
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Sondre Slåttedal Havellen

Acoustic Simulation in 2D using CUDA

Master’s thesis in Computer Science
Supervisor: Magnus Lie Hetland

July 2019

Sondre Slåttedal Havellen

Acoustic Simulation in 2D using CUDA

Master’s thesis in Computer Science
Supervisor: Magnus Lie Hetland
July 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

This thesis explores how the GPU can be employed in order to simulate
acoustical reverberation in virtual spaces. This thesis presents mathematical
theory of acoustics, several FDTD methods as well as implementation and
evaluation of them. Two applications are implemented; one for simulating
acoustical waves on the GPU using CUDA and one VST for convolving the
resulting impulse responses from the simulator with an incoming audio signal.
Experimental results show that this approach to a physically based VST plug-
in might be viable, although artifacts such as numerical dispersion and low
computational efficiency might prevent it from reaching its potential.

Sammendrag

Denne oppgaven undersøker hvordan GPU kan brukes for å simulere
akustikk i virtuelle rom. Denne oppgaven presenterer matematisk teori om
akustikk, flere FDTD-metoder, samt implementering og evaluering av meto-
dene. Videre er to applikasjoner implementert; en for å simulere akustiske
bølger p̊a GPU ved hjelp av CUDA og en VST for å anvende de resul-
terende impuls responsene fra simulatoren med et innkommende lydsignal.
Eksperimentelle resultater viser at denne tilnærmingen til en fysisk basert
VST-plugin kan ha potensiale, selv om artefakter som numerisk spredning
(numerical dispersion) og lav ytelse fortsatt forhindrer praktisk bruk av ap-
plikasjonen.

i

Acknowledgements

While the writing of this thesis has been hard, and at times demotivating
but in the end rewarding, this thesis could not have been possible without the
help of my advisor Magnus Lie Hetland. So thanks to him! Further, thanks
to my father Vidar Havellen, mother Sissel Sl̊attedal and brother Vegard
Sl̊attedal Havellen for proof reading and motivation. A big thanks to the
open source projects that have contributed to this thesis as well.

ii

Contents

1 Introduction 1
1.1 Approach . 2
1.2 Motivation . 4
1.3 Code repositories . 4

2 Background 5
2.1 History and a brief introduction to audio production software 5

2.1.1 Effect units and synthesizers 5
2.1.2 Sound recording and Digital Audio Workstations 6
2.1.3 Plug-ins, VSTs, AU, RTAS . 6
2.1.4 General-purpose Computing on Graphics Processing Units . 7

2.2 Similar projects . 8
2.2.1 The NESS Group . 8
2.2.2 Aerophones in Flatland - Article 8
2.2.3 Efficient and Accurate Sound Propagation Using Adaptive

Rectangular Decomposition . 9

3 Theory 10
3.1 Mathematical modeling and framework 10

3.1.1 Solution . 10
3.2 Numerical integration schemes and approaches 11

3.2.1 Simple forward Euler . 12
3.2.2 Two-step leapfrog . 13

3.3 Perfectly Matching Layers . 14
3.3.1 Geometry . 19
3.3.2 Discretization of the modified system 19

3.4 Grid system - Staggered grid vs. Collated grid 20
3.4.1 Derivative on a grid . 20

3.5 Hexagonal grid . 22

4 Technology 25
4.1 The audio processing pipeline . 25
4.2 JUCE . 27
4.3 CUDA . 27

4.3.1 CUDA APIs . 28
4.3.2 CUDA memory model . 29
4.3.3 CUDA programming model . 30

4.4 OpenGL . 31
4.4.1 Programming with OpenGL . 32

4.5 Other alternative technologies and APIs considered 33
4.5.1 OpenCL . 33
4.5.2 NVIDIA GVDB Voxels . 33
4.5.3 Vulkan and Direct3D . 34
4.5.4 BLAS and clBLAST . 34

iii

5 Method and Implementation 35
5.1 Workflow . 35

5.1.1 Regular forward Euler integration on a rectilinear grid 36
5.1.2 Two-step Leapfrog on a rectilinear grid 38
5.1.3 Two-step Leapfrog on a hexagonal grid 38
5.1.4 Two-step Leapfrog on a staggered grid 38
5.1.5 Analytic scheme with time steps as in Forward Euler and

exchanging borders . 38
5.2 Implementation of the simulator . 41

5.2.1 The main program . 42
5.2.2 The CUDA module . 45

5.3 Implementation of the convolver VST 46
5.3.1 JUCE overview . 48

5.4 Description of the various classes and their usage 48
5.4.1 AudioProcessor . 50
5.4.2 AudioProcessorEditor . 50
5.4.3 CUDA namespace . 50
5.4.4 GL namespace . 52
5.4.5 SimulatorProcessor . 53
5.4.6 Custom components . 55
5.4.7 Other . 56
5.4.8 The CUDA module . 56

5.5 Notes about debugging CUDA and OpenGL 57

6 Results 59
6.1 Early results . 59
6.2 Python results . 59
6.3 Results from the first iteration of the simulator application 60
6.4 Final results from the simulator application 61
6.5 The convolver VST application . 63
6.6 Notes on the other attempted methods 66

7 Conclusion 68
7.1 Results . 68
7.2 Goals . 69
7.3 Retrospective . 70

7.3.1 What went right . 70
7.3.2 What went wrong . 70
7.3.3 What could have been done better 70

7.4 Further work . 71
7.4.1 Finishing the convolver VST 71
7.4.2 Doing an ER/LR split . 71
7.4.3 Using neural nets to auto-encode impulse responses 71

iv

List of Figures

1 An impulse and it’s response. 2
2 f(x, y) mapped to a grid . 13
3 The five-point stencil . 13
5 An illustration of a two-step leapfrog scheme 13
4 The derivative at (1, f(1)) is approximated better at the two points

(0.5, f(0.5)) and (1.5, f(1.5)) compared with (0.5, f(0.5)) to (1, f(1))
or (1, f(1)) to (1.5, f(1.5)). 13

6 A Perfectly Matching Layer . 15
7 Gradual absorption . 15
8 An example of a staggered grid. The blue dots represent pressure,

the red dots represent velocity in the x direction and the green dots
represent velocity in the y direction. 20

9 An example of index mapping for the staggered grid. 20
10 Hexagonal layout . 23
11 Hexagonal mapping of indices . 23
12 Derivative directions for the hexagonal grid 23
13 Mapping of the derivative to indices 23
14 CUDA API abstractions . 28
15 CUDA memory architecture . 30
16 The CUDA execution model . 32
17 Overview of the different code bases and how they relate. The blue

boxes is VST projects, the yellow box represents the GLFW project
and the orange box represents the Python project. 35

18 The hexagonal grid layout (left) vs. regular layout (right) 39
19 The checkerboard problem. 39
20 Analytic timestepping . 41
21 The final simulator application . 42
22 Program loop . 42
23 Source and destinations of the simulation. 44
24 Class diagram of the VST. 47
25 An image of the convolver VST plug-in with the timeline display

active . 49
26 An image of the convolver VST plug-in with the simulation display

active . 49
27 Simulation states and allowed modification to the states 54
28 A screenshot of the earliest simulator 60
29 Wavefield . 61
30 Spectrogram . 61
31 Wavefield . 61
32 Spectrogram . 61
33 Wavefield . 62
34 Spectrogram . 62
35 Input geometry . 62
36 The simulation during execution . 62

v

37 Output spectrogram . 63
38 Output pressure over time . 63
39 Input geometry . 64
40 Output spectrogram (https://www.dropbox.com/s/w17840o5iyaf061/

res.1.1.mp3?dl=0) . 65
41 Input geometry . 65
42 Application during simulation . 65
43 Output spectrogram (https://www.dropbox.com/s/8tjgekws7vfnoig/

res.1.4.mp3?dl=0) . 65
44 Partition of a 2D scene . 66
45 Impulse response with decaying high frequency content. 72

vi

https://www.dropbox.com/s/w17840o5iyaf061/res.1.1.mp3?dl=0
https://www.dropbox.com/s/w17840o5iyaf061/res.1.1.mp3?dl=0
https://www.dropbox.com/s/8tjgekws7vfnoig/res.1.4.mp3?dl=0
https://www.dropbox.com/s/8tjgekws7vfnoig/res.1.4.mp3?dl=0

1 Introduction

This master thesis is dealing with the theory, design and implementation of an
application for simulating audio reverberation and propagation in a virtual space.
More generally, I will explore how the GPU can be employed for acceleration of
audio application software. In the end I hope to have a usable software application
for simulating realistic acoustical effects in virtual spaces.

In short the software will consist of a simulation part where the user should
be able to draw geometry on an image. Ideally, the user should be able to move
around in a 2D space and experience different reverberation effects depending on
the position of both the source and the listener. The implementation is partly
based on [1] and [2], and several ways of simulating and using the results will be
explored. Specifically, my implementation is implemented with NVIDIA CUDA
for acceleration on the GPU using a Finite Difference Time Domain method. After
the user has drawn geometry on a canvas, it should be possible to run a simulation
from a given audio file and generate reverberated sound as output.

Although convincing audio reverberation effects can be made using existing al-
gorithms and software, there does not exist any publicly available software for
simulating virtual geometry effectively on the GPU, at least not any consumer
product for audio production as far as I know. Exploring how the geometry of a
virtual space affects an output sound is not something I have seen in any audio
production applications, or more specifically VSTs, which are applications for ap-
plying sound effects to incoming audio. Extensive research for visual computing
and rendering has been done in relation to for example video games, but similar re-
search for digital audio simulation is less extensive. So the end goal for this project
is to develop an application for doing such simulation, and hopefully also an effect
plug-in (VST) for usage in Digital Audio Workstations. Ideally these two parts
should be one and the same, however there are a lot of different technologies that
have to work together here, so this thesis will primarily focus on the simulation
part.

A large part of this thesis will explore different numerical simulation methods
and evaluate them against each other. Effects like diffraction (sound bends around
objects), diffusion (decay in time) and reflection (echo) will be explored. Artifacts
such as numerical dispersion, geometry constraints, unwanted reflections and time
stepping constraints / numerical stability will be discussed. This project takes
some inspiration from acoustical echo chambers where hollow enclosures was used
to produce audio reverberations. The idea is to be able to design such rooms in an
application. As we will see in the result section, the actual results were less than
ideal and more work will have to be done in order for this to be an actual usable
reverberation simulation application.

A few research questions will be explored in this thesis as well, most notably

1

• What exists in terms of physically accurate acoustic simulators (ie. software)
aimed at audio engineering?

• What algorithms exists for generating reverberations in an audio signal?

• Given low latency requirements for real-time audio effects, could the GPU be
utilized for real-time physically accurate acoustical effects?

1.1 Approach

There exists several ways to simulate acoustics in a space, several of which will
be explored in this thesis. Most common is the Finite Difference Time Domain
methods. In this thesis I will start with partial differential equations describing
the physics of sound propagation, derive numerical integration schemes and then
implement said methods and evaluate them against each other. Common to all
of the methods tested here is that they use a FDTD scheme. As a result of such
a simulation it is possible to capture an impulse response. By using short term
convolutions one can create realistic sounding acoustical effects by convolving an
input signal with said impulse response. Thus, a simple VST based on mathemat-
ical convolutions is implemented for testing real-time effect in audio applications.
An attempt to combine the simulation part and the convolver part is made, but
the main focus in this project is on the simulation. Pros and cons of the different
FDTD methods will be discussed and evaluated. In the implementation part I will
be implementing several of the methods in Python for evaluation and then port
them to C++ and CUDA for maximum performance. I will also be discussing how
this problem can be extended into three dimensions.

Figure 1: An impulse and it’s response.

Convolutional reverberation effects
work by applying an impulse response
to an incoming signal to produce the il-
lusion that the signal has been recorded
in (for example) a large hall. This
works because acoustics of spaces can
be described by linear time-invariant
systems, and as such they can be de-
scribed by an impulse given a brief in-
put signal, called an impulse (as shown
in figure 45). If we apply such an im-
pulse to our system, we can capture the
response as this energy travels and re-
flects and diffracts around objects in a
space. Using this captured signal we

can then convolve a given source sound with this impulse response and get an
accurate representation of the actual room acoustics for this scene. This is the
approach taken by [1]. However, problems present themself in terms if the input

2

parameters (position of source and destination etc.). If one were to use this ap-
proach one would have to simulate each source-to-destination pair for the enitire
room, requiring O(t(m ∗ n)2) timesteps and space requirements in the naive case
(m and n being width and height while t is the number of timesteps). The upshot
is great performance for the real-time processing part, but a huge memory usage.
Essentially, we will have to restrict our simulation to static source and destination
positions.

There is also possible to plug a source sound directly into the simulation and
then pick up the result directly at another location in the virtual space. Advan-
tages include processing time and memory requirement decreases (we only have
to simulate one source-to-destination) and a simpler implementation (no need for
convolutions). However, large requirements in regards to latency and performance
might become hard to satisfy. As this type of simulations is largely only feasible on
the GPU, steps has to be taken to avoid memory latency when transferring data
from and to the GPU. Audio processing has some fairly limiting requirements in
respect to latency. Further, the simulation efficiency has to be sufficient. For exam-
ple a common sampling frequency used in audio applications is 44100 samples per
seconds, as humans are only really able to hear frequencies up to 22kHz (requiring
the double of this to store in memory due to the Nyquist sampling theorem). Thus
we need simulation steps of 1.0

44.1kHz
≈ 2.27∗10−5 seconds, and possibly even smaller

depending on the stability constraints of the different numerical methods. Couple
this with m ∗ n cells in the simulation and we quickly get huge requirements for
efficiency. For example, a 256 * 256 simulation space will require about ∼ 2.89∗109

calculations in addition to the numbers of calculations involved in an iteration for a
single cell. And this is not even accounting for the required spacial step size, which
should be so small that the smallest wavelength could propagate around the virtual
space. This smallest step size is constrained by λ = c

f
where c is the speed of sound,

343m
s

, and f is the maximum frequency, which in our case is 44.1 kHz. Plugging
in these numbers we get a smallest step size of 7.7 mm. So for a 256 * 256 grid we
are only able to simulate a ∼ 2m2 space. The original goal for this thesis was to be
able to such simulation in real-time. However, it quickly became apparent that it
was infeasible due to the simulation speed obtained and the numerical constraints
hindered adjusting the time steps.

As stated, the application will consist of two parts. A simulation part and a
real-time processing part, which contain both a GUI and audio processing. The
simulation part consists of editing a 2D scene in the form of drawing walls and
placing sources and destinations on an image. After that a simulation will be run
from a source position to a destination position. The real-time processing part
consists of a VST plugin [3] made with the JUCE framework [4]. By the end, work
will be started combining these two parts, and as we shall see the way the different
technologies work together can be quite cumbersome.

3

1.2 Motivation

The idea for doing this project came from the fact that a lot of audio application
software is not utilizing the GPU to it’s fullest, at least not using it for physical
simulation. In fact, physical simulations in VSTs is a rare sight and I wanted
to explore ways to generate physically based effects based on real physical laws.
Several different ideas was explored; simulating strings and capture audio from the
resulting vibrations, simulating wind instruments as seen in [2], generating wave-
tables for morphing in a wave-table synthesizer, but I finally arrived at simulating
acoustical waves as this seemed more realizable. My initial goal was to implement
a system that could simulate wave propagation in real time using the GPU as a
hardware accelerator. Using the GPU directly for a real-time task like acoustical
simulation proved impossible, but convolutions seemed to work well. Whether or
not I was successful in the final goal is debatable, as detailed in section 6. I ended up
with a fairly good convolutional reverberation VST (as the resulting audio sounded
was good), but the simulator was not really usable in a real scenario.

1.3 Code repositories

The code ended up being a little scattered throughout several repositories. This
is because a lot of the development ended up following a trial-and-error approach.
In the end a final repository was created and the code can be found here: https:

//github.com/sondrehav/master.

• ConvolverVST: The final VST responsible for applying an impulse response
to an input signal.

• SimulatorApplication: The final simulator application responsible for gen-
erating impulse responses.

• EchoSimPython: The Python code used for testing the different methods.

• Old CUDA VST: One of the early VST implementations.

• Old OpenCL VST: One of the early VST implementations.

4

https://github.com/sondrehav/master
https://github.com/sondrehav/master

2 Background

Today, computers has become one of the main tools for any audio engineers.
Virtually all newer music has been made using computers and modern recording
techniques. Audio production software have largely replaced large analog gear such
as mixing boards and effect units, and nearly anyone with access to a reasonable
powerful computer can produce music and audio. While computers are good at
recreating effects and tools based on electronics, physical instruments is a much
different story. Electronic circuits contains a relatively small domain, while real
physical instruments require simulating a whole lot of real-world phenomenons and
interactions. This chapter contains some background on what the context of this
problem is, a few of the central concepts (ie. Digital Audio Workstations, plug-ins
etc.) and a description of some similar projects.

2.1 History and a brief introduction to audio production
software

In this section I will briefly give some background on how we are where we are
today in terms of audio processing software and describe some of the common tools
used in music production and audio engineering. As one of the end-goals of this
project is to make a VST plug-in it is necessary to give some background on what
they are and in what context they are used.

2.1.1 Effect units and synthesizers

An effect unit is an electronic device that alters the incoming sound in some way
to produce a different output. In the context of guitars these units often somes in
the form of small pedals, while in the mixing process these units can be incorporated
into mixing boards. Very early effect units were only really practical in studios.
It was in around 1940 recording engineers and musicians began experimenting
with manipulation of reel-to-reel tape recordings to create echo effects and other
unusual sounds. The first commercially available stand-alone effect unit, called
Trem-Trol, was released by DeArmond in 1948, and produced a tremolo effect.
It wasn’t until the late 1960s the stand-alone effect units became popular, as the
previous units often were large, impractical and bulky, requiring large transformers
and high voltages. Common effects units include distortion, dynamic effects such
as volume pedals and compressors, filters, pitch effects, modulation effects such as
chorus and phasers and time effects such as delay and reverbs. Effect units like
these could be implemented in a small box, taking one input source and producing
an altered output sound. Today, these units are often the inspiration for audio
plug-ins implemented in software.

Echo chambers is hollow spaces specifically designed to create acoustical re-
verbrations, often for recording purposes. Echo chambers could be employed by
playing a recording of a sound, for example a conversation, and then capturing the
recording with a microphone to record the reverbrations. These enclosures have

5

largely been replaced by effect units, but one interesting technique for making real
enclosures like these practical today is the usage of captured impulse responses and
then applying these IRs to sounds using a process involving convolutions. This is
the ideal way this project can be implemented in a effect plug-in.

2.1.2 Sound recording and Digital Audio Workstations

Digital Audio Workstations, or commonly DAWs, is software for editing, record-
ing and producing music and audio. DAWs are applicable to any situation where
complex audio and editing is required, such as music, speech, television, sound-
tracks, podcasts, radio and sound effects etc. There exists a wide variety of Digital
Audio Workstations ranging in both price and complexity. Some of the most no-
table commercial DAWs includes FL Studio, Logic Pro, Ableton and Cubase.

Before DAWs were the standard, audio engineers were limited to analog recording
onto tape recorders and mixing using large mixing boards. This was the standard
up until the 1970. Some argue that this process sounded better due to the sound of
recording to a tape. But this had it’s limitations due to artifacts such as noise and
distortion. Further it was not possible to automate sliders (ie. the gain knob on
a distortion pedal or the filter cutoff for a lowpass filter). All this had to be done
manually, limiting the creative freedom and essentially requiring help from other
people when ”automating” several parameters (gain sliders, faders etc.). Comput-
ers made it possible to automatically move any slider without the help of humans,
which greatly increases the creative freedom for musicians. When computers made
it possible to incorporate the entire process into one application, this became the
new standard. Today, most music is produced using digital audio workstations, as
opposed to analog mixing boards and recording tapes.

2.1.3 Plug-ins, VSTs, AU, RTAS

DAWs is powered by a large market for plug-ins which is small applications,
sometimes standalone but mostly able to run inside a DAW. For this to be possi-
ble, the applications has to implement a common interface. There exists many such
interfaces, where the most common ones are listed below. Audio plug-in software
interfaces allows different DAWs to host any plug-in implementing these interfaces,
which has allowed for a rich and vast market of software effects and synthesizers.
These audio interfaces enables plugins to process, generate, recieve and manipu-
late streams of audio in near-realtime with as little as possible latency. Common
interface features include audio stream input and output, MIDI input and output,
parameters (knobs, sliders, values etc.) and GUI features.

• Steinberg’s Virtual Studio Technology (VST) was released in 1996 and
is today one of the most commonly used audio plug-in software interfaces,
supporting a wide variety of DAWs. A VST plug-in can either be an effect
or an instrument. Effects receive digital audio from the host and process it
through to their outputs. Instruments receive MIDI input from the host and
generated sounds that the plug-in passes on back to the host.

6

• Apple’s Audio Unit (AU) is the proprietary system-level audio interface
for Apple computers, and is fairly similar to VST.

• AAX is a format for audio-plugins for Pro Tools LE, developed by Avid
Audio. It is the replacement for another popular interface called Real-Time
AudioSuite (RTAS) which is still somewhat used today.

All these different format is somewhat similar to having to developing for dif-
ferent platforms like Linux and Windows, and thus people have begun writing
wrappers for these interfaces. The JUCE framework is an example of one such
wrapper, which is able to generate ports to any of these formats.

2.1.4 General-purpose Computing on Graphics Processing Units

GPGPU is the use of a graphic processing unit for performing computation on
tasks historically performed by CPUs. GPUs offers greater throughput than a CPU
which typically favors a single instruction at a time. In general, GPUs can perform
a single instruction on multiple data in parallel at a lower clock frequency, as they
contain many more cores compared to a CPU.

General purpose GPU-computing became practical and popular around 2001
when programmable shaders and floating point support on graphic processors were
introduced. The first GPU with programmable pixel shader was the Nvidia GeForce
3 (NV20) released in 2000, and as the power of shaders quickly became apparent
vertex shaders was also introduced. Programmable pixel shaders in particular
allowed developers to write shaders to perform some computation on the GPU,
then write back the data. It was thus possible to run general computations by
”hacking” APIs suck as OpenGL and DirectX.

In 2007 Nvidia released the parallel computing platform and API CUDA. It
allows for developers to use CUDA-enabled GPUs for general purpose processing.
CUDA is a software layer giving direct access to the instruction set of the GPU.
It allows the programmer to write C/C++ code with a few additions, making
it relatively easy to use. However, extensive knowledge of the CUDA hardware
architecture is required in order to write efficient code. Another computing API
targeting similar usecases as CUDA is OpenCL. It was first released in 2009, and
it is the main competiting API for writing general purpose computations on the
GPU. In contrast to CUDA, which only supports CUDA-enabled GPUs, OpenCL
is designed to be executed across any heterogeneous platforms consisting of CPUs,
GPUs, DSPs, FPGAs and other hardware accelerators. OpenCL was originally
developed by Apple (which still holds trademark rights), but is today maintained
by the non-profit technology consortium Khronos Group, which also maintains
OpenGL among other standards.

General purpose graphic-card computing enables a wide variety of applications,
ranging from physic simulations, machine learning, video processing, medical imag-
ing, computer vision and many other important tasks. GPUs however do have some

7

drawbacks. GPUs are generally optimized for throughput and not latency (as op-
posed to CPUs), which can make some real-time tasks with low latency require-
ments harder or infeasible. Real-time audio processing for example may require a
certain delay in the audio stream as memory transfers from and to the GPU can
be slow. GPUs are generally suited for tasks where you would require the same
operation for a large amount of data. The equivalent code on a CPU, compared to
a GPU, would most likely involve a loop which iterates over several data elements
and executes some instruction. While CPUs are optimized for arbitrary compu-
tation, and importantly branching, GPUs can’t really handle branching very well.
This is because the GPU units executes the same instructions in lockstep and if
any of the computing units have to branch (for example a divergent if-statement),
the other units essentially have to wait for that divergent unit to complete. This
is important to keep in mind when writing efficient code on both CUDA, OpenCL
and OpenGL.

2.2 Similar projects

Below some articles and projects are listed which this project takes inspiration
from. One fairly large problem encountered in this project is that some of the most
advanced VST projects are products from commercial companies. This implies
thatDSP methods and algorithms employed for a given plug-in can be hard or
impossible to deduce. Such information is usually kept within a company and not
openly available as research articles or publications. However, for this project the
necessary tools was readily available on the web (ie. a convolutional audio signal
method).

2.2.1 The NESS Group

The Next Generation Sound Synthesis project was an exploratory project based
in the University of Edinburgh. It was a join project between the Acoustics and Au-
dio Group and the Edinburgh Parallel Computing Centre. The project is concerned
with synthetic sound and numerical simulation techniques for physically accurate
sound synthesis. In particular, FDTD methods for simulating a set of instruments
is explored and of particular importance is the implementation on parallel hard-
ware such as GPUs for maximum performance. Of particular importance to this
thesis is the 2018 paper Higher-order Accurate Two-step Finite Difference
Schemes for the Many-dimensional Wave Equation [5] and the 2014 paper
Hexagonal vs. rectilinear grids for explicit finite difference schemes for
the two-dimensional wave equation [6].

2.2.2 Aerophones in Flatland - Article

This article and project concerns the simulation of 2D virtual wind instruments.
It includes interactive geometry modification, full bandwidth sounds (ie. able to
simulate sounds up to a prescribed frequency of 128 kHz) and runs in real-time.
The key challenge is simulating geometric features in the range of a few millimeters

8

and microseconds, this requiring a extreme amount of resources. Other challenges
include the dynamic modification of geometry, as hard editing of the geometry
during simulation can result in clicking artifacts in the final sound.

2.2.3 Efficient and Accurate Sound Propagation Using Adaptive Rect-
angular Decomposition

This paper concerns physically accurate offline simulation of impulses in a 3D
environment and a run-time environment capable of interpolating the different
impulse responses. The system exploits the analytic solution of the wave equation
on a rectangular grid, and is capable of simulating million cells with few artifacts.
Key challenges include the decomposition of computational domain into disjoint
rectangular regions suitable for analytic simulation, interface handling and the
amount of data generated from such simulation. In regular FDTD the simulation
has to be carried out for every point-to-point source and destination and the results
has to be stored in memory, requiring space upwards of a few gigabytes. This is one
of the main problems this article tries to solve. Originally, this paper first served
as the main inspiration for this project, however the methods employed proved too
difficult to replicate here. There was however some progress made when trying to
solve this problem, which will be discussed here.

9

3 Theory

The partial differential equations (PDE) covering acoustical wave propagation
looks relatively simple, as seen in equation (1). There is however a vast amount
of theory, considerations, constraints and other concepts that is involved with this
equation, and generally other partial differential equations. An entire field of study
is devoted to acoustical engineering, and of particular importance is the electro
acoustic branch which deals with sound reproduction and recording among other
things. As this is an entire field of study, this thesis will only deal with a simplified
domain, and modeling of the wave equation describing acoustical phenomenons will
be of little importance here.

3.1 Mathematical modeling and framework

The wave equation can be described by

∂2u

∂t2
− c2∇2u = f, (1)

where u is the pressure at a given location, t is time, c is the speed of propagation
and f is the time dependent force acting on the system. ∇2 is the Laplacian of the
pressure field which means that the pressure is dependent on the curvature of the
pressure field. c is defined as the speed of sound in air, ie. 343.0 m/s. The constant
comes from mass density and elasticity of air. The derivation of the PDE is not
the concern of this thesis, but can be found with more detail in [7].

It is also possible to formulate the wave equation as a system of PDEs. The
following equations is the same system as above using several simultaneous PDEs.
One for the pressure values and one for each velocity dimension. ∇⋅ is the divergence
of the velocity field and ∇ is the gradient of the velocity field. These operators will
be described in more detail below.

∂u

∂t
= c∇ ⋅ #»v (2)

∂ #»v

∂t
= c∇(u + f) (3)

3.1.1 Solution

The wave equation has a well known analytic solution for rectangular grids. It is
possible to exploit for acoustical simulation, but problems present them self when
geometry is introduced. [1] used this as the basis for their simulator, where they
solved the analytic equation using Fast Fourier Transforms at each time step and
then exchanged the boundary values over an interface in the forcing term compo-
nent. They did this by decomposing a scene into rectangular regions, running a
simulation step over each region and then exchanging border values. This approach
is fairly hard to implement, as I describe in the implementation section 5.

10

3.2 Numerical integration schemes and approaches

In order to solve the wave equation we set up a scheme for integrating the
equation numerically. This is usually done by devising an approximation for the
derivative terms in the equation. We start by looking at the definition of the
derivative.

d

dx
f(x) = lim

δ→0

f(x + h) − f(x)

δ
(4)

This definition arises from looking at an indefinitely small portion of a function,
f(x), and then finding the rate of change, or slope, for that x-value. We know that
the second derivative simply is the derivative of the derivative. Plugging that in to
(4) we get

d2

dx2
f(x) = lim

δ→0

d
dx
f(x + δ) − d

dx
f(x)

δ
(5)

= lim
δ→0

f(x − δ) − 2f(x) + f(x + δ)

δ2
(6)

Since we want to discretize this definition we replace the limit by a small value,
h, which will be our step size.

d2

dx2
f(x) ≈

f(x − h) − 2f(x) + f(x + h)

h2
(7)

In the original wave equation we have the Laplace operator. It is defined as
the divergence of the gradient, which will become more relevant later. For now the
Laplace operator can be defined as the sum of all second partial derivatives in the
Cartesian coordinates xi.

∇
2
=

n

∑
i=1

∂2

∂x2i

As we are working in two dimensions for this project, I will be restricting the
rest of the discussion to two dimensions. So we get

∇
2
=
∂2

∂x2
+
∂2

∂y2

Using the function u which is the pressure over the space in (1) and discretizing
yields

∇
2u ≈

u(x − h, y) + u(x + h, y) + u(x, y − h) + u(x, y + h) − 4u(x, y)

h2

This is commonly known as a five-point stencil since we are using five points
to determine the value for the given point, as seen in figure 3. We now have a
discretization of the second term in (1).

11

3.2.1 Simple forward Euler

The time differential is discretized in the same manner as above, with a time step
of k.

d2

dt2
u(x, y, t) ≈

u(x, y, t + k) − 2u(x, y, t) + u(x, y, t − k)

k2

Writing the different variables in terms of indices can be useful from here on.
That is we discretize f(x, y) and u in terms of a grid with step size h, as seen in
figure 2. Combining this with the original wave equation (1) and introducing the
superscript t for the current time step, we get

1

k2
(ut+1m,n − 2utm,n + u

t−1
m,n) −

c2

h2
(∇

2utm,n) = f
t
m,n (8)

Rearranging terms in (8) yields a fairly simple explicit method.

ut+1m,n = (
kc

h
)
2
(∇

2utm,n) + f
t
m,n + 2utm,n − u

t−1
m,n (9)

This is now in a suitable form for implementation, but still has some large
problems associated with stability. Instability occurs when errors in the deriva-
tives accumulate over time. If the stability constraint of a numerical method is
violated, the errors typically will increase exponentially resulting in floating point
overflows on computers and unusable results. This constraint is called the Courant-
Friedrichs-Lewy condition and is defined as

C =
c∆t

∆x
+
c∆t

∆y
=

2ck

h
≤ Cmax

C is called the Courant number. For most explicit time stepping methods,
Cmax = 1. As humans typically can hear up to 22050 Hz the time step needs to
be at least 1.0

2∗44100 seconds due to the Nyquist theorem. Further, if we want the
geometry to affect all frequencies we also need a smallest step size of h = c

fmax
=

343.0
44100.0

= 7.78 ∗ 10−3. The Courant number for this situation is then 2. So we will

need a time step of 1
44100∗2 seconds in order to avoid numerical instability. This

integration scheme is simple to implement, but not good in practice as it generates
quite large numerical errors and equally simple (in terms of computation) but better
schemes can be devised.

12

Figure 2: f(x, y) mapped to a
grid Figure 3: The five-point stencil

Figure 5: An illustration of a two-step leapfrog scheme

3.2.2 Two-step leapfrog

Figure 4: The derivative at (1, f(1)) is
approximated better at the two points
(0.5, f(0.5)) and (1.5, f(1.5)) compared
with (0.5, f(0.5)) to (1, f(1)) or (1, f(1))
to (1.5, f(1.5)).

The slope of a chord between two
points on a function (x0, f0) and
(x1, f1) is a much better approximation
of the derivative at the midpoint f1/2,
rather than at the endpoints as can be
seen in figure 4. We can use this fact
to devise a better integration method
for the wave equation. This method is
often called the Leapfrog method and
works better in practice then the stan-
dard forward Euler method at virtu-
ally no extra computational cost. An
illustration of how this method works
compared to the standard forward Eu-
ler method can be seen in figure 5. We
start with the wave equation (1) as a
system of two PDEs as in (2) and (3).

13

The forward Euler used above essen-
tially approximates the wave equations
by

ut+1 = ut +∆tvt

vt+1 = vt +∆tft

where v is the velocity acting on a particle and f is the force acting on a particle
(looking at the equivalent system of PDEs in (2) and (3)). As the midpoint of the
function is a better approximation for the derivative, we can use that fact to devise
a better integration scheme.

ut+1 = ut +∆tvt+1/2
vt+3/2 = vt+1/2 +∆tft

(10)

In the case of the wave equation the force in (10) is dependent on the pressure
as in (3). Looking at this scheme it is not immediately apparent how we get
v1/2. However, by utilizing the forward Euler for half a time step we can easily
get this value. As the leapfrog method uses the midpoint rule as opposed to an
endpoint, the error of this method grows with ∼ h2 over time. Thus he method is
a second order approximation. However, more accurate methods could be devised,
for example the widely used family of methods called Runge-Kutta.

3.3 Perfectly Matching Layers

In the discrete scheme above we have implicitly assumed perfectly reflecting
walls along the boundaries. This is not realistic if we wish to simulate acoustics,
as the sound waves will continually bounce of the walls forever. We will have to do
some tricks in order to get rid of these reflections. A Perfectly Matched Layer is a
solution to such a problem. It works by introducing an artificial layer around the
area of interest, as in figure 6. PMLs was first formulated by Berenger in 1994 for
use with Maxwell’s equations for electromagnetism, but works just as well for the
wave equation as they are quite similar. There are several different formulations
such as split-field PML (which is the one we will use), uniaxial PML and stretched-
coordinate PML. In short, whenever a spacial derivative occurs in an equation, we
replace it with

∂

∂x
→

1

1 + iσx(x)
w

∂

∂x
(11)

σx(x) can be defined in several ways. The actual definition isn’t that important
until we get to the implementation part. However the general idea is that absorp-
tion should gradually increase in the PML region. As such, if we define W as the
width of the domain and p as the PML width, one definition could look like

14

σx(x) = {W + 2p > x ≥ 0 ∶ max(
−x

p
+ 1, 0,

x −W − p

p
)}

We start by doing the transformation for one dimension, x, then the other, y.
As we will see this can get quite messy, and we will have to introduce two extra
partial differential equations into our system. Further, we will have to use the
Fourier transform. The Fourier transform is a way of representing a function in
terms of frequency components. Most importantly, differentiation and integration
in the spacial domain reduces to just a complex multiplication in the frequency
domain, as seen in (12). A complete description of Fourier transforms and com-
plex numbers can be found in [8], and in this section it is only used symbolically.
The only important aspect for our case is the fact that we can do a Fourier trans-
form, differentiate or integrate (eq. (13)) and then transform back. No actual
transformation has to be carried out.

F{f(x)}(ω) = f̂(ω)

F−1
{f̂(ω)}(x) = f(x)

(12)

F{
∂f(x)

∂x
}(ω) = −iωf̂(ω)

F{∫ f(x)dx}(ω) =
1

−iω
f̂(ω)

(13)

Figure 6: A Perfectly Matching
Layer Figure 7: Gradual absorption

A PML works by exponentially dissipating energy along the PML region. In
figure 7 we can see the σx function for a single direction in one dimension. Here we
have a PML width of 4 and we see that the sinusoid is gradually decreased until it
reaches zero. What we are essentially doing is evaluating an analytic function along
along a deformed contour in the complex plane. We deform the axis to increase
along the imaginary axis for x ≥ 6. The solution of the equation eikx does not

15

change for x ≤ 6 but is exponentially decaying for x ≥ 6. In the context of the wave
equation we have to analytically extend the solution in the PML region. All this
essentially boils down to replacing the derivatives, as in (11), so I will not go into
detail for that. Extra material can be found in [9].

We start with our system of equations from (2) and (3) and replace the x-
derivative with the transformed derivative as in (11) and doing a Fourier transform
over the time parameter. We have to do this wherever the differential operator
appears. We get

∂vx
∂t

= c
∂(u + f)

∂x

⇒ −iwvx = c
1

1 + iσx(x)
w

∂(u + f)

∂x

Multiplying both sides with 1 + iσx(x)
w

and rearranging we get

−iwvx = c
∂(u + f)

∂x
− vxσx(x)

Now we’ll do the inverse Fourier transform and get our first transformed PDE.

∂vx
∂t

= c
∂(u + f)

∂x
− vxσx(x) (14)

The velocity in the y-direction in this case is trivial and results in no change
as the derivative for the x-direction does not appear. For the pressure equation we
will have to do some extra tricks. We start with replacing the differential operator.

∂

∂t
u = c∇ ⋅ #»v = c ⋅ (

∂vx
∂x

+
∂vy

∂y
)

⇒ −iwu = c ⋅ (
1

1 + iσx(x)
w

∂vx
∂x

+
∂vy

∂y
)

Again, multiplying both sides with 1 + iσx(x)
w

and rearranging we get

− iwu = c∇ ⋅ #»v +
ciσx(x)

w

∂vy

∂y
− uσx(x) (15)

However, now we can’t get rid of the complex part of the equation as the term
is still there. If we recognize that the i

w
part of the equation is an integration in

the frequency domain we can introduce an auxiliary equation, ψ, and rewrite the
original equation.

− iwu = c∇ ⋅ #»v + ψ − uσx(x) (16)

ψ =
ciσx(x)

w

∂vy

∂y
(17)

16

Doing the inverse Fourier-transform on (16) and (17) yields the two next trans-
formed PDEs.

∂u

∂t
= c∇ ⋅ #»v + ψ − uσx(x) (18)

∂ψ

∂t
= cσx(x)

∂vy

∂y
(19)

Now we have successfully introduced a PML in the x-direction by introducing
an auxiliary PDE. We repeat the process for the y-direction. From (11) we get

∂

∂y
→

1

1 +
iσy(y)
w

∂

∂y
(20)

The first equation, (18), gives the following equation after the transformation
(20).

∂u

∂t
= c ⋅ (

∂vx
∂x

+
1

1 +
iσy(y)
w

∂vy

∂y
) + ψ − uσx(x)

Multiplying both sides with 1 +
iσy(y)
w

, taking the Fourier transform and rear-
ranging we get

−iwu = (c
∂vx
∂x

+ ψ − uσx(x))(1 +
iσy(y)

w
) + c

∂vy

∂y
− uσy(y)

We now face the same problem as in (15), where we cant directly get rid of the
complex term. The solution is to introduce another auxiliary partial differential
equation φ.

− iwu = c
∂vx
∂x

+ c
∂vy

∂y
+ ψ + φ − uσy(y) − uσx(x) (21)

φ = (c
∂vx
∂x

+ ψ − uσx(x))
iσy(y)

w
(22)

Taking the inverse transform of (21) and (22) we get two new equations.

∂u

∂t
= c

∂vx
∂x

+ c
∂vy

∂y
+ ψ + φ − uσy(y) − uσx(x) (23)

∂φ

∂t
= (c

∂vx
∂x

+ ψ − uσx(x))σy(y) (24)

The transformation on the velocity component in the y-direction from (3) gives
almost the same result as for the x component in (14).

∂vy

∂t
= c ∗

∂(u + f)

∂y

17

⇒ −iwvx = c
1

1 + iσx(x)
w

∂(u + f)

∂x

∂vy

∂t
= c ∗

∂(u + f)

∂y
− σy(y) (25)

The final equation we have to transform is (19). Applying the transformation
and doing a Fourier transform we get

−iwψ = cσx(x)
1

1 +
iσy(y)
w

∂vy

∂y

Multiplying both sides by 1 +
iσy(y)
w

and rearranging gives

−iwψ = cσx(x)
∂vy

∂y
− σy(y)ψ

∂ψ

∂t
= cσx(x)

∂vy

∂y
− σy(y)ψ (26)

Finally, putting it all together we get a modified system with exponential ab-
sorption in the PML region.

∂u

∂t
= c∇ ⋅ #»v + ψ + φ − u(σy(y) + σx(x))

∂ #»v

∂t
= c∇(u + f) − #»σ ⋅ #»v

∂ψ

∂t
= cσx(x)

∂vy

∂y
− σy(y)ψ

∂φ

∂t
= (c

∂vx
∂x

+ ψ − uσx(x))σy(y)

(27)

with

#»σ = [
σx(x)
σy(y)

]

Note that PMLs are only reflectionless for the exact continuous wave equation
(ie. the analytic version). In any computer simulation such as FDTD, there will
be numerical reflections. They are however exponentially absorbed in the PML
region, which gives suitable results for this project. Having too high absorption
coefficient can result in reflections at the start of the PML region, while too low
absorption results in that the waves travels through the PML region and reflects
back.

18

3.3.1 Geometry

Obviously we want to include geometry which obstructs the propagation of sound
waves and reflect them back. This is very easy to implement, but we might have
to take some care depending on the grid system we choose to use. A wall can be
included in the PDE by modifying the velocity at which a sound wave travels. For
hard walls we set the velocity to 0 and we can even vary the absorption of the wall
if we desire. As with the PML examples above, absorption is simply implemented
by varying the velocity gradually over an area. As the PML functions determine
the absorption of the PML layers it is natural to just add the geometry to the
σ-functions. We define the geometry of the virtual space as g. For areas where we
want the sound wave to propagate (ie. open space) g = 0, while for areas where
we want the sound to absorb or reflect 0 ≤ g < 1. The g-values for the velocity
directions also have to be calculated and is done using the gradient.

»gv = ∇ ⋅ g (28)

Modifying the original PDE (27) by multiplying the sound velocity with the
geometry yields

∂u

∂t
= c(1 − g)∇ ⋅ #»v + ψ + φ − u(σy(y) + σx(x)) (29)

∂ #»v

∂t
= c∇(1 − g) ⋅ ∇(u + f) − #»σ ⋅ #»v (30)

∂ψ

∂t
= c(1 − g)σx(x)

∂vy

∂y
− σy(y)ψ (31)

∂φ

∂t
= (c(1 − g)

∂vx
∂x

+ ψ − uσx(x))σy(y) (32)

3.3.2 Discretization of the modified system

As in section 3.2.2 we discretize the above equations in a leap-frog system. ψ
and φ is computed at the half-steps as with the velocity.

ut+1 = (c(1 − g)∇ ⋅ #»v t+1/2 + ψt+1/2 + φt+1/2 − (σx + σy)u
t
)∆t + u

t (33)

#»v t+3/2 = (c∇(1 − g) ⋅ ∇(ut+1 + f) − #»v t+1/2 ⋅ #»σ)∆t +
#»v t+1/2 (34)

ψt+3/2 = (c(1 − g)σx ⋅ (∇ ⋅ #»v t+1/2)y − ψt+1/2σy)∆t + ψ
t+1/2 (35)

φt+3/2 = σy(c(1 − g)(∇ ⋅ #»v t+1/2)x + ψt+1/2 − σxut+1)∆t + φ
t+1/2 (36)

It looks a little messy, but it is suitable for implementation. Things to keep in
mind is that σx, σy and their corresponding sum is constant. Further the divergence
calculation is the same in (33), (35) and (36), so reuse of results is possible here.
We can also possibly assume that the geometry is constant over the duration of
the simulation. I will go into more detail in the methods (5.4.8) section.

19

3.4 Grid system - Staggered grid vs. Collated grid

Figure 8: An example of a staggered grid.
The blue dots represent pressure, the red
dots represent velocity in the x direction
and the green dots represent velocity in
the y direction.

For now we have sort of deferred a
discussion of the grid layout. The di-
vergence and gradient operators as well
as all the values are lacking coordi-
nates, except for the simple forward
Euler method. A method for giving
second order accurate spatial deriva-
tives ”for free” is by placing the cen-
ter of the pressure values in a differ-
ent location than the center of veloc-
ity values. It is also more obvious
what the derivatives are when using
this system as, for example, the gra-
dient of the pressure field is simply the
right minus the left pressure value for
the x-direction and similar for the y-
direction. A staggered grid is illus-
trated in figure8.

Implementation-wise it gets more
complicated using a grid like this, as
we will have to be very careful when
calculating the indices for the different

fields. For example, the location of the pressure value is not the same as the loca-
tion of the corresponding velocity value in, say, the x-direction even tho they have
the same indices. This is a concern in the gradient calculation, the divergence cal-
culation and the PML functions. In figure 9 we can see how the m and n indices can
be mapped to the staggered grid. The transparent cells on the bottom and right
are ”dead” cells which we will have to take special care of in the implementation.

3.4.1 Derivative on a grid

Figure 9: An example of index mapping
for the staggered grid.

By simply using the difference be-
tween a left and right value in the
staggered grid we get second order ac-
curate spatial derivatives. However,
in an effort to avoid numerical dis-
persion we will devise a higher order
derivative. Numerical dispersion oc-
curs when some wave frequencies is
travelling faster than other frequen-
cies. This is problem in many FDTD
methods for certain PDEs, and can
be mostly eliminated by increasing the

20

computation accuracy. Numerical dispersion can be seen in effect in the result
section 6, and in this context it sounds like a sine sweeping up in frequency. It is
a highly undesirable effect.

The coefficients of a derivative stencil can be found by solving a system of linear
equations. In 3.2 we used a stencil with the coefficients [1,−2,1] for approximating
the second derivative around a point. Here we wish to find the 6th order approxi-
mation around a point in a staggered grid. This gets a little complicated when the
velocities are not aligned with the pressure field.

This section describes a method to get any derivative stencils around any point
of any order. In order to do this we will have to go over some background theory
concerning derivatives and approximations. What we have is an arbitrary function
we wish to differentiate. A Taylor series is a representation of a function as an
infinite sum of derivatives. It is defined by

∞
∑
n=0

fn(x0)

n!
(x − x0)

n (37)

x0 is the point where we expand around. In our case we wish to find a stencil
that can approximate the first derivative around xn with the points xn−5/2, xn−3/2,
xn−1/2, xn+1/2, xn+3/2 and xn+5/2. We start by writing the derivative as a linear
combination of the Taylor expansions for each point.

D6f(x0) = a0f(x0 −
5h

2
) + a1f(x0 −

3h

2
) + ⋅ ⋅ ⋅ + a5f(x0 +

5h

2
) (38)

Each f can be approximated by a Taylor series around point x0. For example
the first term expands to

f(x0 −
5h

2
) =

f0(x0)

0!
+
f1(x0)

1!
(−

5h

2
− x0)

1
+
f2(x0)

2!
(−

5h

2
− x0)

2

+ ⋅ ⋅ ⋅ +
f5(x0)

5!
(−

5h

2
− x0)

5

Expanding all these functions, putting it back into (38) and solving for the
second derivative (ie. why the right hand side looks like it does) turns this into a
simple linear system we have to solve.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−(5
2
)0 −(3

2
)0 . . . (5

2
)0

−(5
2
)1 −(3

2
)1 . . . (5

2
)1

⋮ ⋮ ⋮ ⋮

−(5
2
)5 −(3

2
)5 . . . (5

2
)5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0
a1
⋮

a5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
h
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(39)

We need the rows on the right hand side to be 0 except for row 1 as we which
to find the first derivative. h is also moved from the matrix on the left hand side

21

to the right hand side. Solving this system yields a first order differential stencil
with the values

#»a = [0.00469 −0.06510 1.17187 −1.17187 0.06510 −0.00469]
T

(40)

Note that the values for h is set to 1 in this case. Modifying for h is a matter of
dividing this vector by h. This method is of course extendable to any differential
and order, although we want d ≤ N where d is the order of derivatives and N is
the number of stencil points. This system only requires a few lines of Python code
to solve. Using the code in listing 1 we can easily experiment with different stencil
sizes.

Listing 1: A function for generating differential stencils
import numpy as np
from scipy.linalg import solve

def calcDifferential(xs , order):
A = np.array([np.power(xs, n) for n in range(0, len(xs))])
b = np.zeros_like(xs)
b[order] = -1
return solve(A, b)

Putting this all together, the grid system and the differential stencil, we now
have a system for calculating the divergence as well as the gradient. The divergence
equation becomes

∇ ⋅ #»vm,n =
#»vm−2∶m+3∶,n ⋅ #»a + #»vm,n−2∶n+3 ⋅ #»a (41)

In the implementation section this operation is further split into divergence in
one direction and then in the other, as the differential operator also appears in (31)
and (32). The gradient calculation becomes

∇u = [
um−3∶m+2∶,n
um,n−3∶n+2

] ⋅ #»a (42)

Looking at this equation, we can see that it is a 6 × 2 matrix multiplied by
a vector of length 6 (we look at um−3∶m+2∶,n and um,n−3∶n+2 as a long row-vectors
stacked on top of each other). Note the difference in indexing between (41) and
(42). This is due to the staggered grid. Both of these operations can be calculated
using a convolution over the different fields.

3.5 Hexagonal grid

A third approach to the grid layout is tested out in this project. As numerical
dispersion is a huge problem in FDTD simulation and this project specifically, an
idea to use a hexagonal grid was evaluated. An hexagonal layout can be embedded
in a 2d array by mapping indices as seen in figure 11 and 10. As dispersion in a
regular rectilinear grid is the worst along the diagonal (as is discussed in the result
section), a hexgrid might be able to reduce some of these artifacts. This is also
supported by [10].

22

Figure 10: Hexagonal layout
Figure 11: Hexagonal mapping of
indices

Figure 12: Derivative directions
for the hexagonal grid

Figure 13: Mapping of the
derivative to indices

Essentially, all we have to to is transform the indexing of the original rectilinear
grid into a hexagonal indexing scheme and differentiate in three directions, as
opposed to only y and x, seen in 12. The indexing used gets more complicated
when realizing we have to change the indexing for each row. Ie. odd rows produces
different indices than even rows. This can be seen in figure 13. The derivative in
x-direction is the same as before, whereas in the y direction we get two convolutions
with the indices

mtl = ⌈
i

2
⌉ (43)

mtr = ⌈
−i

2
⌉ (44)

and

23

mtl = ⌊
i

2
⌋ (45)

mtr = ⌊
−i

2
⌋ (46)

where i is the current index of the convolution, n is the same as before and tl
and tr refers to the starting point of the convolution (top left and top right). An
implementation and evaluation can be seen in section 5 and 6 respectively.

24

4 Technology

Having devised the necessary mathematical tools for this project, it is now pos-
sible to look into what technologies we could use in order to implement a simulator
for the PDEs. During the duration of this project a lot of different technologies was
considered. Some of them are listed in this chapter and described below, although
more technologies, frameworks and libraries was evaluated.

Two programming languages was primarily used; C++ and Python. C++ is
a high-level multi-paradigm programming language, developed as an extension of
C. It includes features such as object oriented programming, generic programming
(through templates) and functional programming. C++ compiles down to machine
code and is thus able to generate very efficient code, at the cost of great complexity.
Setting up projects and environments can be quite cumbersome (as experienced
in this project) and developing for different platforms can present even bigger
challenges. Python on the other hand is quick and easy to set up, but can’t
match C++ in performance on account of that it is an interpreted language. It
does however work very well as a prototyping language, and it emphasizes code
readability and ease of usage. It contains the same paradigms as C++, which
makes translating Python code to C++ code fairly straight forward. Python is in
this project used in conjunction with Numpy for doing linear algebra and Matplotlib
to produce visualization of the results.

4.1 The audio processing pipeline

Audio applications in music production (Digital Audio Workstations, or more
commonly DAW) typically is comprised of a host program and several plug-ins,
usually implemented through a common interface (for example VST, AU, RTAS).
Examples of DAWs include FL Studio 20, Ableton Live, Reason, Logic etc. Com-
mon to all these applications (and many others) is that they implement VST hosting
(or possibly some of the other interface types). This means that any audio pro-
cessing plug-in implementing the VST interface can be run in any of these hosts.
This makes developing plug-ins (VSTs from here on) for any host possible through
a simple interface. This is similar to how it is possible to develop games for ”any”
machine through one common API specification, like OpenGL.

There does not seem to be that much usage of general-purpose computing on
graphics processing units (GPGPU) in modern VST development, most likely be-
cause the CPU is capable of handling most tasks related to real-time audio pro-
cessing. Further, for an application where real-time processing is key, it is crucial
that the processing has as little as possible of latency. This will make real-time
processing on the GPU less feasible as memory transfers to and from the GPU is
slow. Most importantly, the general purpose GPU computing APIs today are often
vendor locked. The two most popular competing APIs are CUDA from NVIDIA
and OpenCL. CUDA is fairly mature, but is limited only to NVIDIA graphic cards.
OpenCL can run on any OpenCL-capable device, but has somewhat bad support

25

among certain vendors (NVIDIA supports OpenCL up to version 1.2, while the
newest version is 2.2). So, a fairly large tradeoff has to be made regarding which
platforms to support. If cross platform usage is a requirement, developers is pretty
much limited to OpenCL 1.2. This is however not a problem in this project. In
this project a proof-of-concept VST will be developed. Cross platform support is
not a concern. As we will see in section 5 the application in itself is split into
a standalone pre-processing part and one runtime-part using the results obtained
from the pre-processing. The ideal result would however be simulation and runtime
in the same application, and attempts to integrate the two applications together is
carried out.

VSTs are usually split into two categories; synths (usually distincted by ”VSTi”)
and effects. VSTi’s takes as input MIDI commands and returns audio. Further,
they contain a set of parameters which the host can automate (ie. change over time)
and these parameters can be stored as presets. One preset usually corresponds to
one ”sound”. More generally a preset is the state of all parameter values saved
in some file. Examples of VSTi’s can be ”a general synth” (using oscillators and
effect chains and so on), a recreation of a known synthesizer (for example Voyager
Plug SE which is a recreation of the Moog synth) or an audio sampler which
plays sounds recorded from real instruments. In this way realistic recreations of
real instruments can be made. Sampling is suitable for instruments like piano or
organs, but less suitable to instruments where the tone is largely dependent on
how a player plays them. For example, Wikipedia lists 16 different techniques to
play a trumpet. A complete audio sampler would have to capture each of these
techniques for each possible pitch with different velocities. Pianos really only have
the pitch and velocity, making them much easier to sample.

A VST effect plug-in usually takes in audio (possibly multiple channels, but most
commonly only a left and right channel) and sometimes MIDI commands, does some
processing on that audio and returns the resulting audio back to the host. Examples
include distortion, filtering, dynamic range compression or reverberation. Multiple
effects can be stacked on top of each other producing complex sounds and effect
chains. An important function class in many of these effects is linear functions
which can be modeled by convolutions, as described in section 3. Filters, delay and
reverberation are examples of such effects.

As mentioned, an impulse response can accurately model the acoustical prop-
erties of a given room. However, generating such impulse responses from ”real”
spaces is hard and requires a lot of computational power. There is alternative
methods to make reverberation plug-ins. For example feedback delay circuits cre-
ate a large, decaying series of echoes. This method is relatively easy to implement,
but is not that realistic. Methods to improve this can be adding filtering the the
delays like low-pass and high-pass. Commonly, reverberation effects are also split
into ER/LR parts (early reflections and late reflections). The early reflection can
be simulated with a FDTD solver, while the late reflection, or tail as it is called, can

26

be produced through more algorithmic approaches such as feedback delay circuits.
This have the effect of greatly reducing simulation time, while preserving realistic
effects, as the tail typically is not that different from impulse response to impulse
response. One such algorithm is the Schroeder’s algorithm [11] which makes use of
tapped delay lines, comb filters, and allpass filters.

4.2 JUCE

JUCE s a framework for desktop and mobile application development. It is
particularly used for it’s GUI and plug-in libraries which can target several of the
most important audio plug-in interfaces. JUCE allows applications to be written
cross platform and supports several environments and compilers. It is partially
open-source, and it’s license states that it can be used for free given non-commercial
purposes.

JUCE has a lot of different features, ranging from GUI elements, threading,
graphics, audio as well as digital signal processing modules such as FFTs and
delays. Developers needing a lot of third party libraries might be able to only stick
to JUCE due to it’s many modules. In addition to the framework, a tool called the
”Projucer” is supplies. It is an IDE for managing and creating JUCE projects, and
even includes an integrated GUI editor. For the most part, Projucer was avoided
in this project (apart from project creation) as Visual studio and Projucer did not
work well together.

Some alternatives to JUCE includes iPlug which is a C++ framework for de-
veloping cross platform audio plugins. While possibly usable for this project, the
first version is obsolete and the second version is only in pre-release. That is JUCE
seems like a more mature framework. Another option would be to use the VST
interface directly and any compatible GUI framework, however this did not seem
to be worth the hassle.

4.3 CUDA

CUDA is a parallel computing platform made by NVIDIA for heterogeneous
computing on their CUDA-enabled graphic cards. CUDA was launched in 2007
and is widely used for accelerating applications with heavy computation demand.
CUDA is particularly suited to simulations as a lot of calculation can be done in
parallel. This is also the case for this project. Importantly, CUDA is a proprietary
API made by NVIDIA for NVIDIA graphics cards. This means consumers with
an AMD card would not be able to run the code in this project. For this project
a NVIDIA Quadro P2000 was used, which contains a Pascal architecture (relevant
to what computing architectures I’m able to target for this project).

27

4.3.1 CUDA APIs

The CUDA API is divided into several layers of abstraction, as seen in figure
14. The highest level abstraction is libraries implemented with CUDA such as
cuBLAS, cuDNN, cuFFT, CUDA Math Library etc. A complete list can be found
on the NVIDIA website [12]. These libraries can easily be integrated into existing
application for hardware acceleration. The next level is the CUDA runtime API,
which contains convenient methods for copying, using and allocating memory, and
launching kernels. The CUDA runtime API makes it possible to link CUDA kernels
into executables, which has a number of benefits like not having to distribute
.cubin or .ptx files with the application (these are the resulting extensions of
the compiler). At the lowest level there is the CUDA driver API, which gives the
programmer more control over the execution at a higher complexity cost. The
programmer has to manually load and initialize module. The CUDA runtime API
is implemented on top of the driver API, and they are not mutually exclusive.

Figure 14: CUDA API abstractions

The NVIDIA CUDA toolkit also has it’s own compiler, called nvcc. It serves
as an intermediary step of transforming the CUDA source code into executable
CUDA binaries. It requires a general purpose C++ host compiler as the standard
C++ code is forwarded to this compiler. The CUDA compiler accepts a set of
conventional compiler options, such as macros, include/library paths, optimization
flags and target flags. Common targets include .ptx, .cubin, .gpu, hybrid object
file and hybrid .c files. ptx is the one used for this project, and is compiled to
a low-level parallel thread execution virtual machine and instruction set architec-
ture. These ptx -files is then loaded manually through the CUDA driver API. One
important point to stress is that the programmer has to compile for specific ar-

28

chitectures. By specifying the -arch flag we set the architecture we are compiling
for. This can either be a real computing architecture (sm XX) or a virtual architec-
ture (compute XX). For this project we are only compiling for the real architecture
sm 61, which corresponds to the Pascal architecture. A more complete description
can be found on the NVIDIA websites 1.

4.3.2 CUDA memory model

The memory model for CUDA is one of the most important parts of the CUDA
architecture. There exists a couple of different memory types in CUDA, and all
have their specific use cases depending on the problem at hand. In general, the
more general the memory is, the slower it is. For example global memory is one
of the slowest types, but also the most general as it can easily be both written
and read from by different threads in execution across kernel execution. Register
memory on the other hand is the fastest, but only exists per thread execution,
making communicating this memory to other threads only feasible through some
memory higher in the hierarchy. Below is the available memory types available for
usage. Selecting the correct memory type / location can be crucial for performance
as memory typically is the bottleneck for GPU programming.

Global memory Accessible from all threads, both readable and writable from
device and host.

Constant memory does not change during the kernel execution, writable
from host, but only readable from device. Faster than global memory
as the contents can be efficiently cached.

Texture memory is similar to constant memory, main difference being the
layout of the memory. When adjacent memory locations (meaning ad-
jacent on a 2D or 3D grid) from threads in a warp is being read from,
the GPU can cache this more efficiently.

Shared memory is both readable and writable from all threads in a block and
lasts for the duration of that block. Shared memory performs very fast, and
when applicable it can boost performance of applications ten-folds.

Register memory is visible only to the thread that owns it, and lasts for the
duration of the thread.

Local memory has the same scope rules as registers, but performs slower. It’s
usage is for storing data that does not completely fit in the register. When
this happens, it is called a register spill and should be avoided.

Behind the scenes the memory architecture uses registers and caching for better
performance. This is important to keep in mind when aiming for efficient code. If

1For example at https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.

html#gpu-feature-list. A lot of details have been glossed over, a more com-
plete description can be found here: https://stackoverflow.com/questions/35656294/

cuda-how-to-use-arch-and-code-and-sm-vs-compute

29

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#gpu-feature-list
https://stackoverflow.com/questions/35656294/cuda-how-to-use-arch-and-code-and-sm-vs-compute
https://stackoverflow.com/questions/35656294/cuda-how-to-use-arch-and-code-and-sm-vs-compute

Figure 15: CUDA memory architecture

the entire contents of the kernel memory can be fit into the registers (and shared
memory depending on the problem), we can get a huge performance boost. A
diagram of how the different memories interact and is logically located can be seen
in figure 15.

4.3.3 CUDA programming model

The CUDA C/C++ programming model enables the use of a set of extension
to the C/C++ languages for enabling heterogeneous computing. It is designed in
such a way that already existing applications can easily be modified to work in
parallel on the GPU. Programs is divided up into serial and parallel parts where
the parallel parts are run on the GPU, or device, and the serial part is run on the
CPU, or host. When writing efficient CUDA code one has to be aware of some of
the architectural characteristics of the GPUs. For example the different memory

30

types is crucial for enabling fast computations as memory transfers between host
and device is typically a bottleneck for heterogeneous computing. Further a lot of
the parameters when invoking kernels (functions executed by threads on the GPU)
is bound by hardware restrictions and how these values play together is important
to be aware of. In CUDA GPU kernels are declared by the keyword device or
global . Global functions are kernels that can be launched from both the host

code and device code, while functions declared with device can only be launched
from a kernel. Kernels are launched by specifying parameters for how many blocks
and threads are required. Further if dynamic shared memory is used, we’ll have to
specify that as well. An example of a CUDA kernel launch can be seen in listing
2. Here we are launching n blocks with m threads each and each block has 100 *

sizeof(float) (400 bytes) of shared memory at their disposal.

Listing 2: Launching a CUDA kernel

__global__ void foo() {}

foo <<<n,m,sizeof(float)*100>>>();

Execution of a kernel on the GPU is done on a grid. A grid contains a set of
blocks, each block contains several threads and these threads is executed concur-
rently2, as shown in figure 16. The block and thread configurations can be either
1D, 2D or 3D but the total number of blocks and threads is limited. Executing
kernels beyond these limits will result in errors. For example, in CUDA computing
model 6.1, which is the one used for this project, the maximum number of threads
is 1024 in total (so possible configurations is (32 x 32), (1 x 1024 x 1), (4 x 4 x
64) etc.) and the maximum number of blocks is 232 - 1 in the x-dimension, and
at most 65535 blocks in the y and z dimensions. When a kernel grid is invoked,
the blocks of the grid are distributed among a set of Streaming Multiprocessors.
Each streaming multiprocessor executes a single thread warp. Each instruction
in the threads are executed in lockstep, meaning each thread executes the same
instruction over different data. A SM contains 8 CUDA cores. As a warp only can
hold 32 threads at a time, care has to be taken when requiring synchronization
among blocks containing more than 32 threads. Such explicit synchronization can
be accomplished by the built in function syncthreads().

4.4 OpenGL

OpenGL is a graphics API specification for interfacing with the GPU and drawing
2D and 3D graphics to a window. It is cross-platform and should work on Windows,
Linux and MacOS, as well as on mobiles. OpenGL is typically described as a huge
finite state machine.

2All the threads in a block is not strictly speaking executed in parallel. Threads is executed
in thread warps of size 32 at a time. This has consequences for how you write and read from the
shared memory in a block.

31

Figure 16: The CUDA execution model

In order for OpenGL to work on a system, it needs a context. A context stores
all state information associated with an instance of OpenGL, and typically includes
a window. The way a programmer goes from here is typically to ”ask” the GPU
what capabilities it has. The programmer usually sets the screen pixel format
and related information during initialization. Once this is done the programmer
has to load function pointers to the different functions contained within OpenGL.
All this initialization is usually abstracted away with libraries, and is typically
not something the average programmer has to deal with. For creating a window
and context the library GLFW can be used, while the function pointers can be
loaded with an extension loader like GLAD. Going to the GLAD website 3 shows
all the different versions that a programmer can target, which is a lot. The version
selection typically depends on the consumer GPUs a programmer might want to
target.

4.4.1 Programming with OpenGL

Programming with OpenGL involves calling functions to interface with the GPU.
Common resources include textures, buffers and shaders. Textures are objects
(memory really) that contains one or more images that all have the same image
format. These objects is used in samplers to read values in a shader or can be
used as render targets. There are different texture types; 1D, 2D, 3D and cube

3https://glad.dav1d.de/

32

https://glad.dav1d.de/

maps. Buffers typically stores vertex data or index data. In the context of 3D,
a mesh contains indices and vertices, which is typically comprised of positions,
colors, texture coordinates etc. and the indices is a long list of integers that defines
triangles from the vertex list. Ie. three indices might define one triangle comprised
of three vertices. Shaders are small programs that define how a pixel ends up
looking. Different shader types are usually coupled together to make a shader
program. Shader types include vertex and fragment shaders, geometry shaders
and tesselation shaders. Vertex shaders is used for transforming vertices while
fragment shaders is used for calculating lightning, color etc. A geometry shader is
able to generate new primitives on the fly. A fragment has a window space position,
a few other values, and it contains interpolated per-vertex output from the vertex
processing stage. These fragments may or may not end up on the screen. In this
project vertex, geometry and fragment shaders are used in conjunction.

The most common way to use OpenGL is to write wrappers that encapsulates
all the details of interfacing with OpenGL. This is also what I have done for this
project. There are several areas where OpenGL is relevant in this project. Most
importantly where I’m drawing the simulation in the simulator prototype. This is
also what has generated all the result images. Further, when drawing the waveform
in the convolver, OpenGL is used.

4.5 Other alternative technologies and APIs considered

4.5.1 OpenCL

OpenCL is another API for doing general purpose programming on the GPU.
Initially, this API was chosen for the project and the early version used this API.
However, OpenCL is old and not very well supported on NVIDIA GPUs. Only
version 1.2 is supported for the graphics card used in this project, while the current
version of OpenCL is 2.1. This makes programming with it hard, as information
found online most likely concerns version 2. The main benefit with OpenCL is that
it’s not proprietary and is supported on a wide range of hardware. It is also not
specifically made for use with GPUs, but rather across heterogeneous platforms.
OpenCL works in much the same way that OpenGL does, where you would write
compute shaders, upload the source code to the device and having it compiled
there.

4.5.2 NVIDIA GVDB Voxels

GVDB Voxels is a library for simulation, computing and rendering of sparse
voxels on the GPU. The library abstracts the complexity of sparseness in order
to support computing and rendering of high resolution volumes. The main idea
for this project was to use the library for voxelization and then use the methods
described in [1] for simulation. It however turned out that using the library was
quite complicated with little documentation, and a fair portion of this project was
spent trying to get this library to work properly. The main problem was that it

33

is a relatively new library and therefore not much documentation and information
exists on the web. There is however a programming guide 4, but debugging errors
and problems was hard.

4.5.3 Vulkan and Direct3D

Both of these APIs are alternatives to OpenGL. Whereas Vulkan is cross-platform,
Direct3D is proprietary to Microsoft. Vulkan is a relatively recent API (released
in February of 2016) intended to offer more balanced CPU versus GPU usage and
higher performance. It is considered a successor to OpenGL (while OpenGL is still
largely supported across all platforms and that likely wont change any time soon
5), but shares more with Direct3D 12, Metal and Mantle in terms of concept and
feature set (ie. it is object oriented as opposed to state machine based). OpenGL
was primarily chosen for this project because of prior knowledge and that JUCE
supports OpenGL out of the box (although in a very convoluted way as we will see
in 5).

4.5.4 BLAS and clBLAST

As this problem involves a lot of linear algebra, it makes sense that linear algebra
libraries could be useful here. BLAS stands for Basic Linear Algebra Subprograms
and is a specification for linear algebra routines. There exists a lot of imple-
mentations for different use-cases and hardware, the most popular being ATLAS,
Eigen BLAS, cuBLAS (from NVIDIA for CUDA-enabled GPUs) and clBLAST
(for OpenCL). For the first version of the application (when OpenCL was used),
I used the BLAS specification (clBLAST as implementation) for doing the matrix
multiplications. As the methods in the superior later version was based around
convolutions, rather than matrix multiplications, BLAS became obsolete for this
project.

4Found here: https://developer.nvidia.com/gvdb
5For example NVIDIA still recommends OpenGL in a lot of usecases (https://developer.

nvidia.com/transitioning-opengl-vulkan) as it is simpler to maintain and program for due to
it’s maturity and lower complexity.

34

https://developer.nvidia.com/gvdb
https://developer.nvidia.com/transitioning-opengl-vulkan
https://developer.nvidia.com/transitioning-opengl-vulkan

5 Method and Implementation

This section describes the overall workflow, methods and algorithms employed
and implementation details. Due to a very steep learning curve, involving learning
the mathematical basics of acoustical simulations, more advanced CUDA program-
ming, a new framework (JUCE) as well as learning C++ in more detail, the project
became sort of scattered among several repositories and code bases. However, by
the end an effort to bring them together was carried out. A rough overview of
the different code bases and repositories can be seen in figure 17. In this section
the final simulator refers to the GLFW application capable of loading an impulse
and generating a response. The final VST refers to the run-time convolver with
an integrated simulator. The convolver is capable of loading an impulse response
generated from the final simulator and convolve an incoming signal. There was
two very early versions of the VSTs. One used OpenCL and BLAS in order to
simulate waves, while the other used the CUDA run-time API. Both of these was
discontinued as the methods and solutions there proved insufficient.

Figure 17: Overview of the different code bases and how they relate. The blue boxes
is VST projects, the yellow box represents the GLFW project and the orange box
represents the Python project.

5.1 Workflow

My general workflow consisted of reading papers and evaluating their methods,
implementing in Python and then possibly implementing the methods in CUDA if
the Python phase worked out. Several methods was tested out, as described in the
theory section 3.

• Regular Forward Euler integration on a rectilinear grid

35

• Two-step Leapfrog on a rectilinear grid

• Two-step Leapfrog on a hexagonal grid

• Two-step Leapfrog on a staggered grid

• Analytic scheme with time steps as in Forward Euler and exchanging borders

Further, several attempts to bring this problem into 3D was carried out, al-
though none was particularly successful. While extending these methods to three
dimensions is fairly straight forward mathematically, the pre-processing steps nec-
essary is more involved. For example, generating a filled voxelized mesh from a
polygonal mesh was not as easy as it sounds. A shell voxelization is as easy as
voxelizing each triangle individually, while filling said mesh is harder. While there
probably exists straight forward methods, like flood filling with some special han-
dling of whats ”inside” and ”outside”, all special cases was harder to take care of.
What I ended up trying 6 is creating a binary space partitioning of the scene and
then check each voxel if it was inside or outside of the mesh. While this proved
successful of some meshes, the algorithm broke for more complicated meshes and I
could not figure out why this was the case.

5.1.1 Regular forward Euler integration on a rectilinear grid

This method was described in section 3.2.1. A very basic implementation can be
found in the file wave 2d ex.py. This implementation uses a matrix multiplication
instead of convolution and is only using a second order spacial derivative. The
matrix multiplication is implemented as two matrix multiplication and an addition.

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1 0 . . . 0
1 −2 1 . . . 0
0 1 −2 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 . . . −2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0,0 u1,0 . . . um,0
u0,1 u1,1 . . . um,1
⋮ ⋮ ⋱ ⋮

u0,n u1,n . . . um,n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(48)

r =
c ∗∆t

h
(49)

Ut+1
= r2 ⋅ (Ut

⋅D +D ⋅Ut
) + 2 ⋅Ut

−Ut−1 (50)

There are obvious problems with this approach, like only being able to have
square domains and only being a second order method (which, admittedly, is easily
fixable). However, the implementation is really simple. The update function simply
looks like listing 4.

6Based on https://stackoverflow.com/a/4293454

36

https://stackoverflow.com/a/4293454

Listing 3: Update for the wave equation

Un = pow(r,2) * (U.dot(D) + D.dot(U)) + 2 * U - Ul
Ul = U
U = Un

This was further implemented in C++ with the library clBLAST which is a
matrix multiplication specification (BLAS) implemented with OpenCL. The code
in C++ with clBLAST can be seen below.

Listing 4: Update for the wave equation with clBLAST

void compute :: Solver ::step()
{

// determine which buffers are the new ones , current and old.
cl_mem newBuf = bufs_U [(iteration + 2) % 3];
cl_mem currentBuf = bufs_U [(iteration + 1) % 3];
cl_mem oldBuf = bufs_U [(iteration + 0) % 3];

// events are for making sure things happens in the correct order
float r_sq = pow(c * k / h, 2);
cl_event e_1;
cl_event e_2;
cl_event e_3;
cl_event e_f;

// c := alpha*a*b + beta*c for side = ’L’or’l’
// c := alpha*b*a + beta*c for side = ’R’ or ’r’

// we need to flip the old buffer
CL(clWaitForEvents (1, &previous_cycle));
CL(clReleaseEvent(previous_cycle));
CLBLAST(clblast ::Axpy <float >(dimension * dimension , -2, oldBuf , 0, 1,

oldBuf , 0, 1, &ctx.getQueue (), &e_f));
CLBLAST(clblast ::Symm <float >(clblast :: Layout ::kRowMajor , clblast ::Side::

kLeft , clblast :: Triangle ::kLower , dimension , dimension , 1, buf_D ,
0, dimension , currentBuf , 0, dimension , 0, newBuf , 0, dimension , &
ctx.getQueue (), &e_1));

CLBLAST(clblast ::Symm <float >(clblast :: Layout ::kRowMajor , clblast ::Side::
kRight , clblast :: Triangle ::kLower , dimension , dimension , r_sq ,
buf_D , 0, dimension , currentBuf , 0, dimension , r_sq , newBuf , 0,
dimension , &ctx.getQueue (), &e_2));

// y := y+alpha*x
CLBLAST(clblast ::Axpy <float >(dimension * dimension , 2, currentBuf , 0, 1,

newBuf , 0, 1, &ctx.getQueue (), &e_3));

// last sub
CL(clWaitForEvents (1, &e_3));
CL(clWaitForEvents (1, &e_f));
CLBLAST(clblast ::Axpy <float >(dimension * dimension , 1, oldBuf , 0, 1,

newBuf , 0, 1, &ctx.getQueue (), &previous_cycle));

CL(clReleaseEvent(e_1));
CL(clReleaseEvent(e_2));
CL(clReleaseEvent(e_3));
CL(clReleaseEvent(e_f));
// at this point the new U is in newBuf ...

iteration ++;
}

It is worth noting that the function names for matrix multiplications are sort of
cryptic. Axpy stands for a multiplied by x plus (ie. p) y. Symm is a symmetric ma-
trix multiplication. The rest of the BLAS specification follows a similar structure,

37

and can be found in more detail in the official specification 7. The full implemen-
tation can be found in ReverbSimulator in the file WaveEq.cpp, and this function
is from the function compute::Solver::step().

5.1.2 Two-step Leapfrog on a rectilinear grid

This is the version that ended up in the final application. It will be described in
more detail in the next section.

5.1.3 Two-step Leapfrog on a hexagonal grid

This method was implemented in Python. The idea was that a hexagonal grid
would give less numerical dispersion. While most of the standard leap-frog inte-
gration stayed the same, the differentials was different as we had to account for
a different grid layout. In fact, we had to do a differentiation in three directions.
While this probably wont matter to much in a CUDA implementation in terms
of performance (as the texture lookups wouldn’t be that different), the Python
version ran slow as we could not directly use the numpy convolution routines. The
code can be found in in the Python project under laplacian.py. The difference
in complexity of the hexagonal Laplacian is quite large compared to the standard
one. We can see in figure 18 that the difference is not too large in terms of nu-
merical dispersion. This example uses a 6th order spacial differential. Over the
diagonal in the regular implementation there seems to be greater artifacts than in
the hexagonal implementation, but the difference is not that large that it is worth
a full C++ implementation.

5.1.4 Two-step Leapfrog on a staggered grid

This method seems quite good on paper, and the initial simulations ran in Python
seemed to be working fairly decent. However, when using a grid where the pressure
and velocity components are decoupled (described in section 3.2.2), the field tends
to look like a checker board. This is a problem that arises due to the nature of the
central difference scheme when applied to the divergence operator and the pressure
gradient operator. [2] does not mention how they solved this, and for the simulation
carried out here it seemed better to just go with the regular two-step Leapfrog on
a rectilinear grid. It did give the best results and easiest implementation anyway.
The checkerboard problem is apparent in figure 19, which is a result from the
twostepleapfrog.py file.

5.1.5 Analytic scheme with time steps as in Forward Euler and ex-
changing borders

This is by far the most advanced method. The time step simulation itself is fairly
straight forward and is implemented in the same manner as the regular forward

7http://www.netlib.org/blas/

38

http://www.netlib.org/blas/

Figure 18: The hexagonal grid layout (left) vs. regular layout (right)

Figure 19: The checkerboard problem.

39

Euler described in 5.1.1. The spacial values are however represented as cosine
coefficients, and given by

p(x, y, t) = ∑
i=(ix,iy)

p̂i(t)Φi(x, y) (51)

where p̂i(t) is time-varying coefficients of the pressure field and Φi is the eigen-
functions of the Laplacian. These values are given by

Φi(x, y) = cos(
πixx

lx
)cos(

πiyy

ly
) (52)

where lx and ly are the domain dimensions and i extends from (0,0) to (lx, ly).
Transferring to frequency domain and back is now simply a discrete cosine trans-
form. In total the transformed wave equation becomes

∂2Mi

∂2t
+ c2k2iMi =DCT (F (t)), k2i = π

2
(
i2x
l2x
+
i2y

l2y
) (53)

where c is the speed of sound. In order to transform this to a numerical in-
tegration scheme, we use a simple forward Euler integration step, as described in
3.2.1. This gives us the following update rule;

M t+1
i = 2M t

i cos(ωiδt) −M
t−1
i +

2 ∗DCT (F t)

ω2
i

(1 − cos(ωiδt)) (54)

where ωi = cki. This is now suitable for implementation. One small detail that
is important to keep in mind is that the ω2

i term in the denominator of the forcing
term is 0 for i(0,0). The following term (1−cos(ωiδt)) is however also 0 for i(0,0), so
for i(0,0) we simply use the first forcing tern, ie. 2 ∗DCT (F t)(0,0). The preceding
formulations can be found in more detail in [1].

This basic formulation is implemented in analytic3.py, and the update step
looks like 5.

Listing 5: Update step for the analytic solution

pressure [(current + 1) % 3] = 2 * pressure[current] * multipliers - pressure [(
current - 1) % 3] + 2 * dct2(forces) * np.divide ((1.0 - multipliers), np.
power(T, 2), where=T!=0)

The result seems promising as seen in 20, although this is only for a simple
rectangle with no border exchange and constant velocities, which makes is sort of
useless.

The problems start to present them self when trying to incorporate geometry. In
order to be able to exchange information between to adjacent domains, the pressure
values has to be transformed back to regular spacial domain and then out into the
forcing term of the neighbour.

40

Figure 20: Analytic timestepping

5.2 Implementation of the simulator

The implementation of the final simulator is partly based on an example of a
CUDA OpenGL interopability example [13]. The prototype uses Immediate Mode
Graphical User interface (ImGuI) for drawing of user interface and GLFW for
window handling. The simulator application can be seen in figure 21.

This method was first implemented in Python in the file twostepleapfrog.py

and then ported to C++. It it this version that ended up in the final simulator
application, with the exception that the PML calculation has been simplified. [2]
used an approach where σx and σy were constrained to σx = σy = σ, which allows
for a much simpler implementation involving no auxiliary PDEs. The modified
equations is thus

∂u

∂t
= c∇ ⋅ #»v − σu (55)

∂ #»v

∂t
= c∇(u + f) − σ #»v (56)

This absorbed the outgoing waves slightly worse, thus requiring more layers than
the Python version, but the implementation became much simpler and efficiency
became greater. It did not appear to have any audible artifacts because of this.
As both OpenGL and CUDA lives on the GPU it makes sense that they should be
able to operate together. This project is heavily dependent on 2D textures, and as
such, I have written wrappers that easily connects OpenGL textures with CUDA
textures. Usage of CUDA textures in OpenGL rendering loop can be done with
almost no extra overhead of memory transfers. This works as long as CUDA and
OpenGL belongs to the same context. Some implications of this fact can be seen
in section 5.4.6.

41

Figure 21: The final simulator application

5.2.1 The main program

Figure 22: Program loop

Program The main simulation ap-
plication is written as a single-threaded
application. Because of this, the
CUDA context and OpenGL context
live on the same thread. The main
class WaveSolver is extending a base
class Program which hides the details
of the GLFW interfacing. It also
makes it possible to port the func-
tionality to other applications with-
out too much effort (as was originally
intended). The Program class pro-
vides methods for mouse handling, key-
board handling, resizing events, asyn-
chronous execution from other poten-
tial threads (through the class Async-

Queue) and three main methods that
defines what the application should
do; init(), loop(float dt) and de-

stroy(). It runs at a fixed controllable
frame rate and reports back when this
frame rate is exceeded. This is useful
for analyzing how fast the main simu-

42

lation thread is running. A diagram of
how the lifetime of the application can be seen in figure 22. The blue squares
are steps which can be overridden by the class using this base class (ie. Wave-

Solver), orange are all the steps dealing with GLFW, yellow is the step dealing
with GLAD, red are the points where the execution queue is emptied and green is
simply responsible for ensuring a fixed frame rate.

WaveSolver This is the main class of the application. It contains most of the
functionality for controlling the simulation. For further work, it probably should
be split up into smaller classes responsible for smaller functionality, but for this
prototype it does not matter too much. As the WaveSolver extends from Program

it was a couple of virtual methods implemented. In init() we are initializing
CUDA and ImGui. This is done in their own separate functions. The initialization
of CUDA is quite involved. It starts by creating a device (which should be the one
we are running OpenGL on), creating a CUDA context linked with our already
existing OpenGL context (through cuGLCtxCreate(...)), loading the compiled
CUDA ptx module, getting the six kernels used in the simulation (more on that in
section 5.2.2), creating all the textures used in the simulation, setting up surface
refs and texture refs (what these are are described in more detail in section 5.4.3),
setting up filter and borders (again explained later), and creating two renderers;
one for the pressure texture and one for the editing of the geometry. As we can see
this function should be split up into smaller modules. Reuse of code between the
two final projects was something that should have been done from the start, as it
would have saved a ton of complexity and made the code easier to read and use.

In order for a simulation to be done, we need some input audio to be loaded.
This can be a simple wave file with a pulse similar to figure 45 or a complete
audio sample. The function responsible for setting up all the parameters related
to this simulation is called initializeSimulation(). It assumes that an initial
impulse (or audio file) has been loaded and has the sample rate 44100. Here we
allocate space for the input signal and output results. The program contains a tail
parameter, which tells us how long the simulation should be run for after the input
signal is done. As the buffers have two channels the final length of the buffers can
be calculated using the following lines.

inputBufferSize = inputFile.numSamples * numChannels = inputFile.numSamples * 2
outputBufferSize = inputFile.numSamples * numChannels + tail * sampleRate =

inputFile.numSamples * 2 + tail * 44100

When the simulation is started it will run for outputBufferSize * itera-

tionsPerSample number of iterations. The iterationsPerSample parameter is
used for controlling how many iterations should be run before we write a sample to
the output buffer. It is a result of the base simulation not being able to generate
frequencies up to 22050 Hz, described in more details in the result section 6. As
of writing, the simulator application ”hardcodes” the source and destinations to
specific locations, as seen in figure 23. The initialization is done whenever a new

43

Figure 23: Source and destinations of the simulation.

input file is loaded. So, as it is right now, whenever an user wants to change the
tail length or number of iterations per sample, the user has to reload the input file.

The WaveSolver class is also responsible for editing the geometry. It works by
the user holding down the left ctrl -button and dragging the mouse while holding
the right mouse button down. The user is then able to draw straight lines in the
geometry field. While holding ctrl the view also changes to geometry view.

The application also contains an ImGui panel. The following UI elements are
present.

• Load: loads an input impulse or audio file

• Save: saves the simulated reverberated audio to a file

• Simulating: toggles whether the simulation is running or not

• Reset: resets the simulation to the start

• Clear geometry: removes the currently drawn on geometry

• Thickness: controls how thick the walls that are being drawn should be.
This is also controllable with the mouse wheel.

• Wall absorption: controls how much the walls absorb or reflect incoming
waves. Every geometry piece has a certain falloff. With 0 wall absorption
this falloff is essentially removed.

• Tail: controls how long the simulator should continue after the input is done

44

• Amp: amplification of the incoming signal (calculated as 10amp)

• Steps per sample: controls how many iterations should be done per sample

TextureRenderer and EditorRenderer The TextureRenderer is simply re-
sponsible of outputting the pressure texture to the screen. It does this by drawing
a quad covering the screen and mapping the pressure values to a color lookup table.
It is also reused for drawing the geometry. The EditorRenderer is responsible for
drawing some items related to the editing of the geometry; the line that is currently
being drawn and a brush.

As the application is single threaded, the simulation has to be interleaved with
the drawing. This causes issues such as having to calculate the number of iterations
possible per frame. A dynamic approach to this was explored, but what seemed to
work best was setting the number of iterations per loop to a fixed number; 50 in
this case.

5.2.2 The CUDA module

The CUDA module contains six kernels.

• iterateVelocity: Responsible for iterating the velocity component of the
leap-frog scheme described in 3.2.2. The input impulse is baked into the
force texture.

• firstIterationVelocity: Calculates the first timestep; t0.5.

• iteratePressure: Responsible for iterating the pressure values.

• drawLine: This kernel draws a line to the geometry texture with a given
thickness and falloff. In hindsight this functionality could have been imple-
mented on the CPU, as was done in the convolver VST application.

• sampleAt: This is the kernel responsible for taking the output at some
location and placing it in the output buffer.

• sampleIn: This kernel takes a sample input and places it onto the force
texture.

Note that both sampleAt and sampleIn is only called with two threads (ie.
the number of input channels and output channels) and one block. Writing from
global memory is here done in a somewhat redundant way as each thread has to
read from 2 ∗ (n+ 1)− 1 cells, n being the order of the differentiation (6th order in
this case). By using shared memory this can be significantly reduced by caching
the neighbouring values. An example of this can be seen in section 5.4.8. The
convolution is defined as a macro define. Changing the convolution order should
be a matter of simply replacing the convolution defines.

45

5.3 Implementation of the convolver VST

The runtime convolver is implemented with the JUCE framework and is capable
for running both standalone and inside a DAW as a VST. The convolver plug-in
uses an open source library, made by user HiFi-LoFi [14], for doing real time audio
convolutions. The final application is able to load an impulse response generated
by the simulator prototype application and convolve incoming sounds with these
IRs. It has a live audio level display meter and a display of the IR. It further
includes a dry and a wet knob. Dry is how much of the original sound is passed to
the output, while wet is how much of the processed sound is passed to the output.
These signals is simply added together to produce an illusion that we are in a
different space, and it works great. Most of the code is GUI related. The audio
processing part is quite short, as we are using a library for applying the convolution
to the incoming signal. However, here I’ll highlight a few key areas of the code.

A class diagram of the final VST application can be seen in figure 24. The blue
boxes are classes and components not written by me (ie. they were supplied by
JUCE or from other places), yellow and orange are the wrappers around CUDA
and OpenGL respectively and the green boxes are the various classes making up
the plug-in. In general, on the left hand side the functionality related to simulation
and audio processing lies, while on the right hand side functionality related to the
graphical user interface lies.

For future work, the simulator from the final simulator application should replace
the simulator in this VST version as it worked far better. In order to do so, work
has to be done in regards to the threading and CUDA-OpenGL interopability, as
we shall see in section 5.4.6.

46

Figure 24: Class diagram of the VST.

47

5.3.1 JUCE overview

JUCE plug-ins typically consists of a processing part (PluginProcessor.cpp) and
a GUI part (PluginEditor.cpp). The processor is passed certain data from the host,
like audio buffers, MIDI buffers, parameter values etc. The plug-in then uses these
values and processes the incoming audio. It is in the function processBlock(...)

this takes place. The processor part of the plug-in is also responsible for handling
the state. There is functions for both loading and saving the state, getStateInfor-
mation(...) and setStateInformation(...) respectively. Calls to the function
createEditor(), prepareToPlay(...) and releaseResources(...) are also
important in order for the VST to work correctly.

The PluginEditor, or rather a GUI, is not strictly required for an audio plug-in.
If no editor is supplied by the plug-in, DAWs typically creates them themself based
on the plug-in parameters. That is, as long as all the parameters and processing is
contained within the processor-part of the plug-in, a GUI is not strictly necessary.
This is also why we can’t rely on a GUI being present when coding the processor.
This is relevant as the editor part of the application must registers listeners to
the processor, and the processor can’t be guaranteed that an editor exists. JUCE
GUIs consists of components in a hierarchy. All custom components inherits from
a Component-class which handles painting, resizing, mouse and keyboard events
and more. Components can consist of other components, and can include pre-built
components like TextButton, Slider, Label etc. We, as the developer, has to
manually specify the size of these components, typically done in a resized-callback
function.

A plug-in is ”shipped” by packaging it in a dynamic link library (.dll for VST2
and below or .vst3 for VST3). These files are then possible to load using a
DAW. In my case I am using the DAW Image-Line’s FL Studio 20. The plug-in
developed here is evaluated against a similar convolution plug-in from Image-Line
called ”Fruity Convolver”. I did not bother skinning and making the application
look good, as it is really only an evaluation tool. A image of the final plug-in can
be seen in figure 25 and 26.

The convolver VST with the integrated simulator was not 100% completed by
the end. The actual simulation and painting was completed, but it did not have
any functionality for capturing the impulse responses from the simulation. How-
ever, this is fairly straight forward to implement and will be similar to what was
implemented in the final simulator application.

5.4 Description of the various classes and their usage

The VST plug-in ended up having a lot of different classes with complex and
subtle interactions. Here I’ll list some of the classes and how they were used, as
well as restrictions and demands.

48

Figure 25: An image of the convolver VST plug-in with the timeline display active

Figure 26: An image of the convolver VST plug-in with the simulation display
active

49

5.4.1 AudioProcessor

Listing 6 shows how the convolution is applied to the incoming signal. In JUCE,
buffers are passed to the plug-in with a certain number of samples. These sizes is
determined by the DAW and we just have to use whatever it gives us. We can’t
even rely on that the buffer size stays constant. Thus we have to to a manual
allocation of memory as seen in the listing. This is of course bad as it allocates and
frees memory on each iteration. Further work could improve on this by allocate a
certain buffer size that is guaranteed to stay larger than the input buffer when the
object is initialized.

Listing 6: Processing the incoming audio

void ConvolutionReverbAudioProcessor :: processBlock (AudioBuffer <float >& buffer ,
MidiBuffer& midiMessages) {
[...]

lock.enter();
int numSamples = buffer.getNumSamples ();

float* buf = new float[numSamples];
for (int channel = 0; channel < totalNumInputChannels; ++ channel)
{

auto* readPointer = buffer.getReadPointer(channel);
if (convolvers != nullptr)
{

convolvers[channel]. process(readPointer , buf , buffer.
getNumSamples ());

buffer.addFrom(channel , 0, buf , numSamples);
}

}
delete [] buf;
lock.exit();

}

5.4.2 AudioProcessorEditor

The editor side (GUI) of the application (PluginEditor) contains a Time-

lineDisplay, a SimulatorDisplay, two MeterComponent, two sliders, a button
for opening an impulse response and three buttons for controlling the simulator.
The TimelineDisplay is responsible for showing the impulse response applied to
the sound, the SimulatorDisplay is responsible for showing the current state of
the simulation as well as drawing geometry, while the two meter components is
responsible for showing the input and output decibel level, respectively. The two
sliders controls the dry and wet amounts.

5.4.3 CUDA namespace

This part of the code contains all the wrappers over the base CUDA driver API
types. All of the classes requires a current module to work.

Module A module is composed of a CUDA context, a CUDA device and a CUDA
module. The context holds all the state related to the current thread. If we were
to use any object belonging to a given module from a given thread, we would have
to make sure the thread is current. This means that CUDA knows what context to

50

target for any of it’s functions. In this application there exists several concurrently
running threads and as such we have to make sure to make the context current
when using functions from different threads. One example off this can be seen in
5.4.5. The constructor of the module takes in the path to a compiled ptx-file.

Kernel Kernel is a class for wrapping kernel functions loaded from a module.
This class is written using varadic templates for better type safety; the templates
is used for the arguments to the kernel. Kernels can be made from the Module
class, and when a kernel is created it is important to make sure that the arguments
matches the ones in the loaded module file. Further one has to make sure that the
name given to the module for loading is correct. The operator () is overloaded, so
launching a kernel simply looks like a function call, which is quite neat.

Texture2D Texture2D holds all the data related to the simulation. It is both
writable and readable, and internally holds a CUarray we can query in order to set
and get the actual GPU contents. One interesting feature about this class is that
it is possible to asynchronously get the data. This ensures that getting the data
does not interfere with the simulation loop. There is an internal option to query
either blocking or unblocking. Blocking causes the query to stall until any kernel
is done using it. This has implications for performance. Non-blocking on the other
hand gets the data regardless of any kernel currently writing to it. By using this
approach we get better performance, but the contents have quite noticable vertical
synchronization issues. As the contents of the texture is only used for displaying,
it does not really matter in our use-case, so here non-blocking is used.

SurfaceReference In CUDA (and OpenGL) there are a construct called sam-
plers. A sampler is a object that makes reading from textures possible. It holds the
sampling parameters for a texture access inside of a kernel. In order to read from
a texture or surface reference inside of a kernel, a sampler has to be used. Texture
references are used for reading texture values (from 1D, 2D or 3D coordinates)
and has a few other special features inherited from the graphics world related to
interpolation. Surface references are similar, but are used for both reading and
writing. They do not have the interpolation features of the texture references. In
our project only surface references are used. Actual textures are bound to such
references, and the references represents that array (or memory object) in a kernel.
One interesting feature of the newer CUDA architectures is bindless textures, in-
troduced with the Kepler architecture. In older versions of CUDA one would have
to manually bind textures and surfaces, which gives lower performance, while in
newer versions references are belonging to the textures themself. This is why we
take in CUsurfObejct in the kernels, as seen in section 5.4.5. The simulator ap-
plication does not use bindless textures, but manually binds each texture refrence
per iteration.

A SurfaceReference is a wrapped CUDA object that makes CUDA able to write
and read from a given surface. That is any surface reference is belonging to a

51

Texture2D. The surface reference is made by calling a function in the Texture2D
class.

5.4.4 GL namespace

One common way of using OpenGL is to write wrappers hiding the complexities
of the OpenGL ”state machine”. For example creating OpenGL objects often
involves generating an object. This object then lives until it is instructed to be
destroyed. An effective way to make sure that this is done for every OpenGL
object is to implement the generate part in the constructor of the wrapper, and
the destroy part in the destructor. This is what has been done for this project.
One important point to stress is that these generation and destruction functions
would crash if we do not have a valid OpenGL context. That is why most of the
classes below is only used as pointers. By using pointers we can explicitly ensure
that the constructors and destructors are called when we have a valid context.

Many of the different OpenGL objects require that they are currently ”used” in
order to set its values and use them for their intended purpose. That goes for vertex
buffers, vertex arrays, shaders and textures. The way I have handled how they are
bound and unbound is by having a function called with(std::function<void()>)

which takes in another function. This function passed as an argument can then be
absolutely sure that the current vertex buffer or shader (...) is bound and ready
for use 8. Further, we do not have to know the detail of how or when objects are
bound and unbound.

VertexBuffer and VertexArray In OpenGL there exists several different spe-
cialized memory objects. One of these is vertex buffers. They hold data about
attributes like position, color, texture coordinates etc. Further, there exists index
buffers which holds information about what vertices makes up a triangle or line or
points. In this project vertex buffers are primarily used for drawing a quad cover-
ing the entire display, so that we can draw a texture to the screen. A VertexArray
holds a set of related buffers and vertex pointers which together defines one draw-
able primitive. Vertex pointers defines how OpenGL should handle the contents
of a given buffer. For example a vertex buffer can contain 3D positions. A vertex
pointer then tells OpenGL that each vertex consists of three floating point values,
and each vertex have a given stride and offset between them. Buffers can also be
interleaved, meaning that positions and texture coordinates can exists in the same
buffers. VertexArrays makes it possible to define these layouts once, and then not
having to deal with it again when rendering.

Texture, Texture1D and Texture2D The different texture classes represent
the textures in OpenGL. Texture1D and Texture2D inherits from the abstract Tex-
ture class. Both of them is required to implement a function for setting their data.

8This is not strictly true here. For example, if we tried to use with on two nested shaders, one
would bind over the other. This is not a problem as long as we are careful with their usage.

52

Confusingly both the CUDA namespace and this namespace contains Texture2D,
but they are not the same and works quite differently.

One obvious problem with the with()-functions described above is that we would
have to nest several abstract functions in order to use several textures. This ob-
viously looks ugly and is hard to maintain. In order to solve this there is a static
method called withMultiple() which takes in several textures and binds them to
different texture slots. This has the advantage of clean and correct code. Prefer-
ably this would be extended to the shaders and vertex arrays/buffers as well, but
is not really a concern for this project.

Shader A shader program is a small program describing how a vertex should
be displayed on the screen. A description can be found in section 4.4.1. Here,
a wrapper over the raw OpenGL calls is created. In order to have a correctly
functioning shader program a few steps has to be taken. In listing 7 the construction
of a shader program can be seen.

Listing 7: Creation of a shader

shader = std:: make_unique <Shader >();
shader ->attach(vertexShaderSource , GL_VERTEX_SHADER);
shader ->attach(geometryShaderSource , GL_GEOMETRY_SHADER);
shader ->attach(fragmentShaderSource , GL_FRAGMENT_SHADER);
shader ->link();
shader ->validate ();

As we can see, the source code of the different shader types has to be attached,
then linked and finally validated. If the source code of any of the different shaders
is incorrect the application will crash. Shader programs can also take in values
called uniforms. A uniform is a global shader variable declared with the ”uniform”
storage qualifier, and any uniform has a unique location. These locations is queried
in the Shader wrapper and stored for later usage. The programmer is able to upload
these values by using the different glUniform***(...)-functions.

5.4.5 SimulatorProcessor

This is the class that controls the simulator. It has a cuda::Module, a couple of
cuda::Texture2D and a couple of cuda::Kernel. An important point to stress is
that the CUDA objects has to be created after the module has been created and
made current. The class contains textures for pressure, velocity, forces, geometry as
well as auxiliary values for the PML. Further, it has four kernels; one for iterating
the pressure values, one for iterating the auxiliary values and two for velocity. The
first one called initialVelocity is split into it’s own as we want to use the force
texture as an impulse. The force is not required beyond the first iteration, so we
have another velocity kernel for further iteration.

The simulation runs on it’s own thread. This ensures that the performance
is consistent and not dependent on what else is happening in the application.
However, we have to take some steps in order to ensure that we don’t end up with

53

race conditions or deadlocks. The core simulation loop runs in a while-loop and
checks a condition on each iteration. The core loop can be seen in listing 8.

Listing 8: Core simulation loop

while(simulationState == Started)
{

CUDA_D ((* iteratePressureKernel)(grid , block , sharedMemSize * sizeof(
float2), pressureSurfObject , velocitySurfObject , auxSurfObject ,
timeStep));

CUDA_D ((* iterateAuxKernel)(grid , block , sharedMemSize * sizeof(float2),
auxSurfObject , velocitySurfObject , pressureSurfObject , timeStep));

CUDA_D ((* iterateVelocityKernel)(grid , block , sharedMemSize * sizeof(
float), velocitySurfObject , pressureSurfObject , geometrySurfObject ,
timeStep));

}

Figure 27: Simulation states and allowed
modification to the states

When the simulation is requested to
stop or pause, the calling thread will
set the simulationState variable to
Stopped or Paused and then wait until
the simulation thread has completed.
This is accomplished with a thread join
call. By the time the calling thread
continues, it can be sure that the simu-
lation thread is not running. Extensive
checking of the simulation state is done
anywhere where functions that modi-
fies the object state is done. For ex-
ample, modifying the dimensions of the
domain obviously should result in an
error while the simulation is running.
The allowed functions during the dif-
ferent simulation states can be seen in
figure 27. Any modification not in the
list will result in the functions throw-

ing an error. The simulator processor does not create any CUDA textures until
the simulation is requested to start. On stopping it also deletes all the texture re-
sources associated with the simulation. This is done in order to be able to change
the dimensions and other attributes while the simulation is stopped, but does cause
some overhead when starting and stopping the simulation. The kernels and module
does however exist during the lifetime of the class.

The SimulatorProcessor queries the GPU for the pressure texture at a fixed rate
(currently 10 Hz). It does so asynchronously and broadcasts a change message
when the results are ready. In fact, a lot of the dynamic events in the simulator
broadcasts change messages that other objects can listen to. This ensures that
the simulator can keep a consistent state, and other listeners only have to react
to something happening (as opposed to continually checking if some state has
changed). The dimensions changing and change of simulation state is events other

54

objects can listen for. One subtle effect of changing the state of the simulation is
that a state change takes some time. Using state change broadcasters and listeners
ensures that state change can happen asynchronously.

As described in section 3.2.2, the time stepping scheme requires that the velocity
and pressure calculations are interleaved. This implies that we need two kernels
(at least) for calculating the values, because the next time step requires the values
of the previous half-step. As a consequence we have to launch twice the amount
of kernels as opposed to combining the two kernels into one as we could have done
with a regular forward Euler scheme. The benefits of a leap-frog scheme outweighs
this loss in performance however, as described in section 3.

5.4.6 Custom components

Some custom components was developed for this application. The Simulator-
Component and SimulatorGL is for displaying the current pressure values for the
simulator as well as editing the geometry. TimelineComponent and TimelineDis-
playGL is for showing the current convolution applied to the audio signal. There
is also a switch for toggling between the simulator display and the timeline display.

SimulatorComponent and SimulatorGL These two components are respon-
sible for showing the current simulator state. SimulatorComponent is really a
wrapper. It’s main purpose is to draw the axes of the SimulatorGL component.
SimulatorGL however, is the one that is responsible for both showing the simu-
lator state and making editing the geometry possible. It inherits from both the
JUCE OpenGLRenderer and JUCE component. OpenGLRenderer enables compo-
nents to render OpenGL on a background thread, and every virtual function here
(newOpenGLContextCreated(), renderOpenGL() and openGLContextClosing())
are called from said thread. One important consequence of how JUCE works is
that a context is created and destroyed only when the component it is belonging
to is visible on the screen. This implies that we can’t use the CUDA-OpenGL in-
teropability in the same way as we did in the simulator application. This is because
CUDA OpenGL interopability is one-way from OpenGL to CUDA, ie. OpenGL
creates and ”owns” resources and buffers and passes them to CUDA. The CUDA
simulator is intended to live for the duration of the application, while the OpenGL
context only lives while the display is visible. Further, they run in different threads,
which have implications of how a potential single context would work. The simula-
tor application is single threaded and only contains a single OpenGL context. Thus
interopability is much easier there. The way interopability is solved here is to have
the simulator thread broadcast a change message each time the pressure values are
read back, as described in section 5.4.5. The SimulatorGL component listens for
this event and writes the pressure values from the simulator to an OpenGL texture.
Another point to stress is that the OpenGL context can only live in one thread (the
one created by OpenGLRenderer), so we have to explicitly call a function called
executeOnGLThread belonging to the context object. This all works okay, however
screen tearing due to the non-blocking asynchronous call is an issue. The renderer

55

is also set to not continuously render it’s content (the default behaviour) and only
redraw when something happens.

The simulator display also contains functionality for ”editing” the geometry.
Currently the user have to paint using the mouse in order to edit the geometry
that is sent to the GPU. The user is supplied with a brush, which is it possible
to change the size, falloff and amount; similar to what can be found in Photoshop
or GIMP. If a wall is painted with a higher falloff, more of the energy will be
absorbed into the wall, similar to how PML works. Ideally, the painting should
work in the same way as it does in the final simulator application, however due to
time constraint this sort of brush painting was what ended up in the VST.

TimelineComponent and TimelineDisplayGL

Similarly to the simulator display, the timeline display contains an OpenGL
context. TimelineDisplayGL’s job is to render the current convolution buffer we
are applying to our sound. It does this by listening for the convolution buffer
changed broadcaster in the AudioProcessor class. Once the buffer changes it grabs
the sample data and transforms it into a dB scale. Other than that, the timeline
display works in much the same way the simulator display does, apart from not
having any interacting elements. The TimelineComponent also draws some axis
values.

MeterComponent The meter component is is responsible to show the input and
output levels. It does this continually through a Timer. A juce::Timer provides a
virtual function which is continuously called at a fixed frequency. By implementing
this function we get the input and output levels from the AudioProcessor.

5.4.7 Other

A Label implementing the juce::Timer called TimedLabel is used for displaying
the frequency the simulator runs at. The SimulatorProcessor keeps tab of how fast
it is currently running.

TwoStageFFTConvolver This is a class provided from the github repository
[14], and makes it possible to generate a convolution output given an impule re-
sponse. The AudioProcessor keeps two of these for left and right channels.

5.4.8 The CUDA module

The CUDA module can be found in solver.cu and contains heavily templated
functionality. The general idea in the iteration kernels is to write any values that
needs to be read by several threads into shared memory. This has the benefit of
reducing texture fetches from global memory. Each thread in a block is responsible
for one cell in the leapfrog scheme. One divergence or gradient calculation involves

56

looking up n neighbouring cells in top, left, bottom and right directions (n being
the order of the derivative stencils). As each thread is responsible for one cell we
can reduce these 4∗n extra global memory look-ups by placing the content of each
cell in the shared memory. Then each cell only has to check the shared memory
for the neighbouring values. As each block contains 32 threads in each direction
we also have to write n values from the top, right, bottom and left blocks. This is
what the P template value is used for in all of the texture look-ups. The function
that writes to the shared memory is called writeSummedToSharedMem(...) and
takes in an arbitrary number of surfaces and simply adds them together. After a
write has been done, we have to synchronize the threads, as we are not guaranteed
that every thread in the block has written to the shared memory once we proceed.
Similarly to the write function, we have a read function that is able to read for
memory. Again, templates is heavily used in this code. It doesn’t matter what the
type the shared memory has or how much padding there is; the compiler will figure
it out for us.

The code is written in such a way that the convolutional stencils easily can
be exchanged. In Convolution.h the convolution stencils are defined. It allows
for 2nd, 4th and 6th order derivatives, and the stencils are generated from the
Python code described in section 3.4.1. This makes testing the efficiency and results
of different differentiation orders very easy, as changing the order only involves
changing one define macro. Gradient and divergence are both implemented using
the same derivative functions. The PML values is calculated by a simple function.
Inside the PML region the values rises from 0 to pmlMax, depending on how far the
cell is from the actual domain.

This module contains four kernels that is loaded by SimulatorProcessor as ker-
nels. They more or less directly implement the integration steps found in section
3.3.2. The only difference is that the two auxiliary fields are combined into a
two-channel texture.

5.5 Notes about debugging CUDA and OpenGL

It’s hard. Which is why every CUDA and OpenGL call is surrounded by the
macros CUDA(...), CUDA D(...) and GL(...) for the CUDA runtime API, CUDA
driver API and OpenGL respectively. These macros typically first executes what-
ever is inside the macro, then checks if any errors occurred, and if so throws an
appropriate error. These checks can easily be turned of when compiling for release,
as they tend to degrade performance a bit. This has been a crucial in order to
work with CUDA and OpenGL, as all these APIs typically happily will continue
on as if nothing wrong has happened.

The different macros had to be defined a bit differently. For example, the CUDA
runtime API mostly returns an error code for each of it’s function. This error code
can them be checked against the enum cudaSuccess. The same goes for the driver

57

API. OpenGL works differently. Most functions returns void and the way to catch
errors is to explicitly check if an error occurred directly after that call. If this is
not done for every OpenGL call, a previous error may erroneously show up here.
When we are confident that our code works correctly (ie. gives no runtime errors)
we can turn off all these error checks for the release-build. Some examples can be
seen in listing 9. Note that from OpenGL version 4.3 and on-wards, proper error
handling has been introduced through callbacks (glDebugMessageCallback(...)),
negating the need for this convoluted error handling mechanism. However not all
implementations of OpenGL supports version 4.3 yet.

Listing 9: Return codes for different API functions

// CUDA runtime API
cudaError_t cudaMalloc(void** devPtr , size_t size);
cudaError_t cudaPeekAtLastError(void);

// CUDA driver API
CUresult cuArrayCreate(CUarray* pHandle , const CUDA_ARRAY_DESCRIPTOR*

pAllocateArray);

// OpenGL
void glGenTextures(GLsizei n, GLuint* textures);
GLenum glGetError(void);

#ifdef _DEBUG
#define GL(x) x; if (int err = glGetError () != 0) {

/* throw an error with an appropriate error string here */
}
#else
#define GL(x) x;
#endif

58

6 Results

This chapter discusses some of the simulation results obtained, as well as the
efficiency of the final applications. Some discussions regarding the early builds are
also present here.

6.1 Early results

The early versions of this project produced some less than satisfactory results.
The two early versions, the basic CUDA version and the OpenCL version, was
scrapped. From these two projects I had learnt a lot of how to efficiently employ
CUDA in conjunction with the JUCE framework and OpenGL. The OpenCL VST
can be seen in figure 28, and the code can be found in the ReverbSimulator

repository. It only contained the very simple simulator found in section 5.1.1, and
had no way of capturing the output of the simulation or drawing geometry. It did
contain a lot of the OpenGL techniques that ended up in the final simulator, such
as the LUT techniques, the drawing of a quad as a texture and the first version of
the shared class can be found here.

Unfortunately, the early CUDA VST version stopped compiling properly 9, so
the results from that iteration is hard to obtain. However the code exists in the
ConvolutionReverb2 repository, and by tweaking the build options or replacing
it, it should be possible to get it back up and running again. This version of this
project included VST plugin with a built in simulator. It was capable of loading in
a png image and use that as geometry and generate a waveform out. The plugin
was very primitive and used only the CUDA runtime API for interfacing with the
GPU. This ment using only using pitched arrays and manual array indexing, which
implies that the GPU was not able to exploit spacial locality in the same way a 2D
texture would. The waveforms generated by the plugin was in very poor quality
as the time steps was too low, resulting in frequencies only up to around 2kHz.
Further, there was no absorption on the boundary (ie. no perfectly matched layer),
so the waves continually bounced around in the room ”forever”. There was however
introduced a dissipation constant, so that the waves lost energy as time went on.
This was done by simply multiplying the pressure by some constant at each time
step.

6.2 Python results

Python was used as a prototyping and testing ground, and a lot of interesting
results was obtained here before they were further implemented with C++ and
CUDA. The analytic solver was attempted to implement here; for example in-

terface.py and boundaryTest.py was an attempt to implement the boundary
interfacing from [1], but implementing boundary exchange across arbitrary direc-
tions and PML for avoiding the waves to reflect back inside a boundary turned

9The Visual Studio Build System for CUDA stopped working halfway through, which is why
I had to create a custom build system for the final simulator application

59

Figure 28: A screenshot of the earliest simulator

out to be too hard. Other files in this repository includes the leap-frog integrator
(twostepleapfrog.py) which also includes an implementation of the PML ab-
sorber. While the PML approach with auxiliary PDEs worked great here, it did
not work correctly in the corresponding CUDA implementation (from the final
convolver VST). This is because of numerical instability caused the PML regions
to grow it’s values exponentially. The most likely source for this error is that the
PML calculation in the Python versions were updated at a different time point
(ie. after the velocity update) compared to the CUDA version (before the velocity
update due to implementation difficulties and order of update rules).

6.3 Results from the first iteration of the simulator applica-
tion

The first iteration of the new solution had absorbing boundaries, editable geome-
try and included the possibility to save and load wav files. However, the maximum
frequency simulated was too low and the numerical dispersion was too high. But
the results did seem promising for further iteration. The simulation managed to
simulate 44100 samples in 15 seconds, or about 1:15 slower than real time, for a
grid of size 589 * 295. Some of the results with corresponding spectrogram can be
seen below. Figure 29 and the other similar ones shows the pressure values during
simulation colorized from black to white with blue corresponding to no pressure.
Figure 30 and the other similar ones shows the frequency content as a spectro-
gram. The x-axis corresponds to time, while the y-axis corresponds to frequency.
The yellow parts corresponds to loud frequencies, red is clearly audible, blue are
barely audible while black corresponds to no sound. The spectrogram ranges from
0Hz to 22.5 kHz along the y-axis.

Clearly the maximum simulated frequency is too low. These examples only have
a frequency up to 12.5kHz, while the desired frequency is around 22kHz. Further
there is clearly visible numerical dispersion errors at 8.3 kHz and 12.5 kHz. While

60

Figure 29: Wavefield Figure 30: Spectrogram

Figure 31: Wavefield Figure 32: Spectrogram

numerical dispersion in FDTD simulation is impossible to completely get rid of,
we can however simulate with smaller time steps. This does however require a lot
more processing time.

On the upside, the simulation sounded interesting. For example by creating an
enclosed area around the sources and creating small air holes, the resulting wave
file sounded like audio source had been played through a tube, as in figure 33.
Further, I was able to create a flute-like effect, when using a very thin tube the
source went through and placing several air holes on top of the tube.

6.4 Final results from the simulator application

As the preceding results had rather devastating audible artifacts, adjustments
had to be made. By doing multiple steps per resulting time step I was able to
generate some more promising results, as seen in figure 38. These results were
generated with 8 steps per time step. There still exists some artifacts as seen by
the smearing of frequencies at around 20 kHz and to a lesser extent 17 kHz. These
frequencies was however hardly audible, and a quick fix for this would be to low-
pass these frequencies in post processing as most impulse responses hardly contain
useful data at those frequencies.

Below, in table 1, we can see how the final simulator application performed for
different block sizes, dimensions and number of steps per iteration. The higher
the step per iteration is, the higher frequencies the simulator is able to simulate.
8 steps proved to be sufficient for getting frequencies up to 20.5 kHz without too

61

Figure 33: Wavefield Figure 34: Spectrogram

Figure 35: Input geometry
Figure 36: The simulation during
execution

much audible artifacts. We are able to extract some interesting information from
this table. For example, changing the block size does not have any significant
impact on performance. Larger block size gives slightly worse performance. I think
this is because a block can only execute 32 threads simultaneously (in a thread
warp). Increasing the number of threads in a block will then result in more thread
scheduling within a block. It will however also lower the number of blocks in total.
So perhaps the block scheduling is more efficient than the thread scheduling, at
least in this case.

All the values in the table were generated using a PML layer size of 20 on either
sides, but the size of the PML layer should not have any significant impact on
performance. This is because we don’t store the PML values in a field, but rather
calculate them based on the cell position. There is a significant amount of overhead
in this application per frame. Table 1 was generated using a screen size of 700 * 700
pixels. Making this value smaller might have reduced the overhead. Further the
ImGui library is also drawn each frame. ImGui is not optimized for performance,
but for the comparison of values in the table, we can assume that ImGui takes
the same amount of time for any configuration of parameters. Thus it probably
does not have any significant impact on the results. Most of the overhead comes
from the glfwSwapBuffers() in the Program class. This is to be expected as it is
this function that forces the actual drawing to happen. Most GPU drivers using
OpenGL usually defers execution of the commands we give it until a swap-buffer
occurs. For most of the simulations, I achieved a frame rate of about 30 fps, with

62

Figure 37: Output spectrogram
Figure 38: Output pressure over
time

a target of 60 fps. The target is used for the simulator for calculating how many
iterations can be done each frame. So the simulator squeezed in a certain number
of iterations in one frame and we still got 30 fps given a target of 60 fps. This
implies that we have about 50% overhead per frame, going to tasks like drawing,
input polling and other related tasks.

Table 1: Iterations per second for the final simulator application
6th order simulation

Block size Domain
size

1 step per
iteration

4 step per
iteration

8 step per
iteration

8,8 100,100 54421 Hz 16457 Hz 8399 Hz
200,200 34669 Hz 9647 Hz 4949 Hz
500,500 8031 Hz 2031 Hz 1018 Hz
1000,1000 2355 Hz 566 Hz 247 Hz
2000,2000 581 Hz 132 Hz 63 Hz

16,16 100,100 51506 Hz 15190 Hz 7873 Hz
200,200 33017 Hz 9178 Hz 4700 Hz
500,500 7947 Hz 2046 Hz 979 Hz
1000,1000 2220 Hz 549 Hz 246 Hz
2000,2000 585 Hz 136 Hz 62 Hz

32,32 100,100 48460 Hz 14339 Hz 7300 Hz
200,200 27863 Hz 7613 Hz 3774 Hz
500,500 6745 Hz 1724 Hz 846 Hz
1000,1000 1890 Hz 457 Hz 203 Hz
2000,2000 499 Hz 122 Hz 59 Hz

6.5 The convolver VST application

While the convolver VST application was not completely done by the end of the
project, it’s main function ended up working quite great, thanks to the Hifi-Lofi
FFT convolver library [14]. This library enabled me to supply an impulse response

63

file and processing blocks of audio in order to apply the effect. I had to use two
of these instances, one for the left channel and one for the right. There did not
appear to be any significant cost in terms of efficiency to using the library.

In figure 43 we can see the resultant audio given the geometry in figure 41. At
6:40 we can see the simulated audio given the drum loop at 0:00. Whats interesting
here is that the simulated audio is quite similar to the source convolved using the
IR (at 18:50) which is as expected. Further, the convolved signal is almost the
exact same as the reference convolver VST (Image-line’s Fruity Convolver). The
simulator is able to simulate audio across the whole 0 Hz to 22.5k Hz, which was the
target frequency. There are little artifacts, the only audible ones are at 17 kHz and
19 kHz. This boost in gain at those frequencies might be a result of the geometry,
however that is highly unlikely as we see the same boosts at similar frequencies in
figure 40 and 37 as well. The artifact is however greatly reduced here, as compared
with the results in 6.3, and a simple low-pass after the simulation could hide some
of these frequencies. In figure 43 we also can see that the tail is not long enough.
This results in unrealistic cutoff of the reverberation. By simulating for longer, this
could have been avoided.

Figure 39: Input geometry

64

Figure 40: Output spectrogram (https://www.dropbox.com/s/
w17840o5iyaf061/res.1.1.mp3?dl=0)

Figure 41: Input geometry
Figure 42: Application during
simulation

Figure 43: Output spectrogram (https://www.dropbox.com/s/
8tjgekws7vfnoig/res.1.4.mp3?dl=0)

65

https://www.dropbox.com/s/w17840o5iyaf061/res.1.1.mp3?dl=0
https://www.dropbox.com/s/w17840o5iyaf061/res.1.1.mp3?dl=0
https://www.dropbox.com/s/8tjgekws7vfnoig/res.1.4.mp3?dl=0
https://www.dropbox.com/s/8tjgekws7vfnoig/res.1.4.mp3?dl=0

6.6 Notes on the other attempted methods

Figure 44: Partition of a
2D scene

The most promising method among the proposed
methods was the one described in [1]. This method,
as mentioned earlier, uses the analytic solution of the
wave equation in order to simulate acoustics with al-
most no artifacts. The analytic solution itself was not
too hard to implement, but harder to understand than
the other methods. The approach consisted of several
steps. The pre-processing part consisted of loading the
geometry from an image and then dividing the geometry
into disjoint regions. The algorithm started by picking
a random point in the grid and then expanding it until
further expansion was not possible. After this the algo-
rithm picked a new uncovered point and expanded this.
This was repeated until the entire domain was covered.
An example can be seen in figure 44.

After this pre-processing had been done, the actual
simulation could begin. Given an initial impulse that
was transformed into frequency domain, the method
continually updated the values for each partition. The

simulation loop consisted of a simple forward Euler scheme. When in frequency do-
main, one large advantage is that the Laplacian operator is possible to implement
by a simple multiplication (as opposed to a convolution). This obviously increases
performance by quite a bit, but the border exchange and external forces had to be
transformed with a FFT anyway. One of the main reasons this method did not
work out was the border exchange. It consist of calculating the continuation of
the equation at the, for example, left hand side of an interface. Then putting that
continuing force in the partition to the right. As the method uses cosines for it’s
basis function, the method assumes an even extension at the interface. This means
transforming the convolution kernel in such a way that the sound wave propagates
into the next partition. This is described in more detail in [1]. This had to be
separately done for 4 different direction, where I only successfully managed to do
this for one of the direction. In addition to this the outgoing waves inside the
given region had to be absorbed by a perfectly matching layer. This was probably
the part that resulted in me giving up on the method. I did however successfully
implement a perfectly matched layer in the FDTD method, while this was for the
analytic solution. The method in the paper further included a peak extractor and
generation of high frequency data, which reduced both the memory footprint and
computation time.

This might have been the ideal way to solve this problem as the dispersion
problems would greatly have been eliminated (except at the boundaries). Further
it would have been the most accurate. However, the mathematical formulations and

66

requirements was very hard to understand. Given more time and a concentrated
effort, a better result might have come from this.

67

7 Conclusion

This section describes some of the final conclusions that can be drawn from
this thesis, whether the goals of the project was met or not, some retrospective
comments on how the project went and possible future work.

7.1 Results

As we have seen in this thesis, numerical simulation with FDTD methods is
quite challenging and involves quite a large amount of mathematical background.
One of the main challenges of this project was to obtain such knowledge while also
learning both CUDA and the JUCE framework. The FDTD methods employed in
this thesis have quite a few unintended artifacts; numerical dispersion being one of
the most severe ones. Dealing with such errors while having a usable simulation
speed was not really achieved. Further, best practices for CUDA and ways to
write efficient code was hard as the CUDA API almost feels like a black box. For
example, many of the returns from erroneous calls with the structures used for
the different functions (ie. cuMemcpy3D using CUDA MEMCPY3D-structure [15]) was
somewhat difficult to interpret and often resulted in trying things until it worked.
I will say however that a lot of the errors probably was not research in the right
way from my part. One issue I tended to forget about was that the structures were
not zero-initialized, and thus having arbitrary values for the fields not used.

While easy to use and relatively straight forward, the JUCE framework contained
a few peculiarities I wouldn’t really want to have in a framework. It seemed that the
JUCE developers have reimplemented (or created wrappers for) a lot of stuff found
in the standard libraries. For example; the JUCE framework makes extensive use of
their own String-type, threads are reimplemented (if they use the standard library
under the hood is unknown to me), mutex locks are reimplemented and so on.
Writing messages to the console initially appears to not work as the messages are
directed to the immediate output, and integrating existing project using printf or
std::out requires quite a bit of rewrite. Their OpenGL implementation was, in my
opinion, horrendous. The way it worked was by having an OpenGL context object
with a public member called extensions. The different functions from OpenGL
was members of the extensions-object, but a very large amount of the functions I
needed was not part of this object. Thus I initially had to manually load function
pointers, but this quickly turns into quite messy code. The solution I ended up
with was completely ditching the extensions-object and loading OpenGL through
GLAD; a little redundant (extensions load some function pointers, and GLAD
then loads them again), but turned a nightmare in merging the different projects
together into something more maintainable. For example, for the VST I essentially
would have had to rewrite the entire shader class and pass the OpenGLContext

around. In addition to this, the JUCE framework contains a lot of auto-generated
code and macro switches, which I was not interested in using. Replacing the macros
with constant values (ie. I know the application is going to be an effect unit, I

68

don’t need the ability to change this through the ProJucer) and never opening the
ProJucer (the program responsible for the auto-generated code) became the norm.

While I’m happy that I got some useful results, the quality of said results were
not as good as originally envisioned. The simulator application were quite able to
produce some interesting results using odd geometry (think tubes with blow-holes,
flutes or similar), but the maximum simulated frequency was to low. In order to
remedy this, resolution could be increased by doing several iterations per sample,
but then efficiency became too bad. The original goal was to be able to do acoustic
simulation in near realtime, but I was only really able to simulate the pressure
field at around 1000 samples per second (1.0 kHz) for a 1000 x 1000 grid. The
runtime convolver application was however quite usable if one were to load impulse
responses and then convolving the incoming audio. No undesirable effects due to
the convolver could be heard, and the convolver produced quite satisfactory results
compared to the reference reverberation effect FL Convolver from FL Studio 20.

7.2 Goals

The initial goal was to create something similar to [1] for use within a digital
audio workstation, specifically a VST. While an unfinished VST was produced, the
quality of the simulation was far from the same as [1]. One of the main issues
for me in this project was that [1] and a lot of the other papers are produced by
people with background in acoustics. The intended expertise I intended to bring
was writing the code as efficient as possible using CUDA. However, this was not
what happened. A lot of time was spent struggling to get CUDA or some contruct
in C++ to work right. For a given task in CUDA to be done, a lot of boilerplate
code has to be working properly, debugging an error in such boilerplate code can
be quite hard. Examples of this can be found in the final simulator application,
where a lot of CUDA driver API calls are used directly. By the time of writing
the VST application, I knew enough of the driver API in order to write working
wrapper classes.

I still think it should be possible to integrate a simulator like [1] into a VST
plug-in. Some of the methods and techniques for dealing with acoustic simulation
in an efficient manner was discovered too late in this project. For example, it
is common to split a reverberation effect into two parts; early reflection and late
reflection. The early reflection accounts for the echos that hits the listener back
first and is the part of the reverberation that makes the impulse response the most
unique. The late reflection accounts for the longer-lasting tail of reflection, where
the individual reflections are indistinguishable from each other. In most practical
cases the late reflection can be parameterized by the decay rate, the amount of high
frequency content and how fast that high frequency content decay, seen in figure
45 (possibly more parameters depending on the use case and realism). This late
reflection is then possible to generate using simpler techniques such as Schroeder
Reverberators [11] and thus ditching a huge portion of the simulation. This would

69

probably be the best way to create such a VST, if I had to do it again (or if I am
to take this project further).

7.3 Retrospective

7.3.1 What went right

By the end I had actual result from the simulation. This was for a long time not
the case, as dealing with a quite low-level API like the CUDA driver API is not
easy. Further, looking up the CUDA driver API on, for example, StackOverflow
does not result in many hits. The audible simulation results is somewhat usable,
where the user can create a simulation in the simulator application and then load
the resulting impulse response in the convolver application.

A lot of the CUDA code ended up looking quite elegant by the end, and no func-
tional errors, crashes or memory leaks occurred. For example, by using templated
classes launching a kernel simply looks like a function call. The threading in the
convolver application worked quite well and did not result in any deadlocks or race
conditions. The efficiency of the main audio processing loop also worked quite well.

7.3.2 What went wrong

The main problem in this project has been the incredibly steep learning curve,
and trying to learn quite a bit of a very advanced mathematical field. Thus a
lot of expectation management had to be done by the end. The efficiency of the
simulator application by the end were far from satisfactory, which has been one of
the goals of this project. While usable, the results from the simulator applications
contained audible artifacts and a too low frequency (given the simulation time).
The two main technologies I had to learn for the duration of this project (CUDA
and JUCE) took long time and required quite a bit of patience and motivation in
order to master. Further, the alternative technologies and techniques explored had
to be learned as well (most notably OpenCL and BLAS), taking up a significant
amount of time. Fortunately, I was quite comfortable with OpenGL, Python and
C++ so this went better. However, I had not used C++ templates before in the
same way done for this project, so that had to be learned as well.

7.3.3 What could have been done better

More planning and research before the final implementation of both the simula-
tor and the VST could have been done. For example it is quite disappointing that
the ER/LR split was not thought of earlier, as it would have greatly increased the
quality of the results obtained here. Consulting outside expertise was also some-
thing I didn’t really do. Asking for help with the CUDA code and the acoustical /
mathematical background theory probably would have helped a lot.

70

7.4 Further work

7.4.1 Finishing the convolver VST

As it stands right now, the convolver application was not completely finished.
The most notable functionality missing includes writing the simulation results back
from the simulator part and using it as an impulse response and being able to
display, edit and add/remove source and destination locations. Further there is
some steps that could have been made in order to increase performance. A new
feature of CUDA 10.0 called CUDA Graphs were explored, but not implemented.
Graphs makes it possible to define a computation graph and have the kernels
automatically called. This would remove the need for having a simulation loop
where we manually call the kernels, and thus possibly increase performance by not
having the CPU interfere at all. It is unclear at this point if it would bring greater
efficiency to the simulation, but the problem in this thesis could be well suited for
such an approach (as we can seen in figure 5 from section 3.2.2 we could define a
graph somewhat like what is displayed here).

As the VST simulation stands right now, there seems to be some problems with
how the auxiliary PDEs work, some values gives rise to numerical instability and the
computation simply explodes. Using the same approach to the Perfectly Matched
Layer as was done in the simulator application, this would probably have fixed that
issue as well as greatly reduced the complexity of the simulation.

Obviously, the simulator VST looks quite ugly as of now. Ideally one would have
a designer create the user interface. VSTs can typically looks quite pleasing to the
eye if done correctly. The user interface as it stands is however quite functional
and easy to use.

7.4.2 Doing an ER/LR split

As described in section 7.2 above, it is possible to split the reverberation into two
separate parts. Using the simulator to generate the early reflection and artificial
reverb to generate the late reflection would be the optimal way for generating high
quality reverb effects.

7.4.3 Using neural nets to auto-encode impulse responses

As the time stepping schemes is quite demanding, requiring at least 44100 iter-
ations per second, an alternative approach is possible. Similar to the ER/LR split
we can try to parameterize the IRs by using convolutional neural nets. As the fre-
quencies in an impulse response gets higher, it gets harder to differentiate between
the different sounds. Ie. comparing the higher frequencies between two different
impulse responses yield little audible differences. The most important parameter is
how fast the higher frequencies decay, as seen in figure 45. We can exploit this, and
then considerably lower the time step we are using. However, the Courant num-
ber still has to hold as to avoid numerical stability, which may require a different

71

(possibly implicit) integration scheme. [1] exploit this by extracting peaks from
the output response and then generating the high frequency data after-the-fact,
thus also saving on the storage requirement. Another possibility is using a form of
neural net, or auto-encoder, as was done in [16] for generating the high frequency
content. The learning data could be generated by actually recording impulse re-
sponses from real locations; ie. playing a loud impulse (for example a gun show,
snare drum hit etc.) and capturing the result with two microphones.

Figure 45: Impulse response with decaying high frequency content.

72

References

[1] R. N. Nikunj Raghuvanshi and M. C. Lin, “Efficient and accurate sound
propagation using adaptive rectangular decomposition.” https://www.

researchgate.net/publication/220668337_Efficient_and_Accurate_

Sound_Propagation_Using_Adaptive_Rectangular_Decomposition. (Ac-
cessed on 25/2-19).

[2] A. Allen and N. Raghuvanshi, “Aerophones in flatland,” ACM Transactions
on Graphics, vol. 34, pp. 134:1–134:11, 07 2015.

[3] Steinberg, “Vst.” https://www.steinberg.net/en/products/vst.html.
(Accessed on 25/2-19).

[4] Juce, “Juce.” https://juce.com/. (Accessed on 25/2-19).

[5] S. Bilbao and B. Hamilton, “Higher-order accurate two-step finite difference
schemes for the many-dimensional wave equation,” Journal of Computational
Physics, vol. 367, 04 2018.

[6] B. Hamilton and S. Bilbao, “Hexagonal vs. rectilinear grids for explicit finite
difference schemes for the two-dimensional wave equation,” vol. 133, p. 3532,
05 2013.

[7] L. Feynman and Sands, “The feynman lectures on physics.” http://www.

feynmanlectures.caltech.edu/I_47.html. (Accessed on 8/5-2019).

[8] E. Kreyszig, H. Kreyszig, and E. J. Norminton, Advanced Engineering Math-
ematics. Hoboken, NJ: Wiley, tenth ed., 2011.

[9] S. G. Johnson, “Notes on perfectly matched layers.” http://www-math.mit.

edu/~stevenj/18.369/pml.pdf. (Accessed on 13/5-2019).

[10] B. Hamilton and S. Bilbao, “Hexagonal vs. rectilinear grids for explicit finite
difference schemes for the two-dimensional wave equation,” 21st International
Congress on Acoustics, Montral, Canada, 2013, 2013.

[11] M. R. Schroeder and B. F. Logan, “Colorless artificial reverberation,” IRE
Transactions on Audio, vol. AU-9, 1961.

[12] NVIDIA, “Cuda accelerated libraries.” https://developer.nvidia.com/

gpu-accelerated-libraries. (Accessed on 21/5-19).

[13] nvpro, “Single-threaded cuda opengl interop.” https://github.com/

nvpro-samples/gl_cuda_interop_pingpong_st. (Accessed on 20/5-19).

[14] HiFi-LoFi, “Realtime audio convolution.” https://github.com/HiFi-LoFi/

FFTConvolver. (Accessed on 20/5-19).

[15] NVIDIA, CUDA driver API, 10.1 ed.

73

https://www.researchgate.net/publication/220668337_Efficient_and_Accurate_Sound_Propagation_Using_Adaptive_Rectangular_Decomposition
https://www.researchgate.net/publication/220668337_Efficient_and_Accurate_Sound_Propagation_Using_Adaptive_Rectangular_Decomposition
https://www.researchgate.net/publication/220668337_Efficient_and_Accurate_Sound_Propagation_Using_Adaptive_Rectangular_Decomposition
https://www.steinberg.net/en/products/vst.html
https://juce.com/
http://www.feynmanlectures.caltech.edu/I_47.html
http://www.feynmanlectures.caltech.edu/I_47.html
http://www-math.mit.edu/~stevenj/18.369/pml.pdf
http://www-math.mit.edu/~stevenj/18.369/pml.pdf
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://github.com/nvpro-samples/gl_cuda_interop_pingpong_st
https://github.com/nvpro-samples/gl_cuda_interop_pingpong_st
https://github.com/HiFi-LoFi/FFTConvolver
https://github.com/HiFi-LoFi/FFTConvolver

[16] V. Kuleshov, S. Z. Enam, and S. Ermon, “Audio super resolution using neural
networks,” CoRR, vol. abs/1708.00853, 2017.

74

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Sondre Slåttedal Havellen

Acoustic Simulation in 2D using CUDA

Master’s thesis in Computer Science
Supervisor: Magnus Lie Hetland

July 2019

	Introduction
	Approach
	Motivation
	Code repositories

	Background
	History and a brief introduction to audio production software
	Effect units and synthesizers
	Sound recording and Digital Audio Workstations
	Plug-ins, VSTs, AU, RTAS
	General-purpose Computing on Graphics Processing Units

	Similar projects
	The NESS Group
	Aerophones in Flatland - Article
	Efficient and Accurate Sound Propagation Using Adaptive Rectangular Decomposition

	Theory
	Mathematical modeling and framework
	Solution

	Numerical integration schemes and approaches
	Simple forward Euler
	Two-step leapfrog

	Perfectly Matching Layers
	Geometry
	Discretization of the modified system

	Grid system - Staggered grid vs. Collated grid
	Derivative on a grid

	Hexagonal grid

	Technology
	The audio processing pipeline
	JUCE
	CUDA
	CUDA APIs
	CUDA memory model
	CUDA programming model

	OpenGL
	Programming with OpenGL

	Other alternative technologies and APIs considered
	OpenCL
	NVIDIA GVDB Voxels
	Vulkan and Direct3D
	BLAS and clBLAST

	Method and Implementation
	Workflow
	Regular forward Euler integration on a rectilinear grid
	Two-step Leapfrog on a rectilinear grid
	Two-step Leapfrog on a hexagonal grid
	Two-step Leapfrog on a staggered grid
	Analytic scheme with time steps as in Forward Euler and exchanging borders

	Implementation of the simulator
	The main program
	The CUDA module

	Implementation of the convolver VST
	JUCE overview

	Description of the various classes and their usage
	AudioProcessor
	AudioProcessorEditor
	CUDA namespace
	GL namespace
	SimulatorProcessor
	Custom components
	Other
	The CUDA module

	Notes about debugging CUDA and OpenGL

	Results
	Early results
	Python results
	Results from the first iteration of the simulator application
	Final results from the simulator application
	The convolver VST application
	Notes on the other attempted methods

	Conclusion
	Results
	Goals
	Retrospective
	What went right
	What went wrong
	What could have been done better

	Further work
	Finishing the convolver VST
	Doing an ER/LR split
	Using neural nets to auto-encode impulse responses

