://dl.acm.or
g/citation.cfm?id=1286760.1286787.

[9] D. A. Schneider and D. J. DeWitt, “A performance evaluation of four parallel
join algorithms in a shared-nothing multiprocessor environment”, SIGMOD
Rec., vol. 18, no. 2, pp. 110–121, Jun. 1989, ISSN: 0163-5808. DOI: 10.114
5/66926.66937. [Online]. Available: %5Curl%7Bhttp://doi.acm.org/10.1145/6692
6.66937%7D.

[10] N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strategies for large-scale
distributed computation”, Proc. VLDB Endow., vol. 7, no. 13, pp. 1484–1495,
Aug. 2014, ISSN: 2150-8097. DOI: 10.14778/2733004.2733020. [Online]. Avail-
able: http://dx.doi.org/10.14778/2733004.2733020.

[11] C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. Hoefler, “Distributed
join algorithms on thousands of cores”, Proc. VLDB Endow., vol. 10, no. 5,
pp. 517–528, Jan. 2017, ISSN: 2150-8097. DOI: 10.14778/3055540.3055545.
[Online]. Available: https://doi.org/10.14778/3055540.3055545.

[12] X. Wang and M. Cherniack, “Avoiding sorting and grouping in processing
queries”, in Proceedings of the 29th International Conference on Very Large
Data Bases - Volume 29, ser. VLDB ’03, Berlin, Germany: VLDB Endowment,
2003, pp. 826–837, ISBN: 0-12-722442-4. [Online]. Available: http://dl.ac
m.org/citation.cfm?id=1315451.1315522.

[13] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie Jr.,
“Query processing in a system for distributed databases (sdd-1)”, ACM Trans.
Database Syst., vol. 6, no. 4, pp. 602–625, Dec. 1981, ISSN: 0362-5915.
DOI: 10.1145/319628.319650. [Online]. Available: http://doi.acm.org/10.1145
/319628.319650.

[14] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors”,
Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970, ISSN: 0001-0782.
DOI: 10.1145/362686.362692. [Online]. Available: http://doi.acm.org/10.1145
/362686.362692.

[15] L. F. Mackert and G. M. Lohman, “R* optimizer validation and performance
evaluation for distributed queries”, in Proceedings of the 12th International
Conference on Very Large Data Bases, ser. VLDB ’86, San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1986, pp. 149–159, ISBN: 0-934613-18-4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645913.671480.

[16] Clustrixdb - how clustrixdb optimizes joins, http://docs.clustrix.com/displa
y/CLXDOC/Frequently+Asked+Questions#FrequentlyAskedQuestions-HowdoesClust
rixDBoptimizejoins, Accessed: 2019-01-22.

http://dl.acm.org/citation.cfm?id=1286760.1286787
http://dl.acm.org/citation.cfm?id=1286760.1286787
https://doi.org/10.1145/66926.66937
https://doi.org/10.1145/66926.66937
%5Curl%7Bhttp://doi.acm.org/10.1145/66926.66937%7D
%5Curl%7Bhttp://doi.acm.org/10.1145/66926.66937%7D
https://doi.org/10.14778/2733004.2733020
http://dx.doi.org/10.14778/2733004.2733020
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.14778/3055540.3055545
http://dl.acm.org/citation.cfm?id=1315451.1315522
http://dl.acm.org/citation.cfm?id=1315451.1315522
https://doi.org/10.1145/319628.319650
http://doi.acm.org/10.1145/319628.319650
http://doi.acm.org/10.1145/319628.319650
https://doi.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://doi.acm.org/10.1145/362686.362692
http://dl.acm.org/citation.cfm?id=645913.671480
http://docs.clustrix.com/display/CLXDOC/Frequently+Asked+Questions#FrequentlyAskedQuestions-HowdoesClustrixDBoptimizejoins
http://docs.clustrix.com/display/CLXDOC/Frequently+Asked+Questions#FrequentlyAskedQuestions-HowdoesClustrixDBoptimizejoins
http://docs.clustrix.com/display/CLXDOC/Frequently+Asked+Questions#FrequentlyAskedQuestions-HowdoesClustrixDBoptimizejoins

BIBLIOGRAPHY 81

[17] Clustrixdb - scaling joins, http://docs.clustrix.com/display/CLXDOC/Evaluatio
n+Model#EvaluationModel-JoinswithMassivelyParallelProcessing(ClustrixDB),
Accessed: 2019-01-22.

[18] Mysql federated engine, https://dev.mysql.com/doc/refman/8.0/en/federated
-usagenotes.html, Accessed: 2019-01-21.

[19] Mysql cluster 7.2 ga released, delivers 1 billion queries per minute, https://w
ww.mysql.com/why-mysql/white-papers/mysql-cluster-7.2-ga.html, Accessed:
2019-01-29.

[20] Cockroachdb - join expressions, Accessed: 2019-01-23. [Online]. Available:
https://www.cockroachlabs.com/docs/stable/joins.html.

[21] Spanner: Becoming a sql system, https://static.googleusercontent.com/med
ia/research.google.com/en//pubs/archive/46103.pdf, Accessed: 2019-01-23.

[22] Memsql documentation - distributed sql, https://docs.memsql.com/concepts/v
6.7/distributed-sql/, Accessed: 2019-01-23.

[23] Ignite sql - distributed joins, https://apacheignite-sql.readme.io/docs/distr
ibuted-joins, Accessed: 2019-01-23.

[24] N. Provos and D. Mazières, “A future-adaptable password scheme”, in USENIX
Annual Technical Conference, FREENIX Track, 1999. [Online]. Available: http
://www.usenix.org/events/usenix99/provos.html.

[25] C. Percival, “Stronger key derivation via sequential memory-hard functions”,
in BSDCan - The BSD Conference, May 2009. [Online]. Available: https://ww
w.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf.

[26] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing
Co., Inc., 1998, ISBN: 0-201-89685-0.

[27] G. Fowler, L. C. Noll, and K.-P. Vo, The fnv non-cryptographic hash algorithm,
https://tools.ietf.org/pdf/draft-eastlake-fnv-16.pdf, Accessed: 2019-04-
03.

[28] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities”, in Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, ser. AFIPS ’67 (Spring), Atlantic City, New Jersey:
ACM, 1967, pp. 483–485. DOI: 10.1145/1465482.1465560. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560.

[29] T. Haerder and A. Reuter, “Principles of transaction-oriented database recov-
ery”, ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, Dec. 1983, ISSN:
0360-0300. DOI: 10.1145/289.291. [Online]. Available: http://doi.acm.org/1
0.1145/289.291.

http://docs.clustrix.com/display/CLXDOC/Evaluation+Model#EvaluationModel-JoinswithMassivelyParallelProcessing(ClustrixDB)
http://docs.clustrix.com/display/CLXDOC/Evaluation+Model#EvaluationModel-JoinswithMassivelyParallelProcessing(ClustrixDB)
https://dev.mysql.com/doc/refman/8.0/en/federated-usagenotes.html
https://dev.mysql.com/doc/refman/8.0/en/federated-usagenotes.html
https://www.mysql.com/why-mysql/white-papers/mysql-cluster-7.2-ga.html
https://www.mysql.com/why-mysql/white-papers/mysql-cluster-7.2-ga.html
https://www.cockroachlabs.com/docs/stable/joins.html
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46103.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46103.pdf
https://docs.memsql.com/concepts/v6.7/distributed-sql/
https://docs.memsql.com/concepts/v6.7/distributed-sql/
https://apacheignite-sql.readme.io/docs/distributed-joins
https://apacheignite-sql.readme.io/docs/distributed-joins
http://www.usenix.org/events/usenix99/provos.html
http://www.usenix.org/events/usenix99/provos.html
https://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf
https://tools.ietf.org/pdf/draft-eastlake-fnv-16.pdf
https://doi.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1465482.1465560
https://doi.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291

BIBLIOGRAPHY 82

[30] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services”, SIGACT News, vol. 33, no. 2,
pp. 51–59, Jun. 2002, ISSN: 0163-5700. DOI: 10.1145/564585.564601. [On-
line]. Available: http://doi.acm.org/10.1145/564585.564601.

[31] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker, “An evaluation of
distributed concurrency control”, Proc. VLDB Endow., vol. 10, no. 5, pp. 553–
564, Jan. 2017, ISSN: 2150-8097. DOI: 10.14778/3055540.3055548. [Online].
Available: https://doi.org/10.14778/3055540.3055548.

https://doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3055540.3055548

Appendix A

Lundgren plugin source code

lundgren/lundgren.cc

1 /* Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights
reserved.↪→

2

3 This program is free software; you can redistribute it and/or modify
4 it under the terms of the GNU General Public License, version 2.0,
5 as published by the Free Software Foundation.
6

7 This program is also distributed with certain software (including
8 but not limited to OpenSSL) that is licensed under separate terms,
9 as designated in a particular file or component or in included license
10 documentation. The authors of MySQL hereby grant you an additional
11 permission to link the program and your derivative works with the
12 separately licensed software that they have included with MySQL.
13

14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License, version 2.0, for more details.
18

19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

*/↪→

22

23 #include <ctype.h>
24 #include <mysql/components/services/log_builtins.h>
25 #include <mysql/plugin.h>

83

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 84

26 #include <mysql/plugin_audit.h>
27 #include <mysql/psi/mysql_memory.h>
28 #include <mysql/service_mysql_alloc.h>
29 #include <string.h>
30

31 #include "my_inttypes.h"
32 #include "my_psi_config.h"
33 #include "my_thread.h" // my_thread_handle needed by mysql_memory.h
34

35 #include <iostream>
36

37 #include "plugin/lundgren/distributed_query_manager.h"
38 #include "plugin/lundgren/parse_tree_walker.h"
39 #include "plugin/lundgren/distributed_query.h"
40 #include "plugin/lundgren/query_acceptance.h"
41 #include "plugin/lundgren/join_strategies/data_to_query.h"
42 #include "plugin/lundgren/join_strategies/semi_join.h"
43 #include "plugin/lundgren/join_strategies/bloom_join/bloom_join.h"
44 #include "plugin/lundgren/join_strategies/sort_merge/sort_merge.h"
45 #include "plugin/lundgren/join_strategies/hash_redistribution.h"
46 #include "plugin/lundgren/helpers.h"
47

48 /* instrument the memory allocation */
49 #ifdef HAVE_PSI_INTERFACE
50 static PSI_memory_key key_memory_lundgren;
51

52 static PSI_memory_info all_rewrite_memory[] = {
53 {&key_memory_lundgren, "lundgren", 0, 0, PSI_DOCUMENT_ME}};
54

55 static int plugin_init(MYSQL_PLUGIN) {
56 const char *category = "sql";
57 int count;
58

59 count = static_cast<int>(array_elements(all_rewrite_memory));
60 mysql_memory_register(category, all_rewrite_memory, count);
61 return 0; /* success */
62 }
63 #else
64 #define plugin_init NULL
65 #define key_memory_lundgren PSI_NOT_INSTRUMENTED
66 #endif /* HAVE_PSI_INTERFACE */
67

68 static int lundgren_start(MYSQL_THD thd, mysql_event_class_t event_class,

85

69 const void *event) {
70 if (event_class == MYSQL_AUDIT_PARSE_CLASS) {
71 const struct mysql_event_parse *event_parse =
72 static_cast<const struct mysql_event_parse *>(event);
73 if (event_parse->event_subclass == MYSQL_AUDIT_PARSE_POSTPARSE) {
74

75

76 if (!accept_query(thd, event_parse->query.str)) {
77 return 0;
78 }
79

80 bool is_join = detect_join(event_parse->query.str);
81

82 L_Parser_info *parser_info = get_tables_from_parse_tree(thd);
83

84 Distributed_query* distributed_query;
85

86 if (is_join) {
87

88 L_parsed_comment_args parsed_args =
parse_query_comments(event_parse->query.str);↪→

89

90 if (parser_info != NULL && parser_info->tables.size() > 2) {
91 parser_info->tables.pop_back(); //hack
92 }
93

94 switch(parsed_args.join_strategy) {
95 case SEMI:
96 distributed_query = make_semi_join_distributed_query(parser_info,

parsed_args);↪→

97 break;
98 case BLOOM:
99 distributed_query = make_bloom_join_distributed_query(parser_info,

parsed_args);↪→

100 break;
101 case SORT_MERGE:
102 distributed_query =

execute_sort_merge_distributed_query(parser_info);↪→

103 break;
104 case HASH_REDIST:
105 distributed_query =

make_hash_redist_join_distributed_query(parser_info, parsed_args,
event_parse->query.str);

↪→

↪→

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 86

106 break;
107 case DATA_TO_QUERY:
108 default:
109 distributed_query = make_data_to_query_distributed_query(parser_info,

true);↪→

110 break;
111 }
112

113 } else {
114 distributed_query = make_data_to_query_distributed_query(parser_info,

false);↪→

115 }
116

117

118 if (distributed_query == NULL) {
119 return 0;
120 }
121

122 execute_distributed_query(distributed_query);
123

124 size_t query_length = distributed_query->rewritten_query.length();
125 char *rewritten_query = static_cast<char

*>(my_malloc(key_memory_lundgren, query_length+1, MYF(0)));↪→

126 memset(rewritten_query, 0, query_length+1);
127

128 strncpy(rewritten_query, distributed_query->rewritten_query.c_str(),
query_length);↪→

129

130 MYSQL_LEX_STRING new_query = {rewritten_query, query_length};
131

132 mysql_parser_parse(thd, new_query, false, NULL, NULL);
133

134 delete distributed_query;
135

136 *((int *)event_parse->flags) |=
137 (int)MYSQL_AUDIT_PARSE_REWRITE_PLUGIN_QUERY_REWRITTEN;
138 }
139 }
140

141 return 0;
142 }
143

144 /* Audit plugin descriptor */

87

145 static struct st_mysql_audit lundgren_descriptor = {
146 MYSQL_AUDIT_INTERFACE_VERSION, /* interface version */
147 NULL, /* release_thd() */
148 lundgren_start, /* event_notify() */
149 {
150 0,
151 0,
152 (unsigned long)MYSQL_AUDIT_PARSE_ALL,
153 } /* class mask */
154 };
155

156 /* Plugin descriptor */
157 mysql_declare_plugin(audit_log){
158 MYSQL_AUDIT_PLUGIN, /* plugin type */
159 &lundgren_descriptor, /* type specific descriptor */
160 "lundgren", /* plugin name */
161 "Kristian Andersen Hole & Haavard Ola Eggen", /* author */
162 "Distributed query plugin", /* description */
163 PLUGIN_LICENSE_GPL, /* license */
164 plugin_init, /* plugin initializer */
165 NULL, /* plugin check uninstall */
166 NULL, /* plugin deinitializer */
167 0x0002, /* version */
168 NULL, /* status variables */
169 NULL, /* system variables */
170 NULL, /* reserverd */
171 0 /* flags */
172 } mysql_declare_plugin_end;

lundgren/parse_tree_walker.h

1 #include <mysql/service_parser.h>
2 #include <string.h>
3 #include <algorithm>
4 #include <iostream>
5 #include "plugin/lundgren/constants.h"
6 #include "plugin/lundgren/distributed_query.h"
7 #include "plugin/lundgren/partitions/node.h"
8 #include "plugin/lundgren/partitions/partition.h"
9 #include "sql/item.h"
10 #include "sql/table.h"
11

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 88

12 #ifndef LUNDGREN_DQR
13 #define LUNDGREN_DQR
14

15 struct L_Item {
16 std::string sql;
17 Item::Type type;
18 std::string alias;
19 };
20

21 int catch_item(MYSQL_ITEM item, unsigned char *arg) {
22 std::vector<L_Item> *fields = (std::vector<L_Item> *)arg;
23

24 if (item != NULL) {
25 String s;
26 item->print(&s, QT_ORDINARY);
27

28 std::string item_sql = std::string(s.ptr());
29 // hack
30 item_sql.erase(std::remove(item_sql.begin(), item_sql.end(), '`'),
31 item_sql.end());
32 item_sql.erase(std::remove(item_sql.begin(), item_sql.end(), '('),
33 item_sql.end());
34 item_sql.erase(std::remove(item_sql.begin(), item_sql.end(), ')'),
35 item_sql.end());
36

37 L_Item fi = {item_sql, item->type()};
38

39 // There is an alias provided
40 if (!item->item_name.is_autogenerated()) {
41

42 char *alias_buffer = new char[item->item_name.length()];
43 item->item_name.strcpy(alias_buffer);
44 fi.alias = std::string(alias_buffer);
45 delete alias_buffer;
46 }
47

48 fields->push_back(fi);
49 }
50

51 return 0;
52 }
53

54 int catch_table(TABLE_LIST *tl, unsigned char *arg) {

89

55

56 std::vector<L_Table> *tables = (std::vector<L_Table> *)arg;
57

58 if (tl != NULL) {
59 L_Table t = {std::string(tl->table_name)};
60 tables->push_back(t);
61 return 0;
62 }
63 return 1;
64 }
65

66 static void place_projection_in_table(L_Item field_item,
67 std::vector<L_Table> *tables,
68 bool where_transitive_projection) {
69

70 std::string projection = field_item.sql;
71

72 std::string field =
73 projection.substr(projection.find(".") + 1, projection.length());
74 for (auto &table : *tables) {
75 if (table.name == projection.substr(0, projection.find("."))) {
76 if (where_transitive_projection) {
77

78 // only add as where transitive if not in regular projection set
79 if (std::find(table.projections.begin(), table.projections.end(),

field) == table.projections.end()) {↪→

80 table.where_transitive_projections.push_back(field);
81 }
82 table.join_columns.push_back(field);
83 } else {
84 table.projections.push_back(field);
85 table.aliases.push_back(field_item.alias);
86 }
87 break;
88 }
89 }
90 }
91

92 static L_Parser_info *get_tables_from_parse_tree(MYSQL_THD thd) {
93

94 /*
95 * Walk parse tree
96 */

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 90

97

98 std::vector<L_Item> fields = std::vector<L_Item>();
99 mysql_parser_visit_tree(thd, catch_item, (unsigned char *)&fields);
100

101 std::vector<L_Table> tables = std::vector<L_Table>();
102

103 mysql_parser_visit_tables(thd, catch_table, (unsigned char *)&tables);
104

105 if (tables.size() == 0) {
106 return NULL;
107 }
108

109 std::string where_clause = "";
110 bool passed_where_clause = false;
111

112 std::vector<L_Item>::iterator f = fields.begin();
113

114 switch (f->type) {
115 case Item::FIELD_ITEM:
116

117 while (f != fields.end()) {
118 if (f->sql.find("=") != std::string::npos) {
119 where_clause += f->sql;
120 passed_where_clause = true;
121

122 f++;
123 continue;
124 }
125 if (f->type != Item::FIELD_ITEM) {
126 f++;
127 continue;
128 }
129

130 place_projection_in_table(*f, &tables, passed_where_clause);
131 f++;
132 }
133 break;
134 default:
135 break;
136 }
137

138 L_Parser_info *parser_info = new L_Parser_info();
139 parser_info->tables = tables;

91

140

141 if (where_clause.length() > 0) {
142

143 std::string clean_where_clause = tables[0].name + "." +
tables[0].join_columns[0] + " = " + tables[1].name + "." +
tables[1].join_columns[0];

↪→

↪→

144

145 parser_info->where_clause = clean_where_clause;
146 }
147

148 return parser_info;
149 }
150

151 #endif // LUNDGREN_DQR

lundgren/distributed_query.h

1 #include <string.h>
2 #include "plugin/lundgren/partitions/partition.h"
3 #include "plugin/lundgren/partitions/node.h"
4

5 #ifndef LUNDGREN_DISTRIBUTED_QUERY
6 #define LUNDGREN_DISTRIBUTED_QUERY
7

8 struct L_Table {
9 std::string name;
10 std::string interim_name;
11 std::vector<std::string> projections;
12 std::vector<std::string> where_transitive_projections;
13 std::vector<std::string> join_columns;
14 std::vector<std::string> aliases;
15 };
16

17

18 struct L_Parser_info {
19 std::vector<L_Table> tables;
20 std::string where_clause;
21 };
22

23 //------------------------
24

25 struct Interim_target {

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 92

26 std::string interim_table_name;
27 Node node;
28 std::string index_name;
29 //bool is_temp;
30 };
31

32 struct Partition_query {
33 std::string sql_statement;
34 Node node;
35 Interim_target interim_target;
36 };
37

38 struct Stage {
39 std::vector<Partition_query> partition_queries;
40 };
41

42 struct Distributed_query {
43 std::string rewritten_query;
44 std::vector<Stage> stages;
45 };
46

47 #endif // LUNDGREN_DISTRIBUTED_QUERY

lundgren/distributed_query_manager.h

1 #include <mysqlx/xdevapi.h>
2 #include <string.h>
3 #include <thread>
4 #include "plugin/lundgren/internal_query/internal_query_session.h"
5 #include "plugin/lundgren/distributed_query.h"
6 #include "plugin/lundgren/constants.h"
7

8 #ifndef LUNDGREN_DQM
9 #define LUNDGREN_DQM
10

11 std::string get_column_length(unsigned long length);
12 std::string generate_table_schema(mysqlx::SqlResult *res);
13 int connect_node(std::string node, Partition_query *pq);
14 std::string generate_connection_string(Node node);
15 void execute_distributed_query(Distributed_query* distributed_query);
16

17 std::string get_column_length(unsigned long length) {

93

18 return std::to_string(length/4);
19 }
20

21 std::string generate_table_schema(mysqlx::SqlResult *res) {
22 std::string return_string = "(";
23 for (uint i = 0; i < res->getColumnCount(); i++) {
24 return_string += res->getColumn(i).getColumnLabel();
25 return_string += " ";
26 switch (res->getColumn(i).getType()) {
27 case mysqlx::Type::BIGINT :
28 return_string += (res->getColumn(i).isNumberSigned()) ? "BIGINT" :

"BIGINT UNSIGNED"; break;↪→

29 case mysqlx::Type::INT :
30 return_string += (res->getColumn(i).isNumberSigned()) ? "INT" : "INT

UNSIGNED"; break;↪→

31 case mysqlx::Type::DECIMAL :
32 return_string += (res->getColumn(i).isNumberSigned()) ? "DECIMAL" :

"DECIMAL UNSIGNED"; break;↪→

33 case mysqlx::Type::DOUBLE :
34 return_string += (res->getColumn(i).isNumberSigned()) ? "DOUBLE" :

"DOUBLE UNSIGNED"; break;↪→

35 case mysqlx::Type::STRING :
36 return_string += "VARCHAR(" +

get_column_length(res->getColumn(i).getLength()) + ")"; break;↪→

37 default: break;
38 }
39 return_string += ",";
40 }
41 return_string.pop_back();
42 return return_string + ")";
43 }
44

45 int connect_node(std::string node, Partition_query *pq) {
46 mysqlx::Session s(node);
47 mysqlx::SqlResult res = s.sql(pq->sql_statement).execute();
48

49 if (res.hasData()) {
50 std::string table_schema = generate_table_schema(&res);
51

52 if (pq->interim_target.index_name.length() > 0) {
53 table_schema.pop_back();
54 table_schema += ", INDEX (" + pq->interim_target.index_name + "))";
55 }

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 94

56

57 mysqlx::Session
interim_session(generate_connection_string(pq->interim_target.node));↪→

58

59 std::string create_table_query = "CREATE TABLE IF NOT EXISTS " +
pq->interim_target.interim_table_name + " " + table_schema + " " +
INTERIM_TABLE_ENGINE ";";

↪→

↪→

60 interim_session.sql(create_table_query).execute();
61

62 mysqlx::Schema schema = interim_session.getSchema(pq->node.database);
63 mysqlx::Table table =

schema.getTable(pq->interim_target.interim_table_name);↪→

64

65 mysqlx::Row row;
66 while((row = res.fetchOne())) {
67 auto insert = table.insert();
68 insert.values(row);
69 int n = BATCH_SIZE - 1;
70 while(n-- && (row = res.fetchOne())){
71 insert.values(row);
72 }
73 insert.execute();
74 }
75

76 interim_session.close();
77 }
78 s.close();
79 return 0;
80 }
81

82 std::string generate_connection_string(Node node) {
83 return (std::string("mysqlx://")
84 + node.user + "@"
85 + node.host
86 + ":"
87 + std::to_string(node.port)
88 + "/" + node.database);
89 }
90

91 void execute_distributed_query(Distributed_query* distributed_query) {
92

93 for (auto &stage : distributed_query->stages) {
94

95

95 std::vector<Partition_query> partition_queries = stage.partition_queries;
96 const int num_thd = partition_queries.size();
97

98 std::thread *nodes_connection = new std::thread[num_thd];
99 for (int i = 0; i < num_thd; i++) {
100 std::string node = generate_connection_string(partition_queries[i].node);
101 nodes_connection[i] = std::thread(connect_node, node,

&(partition_queries[i]));↪→

102 }
103

104 for (int i = 0; i < num_thd; i++) {
105 nodes_connection[i].join();
106 }
107 delete [] nodes_connection;
108 }
109 }
110

111 #endif // LUNDGREN_DQM

lundgren/constants.h

1 #ifndef LUNDGREN_CONSTANTS
2 #define LUNDGREN_CONSTANTS
3

4 #define INTERIM_TABLE_ENGINE "ENGINE = MEMORY"
5

6 #define PLUGIN_FLAG "distributed"
7

8 #define BATCH_SIZE 100000
9 #define BLOOM_SLAVE_BATCH_SIZE 100000
10

11 // SEMI (& bloom)
12 #define IGNORE_TABLE_PARTITIONS_FLAG "ignore_table_partitions"
13

14 // BLOOM JOIN
15

16 #define BLOOM_SLAVE_FLAG "bloom_slave"
17 #define BLOOM_FILTER_FLAG "bloom_filter"
18 #define BLOOM_FILTER_PARAMETER_COUNT_FLAG "filter_parameter_count"
19 #define BLOOM_FILTERED_INTERIM_NAME_FLAG "filtered_interim_name"
20 #define BLOOM_FILTER_REMOTE_TABLE_FLAG "remote_table_name"
21 #define BLOOM_FILTER_REMOTE_JOIN_COLUMN_FLAG "remote_join_column"

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 96

22 #define BLOOM_FILTER_MASTER_ID_FLAG "master_id"
23

24 // HASH REDISTRIBUTION
25 #define HASH_REDIST_SLAVE_FLAG "hash_redist_slave"
26

27 // SORT MERGE
28 #define SORT_MERGE_BATCH_SIZE 100000
29

30

31 #endif // LUNDGREN_CONSTANTS

lundgren/join_strategies/data_to_query.h

1 #include <string.h>
2 #include "plugin/lundgren/distributed_query.h"
3 #include "plugin/lundgren/partitions/partition.h"
4 #include "plugin/lundgren/helpers.h"
5 #include "plugin/lundgren/join_strategies/common.h"
6

7 #ifndef LUNDGREN_DATA_TO_QUERY
8 #define LUNDGREN_DATA_TO_QUERY
9

10

11 // Pure Distributed_query strategy, can be fed into DQM
12

13 static Distributed_query *make_data_to_query_distributed_query(L_Parser_info
*parser_info, bool is_join) {↪→

14

15 std::vector<L_Table> tables = parser_info->tables;
16 std::string where_clause = parser_info->where_clause;
17

18

19 std::vector<Partition_query> partition_queries;
20

21 for (auto &table : tables) {
22

23 std::vector<Partition> *partitions =
24 get_partitions_by_table_name(table.name);
25

26 if (partitions == NULL) {
27 return NULL;
28 }

97

29

30 std::string partition_query_string = "SELECT ";
31

32 partition_query_string +=
generate_projections_string_for_partition_query(&table);↪→

33

34 std::string from_table = " FROM " + std::string(table.name);
35 table.interim_name = generate_interim_name();
36

37 partition_query_string += from_table;
38

39 if (!is_join && where_clause.length() > 0)
40 partition_query_string += " WHERE " + where_clause;
41

42 for (std::vector<Partition>::iterator p = partitions->begin();
43 p != partitions->end(); ++p) {
44

45 Interim_target interim_target;
46

47 if (is_join) {
48 interim_target = {table.interim_name, SelfNode::getNode(),

table.join_columns[0]};↪→

49

50 } else {
51 interim_target = {table.interim_name, SelfNode::getNode()};
52 }
53

54

55 Partition_query pq = {partition_query_string, p->node, interim_target};
56 partition_queries.push_back(pq);
57 }
58

59 delete partitions;
60 }
61

62 /*
63 * Generate final rewritten query
64 */
65

66 std::string final_query_string;
67

68 if (is_join) {
69

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 98

70 final_query_string = generate_final_join_query_string(tables,
where_clause);↪→

71

72 } else {
73

74 final_query_string = "SELECT ";
75

76 L_Table first_table = tables[0];
77 std::vector<std::string>::iterator p = first_table.projections.begin();
78

79 while (p != first_table.projections.end()) {
80 final_query_string += first_table.interim_name + "." + *p;
81 ++p;
82 if (p != first_table.projections.end()) final_query_string += ", ";
83 }
84 final_query_string += " FROM " + first_table.interim_name;
85 }
86

87 // Construct distributed query object
88 Distributed_query *dq = new Distributed_query();
89

90 Stage stage = {partition_queries};
91 dq->stages.push_back(stage);
92 dq->rewritten_query = final_query_string;
93

94 return dq;
95 }
96

97 #endif // LUNDGREN_DATA_TO_QUERY

lundgren/join_strategies/semi_join.h

1 #include <string.h>
2 #include "plugin/lundgren/distributed_query.h"
3 #include "plugin/lundgren/helpers.h"
4 #include "plugin/lundgren/partitions/partition.h"
5 #include "plugin/lundgren/join_strategies/common.h"
6 #include "plugin/lundgren/constants.h"
7

8 #ifndef LUNDGREN_SEMI_JOIN
9 #define LUNDGREN_SEMI_JOIN
10

99

11 // Semi join
12

13 static std::string semi_join_generate_final_join_query_string(L_Table
*stationary_table, L_Table *remote_table, std::string join_on);↪→

14

15 // n = 1
16 static Distributed_query

*make_one_sided_semi_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* stationary_table, L_Table* remote_table,
std::vector<Partition>* remote_partitions) {

↪→

↪→

↪→

17

18 //std::vector<L_Table> *tables = &(parser_info->tables);
19 std::string where_clause = parser_info->where_clause;
20

21

22 std::vector<Stage> stages;
23

24 stationary_table->interim_name = generate_interim_name();
25 remote_table->interim_name = generate_interim_name();
26

27 // STAGE 1
28 Stage stage1;
29

30 std::string stationary_join_column = stationary_table->join_columns[0];
31 std::string remote_join_column = remote_table->join_columns[0];
32

33 std::string join_column_projection_query_string = "SELECT DISTINCT " +
stationary_join_column + " FROM " + stationary_table->name;↪→

34

35 // std::vector<Node> target_nodes;
36

37 for (auto &p : *remote_partitions) {
38 // target_nodes.push_back(p.node);
39 Interim_target interim_target = {stationary_table->interim_name, p.node,

stationary_join_column}; // index↪→

40 Partition_query pq = {join_column_projection_query_string,
SelfNode::getNode(), interim_target};↪→

41

42 stage1.partition_queries.push_back(pq);
43 }
44

45 stages.push_back(stage1);
46

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 100

47 // STAGE 2
48 Stage stage2;
49

50 std::string semi_join_query_string = "SELECT ";
51

52 semi_join_query_string +=
generate_projections_string_for_partition_query(remote_table);↪→

53

54 semi_join_query_string += " FROM " + remote_table->name +
55 " JOIN " + stationary_table->interim_name +
56 " ON " + stationary_table->interim_name + "." +

stationary_join_column +↪→

57 " = " + remote_table->name + "." +
remote_join_column;↪→

58

59 Interim_target stage2_interim_target = {remote_table->interim_name,
SelfNode::getNode(), remote_join_column}; // index↪→

60

61 for (auto &p : *remote_partitions) {
62 Partition_query pq = {semi_join_query_string, p.node,

stage2_interim_target};↪→

63 stage2.partition_queries.push_back(pq);
64 }
65

66 stages.push_back(stage2);
67

68 // Construct distributed query object
69 Distributed_query *dq = new

Distributed_query{semi_join_generate_final_join_query_string(stationary_table,
remote_table, where_clause), stages};

↪→

↪→

70

71 delete remote_partitions;
72

73 return dq;
74

75 // TODO: remember delete remote_partitions
76 }
77

78 // n > 1
79 static Distributed_query

*make_recursive_semi_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* remote_table, std::vector<Partition>
*remote_partitions) {

↪→

↪→

↪→

101

80

81 std::vector<Stage> stages;
82

83 Stage stage1;
84

85 std::string join_union_interim_table_name = generate_interim_name();
86

87 //Distributed Partition queries
88

89 std::string recursive_distributed_join_query_string = "/*" PLUGIN_FLAG
"<join_strategy=semi," IGNORE_TABLE_PARTITIONS_FLAG "=";↪→

90 recursive_distributed_join_query_string += remote_table->name + ">*/";
91

92 recursive_distributed_join_query_string +=
generate_join_query_string(parser_info->tables,
parser_info->where_clause, false);

↪→

↪→

93

94 Interim_target interim_target = {join_union_interim_table_name ,
{SelfNode::getNode()}};↪→

95

96 for (auto &p : *remote_partitions) {
97 Partition_query pq = {recursive_distributed_join_query_string, p.node,

interim_target};↪→

98 stage1.partition_queries.push_back(pq);
99 }
100

101 stages.push_back(stage1);
102

103 // Final query
104

105 std::string final_query_string = "SELECT * FROM " +
join_union_interim_table_name;↪→

106

107 // Construct distributed query object
108 Distributed_query *dq = new Distributed_query{final_query_string, stages};
109

110 delete remote_partitions;
111

112 return dq;
113 }
114

115 static bool has_ignore_partitions_arg_for_table(L_Table table,
L_parsed_comment_args parsed_args) {↪→

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 102

116 return parsed_args.comment_args_lookup_table[IGNORE_TABLE_PARTITIONS_FLAG] ==
table.name;↪→

117 }
118

119

120 static Distributed_query *make_semi_join_distributed_query(L_Parser_info
*parser_info, L_parsed_comment_args parsed_args) {↪→

121

122 // ---
123 std::vector<L_Table> *tables = &(parser_info->tables);
124 std::string where_clause = parser_info->where_clause;
125 // --
126

127 std::vector<Stage> stages;
128

129 L_Table* stationary_table = NULL;
130 L_Table* remote_table = NULL;
131 std::vector<Partition>* remote_partitions = NULL;
132 bool has_stationary_table = false;
133 unsigned int biggest_partition_count = 0;
134

135 for (auto &table : *tables) {
136

137 std::vector<Partition> *partitions =
138 get_partitions_by_table_name(table.name);
139

140 if (partitions == NULL) {
141 return NULL;
142 }
143

144 // Choose table with one partition, or ignore flag
145 if (!has_stationary_table && (partitions->size() == 1 ||

has_ignore_partitions_arg_for_table(table, parsed_args))) {↪→

146 has_stationary_table = true;
147 stationary_table = &table;
148 delete partitions;
149 }
150 else {
151 if (partitions->size() > biggest_partition_count ||

biggest_partition_count == 0) {↪→

152 // Choose the most partitioned table, and its partitions
153 remote_partitions = partitions;
154 remote_table = &table;

103

155 biggest_partition_count = partitions->size();
156 }
157 }
158 }
159

160 /* static Distributed_query
*make_one_sided_semi_join_distributed_query(L_Parser_info *parser_info,
L_Table* stationary_table, L_Table* remote_table, std::vector<Partition>*
remote_partitions) { */

↪→

↪→

↪→

161 if (has_stationary_table) {
162 // n=1
163 return make_one_sided_semi_join_distributed_query(parser_info,

stationary_table, remote_table, remote_partitions);↪→

164

165 }
166 else {
167 // n=2
168 return make_recursive_semi_join_distributed_query(parser_info,

remote_table, remote_partitions);↪→

169 }
170 }
171

172 static std::string semi_join_generate_final_join_query_string(L_Table
*stationary_table, L_Table *remote_table, std::string join_on) {↪→

173

174 L_Table stat_table = *stationary_table;
175 L_Table rem_table = *remote_table;
176

177 std::string final_query_string = "SELECT ";
178

179 std::vector<std::string>::iterator p = stat_table.projections.begin();
180 std::vector<std::string>::iterator a = stat_table.aliases.begin();
181

182 while (p != stat_table.projections.end()) {
183 final_query_string += stat_table.name + "." + *p;
184 final_query_string += a->length() > 0 ? " as " + *a: "";
185 ++p;
186 ++a;
187 if (p != stat_table.projections.end()) final_query_string += ", ";
188 }
189

190 final_query_string += ", ";
191

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 104

192 join_on.replace(join_on.find(rem_table.name), rem_table.name.length(),
rem_table.interim_name);↪→

193

194 p = rem_table.projections.begin();
195 a = rem_table.aliases.begin();
196

197 while (p != rem_table.projections.end()) {
198 final_query_string += rem_table.interim_name + "." + *p;
199 final_query_string += a->length() > 0 ? " as " + *a: "";
200 ++p;
201 ++a;
202 if (p != rem_table.projections.end()) final_query_string += ", ";
203 }
204

205 final_query_string += " FROM " + stat_table.name + " JOIN " +
206 rem_table.interim_name + " ON " + join_on;
207

208 return final_query_string;
209 }
210

211 #endif // LUNDGREN_SEMI_JOIN

lundgren/join_strategies/bloom_join/bloom_join.h

1 #include <string.h>
2 #include <tuple>
3 #include "plugin/lundgren/distributed_query.h"
4 #include "plugin/lundgren/helpers.h"
5 #include "plugin/lundgren/partitions/partition.h"
6 #include "plugin/lundgren/join_strategies/common.h"
7 #include "plugin/lundgren/join_strategies/semi_join.h"
8 #include "plugin/lundgren/constants.h"
9 #include "plugin/lundgren/join_strategies/bloom_join/bloom_join_executor.h"
10 #include "plugin/lundgren/join_strategies/bloom_join/bloom_slave.h"
11

12 #ifndef LUNDGREN_BLOOM_JOIN
13 #define LUNDGREN_BLOOM_JOIN
14

15

105

16 static Distributed_query
*make_one_sided_bloom_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* stationary_table, L_Table* remote_table,
std::vector<Partition>* remote_partitions);

↪→

↪→

↪→

17 static Distributed_query
*make_recursive_bloom_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* remote_table, std::vector<Partition>
*remote_partitions);

↪→

↪→

↪→

18 static bool is_bloom_slave(L_parsed_comment_args parsed_args);
19 static Distributed_query *make_bloom_join_distributed_query(L_Parser_info

*parser_info, L_parsed_comment_args parsed_args);↪→

20

21

22 // Bloom join
23

24 // n = 1
25 static Distributed_query

*make_one_sided_bloom_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* stationary_table, L_Table* remote_table,
std::vector<Partition>* remote_partitions) {

↪→

↪→

↪→

26

27 //std::vector<L_Table> *tables = &(parser_info->tables);
28 std::string where_clause = parser_info->where_clause;
29

30 std::vector<Stage> stages;
31

32

33 // std::string filtered_remote_interim_name = generate_interim_name();
34 remote_table->interim_name = generate_interim_name();
35

36 std::string stationary_join_column = stationary_table->join_columns[0];
37 std::string remote_join_column = remote_table->join_columns[0];
38

39

40 std::string join_column_projection_query = "SELECT DISTINCT " +
stationary_join_column + " FROM " + stationary_table->name;↪→

41

42 std::string bloom_filter_base64;
43 uint64 bf_inserted_count;
44

45 std::tie(bloom_filter_base64, bf_inserted_count) =
generate_bloom_filter_from_query(join_column_projection_query);↪→

46

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 106

47

48 // STAGE 2
49 Stage stage2;
50

51 std::string bloom_join_query_string = "/*" PLUGIN_FLAG
"<join_strategy=bloom,";↪→

52

53 bloom_join_query_string += BLOOM_SLAVE_FLAG "=true,";
54 bloom_join_query_string += BLOOM_FILTERED_INTERIM_NAME_FLAG "=" +

remote_table->interim_name + ",";↪→

55 bloom_join_query_string += BLOOM_FILTER_REMOTE_TABLE_FLAG "=" +
remote_table->name + ",";↪→

56 bloom_join_query_string += BLOOM_FILTER_REMOTE_JOIN_COLUMN_FLAG "=" +
remote_join_column + ",";↪→

57 bloom_join_query_string += BLOOM_FILTER_MASTER_ID_FLAG "=" +
std::to_string(SelfNode::getNode().id) + ",";↪→

58 bloom_join_query_string += BLOOM_FILTER_PARAMETER_COUNT_FLAG "=" +
std::to_string(bf_inserted_count) + ",";↪→

59 bloom_join_query_string += BLOOM_FILTER_FLAG "=" + bloom_filter_base64 +
">*/";↪→

60

61 bloom_join_query_string += "SELECT ";
62

63 std::vector<std::string>::iterator p = remote_table->projections.begin();
64

65 while (p != remote_table->projections.end()) {
66 bloom_join_query_string += remote_table->name + "." + *p;
67 ++p;
68 if (p != remote_table->projections.end()) bloom_join_query_string += ", ";
69 }
70 if (remote_table->where_transitive_projections.size() > 0)
71 bloom_join_query_string += ", ";
72 p = remote_table->where_transitive_projections.begin();
73 while (p != remote_table->where_transitive_projections.end()) {
74 bloom_join_query_string += remote_table->name + "." + *p;
75 ++p;
76 if (p != remote_table->where_transitive_projections.end())
77 bloom_join_query_string += ", ";
78 }
79

80 bloom_join_query_string += " FROM " + remote_table->name;
81

107

82 //Interim_target stage2_interim_target = {remote_table->interim_name,
SelfNode::getNode(), remote_join_column}; // index↪→

83

84 for (auto &p : *remote_partitions) {
85 Partition_query pq = {bloom_join_query_string, p.node}; //,

stage2_interim_target};↪→

86 stage2.partition_queries.push_back(pq);
87 }
88

89 stages.push_back(stage2);
90

91 // Construct distributed query object
92 Distributed_query *dq = new

Distributed_query{semi_join_generate_final_join_query_string(stationary_table,
remote_table, where_clause), stages};

↪→

↪→

93

94 delete remote_partitions;
95

96 return dq;
97

98 // TODO: remember delete remote_partitions
99 }
100

101 // n > 1
102 static Distributed_query

*make_recursive_bloom_join_distributed_query(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_Table* remote_table, std::vector<Partition>
*remote_partitions) {

↪→

↪→

↪→

103

104 std::vector<Stage> stages;
105

106 Stage stage1;
107

108 std::string join_union_interim_table_name = generate_interim_name();
109

110 //Distributed Partition queries
111 std::string recursive_distributed_join_query_string = "/*" PLUGIN_FLAG

"<join_strategy=bloom," IGNORE_TABLE_PARTITIONS_FLAG "=";↪→

112 recursive_distributed_join_query_string += remote_table->name + ">*/";
113

114 recursive_distributed_join_query_string +=
generate_join_query_string(parser_info->tables,
parser_info->where_clause, false);

↪→

↪→

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 108

115

116 Interim_target interim_target = {join_union_interim_table_name ,
SelfNode::getNode()};↪→

117

118 for (auto &p : *remote_partitions) {
119 Partition_query pq = {recursive_distributed_join_query_string, p.node,

interim_target};↪→

120 stage1.partition_queries.push_back(pq);
121 }
122

123 stages.push_back(stage1);
124

125 // Final query
126

127 std::string final_query_string = "SELECT * FROM " +
join_union_interim_table_name;↪→

128

129 // Construct distributed query object
130

131 Distributed_query *dq = new Distributed_query{final_query_string, stages};
132

133 delete remote_partitions;
134

135 return dq;
136 }
137

138 static bool is_bloom_slave(L_parsed_comment_args parsed_args) {
139 return parsed_args.comment_args_lookup_table[BLOOM_SLAVE_FLAG] == "true";
140 }
141

142

143 static Distributed_query *make_bloom_join_distributed_query(L_Parser_info
*parser_info, L_parsed_comment_args parsed_args) {↪→

144

145 if (!is_bloom_slave(parsed_args)) {
146

147 // ---
148 std::vector<L_Table> *tables = &(parser_info->tables);
149 std::string where_clause = parser_info->where_clause;
150 // --
151

152 std::vector<Stage> stages;
153

109

154 L_Table* stationary_table = NULL;
155 L_Table* remote_table = NULL;
156 std::vector<Partition>* remote_partitions = NULL;
157 bool has_stationary_table = false;
158 unsigned int biggest_partition_count = 0;
159

160 for (auto &table : *tables) {
161

162 std::vector<Partition> *partitions =
163 get_partitions_by_table_name(table.name);
164

165 if (partitions == NULL) {
166 return NULL;
167 }
168

169 // Choose table with one partition, or ignore flag
170 if (!has_stationary_table && (partitions->size() == 1 ||

has_ignore_partitions_arg_for_table(table, parsed_args))) {↪→

171 has_stationary_table = true;
172 stationary_table = &table;
173 delete partitions;
174 }
175 else {
176 if (partitions->size() > biggest_partition_count ||

biggest_partition_count == 0) {↪→

177 // Choose the most partitioned table, and its partitions
178 remote_partitions = partitions;
179 remote_table = &table;
180 biggest_partition_count = partitions->size();
181 }
182 }
183 }
184

185 if (has_stationary_table) {
186 // n=1
187 return make_one_sided_bloom_join_distributed_query(parser_info,

stationary_table, remote_table, remote_partitions);↪→

188

189 }
190 else {
191 // n=2
192 return make_recursive_bloom_join_distributed_query(parser_info,

remote_table, remote_partitions);↪→

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 110

193 }
194 }
195 else {
196 return bloom_slave_execute_strategy(parser_info, parsed_args);
197 }
198 }
199

200 #endif // LUNDGREN_BLOOM_JOIN

lundgren/join_strategies/bloom_join/bloom_join_executor.h

1 #include <tuple>
2 #include <mysqlx/xdevapi.h>
3 #include "plugin/lundgren/partitions/node.h"
4 #include "plugin/lundgren/distributed_query_manager.h"
5 #include "plugin/lundgren/join_strategies/bloom_join/bloom_filter.h"
6 #include "plugin/lundgren/join_strategies/bloom_join/bloom_filter_parameters.h"
7 #include "plugin/lundgren/join_strategies/bloom_join/filter_coding.h"
8

9 #ifndef LUNDGREN_BLOOM_EXECUTOR
10 #define LUNDGREN_BLOOM_EXECUTOR
11

12 std::tuple<std::string, uint64> generate_bloom_filter_from_query(std::string
query);↪→

13

14 std::tuple<std::string, uint64> generate_bloom_filter_from_query(std::string
query) {↪→

15

16

17 std::string con_string = generate_connection_string(SelfNode::getNode());
18

19 mysqlx::Session s(con_string);
20 mysqlx::SqlResult res = s.sql(query).execute();
21

22 const mysqlx::Columns *columns = &res.getColumns();
23 uint64 row_count = res.count();
24

25 //Instantiate Bloom Filter
26 bloom_filter filter(get_bloom_parameters(row_count));
27

28 // Insert into Bloom Filter
29 {

111

30 mysqlx::Row row;
31 while ((row = res.fetchOne())) {
32

33 switch ((*columns)[0].getType()) {
34 case mysqlx::Type::INT :
35 filter.insert(int(row[0]));
36 break;
37 case mysqlx::Type::DECIMAL :
38 filter.insert(double(row[0]));
39 break;
40 case mysqlx::Type::DOUBLE :
41 filter.insert(double(row[0]));
42 break;
43 case mysqlx::Type::STRING :
44 filter.insert(std::string(row[0]));
45 break;
46 default:
47 break;
48 }
49 }
50 }
51 s.close();
52

53 std::vector<unsigned char> bit_table_ = filter.bit_table_;
54

55 std::string ress = encode_bit_table(bit_table_);
56

57 return {ress, row_count};
58 }
59

60 #endif // LUNDGREN_BLOOM_EXECUTOR

lundgren/join_strategies/bloom_join/bloom_slave.h

1 #include <string.h>
2 #include "plugin/lundgren/distributed_query.h"
3 #include "plugin/lundgren/distributed_query_manager.h"
4 #include "plugin/lundgren/constants.h"
5 #include "plugin/lundgren/helpers.h"
6 #include "plugin/lundgren/join_strategies/bloom_join/bloom_filter.h"
7 #include "plugin/lundgren/join_strategies/bloom_join/bloom_filter_parameters.h"
8 #include "plugin/lundgren/join_strategies/bloom_join/filter_coding.h"

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 112

9

10 #ifndef LUNDGREN_BLOOM_SLAVE
11 #define LUNDGREN_BLOOM_SLAVE
12

13

14 std::string generate_filtered_insert_statement(mysqlx::SqlResult *res,
bloom_filter filter, std::string filter_column);↪→

15

16

17 bloom_filter parse_bloom_filter(L_parsed_comment_args parsed_args) {
18

19 std::string bloom_filter_base64 =
parsed_args.comment_args_lookup_table[BLOOM_FILTER_FLAG];↪→

20

21 std::vector<unsigned char> bit_table =
decode_bit_table(bloom_filter_base64);↪→

22

23 uint64 bf_inserted_count =
std::stoi(parsed_args.comment_args_lookup_table[BLOOM_FILTER_PARAMETER_COUNT_FLAG]);↪→

24

25 bloom_filter bf(get_bloom_parameters(bf_inserted_count));
26

27 bf.bit_table_ = bit_table;
28

29 return bf;
30 }
31

32

33 Distributed_query *bloom_slave_execute_strategy(L_Parser_info *parser_info
MY_ATTRIBUTE((unused)), L_parsed_comment_args parsed_args) {↪→

34

35 bloom_filter filter = parse_bloom_filter(parsed_args);
36

37 std::string filtered_interim_name =
parsed_args.comment_args_lookup_table[BLOOM_FILTERED_INTERIM_NAME_FLAG];↪→

38 std::string join_column =
parsed_args.comment_args_lookup_table[BLOOM_FILTER_REMOTE_JOIN_COLUMN_FLAG];↪→

39

40 std::string remote_table_name =
parsed_args.comment_args_lookup_table[BLOOM_FILTER_REMOTE_TABLE_FLAG];↪→

41

42 std::string master_node_id =
parsed_args.comment_args_lookup_table[BLOOM_FILTER_MASTER_ID_FLAG];↪→

113

43

44 std::string query_for_filtering = "SELECT ";
45

46 L_Table remote_table = parser_info->tables[0];
47 std::vector<std::string>::iterator p = remote_table.projections.begin();
48

49 while (p != remote_table.projections.end()) {
50 query_for_filtering += remote_table_name + "." + *p;
51 ++p;
52 if (p != remote_table.projections.end()) query_for_filtering += ", ";
53 }
54

55 query_for_filtering += " FROM " + remote_table_name;
56

57 Node master_node = getNodeById(master_node_id);
58

59 std::string con_string = generate_connection_string(master_node);
60

61 mysqlx::Session s(con_string);
62 mysqlx::SqlResult res = s.sql(query_for_filtering).execute();
63

64 std::string create_table_statement = "CREATE TABLE IF NOT EXISTS " +
filtered_interim_name + " ";↪→

65

66 std::string schema = generate_table_schema(&res);
67

68 schema.pop_back();
69 schema += ", INDEX (" + join_column + "))"; // index
70

71 create_table_statement += schema + " " + INTERIM_TABLE_ENGINE ";";
72

73 s.sql(create_table_statement).execute();
74

75 mysqlx::Schema sch = s.getSchema(SelfNode::getNode().database);
76 mysqlx::Table tbl = sch.getTable(filtered_interim_name);
77

78 mysqlx::Row row;
79 const mysqlx::Columns *columns = &res.getColumns();
80 uint num_columns = res.getColumnCount();
81

82 uint filter_column_index = 0;
83

84 for (uint i = 0; i < num_columns; i++) {

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 114

85 if (std::string((*columns)[i].getColumnLabel()) == join_column) {
86 filter_column_index = i;
87 break;
88 }
89 }
90

91 int n = BLOOM_SLAVE_BATCH_SIZE;
92 auto insert = tbl.insert();
93

94 while ((row = res.fetchOne())) {
95 switch ((*columns)[filter_column_index].getType()) {
96 case mysqlx::Type::INT:
97 if (!filter.contains(int(row[filter_column_index]))) continue;
98 break;
99 case mysqlx::Type::DECIMAL:
100 if (!filter.contains(double(row[filter_column_index]))) continue;
101 break;
102 case mysqlx::Type::DOUBLE:
103 if (!filter.contains(double(row[filter_column_index]))) continue;
104 break;
105 case mysqlx::Type::STRING:
106 if (!filter.contains(std::string(row[filter_column_index])))

continue;↪→

107 break;
108 default:
109 break;
110 }
111

112 insert.values(row);
113

114 if (n == 0) {
115 insert.execute();
116 insert = tbl.insert();
117 n = BLOOM_SLAVE_BATCH_SIZE;
118 } else {
119 n--;
120 }
121 }
122 if (n != BLOOM_SLAVE_BATCH_SIZE) {
123 // final batch
124 insert.execute();
125 }
126

115

127 s.close();
128

129 // rewrite to NO-OP
130 Distributed_query *dq = new Distributed_query{"DO 0;"};
131

132 return dq;
133 }
134

135

136 #endif // LUNDGREN_BLOOM_SLAVE

lundgren/join_strategies/bloom_join/filter_coding.h

1 #include "include/base64.h"
2

3 #ifndef LUNDGREN_FILTER_CODING
4 #define LUNDGREN_FILTER_CODING
5

6 std::string encode_bit_table(std::vector<unsigned char> bit_table);
7 std::vector<unsigned char> decode_bit_table(std::string base64);
8

9 std::string encode_bit_table(std::vector<unsigned char> bit_table) {
10 unsigned char* bit_array = bit_table.data();
11

12 uint64 size_of_bit_array = sizeof(unsigned char) * bit_table.size();
13 uint64 needed_length = base64_needed_encoded_length(size_of_bit_array);
14

15 char *base64_dst = new char[needed_length];
16

17 base64_encode(bit_array, size_of_bit_array, base64_dst);
18

19 std::string res(base64_dst, needed_length);
20

21 delete base64_dst;
22 return res;
23 }
24

25 std::vector<unsigned char> decode_bit_table(std::string base64) {
26

27 uint64 needed_length = base64_needed_decoded_length(base64.length());
28

29 unsigned char* bit_array = new unsigned char[needed_length];

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 116

30

31 base64_decode(base64.c_str(), base64.length(), bit_array, NULL,
MY_BASE64_DECODE_ALLOW_MULTIPLE_CHUNKS);↪→

32

33 std::vector<unsigned char> bit_table(bit_array, bit_array + needed_length);
34

35 delete bit_array;
36 return bit_table;
37 }
38

39

40 #endif // LUNDGREN_FILTER_CODING

lundgren/join_strategies/bloom_join/bloom_filter_parameters.h

1 #include "plugin/lundgren/join_strategies/bloom_join/bloom_filter.h"
2

3 #ifndef LUNDGREN_BLOOM_FILTER_PARAMETERS
4 #define LUNDGREN_BLOOM_FILTER_PARAMETERS
5

6 bloom_parameters get_bloom_parameters(uint64 expected_count);
7

8 bloom_parameters get_bloom_parameters(uint64 expected_count) {
9

10 bloom_parameters parameters;
11 parameters.projected_element_count = expected_count;
12 parameters.false_positive_probability = 0.0001; // 1 in 10000
13 parameters.random_seed = 0xA5A5A5A5;
14

15 if (!parameters) {
16 std::cout << "Error - Invalid set of bloom filter parameters!" <<

std::endl;↪→

17 return bloom_parameters();
18 }
19

20 parameters.compute_optimal_parameters();
21

22 return parameters;
23 }
24

25

26 #endif // LUNDGREN_BLOOM_FILTER_PARAMETERS

117

lundgren/join_strategies/hash_redistribution.h

1 #include "plugin/lundgren/distributed_query.h"
2 #include "plugin/lundgren/helpers.h"
3 #include "plugin/lundgren/partitions/partition.h"
4 #include "plugin/lundgren/distributed_query_manager.h"
5 #include "plugin/lundgren/partitions/node.h"
6 #include "plugin/lundgren/constants.h"
7 #include "plugin/lundgren/partitions/node.h"
8 #include "plugin/lundgren/join_strategies/common.h"
9

10 #ifndef LUNDGREN_HASH_REDIST_JOIN
11 #define LUNDGREN_HASH_REDIST_JOIN
12

13 static Distributed_query *make_hash_redist_join_distributed_query(L_Parser_info
*parser_info, L_parsed_comment_args parsed_args, const char
*original_query);

↪→

↪→

14 static bool is_hash_redist_slave(L_parsed_comment_args parsed_args);
15 Distributed_query *execute_hash_redist_slave(L_Parser_info *parser_info,

L_parsed_comment_args parsed_args);↪→

16

17 static bool is_hash_redist_slave(L_parsed_comment_args parsed_args) {
18 return parsed_args.comment_args_lookup_table[HASH_REDIST_SLAVE_FLAG] ==

"true";↪→

19 }
20

21 static Distributed_query *make_hash_redist_join_distributed_query(L_Parser_info
*parser_info, L_parsed_comment_args parsed_args, const char
*original_query) {

↪→

↪→

22

23 if (!is_hash_redist_slave(parsed_args)) {
24

25 std::vector<Stage> stages;
26

27 std::vector<L_Table> *tables = &(parser_info->tables);
28 std::map<std::string, std::string> interim_table_names; // Maps table

names to interim tabel names↪→

29 std::map<std::string, std::string> table_join_column; // Maps table
names to its join columns↪→

30 std::map<std::string, std::vector<std::string>> nodes_and_partitions;
// Maps node id to partitions the node contains↪→

31 std::map<std::string, Node> node_id_to_node_obj; // Maps node id to
actual node (a bit dumdum, should be refactored)↪→

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 118

32

33 for(auto &table : *tables) {
34 interim_table_names[table.name] = generate_interim_name();
35 table.interim_name = interim_table_names[table.name];
36 table_join_column[table.name] = table.join_columns[0];
37

38 /* Maps nodes with tables they hold and linking id to node objects
*/↪→

39 std::vector<Partition> *partitions =
get_partitions_by_table_name(table.name);↪→

40 for (auto &partition : *partitions) {
41

nodes_and_partitions[std::to_string(partition.node.id)].push_back(table.name);↪→

42 node_id_to_node_obj[std::to_string(partition.node.id)] =
partition.node;↪→

43 }
44 delete partitions;
45 }
46

47 Stage stage1;
48

49 for (auto node : nodes_and_partitions) {
50 std::string pq_sql_statement = "/*" PLUGIN_FLAG;
51 pq_sql_statement += "<join_strategy=hash_redist,";
52 pq_sql_statement += HASH_REDIST_SLAVE_FLAG "=true";
53 pq_sql_statement += ",tables=["; // Hack - Format:

"[table1:a6fbd:join-col|table2:bcf34:join-col]"↪→

54 for (auto table : node.second) { // Iterates partitions
55 pq_sql_statement += table + ':' + interim_table_names[table] +

':' + table_join_column[table] +'|';↪→

56 }
57 pq_sql_statement.pop_back(); // Delete last pipe
58 pq_sql_statement += "]>*/";
59 std::string original_query_stripped = std::string(original_query);
60 std::string comment_end = "*/";
61 pq_sql_statement +=

original_query_stripped.substr(original_query_stripped.find(comment_end)
+ std::string(comment_end).length());

↪→

↪→

62

stage1.partition_queries.push_back(Partition_query{pq_sql_statement,node_id_to_node_obj[node.first]});↪→

63 }
64

65 Stage stage2;

119

66

67 std::string result_interim_table = generate_interim_name();
68 Interim_target it = {result_interim_table, {SelfNode::getNode()}};
69 std::string pq_sql_statement =

generate_join_query_string(parser_info->tables,
parser_info->where_clause, true);

↪→

↪→

70 for (auto node : nodes_and_partitions) {
71

stage2.partition_queries.push_back(Partition_query{pq_sql_statement,
node_id_to_node_obj[node.first], it});

↪→

↪→

72 }
73

74 std::string final_query = "SELECT * FROM " + result_interim_table; //+
';';↪→

75 Distributed_query *dq = new Distributed_query{final_query,
{stage1,stage2}};↪→

76 return dq;
77 }
78 else
79 {
80 return execute_hash_redist_slave(parser_info, parsed_args);
81 }
82

83 }
84

85 Distributed_query *execute_hash_redist_slave(L_Parser_info *parser_info,
L_parsed_comment_args parsed_args) {↪→

86

87 Stage stage;
88

89 std::string local_tables = parsed_args.comment_args_lookup_table["tables"];
90 local_tables = string_remove_ends(local_tables);
91 std::vector<std::string> parsed_local_tables = split(local_tables, '|');
92 std::map<std::string, std::string> table_to_projection;
93 std::map<std::string, Node> nodes_involved;
94

95 for (auto &table : parser_info->tables) {
96 table_to_projection[table.name] =

generate_projections_string_for_partition_query(&table);↪→

97 std::vector<Partition> *partitions =
get_partitions_by_table_name(table.name);↪→

98 for (auto &partition : *partitions) {
99 nodes_involved[std::to_string(partition.node.id)] = partition.node;

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 120

100 }
101 delete partitions;
102 }
103

104

105 for (auto table : parsed_local_tables) {
106 std::string table_name = table.substr(0,table.find(':'));
107 std::string interim_table_name = table.substr(table.find(':')+1,

table.rfind(':')-table.find(':')-1);↪→

108 std::string table_join_column = table.substr(table.rfind(':')+1);
109

110 std::string pq_sql_statement = "SELECT " +
table_to_projection[table_name] + " FROM " + table_name +↪→

111 " WHERE conv(substr(MD5(" + table_join_column + "), 1, 6), 16,
10)%" + std::to_string(nodes_involved.size()) + '=';↪→

112

113 for (auto node : nodes_involved) {
114 Interim_target it = {interim_table_name, node.second,

table_join_column};↪→

115 Partition_query pq = {pq_sql_statement +
std::to_string(node.second.id), SelfNode::getNode(), it};↪→

116 stage.partition_queries.push_back(pq);
117 }
118 }
119

120 Distributed_query *dq = new Distributed_query{"DO 0;", {stage}};
121 return dq;
122 }
123

124 #endif // LUNDGREN_HASH_REDIST_JOIN

lundgren/join_strategies/sort_merge/sort_merge.h

1 #include <mysqlx/xdevapi.h>
2 #include "plugin/lundgren/distributed_query.h"
3 #include "plugin/lundgren/join_strategies/common.h"
4 #include "plugin/lundgren/helpers.h"
5 #include "plugin/lundgren/constants.h"
6 #include "plugin/lundgren/partitions/node.h"
7 #include "plugin/lundgren/join_strategies/sort_merge/k_way_merge_joiner.h"
8

9 #ifndef LUNDGREN_SORT_MERGE

121

10 #define LUNDGREN_SORT_MERGE
11

12 std::string generate_order_by_query(L_Table* table, std::string join_column);
13

14 std::string generate_joint_table_schema(mysqlx::SqlResult *lhs_res,
mysqlx::SqlResult *rhs_res);↪→

15 std::string generate_joint_insert_rows_statement(std::vector<mysqlx::Row>
lhs_rows, std::vector<mysqlx::Row> rhs_rows, mysqlx::SqlResult *lhs_res,
mysqlx::SqlResult *rhs_res);

↪→

↪→

16

17 std::string generate_projections_string_for_final_query(L_Table* table,
std::string interim_name);↪→

18

19

20 Distributed_query *execute_sort_merge_distributed_query(L_Parser_info
*parser_info) {↪→

21

22 std::string merge_joined_interim_name = generate_interim_name();
23

24 std::vector<L_Table> *tables = &(parser_info->tables);
25

26 L_Table lhs_table = tables->at(0);
27 L_Table rhs_table = tables->at(1);
28

29 std::vector<Partition>* lhs_partitions =
get_partitions_by_table_name(lhs_table.name);↪→

30 std::vector<Partition>* rhs_partitions =
get_partitions_by_table_name(rhs_table.name);↪→

31

32 std::string lhs_join_column = lhs_table.join_columns[0];
33 std::string rhs_join_column = rhs_table.join_columns[0];
34

35 std::string lhs_order_query = generate_order_by_query(&lhs_table,
lhs_join_column);↪→

36 std::string rhs_order_query = generate_order_by_query(&rhs_table,
rhs_join_column);↪→

37

38 std::vector<mysqlx::Session*> sessions;
39

40 std::vector<mysqlx::SqlResult*> lhs_streams;
41 mysqlx::SqlResult* lhs_res = new mysqlx::SqlResult[rhs_partitions->size()];
42 int z = 0;
43

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 122

44 for (auto &p : *lhs_partitions) {
45

46 std::string con_string = generate_connection_string(p.node);
47 mysqlx::Session* s = new mysqlx::Session(con_string);
48

49 lhs_res[z] = s->sql(lhs_order_query).execute();
50

51 lhs_streams.push_back(&lhs_res[z]);
52 sessions.push_back(s);
53 z++;
54 }
55

56 std::vector<mysqlx::SqlResult*> rhs_streams;
57 mysqlx::SqlResult* rhs_res = new mysqlx::SqlResult[rhs_partitions->size()];
58 z = 0;
59

60 for (auto &p : *rhs_partitions) {
61

62 std::string con_string = generate_connection_string(p.node);
63 mysqlx::Session* s = new mysqlx::Session(con_string);
64

65 rhs_res[z] = s->sql(rhs_order_query).execute();
66

67 rhs_streams.push_back(&rhs_res[z]);
68 sessions.push_back(s);
69 z++;
70 }
71

72 //---
73

74 // FIND LHS JOIN COLUMN INDEX
75 uint lhs_join_column_index = 0;
76 const mysqlx::Columns *lhs_columns = &lhs_streams.at(0)->getColumns();
77 uint lhs_num_columns = lhs_streams.at(0)->getColumnCount();
78

79 for (uint i = 0; i < lhs_num_columns; i++) {
80 if (std::string((*lhs_columns)[i].getColumnLabel()) == lhs_join_column)

{↪→

81 lhs_join_column_index = i;
82 break;
83 }
84 }
85

123

86 // FIND RHS JOIN COLUMN INDEX
87 uint rhs_join_column_index = 0;
88 const mysqlx::Columns *rhs_columns = &rhs_streams.at(0)->getColumns();
89 uint rhs_num_columns = rhs_streams.at(0)->getColumnCount();
90

91 for (uint i = 0; i < rhs_num_columns; i++) {
92 if (std::string((*rhs_columns)[i].getColumnLabel()) == rhs_join_column)

{↪→

93 rhs_join_column_index = i;
94 break;
95 }
96 }
97

98 //---
99

100 // Merging and inserting into interim
101 mysqlx::Session

interim_session(generate_connection_string(SelfNode::getNode()));↪→

102

103 std::string create_interim_table_sql = "CREATE TABLE IF NOT EXISTS " +
merge_joined_interim_name + " ";↪→

104 create_interim_table_sql += generate_joint_table_schema(lhs_streams.at(0),
rhs_streams.at(0));↪→

105

106 create_interim_table_sql += std::string(" ") + INTERIM_TABLE_ENGINE ";";
107

108 interim_session.sql(create_interim_table_sql).execute();
109

110 mysqlx::Schema schema =
interim_session.getSchema(SelfNode::getNode().database);↪→

111 mysqlx::Table table = schema.getTable(merge_joined_interim_name);
112

113 K_way_merge_joiner merge_joiner = K_way_merge_joiner(lhs_streams,
rhs_streams, lhs_join_column_index, rhs_join_column_index);↪→

114

115

116 std::string insert_into_interim_table_start = "INSERT INTO " +
merge_joined_interim_name + " VALUES ";↪→

117

118 auto insert = table.insert();
119

120 int batch_counter = SORT_MERGE_BATCH_SIZE;
121

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 124

122 bool cont = true;
123 while(cont) {
124

125 std::vector<mysqlx::Row>* lhs_matches;
126 std::vector<mysqlx::Row>* rhs_matches;
127 std::tie(lhs_matches, rhs_matches) = merge_joiner.fetchNextMatches();
128

129 if (lhs_matches->size() > 0 && rhs_matches->size() > 0) {
130

131 for (uint i = 0; i < lhs_matches->size(); ++i) {
132 for (uint z = 0; z < rhs_matches->size(); ++z) {
133

134 mysqlx::Row merged_row;
135

136 for (uint lhs_c = 0; lhs_c < lhs_num_columns; lhs_c++) {
137 merged_row.set(lhs_c, (*lhs_matches)[i][lhs_c]);
138 }
139 for (uint rhs_c = 0; rhs_c < rhs_num_columns; rhs_c++) {
140 merged_row.set(lhs_num_columns + rhs_c,

(*rhs_matches)[z][rhs_c]);↪→

141 }
142

143 insert.values(merged_row);
144 batch_counter--;
145

146 if (batch_counter <= 0) {
147 insert.execute();
148 insert = table.insert();
149 batch_counter = SORT_MERGE_BATCH_SIZE;
150 }
151 }
152 }
153

154 } else {
155 cont = false;
156 }
157 }
158

159 // insert rows that didnt fit into a batch
160 if (batch_counter != SORT_MERGE_BATCH_SIZE) {
161 insert.execute();
162 }
163

125

164 interim_session.close();
165

166 //--------------------------
167 // Cleanup
168 for (auto &s : sessions) {
169 s->close();
170 delete s;
171 }
172

173 delete[] lhs_res;
174 delete[] rhs_res;
175

176 //--------------------------
177

178 std::string final_query_string = "SELECT "
179 + generate_projections_string_for_final_query(&lhs_table,

merge_joined_interim_name)↪→

180 + ((lhs_table.projections.size() > 0 && rhs_table.projections.size() >
0) ? ", " : "")↪→

181 + generate_projections_string_for_final_query(&rhs_table,
merge_joined_interim_name)↪→

182 + " FROM " + merge_joined_interim_name;
183

184 Distributed_query *dq = new Distributed_query();
185 dq->rewritten_query = final_query_string;
186 return dq;
187 }
188

189

190 std::string generate_order_by_query(L_Table* table, std::string join_column) {
191

192 std::string order_query = "SELECT ";
193 order_query += generate_projections_string_for_partition_query(table);
194 order_query += " FROM " + table->name;
195 order_query += " ORDER BY " + table->name + "." + join_column + " ASC";
196 return order_query;
197 }
198

199 std::string write_data_type_column(const mysqlx::Column& col) {
200 std::string return_string = "";
201 return_string += col.getColumnLabel();
202 return_string += " ";
203 switch (col.getType()) {

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 126

204 case mysqlx::Type::BIGINT :
205 return_string += (col.isNumberSigned()) ? "BIGINT" : "BIGINT UNSIGNED";

break;↪→

206 case mysqlx::Type::INT :
207 return_string += (col.isNumberSigned()) ? "INT" : "INT UNSIGNED";

break;↪→

208 case mysqlx::Type::DECIMAL :
209 return_string += (col.isNumberSigned()) ? "DECIMAL" : "DECIMAL

UNSIGNED"; break;↪→

210 case mysqlx::Type::DOUBLE :
211 return_string += (col.isNumberSigned()) ? "DOUBLE" : "DOUBLE UNSIGNED";

break;↪→

212 case mysqlx::Type::STRING :
213 return_string += "VARCHAR(" + get_column_length(col.getLength()) + ")";

break;↪→

214 default: break;
215 }
216

217 return return_string;
218 }
219

220 std::string generate_joint_table_schema(mysqlx::SqlResult *lhs_res,
mysqlx::SqlResult *rhs_res) {↪→

221 std::string return_string = "(";
222 uint lhs_column_count = lhs_res->getColumnCount();
223 uint rhs_column_count = rhs_res->getColumnCount();
224

225 for (uint i = 0; i < lhs_column_count; i++) {
226 const mysqlx::Column& col = lhs_res->getColumn(i);
227 return_string += write_data_type_column(col);
228 return_string += ",";
229 }
230 if (rhs_column_count == 0 && !lhs_column_count == 0) {
231 return_string.pop_back();
232 }
233

234 for (uint i = 0; i < rhs_column_count; i++) {
235 const mysqlx::Column& col = rhs_res->getColumn(i);
236 return_string += write_data_type_column(col);
237 return_string += ",";
238 }
239

240 if (!rhs_column_count == 0) {

127

241 return_string.pop_back();
242 }
243 return return_string + ")";
244 }
245

246 std::string generate_projections_string_for_final_query(L_Table* table,
std::string interim_name) {↪→

247

248 std::string proj_string = "";
249

250 std::vector<std::string>::iterator p = table->projections.begin();
251

252 while (p != table->projections.end()) {
253 proj_string += interim_name + "." + *p;
254 ++p;
255 if (p != table->projections.end()) proj_string += ", ";
256 }
257

258 return proj_string;
259 }
260

261 #endif // LUNDGREN_SORT_MERGE

lundgren/join_strategies/sort_merge/k_way_merge_joiner.h

1 #include <mysqlx/xdevapi.h>
2 #include <tuple>
3 #include <algorithm>
4

5 #ifndef LUNDGREN_K_WAY
6 #define LUNDGREN_K_WAY
7

8

9 class K_way_node {
10 private:
11 mysqlx::SqlResult* stream;
12 mysqlx::Row current_row;
13

14 public:
15 K_way_node(mysqlx::SqlResult* s) {
16 stream = s;
17 current_row = stream->fetchOne();

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 128

18 }
19

20 mysqlx::Row& peek() {
21 return current_row;
22 }
23

24 bool is_empty() {
25 return !current_row.operator bool();
26 }
27

28 mysqlx::Row next() {
29 mysqlx::Row popped_row = current_row;
30 current_row = stream->fetchOne();
31 return popped_row;
32 }
33 };
34

35 class Bin_heap {
36

37 private:
38 int column_index;
39 std::vector<K_way_node> nodes;
40

41 private:
42 static int left(int i) {
43 return 2*i;
44 }
45

46 static int right(int i) {
47 return 2*i+1;
48 }
49

50 int at(int i) {
51 return (int) nodes[i - 1].peek()[column_index];
52 }
53

54 bool node_empty(int i) {
55 return nodes[i - 1].is_empty();
56 }
57

58 void swap(int t, int f) {
59 std::iter_swap(nodes.begin() + t-1, nodes.begin() + f-1);
60 }

129

61

62 void heapify() {
63 int heap_size = nodes.size();
64

65 for (int i = heap_size / 2; i > 0; --i) {
66 sift_down(i);
67 }
68 }
69

70 void sift_down(int i) {
71 int heap_size = nodes.size();
72 int l = left(i);
73 int r = right(i);
74

75 int smallest;
76

77 // Don't like the fact that empty nodes propogate all the way down..
but it only happens for the last call to sift_down ^--^↪→

78 if (l <= heap_size && (node_empty(i) || (!node_empty(l) && at(l) <
at(i)))) {↪→

79 smallest = l;
80 } else {
81 smallest = i;
82 }
83

84 if (r <= heap_size && (node_empty(smallest) || (!node_empty(r) && at(r)
< at(smallest)))) {↪→

85 smallest = r;
86 }
87

88 if (smallest != i) {
89 swap(i, smallest);
90 sift_down(smallest);
91 }
92 }
93

94 public:
95 Bin_heap() {}
96 Bin_heap(std::vector<mysqlx::SqlResult*> streams, int c_index) {
97 column_index = c_index;
98 for (auto &s : streams) {
99 nodes.push_back(K_way_node(s));
100 }

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 130

101 heapify();
102 }
103

104 bool has_next() {
105 return !nodes[0].is_empty();
106 }
107

108 mysqlx::Row pop() {
109 mysqlx::Row tmp = nodes[0].next();
110 sift_down(1);
111 return tmp;
112 }
113

114 mysqlx::Row& peek() {
115 return nodes[0].peek();
116 }
117 };
118

119 class K_way_merge_joiner {
120

121 private:
122 Bin_heap lhs_heap;
123 Bin_heap rhs_heap;
124

125 std::vector<mysqlx::Row>* lhs_buffer;
126 std::vector<mysqlx::Row>* rhs_buffer;
127

128 int lhs_column_index;
129 int rhs_column_index;
130

131 public:
132 K_way_merge_joiner(std::vector<mysqlx::SqlResult*> lhs,

std::vector<mysqlx::SqlResult*> rhs, int lhs_column_index, int
rhs_column_index) {

↪→

↪→

133

134 lhs_heap = Bin_heap(lhs, lhs_column_index);
135 rhs_heap = Bin_heap(rhs, rhs_column_index);
136

137 this->lhs_column_index = lhs_column_index;
138 this->rhs_column_index = rhs_column_index;
139

140 lhs_buffer = new std::vector<mysqlx::Row>;
141 rhs_buffer = new std::vector<mysqlx::Row>;

131

142

143 lhs_buffer->reserve(600000);
144 rhs_buffer->reserve(600000);
145 }
146

147 ~K_way_merge_joiner() {
148 delete lhs_buffer;
149 delete rhs_buffer;
150 }
151

152 void buffer_next_value_candidates() {
153

154 while (lhs_heap.has_next() && rhs_heap.has_next() &&
(lhs_buffer->size() == 0 || rhs_buffer->size() == 0)) {↪→

155

156 int current_value;
157

158 // empty buffers
159 lhs_buffer->clear();
160 rhs_buffer->clear();
161

162 // Select current value
163 if (((int)lhs_heap.peek()[lhs_column_index]) >=

((int)rhs_heap.peek()[rhs_column_index])) {↪→

164

165 current_value = lhs_heap.peek()[lhs_column_index];
166

167 // skip ahead until we find rows that are equal or higher
168 while(rhs_heap.has_next() &&

((int)rhs_heap.peek()[rhs_column_index]) < current_value) {↪→

169 rhs_heap.pop();
170 }
171

172 } else {
173 current_value = rhs_heap.peek()[rhs_column_index];
174

175 // skip ahead until we find rows that are equal or higher
176 while(lhs_heap.has_next() &&

((int)lhs_heap.peek()[lhs_column_index]) < current_value) {↪→

177 lhs_heap.pop();
178 }
179 }
180

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 132

181 // Buffer all values that are equal to the current value
182 while (lhs_heap.has_next() &&

((int)lhs_heap.peek()[lhs_column_index]) == current_value) {↪→

183 lhs_buffer->emplace_back(lhs_heap.pop());
184 }
185

186 while (rhs_heap.has_next() &&
((int)rhs_heap.peek()[rhs_column_index]) == current_value) {↪→

187 rhs_buffer->emplace_back(rhs_heap.pop());
188 }
189 }
190 }
191

192 std::tuple<std::vector<mysqlx::Row>*, std::vector<mysqlx::Row>*>
fetchNextMatches() {↪→

193

194 // empty buffers
195 lhs_buffer->clear();
196 rhs_buffer->clear();
197

198 buffer_next_value_candidates();
199 return std::make_tuple(lhs_buffer, rhs_buffer);
200 }
201 };
202

203 #endif // LUNDGREN_K_WAY

lundgren/join_strategies/common.h

1 #include <string.h>
2 #include "plugin/lundgren/distributed_query.h"
3

4 #ifndef LUNDGREN_COMMON
5 #define LUNDGREN_COMMON
6

7 static std::string generate_join_query_string(std::vector<L_Table> tables,
std::string join_on, bool interim);↪→

8 static std::string generate_final_join_query_string(std::vector<L_Table>
tables, std::string join_on);↪→

9 std::string generate_projections_string_for_partition_query(L_Table* table);
10

133

11 static std::string generate_join_query_string(std::vector<L_Table> tables,
std::string join_on, bool interim) {↪→

12

13 std::string final_query_string = "SELECT ";
14

15 // iterate in reverse, because we get the tables in reverse order from mysql
16 for (auto it = tables.rbegin(); it != tables.rend();) {
17 L_Table table = *it;
18

19 // make final query join clause by replacing table names with interim
20 // names in where_clause Warning! this only replaces the first occurence!
21 join_on.replace(join_on.find(table.name), table.name.length(),
22 (interim ? table.interim_name : table.name));
23

24 std::vector<std::string>::iterator p = table.projections.begin();
25 std::vector<std::string>::iterator a = table.aliases.begin();
26

27 while (p != table.projections.end()) {
28 final_query_string += (interim ? table.interim_name : table.name) + "." +

*p;↪→

29 final_query_string += a->length() > 0 ? " as " + *a: "";
30 ++p;
31 ++a;
32 if (p != table.projections.end()) final_query_string += ", ";
33 }
34

35 if (++it != tables.rend()) final_query_string += ", ";
36 }
37

38 final_query_string += " FROM " + (interim ? tables[1].interim_name :
tables[1].name) + " JOIN " +↪→

39 (interim ? tables[0].interim_name : tables[0].name) + "
ON " + join_on;↪→

40

41

42 return final_query_string;
43 }
44

45 static std::string generate_final_join_query_string(std::vector<L_Table>
tables, std::string join_on) {↪→

46 return generate_join_query_string(tables, join_on, true);
47 }
48

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 134

49 std::string generate_projections_string_for_partition_query(L_Table* table) {
50

51 std::string proj_string = "";
52

53 std::vector<std::string>::iterator p = table->projections.begin();
54

55 while (p != table->projections.end()) {
56 proj_string += table->name + "." + *p;
57 ++p;
58 if (p != table->projections.end()) proj_string += ", ";
59 }
60 if (table->where_transitive_projections.size() > 0)
61 proj_string += ", ";
62 p = table->where_transitive_projections.begin();
63 while (p != table->where_transitive_projections.end()) {
64 proj_string += table->name + "." + *p;
65 ++p;
66 if (p != table->where_transitive_projections.end())
67 proj_string += ", ";
68 }
69

70 return proj_string;
71 }
72

73 #endif // LUNDGREN_COMMON

lundgren/partitions/partition.h

1 #include <string.h>
2 #include "plugin/lundgren/partitions/node.h"
3 #include "plugin/lundgren/partitions/shard_key.h"
4 #include "plugin/lundgren/internal_query/internal_query_session.h"
5 #include "plugin/lundgren/internal_query/sql_resultset.h"
6 #include "plugin/lundgren/constants.h"
7

8 #ifndef LUNDGREN_PARTITION
9 #define LUNDGREN_PARTITION
10

11 struct Partition
12 {
13 std::string table_name;
14 Node node;

135

15 Shard_key shard_key;
16 Partition(char *table_name_in, Node node_in, Shard_key shard_key_in) :

node(node_in), shard_key(shard_key_in) {↪→

17 table_name = std::string(table_name_in);
18 }
19 };
20

21 static std::vector<Partition>* get_partitions_by_table_name(std::string
table_name MY_ATTRIBUTE((unused))) {↪→

22 Internal_query_session *session = new Internal_query_session();
23

24 session->execute_resultless_query("USE test");
25

26 std::string partition_query =
27 "SELECT * FROM lundgren_partition p\n"
28 "INNER JOIN lundgren_node n on p.nodeId = n.id\n"
29 "INNER JOIN lundgren_shard_key s on p.shardKeyId = s.id\n"
30 "WHERE p.table_name = \"" + table_name + "\";";
31

32 Sql_resultset *result = session->execute_query(partition_query.c_str());
33

34 std::vector<Partition> *partitions = new std::vector<Partition>;
35

36 if (result->get_rows() == 0) {
37 return NULL;
38 }
39

40 do {
41

42 Node n = Node(result->getString(5), (uint)result->getLong(6),
result->getString(7), result->getString(8), result->getLong(4));↪→

43 Shard_key s = Shard_key(result->getString(11),
(uint)result->getLong(12), (uint)result->getLong(13));↪→

44

45 Partition p = Partition(result->getString(3), n, s);
46

47 partitions->push_back(p);
48 } while (result->next());
49

50 delete session;
51

52 return partitions;
53 }

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 136

54

55 #endif // LUNDGREN_PARTITION
56

57 /*
58 CREATE TABLE lundgren_node (
59 id INT UNSIGNED PRIMARY KEY,
60 host_l VARCHAR(80) NOT NULL,
61 port_l INT UNSIGNED,
62 database_l VARCHAR(80) NOT NULL,
63 username_l VARCHAR(50),
64 password_l VARCHAR(50)
65);
66

67 CREATE TABLE lundgren_shard_key (
68 id INT UNSIGNED PRIMARY KEY,
69 column_name VARCHAR(80) NOT NULL,
70 range_start INT UNSIGNED,
71 range_end INT UNSIGNED
72);
73

74 CREATE TABLE lundgren_partition (
75 id INT UNSIGNED PRIMARY KEY,
76 nodeId INT UNSIGNED,
77 shardKeyId INT UNSIGNED,
78 table_name VARCHAR(80) NOT NULL,
79 FOREIGN KEY (nodeId) REFERENCES lundgren_node(id),
80 FOREIGN KEY (shardKeyId) REFERENCES lundgren_shard_key(id)
81);
82

83 INSERT INTO lundgren_node VALUES (1, "127.0.0.1", 13000, "test", "root", NULL);
84 INSERT INTO lundgren_shard_key VALUES (1, "height", 0, 165);
85 INSERT INTO lundgren_partition VALUES (1, 1, 1, "Person");
86

87 SELECT * FROM lundgren_partition p
88 INNER JOIN lundgren_node n on p.nodeId = n.id
89 INNER JOIN lundgren_shard_key s on p.shardKeyId = s.id;
90 */

lundgren/partitions/node.h

1 #include <string.h>
2 #include "plugin/lundgren/internal_query/internal_query_session.h"

137

3 #include "plugin/lundgren/internal_query/sql_resultset.h"
4

5 #ifndef LUNDGREN_NODE
6 #define LUNDGREN_NODE
7

8 struct Node {
9 std::string host;
10 uint port;
11 std::string database;
12 std::string user;
13 bool is_self = false;
14 int id;
15

16 Node(bool is_self_in) : is_self(is_self_in) {
17 host = "127.0.0.1";
18 port = 13010;
19 database = "test";
20 user = "root";
21 id = 0;
22 }
23

24 Node(char *host_in, uint port_in, char *database_in, char *user_in, int
id_in)↪→

25 : port(port_in), id(id_in) {
26 host = std::string(host_in);
27 database = std::string(database_in);
28 user = std::string(user_in);
29 }
30

31 Node() {}
32 };
33

34 Node getNodeById(std::string node_id) {
35

36 Internal_query_session *session = new Internal_query_session();
37

38 session->execute_resultless_query("USE test");
39

40 std::string node_query = "SELECT * FROM lundgren_node WHERE lundgren_node.id
= " + node_id;↪→

41

42 Sql_resultset *result = session->execute_query(node_query.c_str());
43

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 138

44 if (result->get_rows() == 0) {
45 return NULL;
46 }
47

48 Node node;
49

50 do {
51 node = Node(result->getString(1), (uint)result->getLong(2),

result->getString(3), result->getString(4), result->getLong(0));↪→

52 } while (result->next());
53

54

55 delete session;
56

57 return node;
58 }
59

60 class SelfNode {
61 static SelfNode *instance;
62 Node internal_node = Node(true);
63

64 SelfNode(Node n) {
65 internal_node = n;
66 }
67

68 // SET @@global.node_id = 0|1|2|3...; in startup scripts
69

70 public:
71 static Node getNode() {
72 if (!instance) {
73 Internal_query_session *session = new Internal_query_session();
74

75 session->execute_resultless_query("USE test");
76

77 // sjekk id
78 std::string id_number_query = "SELECT node_id FROM

lundgren_self_node_id";↪→

79 Sql_resultset *result = session->execute_query(id_number_query.c_str());
80 // if (result->get_rows() == 0) {
81 // return Node(true);
82 // }
83 // sett portnummer
84 //uint port_number = (uint)result->getLong(0) + 10;

139

85 std::string node_query = "SELECT * FROM lundgren_node WHERE
lundgren_node.id = " + std::to_string(result->getLong(0));↪→

86 Sql_resultset *node_result = session->execute_query(node_query.c_str());
87 if (node_result->get_rows() == 0) {
88 return Node(true);
89 }
90 Node node;
91 do {
92 // node = Node(node_result->getString(1),

(uint)node_result->getLong(2), node_result->getString(3),
node_result->getString(4), node_result->getLong(0));

↪→

↪→

93 char* local = (char*)"localhost";
94 node = Node(local, (uint)node_result->getLong(2),

node_result->getString(3), node_result->getString(4),
node_result->getLong(0));

↪→

↪→

95 } while (node_result->next());
96

97 instance = new SelfNode(node);
98

99 delete session;
100 }
101 return instance->internal_node;
102 }
103 };
104

105 SelfNode *SelfNode::instance = 0;
106

107 #endif // LUNDGREN_NODE

lundgren/partitions/shard_key.h

1 #include <string.h>
2

3 #ifndef LUNDGREN_SHARD_KEY
4 #define LUNDGREN_SHARD_KEY
5

6 struct Shard_key
7 {
8 std::string column_name;
9 uint range_start;
10 uint range_end;
11

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 140

12 Shard_key(char * column_name_in, uint range_start_in, uint range_end_in)
:range_start(range_start_in), range_end(range_end_in) {↪→

13 column_name = std::string(column_name_in);
14 }
15 };
16

17 #endif // LUNDGREN_SHARD_KEY

lundgren/query_acceptance.h

1 #include <string.h>
2 #include <mysql/service_parser.h>
3 #include "plugin/lundgren/constants.h"
4

5 #ifndef LUNDGREN_QUERY_ACCEPTANCE
6 #define LUNDGREN_QUERY_ACCEPTANCE
7

8 static bool should_query_be_distributed(const char *query) {
9

10 const std::string plugin_flag(PLUGIN_FLAG);
11 const std::string query_string(query);
12 return (query_string.find(plugin_flag) != std::string::npos);
13 }
14

15 static bool accept_query(MYSQL_THD thd, const char *query) {
16

17 if (!should_query_be_distributed(query)) {
18 return false;
19 }
20

21 int type = mysql_parser_get_statement_type(thd);
22

23 return (type == STATEMENT_TYPE_SELECT);
24 }
25

26 static bool detect_join(const char *query) {
27 std::string join_keyword = "JOIN";
28 std::string join_keyword_lower = "join";
29

30 std::string query_str(query);
31

141

32 return (query_str.find(join_keyword) != std::string::npos ||
query_str.find(join_keyword_lower) != std::string::npos);↪→

33 }
34 #endif // LUNDGREN_QUERY_ACCEPTANCE

lundgren/helpers.h

1 #include <string.h>
2 #include <vector>
3 #include <sstream>
4 #include <iostream>
5 #include <boost/uuid/uuid.hpp> // uuid class
6 #include <boost/uuid/uuid_generators.hpp> // generators
7 #include <boost/uuid/uuid_io.hpp> // streaming operators etc.
8 #include <boost/algorithm/string.hpp>
9

10 #ifndef LUNDGREN_HELPERS
11 #define LUNDGREN_HELPERS
12

13 struct L_parsed_comment_args;
14 std::string generate_interim_name();
15 std::vector<std::string> split(std::string strToSplit, char delimeter);
16 L_parsed_comment_args parse_query_comments(const char *query);
17 std::string string_remove_ends(std::string input_string);
18

19 std::string generate_interim_name() {
20

21 boost::uuids::random_generator generator;
22 boost::uuids::uuid uuid1 = generator();
23 std::string uuid_string = boost::uuids::to_string(uuid1);
24

25 boost::erase_all(uuid_string, "-");
26

27 return "interim_" + uuid_string; // Must prefix with a letter as numbers are
not allowed.↪→

28 }
29

30 // Split string by delimiter:
https://thispointer.com/how-to-split-a-string-in-c/↪→

31 std::vector<std::string> split(std::string strToSplit, char delimeter)
32 {
33 std::stringstream ss(strToSplit);

APPENDIX A. LUNDGREN PLUGIN SOURCE CODE 142

34 std::string item;
35 std::vector<std::string> splittedStrings;
36 while (std::getline(ss, item, delimeter))
37 {
38 splittedStrings.push_back(item);
39 }
40 return splittedStrings;
41 }
42

43 enum JOIN_STRATEGY {DATA_TO_QUERY, SEMI, BLOOM, SORT_MERGE, HASH_REDIST};
44 const std::map<std::string, JOIN_STRATEGY> join_strategy_string_to_enum = {
45 {"data_to_query", DATA_TO_QUERY},
46 {"semi", SEMI},
47 {"bloom", BLOOM},
48 {"sort_merge", SORT_MERGE},
49 {"hash_redist", HASH_REDIST}
50 };
51

52 struct L_parsed_comment_args {
53 JOIN_STRATEGY join_strategy;
54 std::map<std::string, std::string> comment_args_lookup_table;
55 };
56

57 // Parses the parameters in the passed comment and creates a lookup table
58 L_parsed_comment_args parse_query_comments(const char *query) {
59 char delimiter;
60 std::string query_string = std::string(query);
61 int pos_start = query_string.find("<")+1;
62 int pos_end = query_string.find(">") - pos_start;
63 query_string = query_string.substr(pos_start, pos_end);
64

65 delimiter = ',';
66 std::vector<std::string> comment_parameters = split(query_string, delimiter);
67

68 delimiter = '=';
69 L_parsed_comment_args parsed_args;
70 int i;
71 for (i = 0; i < int(comment_parameters.size()); i++){
72 if (comment_parameters[i].find("join_strategy") != std::string::npos) {
73 int pos_delimiter = comment_parameters[i].find(delimiter);
74 std::string js = comment_parameters[i].substr(pos_delimiter+1);
75 parsed_args.join_strategy = join_strategy_string_to_enum.at(js);
76 break;

143

77 }
78 }
79 comment_parameters.erase(comment_parameters.begin() + i);
80

81 delimiter = '=';
82 std::map<std::string, std::string> comment_parameter_lookup_table;
83 for (auto const parameter : comment_parameters) {
84 int pos_delimiter = parameter.find(delimiter);
85 parsed_args.comment_args_lookup_table[parameter.substr(0,pos_delimiter)] =

parameter.substr(pos_delimiter+1);↪→

86

87 }
88

89 return parsed_args;
90 }
91

92 std::string string_remove_ends(std::string input_string) {
93 input_string.erase(input_string.begin());
94 input_string.pop_back();
95 return input_string;
96 }
97

98

99

100 #endif // LUNDGREN_HELPERS

Appendix B

Test system source code

test_system/run_tests_n_nodes.yml

1 ---
2

3 - hosts: lundgren_nodes{{num_nodes}}
4

5 environment:
6 PATH: "{{ ansible_env.PATH }}:/export/home/tmp/mysql-server/bld/bin"
7

8 ## HUSK Å SETTE --forks 16
9

10 tasks:
11 # START
12 - import_tasks: tasks/start_lundgren.yml
13

14 - name: Copy lundgren metadata sql-script
15 copy:
16 src: sql/partitionings/partition_{{ num_nodes }}.sql
17 dest: /export/home/tmp/partitions.sql
18

19 - name: Import lundgren metadata
20 mysql_db:
21 login_unix_socket:

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock↪→

22 login_user: "root"
23 login_password: ""
24 login_port: "13000"
25 state: import
26 name: all

144

145

27 target: /export/home/tmp/partitions.sql
28

29 # end START
30

31 # 2^14
32 - import_tasks: tasks/load_data.yml
33 vars:
34 num_nodes: "{{num_nodes | int}}"
35 size: 16384
36

37 - import_tasks: tasks/run_tests.yml
38 vars:
39 num_nodes: "{{num_nodes | int}}"
40 size: 16384
41

42 - import_tasks: tasks/delete_data.yml
43

44 # 2^15
45 - import_tasks: tasks/load_data.yml
46 vars:
47 num_nodes: "{{num_nodes | int}}"
48 size: 32768
49

50 - import_tasks: tasks/run_tests.yml
51 vars:
52 num_nodes: "{{num_nodes | int}}"
53 size: 32768
54

55 - import_tasks: tasks/delete_data.yml
56

57 # 2^16
58 - import_tasks: tasks/load_data.yml
59 vars:
60 num_nodes: "{{num_nodes | int}}"
61 size: 65536
62

63 - import_tasks: tasks/run_tests.yml
64 vars:
65 num_nodes: "{{num_nodes | int}}"
66 size: 65536
67

68 - import_tasks: tasks/delete_data.yml
69

APPENDIX B. TEST SYSTEM SOURCE CODE 146

70 # 2^17
71 - import_tasks: tasks/load_data.yml
72 vars:
73 num_nodes: "{{num_nodes | int}}"
74 size: 131072
75

76 - import_tasks: tasks/run_tests.yml
77 vars:
78 num_nodes: "{{num_nodes | int}}"
79 size: 131072
80

81 - import_tasks: tasks/delete_data.yml
82

83 # 2^18
84 - import_tasks: tasks/load_data.yml
85 vars:
86 num_nodes: "{{num_nodes | int}}"
87 size: 262144
88

89 - import_tasks: tasks/run_tests.yml
90 vars:
91 num_nodes: "{{num_nodes | int}}"
92 size: 262144
93

94 - import_tasks: tasks/delete_data.yml
95

96 # 2^19
97 - import_tasks: tasks/load_data.yml
98 vars:
99 num_nodes: "{{num_nodes | int}}"
100 size: 524288
101

102 - import_tasks: tasks/run_tests.yml
103 vars:
104 num_nodes: "{{num_nodes | int}}"
105 size: 524288
106

107 - import_tasks: tasks/delete_data.yml
108

109

110 # 2^20
111 - import_tasks: tasks/load_data.yml
112 vars:

147

113 num_nodes: "{{num_nodes | int}}"
114 size: 1048576
115

116 - import_tasks: tasks/run_tests.yml
117 vars:
118 num_nodes: "{{num_nodes | int}}"
119 size: 1048576
120

121 - import_tasks: tasks/delete_data.yml
122

123

124

125 # Kill running mysql servers
126 # - import_tasks: tasks/kill_running.yml
127

128 # The end

test_system/load_data.yml

1 ---
2

3 - debug:
4 msg: "Loading {{size}} (x 2 tables) rows for {{num_nodes}} nodes..."
5

6 # Copy data of given size
7

8 - name: Copy lhs dataset
9 copy:
10 src: data/{{size}}/lhs_dataset.csv
11 dest: /export/home/tmp/data/
12

13 - name: Copy rhs dataset
14 copy:
15 src: data/{{size}}/rhs_dataset.csv
16 dest: /export/home/tmp/data/
17

18

19 # index of host:
20 # {{play_hosts.index(inventory_hostname)}}
21 # {{groups['lundgren_nodes{{num_nodes}}'].index(inventory_hostname)}}
22

23 # Partition data

APPENDIX B. TEST SYSTEM SOURCE CODE 148

24

25 - name: Partition lhs and rhs datasets based on node index, size and num nodes
26

27 vars:
28 index: "{{play_hosts.index(inventory_hostname) | int}}"
29 line_from: "{{ ((size | int) / (num_nodes | int)) * (index | int) + 1 |

round}}"↪→

30 line_to: "{{ ((size | int) / (num_nodes | int)) * (index | int) + ((size |
int) / (num_nodes | int)) | round}}"↪→

31

32 shell: |
33 sed -n -e {{line_from | int}},{{line_to | int}}p {{item}}.csv >

{{item}}_partitioned.csv↪→

34 args:
35 chdir: /export/home/tmp/data
36 with_items:
37 - lhs_dataset
38 - rhs_dataset
39

40 # Load data into MySQL
41

42 - name: Copy table-import sql-script
43 copy:
44 src: sql/load_data.sql
45 dest: /export/home/tmp/
46

47 - name: Execute import-table sql-script
48 mysql_db:
49 login_unix_socket:

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock↪→

50 login_user: "root"
51 login_password: ""
52 login_port: "13000"
53 state: import
54 name: all
55 target: /export/home/tmp/load_data.sql

test_system/start_lundgren.yml

1 ---
2

3 # - name: Copy .my.cnf to node

149

4 # copy:
5 # src: sql/my.cnf
6 # dest: ~/.my.cnf
7

8 #--
9

10 - name: Start MySQL with mtr
11 command: ./mtr main.lundgren_install --testcase-timeout=600 --mem
12 args:
13 chdir: /export/home/tmp/mysql-server/bld/mysql-test
14 async: 9999
15 poll: 0
16

17 - name: Wait for MySQL to start
18 command: /bin/sleep 12
19

20 - name: Alter root to use old style login, for ansible mysql module to work
21 command: mysql -u root --socket

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock -e
"ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY
''"

↪→

↪→

↪→

22

23 - name: Copy lundgren setup sql-script
24 copy:
25 src: sql/lundgren_plugin_setup.sql
26 dest: /export/home/tmp/
27

28 - name: Execute lundgren setup script
29 mysql_db:
30 login_unix_socket:

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock↪→

31 login_user: "root"
32 login_password: ""
33 login_port: "13000"
34 state: import
35 name: all
36 target: /export/home/tmp/lundgren_plugin_setup.sql
37

38 - name: Copy self node id setup sql-script
39 copy:
40 src: sql/self_node_id_setters/{{play_hosts.index(inventory_hostname)}}.sql
41 dest: /export/home/tmp/node_id_setter.sql
42

APPENDIX B. TEST SYSTEM SOURCE CODE 150

43 - name: Execute self node id setter
44 mysql_db:
45 login_unix_socket:

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock↪→

46 login_user: "root"
47 login_password: ""
48 login_port: "13000"
49 state: import
50 name: all
51 target: /export/home/tmp/node_id_setter.sql

test_system/run_tests.yml

1 ---
2

3 - name: Turn on network delay
4 command: /usr/sbin/tc qdisc add dev ens3 root netem delay 10ms 5ms 25%
5 become: yes
6

7 #------------------
8

9 - name: Run tests
10 command: python3 main.py {{num_nodes}} {{size}}
11 args:
12 chdir: /export/home/tmp/test_runner/
13 run_once: true
14

15 # ------------------
16

17

18 - name: Turn off network delay
19 command: /usr/sbin/tc qdisc del dev ens3 root netem delay 10ms 5ms 25%
20 become: yes
21

22

23 - name: Copy result back
24 fetch:
25 src: /export/home/tmp/test_runner/results_{{num_nodes}}_{{size}}.csv
26 dest: result/
27 run_once: true

test_system/delete_data.yml

151

1 ---
2

3 # Delete lhs and rhs data
4

5 - name: Copy table-delete-rows sql-script
6 copy:
7 src: sql/delete_data.sql
8 dest: /export/home/tmp/
9

10 - name: Execute delete-table-rows sql-script
11 mysql_db:
12 login_unix_socket:

/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock↪→

13 login_user: "root"
14 login_password: ""
15 login_port: "13000"
16 state: import
17 name: all
18 target: /export/home/tmp/delete_data.sql

test_system/installation/install_mysql_lundgren.yml

1 ---
2 - hosts: lundgren_nodes
3

4 tasks:
5 - name: ensure packages [MySQL-python, ninja-build] are installed
6 yum:
7 name: "{{ packages }}"
8 vars:
9 packages:
10 - MySQL-python
11 - ninja-build
12 become: yes
13

14 # - name: Install connector/c++ main
15 # yum:

name=https://dev.mysql.com/get/Downloads/Connector-C++/mysql-connector-c++-8.0.15-1.el7.x86_64.rpm↪→

16 # become: yes
17

18 # - name: Install connector/c++ jdbc

APPENDIX B. TEST SYSTEM SOURCE CODE 152

19 # yum:
name=https://dev.mysql.com/get/Downloads/Connector-C++/mysql-connector-c++-jdbc-8.0.15-1.el7.x86_64.rpm↪→

20 # become: yes
21

22 # - name: Install connector/c++ devel
23 # yum:

name=https://dev.mysql.com/get/Downloads/Connector-C++/mysql-connector-c++-devel-8.0.15-1.el7.x86_64.rpm↪→

24 # become: yes
25

26 # - name: Install Connector C++
27 # shell: |
28 # yum install {{item}}
29 # args:
30 # chdir: /home/heggen
31 # with_items:
32 # - 33393928.mysql-connector-c++-8.0.16-1.el7.x86_64.rpm
33 # - 33393924.mysql-connector-c++-jdbc-8.0.16-1.el7.x86_64.rpm
34 # - 33393920.mysql-connector-c++-devel-8.0.16-1.el7.x86_64.rpm
35 # become: yes
36

37

38 - name: Copy mysqlx to include directory
39 command: cp -r /usr/include/mysql-cppconn-8/mysqlx /usr/include/mysqlx
40 become: yes
41

42 - name: Download or update git repo for MySQL Lundgren
43 git:
44 accept_hostkey: yes
45 repo: https://github.com/kahole/mysql-server.git
46 dest: /export/home/tmp/mysql-server
47 depth: 1
48 version: lundgren_no_result
49

50 - name: Create build directory
51 file:
52 path: /export/home/tmp/mysql-server/bld
53 state: directory
54

55 - name: cmake MySQL
56 command: cmake .. -GNinja -DWITH_BOOST=/usr/global/share
57 args:
58 chdir: /export/home/tmp/mysql-server/bld
59

153

60 - name: Compile MySQL
61 command: ninja-build
62 args:
63 chdir: /export/home/tmp/mysql-server/bld
64

65

66 # Dropp å installere, waste of time:
67

68 # - name: Install MySQL
69 # command: ninja-build install
70 # args:
71 # chdir: /export/home/tmp/mysql-server/bld
72 # become: yes
73

74 # - name: Build data directories
75 # command: chdir=/usr/local/mysql {{ item }}
76 # with_items:
77 # - groupadd mysql
78 # - useradd -r -g mysql -s /bin/false mysql
79 # - mkdir mysql-files
80 # - chown mysql:mysql mysql-files
81 # - chmod 750 mysql-files
82 # - bin/mysqld --initialize --user=mysql
83 # become: yes

test_system/installation/install_test_runner.yml

1 ---
2 - hosts: test_node
3

4 environment:
5 http_proxy: http://www-proxy.uk.oracle.com:80
6 https_proxy: http://www-proxy.uk.oracle.com:80
7 no_proxy: no.oracle.com,oraclevcn.com,169.254.169.254
8

9 tasks:
10 # - name: ensure packages [SqlAlchemy, pymysql] are installed
11 # yum:
12 # name: "{{ packages }}"
13 # vars:
14 # packages:
15 # - python34-sqlalchemy

APPENDIX B. TEST SYSTEM SOURCE CODE 154

16 # - python34-PyMySQL
17 # - python34-mysql
18 # #- python34-mysql
19 # become: yes
20

21 - name: Copy test_runner python script
22 copy:
23 src: ../../test_runner/main.py
24 dest: /export/home/tmp/test_runner/

test_system/run_all.sh

1 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=2"
2

3 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=2"
4

5 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=4"
6

7 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=4"
8

9 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=8"
10

11 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=8"
12

13 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=16"
14

15 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=16"
16

17 mv
~/TDT4900-masteroppgave/evaluation/ansible/result/100.103.14.11/export/home/tmp/test_runner/
~/TDT4900-masteroppgave/evaluation/ansible/result/ekte/run_1

↪→

↪→

18

19 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=2"
20

21 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=2"
22

23 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=4"
24

25 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=4"
26

27 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=8"
28

155

29 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=8"
30

31 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=16"
32

33 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=16"
34

35 mv
~/TDT4900-masteroppgave/evaluation/ansible/result/100.103.14.11/export/home/tmp/test_runner/
~/TDT4900-masteroppgave/evaluation/ansible/result/ekte/run_2

↪→

↪→

36

37

38 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=2"
39

40 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=2"
41

42 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=4"
43

44 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=4"
45

46 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=8"
47

48 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=8"
49

50 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=16"
51

52 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=16"
53

54 mv
~/TDT4900-masteroppgave/evaluation/ansible/result/100.103.14.11/export/home/tmp/test_runner/
~/TDT4900-masteroppgave/evaluation/ansible/result/ekte/run_3

↪→

↪→

55

56

57 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=2"
58

59 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=2"
60

61 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=4"
62

63 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=4"
64

65 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=8"
66

67 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=8"

APPENDIX B. TEST SYSTEM SOURCE CODE 156

68

69 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=16"
70

71 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=16"
72

73 mv
~/TDT4900-masteroppgave/evaluation/ansible/result/100.103.14.11/export/home/tmp/test_runner/
~/TDT4900-masteroppgave/evaluation/ansible/result/ekte/run_4

↪→

↪→

74

75 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=2"
76

77 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=2"
78

79 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=4"
80

81 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=4"
82

83 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=8"
84

85 ansible-playbook kill_running_playbook.yml -f 16 --extra-vars "num_nodes=8"
86

87 ansible-playbook run_tests_n_nodes.yml -f 16 --extra-vars "num_nodes=16"
88

89 mv
~/TDT4900-masteroppgave/evaluation/ansible/result/100.103.14.11/export/home/tmp/test_runner/
~/TDT4900-masteroppgave/evaluation/ansible/result/ekte/run_5

↪→

↪→

90

91 # ansible-playbook shutdown_nodes.yml -f 16 --extra-vars "num_nodes=16"

test_system/sql/load_data.sql

1 USE test;
2

3 CREATE TABLE IF NOT EXISTS lhs (
4 lhs_10_10 INT,
5 lhs_20_20 INT,
6 lhs_30_30 INT,
7 lhs_40_40 INT,
8 lhs_50_50 INT,
9 lhs_60_60 INT,
10 lhs_70_70 INT,
11 lhs_80_80 INT,

157

12 lhs_90_90 INT,
13 lhs_100_100 INT,
14 lhs_all_equal INT,
15 lhs_normal INT,
16 lhs_uniform INT
17);
18

19 CREATE TABLE IF NOT EXISTS rhs (
20 rhs_10_10 INT,
21 rhs_20_20 INT,
22 rhs_30_30 INT,
23 rhs_40_40 INT,
24 rhs_50_50 INT,
25 rhs_60_60 INT,
26 rhs_70_70 INT,
27 rhs_80_80 INT,
28 rhs_90_90 INT,
29 rhs_100_100 INT,
30 rhs_all_equal INT,
31 rhs_normal INT,
32 rhs_uniform INT
33);
34

35 LOAD DATA INFILE '/export/home/tmp/data/lhs_dataset_partitioned.csv' INTO TABLE
lhs FIELDS TERMINATED BY ',';↪→

36 LOAD DATA INFILE '/export/home/tmp/data/rhs_dataset_partitioned.csv' INTO TABLE
rhs FIELDS TERMINATED BY ',';↪→

test_system/sql/lundgren_plugin_setup.sql

1 -- PLUGIN
2

3 -- INSTALL PLUGIN lundgren SONAME 'lundgren.so';
4

5 -- SELECT DB
6 USE test;
7

8 -- Have to set this high for the interim cleanup operations
9 SET GLOBAL group_concat_max_len=4294967295;
10

11 -- USER
12

APPENDIX B. TEST SYSTEM SOURCE CODE 158

13 -- CREATE USER IF NOT EXISTS 'lundgren_user'@'%' IDENTIFIED BY '';
14 CREATE USER IF NOT EXISTS 'lundgren_user'@'%' IDENTIFIED WITH

mysql_native_password BY '';↪→

15 GRANT ALL PRIVILEGES ON *.* TO 'lundgren_user'@'%';
16

17

18 -- METADATA TABLES
19

20 CREATE TABLE IF NOT EXISTS lundgren_node (
21 id INT UNSIGNED PRIMARY KEY,
22 host_l VARCHAR(80) NOT NULL,
23 port_l INT UNSIGNED,
24 database_l VARCHAR(80) NOT NULL,
25 username_l VARCHAR(50),
26 password_l VARCHAR(50)
27);
28

29 CREATE TABLE IF NOT EXISTS lundgren_shard_key (
30 id INT UNSIGNED PRIMARY KEY,
31 column_name VARCHAR(80) NOT NULL,
32 range_start INT UNSIGNED,
33 range_end INT UNSIGNED
34);
35

36 CREATE TABLE IF NOT EXISTS lundgren_partition (
37 id INT UNSIGNED PRIMARY KEY,
38 nodeId INT UNSIGNED,
39 shardKeyId INT UNSIGNED,
40 table_name VARCHAR(80) NOT NULL,
41 FOREIGN KEY (nodeId) REFERENCES lundgren_node(id),
42 FOREIGN KEY (shardKeyId) REFERENCES lundgren_shard_key(id)
43);
44

45 CREATE TABLE IF NOT EXISTS lundgren_self_node_id (
46 node_id INT UNSIGNED PRIMARY KEY
47);

test_system/sql/partitions/partition_16.sql

1 -- SELECT DB
2 USE test;
3

159

4 INSERT INTO lundgren_node VALUES (0, "100.103.14.11", 13010, "test",
"lundgren_user", NULL);↪→

5 INSERT INTO lundgren_node VALUES (1, "100.103.14.12", 13010, "test",
"lundgren_user", NULL);↪→

6 INSERT INTO lundgren_node VALUES (2, "100.103.14.13", 13010, "test",
"lundgren_user", NULL);↪→

7 INSERT INTO lundgren_node VALUES (3, "100.103.14.14", 13010, "test",
"lundgren_user", NULL);↪→

8 INSERT INTO lundgren_node VALUES (4, "100.103.14.15", 13010, "test",
"lundgren_user", NULL);↪→

9 INSERT INTO lundgren_node VALUES (5, "100.103.14.16", 13010, "test",
"lundgren_user", NULL);↪→

10 INSERT INTO lundgren_node VALUES (6, "100.103.14.17", 13010, "test",
"lundgren_user", NULL);↪→

11 INSERT INTO lundgren_node VALUES (7, "100.103.14.18", 13010, "test",
"lundgren_user", NULL);↪→

12 INSERT INTO lundgren_node VALUES (8, "100.103.14.19", 13010, "test",
"lundgren_user", NULL);↪→

13 INSERT INTO lundgren_node VALUES (9, "100.103.14.20", 13010, "test",
"lundgren_user", NULL);↪→

14 INSERT INTO lundgren_node VALUES (10, "100.103.14.21", 13010, "test",
"lundgren_user", NULL);↪→

15 INSERT INTO lundgren_node VALUES (11, "100.103.14.22", 13010, "test",
"lundgren_user", NULL);↪→

16 INSERT INTO lundgren_node VALUES (12, "100.103.14.23", 13010, "test",
"lundgren_user", NULL);↪→

17 INSERT INTO lundgren_node VALUES (13, "100.103.14.24", 13010, "test",
"lundgren_user", NULL);↪→

18 INSERT INTO lundgren_node VALUES (14, "100.103.14.25", 13010, "test",
"lundgren_user", NULL);↪→

19 INSERT INTO lundgren_node VALUES (15, "100.103.14.26", 13010, "test",
"lundgren_user", NULL);↪→

20

21 INSERT INTO lundgren_shard_key VALUES (0, "nothing", 165, 500);
22 INSERT INTO lundgren_shard_key VALUES (1, "nothing", 0, 165);
23

24 INSERT INTO lundgren_partition VALUES (1, 0, 0, "lhs");
25 INSERT INTO lundgren_partition VALUES (2, 0, 1, "rhs");
26

27 INSERT INTO lundgren_partition VALUES (3, 1, 0, "lhs");
28 INSERT INTO lundgren_partition VALUES (4, 1, 1, "rhs");
29

30 INSERT INTO lundgren_partition VALUES (5, 2, 0, "lhs");

APPENDIX B. TEST SYSTEM SOURCE CODE 160

31 INSERT INTO lundgren_partition VALUES (6, 2, 1, "rhs");
32

33 INSERT INTO lundgren_partition VALUES (7, 3, 0, "lhs");
34 INSERT INTO lundgren_partition VALUES (8, 3, 1, "rhs");
35

36 INSERT INTO lundgren_partition VALUES (9, 4, 0, "lhs");
37 INSERT INTO lundgren_partition VALUES (10, 4, 1, "rhs");
38

39 INSERT INTO lundgren_partition VALUES (11, 5, 0, "lhs");
40 INSERT INTO lundgren_partition VALUES (12, 5, 1, "rhs");
41

42 INSERT INTO lundgren_partition VALUES (13, 6, 0, "lhs");
43 INSERT INTO lundgren_partition VALUES (14, 6, 1, "rhs");
44

45 INSERT INTO lundgren_partition VALUES (15, 7, 0, "lhs");
46 INSERT INTO lundgren_partition VALUES (16, 7, 1, "rhs");
47

48 INSERT INTO lundgren_partition VALUES (17, 8, 0, "lhs");
49 INSERT INTO lundgren_partition VALUES (18, 8, 1, "rhs");
50

51 INSERT INTO lundgren_partition VALUES (19, 9, 0, "lhs");
52 INSERT INTO lundgren_partition VALUES (20, 9, 1, "rhs");
53

54 INSERT INTO lundgren_partition VALUES (21, 10, 0, "lhs");
55 INSERT INTO lundgren_partition VALUES (22, 10, 1, "rhs");
56

57 INSERT INTO lundgren_partition VALUES (23, 11, 0, "lhs");
58 INSERT INTO lundgren_partition VALUES (24, 11, 1, "rhs");
59

60 INSERT INTO lundgren_partition VALUES (25, 12, 0, "lhs");
61 INSERT INTO lundgren_partition VALUES (26, 12, 1, "rhs");
62

63 INSERT INTO lundgren_partition VALUES (27, 13, 0, "lhs");
64 INSERT INTO lundgren_partition VALUES (28, 13, 1, "rhs");
65

66 INSERT INTO lundgren_partition VALUES (29, 14, 0, "lhs");
67 INSERT INTO lundgren_partition VALUES (30, 14, 1, "rhs");
68

69 INSERT INTO lundgren_partition VALUES (31, 15, 0, "lhs");
70 INSERT INTO lundgren_partition VALUES (32, 15, 1, "rhs");

test_system/sql/node_id_setters/0.sql

161

1 USE test;
2 INSERT INTO lundgren_self_node_id VALUES (0);

test_system/sql/delete_data.sql

1 USE test;
2

3 delete from lhs;
4 delete from rhs;

test_system/data_generation/main.py

1 import sys
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm
5 from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
6 from mpl_toolkits.axes_grid1.inset_locator import mark_inset
7

8 def generate_percentage_matches(num_rows, overlap):
9 lhs_matches = np.arange(0, num_rows, dtype=int)
10 overlapping_num = np.floor((1.0-overlap) * num_rows)
11 rhs_matches = np.arange(overlapping_num, num_rows + overlapping_num)
12

13 np.random.shuffle(lhs_matches)
14 np.random.shuffle(rhs_matches)
15 return lhs_matches.astype(int), rhs_matches.astype(int)
16

17 def generate_all_equal(num_rows):
18 return np.full((num_rows), 1), np.full((num_rows), 1)
19

20

21 def generate_normal_distribution(num_rows, sigma, mu, sigma2, mu2):
22

23 lhs_normal = np.arange(mu, mu + num_rows)
24 rhs_normal = np.random.normal(mu, sigma, num_rows)
25

26 np.random.shuffle(lhs_normal)
27 np.random.shuffle(rhs_normal)
28

29 return lhs_normal.astype(int), rhs_normal

APPENDIX B. TEST SYSTEM SOURCE CODE 162

30

31 def generate_uniform_distribution(num_rows):
32

33 low = 0
34 high = 1000
35

36 lhs_uniform = np.arange(high/2, num_rows + high/2)
37 rhs_uniform = np.random.uniform(low, high, num_rows)
38

39 np.random.shuffle(lhs_uniform)
40 np.random.shuffle(rhs_uniform)
41

42 return lhs_uniform.astype(int), rhs_uniform.astype(int)
43

44

45 def main(size):
46

47 np.random.seed(99)
48

49 lhs_10_10_matches, rhs_10_10_matches = generate_percentage_matches(size,
0.1)↪→

50 lhs_20_20_matches, rhs_20_20_matches = generate_percentage_matches(size,
0.2)↪→

51 lhs_30_30_matches, rhs_30_30_matches = generate_percentage_matches(size,
0.3)↪→

52 lhs_40_40_matches, rhs_40_40_matches = generate_percentage_matches(size,
0.4)↪→

53 lhs_50_50_matches, rhs_50_50_matches = generate_percentage_matches(size,
0.5)↪→

54 lhs_60_60_matches, rhs_60_60_matches = generate_percentage_matches(size,
0.6)↪→

55 lhs_70_70_matches, rhs_70_70_matches = generate_percentage_matches(size,
0.7)↪→

56 lhs_80_80_matches, rhs_80_80_matches = generate_percentage_matches(size,
0.8)↪→

57 lhs_90_90_matches, rhs_90_90_matches = generate_percentage_matches(size,
0.9)↪→

58 lhs_100_100_matches, rhs_100_100_matches =
generate_percentage_matches(size, 1.0)↪→

59

60 lhs_all_equal, rhs_all_equal = generate_all_equal(size)
61

62 sigma = 50.0

163

63 mu = 300.0
64 sigma2 = 50.0
65 mu2 = 550.0
66

67 lhs_normal, rhs_normal = generate_normal_distribution(size, sigma, mu,
sigma2, mu2)↪→

68 lhs_uniform, rhs_uniform = generate_uniform_distribution(size)
69

70 lhs_dataset = np.column_stack((lhs_10_10_matches, lhs_20_20_matches,
lhs_30_30_matches, lhs_40_40_matches, lhs_50_50_matches,
lhs_60_60_matches, lhs_70_70_matches, lhs_80_80_matches,
lhs_90_90_matches, lhs_100_100_matches, lhs_all_equal, lhs_normal,
lhs_uniform))

↪→

↪→

↪→

↪→

71 rhs_dataset = np.column_stack((rhs_10_10_matches, rhs_20_20_matches,
rhs_30_30_matches, rhs_40_40_matches, rhs_50_50_matches,
rhs_60_60_matches, rhs_70_70_matches, rhs_80_80_matches,
rhs_90_90_matches, rhs_100_100_matches, rhs_all_equal, rhs_normal,
rhs_uniform))

↪→

↪→

↪→

↪→

72

73 np.savetxt("../ansible/data/" + str(size) + "/lhs_dataset.csv",
lhs_dataset, fmt='%i', delimiter=",")↪→

74 np.savetxt("../ansible/data/" + str(size) + "/rhs_dataset.csv",
rhs_dataset, fmt='%i', delimiter=",")↪→

75

76 #------------------------------
77 # PLOTTING
78 #-----------------------------
79

80 plt.rcParams["font.family"] = "Verdana"
81 plt.rcParams["font.size"] = 16
82

83 num_bins = 256
84

85 lhs_count, lhs_bins, lhs_ignored = plt.hist(lhs_normal, alpha=0.6,
bins=num_bins, color='blue', histtype='stepfilled', density=True,
label='lhs')

↪→

↪→

86 rhs_count, rhs_bins, rhs_ignored = plt.hist(rhs_normal, alpha=0.6,
bins=num_bins, color='red', histtype='stepfilled', density=True,
label='rhs')

↪→

↪→

87 # plt.hist([], alpha=0.8, color='purple', histtype='stepfilled',
density=True, label='overlap')↪→

88

APPENDIX B. TEST SYSTEM SOURCE CODE 164

89 plt.plot(rhs_bins, 1/(sigma * np.sqrt(2 * np.pi)) * np.exp(- (rhs_bins -
mu)**2 / (2 * sigma**2)), linewidth=1, color='r')↪→

90 # plt.plot(rhs_bins, 1/(sigma2 * np.sqrt(2 * np.pi)) * np.exp(- (rhs_bins
- mu2)**2 / (2 * sigma2**2)), linewidth=1, color='b')↪→

91 plt.legend(loc='upper left')
92 plt.xlabel('Column value', labelpad=5)
93 plt.ylabel('Density (%)', labelpad=10)
94

95 # plt.ylim(top=0.000175)
96 # plt.ylim(bottom=0.0)
97 plt.xlim(right=600.0)
98 plt.xlim(left=(-50.0))
99

100 plt.tight_layout()
101 print(len(lhs_normal))
102

103 ax = plt.gca()
104 axins = zoomed_inset_axes(ax, 4.9, loc=5)
105 axins.hist(lhs_normal, alpha=0.6, bins=num_bins, color='blue',

histtype='stepfilled', density=True, label='lhs')↪→

106 axins.hist(rhs_normal, alpha=0.6, bins=num_bins, color='red',
histtype='stepfilled', density=True, label='rhs')↪→

107

108 x1, x2, y1, y2 = 430, 470, 0.0, 0.0002 # specify the limits
109 axins.set_xlim(x1, x2) # apply the x-limits
110 axins.set_ylim(y1, y2) # apply the y-limits
111 mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
112 plt.yticks(visible=False)
113 plt.xticks(visible=False)
114 plt.savefig("normal_distribution_histogram.pdf", format='pdf')
115

116 plt.show()
117

118 plt.hist(lhs_uniform, alpha=0.6, bins=num_bins, color='blue',
histtype='stepfilled', density=True, label='lhs')↪→

119 plt.hist(rhs_uniform, alpha=0.6, bins=num_bins, color='red',
histtype='stepfilled', density=True, label='rhs')↪→

120 #plt.hist([], alpha=0.8, color='purple', histtype='stepfilled',
density=True, label='overlap')↪→

121 # plt.ylim(top=0.000175)
122 # plt.ylim(bottom=0.0)
123 plt.xlim(right=1300.0)
124 plt.xlim(left=(-50.0))

165

125 plt.legend(loc='upper right')
126 plt.xlabel('Column value', labelpad=5)
127 plt.ylabel('Density (%)', labelpad=10)
128

129 plt.tight_layout()
130

131 # ax = plt.gca()
132 # axins = zoomed_inset_axes(ax, 0.7, loc=1)
133 # axins.hist(lhs_uniform, alpha=0.6, bins=num_bins, color='blue',

histtype='stepfilled', density=True, label='lhs')↪→

134 # axins.hist(rhs_uniform, alpha=0.6, bins=num_bins, color='red',
histtype='stepfilled', density=True, label='rhs')↪→

135

136 # x1, x2, y1, y2 = 400, 1200, 0.0, 0.0002 # specify the limits
137 # axins.set_xlim(x1, x2) # apply the x-limits
138 # axins.set_ylim(y1, y2) # apply the y-limits
139 # mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5")
140 # plt.yticks(visible=False)
141 # plt.xticks(visible=False)
142 plt.savefig("uniform_distribution_histogram.pdf", format='pdf')
143

144 plt.show()
145

146 if __name__ == "__main__":
147 main(8192)
148 main(16384)
149 main(32768)
150 main(65536)
151 main(131072)
152 main(262144)
153 main(524288)
154 main(1048576)
155 main(2**21)

test_system/test_runner/main.py

1 from sqlalchemy import event
2 from sqlalchemy.engine import Engine
3 from sqlalchemy import create_engine
4 from sqlalchemy import exc
5 import time
6 from string import Template

APPENDIX B. TEST SYSTEM SOURCE CODE 166

7 import sys
8 import csv
9 import logging
10

11 latest_execution_time = 0.0
12

13 logging.basicConfig()
14 logging.getLogger('sqlalchemy').setLevel(logging.ERROR)
15

16 @event.listens_for(Engine, "before_cursor_execute")
17 def before_cursor_execute(conn, cursor, statement,
18 parameters, context, executemany):
19 conn.info.setdefault('query_start_time', []).append(time.time())
20

21 @event.listens_for(Engine, "after_cursor_execute")
22 def after_cursor_execute(conn, cursor, statement,
23 parameters, context, executemany):
24 total = time.time() - conn.info['query_start_time'].pop(-1)
25

26 global latest_execution_time
27 latest_execution_time = total
28

29 engine =
create_engine('mysql+pymysql://root@localhost:13000/test?unix_socket=/export/home/tmp/mysql-server/bld/mysql-test/var/tmp/mysqld.1.sock',
pool_reset_on_return=None)

↪→

↪→

30

31 hosts = ["100.103.14.12", "100.103.14.13", "100.103.14.14", "100.103.14.15",
"100.103.14.16", "100.103.14.17", "100.103.14.18", "100.103.14.19",
"100.103.14.20", "100.103.14.21", "100.103.14.22", "100.103.14.23",
"100.103.14.24", "100.103.14.25", "100.103.14.26"]

↪→

↪→

↪→

32

33 back_num = 16 - int(sys.argv[1])
34

35 active_hosts = hosts if back_num == 0 else hosts[:-back_num]
36

37 engines = [create_engine('mysql+pymysql://lundgren_user@' + h + ':13000/test',
pool_reset_on_return=None) for h in active_hosts]↪→

38

39 engines.insert(0, engine)
40

41

42 def warmup_query(query):
43 try:

167

44 # Run warmup query and ignore its time
45 res = engine.execute(query)
46 res.close()
47 return True, "no"
48

49 except exc.SQLAlchemyError as e:
50 return False, str(e)
51

52 def measure_query(query):
53

54 try:
55 # Run real query (how many times)
56 res = engine.execute(query)
57 res.close()
58 return latest_execution_time, 'no'
59

60 except exc.SQLAlchemyError as e:
61 return -1.0, str(e)
62

63 #---
64 # QUERIES
65

66 join_strategies = ["data_to_query", "semi", "bloom", "hash_redist",
"sort_merge"]↪→

67

68 columns = ["normal", "uniform", "10_10", "20_20", "30_30", "40_40", "50_50",
"60_60", "70_70", "80_80", "90_90", "100_100"]↪→

69

70 query_template = Template("/*distributed<join_strategy=$join_strategy>*/SELECT
")↪→

71 proj_template = Template("lhs.lhs_$column, rhs.rhs_$column")
72 from_template = Template(" FROM lhs JOIN rhs ON lhs.lhs_$column =

rhs.rhs_$column;")↪→

73

74 def generate_query(join_strategy, column):
75 query_ = query_template.substitute(join_strategy=join_strategy)
76

77 proj = ""
78 # project current column
79 proj += proj_template.substitute(column=column)
80 proj += ", "
81 # plus 3 other columns
82 proj_count = 0

APPENDIX B. TEST SYSTEM SOURCE CODE 168

83 for c in columns:
84 if (not c == column) and proj_count < 2:
85 proj += proj_template.substitute(column=c)
86 proj += ", "
87 proj_count += 1
88

89 proj = proj[:-2]
90

91 from_ = from_template.substitute(column=column)
92 return query_ + proj + from_
93

94 #---
95

96 def delete_interim_tables():
97

98 # try:
99 for e in engines:
100 res = e.execute("SELECT CONCAT('DROP TABLE ', GROUP_CONCAT(table_name)

, ';') AS statement FROM information_schema.tables WHERE
table_schema = 'test' AND table_name LIKE 'interim_%%';")

↪→

↪→

101

102 drop_interim_statement = ""
103 for r in res:
104 drop_interim_statement = r[0]
105

106 # drop_interim_statement = res.first()[0]
107 res.close()
108

109 if not drop_interim_statement == None:
110 e.execute(str(drop_interim_statement))
111 # except exc.SQLAlchemyError as e:
112 # pass
113

114

115 def main():
116 num_nodes = sys.argv[1]
117 num_rows = sys.argv[2]
118

119 with open('results_' + num_nodes + '_' + num_rows + '.csv', 'w') as
csv_file:↪→

120

121 fieldnames = ['num_nodes', 'num_rows', 'strategy', 'column', 'time',
'query', 'error']↪→

169

122 writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
123 writer.writeheader()
124

125 for strategy in join_strategies:
126 for column in columns:
127

128 entry = {'num_nodes': num_nodes, 'num_rows': num_rows,
'strategy': strategy, 'column': column}↪→

129 entry['query'] = generate_query(strategy, column)
130

131 ok, err = warmup_query(entry['query'])
132 #if strategy == "sort_merge" or strategy == "hash_redist":
133 # time.sleep(1)
134

135 entry['time'], entry['error'] = measure_query(entry['query'])
136 #if strategy == "sort_merge" or strategy == "hash_redist":
137 # time.sleep(1)
138 writer.writerow(entry)
139

140 #print(num_nodes + " " + strategy + " " + column + " " +
entry['query'])↪→

141

142 delete_interim_tables()
143

144 if __name__ == '__main__':
145 main()

test_system/test_runner/result_plots.py

1 import csv
2 import matplotlib.pyplot as plt
3 from matplotlib.ticker import FuncFormatter
4 import numpy as np
5 import pylab
6

7 def power_of(x, pos):
8 'The two args are the value and tick position'
9 return x
10

11 def log_of(x, pos):
12 'The two args are the value and tick position'
13 return "$2^{" + str(int(np.math.log(int(x), 2))) + "}$"

APPENDIX B. TEST SYSTEM SOURCE CODE 170

14

15 formatter = FuncFormatter(power_of)
16 formatter2 = FuncFormatter(log_of)
17

18

19 CSV_FILE = 'results_atum_combined.csv'
20 NUM_RUNS = 5
21 THROUGHPUT = False
22

23 def row_key(row):
24 return str(row['num_nodes']) + str(row['num_rows']) + str(row['strategy'])

+ str(row['column'])↪→

25

26 def calculate_mean_and_throughput(rows):
27 mean_dict = {}
28 values_dict = {}
29

30 for r in rows:
31 if row_key(r) in mean_dict:
32 mean_dict[row_key(r)]['time'] += float(r['time'])
33 values_dict[row_key(r)] += [float(r['time'])]
34 else:
35 r['time'] = float(r['time'])
36 mean_dict[row_key(r)] = r
37 values_dict[row_key(r)] = [r['time']]
38

39 # dele på 5
40 for mr in mean_dict.values():
41 mr['time'] = float(mr['time']) / float(NUM_RUNS)
42 mr['mean'] = float(mr['time'])
43 mr['throughput'] = (float(mr['num_rows']) * 2.0) / float(mr['time']) /

1000.0 # Throughput↪→

44

45 for key in mean_dict.keys():
46 numerator = sum([(val - mean_dict[key]['mean'])**2 for val in

values_dict[key]])↪→

47 denominator = len(values_dict[key])
48 mean_dict[key]['variance'] = numerator / denominator
49 mean_dict[key]['standard_deviation'] =

np.math.sqrt(mean_dict[key]['variance'])↪→

50

51 return mean_dict.values()
52

171

53 def wrangle_results_from_csv():
54 with open(CSV_FILE, 'r') as csv_file:
55

56 reader = csv.DictReader(csv_file)
57 rows = [r for r in reader]
58 return calculate_mean_and_throughput(rows)
59

60

61 rows = wrangle_results_from_csv()
62

63 # Dumb way of getting all strategies, and number of nodes
64 strategies = list(set([r['strategy'] for r in rows]))
65 num_nodes = sorted(set([r['num_nodes'] for r in rows]), key=int)
66 num_rows = sorted(map(lambda x: int(x), set([r['num_rows'] for r in rows])))
67 join_columns = list(set([r['column'] for r in rows]))
68

69

70 join_columns = ['10_10', '20_20', '30_30', '40_40', '50_50', '60_60', '70_70',
'80_80', '90_90', '100_100', 'normal', 'uniform']↪→

71

72 ###
73 ##### PLOTTING
74 ###
75

76 line_and_color = {'data_to_query': 'b-*', 'semi': 'y-o', 'bloom': 'r-s',
'hash_redist': 'm--', 'sort_merge': 'g-^', 'sort_merge_indices': 'c-d',
'hash_redist_old': 'b-d'}

↪→

↪→

77 plt.rcParams["font.family"] = "Verdana"
78 plt.rcParams["font.size"] = 12
79

80 plt.rcParams['lines.linewidth'] = 2
81 plt.rcParams['lines.markersize'] = 7
82

83 # strategies.remove('data_to_query')
84 # strategies.remove('semi')
85 # strategies.remove('bloom')
86 # strategies.remove('hash_redist')
87 # strategies.remove('sort_merge')
88

89 # strategies.remove('sort_merge_indices')
90 # strategies.remove('hash_redist_old')
91

92

APPENDIX B. TEST SYSTEM SOURCE CODE 172

93 # #
###↪→

94 # # ##### X = data size, Y = time. Plot for each #nodes and join columns
95 # #

###↪→

96

97 # join_columns = ['50_50', '60_60']
98 # fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(join_columns),

sharey=True)↪→

99 fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(join_columns),
sharey=False)↪→

100 for nodes in num_nodes:
101 for join_column in join_columns:
102 j_c = [r for r in rows if r['column'] == join_column and r['num_nodes']

== nodes]↪→

103 for strategy in strategies:
104 title = "Nodes: " + nodes + ' ' + "Column:" + join_column
105 strategy_rows = [[int(r['num_rows']), (r['throughput'] if

THROUGHPUT else r['time'])] for r in j_c if r['strategy'] ==
strategy]

↪→

↪→

106 strategy_rows = sorted(strategy_rows, key=lambda x: x[0])
107 x = [r[0] for r in strategy_rows]
108 y = [r[1] for r in strategy_rows]
109 axes[num_nodes.index(nodes),

join_columns.index(join_column)].plot(x, y,
line_and_color[strategy], label=strategy) #, basex=2)

↪→

↪→

110 axes[num_nodes.index(nodes),
join_columns.index(join_column)].set_title("Nodes: " + nodes +
' ' + "Column:" + join_column)

↪→

↪→

111 axes[num_nodes.index(nodes),
join_columns.index(join_column)].tick_params(labelright=True,
labelleft=True)

↪→

↪→

112 # plt.setp(axes[num_nodes.index(nodes),
join_columns.index(join_column)].get_xticklabels(),
rotation=45)

↪→

↪→

113 # axes[join_columns.index(join_column)].plot(x, y, label=strategy)
114 # axes[join_columns.index(join_column)].set_title("Nodes: " + nodes

+ ' ' + "Column:" + join_column)↪→

115 # plt.setp(axes[join_columns.index(join_column)].get_xticklabels(),
rotation=45)↪→

116 # plt.setp(axes, xticks=num_rows)
117 # plt.xlabel("Data size (log2)")
118 # plt.ylabel("Time (sec)")

173

119

120 handles, labels = axes[-1, -1].get_legend_handles_labels()
121 # fig.legend(handles, labels, loc='upper right')
122 fig.legend(handles, labels, loc='upper center', ncol=5)
123 fig.set_size_inches(78, 30)
124 plt.savefig("data_size.pdf", format="pdf")
125 plt.close()
126

127 # #
##↪→

128 # # ##### X = number of nodes, Y = time. Plot for each data size and join
column↪→

129 # #
##↪→

130 # num_rows = [524288, 262144]
131 # join_columns = ['50_50', 'normal']
132

133 fig, axes = plt.subplots(nrows=len(num_rows), ncols=len(join_columns),
sharey=False)↪→

134 for row_size in num_rows:
135 for join_column in join_columns:
136 j_c = [r for r in rows if r['column'] == join_column and r['num_rows']

== str(row_size)]↪→

137 for strategy in strategies:
138 title = "Data size: " + "2^" + str(int(np.math.log2(row_size))) + '

' + "Column:" + join_column↪→

139 strategy_rows = [[int(r['num_nodes']), (r['throughput'] if
THROUGHPUT else r['time'])] for r in j_c if r['strategy'] ==
strategy]

↪→

↪→

140 strategy_rows = sorted(strategy_rows, key=lambda x: x[0])
141 x = [r[0] for r in strategy_rows]
142 y = [r[1] for r in strategy_rows]
143 axes[num_rows.index(row_size),

join_columns.index(join_column)].semilogx(x, y,
line_and_color[strategy], label=strategy, basex=2)

↪→

↪→

144 axes[num_rows.index(row_size),
join_columns.index(join_column)].set_title(title)↪→

145 # axes[num_rows.index(row_size),
join_columns.index(join_column)].tick_params(labelright=True,
labelleft=True)

↪→

↪→

146 axes[num_rows.index(row_size),
join_columns.index(join_column)].tick_params(labelleft=True)↪→

APPENDIX B. TEST SYSTEM SOURCE CODE 174

147 axes[num_rows.index(row_size),
join_columns.index(join_column)].grid(True)↪→

148 plt.setp(axes[num_rows.index(row_size),
join_columns.index(join_column)].get_xticklabels(),
rotation=45)

↪→

↪→

149 # axes[join_columns.index(join_column)].plot(x, y, label=strategy)
150 # axes[join_columns.index(join_column)].set_title(title)
151 # plt.setp(axes[join_columns.index(join_column)].get_xticklabels(),

rotation=45)↪→

152

153 plt.setp(axes, xticks=list(map(lambda x: int(x), num_nodes)))
154

155 handles, labels = axes[-1, -1].get_legend_handles_labels()
156 # fig.legend(handles, labels, loc='upper right')
157 fig.legend(handles, labels, loc='upper center', ncol=5)
158 fig.set_size_inches(68, 30)
159 plt.savefig("nodes.pdf", format="pdf")
160 plt.close()
161

162

163 # ##
164 # ##### X = selectivity, Y = time. Plot for each #nodes and data size
165 # ##
166 fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(num_rows),

sharey=False, sharex=False)↪→

167 for node in num_nodes:
168 for row_size in num_rows:
169 title = "#nodes: " + str(node) + " Data size: " + "2^" +

str(int(np.math.log2(row_size)))↪→

170 sel = [r for r in rows if r['num_nodes'] == node and r['num_rows'] ==
str(row_size)]↪→

171 for strategy in strategies:
172 sel_rows = [[int(r['column'].split('_')[0]), (r['throughput'] if

THROUGHPUT else r['time'])] for r in sel↪→

173 if r['strategy'] == strategy and not (r['column'] == 'uniform'
or r['column'] == 'normal')]↪→

174 # sel_rows = sorted(sel_rows, key=lambda x: int(x[0]),
reverse=True)↪→

175 x = [r[0] for r in sel_rows]
176 y = [r[1] for r in sel_rows]
177 axes[num_nodes.index(node), num_rows.index(row_size)].plot(x,y,

line_and_color[strategy], label=strategy)↪→

175

178 axes[num_nodes.index(node),
num_rows.index(row_size)].set_title(title)↪→

179 axes[num_nodes.index(node),
num_rows.index(row_size)].tick_params(labelright=True,
labelleft=True, labelbottom=True)

↪→

↪→

180 plt.setp(axes[num_nodes.index(node),
num_rows.index(row_size)].get_xticklabels(), rotation=45)↪→

181

182 plt.setp(axes, xticks=sorted([int(r.split('_')[0]) for r in join_columns if r
not in ['uniform', 'normal']]))↪→

183

184 handles, labels = axes[-1, -1].get_legend_handles_labels()
185 # fig.legend(handles, labels, loc='upper right')
186 fig.legend(handles, labels, loc='upper center', ncol=5)
187 fig.set_size_inches(58, 30)
188 plt.savefig("selectivity.pdf", format="pdf")
189

190 #
191 # SEPARATE LEGEND FIGURE
192 #
193 # ordered_labels_map = ['data_to_query', 'semi', 'bloom', 'hash_redist',

'sort_merge']↪→

194 # ordered_labels = ['data to query', 'semi', 'bloom', 'hash redistribution',
'sort merge']↪→

195 ## ordered_labels_map = ['semi', 'bloom']
196 ## ordered_labels = ['semi', 'bloom']
197

198 # ordered_handles = []
199

200 # for ol in ordered_labels_map:
201 # index = labels.index(ol)
202 # ordered_handles.append(handles[index])
203

204 # figlegend = pylab.figure(figsize=(7.2,0.4))
205 # figlegend.legend(ordered_handles, ordered_labels, loc='upper center', ncol=5)
206 # figlegend.savefig('legend.pdf', format="pdf")
207

208 plt.close()
209

210 # ##
211 # ##### SINGLE NODE PLOT
212 # ##
213

APPENDIX B. TEST SYSTEM SOURCE CODE 176

214 # num_rows = [2**18]
215 # join_columns = ['50_50']
216

217 # fig, axes = plt.subplots(nrows=len(num_rows), ncols=len(join_columns),
sharey=False)↪→

218 # for row_size in num_rows:
219 # for join_column in join_columns:
220 # j_c = [r for r in rows if r['column'] == join_column and

r['num_rows'] == str(row_size)]↪→

221 # for strategy in strategies:
222 # title = "Data size: " + "2^" + str(int(np.math.log2(row_size))) +

' ' + "Column:" + join_column↪→

223 # strategy_rows = [[int(r['num_nodes']), (r['throughput'] if
THROUGHPUT else r['time']), r['standard_deviation']] for r in j_c if
r['strategy'] == strategy]

↪→

↪→

224 # strategy_rows = sorted(strategy_rows, key=lambda x: x[0])
225 # x = [r[0] for r in strategy_rows]
226 # y = [r[1] for r in strategy_rows]
227

228

229 # sum_dev = 0.0
230 # for r in strategy_rows:
231 # sum_dev += r[2] / r[1]
232

233 # print(strategy)
234 # print((sum_dev / float(len(strategy_rows)))*100.0)
235

236 # axes.semilogx(x, y, line_and_color[strategy], label=strategy,
basex=2)↪→

237 # axes.tick_params(labelright=False, labelleft=True)
238 # axes.grid(True)
239 # axes.set_xlim(2,16)
240 # axes.set_xlabel('Node Count', labelpad=5)
241 # axes.set_ylabel('Time spent', labelpad=10)
242 # # axes.set_ylabel('Throughput\n(Thousand rows/s)', labelpad=10)
243

244 # axes.set_ylim(bottom=0, top=20)
245

246 # #integer ticks
247 # ya = axes.get_yaxis()
248 # ya.set_major_locator(pylab.MaxNLocator(integer=True))
249

250 # axes.get_xaxis().set_major_formatter(formatter)

177

251 # # plt.setp(axes, xticks=size)
252 # #plt.setp(axes.get_xticklabels()) #, rotation=45)
253

254 # fig.set_size_inches(7, 4)
255 # plt.setp(axes, xticks=list(map(lambda x: int(x), num_nodes)))
256 # plt.tight_layout()
257 # plt.savefig("nodes_2_18_50_latency.pdf", format="pdf")
258 # plt.close()
259

260

261 # ##
262 # #### SINGLE SELECTIVITY PLOT
263 # ##
264

265 num_nodes = ['4']
266 num_rows = [2**19]
267

268 fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(num_rows),
sharey=False, sharex=False)↪→

269 for node in num_nodes:
270 for row_size in num_rows:
271 sel = [r for r in rows if r['num_nodes'] == node and r['num_rows'] ==

str(row_size)]↪→

272 for strategy in strategies:
273 sel_rows = [[int(r['column'].split('_')[0]), (r['throughput'] if

THROUGHPUT else r['time'])] for r in sel↪→

274 if r['strategy'] == strategy and not (r['column'] == 'uniform'
or r['column'] == 'normal')]↪→

275 # sel_rows = sorted(sel_rows, key=lambda x: int(x[0]),
reverse=True)↪→

276 x = [r[0] for r in sel_rows]
277 y = [r[1] for r in sel_rows]
278 axes.plot(x,y, line_and_color[strategy], label=strategy)
279 axes.tick_params(labelright=False, labelleft=True,

labelbottom=True)↪→

280 axes.set_xlabel('Selectivity (%)', labelpad=5)
281 # axes.set_ylabel('Throughput\n(Thousand rows/s)', labelpad=10)
282 axes.set_ylabel('Time spent', labelpad=10)
283 plt.setp(axes.get_xticklabels(), rotation=45)
284

285 axes.grid(True)
286 axes.set_xlim(10, 90)
287 axes.set_ylim(0, 50)

APPENDIX B. TEST SYSTEM SOURCE CODE 178

288 ya = axes.get_yaxis()
289 ya.set_major_locator(pylab.MaxNLocator(integer=True))
290

291 fig.set_size_inches(7, 5)
292 plt.setp(axes, xticks=sorted([int(r.split('_')[0]) for r in join_columns if r

not in ['uniform', 'normal', '100_100']]))↪→

293 plt.tight_layout()
294 plt.savefig("selectivity_2_19_4_nodes_atum_y_axis.pdf", format="pdf")
295 plt.close()
296 ###------------
297

298

299 # #
##↪→

300 # # #### SINGLE DATASIZE AND COLUMN PLOT
301 # #

##↪→

302

303 # join_columns = ['50_50']
304 # num_nodes = ['16']
305 # # # fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(join_columns),

sharey=True)↪→

306 # fig, axes = plt.subplots(nrows=len(num_nodes), ncols=len(join_columns),
sharey=False)↪→

307 # for nodes in num_nodes:
308 # for join_column in join_columns:
309 # j_c = [r for r in rows if r['column'] == join_column and

r['num_nodes'] == nodes]↪→

310 # for strategy in strategies:
311 # title = "Nodes: " + nodes + ' ' + "Column:" + join_column
312 # strategy_rows = [[int(r['num_rows']), (r['throughput'] if

THROUGHPUT else r['time'])] for r in j_c if r['strategy'] == strategy]↪→

313 # strategy_rows = sorted(strategy_rows, key=lambda x: x[0])
314 # x = [r[0] for r in strategy_rows]
315 # y = [r[1] for r in strategy_rows]
316 # axes.plot(x, y, line_and_color[strategy], label=strategy) #,

basex=2)↪→

317 # # axes.set_title("Nodes: " + nodes + ' ' + "Column:" +
join_column)↪→

318 # axes.grid(True)
319 # axes.set_xlim(2**14, 2**20)
320 # axes.set_ylim(bottom=0, top=77)
321 # axes.set_xlabel('Number of rows', labelpad=5)

179

322 # axes.set_ylabel('Time spent', labelpad=10)
323 # axes.set_xticks(x)
324 # axes.tick_params(labelright=False, labelleft=True)
325 # axes.get_xaxis().set_major_formatter(formatter2)
326 # plt.setp(axes.get_xticklabels(), rotation=45)
327

328 # fig.set_size_inches(9, 5)
329 # plt.tight_layout()
330 # plt.savefig("data_size_50_16_nodes.pdf", format="pdf")
331 # plt.close()

test_system/optimization_eval/main.py

1 import matplotlib.pyplot as plt
2

3 # plt.rc('font',family='Verdana')
4 plt.rcParams["font.family"] = "Verdana"
5 plt.rcParams["font.size"] = 20
6

7 strats_x = [1, 3, 5, 7, 9]
8 strats = ['data_to_query', 'semi', 'bloom', 'hash_redist', 'sort_merge']
9

10 before = [0.152 , 0.154 , 0.1 , 0.162 , 0.076]
11 after = [0.082 , 0.092 , 0.074 , 0.118 , 0.078]
12

13 improvements = []
14

15 for i in range(len(before)):
16 improvements.append((-1) * ((after[i] - before[i]) / before[i] * 100))
17

18 plt.bar([x-0.3 for x in strats_x], before, color='#306998', width=0.5)
19 plt.bar([x+0.3 for x in strats_x], after, color='#ffd43b', width=0.5)
20 plt.ylabel('Duration', labelpad=10)
21 # plt.xlabel('Strategy', labelpad=10)
22 # plt.bar(strats, improvements, color='#ffe873', width=0.5)
23

24

25 plt.xticks(strats_x, strats)
26

27 print(improvements)
28

29 plt.legend(['no indices', 'w/ indices'])

APPENDIX B. TEST SYSTEM SOURCE CODE 180

30

31 # plt.tight_layout()
32

33 plt.savefig("indices_optimization_graph.pdf", format='pdf')
34

35

36 # after index
37 #| avg | 0.082 | 0.092 | 0.074 | 0.118 | 0.078 |
38

39

40 # before
41 #| avg | 0.152 | 0.154 | 0.1 | 0.162 | 0.076 |
42

43 plt.show()

test_system/optimization_eval/seq_par_insert.py

1 # import numpy as np
2 # import matplotlib as mpl
3 import matplotlib.pyplot as plt
4

5 plt.rcParams["font.family"] = "Verdana"
6 plt.rcParams["font.size"] = 16
7

8 sequential = []
9 seq_dtq = [0.3485, 0.2811, 0.2737, 0.3000, 0.2680]
10 seq_dtq = sum(seq_dtq)/len(seq_dtq)
11

12 parallel = []
13 par_dtq = [0.2450, 0.2369, 0.2112, 0.2088, 0.2321]
14 par_dtq = sum(par_dtq)/len(par_dtq)
15

16 x = [1,2]
17 # plt.bar(x, seq_dtq, color='b')
18 # plt.bar(x, par_dtq, color='y')
19 plt.bar(x, [seq_dtq, par_dtq], width=0.5)
20 plt.xticks(x, ('Sequential', 'Parallel'))
21 # plt.xticks(x, ("Data-to-query"))
22 plt.xlim(0.5, 2.5)
23 plt.ylabel("Time (s)")
24 plt.tight_layout()
25 print((1 - par_dtq/seq_dtq)*100)

181

26 print((par_dtq - seq_dtq)/seq_dtq*100)
27 print((seq_dtq/par_dtq)-1)
28 print(seq_dtq, par_dtq)
29 plt.show()
30 # plt.savefig("./asdf.pdf", format="pdf")

test_system/bloom_false_positive/main.py

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 # plt.rc('font',family='Verdana')
5 plt.rcParams["font.family"] = "Verdana"
6 plt.rcParams["font.size"] = 20
7

8 # data_sizes = [16384, 32768, 65536, 131072, 262144, 524288]
9 data_sizes = ['16384', '32768', '65536', '131072', '262144', '524288']
10

11 semi = [167, 176, 183, 196, 203, 208]
12 bloom = [204, 178, 191, 197, 235, 276]
13

14

15 false_positive_rate = []
16

17 for i in range(6):
18 false_positive_rate.append((float(bloom[i]-semi[i]) / float(semi[i]) *

100.0))↪→

19

20 plt.bar(np.arange(6), false_positive_rate)
21

22 labs = ["$2^{" + str(int(np.math.log2(int(d)))) + "}$" for d in data_sizes]
23

24 plt.xticks(np.arange(6), labs, rotation='45')
25 plt.xlabel("Data size", labelpad=10)
26 plt.ylabel("Extra rows (%)", labelpad=10)
27 plt.show()
28

29 print(2**14)
30 # ** 16384
31 # bloom = 204
32 # semi = 167
33

APPENDIX B. TEST SYSTEM SOURCE CODE 182

34 # ** 32768
35 # bloom = 178
36 # semi = 176
37

38 # ** 65536
39 # bloom = 191
40 # semi = 183
41

42 # ** 131072
43 # bloom = 197
44 # semi = 196
45

46 # ** 262144
47 # bloom = 235
48 # semi = 203
49

50 # ** 524288
51 # bloom = 276
52 # semi = 208

H
åvard O

la Eggen &
 K

ristian A
ndersen H

ole
A

n evaluation of join-strategies in a distributed M
ySQ

L plugin architecture

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Håvard Ola Eggen & Kristian Andersen Hole

An evaluation of join-strategies in a
distributed MySQL plugin architecture

Master’s thesis in Computer Science
Supervisor: Jon Olav Hauglid

June 2019

	List of Tables
	List of Figures
	Introduction
	Problem

	Theory
	Distributed database systems
	Distributed queries
	Distributed join-queries
	Previous work
	Methods
	Distributed hash-join
	Distributed sort-merge join
	Semi- and Bloom-join

	State-of-the-art
	ClustrixDB
	MySQL Federated Storage Engine
	MySQL Cluster
	CockroachDB
	Google Spanner
	MemSQL
	Apache Ignite SQL
	Conclusion

	Design
	Legacy system architecture
	Life of a query
	Plugin overview
	Metadata model

	Join types
	Join strategies
	Node communication
	Data-to-query
	Semi-join
	Relational algebra
	Our semi-join method
	One partitioned table
	Multiple partitioned tables

	Bloom-join
	Bloom-join master
	Bloom-join slave

	Hash redistribution strategy
	Hash function

	Sort-merge join
	Sorting
	K-way merge
	Merge-join

	Architectural changes to support the join strategies
	Modularization
	Modifications to the execution model

	Hypotheses
	Join selectivity
	Value distribution
	Data distribution skew
	Slow networks

	Implementation
	Architectural changes
	New execution model

	Data-to-query
	Semi-join
	One partitioned table (n=1)
	Recursive distributed queries (n=2)

	Bloom-join
	Bloom-filter library
	Shipping the filter
	Bloom-join master
	Bloom-join slave procedure

	Hash redistribution
	Master
	Slave
	Hash function

	Sort-merge join
	K-way-merging
	Merge joiner

	Optimization
	Parallelization of interim table insertion

	Evaluation
	Measuring performance
	Dataset
	Selectivity of join
	Distribution of values

	Test setup
	Automation of tests

	Results
	Virtual machines on a local network
	Horizontal scalability
	Vertical scalability
	Distribution of values
	Selectivity
	Semi vs Bloom

	Slow network simulation
	Bandwidth
	Latency

	Physical machines
	Discussion

	Conclusion
	Future work
	Further testing
	Speeding up inserts
	Closer integration with MySQL
	Join algorithms
	Hybrid join strategies
	More Join types
	Consistency

	Bibliography
	Appendix Lundgren plugin source code
	Appendix Test system source code

