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Abstract

In recent years, considerable progress has been made towards a vehicle’s ability to operate

autonomously. An end-to-end approach attempts to achieve autonomous driving using a

single, comprehensive software component. Recent breakthroughs in deep learning have

significantly increased end-to-end systems’ capabilities, and such systems are now consid-

ered a possible alternative to the current state-of-the-art solutions.

This thesis examines end-to-end learning for autonomous vehicles in diverse, simulated

environments containing other vehicles, traffic lights, and speed limits; in weather condi-

tions ranging from sunny to heavy rain. Moreover, the thesis further aims to explore some

of the uncertainties regarding the implementation of an end-to-end system. Specifically,

how the system’s overall performance is affected by the size of the training dataset, the

allowed prediction frequency, and the number of hidden states in the system’s recurrent

module.

The thesis proposes an end-to-end architecture combing a traditional Convolutional Neural

Network with a recurrent layer, to facilitate the learning of both spatial and temporal rela-

tionships. The system is trained using expert driving data from various simulated settings

and evaluated by its real-time driving performance in unseen simulated environments.

The results of the thesis indicate that end-to-end systems can operate autonomously in

simulated environments, in a range of different weather conditions. Additionally, it was

found that using ten hidden states for the system’s recurrent module was optimal. The

results further show that the system was sensitive to small reductions in dataset size and

that a prediction frequency of 15 Hz was required for the system to perform at its full

potential.
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Sammendrag

I de siste årene er det gjort betydelige fremskritt mot et kjøretøys evne til å operere au-

tonomt. En ende-til-ende-tilnærming forsøker å oppnå autonom kjøring ved hjelp av en

enkel, omfattende komponent. Nylige gjennombrudd i dyp læring har økt kapasiteten til

ende-til-ende systemer, og de anses nå som et mulig alternativ til dagens løsninger.

Denne oppgaven undersøker ende-til-ende-læring i ulike, simulerte miljøer som inneholder

andre kjøretøyer, trafikklys og fartsgrenser – i værforhold som varierer fra sol til kraftig

regn. Videre undersøker oppgaven noen av usikkerhetene tilknyttet implementeringen

av et ende-til-ende-system. Mer spesifikt undersøker oppgaven hvordan systemets ytelse

påvirkes av størrelsen på treningsdatasettet, den tillatte prediksjonfrekvensen, og antall

skjulte tilstander i systemets tilbakevendende modul.

Avhandlingen foreslår en ende-til-ende-arkitektur som kombinerer et konvolusjonelt nevralt

nettverk med et tilbakevendende nettverk for å lære romlige og tidsmessige relasjoner.

Systemet trenes opp ved hjelp av menneskelig kjøredata fra ulike simulerte miljøer, og

evalueres på grunnlag av sanntidsytelsen i usette, simulerte miljøer.

Resultatene viser at ende-til-ende-systemer kan operere autonomt i simulerte miljøer, i en

rekke forskjellige værforhold. Videre viste resultatene at ti skjulte tilstander for systemets

tilbakevendende modul var optimalt. I tillegg viser resultatene at systemet var følsomt

overfor små reduksjoner i datasettstørrelsen, og at en prediksjonsfrekvens på 15 Hz var

nødvendig for at systemet skulle operere optimalt.
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CHAPTER1

Introduction

This chapter introduces the thesis by giving a short summary of the motivation and back-

ground in Section 1.1. Section 1.2 formulates the research questions and research objec-

tives, while section 1.3 presents the contributions of the work. Finally, Section 1.4 outlines

the structure of the thesis.
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Chapter 1. Introduction

1.1 Background and Motivation

We are currently at the brink of a new paradigm in human travel: the fully autonomous,

self-driving car. Only 50 years ago, cars were completely analog devices with almost

no mechanisms for assisting the driver. Over the decades, additional features, controls,

and technologies have been integrated, and cars have evolved into exceedingly complex

machines.

In recent years, substantial progress has been made towards a vehicle’s ability to operate

autonomously. Primarily, two different approaches have emerged. The prevailing state of

the art approach is to divide the problem into a number of sub-problems and solve them

by combining techniques from computer vision, sensor fusion, localization, control theory,

and path planning. This approach requires expert knowledge in several domains and often

results in complex solutions, consisting of several cooperating modules.

Another approach is to develop an end-to-end solution, solving the problem using a single,

comprehensive software component, e.g., a deep neural network. A technique for training

such a system is to employ imitation learning. This entails studying expert decisions in

different scenarios, to find amapping between the perceived environments and the executed

actions. While some believe that the black-box characteristics of such systems make them

untrustworthy and unreliable, others point to recent years’ advances in deep-learning and

argue that end-to-end solutions show great potential.

An additional topic of discussion entails which type of sensors an autonomous vehicle

requires. Some believe that it is necessary to use sophisticated sensors such as LiDARs and

radars, alongside regular cameras. Others argue that since humans only use their eyes when

driving, a collection of cameras provide a sufficient amount of information. This thesis will

explore the possibilities of end-to-end systems using only visual cues from cameras.

2



1.2 Objectives and Research Questions

1.2 Objectives and Research Questions

The overall goal of this thesis is to research an end-to-end system’s ability to drive au-

tonomously in diverse, simulated environments. The proposed system is to be rigorously

tested in both urban and high-speed environments, in weather conditions ranging from

sunny to heavy rain. Moreover, the system is to be tested at different times of the day,

evaluating its ability to handle different light conditions. Thus, the following research

goals have been formulated:

RG1: Research an end-to-end system’s ability to drive autonomously in urban environ-

ments containing other vehicles, speed limits, and traffic-light regulated intersections.

RG2: Research an end-to-end system’s ability to operate autonomously on highways

alongside other vehicles.

RG3: Research an end-to-end system’s ability to operate in challenging weather and light

conditions.

Additionally, this thesis aims to explore some of the uncertainties regarding the imple-

mentation of an end-to-end system. Specifically, how the system’s overall performance

is affected by the size of the training dataset, the allowed prediction frequency, and the

number of hidden states in the system’s recurrent module. The size of the training dataset

constrains how many examples the system is allowed to learn from, while the prediction

frequency limits how many control-signals the model can produce each second. The num-

ber of hidden states regulates how many timesteps the system is able to ”look back”, thus

constraining the length of the temporal dependencies the system can utilize. Hence, the

following research questions have been formulated:

RQ1: How does the number of hidden states in the system’s recurrent module affect the

overall performance?

RQ2: How does the size of the training dataset affect the system’s overall performance?
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RQ3: How does the system’s prediction frequency influence the overall performance?

1.3 Contributions

In the early work of this thesis, we tested whether an end-to-end system operating in sim-

ulated urban environments could improve its performance by utilizing temporal depen-

dencies between subsequent visual cues. This was done by comparing two end-to-end

architectures: a traditional Convolutional Neural Network and an extended design com-

bining a Convolutional Neural Network with a recurrent layer. The results from the pre-

liminary work were presented in (Haavaldsen, Aasboe, and Lindseth, 2019) and submitted

to the Norwegian AI Society (NAIS) symposium, which took place on May 27-28, 2019,

at NTNU in Trondheim. The paper was accepted as a full paper alongside an oral presen-

tation and is currently in the process of being published in Springer’s CCIS series. The

paper can be read in Appendix A.

The proposed system in this thesis is a continuation of the work presented in (Haavaldsen,

Aasboe, and Lindseth, 2019). The thesis seeks to combine different aspects from recent re-

search to create a versatile end-to-end system able to operate in both diverse environments

and challenging weather conditions. A lot of the research done in end-to-end learning for

autonomous vehicle control today are limited to specific environments or a narrow range

of weather conditions.

Furthermore, we seek to combine the use of navigational commands as network input and

the exploitation of temporal dependencies between subsequent images. There have been

no attempts - to our knowledge - to combine both techniques in one system. Hopefully,

this can lead to a more complete end-to-end system.

Finally, by using an automated evaluation procedure, we hope to quantify the effect from

some of the design choices typically made when implementing an end-to-end system for

autonomous vehicle control. The proposed systems from related research are, more often

than not, presented without explanations regarding some of the important design decisions,
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e.g., the number of hidden states in a recurrent layer.

1.4 Thesis Outline

This section includes an overview of how the thesis is structured.

Section 1: Introduction

Contains an introduction to the problem the thesis aims to solve, as well as the

research objectives, research questions, and the contributions of the thesis.

Section 2: Background

Covers related work, and introduces relevant theory for this thesis.

Section 3: Methodology

Describes the proposed system architecture, and explains training and testing of the

system.

Section 4: Results

Describes the results of the experiments.

Section 5: Discussion

Contains a discussion of the choice of training data, the chosen simulator, and the

system architecture. Additionally, the experimental results, consistencywith related

work, and fulfillment of the research questions are discussed.

Section 6: Conclusion and Further Work

Concludes the work, and proposes areas that could be further explored.
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CHAPTER2

Background

This chapter covers relevant theoretical aspects and history related to the thesis. Section 2.1

introduces the concepts behind artificial neural networks, while Section 2.2 explains some

of the different state-of-the-art artificial neural network architectures. Important aspects of

autonomous vehicle control and related work are discussed in Section 2.3 and Section 2.4,

respectively. Finally, Section 2.5 introduces pertinent software and hardware to the thesis.
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Figure 2.1: Structure of a Neural Network.

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computational model loosely inspired by the bio-

logical brain. The model can learn complex and non-linear patterns by training on labeled

data, generally without being programmed with any task-specific rules. The original goal

of the ANN approach was to solve problems in the same way that a human brain would.

Thus, an ANN can be viewed as a directional and weighted graph in which the nodes rep-

resent neurons, and the edges represent axons.

2.1.1 Network Structure

An ANN consist of layers of neurons connected by weighted edges. A network contains

one input layer, one output layer, and one or several hidden layers. Each layer can contain

any number of nodes. The input layer feeds the network’s input into the next layer, the

hidden layers transform the input into useful output, and the output layer produces the

final prediction. The structure of an ANN is shown in Figure 2.1.
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2.1 Artificial Neural Networks

Figure 2.2: Activation of a neuron.

A single neuron can receive multiple inputs and produces a single output. The output is

calculated by summing the weighted inputs, and passing the sum through an activation

function, as seen in Equation 2.1. The addition of a bias to the sum of the weighted input

allows the network to shift the activation functionwith a constant. The structure of a neuron

is shown in Figure 2.2.

y = f(

n∑
i=1

xiwi + b) (2.1)

Activation functions

To introduce non-linearity to a neural network, activation functions are applied to the out-

put of each neuron. Typically, one wants the function to constrain the output value, be

differential, and monotonic. One of the most straightforward activation function is the

step-function seen in Equation 2.2. The function sets the output value to zero if the input is

negative; otherwise, the output will be one. A drawback to this activation function is that a

small change in the weights can result in either a large change, or no change, in the output.
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f(z) =

1 if z ≥ 0

0 if z < 0

(2.2)

Another alternative is the Rectified Linear Unit activation function (ReLU), seen in Equa-

tion 2.3, which is one of the most commonly used activation functions. If the input is

smaller than 0 the output becomes 0, else, it remains the same. Opposed to the step func-

tion, ReLU has no upper constraints, and it has a smaller chance of vanishing gradients.

f(z) = max(0, z) (2.3)

The sigmoid activation function, seen in Equation 2.4, is a commonly used activation func-

tion that transforms the input value to a number between 0 and 1. It is monotonic and has

a simple derivative, making it easy to work with. One drawback with sigmoid is that its

derivative has a short range, which can lead to information loss in deeper neural networks.

Furthermore, the sigmoid function can result in suboptimal weight convergence during

training, one of the reasons being that strongly negative numbers all comes out very close

to zero.

f(z) =
1

1 + e−z
(2.4)

An alternative to the sigmoid function is the Hyperbolic Tangent (tanh) activation function,

seen in Equation 2.5. The output of the tanh function looks similar to the sigmoid function,

but the output ranges from -1 to 1. Thus, strongly negative inputs will map to negative

outputs. Moreover, only input values close to zero will output close to zero values, making

it easier for the weights in the network to converge during training.

f(z) = tanh(z) (2.5)
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2.1.2 Training

After a network architecture is decided, the network needs to be trained. During training,

the weights between the neurons are adjusted in order to minimize the prediction error on

the training data.

Training Procedure

First, the weights and biases are initialized. They can be chosen randomly or by a heuristic,

for instance, using a normal distribution. Then, for each input-output pair in the training

set, the input is forward propagated through the network to produce a prediction, and a

prediction error is calculated using a loss function.

Next, backpropagation is performed to find the optimal weight change for the network.

Backpropagation calculates the gradients – that is, the partial derivatives of the loss func-

tions in regards to the weights – in each successive neuron and backpropagates the error

throughout the network, adjusting the weights according to the gradients. The specific

weight update depends on the chosen optimization function.

One epoch is when all the training examples are passed both forward and backward through

the neural network once. Usually, the training procedure performs several epochs before

the weights that yield the minimum loss are found.

Loss Functions

A loss function calculates the difference between the output of an ANN and the target

value. There exist many different loss functions for different problem types. Regression

loss functions are usually used when the output is continuous, while classification functions

are usually used when the output is discrete.
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MSE Mean Squared Error (MSE) is a regression loss function. It measures the mean

absolute value of the difference between the target and the prediction. The MSE equation

is shown in Equation 2.6.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.6)

RMSE Root Mean Squared Error (RMSE) is similar to the MSE loss function, but takes

the square root of the mean squared error, making the scale of the error similar to the target

scale. This functionality has implications for the loss functions, namely that the RMSE

weights large errors more than MSE.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.7)

Optimizers

Optimization algorithms are an essential part of a neural network’s training and are math-

ematical functions dependent on the learnable parameters in the network. The objective of

an optimizer is to update the weights such that the loss function is minimized.

Stochastic Gradient Descent The Stochastic Gradient Descent (SGD) optimizer calcu-

lates weight gradients and updates the weights for each data point. The gradient of a weight

is the partial derivative of the loss in regards to the weight. The weights are then updated

with a factor of the gradient, determined by the learning rate. The weight update used in

SGD is shown in Equation 2.8

wt+1
i,j = wt

i,j − α
∂L

∂wt+1
i,j

(2.8)
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(a) Large learning rate (b) Small learning rate

Figure 2.3: The effect of the learning rates. Figure (a) illustrates a large learning rate that may lead
to suboptimal weight convergence. Figure (b) illustrates a small learning rate that lead to slower
training and the risk of being stuck in a local minima.

Adam Optimizer The Adam optimizer is an extension of SGD. It calculates an adaptive

learning rate based on the first moment (mean) and the second moment (variance) of the

gradient. It maintains one learning rate for each parameter. Adam is considered to be com-

putationally efficient, suitable for a large number of parameters, good at handling sparse

gradients, and often require little tuning of the hyperparameters. Adam’s weight update can

be seen in Equation 2.9, where m̂t and v̂t is the first and second moment of the gradient,

and ϵ is a constant with default value 10−8

wt+1 = wt − α√
v̂t + ϵ

m̂t (2.9)

Learning Rate

The learning rate determines how much the weights are updated during training. If the

learning rate is too low, many weight updates are required to reach a minimum, resulting

in slow training of the network. Furthermore, it increases the chance of the network being

trapped in a local minimum. On the other hand, if the learning rate is too large, the net-

work’s weights may never converge. Instead, they oscillate between values as a result of

too large weight updates. The learning rate is denoted as α in Equation 2.8 and Equation

2.9, and an illustration of different learning rates can be seen in Figure 2.3.
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Momentum

Loss surfaces often contain plateaus, as seen in Figure 2.3. Plateaus can increase the risk of

the weights being stuck in a local minimum. Adding momentum to the weight update helps

to alleviate this problem. The idea is to use a portion of the previous gradient when updating

the weights. This may also speed up the convergence. Weight update with momentum is

seen in Equation 2.10, where γ dictates how much the weigth update is affected by the

previous gradient.

wt+1
i,j = wt

i,j − α
∂L

∂wt
i,j

+ γ∆wt−1
i,j (2.10)

2.1.3 Regularization

When training is complete, the neural network should be able to perform well on unseen

data. However, this may not always be the case. A model that performs well during train-

ing but worse on unseen data may be overfitted. Overfitting implies that the network has

learned patterns that are too specific to the training data. On the other hand, a model that

performs poorly on both the training and test data may be underfitted. Underfitting implies

that the model was not able to learn the necessary patterns in the domain. This can be due to

poor network architecture or too little training. Overfitting is illustrated in Figure 2.4c and

underfitting is illustrated in Figure 2.4a. To acquire good generalization, a network must

train enough to make good predictions, but not so much that it overfits, illustrated in Figure

2.4b. There are several regularization techniques to prevent a network from overfitting.

Early Stopping One way to prevent overfitting is to adjust the number of times the

dataset is used to adjust the weights. This technique is called early stopping, and the goal

is to measure how well a model performs on unseen data. The idea is to split the training

data into a training set and a validation set. For each iteration of the training, the training

set is used to update the weights, while the validation set is used to measure the network
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(a) Underfit (b) Ideal fit (c) Overfit

Figure 2.4: Underfitting vs. overfitting, (a) illustrates an underfitted model, (b) illustrates an ideal
fit, while (c) illustrates of an overfitted model.

Figure 2.5: Early stopping. The blue graph represents the training loss, while the red graph repre-
sents the test loss. The cross indicates the smallest test loss and indicates where the training should
stop.

performance. Using a separate dataset to measure the performance, ensures that the model

can be evaluated on data it has never seen during training. When the validation loss stops

decreasing, the training should stop, such that the final model will be the one with the best

validation performance. In Figure 2.5, the cross indicates the smallest validation error,

where the training should stop.

Dropout Dropout is another regularization technique. The idea is to drop arbitrary neu-

rons and their connections during training. This results in different thinned versions of the

network, as illustrated in Figure 2.6. Dropout prevents internal connections in the network

from becoming codependent on each other. During testing, the model uses the original

network, where the weights are the average from all the networks from training.
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(a) Original network without dropout (b)A thinned version of the original net-
work after applying dropout

Figure 2.6: Example of dropout in a neural network

Data Augmentation Data augmentation is a technique to synthetically expand the dataset

by adding transformed versions of the data. Data augmentation is a valuable technique in

deep learning, where the models require large datasets to perform well. The data sam-

ples should be transformed such that it keeps the valuable features in the data but expand

the dataset. For instance, a model that classifies animal species should be able to make a

prediction regardless of the animal’s pose and rotation in the image. In this case, data aug-

mentations as flipping, changing the perspective, and rotating the images can be useful, as

seen in Figure 2.7d and Figure 2.7e. Data augmentation is especially helpful when work-

ing with images, videos, and text sets, and can make classifications more robust against

irrelevant conditions.

2.2 ANN Architectures

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is a particular class of ANNs, often used for image

analysis and classification. It uses images directly as input and learns to extract a hierarchy

of relevant features that can be used for classification. Where a typical ANN would flat-

ten the input to a one-dimensional vector, a CNN keeps the original structure, preserving

the spatial structure of the input. A CNN can learn which features that define an object

independently of its location in the image.

16



2.2 ANN Architectures

(a) Original image

(b) Adjusted lightness (c) Adjusted hue

(d) Flipped image (e) Perspective transformation

Figure 2.7: Examples of image transformations
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Figure 2.8: The general architecture of a CNN.

(a) Convolution (b) Depth of output

Figure 2.9: Convolution and depth of output

A CNN consists of three main components: convolutional layers, pooling layers, and fully

connected layers at the end. The architecture of a CNN is shown in Figure 2.8.

Convolutional Layers

The purpose of the convolutional layers is to extract features from the input. It slides a filter

across the input while computing the dot product to produce a feature map. The filters act

as feature detectors. Each layer can have several different filters, and the number of filters

dictates the depth of the output. A convolutional layer is illustrated in Figure 2.9. The filter

moves a given amount between each convolution, defined by the stride. Additionally, an

input may be padded to prevent a dimension reduction.
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Figure 2.10: Example of max pooling.

Pooling Layer

The purpose of the pooling layers is to reduce the dimensions of the input feature maps.

This leads to a reduction of parameters in the network, which improves the computational

efficiency and controls overfitting. It also improves the network’s invariance to small trans-

formations in rotation and position. The pooling is done by sliding a window over the fea-

ture maps, producing a single output for each step. There exists different types of pooling:

max pooling (selects the maximum value in the region), average pooling (outputs the av-

erage value of the region) and sum pooling (outputs the sum of the region). An example

of max pooling can be seen in Figure 2.10.

Fully Connected Layer

At the end of the convolutional network, one or several fully connected (FC) layers are

added. The output of the previous layers represent the high-level features in the image.

The FC layers use these features to classify the input image.

2.2.2 Recurrent Neural Networks

Recurrent Neural Network (RNN) is another subclass of ANNs. Opposed to feed-forward

neural networks, RNNs can create connections between units in both directions, as seen in
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(a) A folded RNN. (b) An unfolded RNN.

Figure 2.11: The structure of a simple RNN. The network consists of an input, a hidden node and
an output. The hidden node has a weight connected to itself. This allows the hidden node to receive
information from previous time steps. Figure 2.11a shows an illustration of the network, and the
right figure 2.11b illustrates the network unfolded over time.

Figure 2.11. This gives the network temporal dependencies, making it able to learn from

sequential data.

The RNN can operate on vector sequences in both the input and output of arbitrary weights.

It can handle one-to-one, one-to-many, many-to-one, and many-to-many input/output re-

lationships, making it suitable for various applications, such as classifying a text (many-

to-one), captioning an image (one-to-many), analyzing a sequence to make a classification

(many-to-one), and speech recognition (many-to-many).

Long Short-Term Memory Neural Networks

Long Short-Term Memory (LSTM) Neural Networks is a type of RNN that excels at han-

dling both long-term and short-term dependencies. It follows the general idea of an RNN,

but the recurrent module has a unique structure.

The LSTM cell has three inputs: a hidden state, a data input, and a cell state. The cell state

holds long-term dependencies. At each time step, important memory is kept, and new

relevant information is added. The hidden state interacts with the data and chooses what
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Figure 2.12: The LSTM architecture.

information should be forgotten, and what should be added to the cell state. The output is

a filtered version of the new cell state. The architecture of an LSTM can be seen in Figure

2.12.

2.3 Autonomous Vehicle Control

2.3.1 Mediated Perception

Mediated perception is defined by Chen et al. (2015) as an approach that divides the task

of autonomous vehicle control into several sub-problems and solves them independently

by combining techniques from computer vision, sensor fusion, localization, control theory,

and path planning. The results from each component are combined to create a cohesive,

high-dimensional, representation of the vehicle’s surrounding, that is passed to a decision

system that chooses the vehicle’s next action. Mediated perception is considered to be

the current state of the art approach, and are incorporated in most autonomous vehicles

developed by the industry today.

The different sub-problems in mediated perception is often researched separately. Aly

(2008) studies real-time detection of lane markings in urban settings, while Felzenszwalb

et al. (2010) and Lenz et al. (2011) studied detection of cars and marking them with bound-
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ing boxes. These approaches can suffer from false detections, and Geiger et al. (2014) and

Zhang et al. (2013) integrate different sources to create a world representation and pro-

poses a probabilistic generative model using various detection results to create the final

world representation.

Even though mediated perception is considered the current state-of-the-art approach, there

are some limitations to this method. Mediated perception compute a high-dimensional

representation of the vehicle’s surrounding. However, the task of driving a car only requires

manipulation of speed and direction. Taking this into account, along with the fact that only

a small portion of the detected objects may be relevant, this world representation may

contain redundant information and unnecessary complexity. Moreover, the information

from the different components often needs to be converted into the same representation

format, which can add noise to the data. Lastly, these approaches require a combination

of sensors, e.g., LiDAR, GPS, radars, and very accurate maps, to parse a scene reliably,

making it a costly approach.

2.3.2 End-to-end Learning

End-to-end learning is another approach in vision-based autonomous vehicle control which

tries to solve the problem using a single, comprehensive software component, e.g., a deep

neural network. Such a system automatically learns to map sensor input to actions.

The approach comes with a great advantage, namely the capability to automatically learn

which features of the input that is relevant. Deep learning systems’ ability to automatically

extract important features have shown to result in significant performance boosts in other,

similar domains. Moreover, feature extraction is known to be a cumbersome process, and

can easily bottleneck a system if not done right.

Even though mediated perception approaches are considered the current state-of-the-art

solutions, recent breakthroughs in deep learning have significantly increased end-to-end

systems’ capabilities, and such systems are now considered a possible alternative.
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End-to-end via Imitation Learning

Imitation learning is a supervised learning technique that aims to train a model to mimic

an expert’s behavior. The model is trained using a dataset containing observations and

associated expert decisions. Given an observation oi, the model predicts an action âi =

F (oi, θ). The objective is to optimize a set of parameters θ, such that the difference between

the estimated action, âi, and the expert’s action, ai, is minimized. This can be expressed

as Equation 2.11.

minimize
θ

∑
i

L(F (oi; θ), ai) (2.11)

This technique assumes that the expert action is solely dependent on the observation. How-

ever, this does not hold for all driving scenarios. Imagine a situation where the model

should predict a steering angle in an intersection. Without knowing the user’s intent, the

model has no way of knowing whether to turn right, left, or continue straight ahead. Thus,

the model should incorporate the user’s intent, hi in the decision making. This can be

expressed as Equation 2.12.

minimize
θ

∑
i

L(F (oi, hi; θ), ai) (2.12)

Limitations in End-to-end Learning

The end-to-end learning approach is a promising research field in autonomous research

control, but there exist several challenges when choosing this approach.

Firstly, while its reflexive behavior makes it suitable for the task of autonomic vehicle

control, the direct mapping from the input sensors to the predicted output also makes high-

level planning more challenging than in mediated perception. For instance, a lane change

from the system’s perspective would be a sequence of small changes in the steering in one
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direction and then in the other direction for some time. This level of abstraction neglects

to capture what is truly going on and increases the difficulty of the task.

Moreover, end-to-end approaches utilize deep neural networks. Thus, they are faced with

the same challenges deep learning models exhibit today, such as possible convergence into

a local minimum and vanishing gradients (Shalev-Shwartz et al., 2017). Some general

limitations of deep learning are mentioned below.

Training Efficiency A complex problem often consists of several different and separate

subproblems. It can be challenging and inefficient to solve all these problems simultane-

ously using a single model. (Mnih et al., 2015) used a deep reinforcement approach, where

the module responsible for handling visual representation and the module representing the

policy were trained together. It can be argued that it would be more efficient to train the

modules independently or to start with a pre-trained neural network (Krizhevsky et al.,

2012).

The Black-box Problem End-to-end learning can essentially be viewed as a sophisti-

cated curve-fitter, training on examples to estimate a general function. It can be challenging

to predict how an end-to-end model will respond when faced with an unexpected outlier

value. Additionally, it can be troublesome to reason about the cause of a model failure,

thus making it difficult to prevent future failures of a similar nature. This can be a sig-

nificant challenge in some critical environments, e.g., a medical diagnostic system or an

autonomous vehicle.

A Data Hungry Approach For an end-to-end approach to work well, a large and varied

dataset is often required. For applications such as autonomous driving, that has a wide

area of scenarios, it can be challenging to get a large enough dataset to cover necessary

scenarios and conditions.
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Hierarchical Structure Several end-to-end models utilize recurrent neural networks to

learn temporal dependencies. (Marcus, 2018) finds that recurrent neural networks currently

have no natural understanding of hierarchical structure. As an example, while a language

model only views sentences as sequences, it is often argued that languages have a hierar-

chical structure, where larger structures are constructed recursively out of smaller compo-

nents. (Lake and Baroni, 2017) tested various RNNs’ ability to generalize. The models

were trained in a many-to-many relationship that generated commands from a sentence.

They showed that an RNN can generalize well if the commands in the training data and

test data are similar, but that when the network requires systematic compositional skills,

an RNN ”fail spectacularly”. This drawback is likely to apply to other domains as well,

e.g., application in planning and motor control. The main problem is that deep learning

models learn dependencies in flat structures, and are therefore forced to learn sub-optimal

techniques to compensate for this downfall (Marcus, 2018).

2.3.3 Training and Testing

Training and testing models for autonomous driving in the physical world can be expen-

sive and impractical. Gathering a sufficient amount of training data requires both human

resources and suitable hardware, and it can be challenging to organize and capture the

desired driving scenarios effectively. Moreover, the cost of unexpected behavior while

testing a model may be colossal.

One possible alternative is to trainmodels and test models using publicly available datasets.

There exist several large open-source datasets specialized for training self-driving cars.

The largest one, BDD100K(Yu et al., 2018) released by UC Berkely, contains 100,000

video sequences of driving in diverse environments, each approximately 40 seconds. The

dataset contains rich annotations such as image tagging, marking of drivable areas, road ob-

ject bounding boxes, lane markings, and full-frame instance segmentation. The videos and

their trajectories may be useful for imitation learning of driving policies, but the annota-

tions can also be used to test a model’s ability to solve specific sub-problems of autonomous
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driving as object detection, lane marking prediction, and image segmentation. However,

this approach does not solve the challenges related to real-time testing of the model in the

physical world.

A third alternative is to train and test models in a simulated environment. A simulator can

effectively provide the variety of corner cases needed for training, validation, and testing;

while removing any safety risks and material costs. The drawback, however, is the loss of

realism. A simulation is only an imitation of a real-world system, and a model trained on

only simulated data may not be able to function reliably in the real world. Nonetheless, a

simulator can give a good indication of a model’s actual driving performance and serves

well for benchmarking different models. It is also common to run quality assurance tests

in a simulated environment before trying the model in the real world.

2.3.4 Data Augmentation

Deep learning is known to be a data-hungry approach, and data augmentation is often used

to artificially expand the dataset, as described in Section 2.1.3. In end-to-end learning for

autonomous vehicle control, the dataset is comprised of images, making it especially fitting

for data augmentation. However, certain domain-specific aspects constrains the use of data

augmentation.

When driving, properties such as lane choice, the pose of vehicles in the opposite lane, and

traffic rules holds valuable information. If these are lost in the augmentation, the quality

of the dataset can be reduced, hurting the end performance of the model. For instance,

horizontal flipping of the images will double the dataset and presumably improve a model’s

ability to follow lanes. However, it may also increase the risk of a model driving into the

opposite lane, and it can also lead to a weaker understanding of important traffic rules, e.g.,

right of way.

Moreover, if the vehicle’s camera system are fixed, some image properties – such as the

point of view, size, and rotation – holds valuable information. Consequently, it might hurt
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the model’s performance to train on transformed images that represent different camera

angles and skew. However, if a model is designed to apply for different camera setups; data

augmentations such as perspective transformations, skew, and zoom can be beneficial.

Even though augmentations such as rotational and perspective transformations can harm

the end performance, there exists several data augmentations that are beneficial. A ro-

bust model should be able to handle different light conditions and weather conditions, and

changing the brightness, adding blur, and generating shadows could help to achieve this.

Furthermore, adding images with hue transformations can help the model disregard the

color of other non-player vehicles. However, it can also refrain from learning important

color features in the data; for instance, the color of the lane lines.

2.4 Approaches in End-to-end Learning

There have been several advances in end-to-end learning for autonomous vehicles over

the last decades; the first approach was seen already in 1989. In 2003 a proof-of-concept

project called DAVE emerged. The authors trained a neural network that could steer a

radio-controlled (RC) vehicle around in a junk-filled alley while avoiding obstacles. DAVE

truly showed the potential of an end-to-end approach. Thirteen years later, NVIDIA de-

veloped DAVE-2, a framework with the objective to make real vehicles drive reliably on

public roads. DAVE-2 is the basis for many end-to-end approaches seen today.

In this section, important advances in end-to-end learning are discussed, especially those of

significance to the proposed method in this thesis. The early advances above are discussed,

as well as relevant end-to-end approaches that utilize conditional imitation learning, spatial

and temporal dependencies.
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Figure 2.13: The ALVINN architecture (Pomerleau, 1989).

2.4.1 ALVINN

An Autonomous Land Vehicle in a Neural Network (ALVINN) is the first known end-to-

end approach for autonomous vehicles and was published in 1989, (Pomerleau, 1989). At

that time, vision-based navigation algorithms were considered the state of the art approach.

Using a neural network was a novel approach, and ALVINN has inspired many end-to-end

approaches in recent time.

ALVINN consists of a fully connected network with three layers, and receives input from

a camera and a laser range finder and predicts a steering angle. The network’s input layer

has 1217 neurons: 960 neurons dedicated to handling road images, 256 neurons dedicated

to the laser input, and one neuron that holds information about the road intensity. The last

neuron is a feedback neuron and indicates whether the road is lighter or darker than the

non-road part of the image. Figure 2.13 presents the complete network architecture.

Results showed that ALVINN is able to follow real roads under certain conditions, with

almost as good results as that time’s vision-based navigation algorithms.
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2.4.2 DAVE

DARPA Autonomous Vehicle (DAVE) is a project sponsored by the US government from

2003. The objective of the project was to create a proof-of-concept of an end-to-end vehicle

system. The authors built an RC vehicle with two cameras mounted on each side of the car.

The car transmits the videos to a computer, which again controls the car via radio signals.

A neural network, consisting of six convolutional layers, controls the RC vehicle. The

network takes an image pair in YUV color space as input and predicts the steering angle as

output. It used hours of human driving data and trained the model for 18 epochs (LeCun

et al., 2005).

The DAVE system is able to drive through an alleyway filled with junk. On average, it can

avoid obstacles and navigate in an off-road setting for 20 meters without crashing (Lecun

et al., 2004). The project was considered a success and contributed to the decision of

continuing the research.

2.4.3 DAVE-2

DAVE-2 is an effort from NVIDIA to create a reliable self-driving vehicle that can safely

drive on public roads (Bojarski et al., 2016). The project bases its work on the findings in

(Lecun et al., 2004).

The authors propose using a CNN consisting of nine layers: one normalization layer, five

convolutional layers, and three fully connected layers. The network takes images with

YUV color space as input and predicts steering commands. Figure 2.14 shows the complete

architecture.

DAVE-2 collects data from three cameras mounted on a vehicle and reads the vehicle’s

corresponding steering commands via a CAN bus. A balanced training set was created by

carefully sampling data from 72 hours of human driving data - collected from various road

types and weather conditions. Furthermore, the training data was augmented with shifts
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Figure 2.14: The DAVE-2 architecture (Bojarski et al., 2016).

Figure 2.15: DAVE-2 Training the neural network (Bojarski et al., 2016).

and rotations such that the model could learn to recover from mistakes.

During training, images are fed into a CNN to predict a steering angle. The prediction

is compared to the actual steering angle, and the weights in the CNN are adjusted with

backpropagation to minimize the error. The system architecture is showed in Figure 2.15.

When training is complete, the model can generate steering commands from a centered

camera.

The results show that themodel can drive on trafficked roadswith or without lanemarkings,

parking lots, and unpaved roads. It also performs well with a small training dataset.
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2.4.4 End-to-end Driving via Conditional Imitation Learning

Current end-to-end approaches require that the action is entirely dependent on its envi-

ronments; this does not hold when the model needs to make navigational choices. Then,

the choice should also depend on the driver’s intent. (Codevilla et al., 2017) suggest an

end-to-end approach utilizing imitation learning to incorporate the drivers intent.

To solve the limitation of Equation 2.11, the authors introduceConditional Imitation Learn-

ing, which frees the model frommaking navigational decisions. Instead, navigational com-

mands are given as input during training, allowing the model to function in scenarios that

require decisions. This is expressed by Equation 2.13.

minimize
θ

∑
i

L(F (oi, ci; θ), ai) (2.13)

Here, the approximator F is represented by a deep neural network. Furthermore, the au-

thors introduce a new input c = c(h), where h represents the expert’s intentions, and c is

a control command given by the expert. The control command given by the expert is de-

pendent on the expert’s intention, and is therefore expressed as a function of h. By adding

an input, the model should be able to handle more scenarios than before and providing the

ability for real-time control of the model.

The network takes an image, the vehicle’s measurement, and a navigational command as

input, and predicts a steering angle and an acceleration. Two different architectures were

tested:

Command Input Network: In this architecture, the inputs are processed independently.

A CNN processed the image, and separate fully-connected networks processed the com-

mand and measurement inputs. The output from each network is concatenated and sent

through a fully connected network. This architecture can handle both continuous and dis-

crete commands, but also introduces the risk of user commands being ignored at test time.

The Command Input Network is shown in Figure 2.16.
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Figure 2.16: Command Input Network Architecture: Command is processed as an input (Codevilla
et al., 2017).

Figure 2.17: Branched Network Architecture: The command works as a switch that activate the
correct sub-module (Codevilla et al., 2017).

Branched Network: This network assumes discrete commands C = c0, ..., ck. In this

network, the image and measurements are still processed separately by a CNN and a fully

connected network. However, there is one fully connected network for each command

to determine the final action. Each fully connected network is a ”specialist” network for

one specific command. The outputs from the image network and measurement network

are concatenated and sent to the network that corresponds to the command c. Here the

command works as a switch; that way, the command will always have an impact on the

results at test time. Figure 2.17 shows the architecture of the Branched Network.

The two approaches were both tested in the CARLA simulator and with an RC vehicle in a

residential area. The branched model outperformed the goal-oriented model and the other

benchmark models significantly.
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2.4.5 Adding Navigation to the Equation: Turning Decisions
for End-to-End Vehicle Control

(Hubschneider et al., 2017) examines an end-to-end approach that supports lane following,

obstacle avoidance, and has navigation abilities. The paper is inspired by (Codevilla et al.,

2017), and also tries to incorporate the user’s intent to the model. The authors suggest

using the turning signals of the vehicle as input to a neural network. Furthermore, they

suggest a modified network architecture to improve driving accuracy. Specifically, they

propose using three separate CNNs as encoders that take three following images to exploit

spatial dependencies between the frames.

The network takes an image input and a turn indicator as input such that the model can

be controlled in real time. To handle sharp turns and obstacles along the road the authors

propose using two additional images recorded severalmeters back to obtain a spatial history

of the driving data, and images captured 4 and 8 meters behind the current position is added

respectively. The architecture for the CNNs is a modified version of the architecture in

2.4.4, which they call DriveNet and can be seen in 2.18. This model takes three RGB

images as input to account for the spatial history. Each image is run through separate

encoders simultaneously. The learned features are sent to a stack of fully connected layers.

At the second fully connected layer, the turning signals are added as input. To make sure

the turn indicators have sufficient effect on the network, a constant factor, λ, is added to

scale the weight of the turn indicator. Based on evaluation, the constant is set to λ = 100 .

The authors also experiment with using max pooling instead of stride for dimension re-

duction to prevent losing features during strides. They also tested using 3x3 convolutions

instead of 5x5 convolutions to reduce the complexity but keeping the expressiveness. The

final model combines 2x2 max pooling and 3x3 convolutions and resulted in the architec-

ture seen in Table 2.1.

The authors collected 5 hours of driving data, using a single centered camera and the same

driver for all the data. The data was captured in various light conditions and street types.
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Figure 2.18: Complete architecture of DriveNet (Hubschneider et al., 2017)

Type Kernel Size Stride Output
Input - - 52x265x3

Convolutional 3x3 1 50x263x24
Convolutional 3x3 1 48x261x24
Max Pooling 2x2 2 24x130x24
Convolutional 3x3 1 22x128x36
Convolutional 3x3 1 20x126x36
Max Pooling 2x2 2 10x63x36
Convolutional 3x3 1 8x61x48
Convolutional 3x3 1 6x59x48
Max Pooling 2x2 2 3x30x48
Convolutional 3x3 1 3x30x64
Convolutional 3x3 1 1x28x64

Table 2.1: Architecture of the DriveNet’s visual encoder.
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Images with distortions and shearing were added to extend the dataset. Moreover, various

yaw angles were added by cropping input images off-center.

The model was tested with speeds up to 100 km/h and a camera sample rate of 21 Hz,

which led to the vehicle moving at most 1.32 m at most between two frames. The paper

showed that utilizing three visual encoders had the best accuracy, while their network with

one visual encoder had the best performance time. The final model can perform reliable

lane following on a highway but struggles to position itself in the middle of the lane when

there are shadows on the road. It can perform and lane changes when triggered by a turn

indicator. However, it is not able to check if a lane change is safe; it completely trusts

the turn indicators. Furthermore, the model can drive around parked vehicles and tackle

oncoming vehicles in areas with narrow roads without lane markings.

2.4.6 End-to-End Deep Learning for Steering Autonomous Ve-
hicles Considering Temporal Dependencies (2017)

The approaches mentioned in the sections above all used CNNs to map each image input

independently into steering commands. While the results were good, none utilized the

temporal dependencies in the data.

(Eraqi et al., 2017) tries to utilize the temporal dependencies by combining a CNN with a

Long Short-TermMemory Neural Network (C-LSTM). Additionally, the authors proposed

to formulate the steering angle prediction as a classification task, imposing a spatial rela-

tionship between the output layer neurons. This was done by learning a sinusoidal function

to encode the steering angles.

The system takes images from a centered RGB camera and feeds it into a CNN. The CNN

learns important features and sends an output feature vector of length 2048 to an LSTM to

learn temporal dependencies between the frames. The output from the LSTM is sent to a

classification layer that predicts the steering angle. The authors found a sequence length

of 5 seconds of driving to be appropriate. Figure 2.19 shows the model architecture. The
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Figure 2.19: C-LSTM Architecture unrolled across time. The CNN extracts features from input
images. The feature vectors are sent to a stack of two LSTM layers. The sliding window allows the
same frame to be used in different states of the LSTM. Finally, the output is sent to a classification
layer that predicts the steering angle (Eraqi et al., 2017)

output from the LSTM is sent to a fully-connected layer with a tanh activation function.

This is where the final classification is performed. The authors suggest encoding the output

as a sin wave and letting the steering angle corresponding to the phase shift. This encoding

is given in Equation 2.14.

Yi = sin
(
2π(i− 1)

N − 1
− ϕπ

2ϕmax

)
, 1 ≤ i ≤ N (2.14)

Yi is the activation of neuron i, andN is the number of classes of the output layer. They use

N = 95 neurons and a max steering angle of ϕmax = 190◦. Gradual changes in steering

angle will then lead to gradual changes in the output layer’s activations.

During training, the ground truth steering angle is encoded as a sine wave, as seen in Equa-

tion 2.14. The loss is calculated as the root mean square error (RMSE) between the ground
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Figure 2.20: Encoding the sin wave to a driving steering angle and measuring training error. The
blue arrow represent training and the red arrow represent deployment (Codevilla et al., 2017).

truth sin wave and predicted wave. The loss is used in the backpropagation algorithm to

update the weights. During deployment, a decoder transforms the prediction from the Least

Squares to a predicted steering angle. This can be seen in Figure 2.20

The model is trained on 7.26 hours of human driving from a database by ”comma.ai” in

(Santana and Hotz, 2016). It had data of both highway and city driving in varying light

conditions.

The authors compared the results of their C-LSTM model with state-of-the-art CNN ap-

proaches, testing the systems on the publicly released database by comma.ai. Further-

more, the classification using sine wave fitting was compared to the traditional regression

approach. The results showed that the C-LSTM with sine wave fitting as classification

improved the angle prediction accuracy by 35 % and the steering stability by 87 %.

2.4.7 Deep Reinforcement Learning

Another hot topic of research in autonomous vehicle control is to develop an autonomous

agent using deep reinforcement learning.

Deep reinforcement learning agents solve Markov decision processes. In short, this entails

modeling the autonomous driving task as a process where an agent makes actions in an
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environment and receives a reward signal for said action. For lane following a reward

signal could, for instance, be the vehicle’s offset from the center of the lane, combined

with the vehicles traveled distance. However, creating such a heuristic can be challenging,

as the center of the lanemay not always be evident on different types of roads. Additionally,

there are many other factors which affect the systems overall performance when operating

a vehicle. It is not always easy to represent these factors as heuristic functions.

There has currently been limited research in deep reinforcement learning for autonomous

vehicle control, perhaps due to the safety concerns of training and testing deep reinforce-

ment agents. In order for such agents to learn, they need to explore the environment and be

able to make mistakes, which can be a dangerous and costly affair. However, Kendall et al.

(2018) published an article on this topic, Learning to Drive in a Day. The authors chose

the agent’s reward signal to be the vehicle’s forward speed and to terminate an episode

if the vehicle drove out of the road. The authors were able to teach a vehicle to perform

reliable lane following on a country-side road using one forward-facing camera after only

a handful of epochs. More specifically, the final model was able to learn to follow a 250m

long road in 11 epochs.

2.5 Software and Hardware

2.5.1 CARLA Simulator

In 2017, the selection of open source simulators suitable for autonomous vehicle research

was limited. Furthermore, the few available ones were quite restrictive in terms of cus-

tomization and control over the environment. Dosovitskiy et al. (2017) saw the need for

an open source simulator specifically designed for training and benchmarking autonomous

systems, and created CARLA (Car Learning to Act) (Dosovitskiy et al., 2017).

CARLA is an open-source simulator for autonomous driving research and provides digital

assets such as urban layouts, buildings, pedestrians, and vehicles. The simulator allows
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customization and control of vehicles and provides flexible setup of the environments: such

as type of sensors, number of vehicles, and weather conditions. CARLA is implemented

as an open-source layer over Unreal Engine 4 and is designed as a server-client system.

The server runs the simulation and renders the scene, while the client is an interface that

allows interaction between the autonomous agent and the server.

The environments in CARLA consist of 3Dmodels of both static and dynamic objects. The

static objects consist of buildings, vegetation, traffic signs, and infrastructure, while the dy-

namic objects are comprised of vehicles and pedestrians. When CARLA was released it

provided two prebuilt cities composed of 40 different buildings, 16 animated vehicle mod-

els and 50 animated pedestrian models. Currently, the version used in this thesis has been

extended to five prebuilt cities, including urban and suburban environments. Additionally,

CARLA supports import of self-made cities.

Town 1 in CARLA is situated in an urban environment and has 2.9 km of drivable road. It

consists of roads with two lanes, one in each driving direction, and intersections with traffic

lights. Additionally, there are multiple buildings and vegetations in the town. CARLA’s

second town, Town 2, is also situated in an urban environment, but have different buildings

from the first town and 1.4 km of drivable road. Many buildings are taller, creating more

complex light conditions. Moreover, Town 3 is in an urban environment with multiple

lanes, a roundabout, a tunnel, and uphills and downhills. Town 4, the fourth town is a

combination of a highway and an urban environment. The highway has four lanes in the

same driving direction. The urban environment can be accessed from the highway by

taking on of several exits. Lastly, Town 5 is quite similar to Town 3, except there are no

roundabouts. Images from the different towns can be seen in Appendix D.

CARLA provides flexible configuration of an agent’s sensor specifications, allowing the

client to specify the type of sensors and its transformation. The available sensors are RGB

cameras, depth cameras, semantic segmentation cameras, and LiDARs. The depth cam-

eras provide a grayscale image where the color intensity represents the distance from an

object., while the semantic segmentation provides an image that has classified all items in

the image.
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(a) Clear day (b) Daytime shortly after rain

(c) Daytime rain (d) Clear sunset

Figure 2.21: Examples of different weather conditions in Town 2 in CARLA.

CARLA offers seven different weather conditions, at noon and sunset. The different

weather conditions consisted of clear sky, cloudy sky, soft rain, medium rain, hard rain,

clear wet, and cloudy wet; resulting in a total of 14 different weather/lightning combina-

tions. Figure 2.21 shows some examples of different weather conditions in Town 2

The server can be configurated to render various environments, and the client can be used

to specify different scenarios. Using a selected combination of sensors, a vehicle can drive

around in the environments recording data. This data can be used to train an autonomous

system, that can be verified in the simulator.

2.5.2 TensorFlow

TensorFlow, devolped by Google, is a widely used library for implementing machine learn-

ing algorithms involving a large number of mathematical operations. The two core com-

ponents of TensorFlow are tensors and a computational graph called a flow. A tensor is an

N-dimensional vector that can be used to hold N-dimensional data. In the computational
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Figure 2.22: A simple example of a computational graph.

graph, each node represents a basic mathematical operation that produces a new tensor.

Figure 2.22 illustrates a simple computational graph. The final expression of the graph is

formed by traversing the graph in reverse order. Operations in the nodes on the same lev-

els are independent of each other and can be computed in parallel. Thus, the graph can be

divided into subgraphs that can be computed independently. The operations of the compu-

tational graph are automatically scheduled for parallel computing, allowing users to make

use of parallel computing devices to perform operations faster.

2.5.3 Keras

Keras is a high-level Application Programming Interface (API) used to build and train

deep learning models and is capable of running on top of several computational backends,

including TensorFlow. Keras offers three key advantages. It is user-friendly, modular and

composable, and easy to extend. It offers an intuitive set of high-level abstractions that

makes it easy to develop deep learning models. Keras supports standard neural networks,

convolutional and recurrent neural networks, in addition to other common utility layers

like pooling dropout and batch normalization.
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2.5.4 GPU and CUDA

A Graphical Processing Unit (GPU) is a single-chip processor mainly used to manage and

boost the performance of video and graphics. GPUs have a highly parallel structure, mak-

ing them more efficient than a general-purpose Central Processing Unit (CPU) for algo-

rithms that can process data in parallel. A GPU can be present on a video card or embedded

on the motherboard. CUDA is a parallel computing platform developed by NVIDIA for

general computing on their GPUs. CUDA enables developers to speed up computationally

heavy applications by utilizing GPUs on the parallelizable part of the computations.
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Methodology

This chapters describes the methodology of the thesis. Section 3.1 and Section 3.2 dis-

cusses the choice of environment and camera setup, while Section 3.3 and Section 3.4

describes the data collection and preparation process. Section 3.5 introduces the proposed

model architectures, while Section 3.6 gives an outline of the experimental setup.
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3.1 Environment

Following the arguments presented in Section 2.3.3, it was decided to use a simulator to

gather training data and to evaluate the proposed models. The reasoning for this is two-

fold. First, it was not feasible to use existing datasets as this thesis’ training data required

custom annotations (i.e., high-level commands in intersections, and traffic light status).

Moreover, for the scope of this thesis, real-world testing was not attainable. A simulated

environment provided an excellent testing ground for the different models and allowed us

to capture training data from desired driving scenarios efficiently.

3.1.1 Choice of Simulator

When choosing a simulator, three factors were considered: Degree of photorealism, licens-

ing, and completeness out-of-the-box. The degree of photorealism expresses the visual

difference between a simulation and real-world. A completely photorealistic simulated

scene would appear indistinguishable from real-life. Secondly, only free options were

considered. Open-source software was preferred over proprietary software as it allows for

customization of the source code. Finally, with a limited time frame, the out-of-the-box

completeness of the simulator was vital. The completeness of a simulator refers to how

much of the target domain that is modeled. A simulator pre-modeled with intersections,

traffic lights, and speed limits can accommodate more complex driving scenarios than, for

example, a racing simulator.

After considering several simulators, the CARLA simulator (Dosovitskiy et al., 2017) was

chosen. CARLA is an open source simulator built for autonomous driving research and

provides an urban driving environment populated with buildings, vehicles, pedestrians,

and intersections. Of the several free simulators, CARLA provided the most photorealistic

environment, while supporting a range of different weather conditions. Figure 2.21 dis-

plays some of the different weather conditions available. To read more about CARLA, see

Section 2.5.1.
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3.1.2 Simulator Controller

To communicate with the CARLA simulator, a controller software utilizing the simulator’s

API was written in Python. The controller was used for two primary purposes: to capture

training data and to evaluate trained end-to-end models.

Capture Mode

When ran in capture mode, the controller spawns a hero vehicle at a user-specified location

in the simulator. The user can then control the vehicle using one of the three supported in-

put sources: Manual control from the keyboard, manual control from a steering wheel and

pedals, or autopilot control provided by CARLA. The controller continuously captures and

saves data from CARLA, such as the vehicle’s current control signal (i.e., steering angle,

throttle, and brake), the current speed and location, as well as other relevant information.

The controller also annotates the driving data with the correct navigational command au-

tomatically. For example, if the user turns left in an intersection, the associated data points

are annotated with Turn Left.

The data captured from a single, coherent driving sequence is regarded as an episode. When

a driving sequence is finished, the controller creates a new directory in the user-specified

output folder and saves the episode’s captured data to a CSV file inside. Each row in the

CSV-file constitutes a single observation. The captured images from the vehicle’s vantage

point are saved to a separate folder inside the episode folder, while their relative paths are

saved to the CSV file. Figure 3.1 illustrates the file structure of recording.

By editing the controller’s configuration file, the user can control environmental aspects

such as weather conditions, the number of non-player vehicles, and the number of pedestri-

ans. Additionally, the user can define different routes for the autopilot to follow, allowing

automatic capturing of data. See Table 3.2 for more information on which kinds of data

the controller captures from the simulator.
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recording

<timestamp>

images

forward_center_rgb_<frame number>.png

forward_left_rgb_<frame number>.png

forward_right_rgb_<frame number>.png

left_center_rgb_<frame number>.png

right_center_rgb_<frame number>.png

driving_log.csv

Figure 3.1: File structure of a recording.

Evaluation Mode

In evaluation mode, the controller performs a real-time test on models while recording their

performance. A user can specify a folder containing different model files, along with a set

of evaluation routes and weather conditions. To evaluate a model on a given route, the

interface spawns a hero vehicle at the route’s start position, alongside randomly generated

non-player vehicles and pedestrians. The current evaluated model is then continuously fed

with images from the hero vehicle’s vantage point, while the model’s predictions are ap-

plied as control signals for the hero vehicle. If the hero vehicle approaches an intersection,

the controller feeds the correct navigational commands into the model, based on the current

route. When reaching the end of the current route, a new route is selected from the set of

routes, before the hero vehicle is respawned. The interface evaluates all specified models,

on all routes, in all weather conditions; before saving the results and exiting. Read Section

3.6.6 for more information on which criteria the models are evaluated by.
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Figure 3.2: An example from the controller’s overview mode. The green pentagon represents the
hero vehicle, while the blue pentagons represent the non-player vehicles. The id of different spawn
locations is marked on the road with red numbers.

Overview Mode

In overview mode, the controller fetches all traffic-related information from the simulator

and renders a bird-view, 2D representation of the simulator world. The position of the hero

vehicle and all non-player vehicles are visualized and updated real-time. Additionally, the

statuses of traffic lights and speed-limit signs are shown. The user may zoom in and out

on the visualization to see parts of the world in more details. The overview mode is used

to monitor the traffic flow on a macro scale, as well as to ease the process of generating

routes. Figure 3.2 shows the controller’s overview mode in CARLA’s Town 1, zoomed in

on a single intersection. The green pentagon represents the hero vehicle, while the blue

pentagons represent the non-player vehicles. The id of different spawn locations is marked

on the road with red numbers.
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Figure 3.3: The camera setup. Five virtual cameras (1-5) are mounted on the roof of the vehicle.

3.2 Camera Setup

To capture images from a driver’s vantage point in CARLA, five virtual cameras were

mounted on the roof of the hero vehicle. Each camera produced a 350x160x3 RGB-image.

Camera 1-3 were positioned on the center, left side, and right side of the vehicle, respec-

tively, all facing forward. Camera 4 and 5 were positioned at the center of the vehicle, and

yaw rotated -90◦and 90◦respectively. Figure 3.3 illustrates the positioning of the virtual

cameras, while Figure 3.4 shows the captured images from a single example frame.

Camera 1 constitutes the actual vantage point of the vehicle (Figure 3.4a), and are posi-

tioned at the center of the vehicle’s roof. Camera 2 and 3 are used to further expand the

captured dataset by simulating the vantage point of a vehicle that is drifting out of the lane

(Figure 3.4b and 3.4c). Finally, camera 5 and 6 captures the peripheral view of the vehicle’s

surroundings (Figure 3.4d and 3.4e).
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(a) Forward center (camera 1)

(b) Forward left (camera 2) (c) Forward right (camera 3)

(d) Left peripheral (camera 4) (e) Right peripheral (camera 5)

Figure 3.4: Camera 1-5’s captured images from a single observation
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3.3 Data Collection

When performing imitation learning, the selection-process of training data plays a signif-

icant role in a model’s ability to perform reliably in different conditions. A model trained

only using expert data in ideal environments may not learn how to recover from distur-

bances. To overcome this, several types of driving data was captured. Expert driving was

captured using the CARLA’s autopilot control mode, resulting in center-of-lane driving

while correctly upholding speed-limits. To capture more volatile data, a randomly gen-

erated noise value was added to the autopilot’s outgoing control signal. This resulted in

sudden shifts in the vehicle’s trajectory and speed, which the autopilot subsequently tried to

correct. To eliminate undesirable behavior in the training set, only the autopilot’s response

to the noise was collected, not the noisy control signal. Finally, recovery from possible

disaster states was captured by manually steering the vehicle into undesired locations, e.g.,

the opposite lane, or the sidewalk; while recording the recovery. All data was captured

driving 10 km/h below the speed limit to match the velocity of other non-players vehicles.

Two different datasets were gathered, one fromTown 1 and one fromTown 4. All data were

captured in environments without pedestrians, alongside a varying number of non-player

vehicles. Some of the training data were captured entirely without any other vehicles,

while some of the data were captured with a randomly generated amount (100-200) of

other vehicles.

Data were gathered in seven different weather conditions, at noon and sunset. The different

weather conditions consisted of clear sky, cloudy sky, soft rain, medium rain, hard rain,

clear wet, and cloudy wet; resulting in a total of 14 different weather/lightning combina-

tions. Figure 3.5 shows some examples of the different weather conditions, at both noon

and sunset.

Table 3.1 summarizes the gathered datasets. Table 3.2 lists and describes the different types

of data contained in each observation. An observation consists of the captured data from a

single rendered frame in the simulator, and data were captured using a capture frequency of
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Town No. of observations Size Duration
1 87 893 39.6 GB 2.4 h
4 33 757 14.1 GB 1.0 h

Table 3.1: The collected training data. An observation contains the captured data from a single
rendered frame in the simulator. Data were captured with a frequency of 10 Hz.

Data Description Data Type
Forward Center Image Image from the vehicle’s forward center camera (1). PNG-image
Forward Left Image Image from the vehicle’s forward left camera (2). PNG-image
Forward Right Image Image from the vehicle’s forward right camera (3). PNG-image
Left Peripheral Image Image from the vehicle’s left peripheral camera (4). PNG-image
Right Peripheral Image Image from the vehicle’s right peripheral camera (5). PNG-image

Speed The current speed of the vehicle (mp/h). int
Speed Limit The speed-limit at the vehicle’s location (mp/h). int
Location The vehicle’s location, [x-cord, y-cord]. [float, float]

Vehicle Control Signal The vehicle’s control signal, [float, float
[steer, throttle, brake]. float]

Autopilot Suggestion The CARLA autopilot’s suggested control signal, [float, float
[steer, throttle, brake]. float]

Traffic Light Status The traffic light status at the vehicles location: int
Green(1), Red(0)

Navigational Input The activated navigational input: int
Turn Left(1), Turn Right(2), Straight Ahead(3), Continue Straight(4),

Change Lane Left(5), Change Lane Right(6)
Environment The current driving environment: int

Highway(0), Rural(1)
WeatherId The activated weather condition. int

Table 3.2: The different types of data captured from the simulator.

10 observations each second. In total, 3.4 hours of training data were captured, 2.4 hours

in Town 1, and 1.0 hour in Town 4.

3.4 Data Preparation

It was quickly discovered that data augmentation was essential for good generalization.

Specifically, it was possible to simulate several of the varying environmental conditions

using different image transformations. For each observation in the training set, a single new
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(a) Clear Noon (b) Clear Sunset

(c) Heavy Rain Noon (d) Heavy Rain Sunset

(e) Soft Rain Noon (f) Soft Rain Sunset

(g)Wet Clear Noon (h)Wet Clear Sunset

Figure 3.5: Some of the weather conditions used when capturing data.
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Figure 3.6: Gathering of data in rainy conditions using a steering wheel and pedals.

data augmented sample was generated using one of the desirable transformations picked

at random. These included a random change in brightness, random changes in hue, the

addition of Gaussian blur, the addition of randomly generated dark polygons differing in

position and shape – simulating shadows, and the addition of randomly generated lines

simulating rain. Figure 3.7 shows five examples of data augmented images.

Another vital factor in end-to-end learning is the balance of target values within a dataset.

A model trained on unbalanced data may incorrectly bias some actions over others. When

recording the datasets, the majority of the observations were captured driving straight. To

counteract this, observations with a small steering angle were downsampled (by removal),

while observations with a large steering angle were upsampled (by duplication). Addition-

ally, the observations corresponding to the different intersection decisions (i.e., turn left,

turn right, or straight ahead) were balanced by analyzing the observations’ Navigational

Input-property and downsampling the over-represented choices. Finally, most of the obser-

vations where the vehicle was not moving (e.g., waiting for a red light) were downsampled.

Figure 3.8 shows the distribution of the balanced training set.

53



Chapter 3. Methodology

(a) Original image (b) Gaussian blur

(c) Decreased brightness (d) Increased hue

(e) Dark polygons simulating shadows (f) Gray lines simulation rain

Figure 3.7: Examples of data augmented images.

54



3.5 Model Architecture

Figure 3.8: Distribution of the balanced training dataset.

3.5 Model Architecture

The overall goal of this thesis was to research an end-to-end model’s ability to drive au-

tonomously. This section proposes an end-to-end model based on a deep neural network.

Furthermore, a revised imitation learning approach is proposed for training the model to

mimic expert driving behavior.

3.5.1 Problem Definition

Section 2.3.2, introduces end-to-end learning via imitation learning. This thesis proposes

a revised version, where a model takes an observation oi, a user’s intent hi, and external

state information si as input in the decision making. hi is a one-hot encoded vector rep-

resenting the user’s navigational intent, hereby referred to as the navigational input. The
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navigational input can either be: Turn Left at Next Intersection, Turn Right at Next In-

tersection, Continue Straight at Next Intersection, or Follow Lane. Moreover, additional

information about the world, such as the current speed limit, the vehicle’s speed, and the

current traffic light state, are introduced by si, hereby referred to as the external state in-

formation. The revised imitation learning technique is expressed in Equation 3.1, where a

model, F , learns a mapping between the inputs (i.e., oi, hi, si) and the executed action ai,

by fitting the learnable parameters, θ, to minimize the loss, L.

minimize
θ

∑
i

L(F (oi, hi, si; θ), ai) (3.1)

3.5.2 System Overview

The proposed system is comprised of two modules, a Steer Predictor and a Throttle-Brake

Predictor. Each module takes a sequence of forward-facing images, navigational inputs,

and external state information as input. The images are sent as input to a CNN, where each

image is processed independently to extract important features in the images. The CNN

structure is further discussed in Section 3.5.3. The output from the CNN is sent to an LSTM

alongside navigational inputs and external state information to learn temporal dependencies

between the subsequent images. Section 3.5.4, describes the LSTM architecture in more

detail.

In the Steer Predictor-module, the output of the LSTM is passed through a classification

layer, producing a sine steer prediction. During the training phase, the loss between the

output of the classification layer and the sine encoded ground truth steering angle is cal-

culated using an RMSE loss function (Equation 2.7) and sent through a backpropagation

algorithm to update the weights. After training, when the system is in its deployment phase,

the steer prediction is passed through a decoder to produce a steering angle. The Classifier

in the Steer predictor-module is further described in Section 3.5.5.

In the Throttle-Brake Predictor-module, the output of the LSTM is passed through a fully
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connected layer to predict a throttle and brake value. During training, the loss between the

predicted values, and the ground truth, are calculated using anMSE loss function (Equation

2.6). The loss is sent through a backpropagation algorithm to update the weights. During

the deployment phase, the output from the Predictor yields the final throttle and brake

predictions.

Figure 3.9 illustrates the system in its training phase, while Figure 3.10 illustrates the sys-

tem in its deployment phase. The blue box represents the Steer Predictor-module, and the

green box describes the Throttle-Brake Predictor-module.

3.5.3 CNN

The proposed system uses a CNN to extract useful features from the input image. The

architecture is inspired by the architecture used in NVIDIA’s DAVE-2 system (Bojarski

et al., 2016). The modified network takes a 160x350x3 image as input, followed by a

cropping layer and a normalization layer. The cropping layer removes the top 50 pixels

from the image, while the normalization layer scales the pixel values between -0.5 and 0.5.

Next follows six convolutional layers, all using a ReLU activation function (Equation 2.3).

The first three convolutional layers use a 5x5 filter, while the last three use a 3x3 filter. The

first four convolutional layers use a stride of 2, while the last two use a stride of 1. The

output of the last convolutional layer is flattened, resulting in a one-dimensional feature

layer containing 1024 nodes.

3.5.4 LSTM

The output from the CNN (Section 3.5.3) is concatenated with the current navigational

input and external state information, producing a vector of length 1033. The concatenated

vector is connected to an LSTM layer with ten hidden states, that uses a sequence of feature

extractions over time to produce a control signal. For each time step in the sequence, the

LSTM layer sends its output to itself. At the last time step, the output is forwarded to a
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Figure 3.9: System overview in training phase.

58



3.5 Model Architecture

Figure 3.10: System overview in deployment phase.
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Figure 3.11: The architecture of the CNN

Figure 3.12: The architecture of the LSTM

classification layer in the Steer Predictor-module or a dense layer in the Throttle-Brake

Predictor-module.

3.5.5 Steering Angle Classification

Steering angle prediction in autonomous vehicle control is usually posed as a regression

problem, where the system predicts a continuous steering angle from a set of sensory input.

This approach can be seen in Pomerleau (1989), Lecun et al. (2004), Bojarski et al. (2016),

Codevilla et al. (2017), and Hubschneider et al. (2017).

Another approach is to express the problem as a classification task, where each output

node represents an interval of steering angles, and the network predicts the probability of
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the target steering angle belonging to each interval. Rothe et al. (2015) argues that posing

a problem as a deep classification task can often perform better than a direct regression

training in CNNs. However, this approach comes with two challenges.

Firstly, the required amount of training data scales with the number of output classes, i.e.,

the number of steering angle intervals. Secondly, classification problems assume indepen-

dence between the output neurons that encode the different classes. Thus, a loss function

will neglect the difference between smaller and larger steering angle errors.

Eraqi et al. (2017) argues that the classification formulation can be further improved by

introducing a spatial relationship between the nodes in the output layer, i.e., neurons close

to each other are more similar than neurons far apart. The objective should be to learn a

sine function that encodes the steering angle. This way, a correlation between the output

neurons are introduced, thus bridging the gap between the regression problem and the deep

classification problem.

Following the same setup as Eraqi et al. (2017), a classification layer containing ten neurons

is introduced to the end of the Steer Predictor-module. Furthermore, a tanh activation

is applied to the classification layer allowing the neurons to shape a sine wave with an

amplitude of 1. The original steering angle corresponds to the phase shift, ϕ, of the sine

wave. During training, the ground truth steering angle is encoded as a sine wave using

Equation 3.2. Yi is the encoded target value for output neuron i, ϕ is the raw steering

angle, and ϕmax is the maximum possible raw steering angle. The loss of the prediction is

calculated as the RMSE (Equation 2.7) between the predicted waveform and the encoded

ground truth waveform. During deployment, the classification layer’s output is decoded

back to a steering angle. The decoding is done by fitting the classification layer’s output

to a sine function and returning its phase shift. Figure 3.13 illustrates the training and

deployment phase of the steering angle prediction.

Yi(ϕ) = sin
(
2π(i− 1)

10− 1
− ϕπ

2ϕmax

)
, 1 ≤ i ≤ 10 (3.2)
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Figure 3.13: The training and deployment procedure of the steering angle prediction. The red arrows
and boxes indicate the parts that are only activated during the training phase.
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3.6 Experimental Setup

Four different experiments were conducted based on the research questions and objectives

introduced in Section 1.2.

3.6.1 Experiment 1: Sequence Length

Goal The goal of the first experiment was to illuminate how the number of hidden states

in the LSTM cells affects the system’s performance. The number of hidden states in an

LSTM controls how many timesteps the network is able to ”look back”, thus constraining

the length of the temporal dependencies the network can learn. Consequently, the number

of hidden states decides the sequence length of the input data.

Training Five models were trained using 1, 5, 10, and 20 hidden states in the LSTM cells.

The architecture of the neural networks was otherwise similar.

Testing Each trained model was evaluated by their performance from a single run of the

real-time test in town 2 and town 4. The real-time test procedure is described in Section

3.6.6.

3.6.2 Experiment 2: Size of Dataset

Goal The goal of the second experiment was to clarify how the size of the training dataset

affects the system’s performance.

Training Four models were trained using datasets of varying size. The different datasets

all originated from the final, augmented and balanced dataset, but with an increasingly
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larger portion of the dataset randomly dropped. The portion of data dropped ranged from

20% to 80%.

Testing Each trained model was evaluated by their average route completion on a single

run of the real-time test in town 2. The real-time test procedure is described in Section

3.6.6.

3.6.3 Experiment 3: Prediction Frequency

Goal The goal of the third experiment was to determine how the model’s prediction fre-

quency affects the performance in a real-time test. The prediction frequency limits how

many control-signals the model can produce each second, thus restricting how fast the

model is able to react to changes in the perceived environment.

Training The best performing model from experiment 1 is selected for testing without

further training.

Testing The model was exposed to town 2’s real-time test five times. For each test, the

model’s allowed prediction frequency was set to 30 Hz, 15 Hz, 10 Hz, 5 Hz, and 1 Hz,

respectively. The models were evaluated by their average route completion. The real-time

test procedure is described in Section 3.6.6.

3.6.4 Experiment 4: Extensive Real-time Test

Goal The goal of the final experiment was to accurately evaluate the performance of the

best model from experiment 1.
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Training The best performing model from experiment 1 was selected for testing without

further training.

Testing The trained model was evaluated by its average performance on ten runs of the

real-time test in town 2 and town 4. The real-time test procedure is described in Section

3.6.6.

3.6.5 Training procedure

The proposed system was implemented in Keras (Section 2.5.3), running on top of the

Tensorflow computational backend (Section 2.5.2). All models were trained on a Nvidia

1080 Ti GPU by using the CUDA computing platform (Section 2.5.4).

Before training could start, properly structured data-points had to be generated from the

augmented and balanced dataset. The generation of data-points is described in the section

below. The generated data-points were split into a training set (80%) and a validation set

(20%). All models were trained using an Adam optimizer (Equation 2.9). Themodels were

trained for 15 epochs, with a batch size of 32. The models’ weights were recorded after

each epoch along with the associated validation error. After the training was complete, the

weights associated with the lowest validation error were chosen for further testing.

Generation of data points

For each observation in the augmented and balanced data set, three separate data-points

were generated, one from each of the forward facing cameras (left, center, and right). A

data-point was comprised of an input and the associated target output. The input encom-

passed a single image, a scaled vehicle speed, a scaled speed limit, and a one-hot-encoded

navigational input. The target output encompassed a vehicle control signal, i.e., a steer-

ing angle, brake value, and throttle value. To counteract the positional offset in the data

points originating from the left and right forward facing cameras, the associated steering
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Figure 3.14: Three data-points generated from a single observation. Shifted steering angles are
marked in red.

Figure 3.15: The structuring of sequences from an array of data-points. In this illustration a sequence
length (α) of 5 and a sampling interval (β) of 3 is used.

angles was shifted by +0.05 and -0.05 respectively. Figure 3.14 illustrates the generation

of data-points from a single observation.

The generated data-points were further structured into sequences of length α, using a sam-

pling interval of β. The sequence length determines the number of time steps the LSTM

layer is able to look back. The sampling interval controls the period between successive

individual time steps within sequences. Figure 3.15 illustrates the structuring of sequences

from 15 data points, using a α of 5, and a β of 3.
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Town Total distance
Route 1 2 355 m
Route 2 2 269 m
Route 3 2 378 m
Route 4 4 1716 m
Route 5 4 921 m

Table 3.3: The different routes a model were to drive during a real-time test.

3.6.6 Real-time test

The real-time performance was tested by letting a model control a simulated vehicle in

completely unseen environments. That is, the model was continuously fed with images

from a hero vehicle’s vantage point, while the model’s predictions were applied as control

signals for the hero vehicle.

The model was to drive five different predefined routes, in five diverse weather conditions

comprised of Clear Noon, Clear Sunset, Heavy Rain Noon, Soft Rain Sunset, and Wet

Sunset. Route 1-3, positioned in Town 2, tested the model’s ability to operate in urban

environments containing traffic, intersections, traffic lights and speed limits. Route 4 and

5, positioned in Town 4, tested the model’s ability to operate on highways and high-speed

arias. The routes are summarized in Table 3.3, and the paths of route 1-3 and 4-5 are

illustrated in Figure 3.16 and 3.17 respectively.

In total, the model was to drive through 15 different weather/route permutations in Town

2, resulting in a combined distance of 5 010 meters. In Town 4, the model was to drive

through 10 different weather/route permutations, resulting in a combined distance of 13

185 m.
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Figure 3.16: The paths of route 1-3 in Town 2.

Figure 3.17: The paths of route 4-5 in Town 4.
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Failure Abbreviation Severity Route cancelation?
Lane lines touch Lane L. Touch Minor No
Sidewalk touch Sidew. Touch Minor No
Object collision Object Coll. Moderate No

Read-end vehicle collision Rear-End Coll. Moderate No
Route deviation Route Dev. Moderate Yes

Front-end vehicle collision Front-End Coll. Severe Yes
Entering oncoming lane Enter Onc. Lane Severe Yes
Traffic light violation Traffic Light Vio. Severe Yes
Loss of vehicle control Loss of control Severe Yes

Table 3.4: The different types of failures captured by the simulator controller during a real-time test.

Performance measures

The Simulator Controller automatically logged any failures during the real-time test. Eight

types of failures of varying severity were defined. Lane touches and sidewalk touches were

considered minor failures, while object collisions, navigational input violation, and rear-

end vehicle collisions were considered moderate failures. Severe failures were comprised

of front-end vehicle collisions, entering the oncoming lane, and traffic light violations.

Some failures would result in the cancellation of the current route, e.g., if the model devi-

ated from the predefined route, or entered the oncoming lane without recovery. Table 3.4

summarizes the different failure types.

After the completion of the cancellation of a route, the Simulator Controller recorded how

much of the current route the model was able to complete.

The defined failure types were slightly changed in Town 4 to account for the environmental

difference between the towns. Firstly, front-end collisions were removed since the crash

barrier made it impossible for the hero vehicle to reach the oncoming lanes. Furthermore,

Town 4 do not contain any sidewalks. Thus, sidewalk touches were removed as well. Fi-

nally, the high-speed arias of Town 4 required a new failure type, namely the loss of vehicle

control.
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CHAPTER4

Results

This chapter describes the experimental results of this thesis. Section 4.1 and Section 4.2

presents the results from the sequence length test and the dataset size test, while Section

4.3 presents the results from the prediction frequency test. Finally, the results from the

extensive real-time test is described in Section 4.4. A preview of the overall performance

can be seen in (Aasboe, Haavaldsen, and Lindseth, 2019a). Moreover, additional videos

created after the submission of this thesis will be published to (Aasboe, Haavaldsen, and

Lindseth, 2019b).
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4.1 Experiment 1: Sequence Length

4.1.1 Training

Table 4.1 summarizes the results, showing the best validation losses for steer, throttle, and

brake, as well as the training duration. Model B had the lowest steer validation, while

model D had the lowest throttle and brake validation loss. The training duration increased

with the sequence length.

Id Seq. Length Val. Loss, Steer Val. Loss, Throttle Val. Loss, Brake Training Duration

A 1 0.0187 0.0156 0.0034 0h 43m

B 5 0.0161 0.0094 0.0026 2h 59m

C 10 0.0191 0.0130 0.0024 9h 14m

D 20 0.0169 0.0092 0.0018 17h 4m

Table 4.1: Validation loss for models trained with different sequence lengths.

4.1.2 Real-time Test

Town 2 – Urban Environment

Table 4.2 shows the models’ average route completion in each weather condition. Model

A, B, and C were able to finish all routes in Clear Noon, Clear Sunset, Soft Rain Noon, and

Clear Wet Sunset. In general, model D had the lowest route completions with an average

of 75.6%. Figure 4.1 illustrates the average route completions for each sequence length.

The differences became more apparent in Heavy Rain Noon, where model C outperformed

the other models substantially with an average route completion of 76.6%. Model A, B,

and D had an average route completion of 10.6%, 14.1%, and 28.4% respectively.
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Id Seq. Clear Clear Heavy Rain Soft Rain Clear Wet Avg.

Length Noon Sunset Noon Noon Sunset

A 1 100% 100% 10.6% 100% 100% 82.1%

B 5 100% 100% 14.1% 100% 100% 82.8%

C 10 100% 100% 76.6% 100% 100% 95.3%

D 20 100% 82.4% 28.4% 83.5% 83.5% 75.6%

Table 4.2: Experiment 1 – The systems’ average route completions in Town 2.

Figure 4.1: Average route completions for each sequence length in Town 2 from experiment 1.

Table 4.3 lists the total number of failures for each model, while Table 4.4 lists the number

of failures per traveled kilometer.

On average, model A-D made 0.24, 0.48, 1.26, 3.17 minor failures/km, respectively. Thus,

model A considerably outperformed the rest in regards to the minor failures.

Model A-D made 0.48, 0.96, 0.84, 2.90 moderate failures/km respectively. It is important

to point out that model B and C’s rear endings primarily happened in heavy rain. Model

A made severe mistakes early on in heavy rain and was consequently not exposed to the

challenging scenarios which led to rear-endings for the other models. With this in mind, the

results indicate that model C outperformed the other models with model B closely behind.
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On average, model A-D made 0.49, 0.72, 0.42, 1.85 severe failures/km, respectively. The

results show that model C outperformed the other models in regards to severe failures, with

model B performing similarly.

Minor Moderate Severe

Id Seq. Lane L. Sidew. Object Rear-End Route Front-End Traffic Enter Onc.

Length Touch Touch Coll. Coll. Dev. Coll. Light Vio. Lane

A 1 1 0 1 0 1 0 0 2

B 5 2 0 2 2 0 0 0 3

C 10 6 0 1 3 0 0 0 2

D 20 12 0 1 10 0 0 0 7

Table 4.3: Experiment 1 – Total number of failures in Town 2.

Minor Moderate Severe

Id Seq. Lane L. Sidew. Object Rear-End Route Front-End Traffic Enter Onc.

Length Touch Touch Coll. Coll. Dev. Coll. Light Vio. Lane

A 1 0.24 0 0.24 0 0.24 0 0 0.49

B 5 0.48 0 0.48 0.48 0 0 0 0.72

C 10 1.26 0 0.21 0.63 0 0 0 0.42

D 20 3.17 0 0.26 2.64 0 0 0 1.85

Table 4.4: Experiment 1 – Number of failures per traveled km in Town 2.

Town 4 – Highway

The models were real-time tested on a highway in CARLA’s Town 4 with other vehicles.

Table 4.5 lists the average route completion in each weather condition. The differences

between the models were less obvious than in Town 2. However, model B excelled with

100% route completion in all routes. Model C also achieved 100% route completions

in several weather conditions but experienced one route canceling incident resulting in

a 41.3% rout completion in Clear Wet Sunset. Figure 4.2 illustrates the average route

completions for each sequence length.
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Id Seq. Clear Clear Heavy Rain Soft Rain Clear Wet Avg.

Length Noon Sunset Noon Noon Sunset

A 1 100% 100% 41.3% 100% 41.3% 76.5%

B 5 100% 100% 100% 100% 100% 100%

C 10 100% 100% 100% 100% 41.3% 88.3%

D 20 100% 52.1% 100% 100% 41.3% 78.7%

Table 4.5: Experiment 1 – Average route completions in each weather condition in Town 4.

Figure 4.2: Experiment 1 – Average route completions for each sequence length in Town 4.

Table 4.6 lists the total number of failures for each model, while Table 4.7 lists the number

of failures per traveled kilometer. On average, model A-D made 0.99, 1.22, 1.72, 0.58 mi-

nor failures/km, respectively. Thus, model D performed the fewest number of minor fail-

ures. Furthermore, model A-D made 0.30, 0.38, 0.35, 0.59 moderate failures/km respec-

tively. Hence, model A-C performed similarly, while model D had the highest frequency

of moderate failures. Finally, model A-D made 0.20, 0, 0.09, 0.01 severe failures/km, re-

spectively. Model A made two severe failures in total, model B made no severe failures,

while model C and D made one severe failure. The results show that model B performed

the fewest number of severe failures, but that the other models made few severe failures as

well.
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Minor Moderate Severe

Id Seq. Lane L. Object Rear-End Route Traffic Loss of

Length Touch Coll. Coll. Dev. Light Vio. Control

A 1 10 1 2 0 0 2

B 5 16 0 5 0 0 0

C 10 20 1 3 0 0 1

D 20 6 0 6 1 0 1

Table 4.6: Experiment 1 – Total number of failures in Town 4.

Minor Moderate Severe

Id Seq. Lane L. Object Rear-End Route Traffic Loss of

Length Touch Coll. Coll. Dev. Light Vio. Control

A 1 0.99 0.10 0.20 0 0 0.20

B 5 1.22 0 0.38 0 0 0

C 10 1.72 0.09 0.26 0 0 0.09

D 20 0.58 0 0.58 0.01 0 0.01

Table 4.7: Experiment 1 – Number of failures per traveled km in Town 4.

4.2 Experiment 2: Size of Dataset

Table 4.8 summarizes the different models’ average route completions in each weather

condition. Model A used 100% of the original dataset and was able to finish all routes

expect for Heavy Rain Noon, similar to the results in experiment 1. Model B was trained

on 80% of the original dataset and was only able to complete all the routes in Clear Sunset.

Overall, it had an average route completion of 74.1%. Model C was trained on 60 % of

the original dataset and was not able to complete all the routes in any weather condition.

Additionally, it had a notable performance decrease with an average route completion of

59.1 %. Model D and E were trained on 40% and 20% of the original dataset respectively

and performed similarly asmodel C, with an average route completion of 60.0% and 55.1%.
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Figure 4.3 shows the average route completions of each model.

Id Dataset Clear Clear Heavy Rain Soft Rain Clear Wet Avg.

Size Noon Sunset Noon Noon Sunset

A 100% 100% 100% 85.4% 100% 100% 97.1%

B 80% 82.4% 100% 36.5% 69.2% 82.4% 74.1%

C 60% 83.5% 66.3% 47.7% 57.5% 40.3% 59.1%

D 40% 91.2% 82.4% 16.1% 57.5% 53.0% 60.0%

E 20% 77.5% 77.5% 7.7% 56.4% 56.4% 55.1%

Table 4.8: Experiment 2 – Average route completion in each weather condition in Town 2.

Figure 4.3: Experiment 2 – Average route completions for each model trained with different dataset
sizes in Town 2.

4.3 Experiment 3: Prediction Frequency

Table 4.9 summarizes the different models’ average route completions in each weather

condition. When using a prediction frequency of 30 Hz, the model was able to finish

routes in all weather conditions except for Heavy Rain Noon, similar to the results from

experiment 2. Dropping the prediction frequency to 15 Hz, for model B, did not result

in any performance loss. When reducing the prediction frequency to10 Hz, the model
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had a small performance decrease in Heavy Rain Noon and Soft Rain Noon, with a route

completion of 80.4% and 95.0%, respectively. Further dropping the prediction frequency

to 5 Hz resulted in a performance loss in both Heavy Rain Noon and Soft Rain Noon.

When further reducing the prediction frequency to 3 Hz a performance decrease in Clear

Noon, Heavy Rain Noon, and Clear Wet Sunset was seen. Finally, reducing the prediction

frequency even further, to 1 Hz, resulted in a poor performance in all weather conditions.

Figure 4.4 shows the average route completions in all weather conditions for the different

prediction frequencies.

Id Pred. Clear Clear Heavy Rain Soft Rain Clear Wet Avg.

Freq. Noon Sunset Noon Noon Sunset

A 30 100% 100% 85.4% 100% 100% 97.1%

B 15 100% 100% 85.4% 100% 100% 97.1%

C 10 100% 100% 80.4% 95.0% 100% 95.1%

D 5 100% 100% 56.5% 74.0% 100% 86.1%

E 3 76.4% 100% 38.5% 100% 66.3% 76.2%

F 1 10.5% 76.4% 14.0% 16.8% 21.3% 27.8%

Table 4.9: Experiment 3 – Average route completion in each weather conditionin Town 2.

Figure 4.4: Experiment 3 – Average route completions for each prediction frequence in Town 2.
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4.4 Experiment 4: Extensive Real-time Test

The model had an average route completion of 95.3% in Town 2, which is consistent with

the results from experiment 1. In Town 4 the model was able to complete most routes

except for in Clear Wet Sunset, where it had an average route completion of 41.3%. The

average route completion for all routes were 84.0%, which also complied with the results

from experiment 1.

Town Clear Clear Heavy Rain Soft Rain Clear Wet Avg.

Noon Sunset Noon Noon Sunset

Town 2 100% 96.5% 80.1% 100% 100% 95.3%

Town 4 100% 100% 83.8% 94.9% 41.3% 84.0%

Table 4.10: Experiment 4 – Average route completions in each weather condition.

In Town 2 the model performed best during Clear Noon and Clear Sunset. In total, it made

0.2moderate failures/km and 0.2 severe failures/km inClear Noon, while it made 0.4minor

failures/km and 0.2 severe failures/km in Clear Sunset. The model’s performance was

slightly worse in Soft Rain Noon and Clear Wet Sunset where it made 2.0 failures/km and

3.4 failures/km, respectively. As in experiment 1, the model had the worst performance

in Heavy Rain, where it made 3.5 minor failures/km, 4.5 moderate failures/km, and 2.0

severe failures/km.

Minor Moderate Severe

Weather Lane L. Sidew. Object Rear-End Route Front-End Traffic Enter Onc.

Condition Touch Touch Coll. Coll. Dev. Coll. Light Vio. Lane

Clear Noon 0 0 0 1 0 0 0 1

Clear Sunset 2 0 0 0 0 0 0 1

Heavy Rain Noon 14 0 6 10 0 2 0 6

Soft Rain Noon 6 0 0 4 0 0 0 0

Clear Wet Sunset 9 0 0 8 0 0 0 0

Total 31 0 6 23 0 2 0 8

Table 4.11: Experiment 4 – Total number of failures in Town 2.
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Minor Moderate Severe

Weather Lane L. Sidew. Object Rear-End Route Front-End Traffic Enter Onc.

Condition Touch Touch Coll. Coll. Dev. Coll. Light Vio. Lane

Clear Noon 0 0 0 0.20 0 0 0 0.20

Clear Sunset 0.41 0 0 0 0 0 0 0.21

Heavy Rain Noon 3.49 0 1.50 2.49 0 0.50 0 1.50

Soft Rain Noon 1.20 0 0 0.80 0 0 0 0

Clear Wet Sunset 1.80 0 0 1.60 0 0 0 0

Total 1.30 0 0.25 0.96 0 0.08 0 0.34

Table 4.12: Experiment 4 – Number of failures per traveled km in Town 2.

In Town 4 themodel had the fewest number of failures duringClear Noon,Hard Rain Noon,

and Soft Rain Noon. InClear Noon, it made 0.68 minor failures/km and 0.15 moderate fail-

ures/km. In Soft Rain Noon in made 0.24 minor failures/km and 0.08 moderate failures/km,

and 0.08 severe failures/km. In Hard Rain Noon in made 0.63 minor failures/km and 0.54

moderate failures/km, and no severe failures/km.

The model had more occurences of failures in the weather conditions during sunset. In

Clear Sunset the model made 0.61 minor failures/km and 0.68 moderate failures/km; while

it made 1.47 minor failures/km, 1.28 moderate failures, and 0.73 severe failures/km in

Clear Wet Sunset.

Minor Moderate Severe

Weather Lane L. Object Rear-End Route Traffic Loss of

Condition Touch Coll. Coll. Dev. Light Vio. Control

Clear Noon 9 0 0 2 0 0

Clear Sunset 8 0 7 2 0 0

Heavy Rain Noon 7 0 3 3 0 0

Soft Rain Noon 3 0 1 0 0 1

Clear Wet Sunset 8 4 2 1 0 4

Total 35 4 13 8 0 5

Table 4.13: Experiment 4 – Total number of failures after driving 55.4 km in Town 4.
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Minor Moderate Severe

Weather Lane L. Object Rear-End Route Traffic Loss of

Condition Touch Coll. Coll. Dev. Light Vio. Control

Clear Noon 0.68 0 0 0.15 0 0

Clear Sunset 0.61 0 0.53 0.15 0 0

Heavy Rain Noon 0.63 0 0.27 0.27 0 0

Soft Rain Noon 0.24 0 0.08 0 0 0.08

Clear Wet Sunset 1.47 0.73 0.37 0.18 0 0.73

Total 0.63 0.07 0.23 0.14 0 0.09

Table 4.14: Experiment 4 – Number of failures per traveled km in Town 4.
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CHAPTER5

Discussion

This section discusses the results of the experiment, in addition to some of the critical

decisionsmade in the thesis. Section 5.1 discusses the choice of training data, while Section

5.2 review the choice of simulator. The model architecture is discussed in Section 5.3,

while the results from the experiments are discussed in Section 5.4. Finally, the consistency

with related work and fulfillment of the research questions are reviewed in Section 5.5 and

Section 5.6, respectively.
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5.1 Training Data

The selection of training data had a significant impact on the models’ ability to perform

reliably in different conditions. Models trained on data from a single weather condition

were sensitive to small changes and performed poorly in unseen environments. Thus, data

were gathered in different weather conditions, improving the models’ ability to generalize

in new environments.

Another critical factor was the balance of the dataset. The vehicle had no velocity in a

large portion of the raw data. The models learned little from those examples, and there

was little use in keeping all of them. The distribution of navigational commands was also

very unbalanced. This led the model to adapt biases towards certain scenarios, such as

being better at taking a left turn over right a turn. After balancing the data, the models

learned more efficiently and drove more reliably in various scenarios.

Furthermore, data augmentationwas critical for the system’s ability to generalize. Early on,

the system struggled with shadow covered areas in unseen environments and rainy weather

conditions. This was solved by extending the dataset with augmented images emulating

shadows and rain. The data was further extended by adding hue-transformed images. The

hue-transformations made the system better at detecting vehicles regardless of color. After

testing the system, it was found that the system struggled with vehicle detection in images

with lens flare. It can be argued that adding augmentations simulating lens flare could help

improve this.

5.2 CARLA simulator

Using the CARLA simulator for both training and testing worked well for this thesis. The

use of a simulator allowed for efficient collection of driving data, resulting in a training set

that was both quite large (100.000+ observations) and diverse (captured in several types of

weather). CARLA offers several different cities, which made it possible to train the model
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in one city, and test it in the other. Testing a model in an unseen environment helps to

evaluate its ability to generalize. The simulator also came with out-of-the-box support for

other non-player vehicles, speed limits, and traffic-light regulated intersections; making it

a good fit for the thesis’ research goals.

Another critical factor was the ability to collect expert data using CARLA’s built-in au-

topilot. The performance of an end-to-end model utilizing imitation learning is heavily

dependent on the quality of the training data, and controlling the vehicle manually was

quite challenging. The autopilot was therefore essential for capturing ideal steering an-

gles. However, not all parts of the autopilot’s driving were optimal. The autopilot often

braked late and abruptly when approaching stationary vehicles, resulting in small margins

to the vehicle ahead. This would, in turn, influence the models to exhibit some of the same

behavior, making it unnecessarily difficult to stop for stationary traffic. Moreover, the

autopilot tended to perform needlessly sharp turns. This thesis adjusted the braking and

steering behavior of the built-in autopilot in order to collect the quality of the training data.

Specifically, how the autopilot adjusted changes in speed and smoothing the autopilot’s

steering.

5.3 Architecture

5.3.1 Steer Predictor

This thesis is a continuation of the work done in (Haavaldsen, Aasboe, and Lindseth, 2019),

which compared a CNN-LSTM model to a pure CNN. In the proposed system from the

article, the steer prediction was posed as a continuous regression problem. That is, the

system predicted a continuous steering angle directly. In this thesis, however, the same

problem was posed as a sine wave classification.

By encoding the steering angle as a phase shifted sine wave, a gradual change in steering

caused gradual changes in the output layer activations. The results indicated that this re-
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formulation affected the system’s steering behavior positively. The improvements were

especially prominent in high-speed areas, where the system was able to maintain stable,

non-oscillating, steering.

The difference in steering behavior can be observed by comparing a video from the previ-

ous article, e.g., (Aasboe, Haavaldsen, and Lindseth, 2018), to one of the videos highlight-

ing the results from this thesis, e.g., (Aasboe, Haavaldsen, and Lindseth, 2019a).

5.3.2 Throttle-Brake Predictor

The proposed system in this thesis predicted throttle and brake values directly as two sep-

arate, non-related, values. One possible challenge with this approach is that it assumes

independence between the throttle and brake output. However, this assumption does not

hold in the real world. There are no driving scenarios were the correct action is to both slow

down (brake) and speed up (throttle) simultaneously. Thus, there exists a dependency be-

tween the predicted brake and throttle value, which the proposed system neglects.

One possible alternative is for the system to predict acceleration instead, as seen in (Codev-

illa et al., 2017). This may be done by using the training data’s changes in velocity to cal-

culate target values. However, learning to predict acceleration may be more challenging

than directly predicting throttle and brake. To accurately predict acceleration, the system

would have to learn a relationship between the visual sensor input and the vehicle’s current

velocity. On the other hand, a system predicting throttle and brake values directly may

simply learn always to brake if another vehicle is too close, regardless of its current veloc-

ity. While continuous braking may be unnecessary if the vehicle’s current velocity is zero,

it will not hurt the performance of the system.

Thus, it boils down to a trade-off between the potential performance increase from utilizing

the dependency between throttle and brake, and the possible performance decrease from

the added complexity.
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5.4 Experimental Results

5.4.1 Experiment 1: Sequence Length

The goal of the first experiment was to illuminate how the number of hidden states in the

LSTM cells affects the system’s performance.

In general, model A, using a single hidden state, made the fewest amount of minor failures,

suggesting that it was good at staying in the center of the lane and avoiding obstacles.

However, its route completions were among the lower ones, meaning that the mistakes it

made were more serious ones, such as disobeying navigational input and driving into the

opposite lanes.

Model B, using five hidden states, was able to drive well in all weather conditions in Town

4. However, the route completions were drastically reduced in Heavy Rain Noon in Town

2. This led to several moderate and severe failures in Town 2

Model C, using ten hidden states, had the highest average route completion in Town 2. Even

though it drove the furthest in complex weather conditions, it still had the fewest number

of severe failures, indicating that model C was the best at handling complex scenarios. It

struggled more in Town 4, where it had the second highest average route completion and

the highest frequency of minor failures.

Model D, using 20 hidden states, had the lowest average route completion in Town 2 and

also made the most minor, moderate, and severe failures. In Town 4 it made fewer failures

but still had a low completion rate.

When evaluating the models, moderate and severe failures were more emphasized than

minor failures, e.g., a model that never drove into the opposite lane was preferred over a

model that never touched a lane line. Even though model A and B had few occurrences

of minor failures, both models made several moderate and severe failures. Consequently,

they also had the lowest route completions. The results imply that a sequence length of
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five was too small, while 20 was too high. The differences between model B and C were

less noticeable. However, model C was better at handling complex weather conditions and

made less moderate and severe failures in Town 2. For these reasons, the model with a

sequence length of 10 was deemed the best model.

Finding 1

Overall, the system performs most reliably when using a sequence length of 10.

The experimental results showed that a small sequence length could lead to faster reac-

tions. However, the network could only learn short term temporal dependencies and was

consequently more susceptible for individually misclassified frames. A longer sequence

length, on the other hand, led to smoother behavior, and thus more stable steering predic-

tions. However, it could also increase the probability of learning wrong long-term temporal

dependencies.

Finding 2

A small sequence length can lead to faster reactions, but the system is also more

susceptible for individually misclassified frames.

Finding 3

A longer sequence may lead to more stable steering predictions, but can also in-

crease the probability of learning incorrect long-term dependencies.

Model C’s real-time performance was not reflected in its validation loss during training.

Even thoughModel Cwas deemed to have the best real-time performance, it had the highest

validation loss for the steer predictions during training. This discrepancy may suggest that

the calculated prediction loss during training is not a sufficient indicator of the model’s

real-time performance.
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(a) Cloudy Noon

(b) Hard Rain Sunset

Figure 5.1: Comparison of the same turn in a simple (a) and a challenging (b) weather condition.
The resolution of the images is equal to the system’s input resolution, i.e., 350x160x3.

Finding 4

The prediction loss during training is not a sufficient indicator for the system’s

real-time performance.

5.4.2 Experiment 2: Size of Dataset

The goal of the third experiment was to investigate how the size of the training dataset

affected the system’s performance.

The experimental results showed that a small reduction of dataset size impacted the per-

formance negatively. Reducing the dataset by 20% and 40% resulted in a performance
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decrease of 24% and 39% respectively. Thus, the results indicate that the system was sen-

sitive to reduction of dataset size and that the size of the gathered dataset was not excessive.

Finding 5

The system is sensitive to small changes in dataset size.

However, reducing the dataset further did not result in any drastic performance decrease.

The average route completion stayed approximately the same after reducing the dataset by

40%, 60%, and 80%. Thus, the results also indicate that the system can operate somewhat

successfully, even with a limited training data set.

Finding 6

The system is able to operate somewhat successfully even with a severely reduced

dataset (20% of original size).

The results also suggest that the system were more sensitive to changes in dataset size

in complex weather conditions. The average route completion in Clear Noon and Clear

Sunset were only decreased by 22.5% after reducing the dataset by 80%. In Sof Rain Noon

andClearWet Sunset, the same reduction resulted in a decrease in average route completion

of 43.5%. In Heavy Rain, the average route completion was decreased by 92.3%.

Finding 7

The system is more sensitive to changes in dataset size in complex weather condi-

tions.

5.4.3 Experiment 3: Prediction Frequency

The goal of the third experiment was to determine how the model’s prediction frequency

affects the performance in a real-time test.
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The experimental results for model A and B revealed that the reduction of prediction fre-

quency from 30 Hz to 15 Hz did not result in any performance decrease. Both models were

able to achieve an average of 97.1% route completion. When further reducing the predic-

tion frequency to 10 Hz, a small performance reduction of 2% was observed. However,

reducing the frequency to less than 10 Hz resulted in a significant performance decreases.

Model D, E, and F used a prediction frequency of 5 Hz, 3 Hz, and 1 Hz respectively, and

performed 11%, 20.9%, and 69.3% worse than the best model.

Finding 8

The system perform to its full potential when using a prediction frequency of 15

Hz or higher.

Finding 9

Using a prediction frequency lower than 5 Hz results in a significant performance

reduction.

The results show that the effect of prediction frequency varied between the different weather

conditions. In simple weather conditions like Clear Noon and Clear Sunset the average

route completion was not affected by the reduction of prediction frequency from 30 Hz

to 5 Hz. In more complex weather conditions like Heavy Rain Noon, however, the aver-

age route completion was reduced by 29.9%. One probable explanation is that the system

predicts more accurate steering predictions at the beginning of turns in simple weather con-

ditions. Consequently, the system does not need to adjust its trajectory repeatedly during

the turn. Thus, the effect of fewer predictions each second is minimized. In more complex

weather conditions, the system produces more inaccurate predictions at the beginning of

turns and relies on frequent trajectory updates.

Finding 10

The system is more sensitive to low prediction frequencies in complex weather

conditions.
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5.4.4 Experiment 4: Extensive Real-time Test

The goal of the final experiment was to accurately evaluate the performance of the best

model from experiment 1.

Town 2 - Urban Environment

Regardless of weather condition, the system always stopped at red lights, never ignored a

navigational input, and followed the current speed limit. Moreover, it performed stable lane

following and always tried to be positioned in the center of the lane. When drifting out of

the lane, the system corrected its trajectory both quickly and smoothly, never experiencing

oscillating steering predictions. In situations where the system had to decrease its speed,

it tried to let go of the throttle first. If that was insufficient, the system applied the brakes

as well.

Finding 11

The system never ignored a red traffic light or a navigational command and always

adjusted its velocity to match the current speed limit.

Finding 12

The system excelled at lane following in urban environments and corrected any

trajectory deviations both swiftly and smoothly.

InClear Noon, the system displayed smooth steering behavior, both in low speed and high-

speed arias. Overall, it only made one rear-end collision and entered the oncoming lane

once.

In Clear Sunset, the system almost performed as well as in Clear Noon. While it had more

lane touches, it did not perform any rear-end collisions. The high-speed area in Clear

Sunset was darker and had more shadows than in Clear Noon. However, the system was
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still able to drive just as smoothly. It never experienced any front-end collisions, sidewalk

touches, or route deviation in this weather condition.

In Clear Wet Sunset, the lens flare from the sun sometimes made it difficult for the system

to detect vehicles in front of it, and some of these scenarios resulted in rear-end collisions.

Figure 5.2b illuminates this challenging scenario. The system did not perform any other

moderate or severe failures in Clear Wet Sunset.

Finding 13

Bright lens flare reduces the system’s ability to detect vehicles.

In Soft Rain Noon, the system sometimes struggled to detect the vehicles in front of it,

resulting in some rear-endings. Apart from that, it made no other moderate or severe mis-

takes. The steering was less smooth in high-speed areas than in Clear Noon but the system

always stayed within the lane.

The results indicate that Hard Rain Noon was the most challenging weather condition.

The system displayed a smooth diving behavior on straight stretches, but the steering was

uneven in turns. The system had trouble with detecting cars in front of it, mainly black and

dark grey cars. The light conditions were poor in Hard Rain Noon, which made the dark-

colored cars blend more in with the environment. Figure 5.2a shows a black car in Hard

Rain Noon. Moreover, the system tended to turn a little late in right turns, which resulted

in it being closer to oncoming vehicles than what it had seen in the training data. In some

cases, this led the system to believe it was about to collide with the oncoming vehicle even

though it was still in its own lane. In high-speed areas, the steering was more erratic than

in Soft Rain Noon, but the system always stayed within the lane.

Finding 14

The system’s ability to detect vehicles are reduced in rainy weather conditions.
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(a) Hard Rain Noon

(b) Clear Wet Sunset

Figure 5.2: Examples of a vehicle the system struggled to detect in some weather conditions. Figure
(a) shows a black vehicle inHeavy Rain Noon, while Figure (b) shows a vehicle in Clear Wet Sunset.

Finding 15

The system’s ability to detect dark-colored vehicles are reduced in low-light envi-

ronments.

Town 4 - Highway

Regardless of weather condition, the system always stopped at red lights and followed the

current speed limit. The system adjusted its distance to the car in front of it by adjusting the

throttle and was able to handle traffic congestions in both low-speed and high-speed areas.

The system sometimes chose to exit the highway when it drove in the rightmost lane. This

was, however, probably an effect of lacking training data.
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Finding 16

The system handles traffic congestions on highways.

Finding 17

On highways, the system primarily uses the throttle to adjust its speed according

to traffic.

In Clear Noon, the system drove evenly in the center of the lane and experienced nine lane

touches and two route deviations. Otherwise, it made no severe mistakes. The system

displayed a similar driving behavior in Clear Sunset but made several rear-end collisions

throughout the test. This suggests that the system struggled with vehicle detection in con-

ditions with much lens flare, e.g., sunsets.

In Soft Rain Noon, the system drove smoothly in turns. Moreover, the system made the

fewest number of lane touches and apart from Clear Noon it had the fewest rear-endings.

However, it did lose control of the vehicle due to erratic steering once, resulting in it driving

out of the road.

InHard Rain Noon, the roads were shiny, and the environment was reflected on the surface

of the road, making it difficult for the system to detect the lane. Figure 5.3a shows an area

in Town 4 during Heavy Rain Noon. Consequently, it had the most route deviation in this

weather condition, in addition to three rear-end collisions.

Finding 18

The system’s ability to detect lane lines is reduced on wet highways.

Clear Wet Sunset turned out to be the most challenging weather condition in Town 4, and

the system had its lowest average route completion in this weather condition. The sunlight

reflected off the wet parts in the road, making it especially challenging to detect the lane

lines, as seen in Figure 5.3b. As a result, the system had more trouble with staying in the

lane and drove out of the road four times throughout the experiment. Additionally, the
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(a) Hard Rain Noon

(b) Clear Wet Sunset

Figure 5.3: Examples where the system struggled to detect lane lines. Figure (a) shows the road in
Heavy Rain Noon, while Figure (b) shows the road in Clear Wet Sunset.

system experienced four object collisions, two rear-endings, and one route deviation.

Finding 19

The system’s ability to detect lane lines is severely reduced on wet highways at

sunset.

5.5 Consistency with Related Work

The CNN in this thesis is based on the architecture in Bojarski et al. (2016). The au-

thors were able to use a CNN to drive on trafficked roads with and without lane markings,

parking lots, and unpaved roads. This complies with the thesis’ results. Even though the

implemented models were not tested on unmarked roads or parking lots, they were able to
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drive on roads with lane marking, both on roads with and without pavements.

The system was trained to execute navigational commands in intersections. This was also

attempted in Codevilla et al. (2017) and Hubschneider et al. (2017). In the former pa-

per, two networks were tested: a branched network and a command input network. The

branched network used the navigational input as a switch between a CNN and three fully

connected networks, each specialized to a single intersection action, while the command

input network concatenated the navigational command with the output of the CNN, con-

nected to a single FC network. The authors claimed that the command input network per-

formed inadequately when executing navigational commands. This does not comply with

the results of this thesis. The proposed architecture takes the navigational command as

input after the CNN, in a similar matter as the command input network, but was able to

execute the given navigational commands with a high degree of success.

In Hubschneider et al. (2017) the turn indicators of the car was used as the navigational

commands, which were sent as input to the network. The authors did not use an RNN, but

fed three subsequent images to three CNNs and concatenated the output. It was able to per-

form lane following, avoid obstacles, and change lanes. The navigational commands in this

thesis were introduced to the network in a similar matter, and both approaches were able to

execute the navigational commands. The proposed system was not tested for lane changes,

but seeing achievements in similar approaches indicates that this should be possible.

The system in this thesis used an LSTM to utilize temporal dependencies. A similar ap-

proach was attempted in Eraqi et al. (2017). They showed that adding temporal dependen-

cies improved both the accuracy and stability of a model using a single CNN. Furthermore,

Eraqi et al. (2017) also posed the steering prediction as a sine wave classification problem,

and found that it led to more stable steering. Similar results can be seen in this thesis.
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5.6 Fulfillment of Research Questions

The first research question was to examine how the number of hidden states in the system’s

recurrent module affected the overall performance. It was found that a small number of

hidden states could lead to faster reactions. However, it could also affect its ability to

learn long-term dependencies negatively. A larger number of hidden state, on the other

hand, could lead to more stable steering predictions. Nonetheless, it could also increase

the probability of learning wrong long-term temporal dependencies. Overall, it was found

that using ten hidden states for the system’s recurrent module was optimal for the overall

performance. Thus, the first research question has been answered.

The second research question was to examine how the size of the training dataset affected

the system’s overall performance. It was found that a small reduction of dataset size im-

pacted the performance negatively and that the size of the gathered dataset was not exces-

sive. However, it was found that reducing the dataset further did not result in any drastic

performance decrease and that the system was able to operate somewhat successfully even

with a limited training data set. Furthermore, it was also discovered that the system was

more sensitive to changes in dataset size in complex weather conditions. Hence, the second

research question has been answered.

The third research question was to examine how the system’s prediction frequency influ-

enced the overall performance. It was found that the system performed to its full potential

when using a prediction frequency of 15 Hz or higher. Using a prediction frequency lower

than 5 Hz resulted in a significant performance reduction. It was also discovered that

the system is more sensitive to low prediction frequencies in complex weather conditions.

Consequently, the third research question has been answered.
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Conclusion and Future Work

This chapter concludes the work done in this thesis in Section 6.1 and proposes areas for

further exploration in Section 6.2.
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6.1 Conclusion

The overall goal of this thesis was to research an end-to-end system’s ability to drive au-

tonomously in diverse, simulated environments. The thesis proposed a system architecture

consisting of two modules: a Steer Predictor and a Throttle-Brake Predictor. Each mod-

ule combined a traditional CNN, inspired by NVIDIA’s DAVE-2 system (Bojarski et al.,

2016), with an LSTM layer to facilitate the learning of both spatial and temporal relation-

ships. The system was trained using expert driving data from various simulated settings

and was evaluated by its real-time driving performance in unseen simulated environments.

The proposed system was able to operate successfully in urban environments containing

other vehicles, speed limits, and traffic-light regulated intersections. The real-time tests

demonstrated that the system excelled at stable lane following, adjusting its trajectory

both quickly and smoothly when drifting out of the lane. Furthermore, the system al-

ways stopped at red lights, always tried to execute the navigational input, and followed

the current speed limit. On highways, the real-time tests demonstrated that the system was

able to perform stable lane following in most weather conditions and that it was capable of

handling traffic congestions in both low-speed and high-speed areas.

The system was able to operate in a range of different weather conditions. It excelled in

dry weather during daytime, making few mistakes. In more challenging weather condi-

tions, like soft rain, the system was more susceptible to failures, which could lead to the

occasional rear-end collision. In even harsher weather conditions, such as heavy rain, the

system was more likely to perform severe failures, such as entering the oncoming lane

or front-end collisions. Nonetheless, the system was able to navigate remarkably well in

harsh weather conditions where even humans could struggle.

Additionally, this thesis aimed to explore some of the uncertainties regarding the imple-

mentation of end-to-end systems. Specifically, how the system’s overall performance was

affected by the size of the training dataset, the allowed prediction frequency, and the num-

ber of hidden states in the system’s recurrent module.
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6.2 Future Work

The experimental results showed that the systemwas sensitive to small reductions in dataset

size. However, the system was able to operate somewhat successfully even with a severely

reduced dataset, comprised of only 20% of the original dataset. Furthermore, the results

suggest that the system performed to its full potential when using a prediction frequency

of 15 Hz or higher. Using a prediction frequency lower than 5 Hz resulted in a significant

performance reduction. Finally, it was found that while a small number of hidden states

could lead to faster reactions, it could also make the system more susceptible to misclas-

sifications. On the other hand, a larger number of hidden states could lead to more stable

steering predictions, but could also increase the probability of learning incorrect long-term

temporal dependencies. Overall, it was found that using ten hidden states for the system’s

recurrent module was optimal for the overall performance.

Even though the system experienced several severe failures during testing, its achievements

demonstrated great potential in using end-to-end systems to accomplish fully autonomous

vehicles.

6.2 Future Work

The first natural continuation of this thesis is to improve the current system further. The

proposed system was not finely tuned, and many possible architectural alternatives were

left unexplored. A logical extension of the system would be to integrate well known CNN

architectures, such as Resnet or InceptionV3, to improve the feature extraction. Addi-

tionally, the dataset should be further extended with more scenarios, such that the sys-

tem can be tested in more complex scenarios, such as environments with pedestrians and

roundabouts. In the same manner, the system should be trained and tested in even more

challenging conditions, such as snowy roads. Moreover, the system should be tested in

scenarios containing several corner cases to investigate the durability of the system.

The system was able to operate fairly well using only visual cues. However, more sophis-

ticated sensors, such as LiDARs, could result in a performance increase. An interesting
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research area would be to explore whether the advantages of adding additional sensors

outweigh the added hardware and computational cost, in addition to the maintenance such

additions would require. Additionally, the proposed system required an input signal rep-

resenting the current traffic light state. The desired behavior would be for the system to

handle light regulated intersections without a control signal. Further work can be done to

acquire this skill.

In this thesis, environments containing multiple autonomous vehicles were not researched.

CARLA’s multi-agent support makes it possible to evaluate how several independent mod-

els perform and interact together. This can lead to exciting research areas, such as traffic

flow and congestion control in areas containing exclusively self-driving vehicles.

Another exciting field of research would be to extend the system using deep reinforcement

learning. A pure end-to-end approach using imitation learning is limited by the training

data. Combing the system with deep reinforcement learning would allow the system to

learn beyond the examples in the training data, and improve on its own. The recent devel-

opment of simulators for autonomous driving eases the research of deep reinforcement.

Finally, due to occurrences of potentially dangerous mistakes during testing, more work

is required before real-world testing is justified. Furthermore, the models have only been

trained on simulated data, and it is not guaranteed that the system can learn the same de-

pendencies from a real dataset. This should be verified before the system is considered

ready. When the system is deemed stable enough, the next step would be to train and test

it using a more photorealistic simulator, before, finally, testing the system in the physical

world.
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Autonomous Vehicle Control: End-to-end
Learning in Simulated Urban Environments

Hege Haavaldsen?[0000−0001−6372−1989], Max Aasbø*[0000−0003−3462−165X], and
Frank Lindseth??[0000−0002−4979−9218]

Norwegian University of Science and Technology, Trondheim, Norway

Abstract. In recent years, considerable progress has been made towards
a vehicle’s ability to operate autonomously. An end-to-end approach at-
tempts to achieve autonomous driving using a single, comprehensive
software component. Recent breakthroughs in deep learning have sig-
nificantly increased end-to-end systems’ capabilities, and such systems
are now considered a possible alternative to the current state-of-the-art
solutions.

This paper examines end-to-end learning for autonomous vehicles in sim-
ulated urban environments containing other vehicles, traffic lights, and
speed limits. Furthermore, the paper explores end-to-end systems’ abil-
ity to execute navigational commands and examines whether improved
performance can be achieved by utilizing temporal dependencies between
subsequent visual cues.

Two end-to-end architectures are proposed: a traditional Convolutional
Neural Network and an extended design combining a Convolutional Neu-
ral Network with a recurrent layer. The models are trained using expert
driving data from a simulated urban setting, and are evaluated by their
driving performance in an unseen simulated environment.

The results of this paper indicate that end-to-end systems can operate
autonomously in simple urban environments. Moreover, it is found that
the exploitation of temporal information in subsequent images enhances
a system’s ability to judge movement and distance.

Keywords: End-to-end learning · Imitation Learning · Autonomous Ve-
hicle Control · Artificial Intelligence · Deep Learning

1 Introduction

We are currently at the brink of a new paradigm in human travel: the fully
autonomous, self-driving car. Only 50 years ago, cars were completely analog
devices with almost no mechanisms for assisting the driver. Over the decades,
additional features, controls, and technologies have been integrated, and cars
have evolved into exceedingly complex machines.

? These authors contributed equally to this work.
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In recent years, substantial progress has been made towards a vehicle’s ability
to operate autonomously. Primarily, two different approaches have emerged. The
prevailing state of the art approach is to divide the problem into a number of sub-
problems and solve them by combining techniques from computer vision, sensor
fusion, localization, control theory, and path planning. This approach requires
expert knowledge in several domains and often results in complex solutions,
consisting of several cooperating modules.

Another approach is to develop an end-to-end solution, solving the problem
using a single, comprehensive component, e.g., a deep neural network. A tech-
nique for training such a system is to employ imitation learning. This entails
studying expert decisions in different scenarios, to find a mapping between the
perceived environments and the executed actions. While some believe that the
black-box characteristics of such systems makes them untrustworthy and unre-
liable, others point to recent years’ advances in deep-learning and argue that
end-to-end solutions show great potential.

However, end-to-end systems cannot make the correct navigational decision
solely based on a perceived environment. It is also necessary to incorporate a
user’s intent in situations that require a decision (e.g., when approaching an
intersection). Hence, an end-to-end system should be able to receive and adapt
to navigational commands.

The objective of this paper is to investigate end-to-end systems’ ability to
drive autonomously in simulated urban environments. Specifically, to study their
performance in environments containing other vehicles, traffic lights, and speed
limits; to examine their ability to oblige navigational commands in intersections;
and to explore if a system can improve its performance by utilizing temporal
dependencies between subsequent visual cues.

This paper seeks to combine different aspects from recent research in the field
of end-to-end learning for autonomous vehicles. Concretely, the use of naviga-
tional commands as network input, and the exploitation of temporal dependen-
cies between subsequent images. There have been no attempts - to our knowledge
- to combine both techniques in one system. Hopefully, this can lead to a more
complete end-to-end system and improved driving quality.

The rest of this paper is organized as follows. Section 2 presents previous
related work, while Section 3 addresses the environment in which the data was
collected and the experiments were conducted. Section 4 reviews the collection
and preprocessing of the data. The model architectures are presented in Section
5. Section 6 and 7 covers the experimental setup and results, while section 8
discusses the results. Finally, Section 9 covers the conclusions.

2 Related Work

There have been several advances in end-to-end learning for autonomous vehi-
cles over the last decades. The first approach was seen already in 1989 when
a fully connected neural network was used to control a vehicle [10]. In 2003 a
proof-of-concept project called DAVE emerged [9], showing a radio controlled
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vehicle being able to drive around in a junk-filled alley and avoiding obstacles.
DAVE truly showed the potential of an end-to-end approach. Three years later
NVIDIA developed DAVE-2 [1], a framework with the objective to make real
vehicles drive reliably on public roads. DAVE-2 is the basis for most end-to-end
approaches seen today [2,7]. The project used a CNN to predict a vehicle’s steer-
ing commands. Their model was able to operate on roads with or without lane
markings and other vehicles, as well as parking lots and unpaved roads.

Codevilla et al. [2] further explored NVIDIA’s architecture by adding naviga-
tional commands to incorporate the drivers intent into the system and predicted
both steering angle and acceleration. The authors proposed two network ar-
chitectures: a branched network and a command input network. The branched
network used the navigational input as a switch between a CNN and three fully
connected networks, each specialized to a single intersection action, while the
command input network concatenated the navigational command with the out-
put of the CNN, connected to a single fully connected network.

Hubschneider et al. [7] proposed using turn signals as control commands to
incorporate the steering commands into the network. Furthermore, they pro-
posed a modified network architecture to improve driving accuracy. They used a
CNN that receives an image and a turn indicator as input such that the model
could be controlled in real time. To handle sharp turns and obstacles along the
road the authors proposed using images recorded several meters back to obtain
a spatial history of the environment. Images captured 4 and 8 meters behind the
current position were added as an input to make up for the limited vision from
a single centered camera.

Eraqi, H.M. et. al.[4] tried to utilize the temporal dependencies by combining
a CNN with a Long Short-Term Memory Neural Network. Their results showed
that the C-LSTM improved the angle prediction accuracy by 35 % and stability
by 87 %.

3 Environment

Training and testing models for autonomous driving in the physical world can be
expensive, impractical, and potentially dangerous. Gathering a sufficient amount
of training data requires both human resources and suitable hardware, and it
can be time consuming to capture, organize and label the desired driving sce-
narios. Moreover, the cost of unexpected behavior while testing a model may be
considerable.

An alternative is to train and test models in a simulated environment. A
simulator can effectively provide a variety of corner cases needed for training,
validation, and testing; while removing safety risks and material costs. Addition-
ally, the labeling of the dataset can be automated, removing the cost of manual
labeling, as well as the potential of human error.

The drawback, however, is the loss of realism. A simulation is only an im-
itation of a real-world system, and a model trained on only simulated data
may not be able to function reliably in the real world. Nonetheless, a simulator



4 H. Haavaldsen, M. Aasbø, F. Lindseth

can give a good indication of a model’s actual driving performance and serves
well for benchmarking different models. Once a model can perform reliably in a
simulated environment, the model can be fine-tuned for further testing in real
environments.

In this paper, the CARLA simulator [3] is used to gather training data and
to evaluate the proposed models. CARLA is an open source simulator built
for autonomous driving research and provides an urban driving environment
populated with buildings, vehicles, pedestrians, and intersections.

4 Data Generation

4.1 Data Collection

When performing imitation learning, the quality of the training data plays a
significant role in a model’s ability to perform reliably in different conditions.
However, a model trained only using expert data in ideal environments may
not learn how to recover from perturbations. To overcome this, several types of
driving data was captured. Expert driving was captured using CARLA’s built-
in autopilot, resulting in center-of-lane driving while following speed-limits. To
capture more volatile data, a randomly generated noise value was added to the
autopilot’s outgoing control signal. This resulted in sudden shifts in the vehi-
cle’s trajectory and speed, which the autopilot subsequently tried to correct. To
eliminate undesirable behavior in the training set, only the autopilot’s response
to the noise was collected, not the noisy control signal. Finally, recovery from
possible disaster states was captured by manually steering the vehicle into un-
desired locations, e.g., the opposite lane, or the sidewalk; while recording the
recovery.

For each recorded frame, images from three forward-facing cameras (posi-
tioned at the left, center, and right side of the vehicle) were captured, along
with the vehicle’s control signal (i.e., steering angle, throttle, and brake values),
and additional information (i.e., speed, speed limit, traffic light state, and High-
Level Command). The High-Level Command (HLC) is the active navigational
command, labeling the data with the user’s current intent. Possible HLCs are:
follow lane, turn left at the next intersection, turn right at the next intersection,
and continue straight ahead at the next intersection.

Two different datasets were gathered, one for training and one for testing.
The training set was captured in CARLA’s Town 1, while the test set was cap-
tured in Town 2. Data were gathered in four different weather conditions: Clear
noon, cloudy noon, clear sunset, and cloudy sunset. The training set contained
driving data captured both with and without other vehicles. The test set exclu-
sively contained driving data alongside other vehicles. All data were captured in
environments without pedestrians. Table 1 summarizes the gathered datasets.
All expert data was captured driving 10 km/h below the speed limit to match
the velocity of other vehicles.
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Table 1. The collected datasets. An observation contains the captured data from a
single rendered frame in the simulator.

Dataset Number of Observations Size [GB]

Training 117 889 31.5
Testing 23 173 8.32

4.2 Data Preparation

For each recorded observation, a data sample was created containing the center
image, the vehicle’s control signal, and the additional information. Moreover, to
simulate the recovery from drifting out of the lane, two new data samples were
generated using the observation’s left and right images. To counteract the left
and right images’ positional offset, the associated steering angle was shifted by
+0.1 and -0.1 respectively.

For each data sample, a new augmented sample was generated using one
of the desirable transformations picked at random. These included a random
change in brightness or contrast, the addition of Gaussian noise or blur, and the
addition of randomly generated dark polygons differing in position and shape.

When recording the datasets, the majority of the observations were captured
driving straight. To prevent an unbalanced dataset, data samples with a small
steering angle were downsampled (by removal), while data samples with a large
steering angle were upsampled (by duplication). Additionally, the data samples
corresponding to the different intersection decisions (i.e., turn left, turn right, or
straight ahead) were balanced by analyzing the distributions of HLC-properties
in the dataset and downsampling the over-represented choices. Finally, some of
the data samples where the vehicle was not moving (e.g., waiting for a red light)
were downsampled.

5 Model Architectures

In this paper, two related end-to-end architectures are proposed. The first is a
Convolutional Neural Network (CNN) inspired by NVIDIA’s DAVE-2 [1] system,
while the second extends the CNN with Long-Short-Term-Memory (LSTM) units
to capture temporal dynamic behavior.

5.1 CNN Model

The CNN model consists of two connected modules: a feature extractor and a
prediction module. The former uses a CNN to extract useful features from the
input image, while the latter combines the detected features with the additional
inputs (i.e., current speed, speed limit, traffic light state, and HLC) to predict
a control signal (i.e., steering angle, throttle and brake values).

The convolutional part of the model is inspired by the architecture used in
NVIDIA’s DAVE-2 system [1]. The modified network takes a 180x300x3 image
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as input, followed by a cropping layer and a normalization layer. The cropping
layer removes the top 70 pixels from the image, while the normalization layer
scales the pixel values between -0.5 and 0.5. Next follows six convolutional layers,
all using a ReLU activation function. The first three layers use a 5x5 filter, while
the last three use a 3x3 filter. The first four layers use a stride of 2, while the
last two use a stride of 1. The output of the last convolutional layer is flattened
resulting in a one-dimensional feature layer containing 768 nodes.

The output from the convolutional layers is concatenated with the additional
input containing the speed, speed-limit, traffic-sign, and HLC values. The con-
catenated layer serves as an input for the predictive part of the model which
consists of three dense layers containing 100, 50, 10 nodes respectively. All the
dense layers use a ReLU activation function. The last of the dense layers are
finally connected to an output layer, consisting of 3 nodes. The complete archi-
tecture is shown in Figure 1.

Fig. 1. The architecture of the CNN model. The model accepts a single RGB image
and predicts a control signal.

5.2 CNN-LSTM Model

The CNN-LSTM model consists of two connected modules: a feature extractor
and a temporal prediction module. The former follows the same architecture
as the previous model, shown in Figure 1. The feature extractor is connected
to an LSTM layer with 5 hidden states. The model uses a sequence of feature
extractions over time to predict a control signal. This allows the model to learn
temporal dependencies between time steps.

For each time step, the output of the feature extractor is concatenated with
the additional input containing speed, speed limit, traffic light, and an HLC.
This is sent through a dense layer containing 100 nodes and fed into an LSTM
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layer with 10 nodes. For each time step in the sequence, the LSTM layer sends its
output to itself. At the last time step, the output is sent through a dense layer,
consisting of three nodes. This is the final prediction. The complete architecture
is shown in Figure 2.

Fig. 2. The architecture of the CNN-LSTM model.

6 Experimental Setup

6.1 Training

Training and validation The dataset was split into a training set (70%) and
a validation set (30%).

For the CNN-LSTM, the data samples were further structured into sequences
of length five, using a sampling interval of three. The sequence length determines
the number of time steps the LSTM layer is able to remember, while the sampling
interval decides the period between successive individual time steps within the
sequences. Figure 3 illustrates the structuring of sequences from 15 data samples.

Hyperparameters Both models were trained using an Adam optimizer [8] and
an Mean Squared Error loss function. The models were trained for a 100 epochs,
with a batch size of 32 data-samples. The models’ weights were recorded after
each epoch along with the associated validation error. After the training was
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Fig. 3. The structuring of sequences from an array of data samples. A sequence length
of five and a sampling interval of three is used.

complete, the weights associated with the lowest validation error were chosen
for further testing.

6.2 Testing

After training, each model’s predictive and real-time performance was measured.
The predictive performance was tested by exposing the models to the unseen test
set while calculating the average prediction error. The real-time performance was
tested by letting the models control a simulated vehicle in CARLA’s second town.
Each model was to drive through a predefined route ten times. The test evaluator
provided HLCs to the model before each intersection. A model’s performance
was measured in the number of route completions, the average route completion
percentage, and the number of failures. Model failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed
rear-ending or an object collision was considered a moderate failure. Object
collisions without recovery or an ignored HLC were considered a severe failure.
Catastrophic failures consisted of either entering the opposite lane, disregarding
a red traffic light, or colliding with oncoming traffic.

7 Experimental Results

7.1 Validation and Test Error

After 100 epochs of training, both models’ training and validation loss had sta-
bilized. The CNN and CNN-LSTM had their lowest validation error after epoch
66 and 81 respectively. The models were then evaluated on the unseen test set
from CARLA’s second town. On the test set, the CNN was able to predict a
control signal with an average error of 0.023, a 43% increase compared to its
validation error. The CNN-LSTM was able to predict a control signal with an
average error of 0.022, a 57% increase compared to its validation error.
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Table 2. Test and validation loss during the training of the models.

Model Validation Loss Test Loss

CNN 0.016 0.023
CNN-LSTM 0.014 0.022

7.2 Real-time Test in Simulated Environment

Both models were real-time tested in CARLA’s second town. To test their ability
to handle various driving scenarios in an urban environment, each model drove
a predefined route ten times. The results are described below. Two videos were
created to show a successful run and some common failures. One demonstrates
the CNN model [5] and the other demonstrates the CNN-LSTM model [6].

Table 3. Summary of test results. Each model attempted to drive a predefined route
(Figure ??) ten times. A model’s performance were measured in the number of route
completions and the average route completion percentage.

Model Route Completions Avg. Route Completion

CNN 2 56% ± 39
CNN-LSTM 5 81% ± 9

Table 4. Average failures per run. The models’ failures were recorded according to
severity. Touching a lane line was considered a minor failure, while a low-speed rear-
ending or an object collision was considered a moderate failure. Object collisions with-
out recovery or an ignored HLC were considered a severe failure. A catastrophic failure
consisted of either entering the opposite lane, disregarding a red traffic light, or colliding
with oncoming traffic.

Model Minor Moderate Severe Catastrophic

CNN 2.10 ± 1.73 0.65 ± 0.99 0.25 ± 0.44 0.23 ± 0.57
CNN-LSTM 2.90 ± 1.72 0.10 ± 0.31 0.05 ± 0.22 0.17 ± 0.38

CNN Out of ten runs, the CNN model was able to complete the predefined
route twice, with an average completion percentage of 56% over all runs. The
model performed well on lane following and drove reliably in the center of the
lane most of the time. The model handled most intersections but had a tendency
to perform very sharp right turns. This resulted in 2.1 minor failures (i.e., the
vehicle touching the lane line) per run. It always tried to follow the provided
HLC, and never ignored a traffic light. It was able to handle complex light
conditions, such as direct sunlight and dark shadows in the road. The model
hit objects without recovery several times, leading to 0.5 severe failures per run.
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The vehicle rarely hit objects outside of the lane, but occasionally struggled
to stop for other vehicles, leading to several low speed rear-end collisions. In
total, the model had 0.1 object collisions, and 1.2 rear-end collisions per run.
Finally, 0.7 times per run it struggled to find the lane after a turn, leading to a
catastrophic failure. The model usually held the speed limit but found it hard
to slow down fast enough to a speed limit when the speed was high. The results
are summarized in Table 3 and Table 4.

CNN-LSTM The CNN-LSTM model was able to complete the predefined route
five out of ten times, with an average completion percentage of 81% over all runs.
It drove reliably in the center of the lane most of the time but tended to perform
sharp turns. This lead to 2.9 minor failures (i.e., lane line touches) per run. The
model always tried to follow the provided HLC, and never ignored a traffic light.
It managed to handle various light conditions, such as direct sunlight and dark
shadows in the road. The vehicle rarely struggled to stop for other objects or
vehicles, resulting in 0.1 object collisions and 0.1 rear-end collisions per run.
Finally, 0.5 times per run it struggled to find the lane after a turn, leading to a
catastrophic failure. The model adapted well to the different speed limits. The
results are summarized in Table 3 and Table 4.

8 Discussion

This paper proposed two architectures for an end-to-end system: a traditional
CNN inspired by NVIDIA’s DAVE-2 system [1], and an extended design combin-
ing the CNN with an LSTM layer to facilitate learning of temporal relationships.
Both models were able to follow a lane consistently and reliably. Any distur-
bances or shifts in the trajectory were quickly corrected, without being overly
sensitive. The CNN exhibited less volatile steering compared to the CNN-LSTM
in the high-speed stretch of the route, but the CNN-LSTM outperformed the
CNN in turns following high-speed stretches. Additionally, both models obeyed
all traffic lights and always tried to follow the provided HLC at intersections.

When introducing other vehicles, the differences between the models became
more apparent. The CNN-LSTM adapted its speed according to traffic, and only
rear-ended another vehicle once throughout the whole experiment. In scenarios
where another vehicle blocked most of the view (e.g., when following another
vehicle closely in a turn), the CNN-LSTM seemed to be able to use past predic-
tions as a guide. The CNN, on the other hand, experienced more trouble when
driving alongside other vehicles. Although the model, to some degree, adapted
its speed according to traffic, it often failed to react upon sudden changes. This
led to frequent rear-endings throughout the experiment.

The difference between the models’ performance may be explained in their
architectural differences. The CNN-LSTM model used five subsequent obser-
vations when making predictions. This allowed it, by all indication, to learn
some important temporal dependencies - acquiring some knowledge about the
relationships between movement, change in object size, and distance. The CNN
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model, however, interpreted each observation independently, which restrained
its ability to understand motion. It still learned to brake when approaching a
vehicle, but was not able to differentiate between fast approaching and slow ap-
proaching objects. Predictions related to distance were solely dependent on the
size of objects. Moreover, the CNN could not rely on past predictions when faced
with confusing input, which seemed to result in more unreliable behavior.

It should be mentioned that although the CNN model had 28 % less minor
failures than the CNN-LSTM model, its completion rate was 32 % lower than
the CNN-LSTM. The reduction in minor failures was probably a result of the
lower average route completion, not an indication of better performance.

8.1 Consistency with Related Work

The implemented models in this paper are based on the architecture in [1]. The
authors were able to use a CNN to drive on trafficked roads with and without
lane markings, parking lots and unpaved roads. This complies with this paper’s
results. Even though the implemented models were not tested on unmarked
roads or parking lost, they were able to drive on roads with lane marking, both
on roads with and without pavements.

Codevilla et. al. [2] claimed that their command input network performed in-
adequately when executing navigational commands. This does not comply with
the results of this paper. The proposed architecture takes the navigational com-
mand as input after the CNN, in a similar matter to the command input network,
but was able to execute the given navigational commands with a high degree of
success.

In [7] the turn indicators of the car was used as the navigational commands,
which were sent as input to the network. The authors did not use an RNN,
but fed three subsequent images to three CNNs and concatenated the output.
It was able to perform lane following, avoid obstacles and change lanes. The
navigational commands in this paper were introduced to the network in a similar
way, and both approaches were able to execute the navigational commands. The
proposed system was not tested for lane changes, but seeing achievements in
similar approaches indicates that this should be possible.

The CNN model in this paper was extended with an LSTM to utilize temporal
dependencies. A similar approach was attempted in [4]. They showed that adding
temporal dependencies improved both the accuracy and stability of a model
using a single CNN. Similar results can be seen in this paper.

9 Conclusion

The results of the experiments indicates that end-to-end systems are able to
operate autonomously in simulated urban environments. The proposed systems
managed to follow lanes reliably in varying lighting conditions and were not dis-
rupted by disturbances or shifts in trajectory. They were able to abide by traffic
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lights and speed limits and learned to execute different navigational commands
at intersections.

Both systems managed to adapt its speed according to traffic, but their abil-
ity to respond to sudden changes varied. The CNN-LSTM were, by all indication,
able to acquire some insight into the relationships between movement, distance,
and change in the perceived size of objects. The regular CNN, interpreting each
observation independently, was not able to learn these essential temporal de-
pendencies. Hence, the results suggest that exploiting temporal information in
subsequent images improves an end-to-end systems ability to drive reliably in
an urban environment.

Even though the systems’ performed several mistakes during testing, their
achievements demonstrated great potential for using end-to-end systems to ac-
complish fully autonomous driving in urban environments.

References

1. Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel,
L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to
end learning for self-driving cars. CoRR abs/1604.07316 (2016), http://arxiv.
org/abs/1604.07316

2. Codevilla, F., Müller, M., Dosovitskiy, A., López, A., Koltun, V.: End-to-end
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f o rwa rd_ image_ i npu t = I n p u t (

shape =( s e q_ l e ng t h , 1 6 0 , 3 5 0 , 3 ) ,

name=” fo rwa rd_ image_ i npu t ”

)

i n f o _ i n p u t = I n p u t ( shape =( s e q_ l e ng t h , 3 ) , name=” i n f o _ i n p u t ” )

h l c _ i n p u t = I n p u t ( shape =( s e q_ l e ng t h , 6 ) , name=” h l c _ i n p u t ” )

x = T imeD i s t r i b u t e d ( Cropping2D ( c r opp i ng = ( ( 5 0 , 0 ) , ( 0 , 0 ) ) ) ) ( f o rwa rd_ image_ i npu t )

x = T imeD i s t r i b u t e d ( Lambda ( lambda x : ( ( x / 2 5 5 . 0 ) − 0 . 5 ) ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 2 4 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 3 6 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 4 8 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

conv_ou t pu t = T imeD i s t r i b u t e d ( F l a t t e n ( ) ) ( x )

x = c o n c a t e n a t e ( [ conv_ou tpu t , i n f o _ i n p u t , h l c _ i n p u t ] )

x = T imeD i s t r i b u t e d ( Dense (100 , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = CuDNNLSTM(10 , r e t u r n _ s e q u e n c e s = F a l s e ) ( x )

s t e e r _ p r e d = Dense ( 10 , a c t i v a t i o n =” t anh ” , name=” s t e e r _ p r e d ” ) ( x )

x = T imeD i s t r i b u t e d ( Cropping2D ( c r opp i ng = ( ( 5 0 , 0 ) , ( 0 , 0 ) ) ) ) ( f o rwa rd_ image_ i npu t )

x = T imeD i s t r i b u t e d ( Lambda ( lambda x : ( ( x / 2 5 5 . 0 ) − 0 . 5 ) ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 2 4 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 3 6 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 4 8 , ( 5 , 5 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , s t r i d e s = ( 2 , 2 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = T imeD i s t r i b u t e d ( Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n =” r e l u ” ) ) ( x )

conv_ou t pu t = T imeD i s t r i b u t e d ( F l a t t e n ( ) ) ( x )

x = c o n c a t e n a t e ( [ conv_ou tpu t , i n f o _ i n p u t , h l c _ i n p u t ] )

x = T imeD i s t r i b u t e d ( Dense (100 , a c t i v a t i o n =” r e l u ” ) ) ( x )

x = CuDNNLSTM(10 , r e t u r n _ s e q u e n c e s = F a l s e ) ( x )
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t h r o t t e _ p r e d = Dense ( 1 , name=” t h r o t t l e _ p r e d ” ) ( x )

b r ak e_p r ed = Dense ( 1 , name=” b r ak e_p r ed ” ) ( x )

model = Model (

i n p u t s =[ fo rwa rd_ image_ inpu t , i n f o _ i n p u t , h l c _ i n p u t ] ,

o u t p u t s =[ s t e e r _ p r e d , t h r o t t e _ p r e d , b r a k e_p r ed ]

)
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Figure D.1: Town 1 in CARLA is situated in an urban environment and has 2.9 km of drivable road.
It consists of roads with two lanes, one in each driving direction, and intersections with traffic lights.
Additionally, there are multiple buildings and vegetations in the town.

Figure D.2: CARLA’s second town, Town 2, is also situated in an urban environment, but have
different buildings from the first town and 1.4 km of drivable road. Many buildings are taller, creating
more complex light conditions.
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Figure D.3: Town 3 is in an urban environment with multiple lanes, a roundabout, and uphills and
downhills.

Figure D.4: Town 4, the fourth town is a combination of a highway and an urban environment. The
highway has four lanes in the same driving direction. The urban environment can be accessed from
the highway by taking on of several exits.
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Figure D.5: Town 5 is quite similar to Town 3, except there are no roundabouts.
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