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Abstract

As more and more industrial sensors get connected to the Internet, high demands are put on the
systems handling these data. Clients want to monitor and analyze the data from their sensors,
both as real-time measurement streams and as historical time series. Kongsberg Digital has
developed one such system which also allows the clients’ queries to seamlessly transition from
historical to real-time data. One of the challenges with this system, however, is that the current
solution doesn’t scale with the number of clients.

In this thesis, an architecture that increases the scalability of such a system is designed by
using publish-subscribe systems to fan-out results that are shared among multiple clients while
still allowing for a seamless transition from historical to real-time data. The architecture is then
implemented and tested in a proof-of-concept system to verify the result.
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Sammendrag

Nå som flere og flere industrielle sensorer kobles til Internet, stilles det høye krav til systemene
som håndterer disse dataene. Klientene ønsker å overvåke og analysere måledataene sine, både
i sanntid og som historiske tidsseriedata. Kongsberg Digital har utviklet et system for dette
formålet. Dette systemet gjør det også mulig for klientene å sende spørringer som sømløst går i
fra å levere historiske data til å levere sanntidsdata. En av utfordringene med dette systemet er
at det ikke skalerer med antall klienter som bruker det.

I denne oppgaven er det designet en system arkitektur som forbedrer skalerbarheten til et
slikt system. Dette oppnås ved å bruke et «publish-subscribe-system»til å spre ut samme re-
sultat til alle klientene som har spørringer som resulterer i samme samtids-resultat. Samtidig
beholdes den sømløse overgangen fra historiske data til sanntidsdata. Akritekturen er deretter
implementert og testet i et test-system for å verifisere at det fungerer.
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Chapter 1
Introduction

This thesis is based on Kongsberg Digitals’ Industrial Internet of Things (IIoT) sensor database
Galore. Galore is a system that receives streams of measurement data from various sensors,
stores it, and performs functional transformations based on client queries. The queries can in-
volve both real-time and historical data.

A typical approach to building systems that utilize both real-time and historical time series is
to dispatch the data down two different paths, one for real-time data and one for historical data.
This is known as a lambda architecture. One of the downsides of having two different paths
is that the clients are usually provided with two completely different Application Programming
Interfaces (APIs) and query languages. This makes it difficult to develop user applications that
integrate both historical and real-time data. Integration of the two paths is a problem often left
for the client application to solve.

Galore has taken a slightly different approach where both the real-time and the historical
data is available through the same subscription-based API. This allows the users to send queries
that start with historical data and when it reached the end of that data, it continues with real-time
data. One of the challenges of such queries is that it takes a bit of time to store the measurements
to the database, causing a delay between the database and the real-time stream. In Galore, the
transition from historical to real-time data is handled on the server-side. This simplifies the
development of client-application. However, it does have some scalability issues.

The usage pattern of Galore is such that many clients send queries that result in the same
real-time data stream. For example, two clients might send the same query at different points
in time or by using different query-formulations that lead to the same processes being applied.
With the current solution, each of these queries needs its own publisher which gathers the re-
quired data from the database and/or real-time streams, processes it, and publishes the result to
the client. Contrary to a query for a normal database, a stream query can keep running indef-
initely. Thus, a typical query in Galore spends most of its lifetime consuming real-time data.
This is not a big problem when dealing with a few clients, but as the client count increases the
number of duplicate publishers also increases.

A publish-subscribe (pub/sub) system can easily be used to scale the real-time part to handle
more clients as it separates the publishers from the clients (subscribers) by categorizing the
messages instead of sending all of them one by one. This allows a single publisher to send
the same data stream to multiple clients. A downside of this is that it is less trivial to integrate

1



Chapter 1. Introduction

real-time and historical data processing.
This leads to the research question of this thesis:

“How can a pub/sub service improve the scalability of Galore to support more clients while
still handling the transition from historical to real-time data streams assuming most of the
queries result in equal real-time streams?”

The thesis is aimed to fit any system that uses a similar architecture as Galore and therefore
does not focus too much on the specifics of Galore.

1.1 Objective
The objective of this thesis is to develop a simplified model of Galore and attempt to scale it for
an increased number of clients by using a scalable pub/sub service. It is assumed that most of
the requests have identical real-time results.

The system should only need one producer for each "group" of queries that results in the
same real-time result. At the same time, the task of transitioning from historical to real-time
data should not be left for the client application to solve.

1.2 Limitations
One of the challenges of scaling this system is to figure out which queries result in the same
real-time result. Galore uses a rich query language where the same real-time result can be
achieved from multiple different query formulations. Analyzing the queries and figuring out
which ones results in the same real-time streams is not part of this thesis.

There exist lots of different pub/sub systems on the market today, each with their pros and
cons. This thesis does not aim to analyze and compare various pub/sub systems to find the
most suited one for this specific purpose. It explores techniques suitable for most topic-based
pub/sub systems.

Sharing resources for the historical part of a query is not a part of this thesis The historical
portion of a query must be sent by a dedicated publisher. It is therefore assumed that the queries
will spend the majority of their lifetime consuming real-time data.

1.3 Thesis Structure
The rest of the thesis is structured as follows. Chapter 2 presents some background theory
and previous work related to this thesis. In chapter 3, the problem is analyzed and different
approaches to solving it are presented and discussed. Chapter 4 describes the suggested solution
and how it is implemented in a proof-of-concept system. Chapter 5 describes and evaluates
some testing done on the system as well as their results. Finally, chapter 6 concludes the thesis
and suggests some future work.
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Chapter 2
Background and Related Work

This chapter introduces research and technologies related to this thesis. The thesis does not
build on one specific field of research, as the use case for this problem is quite unique, but
borrows ideas from a combination of different fields.

Section 2.1 introduces Galore, the system behind the problem that this thesis explores. Sec-
tion 2.2 introduces Multiple-Query Optimization, a research field focused on saving resources
for similar queries, both for traditional database queries and for stream queries. Section 2.3 in-
troduces the lambda architecture, an architecture suited for systems that utilize both historical
and real-time data. Section 2.4 describes the publish/subscribe messaging pattern along with
some systems implementing the pattern. Finally, section 2.5 concludes the chapter.

2.1 Galore

Galore is an IIoT measurement stream transformation and storage system built by Kongsberg
Digital AS [1]. Sensor data is constantly streamed to Galore from various industrial assets
where it is stored, processed and made available to clients as illustrated in figure 2.1. The input
can also contain external data such as weather forecasts and electricity prices.

Galore allows the clients to query the data from their assets both in real-time and for histor-
ical data. It is also possible for queries to start with historical data and, when it reaches the end,
switch to using real-time data.

Galore’s customers are typically owners of large industrial assets e.g., a wind farm, a fleet of
vessels, oil rigs, etc. and the client-applications are typically programs that monitor and analyze
the state of these assets. An example query for a wind farm could be to ask for the power output
for all the wind turbines starting from 24 hours ago and continuing up to today and onwards.

Galore contains its own proprietary query language called TQL. The TQL has a set of oper-
ation keywords that can be chained into functional pipelines, for instance; aggregations, stream
merges, normalization, fast Fourier transformations, and so on [2]. This allows the clients to
build complex queries for all sorts of analysis and monitoring purposes.

Galore’s customers often have multiple client-applications that monitor their data. Some
monitor the same things, while some focus on different areas. Even if the applications monitor
different things, they often have some overlapping queries i.e., queries that results in the same
real-time stream. These overlapping queries are the focus of this thesis.

3



Chapter 2. Background and Related Work

Figure 2.1: Streams of sensor data are feed to Galore from various industrial assets where it is made
available for client applications for analysis and monitoring.

2.2 Multiple Query Optimization

Multiple Query Optimization (MQO) is the task of processing a batch of queries in the most
efficient manner, both for traditional database queries and streaming queries [3].

Early work on MQO for traditional, static databases mostly focuses on finding the opti-
mal evaluation plan for a small group of queries by locating and reusing computations of sub-
expressions shared between the queries [4], [5]. Optimizing a group of queries can lead to more
efficient evaluation compared to individually optimizing each query but it comes with a higher
computational cost.

Early MQO is not suited for streaming queries for several reasons. Firstly, it is only cost-
efficient for a small group of queries. Secondly, some queries risk getting a slower response as
the system waits for more queries before processing. Third, the methods are not designed for
an environment where queries are frequently added and removed.

More recent work in the field contains techniques that are designed for, e.g., Extensible
Markup Language (XML) query processing [6], materialized view maintenance [7], On-Line
Analytic Processing (OLAP) [8], and stream query processing [9] [10]. MQO techniques for
stream query processing are the sub-field most relevant for this thesis. For example, Krishna-
murthy et al. [9] designed a resource sharing technique designed for streaming queries that vary
both in their selection predicates and periodic windows. This method, unlike the traditional
ones, does not require any up-front computation.

It is possible to use some traditional techniques for the historical parts of the queries, but
the queries of Galore usually spend most of their lifetime dealing with real-time data, so the
potential gain is very limited compared to optimizing the real-time part.

This thesis takes a slightly different approach to MQO compared to most of the other studies.
The query analysis part of the optimization tasked with dividing the queries into smaller parts
and finding shared parts is heavily simplified. In this thesis, only queries that result in exactly
the same real-time stream will share resources. Simultaneously, the queries optimized here have
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2.3 The Lambda Architecture

the added difficulty that they may start with historical data and when it reaches the end, continue
with real-time data.

2.3 The Lambda Architecture

The Lambda Architecture [11] is a generic, scalable, and fault-tolerant data processing archi-
tecture that combines both batch-oriented and stream-oriented processing methods in the same
framework to handle massive quantities of data. In the lambda architecture, all the incoming
data is dispatched into two paths, a hot path, and a cold path. The hot path is a real-time stream
processing path whereas the cold path is a batch-oriented processing path that includes per-
manent storage of the messages in e.g., a time series database. An illustration of a simplified
lambda architecture is shown in figure 2.2.

Figure 2.2: A simplified illustration of the lambda architecture where the incoming data is dispatched to
two paths.

The lambda architecture is made up of three layers; batch layer, serving layer, and speed
layer. The batch layer manages the master dataset, an immutable, append-only collection of
data. The serving layer acts as an interface to the queries, both for the batch layer and for the
speed layer. The speed layer compensates for the slow batch layer, often by approximating the
results. This allows queries to get both precise results from the batch layer and quick results
from the speed layer. The lambda architecture is by itself just a paradigm and can be imple-
mented with different types of software to fit many different use cases, not just time-series data
[12].

The lambda architecture is relevant for this thesis as it has some similar features to the
underlying architecture of Galore and as well as being a popular choice for other systems that
uses both real-time and historical data.

5
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2.4 Pub/Sub Services
Publish-subscribe [13] is a messaging pattern consisting of publishers, subscribers, and typi-
cally a broker in the middle. The publisher publishes a message to a broker, and the broker for-
wards the message to all the subscribers who are interested in the message. There are two main
filtering methods used to determine if a subscriber is interested in a message; content-based
[14] and topic-based [15]. In content-based filtering, the internal properties of the messages are
used to classify them. In topic-based filtering, the publishers assign a topic or a subject to each
message which is used to classify them. In this thesis, only pub/sub systems with topic-based
filtering are considered.

The subscribers sends subscription requests to the broker indicating which topics they are
interested in. This topic abstraction creates a layer of separation between the publishers and
subscribers.

Figure 2.3 shows a typical pub/sub system. Two publishers publish messages to different
topics, a purple topic, and a green topic. The broker then routes these messages to the sub-
scribers. The publishers and the subscribers do not need to know about one another as the topic
abstraction is used to route the messages.

Figure 2.3: A publish-subscribe system where a purple and a green topic is published to a broker that
routes the messages to the subscribers.

The topics used in a pub/sub system usually form a hierarchical structure [16]. For example,
a topic used in a system monitoring wind farms could be:

farm3.windturbine21.nacelle.windspeed
indicating that the message contains the wind-speed measured at the nacelle of wind turbine
number 21 at wind farm number 3. A "." is used as a delimiter between the different levels
of the hierarchy. The string of characters used as an identifier within a specific level in the
hierarchy (e.g. "windturbine21") is called a token.

Many pub/sub services also allow for wildcard characters in the topic. Wildcard characters
allow subscribers to listen to multiple different topics with the same subscription. For example,

6
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the pub/sub system NATS allows two types of wildcard characters; "*" and ">" [17]. The "*"
will match a single token and ">" will match one or more tokens. A subscription to the topic:

farm3.*.nacelle.windspeed
means that the subscriber will receive wind-speed measurements from the nacelle of all the
wind turbines of wind farm number 3 and a subscription to the topic

farm3.>
will receive all messages from wind farm number 3.

A pub/sub service is relevant for this thesis due to its ability to easily send a message to
many subscribers while keeping a layer of separation between the source of a message and its
recipients.

There are lots of different messaging systems that support different flavors of the pub/sub
pattern. Three popular choices today are Apache Kafka [18], RabbitMQ [19], and NATS [20].
Each of these has its own traits and use cases.

2.4.1 Apache Kafka
Apache Kafka [18] is a distributed streaming platform that, along with processing and storage
of streams, allows clients to publish and subscribe to streams of records (Kafka’s equivalent of
a message). Kafka uses write-ahead logging to write all the records in a redundant and fault
tolerant way to disk as they arrive. The records contain a key, a value, and a timestamp.

Kafka is built with a focus on clustering. It is meant to be run on a cluster of computers to
balance the load and to offer redundant storage of the log. Kafka is horizontally scalable and
can run on anything from a single server to huge clusters that span multiple data-centers.

Kafka’s use of a log structure to represent the stream leads to some interesting characteristics
compared to other pub/sub services. Typically, the broker in a pub/sub system would control the
cursor (i.e., the read-position in the stream) but in Kafka, this is the consumers’ responsibility.
This means that the consumer can start reading from any point in the stream, it can read at its
own pace, and it can replay parts of the stream.

The main strengths of Kafka compared to a lot of other pub/sub services is its support for
very high producer throughput, durability, fault tolerance, and support for both fast and slow
consumers. The high throughput is achieved by dealing with messages in batches, but this also
means that latency tends to be higher than other pub/sub services.

2.4.2 NATS
NATS [20] is a simple, high performance, and highly scalable messaging system supporting
three different messaging patterns; pub/sub, load balanced queue, and request/reply. The load
balanced queue is an extension to the "pure" pub/sub pattern which allows subscribers to be
grouped and, a message sent to a group is only received by one of the subscribers. This is useful
in e.g., load balancing and auto-scaling. The request/reply pattern allows for both one-to-one
and one-to-many messaging where the messages contain a reply-topic for the subscriber(s) to
send a reply back to the publisher.

The pub/sub messaging pattern of NATS is, unlike Kafka, a fire-and-forget system. This
means that the broker controls the cursor of a stream and a subscriber needs to be actively
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listening to the topic to receive a message.
Out of the three systems introduced here, NATS is the one with the lowest latency, but also

the one with the lowest delivery guarantees. NATS only supports at-most-once delivery as it
delivers messages immediately to the subscribers but does not persist them.

2.4.3 RabbitMQ
RabbitMQ [19] is a lightweight open-source message broker written in Erlang. It supports mul-
tiple messaging protocols, including MQTT, AMQP, HTTP, and STOMP. RabbitMQ consists
of publishers, consumers (subscribers), exchanges, and queues.

Where Kafka uses a log and NATS uses fire-and-forget to get the messages from the pub-
lishers to the subscribers, RabbitMQ uses queues. The use of queues allows the consumers to
read from the queue at their own pace similar to Kafka, but the messages can only be read once.
RabbitMQ also support some persistency guarantees, both on queues and messages.

Figure 2.4 illustrates the different components of RabbitMQ. A publisher sends a message
to an exchange, the exchange routes the message to the correct queues, and the consumers read
from the queues. The messages can be routed based on topic, the message header, or it can be
routed directly (point-to-point). The queues are append-only, first-in, first-out (FIFO) queues,
and the messages are removed once they are read.

A queue can belong to one or more consumers. If two consumers read from the same queue,
they compete for the messages. Alternatively, with multiple consumers wanting to read the
same messages, multiple queues can be created.

Figure 2.4: Overview of the main components of RabbitMQ and their interaction.

2.5 Conclusion
This chapter has introduced the main research fields and technologies that this thesis builds on.
MQO share the same goal of saving resources by sharing results among multiple queries, the
lambda architecture is a popular choice for systems that uses both historical and real-time data,
and pub/sub services offers a good way to scale the real-time part of the system.

This thesis borrows ideas from all of these fields in the task of designing an architecture that
fills the requirements presented in chapter 1.
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This chapter discusses the problem and different approaches to solving it. Section 3.1 analyzes
the problem and breaks it into two main subproblems. Section 3.2 and 3.3 introduces different
ways of solving these subproblems and discusses the pros and cons of the solutions. Section 3.4
summarizes the different approaches and discusses the chosen approach. Section 3.5 discusses
the selection of a pub/sub system based on of the approach chosen in 3.4. Finally, section 3.6
concludes the chapter.

3.1 The Problem
As stated in section 1.1, the objective of this thesis is to develop a proof-of-concept system
which only needs one producer for each query group (i.e., a group of queries that result in
the same real-time stream) and that abstracts the task of transitioning from historical to real-
time data streams away from the client application. The objective can be divided into two main
components: grouping real-time streams and transitioning from historical to real-time data. The
choices made in one of these subproblems affects, to some degree, the possibilities of the other,
but they can still be analyzed separately.

3.2 Transition
Transitioning from historical to real-time data can be done in a couple of different ways, and it
can be done either on the server-side or on the client-side.

3.2.1 The Buffer-based Transition Alternative
The simplest way to transition between the two streams is to use a buffer that stores the latest
messages of the real-time stream so that it overlaps with the historical stream. This type of
transition can be done on both the server-side and on the client-side.

3.2.2 The Log-based Pub/Sub Alternative
An alternative way for transitioning is to use a pub/sub system based on logging (f.ex. Apache
Kafka) instead of the normal "fire-and-forget" type of pub/sub. In a log-based pub/sub system,
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the stream is stored in a log data-structure and the client can control where in the log it should
start reading from. This method eliminates the need for a buffer to store the real-time stream,
but it limits the choice of pub/sub systems. This method implies that the transition happens on
the server-side.

3.2.3 Server-side vs Client-side Transition
The transition from historical data to real-time data can either be done on the server-side or the
client-side, each having its own traits.

The transitioning can be done on the client-side without relying on the client application to
do it by using a client library. An argument for doing the transition on the client-side is that it
makes the server-side simpler and allows for an architecture similar to the lambda architecture.
A downside is that some of the messages will most likely be sent on both streams, thereby
wasting bandwidth resources. Another thing to note is that only the buffer-based transition
alternative is possible when using the client-side. If the buffer-based alternative is chosen,
having to create a client-library is not necessarily a downside as the same functionality are
required regardless of where the transition happens.

A benefit of doing the transition on the server-side is that it practically eliminates the need
for a client library. Another benefit is that the publisher can ensure that the same message is
not sent on two streams. It also allows for both the buffer-based and the log-based pub/sub
transition alternative. One of the downsides of server-side transition is that the server becomes
more involved in handling each query request which could make the system more difficult to fit
into a distributed environment.

Choosing where to do the transition largely depends on what fits with the other parts of the
solution. One side of the system is not necessarily better than the other.

3.3 Grouping Real-Time Streams
There are several ways of ensuring that there is only one producer per query group. The two
main categories of options are to either merge two streams that have resulted in the same real-
time stream or, to keep a dedicated real-time publisher for each query group and use temporary
publishers for the historical data. Merging two streams fits best together with server-side tran-
sition while using dedicated real-time and historical publishers is better suited for client-side
transition.

This section explores and compares different ways of approaching this problem.

3.3.1 The Merging Alternative
Perhaps the most intuitive solution is to keep the system the way it is now and, when two
producers reach a point where they produce the same result, they are somehow merged into one
producer. This can be done in multiple ways e.g., with a pub/sub system that allows external
altering of the interest graph, it can be done with some cleverly designed topic structure based
on wildcards, or it can be done with the help of the client. Merging streams is mainly suited
for server-side transition. Figures 3.1, 3.2, and 3.3 show an example scenario of a topic merge
divided into three different states.
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Figure 3.1: State 1: Client 1 and client 2 are interested in the same query. Client 1 is receiving real-time
data while client 2 is still receiving historical data.

Figure 3.2: State 2: Client 2 has now caught up with client 1. The two publishers are now doing the
same work.

Figure 3.3: State 3: The two streams/topics are merged. A single publisher now publishes to both
clients.

Based on Client Changing Topic

A simple way to merge two topics is to ask all the clients of one topic to subscribe to the other
topic and to unsubscribe from their original topic. There are multiple ways to ensure that no
messages are lost when a client changes the topic. E.g., an overlap between the subscribe and
unsubscribe can ensure an at-least-once delivery guarantee.

One of the downsides of making the client change its topic is that it would require some
functionality on the client-side to handle the switch. It would also complicate the server-side as
the two publishers must first determine which one survives and which one dies before commu-
nicating this to the client(s).

Based on Altering the Pub/Sub Interest Graph

A pub/sub system that allows third parties to alter the interest graph (i.e. the graph connecting
the subscribers with the topics that they are interested in), would allow the publishers to control
the merge without the client noticing. This is an improvement compared to the previous method
as it simplifies the client-side, but it does not solve the challenge of picking which publisher
survives.
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At the time of writing, a system with such functionality does not exist (at least not among
the most common pub/sub systems).

Based on a Topic Structure with Wildcards

Some of the pub/sub systems allow the use of wildcard characters in the topic. Wildcard char-
acters are usually meant for clients to decide which topics it is interested in and allows them
to subscribe to multiple topics while using the same subscription. If, however, the topic string
is decided by the server-side, it can also be used by the publishers to decide which clients a
message is sent to through some cleverly designed topic structure.

Using the wildcard characters of NATS, an example topic structure that allows the publisher
to decide which subscribers receive a message would be built as follows:

• Each query group decides on a shared token, ex. ’a’. This token should be as short as
possible but has to be unique for that group.

• The system must also decide on a special token which is not to be used as a shared token
for any of the query groups, ex. ’0’.

• The topic for a query is then made up of a specific number of ’*’-wildcards, followed by
a single shared token for that particular query group, and finally a ’>’ wildcard. The first
topic in a query group contains no ’*’s, the next contains one ’*’, the third contains two
’*’-wildcards, and so on.

Subscriber number: Topic-string:

0 a.>
1 *.a.>
2 *.*.a.>
3 *.*.*.a.>
4 *.*.*.*.a.>

Table 3.1: Subscribers and corresponding topic-strings of a query group

Table 3.1 shows an example query group that allows the publisher to control which of the
subscribers receives the message by changing which topic it publishes to. E.x. a message sent
to the topic: 0.a.a would be received by the subscribers at topics *.a.> and *.*.a.> ,
but not the others. Similarly, it is possible to use combinations of the special token (’0’) and the
shared token (’a’) to decide any combinations of subscribers who is to receive a message.

Calculating which topic can be used to publish to a set of subscriber-topics is similar to
doing a bitwise-OR operation on the topic-strings. For each token; if one of the topics contain
the shared token at that position, use the shared token in the topic, otherwise, use ’0’. Table 3.2
shows some example combinations of subscribers and which topic to publish to so that only the
chosen subscribers will receive them.

The use case of this is when two publishers wants to merge into a single publisher, the
surviving publisher could simply change which topic it publish to in order to include the new
subscriber.
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Only publish to: Publish topic-string:

a.> a

*.*.*.a.> 0.0.0.a
a.> and *.a.> a.a

*.a.> and *.*.*.a.> 0.a.0.a
a.> and *.a.> and *.*.*.a.> a.a.0.a
a.> and *.a.> and *.*.a.> and *.*.*.a.> a.a.a.a

Table 3.2: Some example subscriber combinations and the corresponding topic-string used to publish to
only them

This allows real-time streams to merge without the clients noticing. This method does,
however, have a few downsides, mainly due to the pub/sub system no longer acting as a layer
of abstraction between the publishers and the subscribers. The publishers need full control of
which subscribers to send each message to and it has to recalculate the topic each time the list
of subscribers changes. The system also needs to keep track of all the topics used in all the
query groups, both for assigning new ones and to reclaim used ones when a client disconnects.
Another downside is that the topic-string increases with the number of clients sharing a result
stream. This method also limits the options of pub/sub systems as it must support wildcards
and very long topic-strings.

3.3.2 The Dedicated Real-Time Publisher Alternative
Another alternative is to not merge equal streams but for each query-group to have a dedicated
producer for real-time data. This would imply that a query that requires both historical and
real-time data will need two streams and the transition happens either at the client-side or at an
intermediate step at the server-side. The historical data needs to be sent on a temporary topic
unique to a client, but the historical publisher can be terminated once the client transitions to
real-time.

An advantage of this is that there is no need to determine which publisher survives as there
is only one real-time topic per query group. This eliminates the need for topics to merge.

The downside of this is that the transition between historical and real-time cannot happen
at the publisher but requires an intermediate step, either on the server-side or on the client-side.
This limits the choice of transition methods to a buffer-based method.

Figure 3.4 and 3.5 shows an example scenario of this method.

Figure 3.4: State 1: Both clients are interested in the same query. Client 1 is receiving real-time data
while client 2 is still consuming historical data. The historical data is sent by a temporary publisher.

Figure 3.4 shows the initial status. Client 1 and client 2 are interested in the same query.
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Client 1 is receiving real-time data from a dedicated source while client 2 is receiving historical
data from a temporary source. Client 2 also knows about the dedicated real-time source of its
query but does not need to subscribe to it until it is near the end of the historical stream.

Figure 3.5: State 2: Both clients consume real-time data from the same publisher. The temporary
historical publisher has been terminated.

Figure 3.5 shows the status when client 2 has reached real-time. The temporary source is
no longer needed as client 2 is only interested in the real-time data. Both clients receive the
real-time stream from the same source.

3.4 Comparison and Chosen Approach
As seen in the previous sections there are multiple approaches to the problem, both for transi-
tioning and for grouping. Tables 3.3, 3.4, and 3.5 shows a quick comparison of the pros and
cons of each of the methods.

Buffer-based: Log-based:

Only client-side or intermediate server-side
transition

Allows for both client-side and server-side
transition

Available for any pub/sub system Only available for log-based pub/sub systems

Table 3.3: Comparison of transition types

Server-side: Client-side:

Simple client-side, no need for client-library Requires a client library
The server is more involved in each query re-
quest

Better separation between server and client

Allows the transition to be built into the pub-
lishers

Allows for an architecture similar to the
lambda architecture

Can be built to ensure no messages are sent
twice

Requires a slight overlap of historical and
real-time data when transitioning

Table 3.4: Comparison of transition place

This thesis aims to propose a general solution to the problem at hand without too much
focus on a specific pub/sub system or on the specifics of Galore. It should also be easy to make
the system distributed.
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Merge: Dedicated real-time:

Requires the transition to be built into the
publishers

Allows both client-side and intermediate
server-side transition

Server-side requires some extra complexity
to facilitate the merging

Trivial to implement the server-side

Table 3.5: Comparison of grouping methods

The chosen transition type is a buffer-based approach as it puts much fewer constraints
on the available pub/sub services. A dedicated real-time publisher is chosen as the grouping
method and the transition is placed at the client side. All of this makes the server-side much
simpler and less bound up by each query request. Keeping the transition separated from the
publishers makes for simpler and more independent publishers. This makes the server-side
better suited for a distributed environment.

It would also be possible to choose to do the transition at an intermediate step on the server-
side but this would require the server-side to set up a transition-operation for each query request
that require a transition. It would also lead to a higher bandwidth cost within the server-side.
Although, if the bandwidth between server and client is a big concern it might be a better choice.

3.5 Selecting Pub/Sub System
Another big choice is to decide which pub/sub system to use. As stated in chapter 2.4, there
are a lot of different pub/sub systems on the market today, each with its own traits. The choice
of pub/sub system heavily depends on the usage patterns and specific needs of the system. The
aim of this thesis is not to benchmark and compare a lot of different pub/sub systems but to
propose a solution that fits most pub/sub systems. The only basic requirements for the pub/sub
system is that it is scalable and have a relatively fast throughput.

NATS is selected for the implementation in this thesis as it is the simplest pub/sub system of
the ones studied here. A solution that works well with a fire-and-forget system like NATS could
also be implemented in other pub/sub systems. Other pub/sub systems may allow for simpler
and more efficient implementations depending on the use cases.

3.6 Conclusion
This chapter has presented some ideas on how to solve the challenge. An architecture similar
to the lambda architecture where each unique real-time stream has a dedicated publisher and
a buffer-based transition is done in a client library has been chosen as the preferred one. Next
chapter describes the proof-of-concept system architecture that incorporates the methods chosen
here.
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Chapter 4
System Architecture

This chapter describes a proof-of-concept system that implements the methods chosen in chap-
ter 3. This system will be used for the testing in chapter 5.

The chapter starts with an overview of the system, its different components and how they
interact. In the next sections, these main components are described in more detail.

4.1 Component Overview

Figure 4.1: Information flow between the main components

The system consists of three main components: Server(s), the client(s), and a cluster of
NATS servers. These can be further divided into smaller components. Figure 4.1 shows the
main components of the system and the information flow between them.
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The server-side represents a simplified version of Galore and consists of a gRPC server that
receives and handles query requests from the clients and a simulator which starts up the required
producers for each query.

The client-side consists of a client application that generates and sends the queries and a
client library that handles the connection with NATS as well as the transition from historical to
real-time topics.

4.1.1 Information Flow
Information flow for a query typically goes as follows: First, the client sends the query to the
server. Next, the server figures out which historical and/or real-time topics the client should
use and returns them to the client while simultaneously starting the publisher(s). The client
subscribes to the assigned topics once it receives them and the messages are sent via the NATS
cluster.

4.1.2 Queries and Messages
The queries used in this proof-of-concept system have been simplified to avoid the problem of
having to figure out which queries result in the same real-time result. The queries contain an
ID, a start timestamp, and an end timestamp.

The ID is analogous to the query string found in most query languages. In this system, it is
just a random string of characters and does not carry any semantic meaning. The ID is used to
represent which real-time stream it results in, so if two queries contain the same ID they will
result in the same real-time stream. The timestamps are optional i.e., the lack of a start times-
tamp indicates that the query only uses real-time data, and a missing end timestamp indicates
that the query continues onwards forever. This means that the queries can use either historical
or real-time or both data streams.

The messages in this system represents a sensor measurement value at a specific point in
time and consist of a timestamp and an integer. During the testing, the integer is set to be a
counter value so that the client application can verify that the messages arrive in the correct
order and that no messages are lost or sent twice.

The messages send as historical data also contain an End-of-File (EOF) tag. This is used to
indicate whether or not the message is the last one in the database. When a message with an
EOF tag is received, the client knows that there will not be any more historical messages until
a new measurement is stored to the database.

Heartbeat Messages

Due to the pub/sub system acting as a layer of abstraction between the publisher and the sub-
scribers, the server does not have a way to know whether or not there are any subscribers
listening to its topics. Therefore each publisher regularly sends out a special heartbeat message.
A heartbeat message does not contain any measurement data, but instead contains a reply-field
to which the subscriber(s) have to reply. If no replies are given, the publisher can assume that its
topic is inactive and stop publishing. This is implemented with the one-to-many request/reply
messaging exchange in NATS.
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4.2 Server-side

Figure 4.2: A more detailed illustration of the server-side.

The server-side represents a simplified version of Galore and consists of a gRPC server and
a simulator. An illustration of the server-side and its components can be seen in figure 4.2.

4.2.1 The gRPC Server

The gRPC server handles the query requests and works as an interface between the clients and
the simulator. The gRPC server listens for new queries from the clients and, when a query is
received, it is forwarded to the simulator. The simulator returns the required topics which are
then forwarded back to the client.

RPC and gRPC

An remote procedure call (RPC) system is a popular choice for communication between clients
and servers in distributed systems [21]. RPC enables one machine to execute procedures on
another machine as if it was a local procedure.

gRPC [22] is an open source RPC system. gRPC provides a simple way to specify the
input parameters and the return types of the procedures and it handles all the details of the
communication. This makes it a simple way to standardize the communication between the
client-side and the server-side.
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gRPC is not introduced in chapter 2 as it is only relevant for this implementation of the
system, and not for the proposed architecture itself.

4.2.2 Simulator

The main responsibilities of the simulator are to assign topics to new queries and to simulate
historical and real-time data streams. When a new query arrives, it checks the ID and times-
tamps to determine if it needs a historical and/or real-time simulator, and if a real-time publisher
already exists for that ID. The real-time topic is determined by the query ID while the histori-
cal topic is a random string of characters, unique for each query. The simulator keeps track of
which real-time topics are active so that it avoids starting duplicate publishers.

Real-time Simulator

The real-time simulator uses a pub/sub service to reach multiple clients with its messages with-
out having to keep track of all the clients. A new message is published to the topic at an
(approximately) constant interval.

A real-time query, theoretically, never ends. However, clients tend to disconnect for various
reasons. Therefore, the publishers need a way to check if its topic still contains some active
subscribers. To this, the publishers publish a special heartbeat message every 20 seconds to
which the subscribers have to respond. If no subscribers respond within 3 seconds, the topic is
assumed to be inactive and the simulator is stopped.

Historical Simulator

The historical simulator uses a one-to-one request-reply messaging pattern instead of pub/sub
since the historical stream is not shared among multiple clients.

The historical publisher simulates the data coming from a database. The messages are sent
as quickly as the client, NATS, and the simulator is able to process them. The timestamps of the
messages are set so that they simulate the same interval as the real-time simulator uses. If this
proof-of-concept system is to be further developed, the historical messages should preferably
be sent in batches, but in this simulator, they are sent one by one.

If a query requires both historical and real-time data, the historical simulator also subscribes
to the real-time topic so that it eventually publishes the same messages as the real-time simulator
but with a small delay.

4.2.3 Making the Server-side Distributed

In order to test that the proposed solution can be built into a scalable environment, a simple
gRPC server that can distribute the queries onto multiple simulators have been developed. Fig-
ure 4.3 shows a distributed setup of the system.

The only task of the master gRPC server is to forward the queries to the "slave" servers.
When a new query is sent to the master gRPC server, its ID is hashed to find which slave server
it is forwarded to. This ensures that all the queries that result in the same real-time stream are
sent to the same slave server. The master then sends the query via a gRPC request to the slave
server. The slave server returns the topic names which are then returned to the client.
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Figure 4.3: Using a master gRPC server to distribute the queries onto multiple servers.

A slave server is a normal instance of the "server-side" part of the system, consisting of a
gRPC server and simulators. The slave server treats the requests coming from the master server
the same way as a request coming from a client and does not need to know whether it is a
standalone server or part of a distributed system.

4.3 Client-side
The client-side consists of a client application and a client library. An illustration of the client-
side and its components can be seen in figure 4.4.

Figure 4.4: A more detailed illustration of the client-side
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4.3.1 Client Application
The client application is the part of the system that generates and sends the query and uses the
resulting stream. The query is sent to the gRPC server which returns the topics. A subscription-
handler in the client library is called to handle the topics and to feed the result-stream back to
the application.

Query Generator

A query generator has been developed to standardize the queries used for the testing in chapter
5 and to make sure that some of the IDs overlap. The number of overlapping query-IDs can
easily be adjusted by command line arguments when multiple clients are started in the testing
environment.

4.3.2 Client Library
The client library contains some useful tools for the client application. It is responsible for the
transition from historical to real-time data and for the subscriptions and connection to the NATS
cluster.

The Transition from Historical to Real-Time Stream

The transitioning from historical to real-time stream is done in three phases as shown in figures
4.5, 4.6, and 4.7.

Figure 4.5: Transition phase 1: Forwarding historical stream.

In the first phase, shown in figure 4.5, historical data is forwarded directly to the client
application while the real-time stream is sent to a buffer which stores the messages received in
the most recent 30 seconds. More details about the data structure used as a buffer is found in
appendix A.

This phase ends when an EOF message is received on the historical stream, indicating that
the historical stream is simply waiting for new real-time messages before it can publish anything
more. The client library can unsubscribe from the historical topic at this point.

The second phase, shown in figure 4.6, starts by iterating through the buffer to find the
next message of the sequence. When the message is found, the rest of the buffer is output to
the client application. It is assumed that the historical part of the query takes long enough for
the buffer to fill in the gap between the two streams. The timestamp of the messages is used
to find the correct order when comparing two messages. It is assumed that the timestamp is
precise enough so that two messages from the same source do not have the same timestamp.
The real-time stream keeps filling up the buffer while the transition is in this phase.
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Figure 4.6: Transition phase 2: Forwarding from the buffer.

When the end of the buffer is reached, an attempt is done at transitioning from the buffer
to the real-time stream. The last message read from the buffer is compared to the last message
written to the buffer. If these messages are the same, it means that the next messages arriving on
the real-time stream can be forwarded directly to the client. If they are not the same, the buffer
is read again, starting from the next message and continuing until the end of the buffer before
checking again. This is repeated until the messages match.

Figure 4.7: Transition phase 3: Forwarding from the real-time stream.

The third phase, shown in figure 4.7, starts with a successful transition from the buffer to a
direct connection to the real-time stream. This is the last phase of the transition and the real-time
stream is forwarded until the client application stops or disconnects.
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Chapter 5
Testing and Results

To test the proposed solution, different scenarios and environments have been set up for the
system.

As stated in section 1.1, the objective of this thesis is to scale a simplified model of Galore
with regards to the number of clients while also handling the transition from historical to real-
time data streams. Most of the components of the system have been tested through unit testing,
including the method for transitioning from historical to real-time data streams. The tests of
this chapter are therefore not focused on the functional aspect of each of the components, but
rather how the system as a whole behaves in different scenarios.

How well the system handles an increased number of clients mainly depends on three as-
pects; what portion of the queries are able to share publishers, how well the server-side scales,
and how well the pub/sub system works. NATS is not tested or benchmarked as the choice of
pub/sub service is not in the scope of this thesis and the solution is designed to fit any pub/sub
service.

Section 5.1 explains the environment used for the tests. In section 5.2, the system is tested
with a varying portion of shared real-time streams. This is to test how effective the solution is
for different usage patterns. Section 5.3 tests the scalability of the system to see how the system
behaves when the server’s load is distributed among multiple devices. Section 5.4 presents and
analyzes the results of the tests. Finally, section 5.5 evaluates the planning, setup, and results of
the tests.

5.1 Test Environment
To test the scalability of a distributed system, a test environment consisting of multiple nodes/servers
are needed. Virtual machines (VMs) from Microsoft Azure [23] has been used for the testing
as it makes it easy to assemble a system of any number of VMs while keeping the resources of
each VM fixed so that similar results can be reproduced.

Some of the VMs are dedicated to act as clients. Instead of having each of the VMs run-
ning only a single client application, as they probably would in a real scenario, multiple client
applications are run on the same VM for this test environment. The client application used in
this proof-of-concept system is very light-weight and do not use the query result for anything
other than checking that the order is correct. This means that a single VM can act as hundreds
of clients at the same time, thereby simplifying the setup of the test environment significantly.
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5.1.1 System Settings
Some of the settings are adjusted to make the system less stochastic so that the tests will be
easier to reproduce.

• Even though the system is capable of handling queries that require either historical or
real-time or both, this thesis is mainly focused on those that require both. Therefore,
all queries start 100 seconds in the past and keep running forever. This increases the
workload of the system for a short period following the arrival of a new query and it also
ensures that the queries spend most of their lifetimes receiving real-time results.

• Each topic publishes a new value every second and the size of each message is constant.
This means that each query receives at least 100 historical messages before transitioning
to real-time where it gets a new message every second.

• Each client application sends 100 queries. When multiple client applications are started,
the portion queries that results in the same real-time stream are adjusted according to the
requirements of the test.

• Some extra computation has been added to the message generation procedure of the sim-
ulator. This is done to simulate some operation being done to get the result. It also sim-
plifies the setup of the test environment as fewer client applications are needed to drain
the resources of the simulator(s). The required computation is the same for all messages.

• Instead of sending a simulated measurement value to the clients, a counter value is sent
when the system is used for testing. This means that the client application can check that
no messages are lost during transmission or transition.

5.1.2 Performance Measures
Both of the tests use the CPU load as the metric to measure performance. The CPU load is the
limiting resource with the current setup in both the tests and a good indication of how many
queries and clients the server can handle. One of the benefits of using the CPU load compared
to other metrics, e.g. latency and response times, is that it shows differences also when there
are few clients.

The value is measured as an average percentage over a few minutes after all the queries have
transitioned to real-time data.

5.2 Testing Different Usage Patterns
As the scalability improvement from this thesis comes from the ability to share publishers for
equal queries, it is interesting to test how the system behaves when the portion of overlapping
queries varies i.e., simulating differing usage patterns.

The average number of clients per publisher is used as the varying factor between the sce-
narios. The system is tested with an average of one, two, four, and ten clients per publisher. An
average of one is the lowest possible and the worst case scenario. In this case, all the queries
result in unique real-time results so that no publishers can be shared. An average of two means
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that each publisher, on average, publishes its results to two clients. The server should therefore
only need to use half the resources to support the same number of clients as in the previous
scenario. Similarly, an average of four or ten means that the server, ideally, should use 25% or
10% of the resources it used in the first example, respectively.

5.2.1 Environment Setup
For this test, five VMs are used; one for NATS, one for the server, and three for clients. The
VM running the server gets the least amount of resources while the other parts of the system get
as many resources as they need. This is to make sure the server is the limiting factor of the test.
The resources of the simulator VM is limited to 4GiB of RAM and two of the cores from an
Intel Xeon CPU E5-2673 v3 with a clock speed of 2.40GHz. Figure 5.1 illustrates the system
setup used in this test.

Figure 5.1: Environment setup for testing different usage patterns on a single server.

5.3 Testing the Scalability
Even if the system can save resources by sharing publishers, this benefit is of no use unless
it also works when it is put into a scalable environment. A simple gRPC server has been
developed to act as a master server that distributes the queries among multiple simulators. This
section aims to test how many clients the system can handle when the queries are distributed
among multiple servers.

5.3.1 Environment Setup
For this test, eight VMs are used; three are used for clients, one VM runs both the NATS server
and the master gRPC server, and between one and four are used for slave servers. An illustration
of the setup used in this test is shown in figure 5.2. Similarly to the previous test, the simulator(s)
are given a restricted amount of resources while the other components are given however much
they need. The VM(s) running the simulator(s) are limited to the same amount of resources as
in the previous test.
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The performance of the master gRPC server is not tested as it is only involved in assigning
new queries to the simulators which is a much more lightweight task that the simulators.

This test measures how many unique real-time topics are required to reach a specific average
CPU load among the servers. The system is tested for an average of 40%, 50%, and 60% CPU
load when the work is distributed among one, two, three, and four servers.

Figure 5.2: Environment setup for testing how the system scales. The master server and NATS were run
on the same VM.

5.4 Results
This section presents and analyzes the results of the tests described in section 5.2 and 5.3.

5.4.1 Different Usage Patterns
This test is completed with four different average number of clients per publisher. Figure 5.3
shows the result of the test. A detailed table of all the measurements can be found in table B.1
in the appendix.

The X-axis shows the number of clients and the Y-axis shows the CPU load of the server.
The blue, red, yellow, and green lines represent the four different usage patterns with the corre-
sponding average number of clients per publisher of one, two, four, and ten. The system is only
tested at a maximum of 1000 clients due to the VMs representing the clients not being able to
handle more client applications (due to Azure enforcing some operating system limits on the
maximum number of open file descriptors).

The results in figure 5.3 show a clear increase in the supported number of clients when more
queries overlap, but the differences between the four scenarios vary a bit compared to expected.
Especially the yellow line is steeper than expected up till the first 350 clients.
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E.g., when studying the 30% line, the blue line crosses it at approximately 70 clients. The
corresponding expectation for the other lines is then 140, 280, and 700. The red line reaches
30% at 150 clients, the yellow line at 230 clients, and the green line at 600.

For the 50% line, the blue line crosses it at approximately 150 clients. The ideal result
would then be for the other lines to cross the same line at 300, 600, and 1500 clients. The red
line crosses the line at 270 clients and the yellow line crosses it at 590 clients. The scenario
with 10 average clients per publisher is not tested at high enough client count to verify this.

Figure 5.3: Result of testing different usage patterns. The blue, red, yellow, and green line shows
how the CPU load increases as the number of clients increase when the average number of clients per
publisher is one, two, four, and ten.

5.4.2 Scalability

The test has been done by sharing the publishers between one, two, three, and four servers.
Figure 5.4 shows the result of the test. The X-axis shows the number of servers used and the
Y-axis shows the number of clients required to reach a specific average CPU load. The red,
blue, and green dots show the results for 40%, 50%, and 60%, respectively. The corresponding
red, blue, and green lines show the expected result for a perfect linear scale based on the results
for a single server.

A detailed table of all the measurements from this test can be found in table B.3 the ap-
pendix.

As the figure shows, the results are very close to the linear line for all three CPU load
percentages. This means that, for example, doubling the number of servers results in the system
supporting approximately twice as many publishers.
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Figure 5.4: Results from testing the scalability. The plot shows how many unique topics it takes to reach
an average CPU load of 40%, 50%, and 60% for the servers, illustrated by the green, blue, and red dots.
Linear lines are drawn for comparison.

5.5 Evaluation
This section evaluates the testing and the results from the previous sections and puts it in the
context of the requirements introduced in chapter 1.

The Test Environment

The tests presented in this chapter is done with a proof-of-concept system in an artificial envi-
ronment, meaning that not all the aspects of the test setup are realistic.

For example, the communication cost of the test environment is expected to be much lower
than in a real scenario as all parts of the system (including the clients) are in close proximity to
each other. Also, many of the aspects of the system are heavily simplified compared to a real
implementation.

The results are, however, still interesting, but the focus of these tests should be on the relative
changes and differences in measurements rather than the specific client counts or CPU load
percentages.

Meeting the Requirements

The goal of the testing is to check if the proposed solution meets the requirements from chapter
1. The overall goal of the thesis is to scale a simplified model of Galore for an increased num-
ber of clients by the use of a pub/sub service. The solution should be such that it only uses one
producer per group of queries that results in the same real-time stream and that the transition is
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abstracted away from the user application.

The test of usage patterns in section 5.2 is meant to show that when multiple queries result
in the same real-time stream and thereby uses a shared producer, the system is able to handle
more clients. The results show that the number of supported clients increases as more of the
queries result in the same real-time stream. The performance differences between the scenarios
do have some variations between what is measured and what is expected.

Another way to look at the extent of the difference between the expected and the measured
CPU load is to look at the CPU load versus the number of publishers. Figure 5.5 shows the result
of the four scenarios but looks at the number of publishers instead of the number of clients. The
expected result is that all four scenarios should require the same amount of resources for the
same amount of producers. As the figure shows, there are some cases where the CPU load
varies with up to 10%, but for most of the measurements, the variation is less than 5%. This
variation could be caused by e.g., inaccurate measurements, other background tasks being run
on the VMs, or by some errors in the implementation.

Figure 5.5: Results from testing different usage patterns, but normalized to the number of unique real-
time result streams. A detailed table of the results can be found in table B.2 in the appendix.

Due to the VMs running the client applications being restricted to a total of approximately
1000 clients (or 100 000 queries), the test is missing some data on the highest CPU percentages
for the scenarios with four or ten clients per publisher. This means that some of the comparisons
can only be done on two or three of the scenarios, making them less accurate.

The requirement of only having one publisher per group of queries that result in the same
real-time stream is intrinsic to the system by design. The simulator keeps a list of the topics that
it is publishing to so that it doesn’t spin up a new publisher where one already exists. Any new
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query that already has a real-time result simulation running will simply connect to that one.
For the testing, the server regularly outputs the number of queries and the number of pub-

lishers, making it easy to spot if the numbers are wrong. The client applications would also
notice if messages came from multiple publishers due to the messaging interval being wrong.
The system kept the correct number of publishers throughout the testing thus, this seems to
work as expected.

The scalability test in section 5.3 is meant to show that the proposed solution can easily be
put in a scalable system and that it scales well. The results show that the system scales more
or less linearly and proves that the system can be made scalable fairly easy, at least for a few
servers.

The system is only tested with a maximum of four servers and thus, the tests do not give any
insight into how well or for how long it will keep on scaling. Testing a distributed system at a
large scale requires a large and often expensive environment, something that was not available
in this project. If more servers are needed, eventually the bottleneck is likely to be the master
gRPC server. The current master gRPC server is very simple and only meant to show that the
proposed solution fits into a distributed system. Making a more advanced master server that
handles large scaling is outside the scope of this thesis.

The scalability is only tested for the scenario where all the queries require their own pub-
lisher. This is because the test with different usage patterns showed that the number of clients
doesn’t affect the CPU load unless their queries require their own publishers. Figure 5.5 shows
that the CPU load is more or less the same for all four scenarios when only considering the
number of publishers.

The simulators are exactly the same for the distributed version as in the standalone version,
the only difference is that the queries all come from the master gRPC server which distributes
the incoming queries among the slave simulators. It is therefore assumed that similar results
could be achieved for the various usage patterns also when the system consists of multiple
servers.

The transition from historical to real-time data does not have its own test in this chapter.
The functionality is however tested in a unit test. In addition to this, it is also being constantly
monitored for faults throughout the other tests in this chapter. This is the reason why all the
queries used for the tests in this chapter started 100 seconds in the past. No faults were found
during this testing.

The other requirement for the transition is that it is abstracted away from the user applica-
tion. This is already accomplished by the design of the system as it is located in a client library.
The user application only needs to provide the topics returned by the gRPC server and the client
library handles both the connection with NATS and the transitioning.

Use of CPU Load as the Metric

The CPU load of a machine gives a good indication of how much computational resources the
running processes require. This is mainly suited as a metric for machines that only perform
a single task. The VMs running the servers in these tests uses most of their computational
resources on the server processes and thus, it is a good fit. A small portion of resources is used
on other background tasks orchestrated by the operating system, but this portion is very small
compared to the resource requirements of the server.
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Conclusion

Throughout this chapter, the proof-of-concept system has been tested to see if it meets the
requirements specified in chapter 1.

Two tests have been conducted; a test of how efficient the solution is in different usage
patterns and a test of how the system scales. The results of both these tests show that the system
behaves very similar to what was expected. The server is able to support a lot more clients when
the publishers can publish their results to multiple clients and the solution can successfully be
implemented in a scalable system.

The requirement of having only one publisher for all queries that result in the same real-time
stream is achieved by the systems architecture and the requirement to abstract the transitioning
away from the client application is handled by a client library.

All the requirements are therefore met.
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Chapter 6
Conclusion and Future Work

This chapter concludes the work done in this thesis and presents some ideas for future work on
the subject.

6.1 Conclusion

The goal of this thesis was to find a method that allows queries to share a publisher when they
result in the same real-time stream by the use of a pub/sub system. At the same time, the task
of transitioning from historical to real-time streams should not be left for the client application
to solve. The point of this was to improve the scalability of the IIoT system Galore for an
increased number of clients.

Different approaches to the challenge have been discussed and an architecture has been pro-
posed based on the requirements. This architecture borrows ideas and techniques from Multi-
Query Optimization, the lambda architecture, and pub/sub systems to meet the requirements.

Finally, a proof-of-concept system has been implemented to test the architecture. The first
test shows that the system can handle a lot more clients when the publishers can share their
results with multiple clients at once. The second test shows that the architecture can easily be
applied to a distributed environment and make it scale horizontally.

The testing shows that the requirement of sharing publishers for queries that result in the
same real-time stream is met. At the same time, the requirement for the transition from historical
to real-time data being abstracted away from the client application is achieved by delegating
the task to a client library. Based on the result from the testing it is likely that the proposed
architecture will indeed improve the scalability of Galore for an increased number of clients.

6.2 Future Work

The proposed architecture and the testing done in this thesis is just one of the challenges asso-
ciated with scaling the client-handling capabilities of Galore.

The biggest remaining challenge is probably to find an efficient method of analyzing the
incoming queries to determine which ones result in the same real-time result streams. The
methods proposed in this thesis does not add value to a system unless queries that share result
streams can be found. This task is highly dependant on the query language in use and how the
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stream processing is implemented. In Galore’s case, this is a proprietary language called TQL.

Performing a thorough comparison of different pub/sub systems could improve the perfor-
mance and simplify the development if the proposed architecture is to be implemented in a
bigger system. The different pub/sub systems have vastly different features and use cases.

If this architecture is to be used in a scalable environment, a more sophisticated master
gRPC server should be developed. The current master is very simplistic and not suited for a
production environment.

If the queries that require both historical and real-time data spend a lot of time consuming
historical data, it could be beneficial to develop a method to delay the subscription to the real-
time topic. The real-time messages must cover the delay between the two streams when the
transition happens, but any real-time messages before this is a waste of bandwidth resources.
This could, for example, be done by predicting what time stamp the last historical message will
have based on the transfer rate and time stamps of the historical messages.
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Appendix A
Sliding Buffer Data Structure

For a client to store the messages from the last X seconds of the real-time stream, a buffer data
structure has been developed.

The buffer consists of a list of buckets. Each of these buckets represents a time interval
of a fixed length, starting from the timestamp of its oldest message, and contains a list of all
the messages received within that time interval. Figure A.1 shows the main components of the
structure.

Figure A.1: A sliding buffer consisting of 6 buckets of 10 seconds each. The leftmost bucket has just
been removed.

In the case of the figure, there are 6 buckets, each representing 10 seconds. This means that
the buffer effectively stores between 50 and 60 seconds of the stream depending on how long
its been since the last shift.

For a new message, the algorithm works as follows:

1. Find the newest bucket.

2. If the bucket’s starting timestamp is less than 10 seconds older than the timestamp of the
new message:

2.1. Add the message to the bucket.

3. Else:

3.1. Make a new bucket.
3.2. Add the message to the new bucket.
3.3. Add the new bucket and remove the oldest bucket from the list of buckets.
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The use of buckets instead of just having a long list of messages means that the shift op-
eration happens a lot less frequently. It also allows for more efficient searches when it is time
for the transition. Instead of searching through a long list of messages to find out where to
start reading, one can first search through a smaller list of buckets and then search through the
messages of that bucket to find out where to start.

A buffer based on a fixed time interval instead of a fixed number of messages means that the
time window can be adjusted to fit the delay between the historical and the real-time stream.

If the processes being applied to the historical streams and the real-time streams are very
different, the delay between them might vary for each query. For this case, it might be better to
use a buffer based on a fixed number of messages instead. This is simply a matter of shifting
the buckets when they reach a specified count instead of a specified duration.
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Appendix B
Raw Test Results

Different Usage Patterns
This table contains the raw results of the test for different usage patterns described in section
5.2.

Clients 1 (all unique) 2 4 10
50 23.0% 15.9% 8.8% 5.4%
100 38.1% 22.1% 15.3% 8.2%
150 50.0% 28.9% 21.4% 10.9%
200 60.0% 35.8% 27.0% 13.6%
250 65.0% 41.6% 31.9% 15.9%
300 73.0% 47.5% 36.3% 18.5%
350 79.5% 52.6% 39.7% 20.8%
400 86.0% 57.7% 42.5% 22.9%
450 62.1% 43.8% 25.2%
500 66.5% 45.8% 27.4%
600 72.3% 50.8% 30.4%
650 79.0% 52.0% 31.4%
700 80.0% 54.6% 32.0%
800 84.5% 59.6% 35.0%
900 89.5% 64.4% 37.6%
1000 68.4% 42.2%

Table B.1: The test results for different usage patterns
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CPU Load vs Number of Publishers
This table contains the raw results used in figure 5.5. These are the same measurements as in
figure B.1, but the rows now show the CPU load vs the number of publishers instead of the
number of clients.

1 2 4 10
500 5.40%
1000 8.20%
1250 8.80%
1500 10.90%
2000 13.60%
2500 15.90% 15.30% 15.90%
3000 18.50%
3500 20.80%
3750 21.40%
4000 22.90%
4500 25.20%
5000 23.00% 22.10% 27.00% 27.40%
6000 30.40%
6250 31.90%
6500 31.40%
7000 32.00%
7500 28.95% 36.30%
8000 35.00%
8750 39.70%
9000 37.60%
10000 38.10% 35.80% 42.50% 42.20%
11250 43.80%
12500 41.65% 45.80%
15000 50.00% 47.50% 50.80%
16250 52.00%
17500 52.60% 54.60%
20000 60.00% 57.70% 59.60%
22500 62.10% 64.40%
25000 65.00% 66.50% 68.40%
30000 72.30%
32500 79.00%
35000 73.00% 80.00%
40000 79.50% 84.50%
45000 86.00% 89.50%

Table B.2: CPU usage for the different usage patterns vs. the number of publishers.
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Results from Testing the Scalability
This table contains the measurements used in figure 5.4.

Number of servers: 40% 50% 60%
1 10830 15000 20000
2 21094 29970 41024
3 29955 45788 59602
4 39553 61685 81446

Table B.3: Number of clients required to reach 40%, 50%, and 60% CPU load when the queries are
distributed among multiple servers.
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