
Medical Image Segmentation: A
General U-Net Architecture and
Novel Capsule Network
Approaches

June 2019

M
as

te
r's

 th
es

is

M
aster's thesis

Jenny Stange Johansen
Mathias Aarseth Pedersen

2019
Jenny Stange Johansen, M

athias Aarseth Pedersen

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f C

om
pu

te
r S

ci
en

ce





Medical Image Segmentation: A General
U-Net Architecture and Novel Capsule
Network Approaches

Computer Science
Submission date: June 2019
Supervisor: Frank Lindseth

Norwegian University of Science and Technology
Department of Computer Science





Abstract
Medical imaging is an important tool for giving diagnoses and monitoring treat-
ment response in health care. However, analyzing large amounts of image data is
expensive because of the time and expertise required. In recent years, automatic
image analyzing methods using artificial neural networks have made major ad-
vances. For image analysis, convolutional neural networks (CNN) have been par-
ticularly successful. Image segmentation methods aim to accurately indicate the
location and shape of the structure in question. One commonly used architecture
for medical image segmentation is a CNN called U-Net [54]. Capsule networks
are an alternative to CNN that recently have shown promising results [56]. Fur-
ther research has suggested improving capsule networks with matrix capsules and
EM-routing, increasing its ability to capture part-whole relationships [26].

A U-Net variant was developed and applied to multiple medical segmentation
tasks. The architecture, called 2.5D U-Net, proved to be versatile when applied
to medical tasks, despite using no manual or automatic dataset-specific parameter
tuning. Official test results obtained from Medical Segmentation Decathlon in-
clude Dice scores of 85% for spleen, 87% and 85% for the anterior and posterior
hippocampus respectively, along with 90% and 54% for liver and liver tumour
[60]. Results reported by LaLonde et al. using SegCaps on the LUNA16 lung
segmentation were reproduced [38]. However, applying the architecture to other
medical segmentation tasks gave disappointing results. It achieved Dice scores
of about 50 and 30 percentage points less than 2.5D U-Net on the spleen and
the heart datasets. The SegCaps architecture was also extended to perform multi-
class segmentation; a task that has not previously been studied in the literature.
The network was able to achieve at least as good scores as the original SegCaps
when applied to the spleen and the heart datasets. Multi-SegCaps successfully
segmented anterior and posterior hippocampus, achieving Dice scores of 72.4%
and 70.5%. In the last experiment, SegCaps using EM-routing was implemented
and applied to the hippocampus dataset. The use of EM-routing for image seg-
mentation had not previously been demonstrated in the literature. The experiment
was intended to be a proof of concept and was successfully able to perform binary
segmentation of the two hippocampus classes, as a single target class, achieving a
Dice score of 54.5%.

i



Sammendrag
I helsevesenet er medisinsk bildediagnostikk et viktig verktøy for å sette diag-
noser og overvåke behandlingsrespons. Dessverre er analyse av de store meng-
dene bildedata kostbart på grunn av ekspertisen og tiden som kreves. I de siste
årene har automatiske analyseringsverktøy ved bruk av kunstige nevrale nettverk
gjort store fremskritt. For bildeanalyse har spesielt konvolusjonsnett (convolu-
tional neural networks (CNN)) hatt stor suksess. Ved segmentering av bilder
er utfordingen å presist definere posisjonen og formen på en predefinert struk-
tur. En kjent arkitektur for medisinsk bildesegmentering er et CNN kalt U-Net
[54]. Et nylig alternativ til CNN, kapselnettverk (capsule networks), har også vist
lovende resultater [56]. Videre forskning har foreslått å forbedre kapselnettverk
ved å benytte matrisekapsler (matrix capsules) og EM-ruting for å bedre nettver-
kets forståelse for helheten i bildet [26].

I dette prosjektet ble en U-Net variant utviklet og testet på flere medisinske datasett
for segmentering. Arkitekturen, kalt 2.5D U-Net, viste seg å være robust for denne
typen oppgaver, til tross for at den hverken brukte manuelle eller automatiske
parameterjusteringer basert på typen datasett. Offisielle testresultater fra Medi-
cal Segmentation Decathlon inkluderer Dice scorer på 85% for milten, 87% og
85% for fremre and bakre hippocampus henholdsvis, i tillegg til 90% og 54%
for lever og leversvulst [60]. Det neste eksperimentet reproduserte resultatene
som var rapportert av LaLonde et al. ved å benytte SegCaps for LUNA16 lunge-
segmentering [38]. Derimot ga ikke arkitekturen like gode resultater på andre
medisinske datasett. Den fikk Dice scorer rundt 50 og 30 prosentpoeng lavere
enn 2.5D U-Net modellen på milten og hjertet, henholdsvis. Videre ble SegCaps
utvidet til å håndtere flere klasser, det løste en utfordring som ikke tidligere var
kjent løst i litteraturen. Nettverket oppnådde minst like gode Dice scorer som
den originale SegCaps, da den ble brukt for segmentering av milten og hjertet.
Multi-SegCaps viste evne til å segmentere flere klasser ved å oppnå Dice score
på 72.4% and 70.5% for fremre og bakre hippocampus. I det siste eksperimentet
ble SegCaps med EM-ruting implementert og brukt til segmentering av hippocam-
pus. Forfatterne hadde ikke observert at EM-ruting for SegCaps var blitt brukt for
segmentering i noe tidligere forskning. Eksperimentet var ment som en demon-
strasjon av prinsippet og modellen viste suksessfullt evne til å gjøre binær seg-
mentering av de to hippocampus klassene med en Dice score på 54.5%.

ii



Preface

This thesis was written by two students during the spring semester of 2019, for
the Department of Computer Science (IDI) at the Norwegian University of Sci-
ence and Technology (NTNU).

We would like to thank our supervisor Frank Lindseth for allowing us to work
on the exciting task of medical image segmentation. His expertise and sugges-
tions during the project have been a key factor for success.

Trondheim, June 2, 2019

Jenny Stange Johansen and Mathias Aarseth Pedersen

iii



Table of Contents

Abstract i

Summary ii

Preface iii

Table of Contents iv

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Project Goals and Research Questions . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Report Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Segmentation of Medical Imaging Data . . . . . . . . . . . . . . 4

2.1.1 Body Structures and Disease . . . . . . . . . . . . . . . . 4
2.1.2 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Medical Image Segmentation . . . . . . . . . . . . . . . 12
2.1.4 Medical Segmentation Challenges . . . . . . . . . . . . . 13

2.2 Tools and Frameworks . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Numpy . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Keras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Jupyter Notebook . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 ITK-SNAP . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



2.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Image Classification . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Image Segmentation . . . . . . . . . . . . . . . . . . . . 18

2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Weight Update . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Activation Functions . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.4 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.5 Adam Optimizer . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Generalization and Regularization . . . . . . . . . . . . . . . . . 23
2.5.1 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 Weight Decay . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.4 Input Reconstruction . . . . . . . . . . . . . . . . . . . . 24
2.5.5 Data Augmentation . . . . . . . . . . . . . . . . . . . . . 24

2.6 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . 26
2.6.1 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.2 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.4 Residual Neural Networks . . . . . . . . . . . . . . . . . 28

2.7 Image Segmentation Architectures . . . . . . . . . . . . . . . . . 28
2.7.1 Fully Convolutional Networks . . . . . . . . . . . . . . . 28
2.7.2 SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.3 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.4 Mask R-CNN . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Capsule Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8.1 Dynamic Routing . . . . . . . . . . . . . . . . . . . . . . 32
2.8.2 Matrix Capsules With EM-Routing . . . . . . . . . . . . 35
2.8.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Methodology 45
3.1 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 2.5D U-Net . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.3 Multi-SegCaps . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.4 EM-SegCaps . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 LUNA16 . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Spleen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



3.2.3 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.4 Hippocampus . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.5 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6 Pancreas . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.7 BraTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Experiment 1: 2.5D U-Net for Medical Segmentation Tasks 62
3.4.2 Experiment 2: Reproduce Results from Capsules for Ob-

ject Segmentation . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Experiment 3: Multi-class Segmentation using SegCaps . 63
3.4.4 Experiment 4: SegCaps with EM-routing . . . . . . . . . 64

3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 2.5D U-Net . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.2 SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Multi-SegCaps . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.4 EM-SegCaps . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Results 69
4.1 2.5D U-Net for Medical Segmentation Tasks . . . . . . . . . . . . 70

4.1.1 Spleen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 Hippocampus . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.4 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.1.5 Pancreas . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.6 BraTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Reproduce Results from Capsules for Object Segmentation . . . . 80
4.2.1 LUNA16 . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Spleen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Multi-class Segmentation using SegCaps . . . . . . . . . . . . . . 85
4.3.1 Spleen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3.2 Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.3 Hippocampus . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4 Liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



4.3.5 BraTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4 SegCaps with EM-routing . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Binary Hippocampus . . . . . . . . . . . . . . . . . . . . 94
4.4.2 Multi-class hippocampus . . . . . . . . . . . . . . . . . . 96

5 Discussion 99
5.1 2.5D U-Net for Medical Segmentation Tasks . . . . . . . . . . . . 99
5.2 Reproduce Results from Capsules for Object Segmentation . . . . 102
5.3 Multi-class Segmentation using SegCaps . . . . . . . . . . . . . . 105
5.4 SegCaps with EM-routing . . . . . . . . . . . . . . . . . . . . . 108
5.5 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Conclusion and Future Work 112
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 114

Appendix 122

A Additional Results 122
A.1 2.5D U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.3 Multi-SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B NAIS Submission 127

vii



List of Tables

2.1 The tasks of Medical Segmentation Decathlon . . . . . . . . . . . 15
2.2 Commonly used activation functions. . . . . . . . . . . . . . . . 21
2.3 Results from nnU-Net for phase 1 . . . . . . . . . . . . . . . . . 41
2.4 Results from nnU-Net for phase 2 . . . . . . . . . . . . . . . . . 41
2.5 A performance evaluation of SegCaps . . . . . . . . . . . . . . . 43

3.1 The datasets used in the experiments . . . . . . . . . . . . . . . . 53
3.2 The input shapes used for hippocampus . . . . . . . . . . . . . . 56
3.3 The values used for normalization of the datasets . . . . . . . . . 59
3.4 The augmentations used in the experiments . . . . . . . . . . . . 59

4.1 An overview of Dice scores for all models, part 1 . . . . . . . . . 69
4.2 An overview of Dice scores for all models, part 2 . . . . . . . . . 70
4.3 Dice scores from the test sets of MSD, using 2.5D U-Net . . . . . 70
4.4 Scores for the spleen dataset using 2.5D U-Net . . . . . . . . . . 71
4.5 Split scores for the spleen dataset using 2.5D U-Net . . . . . . . . 71
4.6 Scores for the heart dataset using 2.5D U-Net . . . . . . . . . . . 73
4.7 Split scores for the heart dataset using 2.5D U-Net . . . . . . . . . 73
4.8 Scores for the hippocampus dataset using 2.5D U-Net . . . . . . . 74
4.9 Split scores for the hippocampus dataset using 2.5D U-Net . . . . 74
4.10 Scores for the liver dataset using 2.5D U-Net . . . . . . . . . . . 75
4.11 Split scores for the liver dataset using 2.5D U-Net . . . . . . . . . 76
4.12 Scores for the pancreas dataset using 2.5D U-Net . . . . . . . . . 77
4.13 Split scores for the pancreas dataset using 2.5D U-Net . . . . . . . 78
4.14 Scores for the BraTS dataset using 2.5D U-Net . . . . . . . . . . 79
4.15 Split scores for the BraTS dataset using 2.5D U-Net . . . . . . . . 79
4.16 Scores for the LUNA16 dataset using SegCaps . . . . . . . . . . 81
4.17 Split scores for the LUNA16 dataset using SegCaps . . . . . . . . 81
4.18 Scores for the spleen dataset using SegCaps . . . . . . . . . . . . 83
4.19 Split scores for the spleen dataset using SegCaps . . . . . . . . . 83
4.20 Scores for the heart dataset using SegCaps . . . . . . . . . . . . . 84

viii



4.21 Split scores for the heart dataset using SegCaps . . . . . . . . . . 85
4.22 Scores for the spleen dataset using Multi-SegCaps with Dice loss . 86
4.23 Scores for the spleen dataset using Multi-SegCaps with WCE-loss 87
4.24 Split scores for the spleen dataset using Multi-SegCaps . . . . . . 87
4.25 Scores for the heart dataset using Multi-SegCaps . . . . . . . . . 88
4.26 Split scores for the heart dataset using Multi-SegCaps . . . . . . . 88
4.27 Scores for the hippocampus dataset using Multi-SegCaps . . . . . 89
4.28 Split scores for the hippocampus dataset using Multi-SegCaps . . 90
4.29 Scores for the liver dataset using Multi-SegCaps . . . . . . . . . . 91
4.30 Split scores for the liver dataset using Multi-SegCaps . . . . . . . 91
4.31 Scores for the BraTS dataset using Multi-SegCaps . . . . . . . . . 93
4.32 Split scores for the BraTS dataset using Multi-SegCaps . . . . . . 93
4.33 Scores for binary hippocampus segmentation using EM-SegCaps . 95
4.34 Split scores for binary hippocampus segmentation using EM-SegCaps 95
4.35 Scores for multi-class hippocampus segmentation using EM-SegCaps 96
4.36 Split scores for multi-class hippocampus segmentation using EM-

SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Training time for the SegCaps models . . . . . . . . . . . . . . . 123
A.2 The class weights used by WCE-loss for SegCaps . . . . . . . . . 123
A.3 Split scores for the LUNA16 dataset before and after a bug was

fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.4 Split scores for the spleen dataset using Multi-SegCaps with Dice

loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.5 The class weights used by WCE-loss for Multi-SegCaps on spleen 126

ix



List of Figures

2.1 An illustration of the human brain . . . . . . . . . . . . . . . . . 6
2.2 An illustration of human organs . . . . . . . . . . . . . . . . . . 8
2.3 Segmentation tasks in the BraTS 2018 challenge . . . . . . . . . . 14
2.4 A medical image visualized in ITK-SNAP . . . . . . . . . . . . . 17
2.5 An illustration of common computer vision tasks . . . . . . . . . 19
2.6 Elastic deformation on MNIST dataset . . . . . . . . . . . . . . . 25
2.7 Salt and pepper noise applied to an image . . . . . . . . . . . . . 26
2.8 An example of a convolutional neural network . . . . . . . . . . . 27
2.9 A residual block . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 The original U-Net architecture . . . . . . . . . . . . . . . . . . . 30
2.11 An illustration of a case where a CNN often would fail . . . . . . 31
2.12 A capsule detecting that its parts are in disagreement. . . . . . . . 32
2.13 A capsule having several child capsules in agreement . . . . . . . 33
2.14 The effect of changing latent variables of a capsule, illustrated on

MNIST data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.15 EM clustering of capsule predictions . . . . . . . . . . . . . . . . 36

3.1 A diagram of the 2.5D U-Net architecture . . . . . . . . . . . . . 48
3.2 A diagram of the SegCaps architecture . . . . . . . . . . . . . . . 50
3.3 A diagram of the EM-SegCaps architecture . . . . . . . . . . . . 53
3.4 A visualization of a volume from the LUNA16 dataset . . . . . . 54
3.5 A visualization of a volume from the spleen dataset . . . . . . . . 54
3.6 A visualization of a volume from the heart dataset . . . . . . . . . 55
3.7 A visualization of a volume from the hippocampus dataset . . . . 56
3.8 A visualization of a volume from the liver dataset . . . . . . . . . 57
3.9 A visualization of a volume from the pancreas dataset . . . . . . . 57
3.10 A visualization of a volume from the BraTS dataset . . . . . . . . 58
3.11 An illustration of elastic deformation . . . . . . . . . . . . . . . . 60
3.12 Augmentations used in the experiments . . . . . . . . . . . . . . 61

4.1 Slices from segmentation of the spleen using 2.5D U-Net . . . . . 72

x



4.2 A 3D visualization of spleen segmentation using 2.5D U-Net . . . 72
4.3 Slices from segmentation of the heart using 2.5D U-Net . . . . . . 73
4.4 A 3D visualization of hippocampus segmentation using 2.5D U-Net 74
4.5 Slices from segmentation of the hippocampus using 2.5D U-Net . 75
4.6 Slices from segmentation of the liver using 2.5D U-Net . . . . . . 76
4.7 Scores per volume for the liver dataset using 2.5D U-Net . . . . . 77
4.8 Slices from segmentation of the pancreas using 2.5D U-Net . . . . 78
4.9 Slices from segmentation of brain tumour using 2.5D U-Net . . . 79
4.10 Slices from segmentation of the lungs using SegCaps . . . . . . . 81
4.11 Slices from segmentation of the lungs where the label is incorrect 82
4.12 Scores per volume for the LUNA16 dataset using SegCaps . . . . 82
4.13 Slices from segmentation of the spleen using SegCaps . . . . . . . 84
4.14 Slices from segmentation of the heart using SegCaps . . . . . . . 85
4.15 Slices from segmentation of the spleen using Multi-SegCaps . . . 87
4.16 Slices from segmentation of the heart using Multi-SegCaps . . . . 89
4.17 Slices from segmentation of the hippocampus using Multi-SegCaps 90
4.18 A 3D visualization of hippocampus segmentation using Multi-

SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.19 Slices from segmentation of the liver using Multi-SegCaps . . . . 92
4.20 Scores per volume for the liver dataset using Multi-SegCaps . . . 92
4.21 Slices from segmentation of brain tumour using Multi-SegCaps . . 94
4.22 Slices from binary segmentation of the hippocampus using EM-

SegCaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.23 Slices from multi-class segmentation of the hippocampus using

EM-SegCaps, for split 0 . . . . . . . . . . . . . . . . . . . . . . 97
4.24 Slices from multi-class segmentation of the hippocampus using

EM-SegCaps, for split 3 . . . . . . . . . . . . . . . . . . . . . . 98

A.1 An activation map for a 2.5D U-Net model trained with Dice loss . 122
A.2 The loss graph for a Multi-SegCaps model with Dice loss . . . . . 124
A.3 Slices from segmentation of the spleen using Multi-SegCaps with

Dice loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.4 An activation map for a Multi-SegCaps model trained with Dice

loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



Chapter 1

Introduction

This chapter gives an introduction to the project. It addresses the motivation be-
hind the task and describes the project goals along with the research questions. At
last, the contributions from this work are presented.

1.1 Motivation
Medical imaging is an important tool for giving patients diagnoses and monitoring
treatment response. Analyzing medical images requires expert knowledge and is
a time-consuming task. Automation of the process can save both time and costs;
resources which are often needed elsewhere in health care. Medical image seg-
mentation aims to precisely determine the location and shape of the body part
or structure in question. With correct diagnosis and treatment, patients may live
longer and have a higher quality of life.

In recent years, automatic image segmentation using deep learning has shown
great results. The improvement due to convolutional neural networks is one of the
main reasons for the recent progress in the field of image analysis. Even though
medical image segmentation has made great strides, it is still a complex task. Con-
tinued research in this area is important, both in terms of improving state of the art
methods and investigating methods that challenge the current image segmentation
paradigm.

1.2 Project Description
A variant of the U-Net architecture, inspired by Isensee et al., will be implemented
and trained for solving several medical segmentation tasks [30]. How general the
architecture, called 2.5D U-Net, is with regard to learning medical segmentation

1



tasks will be investigated. The segmentation architecture SegCaps, based on cap-
sule networks, will be applied to lung segmentation for reproducing the experi-
ment by LaLonde et al. [38]. Further, SegCaps will be applied to several med-
ical segmentation datasets and extended to handle the segmentation of multiple
classes. The performance of using the SegCaps architectures will be compared to
the performance of the U-Net variant. At last, a new type of network for segmen-
tation based on capsule networks and the EM-routing algorithm will be developed
[26]. The feasibility of matrix capsules for image segmentation will be addressed,
both for binary as well as for multi-class segmentation.

1.3 Project Goals and Research Questions
The goal of this thesis will be to determine if 2.5D U-Net is suitable for medical
segmentation tasks in general. Also, the applicability of SegCaps to similar tasks
will be addressed. This includes reproducing the results of the original SegCaps
paper and extending the architecture into performing segmentation of multiple
classes. By implementing and executing experiments with the use of EM-routing
for SegCaps, the goal is to predict if this method has a future within the field of
segmentation. The following research questions (RQs) will be addressed:

RQ1 How well does the 2.5D U-Net architecture perform on medical segmenta-
tion tasks in general?

RQ2 Is the method and results in Capsules for Object Segmentation by LaLonde
et al. reproducible? How well does SegCaps perform on similar datasets?

RQ3 Can SegCaps be adapted to multi-class segmentation, giving results compa-
rable to the original architecture? Is SegCaps able to compete with a U-Net
based model?

RQ4 Is image segmentation using SegCaps with EM-routing possible, and does
it show promising results?

1.4 Contributions
A 2.5D architecture based on an U-Net variant was implemented and evaluated
on multiple medical segmentation tasks. Segmentations of the test sets for six out
of ten datasets from the Medical Segmentation Decathlon (MSD) were submitted
to the competition. The obtained results were directly comparable to state of the
art methods in this field of research. Despite not being able to beat the state of the
art, the model showed potential and future research should address task-specific

2



automatic preprocessing and postprocessing steps to improve it further.

The method and results from Capsules for Object Segmentation were reproduced.
The experiment showed that the architecture was, as reported in the paper, capable
of segmenting images of lungs. However, the experiment also revealed that the
architecture struggles to adapt to other medical datasets.

The SegCaps architecture was further developed to allow for multi-label image
segmentation. It was experimentally shown to be able to perform segmentation
of datasets with multiple label classes, but struggles to segment highly irregular
structures in imbalanced datasets. An extension of SegCaps allowing for segmen-
tation of multiple classes is an experiment not previously shown in the literature,
as far as the authors know.

A framework for image segmentation using capsule networks and the EM-routing
algorithm was developed and evaluated. As far as the authors are concerned,
an attempt of this has never been reported in the literature so far. Although the
model did not give very good results, it showed that it was capable of segmenting
some simple structures from the hippocampus dataset. The experiment revealed
that capsule networks with EM-routing can be expected to learn segmentation on
some level, in the future, given that the algorithms underneath are optimized to be
less demanding in terms of computational and memory requirements.

A position paper about this thesis and previous work by the authors was sub-
mitted to the NAIS 2019 Symposium1 (Appendix B). The paper outlined some of
the methods that were applied to a selection of segmentation tasks, along with the
results achieved at the time. It was accepted as a poster for the conference.

1.5 Report Structure
This report consists of six chapters. The first chapter gives an introduction to the
project and the motivation behind it. The required background knowledge, from
which the project is built, is presented in the second chapter. The third chapter
describes the experiments and the method used for answering the research ques-
tions. After the methodology is presented, the result chapter shows the outcome of
the experiments. The fifth chapter discusses the results and reflects upon lessons
learned during this project. The last chapter summarizes the discussion of the
results in a conclusion and suggests future work.

1https://www.nora.ai/news-and-events/news/2019-nais-symposium.html

3



Chapter 2

Background

This chapter introduces the theory behind the research conducted in this thesis. At
first, it gives an introduction to the segmentation of medical images and presents
the tools used. Further, computer vision and artificial neural networks (ANN)
are addressed. The next sub-chapter presents regularization and generalization
techniques commonly applied to ANNs. A type of ANN frequently used for im-
age analysis, convolutional neural networks (CNN), is presented. Some common
image segmentation architectures are looked into and a recently developed alter-
native to CNN, capsule networks, are addressed. At last, previous work presents
specific research and results that are related to this thesis.

2.1 Segmentation of Medical Imaging Data
Segmentation of medical imaging data aims to accurately determine the location
and shape of the body part or structure in question. The imaging data may contain
different body structures of interest, and the goal of analyzing them is usually to
detect abnormalities and disease, such as tumours. In this section, relevant body
structures and common medical imaging tools are presented. Further, the task
of medical image segmentation along with related segmentation challenges are
introduced.

2.1.1 Body Structures and Disease
This sub-section presents body structures and common diseases related to each
of them. The body structures addressed are those that are relevant to this project.
These are the brain, a region of the brain called the hippocampus, the heart, the
lungs, the liver, the spleen, and the pancreas. The body parts are visualized in

4



Figure 2.2 and Figure 2.1. The last part of the section looks at tumours in general,
which may be found in all of the mentioned body parts.

Brain

The central nervous system consists of the brain and the spinal cord [51]. The
main task of the central nervous system is to control activity in the other organs
of the body. The brain is responsible for processing information received from
sensory input, making decisions, and sending instructions to the rest of the body.

The brain can be divided into three parts: the cerebrum, the cerebellum, and the
brain stem. The cerebrum is the largest part and consists of white and grey matter.
Further, it is divided into two cerebral hemispheres, which are the left and the
right parts of the brain. In humans, the cerebellum is located at the lower back
of the head and is important for balance and translating perceptions into muscle
movement. The brain is connected to the spinal cord by the brain stem. Thus,
the brain stem is crucial for transferring signals in and out of the brain. It is also
involved in the regulation of cardiac and respiratory function.

The brain is protected by the skull and cerebrospinal fluid, and is separated from
the bloodstream. Despite being protected, the brain is subject to disease, dam-
age, and infections. A stroke can be caused by bleeding or a lack of blood flow.
Examples of brain disease causing progressive loss of functioning neurons are
Parkinson’s disease and types of dementia. Mental disorders such as depressions
and schizophrenia are associated with brain dysfunctions. Abnormal growths that
form in the brain or spinal cord are called brain tumours. Abnormalities in the
brain are often investigated by MRI, CT and PET scans, along with EEG mea-
surements.

A cancerous tumour that starts in the brain is called a primary tumour, while a
brain tumour that is caused by spread from another part of the body is called
a metastatic brain tumour. The most common type of primary brain tumour is
glioma [20]. It counts for around half of the cases each year, and 80% of all
malignant brain tumours. Of all brain tumours, it makes up approximately 30%.
Gliomas are usually of WHO grade II-IV. Gliomas of higher grades almost always
grow back after surgical excision. It is usually not possible to cure a glioma, and
the average survival rate for high-grade gliomas is only a couple of years. The
brain is responsible for many important body functions, and a brain tumour will
cause signs and symptoms. These are highly dependent on the size and position
of the tumour. Medical imaging is central to the diagnosis of brain tumours.

5



Figure 2.1: An illustration of the human brain.
Source: https://aybu.edu.tr/sinancanan/contents/files/411limbic-hipot.pdf

Hippocamous

The hippocampus is located under the cerebral cortex, which is the outer layer of
grey matter in the brain [29]. Humans have two hippocampi, one on each side of
the brain. It is important for processing of impressions from short-term memory
to long-term memory. The hippocampus also plays a main role in orientation,
which is controlled by spatial memory. The hippocampus is one of the few places
in the brain where nerve cells continue to be created in adults.

The hippocampus is one of the first parts of the brain to suffer damage during
Alzheimer’s disease. Signs of disease are often impaired memory and spatial
orientation. However, this can also indicate other forms of dementia. Further re-
search has shown that hippocampus is likely to be related to schizophrenia and
post-traumatic stress disorder (PTSD) [50]. Alzheimer, stress, and depression are
plausible to be linked to a smaller sized hippocampus.

Heart

The human heart is a muscle located in the chest [3]. It is responsible for pump-
ing blood through the circulatory system of the body. The blood transports oxygen
and nutrients to organs and brings waste products away. The heart consists of four
chambers, where both the left and the right part consist of upper atria and lower
ventricles. The atria receive blood from the body and lungs pumping it to the ven-
tricles which in its turn pumps it into the lungs and body. Pacemaking cells create
a rhythm in which the heart pumps the blood.

6



Cardiovascular diseases are the leading cause of deaths worldwide [12]. The term
includes coronary heart disease, heart attack, stroke, vascular disease, and periph-
eral arterial diseases. Risk factors are age, gender, smoking, diabetes, high blood
pressure, obesity and lack of physical activity, among others. Cardiac imaging
can address the shape and functioning of the heart. CT, MRI, PET, and ultrasound
are frequently used for this purpose.

Lungs

In humans, the lungs are located in the chest on either side of the backbone and
are the primary organ of the respiratory system [66]. The lungs are responsible
for bringing oxygen from inhaled air into the blood and extracting carbon dioxide
from the blood for releasing it. The right lung is bigger, as the left one shares
space with the heart.

The lungs are subject for several diseases, such as infections, inflammations and
cancer. Inflammation is are often caused by infection due to bacteria or viruses.
Pneumonia is the name of inflammation in the lung tissue. The respiratory tract
and the pleurae surrounding the lungs can also be subject to inflammation. In
other cases, an inflammation in the lung is called pneumonitis. Cancer can occur
directly in a lung or spread from other body parts. In particular, smoking drasti-
cally increases the risk of lung cancer. Scans as CT is common for detection of
cancer and other lung diseases.

Liver

The liver is a central organ for digestion and has many functions [66]. It pro-
duces proteins, bile and regulates lots of biochemical reactions. It also cleanses
the blood by breaking down waste products, alcohol and old blood cells. The liver
is located at the upper right part of the abdomen.

The liver is subject for disease, which can threaten the vital functions it is re-
sponsible for. Hepatitis is the name of inflammation of the liver and is most com-
monly caused by viruses. There exist several liver disorders which are caused by
excessive alcohol consumption, grouped as alcoholic liver diseases. Liver cancer
is most commonly developed after liver damage from hepatitis B, hepatitis C or
alcohol [62].

7



Figure 2.2: An illustration of human organs.
Source: https://commons.wikimedia.org/wiki/File:Abdominal Organs Anatomy.png

8



Spleen

The spleen is responsible for cleansing the blood from foreign substances, organ-
isms, particles and old or damaged red blood cells [66]. It also recycles iron.
These functions are primarily performed by white blood cells. In case of trauma
to large bones, the spleen might start producing red blood cells, which is the same
function as it had before birth.

Splenomegaly is a disease where the spleen is enlarged. It might be caused by sev-
eral conditions including tumours and leukaemia. The absence of normal spleen
function is called asplenia and can be caused by the lack of a spleen at birth,
Sickle-cell disease or surgically removing the spleen.

Pancreas

The pancreas has two functions, it creates pancreatic juice in the digestion and
it regulates blood sugar levels [66]. It is located behind the stomach, in the ab-
domen. The pancreatic juice neutralizes acid and breaks down carbohydrates,
proteins, and fats in food entering the duodenum from the stomach. Cells in the
pancreas produce glucagon, which increases blood glucose levels and helps regu-
late blood sugar.

The pancreas is subject to diseases as inflammation, cancer and diabetes. Pan-
creatitis is inflammation in the pancreas, which can be acute or chronic [68]. It is
often caused by recurrent gallstones or chronic alcohol use. Pancreatic cancer is
one of the top 5 causes of death from cancer [68]. Symptoms are often shown at
a stage where it is too late for surgery, and only palliative treatment can be given.
There are two types of diabetes where Diabetes mellitus type 1 is a disease where
the immune system attacks the cells that create insulin. Diabetes mellitus type 2
is usually a combination of insulin resistance and reduced insulin production.

Tumours

A tumour is an uncontrolled, abnormal growth of cells or tissues in the body [13].
A tumour can be either malignant/cancerous or benign, where the main difference
is that cancerous tumours might spread to other parts of the body. Benign tumours
are usually not harmful and grow slowly. A third type is called precancerous, that
are cells that might grow into cancer if they are not treated.

Cancer could give many different symptoms including a lump, abnormal bleeding,
unexplained weight loss, prolonged cough and change in bowel movements [11].

9



Many types of cancer can be avoided by eating healthy, exercising, avoiding to-
bacco and excessive alcohol consumption, and taking the recommended vaccines.
Despite this, genetics play an important role and some types of cancers are caused
by inherited defects [18]. Survival is highly dependent on the type of cancer and
when treatment is started.

Symptoms and signs, along with screening tests, are important for recognizing
tumours [22]. Often medical imaging is used for investigating further. Blood
samples are often used, and for some types of cancer substances called tumour
markers can be found in body fluids. These might indicate development or re-
currence of cancer. Finally, an examination of cells under a microscope by a
pathologist is commonly used to confirm cancer. These cells are usually taken
from the body by local anaesthesia.

A tumour can be classified by the WHO Grading System [44]. The system grades
the tumour as one of four categories, where the highest grade is the most serious.
Grade I tumours look like normal cells, spread slowly and rarely spread to nearby
tissues, while Grade IV tumours usually are incurable and spread quickly.

2.1.2 Medical Imaging
Medical imaging is concerned with creating images of inside the human body,
both to examine internal structures and its functioning. The goal is to identify ab-
normalities for diagnosing and treating disease, where radiology is the name for
achieving this by using medical imaging. Medical imaging technologies often uti-
lize aspects from biomedical engineering, medical physics, and computer science
for creating images. Imaging tools that are commonly used include x-rays, com-
puted tomography, magnetic resonance imaging, positron emission tomography
and ultrasound.

Magnetic resonance imaging

One of the most common techniques for imaging is magnetic resonance imaging
(MRI) [27]. MRI uses magnetic fields and frequencies in the radio wave spectrum
to create images of body tissue. Atoms are made of protons, neutrons, and elec-
trons, which all have a property known as spin. Without any external force, these
spin vectors are randomly oriented and cancel each other out. When applying a
strong magnetic field, the spin vectors for all the atoms align to the magnetic field,
either in parallel, which is a low energy state or anti-parallel, its high energy state.
A greater proportion of atoms are in their low energy state, giving a net magnetic
vector in the direction of the magnetic field.

10



Hydrogen nuclei of tissue get exited away from its equilibrium when hit by radio-
frequency radiation and start spinning in another direction. After a burst of radia-
tion, the hydrogen’s spin vector will relax back towards its equilibrium state while
emitting photons. The time required for the molecules of a given tissue to return
to their equilibrium is known as its T1 or longitudinal relaxation time. A majority
of the nuclei will initially spin in-phase when hit with a burst of radiation, given
that the radiation frequency matches the rotation frequency. Eventually, due to in-
teractions between particles and magnetic field inhomogeneity, the particles will
dephase. The T2, also known as transverse relaxation time, is the amount of time
until transverse magnetization has fallen to approximately 37%.

The imaged tissue can be determined by examining the signal emitted at a cer-
tain time (echo time) and comparing it to the expected relaxation time of different
tissues. By varying the intervals between radio-frequency pulses and the time the
signal received are examined, it is possible to create images which exaggerate
different properties of different tissue. For instance, by lowering the time be-
tween RF-pulses, the properties of the T1 relaxation are more visible, giving a
T1-weighted image.

Images are made by capturing the electromagnetic radiation that is emitted by
the tissue and later postprocessing them. Different modalities of MRI images that
exaggerate different tissues are made by varying the frequency of RF-bursts sent to
the tissue. Most common relaxation modalities are T1-weighted, T2-weighted and
FLAIR. MRI imaging can be enhanced by using a contrast solution, e.g. gadolin-
ium, which will change the relaxation properties of some tissues under certain
conditions.

Computed tomography

Computed tomography scans (CT) are used to visualize the inside of objects [7].
CT most commonly refers to measurements achieved by using x-rays, but other
methods exist such as positron emission tomography (PET) and single-photon
emission computed tomography (SPECT). In CT, the measurements are acquired
from different angles and processed by a computer into a three-dimensional vol-
ume. The images are sampled using rays that rotate around the object. Variations
in images are caused by different absorption of x-rays in different tissues. Tissue
density is measured in the unit Hounsfield (H).

On the Hounsfield scale, the air is represented by a value of 1000, water has
the value 0 and compact bone has the value around 1000 [8]. By using this scale,

11



different organs are found at specific image ranges. By using an organ-specific
level and window when inspecting the CT images, only the relevant information
is shown. The window width selects the range of Hounsfield units for an image,
and the window level determines the centre Hounsfield unit in this range.

CT images of the head are often used to detect tumours, infarction, haemorrhage
and bone trauma. However, MRI is in several head disorders preferred over CT
due to the higher information gain from MRI images and the ionizing radiation
caused by CT. CT scans are also often used for acquiring lungs images, as regu-
lar x-ray images usually do not show chronic or acute changes to the lungs. For
lungs, high-resolution CT is usually obtained by scanning both in inspiration and
expiration.

Advantages of using CT for imaging include the elimination of structures outside
the area of interest and the ability to distinguish the tissues with a low difference
in density. However, the radiation from x-rays might damage cells in the body.
The amount of radiation is determined by volume scanned, patient build, patient
age, number and type of scan sequences, and desired resolution and image quality
[70]. A high amount of radiation might lead to radiation-induced cancer, however,
the increased risk from performing a single CT scan is estimated to be negligible
[46].

2.1.3 Medical Image Segmentation
The goal of medical image segmentation is to accurately indicate the shape and
location of predefined structures in an image. The structures can, for example, be
tumours or body parts as the spleen, hippocampus, heart, colon, liver or pancreas.
Because of the individual variability of tissues in size, shape, and appearance,
medical segmentation is a difficult task.

Medical image segmentation can be categorized into manual, semi-automatic and
automatic segmentation [21]. In manual segmentation, the full segmentation is
performed by a human. This has been the standard for medical segmentation
for a long time, because of the difficulty of the tasks. Manual segmentation is
time-consuming and has to be performed by an expert, thus it is a costly process.
Semi-automatic segmentation requires some degree of human interaction, which
is supported by computer software. An example of a semi-automatic approach is
when an expert needs to manually make a segmentation for a 2D slice as input,
and the algorithm outputs the 3D segmentation. When the full segmentation is
done by computer software, it is called automatic or fully-automatic segmenta-
tion.

12



Automated segmentation might reduce the time spent by experts for analyzing
the images and help indicate abnormalities. Further, comparison of segmenta-
tion from different times could help to analyze treatment response or discover
abnormal changes. Segmentation of body structures might support diagnostics or
treatment. By segmenting high-resolution images experts can get an accurate in-
dication of the boundaries of the tissue. An example application is for treatment of
tumours where the segmentation is needed for radiation or surgery. Additionally,
several classes can be segmented, such as different parts of a tumour. In general,
systems that assist doctors in analyzing medical images are called computer-aided
detection systems.

2.1.4 Medical Segmentation Challenges
Lung Nodule Analysis 2016

The Lung Nodule Analysis 2016 (LUNA16) dataset consists of 888 CT scans of
lungs [4]. The challenge is motivated by the reduction of lung cancer by computer-
aided detection of nodules. Lung nodules are spots in the lungs that are 3 cen-
timetres in diameter or less, which could indicate lung cancer, inflammation or
infection. The annotations exist of nodules that are at least 3 millimetres. Each
annotation was approved by at least 3 radiologists.

There are two tasks in the LUNA16 challenge. The first task is nodule detection
by assigning a probability of nodule to each location in the image. The second
task concerns false positive reduction by assigning a probability of being a nodule
to a predefined list of possible nodule locations. In addition to these tasks, the
LUNA16 dataset contains computer-generated labels for segmentation of the left
and right lung.

Multimodal Brain Tumour Image Segmentation Benchmark

The Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) is a
challenge of segmenting glioma brain tumours using MRI scans [48]. Since 2012
there has been a yearly evaluation of participants. Each year a dataset for training
is made available and the test set is kept hidden until the final evaluation of the
developed models.

The dataset consists of multimodal MRI scans, acquired from different locations.
The scans are from glioma patients. The MRI modalities used are T1w, T1Gd,
T2w, and FLAIR. The participating models are evaluated using the Dice score

13



[14], precision, also known as the positive predictive value, and recall, also known
as sensitivity. The main task in BraTS 2018 asks the participants to do segmen-
tation on sub-regions of glioma tumours, see Figure 2.3. The regions are the
enhancing tumour, the tumour core, and the whole tumour.

Figure 2.3: The sub-regions of the segmentation task in the BraTS 2018 challenge: the
whole tumour, the tumour core and the enhancing tumour shown in yellow, red and blue/-
green respectively.
Source: The Multimodal Brain Tumour Image Segmentation Benchmark [48]

Medical Segmentation Decathlon

The Medical Segmentation Decathlon (MSD) is an image segmentation challenge
aiming to produce general purpose image segmentation algorithms [60]. MSD
consists of 10 datasets with various target structures. The goal is an algorithm per-
forming well on different tasks without using human-defined task-specific model
parameters. A list of the tasks can be seen in Table 2.1.

In the first part of the challenge, the participants are asked to develop a model
suitable for learning 7 given segmentation tasks. The developed model is trained
and tested on all these tasks. In the second part of the challenge, 3 new datasets
are revealed, and the winners are the ones with the overall best performance on all
10 datasets.

14



Task Modality Target classes Train images Test images

Liver CT 2 131 70
Brain Multimodal MRI 3 484 266
Hippocampus MRI 2 263 131
Lungs CT 2 64 32
Prostate Multimodal MRI 2 32 16
Heart MRI 1 20 10
Pancreas CT 2 282 139
Colon CT 1 126 64
Hepatic Vessel CT 2 303 140
Spleen CT 1 41 20

Table 2.1: The tasks of Medical Segmentation Decathlon.

2.2 Tools and Frameworks
This section presents tools used for development and testing during the project.

2.2.1 Numpy
NumPy is a package for scientific computing in Python [49]. It provides support
for large, multi-dimensional arrays and matrices, along with several mathematical
and logical operations on these. Most arrays are stored in a more efficient way
than Python lists and operations on them are faster to perform.

2.2.2 TensorFlow
TensorFlow is an open source library for performing numerical computations [1].
Although it can be used for computations in general, it is most commonly used as
a tool for machine learning research. TensorFlow can be interfaced using Python
and is then translated to a computational graph. By launching a TensorFlow ses-
sion, data shaped as tensors, which is a generalization of N-dimensional arrays,
can be fed into the computational graph. The graph performs a series of mathe-
matical operations on the data. Weight matrices and biases are trainable variables
in the TensorFlow graph during a session. Loss functions and optimization algo-
rithms for backpropagation exist in TensorFlow. That makes training a model is
as simple as specifying an objective function to optimize for, as well as running
the optimizer with a batch of data inside a session.

15



2.2.3 Keras
Keras is a neural networks API for Python [10]. It runs on top of TensorFlow
[1], CNTK [57] or Theano [2]. Keras is user-friendly and allows for complex
models to be created with relatively few lines of code. Keras consists of many
commonly used building blocks of neural networks. These are parts as layers,
objectives, activation functions and optimizers. The components include parts for
convolutional and recurrent neural networks as convolutions, pooling, dropout and
batch normalization.

2.2.4 Jupyter Notebook
Jupyter Notebook is a web application for editing and running code [35]. Jupyter
is open-source and can be used with over 40 different programming languages. A
Jupyter Notebook document is a JSON document, and by following a standard, it
can contain an ordered set of cells where each can contain code, text, mathematics,
plots or other media.

2.2.5 ITK-SNAP
ITK-SNAP is a tool for visualizing 3D images and segmentations [69]. The tool is
free, open-source, and multi-platform. As well as displaying mask files on top of
images it allows for manual segmentation in three planes at once. A screen-shot
from ITK-SNAP visualizing a 3D segmentation is shown in Figure 2.4.

16



Figure 2.4: An example of 3D visualizations of a medical image in ITK-SNAP.

2.3 Computer Vision
Computer vision has the goal of creating computation models which can gain a
high-level understanding of digital images or videos. The models should be able
to perform tasks similar to what the human visual system can accomplish. This
involves extracting, analyzing and understanding of information from images or
video. A paper from 2015 showed how a computer vision model was able to clas-
sify images more accurately and way faster than human beings [53]. Computer
vision models can be used to support, or even replace, humans.

An image is represented as a grid of numbers by a computer. Each number rep-
resents a pixel colour. To get a higher level of understanding of the image the
computer needs to interpret these numbers. Two images of the same object usu-
ally consist of completely different pixel values. This makes it hard for a computer
to determine if two images contain the same object by only looking at the pixel
intensities.

In recent years computer vision has seen a Deep Learning revolution, driven by

17



the increase in computational power and the huge amounts of data available [17].
Moving from engineered image features to using deep neural networks has been
a paradigm shift. Today, tasks like feature extraction, image classification, ob-
ject detection, and image segmentation are usually solved by using deep neural
networks.

2.3.1 Feature Extraction
The goal of feature extraction is to reduce an image representation into a set of
values containing relevant, non-redundant information. The most discriminating
information should be found in the extracted features. Depending on the task,
some parts of the image might not be relevant and is thus not preserved in any
features. By reducing the size of the image representation, less computational
power and memory is required when processing it further. Predictions will also
be more accurate when irrelevant information has been removed. Because if this,
feature extraction is an important part of computer vision tasks.

2.3.2 Image Classification
Image classification is the task of assigning a label from a set of predefined classes
to an image. An image classifier is trained using supervised learning by being
supplied with a set of images, and their labels: e.g car, cat or human. The classifier
must learn to extract features that capture the relationship between images and
their labels.

2.3.3 Object Detection
Locating semantic objects in an image is called object detection. It involves both
finding the location and determining the class of the objects. The location of each
object is usually not defined accurately, but rather indicated by a box, as seen in
Figure 2.5. Object detection is more complex than image classification, as it also
needs to indicate the position of the object in question. In addition to indicating
the location, an object detector distinguishes between instances of the same class.

2.3.4 Image Segmentation
Image segmentation aims to partition an image into several segments. While ob-
ject detection locates a rectangle in which an object is present, image segmentation
accurately indicates class membership by the finding pixels belonging to the class.
One application of image segmentation is, for example, to determine the exact po-
sition and size of a tumour in the brain. Two common image segmentation tasks

18



are semantic segmentation and instance segmentation.

In semantic segmentation, every pixel in an image is given a class. An example of
segmentation is shown in Figure 2.5. Semantic segmentation does not distinguish
between instances of the same class. The other type of segmentation is instance
segmentation, which gives a segmentation mask for each instance of objects from
the predefined classes. Indicating instances of the same class by different segmen-
tation masks make instance segmentation a harder task than semantic segmenta-
tion.

Figure 2.5: An illustration of common computer vision tasks; image classification, object
detection and image segmentation.
Source: https://www.pexels.com/photo/winter-dog-pet-dogs-104329/

2.4 Artificial Neural Networks
Artificial neural networks (ANN) are mathematical models inspired by biological
neural networks [25]. These networks are supervised, meaning that they learn a
model from examples. An ANN consist of several layers, where each layer has a
number of artificial neurons. The first layer is often referred to as the input layer,
the last layer is the output layer and layers in between are called hidden layers.

An ANN is built up of artificial neurons. The idea of an artificial neuron was
first explored by McCulloch & Pitts in 1943 [47]. It takes several inputs and
transforms them by weights, bias and an activation function into an output. More
specifically, the sum of the inputs is multiplied by the weights. Further, the bias
is added and the result is passed through the activation function. The activation
function maps the output and decides whether the neuron is activated or not. Dif-
ferent activation functions exist for different purposes. The weights and the bias
of each neuron in an ANN must be learnt.

Random initial values are often used for weights and biases in an ANN. Further,

19



training samples are sent through the network one by one. For each sample, the
output value is calculated. This process is called the forward pass. A loss function
is used to compare the output value to the target. To minimize the error of the
network, the weights are updated in the negative direction of the gradient of the
loss function. This is done by propagating errors backwards through the network,
updating the weights, in the process called backpropagation [42].

2.4.1 Weight Update
There are several ways to perform a weight update. In stochastic gradient descent
(SGD), the weights are updated after each training sample is sent through the
network [6]. Batch gradient descent updates the weights by using the error of
all the training samples. This requires fewer calculations than SGD and is less
sensitive to noise. A third way is mini-batch gradient descent. The weight updates
are performed using the error over a subset of the training samples. It requires
fewer weight updates than SGD and is more likely to get out of local minima,
as the process is more stochastic than when using all training samples in batch
gradient descent.

2.4.2 Activation Functions
An activation function can be applied to the output of neurons in a neural net-
work. Some common activation functions are Sigmoid, ReLU, leaky ReLU and
Softmax, see Table 2.2. In addition, a recently developed CapsNet Squashing
function is listed. The Sigmoid function has traditionally been frequently used for
activation. The advantage is that it is non-linear and scales the input to a range of
zero to one. However, when using many layers the gradients tend to become very
small, known as the vanishing gradient problem. This makes the weight update,
and thus speed of learning, very slow. A function that does not have this issue is
ReLU. It is a commonly used activation function today. ReLU adjusts all inputs
below zero into zero and leaves higher values unchanged. That makes both the
function and its derivative monotonic, which makes the network converge easier.
One issue with ReLU is that a lot of values are mapped to zero, causing neurons
to become inactive and they might not be able to ever activate again. A solution
to this issue is to use leaky ReLU, which maps values below zero to a small, non-
zero value. The parameter α determines the slope of the curve for negative values,
where the default often is α = 0.1. Another common activation function is Soft-
max. It maps the inputs into a probability distribution. It is therefore especially
suitable at the end layer of a classification task. The squashing function used by
capsule networks squashes a vector to a length below zero, having the same ori-
entation as the original vector. The non-linearity is used in combination with a

20



dynamic routing algorithm.

Activation function Formula

Sigmoid f(x) = 1
1+e−x

ReLU f(x) = max(0, x)

Leaky ReLU f(x, α) = max(αx, x)

Softmax f(xi) = exi∑
j e

xj

CapsNet Squashing Function f(~x) = ||x||2
1+||x||2

x
||x||

Table 2.2: Commonly used activation functions.

2.4.3 Loss Functions
A loss function is used for updating the weights of the network during the training
process. After the forward pass, an error is calculated during backpropagation.
This error is used by the loss function for updating the weights in the negative di-
rection of the loss function’s derivative. Cross-entropy loss is commonly applied
for classification problems, while Dice loss often is used for classification prob-
lems regarding medical segmentation. Spread loss was recently applied to capsule
networks for image classification [26].

Weighted cross-entropy

Weighted cross-entropy weights the classes based on the fraction of the respective
class in the total dataset. Thus, a class with a low fraction of the pixels in the
dataset will get a high weighting. This is particularly interesting when the dataset
contains unbalanced classes. The function is usually referred to as weighted bi-
nary cross-entropy when there is only one target class, making the total number
of classes two. The formula is shown in Equation 2.1 for p probability of class, n
classes and class weight w.

Loss = −
n∑
i

wi ∗ yi ∗ log pi (2.1)

21



Dice loss

The values of Dice ranges from zero to one, where zero indicates no overlap and
one indicates complete overlap between two segmentations. For two overlapping
regions, the Dice is defined as two times the intersection over the union. Dice loss
is defined in Equation 2.2 for k pixels, prediction p and label y.

Loss = 1− 2
∑

k yk ∗ pk∑
k y

2
k +

∑
k p

2
k

(2.2)

repeated for all classes and averaged

There exist two variants of the Dice coefficient, where the difference is in the
denominator. The Jaccard Dice loss squares the output and the target in the de-
nominator, as in Equation 2.2, while Sørensen Dice loss does not.

Spread loss

A spread loss will directly penalize incorrect predictions that are closer to the
activation of the positive class than a given margin. The penalty, in that case, is
the square distance from the prediction to the margin m, for all n classes, except
the positive class. This is shown in Equation 2.3.

Loss =
n∑

i,i 6=t

max(0,m− (yt − yi)2) (2.3)

2.4.4 Learning Rate
Another important aspect of neural networks is how much the weights should be
adjusted during backpropagation. The parameter controlling the amount of weight
update is called the learning rate. If the learning rate is too small, reaching the
minimum of the loss function might take a long time, or the optimizer might even
get stuck in a local minimum. On the other hand, having a too large learning rate
might make it impossible to reach the global minimum. It is therefore important
to find a suitable value for the learning rate, depending on the task at hand. For
being able to converge fast along with reaching a minimum loss, the learning rate
is often decreased during training.

2.4.5 Adam Optimizer
Adam is an optimization algorithm first introduced in the paper Adam: A Method
for Stochastic Optimization by Kingma and Ba [34]. The algorithm combines the

22



classical stochastic gradient descent method with two techniques that are com-
monly used by other optimization algorithms: momentum and adaptive per-parameter
learning rates. Momentum calculates a weighted average of the gradients from
previous training steps when estimating a new gradient in the network. This can
help the network to escape local optima. While traditional stochastic descent has
a single global learning rate used by all parameters in the network, Adam uses an
adaptive learning rate for every parameter in the network. Per-parameter learning
rates improve learning, particularly on problems with sparse gradients.

The optimizer has four hyperparameters which will influence how well it can learn
a task. The parameters are:

1. Alpha: Initial learning rate

2. Beta 1: Exponential decay rate for the moment estimates (moment 1)

3. Beta 2: Exponential decay rate for the moment estimates (moment 2)

4. Epsilon: A small constant to prevent division by zero

Although the choice of hyperparameters will affect training, the algorithm is not
very sensitive to changes in them. The parameters suggested for image classifica-
tion problems in the paper are an Alpha of 0.001, a Beta 1 of 0.9, a Beta 2 of
0.999 and an Epsilon of 10−8. This is claimed to work on many problems with
sparse gradients.

2.5 Generalization and Regularization
To be able to perform well on unseen instances, a model must be able to generalize
beyond the training data. A model is said to overfit the training data when there
exists an alternative model that performs worse on the training set but better on
the test set. Overfitting occurs because the model has enough flexibility to adapt
to the noise found in the training data. To prevent overfitting and improve gener-
alization several regularization techniques exist. Among these are early stopping
[9], dropout [61], weight decay [37] and data augmentation.

2.5.1 Early Stopping
Early stopping is a technique where some of the available data is used as a valida-
tion set. This data is excluded from the training process. The error of the training
set and the validation set are regularly calculated, and training is terminated as
soon as the validation set error increases by a certain amount. The validation set

23



error should indicate how well the model is generalizing beyond the training data.
When this error starts to increase, it is reasonable to assume that the algorithm is
overfitting on the training data.

2.5.2 Dropout
When using dropout a random subset of the hidden nodes is disabled during train-
ing. The output from the remaining hidden nodes is scaled to compensate for
the reduced neural activity. At each training step, a new subset is excluded. The
amount of exclusion is regulated by the dropout rate. This technique forces the
algorithm to not depend on outputs from single units, and thus improves the net-
work’s ability to generalize.

2.5.3 Weight Decay
Weight decay is often used to prevent the weights from fitting the training set too
well. This is done by adding a regularization term to the loss function. The most
commonly used terms are L2 and L1. L2 is the sum of the squared weights while
L1 is the sum of the absolute value of the weights. These have different properties
such as that L1 often produces sparse weight matrices and that L2 has analytical
solutions which make the calculation more computationally efficient.

2.5.4 Input Reconstruction
Input reconstruction is concerned with recreating the original input data, at the
output of a neural network. By training a network to reconstruct the input, it
should learn how to make compressed representations of structures in the data,
throughout the network. The objective of input reconstruction is commonly used
as a regularization method in neural networks.

2.5.5 Data Augmentation
Generalization can also be improved by increasing the amount of training data.
More data provides more information about the target model. A way to increase
the training set is by data augmentation. In data augmentation, more data is cre-
ated by transformations on the training set, but without altering the meaning of
the data. Examples of transformations on an image can be flipping, rotating and
adding noise. While some augmentation increases the robustness of the algo-
rithm, too much or irrelevant transformations might make the training slow and/or
the task hard to learn. Due to this, choosing transformations and the amount of

24



augmentation carefully is important. The augmentation techniques called elas-
tic deformation and salt and pepper noise might not be self-explanatory and are
presented in more depth.

Elastic deformation

Capturing and creating labelled segmentations for datasets of medical images re-
quire a lot of work. Most datasets available are therefore too narrow to learn
the task of segmentation without any data augmentation. In the paper Best Prac-
tices for Convolutional Neural Networks Applied to Visual Document Analysis,
Simard et al. propose a way of expanding datasets through elastic distortions
[58]. This technique works by generating a random displacement field of vectors
for all pixels in a given image. The displacement field is convolved with a Gaus-
sian smoothing filter having a standard deviation σ. When applying the processed
displacement field to a training image, an algorithm such as bilinear interpolation
is used to determine the final colour value for every pixel in the output image.
In Figure 2.6, various displacement fields are applied to the MNIST dataset. By
generating a large number of displacement fields, the same training observation
can be augmented into many new, yet slightly different training examples.

Figure 2.6: Elastic deformation on the MNIST dataset. Top left shows original image,
while right and bottom shows pairs of displacement fields with various smoothing and
resulting images.
Source: http://cognitivemedium.com/assets/rmnist/Simard.pdf

Salt and pepper noise

Salt and pepper noise is characterized by a sharp change in intensity for individual
pixels in an image (See Figure 2.7). Noise can be artificially created for an image
by changing a percentage of all pixels in the image to a random value. By adding
salt and pepper noise to images during training, an image classifier will be more
robust to this type of noise when presented in real images.

25



Figure 2.7: An example of salt and pepper noise in an image.
Source: https://upload.wikimedia.org/wikipedia/commons/f/f4/Noise salt and pepper.png

2.6 Convolutional Neural Networks
A convolutional neural network (CNN) is a deep neural network, carefully de-
signed for image recognition tasks. It was modelled after a study by D.H Hubel
and T.N Wiesel on the monkey striate cortex [28]. They discovered that the visual
cortex consists of receptive fields that detect light in overlapping subregions. In
CNNs every neuron responds to stimuli in a restricted region, such that the over-
lapping regions of the neurons together cover the entire image. This approach
overcomes the scalability problem that arises when regular neural networks are
applied to image processing tasks.

The deep network consists of different types of layers including convolution lay-
ers, non-linear layers, pooling layers, and fully connected layers. An example
of the structure can be seen in Figure 2.8. Each neuron of a convolution layer
processes the pixels of their receptive field. The processing is done by element-
wise multiplication between the field and a filter. The filter is applied to all pixels
in the image, where the number of pixels between each application of the filter
is called the stride. Thus, selecting a higher stride reduces the size of the out-
put of convolution. To capture information in the boundaries of an image and/or
avoid the image from shrinking, padding is commonly used. Padding is applied
by adding a value outside the boundaries of the image. Commonly used paddings
are zero-padding and same paddings. While zero-padding assigns zeros outside
boundaries, a same-padding repeats the value found at the edge.

26



In a traditional convolutional network, a ReLU operation is often used in between
the other layers. ReLU provides non-linearity and helps control overfitting by
transforming negative values to zero. Pooling layers are used to reduce computa-
tional complexity and control overfitting. In a pooling layer, the input from several
neurons is combined into one output. One common type of pooling is max pool-
ing, which reduces a set of inputs into the maximum value. Fully connected layers
are commonly used as the last layers of a convolutional neural network. Each neu-
ron of a fully connected layer has weights to all the neurons in the previous layer.
As the last layer is where the class is decided, this makes all the previous neurons
involved in calculating the final output.

Figure 2.8: An example of a convolutional neural network.
Source: https://www.cs.cmu.edu/ rsalakhu/talks/talk JSM part4.pdf

2.6.1 AlexNet
AlexNet is a CNN that won the ImageNet Challenge in 2012, where it significantly
outperformed its competitors [36][55]. The network was designed for image clas-
sification and consisted of eight layers. It used convolutions, ReLU activations,
max pooling, dropout, SGD with momentum and data augmentation.

2.6.2 GoogLeNet
GoogLeNet was the winner of the ImageNet Challenge in 2014 [64]. It achieved
the highest performance for both image classification and image detection. The
network was inspired by LeNet but was wider and deeper, using 22 layers [39].
The network is built up of repeated modules called Inception. Each such mod-
ule separately performs 1x1 convolution, 3x3 convolution, 5x5 convolution and
a 3x3 max pooling on the input. Dimensionality reduction is achieved by apply-
ing 1x1 convolution before 3x3 and 5x5 convolution, as well as after the pooling
operation. The four results are then concatenated by using a filter.

27



2.6.3 VGGNet
VGGNet was developed by the Visual Geometry Group from the University of
Oxford [59]. It was placed 2nd in the ImageNet Challenge for image classification
and won the localization task in 2014. The network consists of 16 convolutional
layers using 3x3 convolutions and lots of filters. All hidden layers use ReLU, and
the final prediction is made by applying three fully connected layers at the end.

2.6.4 Residual Neural Networks
A residual neural network is an ANN that uses residual blocks [24]. Residual
blocks have connections that skip some layers, see Figure 2.9. One motivation
behind this method was the difficulty faced when training deep neural networks.
When a network grows deeper, the magnitude of the gradients in the earlier layers
becomes small and learning becomes slow. Residual Neural Networks make it
possible to grow networks deeper, while still being able to efficiently learn models.
The ResNet architecture won the 2015 ImageNet Challenge for localization and
detection, beating human-level performance.

Figure 2.9: A residual block.
Source: https://arxiv.org/pdf/1512.03385.pdf

2.7 Image Segmentation Architectures
Following the success of convolutional neural networks for image classification
tasks, they were also extended to performing segmentation. An efficient solution
to the task was shown when the fully convolutional network (FCN) was introduced
in 2014. Since this, many variants of CNN for segmentation has been developed.

2.7.1 Fully Convolutional Networks
The fully convolutional network (FCN) is a CNN architecture purposed by Long
et al. in 2014 [43]. It was built on traditional image classification models such as

28



AlexNet [36], VGGNet [59], GoogLeNet [64] and ResNet [24], but is designed
for semantic segmentation rather than classification. The architecture replaces
fully connected layers with convolutional layers. This makes it output spatial
maps instead of classification scores. The network takes inputs of arbitrary size
and produces an output of the same size. This is done by a downsampling path
followed by upsampling using deconvolutions. The FCN architecture was the first
to show how CNNs could be efficiently trained end-to-end for a segmentation
task.

2.7.2 SegNet
SegNet is an encoder-decoder network and has an architecture similar to FCN.
SegNet was developed by Badrinarayanan et al. for semantic segmentation [5].
Like FCN, the architecture has a downsampling path and an upsampling path
but uses max unpooling rather than deconvolutions in the upsampling path. This
eliminates the need for the network to learn the upsampling and provides a more
efficient way to achieve segmentations than FCN.

2.7.3 U-Net
U-Net is a fully convolutional neural network commonly used for biomedical im-
age segmentation [54]. It was developed by Ronneberger et al. in 2015. The
U-Net architecture has a contracting path that reduces the resolution of the en-
coded image, and an expanding path which later increases the resolution of the
image, see Figure 2.10. The idea of reducing the resolution and forcing it through
a bottleneck before its resolution is increased resembles the traditional autoen-
coder.

By concatenating features from layers in the contracting path with the upsampled
image in the expansive path, the network can create an accurate segmentation.
The contracting path of the network has stacks of two convolutional layers and a
max pooling operation, which is repeated until the desired resolution is achieved.
The expanding path mirrors the contracting path, but performs upsampling and
concatenations instead of max pooling, to increase the resolution.

U-Net has previously been shown to give state of the art performance on prob-
lems such as brain tumour segmentation [30]. Extensions to the original U-Net
include the use of 3D volumes, instead of single 2D slices. Neighbouring slices
in a 3D volume often have similar or shared features, which often are interesting
to consider together when performing segmentation.

29



Figure 2.10: The U-Net architecture as presented in the original paper.
Source: https://arxiv.org/pdf/1505.04597.pdf

2.7.4 Mask R-CNN
Mask R-CNN was developed by He et al. in 2017 [23]. It expands the Faster
R-CNN architecture for object detection into an architecture for instance segmen-
tation [52]. This architecture is built up of two main stages. First, a Region
Proposal Network suggests bounding boxes of interest [19]. The second stage
uses Fast R-CNN for classifying them and producing a segmentation mask. Mask
R-CNN minimizes the error of both the bounding box proposal and the segmen-
tation mask. When published, the architecture showed state-of-the-art results on
instance segmentation and human pose estimation.

2.8 Capsule Networks
Traditional convolutional neural networks perform exceedingly well at recogniz-
ing the presence of patterns in images by using learned filters. The output from a
convolutional filter that is applied to a region in an image is a single scalar value,
where a high value indicates that it is likely that a given feature is present. This
process is typically repeated several times with pooling layers in between. Max

30



pooling is used for routing information between layers.

An example is a convolutional neural network, which is trained to detect faces.
If an image of a face is presented to the network, neurons will activate, each indi-
cating if for example an eye, a nose or a mouth was detected. If all these features
that are typically parts of a face are present, a face is detected in the next layer.
This process of assigning parts to wholes has worked surprisingly well in practice
but is inherently flawed. The network may still believe that an image is a face even
though the relations between the eyes, nose, and mouth are wrong, as illustrated
in Figure 2.11. CNNs use routing by max pooling and retain lots of contextual in-
formation, but lacks information about the spatial relationship between features.
In the end, the network is left with the knowledge of what is likely in the image,
but not their instantiation parameters; i.e. lighting, texture, deformation, position,
orientation, etc.

Figure 2.11: An example where a CNN often would incorrectly classify the image as a
face.
Source: https://towardsdatascience.com/capsule-networks-the-new-deep-learning-
network-bd917e6818e8

Capsule networks attempt to solve this by introducing the concept of capsules.
Capsules are groups of neurons and the building blocks of capsule networks. A
single capsule is responsible for detecting the presence of an entity in an image,
as well as a limited subset of its most relevant instantiation parameters. An en-
tity can, for example, be a nose with a given rotation, skew, and deformation. In
the case of detecting a face, capsule networks would only assume that an image
contains a face if the eyes, nose, and mouth have a correct relation. This learned
relationship would typically include the position relative to each other.

31



Capsule networks solve the problem of assigning parts to wholes using the process
of dynamic routing. The dynamic routing algorithm finds a set of coefficients that
controls how much information is forwarded from every capsule in a lower layer
to every capsule in a higher layer. These coefficients are not trainable parameters
in the network, but rather parameters that are calculated in every forward pass for
every input. The trainable parameters in capsule networks are transformation ma-
trices that transform capsule outputs into output predictions of the capsules in the
next layer. This routing scheme is a lot more sophisticated than how CNNs with
max-pooling routes information by only selecting the highest activated feature.
Figure 2.12 shows how a capsule network could detect that even though all parts
of a face are present, their position, size, and orientation do not match.

Figure 2.12: The parent capsule in this capsule network would detect that the parts of
the face are in disagreement. It gives the image a low probability of being a face.
Source: https://towardsdatascience.com/capsule-networks-the-new-deep-learning-
network-bd917e6818e8

2.8.1 Dynamic Routing
The first recognized type of capsule networks was presented in the paper Dynamic
Routing between Capsules by Sabour et al. [56]. In this implementation of capsule
networks, every capsule outputs a vector with a fixed dimension. The dimension
of a capsule tells how many convolutional filters it will learn, and effectively limits
the number of parameters the capsule can learn about entities. While performing
face detection, an object could be any type of edge, a corner, a nose, a mouth,
or even the face itself. An entity is defined as an instance of an object, having
certain properties. The entity could, for example, be 25◦ rotated along the first axis
and translated 10 pixels up, relative to the capsules reference point. An example

32



of how a parent capsule with several child capsules might look like is shown in
Figure 2.13.

Figure 2.13: An example of a parent capsule with several child capsules in agreement.
Source: https://jhui.github.io/2017/11/03/Dynamic-Routing-Between-Capsules/

The output of a capsule is a condensed vector, where each element in the vector
ideally represents one of the parameters used to instantiate the entity. The Eu-
clidean length of the output vector represents the likelihood of an entity, with its
instantiation parameters, being present. Conceptually, as long as the magnitude of
the capsule’s output vector remains the same, it will detect the same entity with
equal probability, independent of the direction the capsule vector points in. An in-
teresting observation is that by moving the capsule vector along the hypersphere,
it will detect an entity with the same probability, but have completely different
instantiation parameters. If a capsule is used to reconstruct the input image, one
can, in theory, observe which instantiation parameters every dimension of the cap-
sule attempts to model, by changing the latent variables of the capsule vector in
different directions. An example of input reconstruction after modifying some of
the dimensions of the output capsule is shown in Figure 2.14.

33



Figure 2.14: Changing the latent variables of the capsule vector effects how images of
numbers from the MNIST dataset are reconstructed. Each row shows how the reconstruc-
tion is affected by moving along a single dimension of the output capsule.
Source: Dynamic Routing between Capsules [56]

All capsules send their predictions to the next layer of capsules in a coordinated
manner using a dynamic routing algorithm. The goal of dynamic routing is to
determine how a child capsule’s output should be distributed among its parents.
Before the dynamic routing starts, the predicted output vectors for all parent cap-
sules are calculated by every child capsule. Equation 2.4 shows how the output
predictions ûj|i are calculated from every child to every parent capsule, using the
child capsule output ui and a trainable transformation matrix Wij .

ûj|i = Wijui (2.4)

During dynamic routing, the coupling coefficient cij between every child and ev-
ery parent capsule is determined. A coupling coefficient can be thought of as the
probability of a parent entity being present given the child entity. The coupling
coefficients of a child is a probability distribution summing to one. To compute
the coupling coefficients ci for a child capsule, log likelihood probabilities bi are
estimated using an iterative process. Usually, the log likelihood priors, b0 are ini-
tially set to 0.

In every iteration, the dot product between a child capsule’s prediction for its
parent ûj|i and the actual output of the parent v̂j is calculated. The dot product is
a measure of agreement between them and is treated as log likelihood estimates.
For several iterations, usually in the range of 3-5, the log likelihoods are refined
by:

(i) Calculating the coupling coefficients ci by performing Softmax on the cur-
rent set of estimated log probabilities bi for every capsule i in layer l. See
Equation 2.5.

34



(ii) Calculating the weighted sum of prediction vectors from layer l: sj , using
the previously calculated coupling coefficients for every capsule j in layer
(l+1). See Equation 2.6.

(iii) Calculating the capsule output vj by squashing the predictions using a non-
linearity that scales the length of the output vector to less than 1, but leaves
its orientation unchanged, for every capsule j in layer (l+1). See Equation
2.7.

(iv) Updating the log likelihood estimates by adding the dot product of child
capsule predictions ûj|i and the parent capsule output vj . See Equation 2.8.

After the appropriate number of iterations, the final capsule output vj is returned
for all capsules in layer (l+1).

ci = softmax(bi) (2.5)

sj =
∑
i

cijûj|i (2.6)

vj =
||sj||2

1 + ||sj||2
sj
||sj||

(2.7)

bij = bij + ûj|i · vj (2.8)

This routing scheme works in theory because lower level capsules in agreement
will contribute towards a similar higher level capsule output. Predictions in agree-
ment will have vectors pointing in the same direction; giving a high value for
the dot product between them. If two predictions are in disagreement, their vec-
tors will point in different directions giving a lower dot product between them.
When many child capsules agree on an output prediction, their predictions will
be reinforced with a higher dot product which gives a higher contribution to its
log probability estimates. When using multiple iterations of this process, the pre-
dictions in most agreement will be stronger and stronger in a positive feedback
loop.

2.8.2 Matrix Capsules With EM-Routing
Matrix capsules solve the dynamic routing problem in a very different way than
the routing algorithm in Dynamic Routing between Capsules. Instead of calculat-
ing a vector that tries to encode the instantiation parameters of entities, a matrix

35



capsule attempts to encode the pose of an entity as a 4x4 matrix. In addition to
estimating the pose, it also detects the entity activation explicitly as a scalar, simi-
larly to how a neuron in a CNN detects the presence of a feature. The pose matrix
will ideally be able to capture information about the instantiation parameters of
an entity, while the activation scalar provides a level of confidence whether or not
the detected entity is the same object as the capsule attempts to model.

The pose and the activation of an entity detected by a capsule are modelled by
a single Gaussian distribution. The distribution attempts to cluster the pose pre-
diction of a parent capsule to agree with lower level capsules. The Expectation-
maximization algorithm (EM) variant is used iteratively to estimate the mean and
standard deviation of the distribution that best fits the child capsule predictions,
as well as estimating the routing coefficient controlling the level of influence by
each child capsule.

Figure 2.15: Simplified view of how EM clustering of capsule predictions could look.
The clustering happens in a 16-dimensional space in practice.
Source: https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-
Network

With the EM clustering method, predictions in disagreement with the majority
will be located further away from the cluster centre and have a higher cost of ac-
tivation. This is illustrated in Figure 2.15. The cost of activating a child capsule
using a parent capsule is dependent on the part-whole relationship between the
child capsule and the parent. The probability of a child capsule being activated by
a parent capsule is dependent on the distance to its cluster center. Seeing that the
cluster centre is decided by the majority vote of other capsules, it explains how the
presence of related features will justify the activation of a higher level capsule that
represents an entity composed of those features. The latent transformation matrix

36



that is used to calculate a prediction based on the pose of a child capsule, is a
weight matrix learned using backpropagation. A pose prediction V of a capsule i
is the matrix convolution of its pose matrix Mi and the weight matrix W , which is
shared between all the capsules in the same layer. This is shown in Equation 2.9.
These matrix convolutions are not the same as regular convolutions. In regular
convolutions, the sum of the element-wise product between a convolution kernel
and the input image is calculated. Matrix convolutions, on the other hand, multi-
plies each element of the kernel as a transformation matrix by the pose matrix at
a given location in the receptive field.

Vi = MiW (2.9)

The vector form of V has 4x4 = 16 dimensions in total and constitutes the dimen-
sionality of the Gaussian distribution to estimate. The expression in Equation 2.10
shows the probability density function that the h’th component of a child capsule
prediction is drawn from the same h’th component of the Gaussian distribution
represented by a parent capsule.

The cost of explaining the prediction cast by the child capsule i is the sum over
all h components of the negative log probability density −ln(P h

i|j). See Equation
2.11 and Equation 2.12.

P h
i|j =

1√
2π(σhj )2

exp (−
(V h

ij − µhj )2

2(σhj )2
) (2.10)

ln(P h
i|j) = −

(V h
ij − µhj )2

2(σhj )2
− ln(σhj )− ln(2π)

2
(2.11)

costi|j = rij
∑
h

−ln(P h
i|j) (2.12)

The cost of activating the h’th component of a parent capsule j, is found by calcu-
lating the weighted sum the costs going from every child capsule to a given parent
capsule, as shown in Equation 2.13. To give the capsule a probability in range
from 0 to 1, it is put through an activation function (Equation 2.14).

37



costhj =
∑
i

(−rijln(P h
i|j))

=

∑
i rij(V

h
ij − µhj )2

2(σhj )2
+ (ln(σhj ) +

ln(2π)

2
)
∑
i

rij

= (ln(σhj ) +
1 + ln(2π)

2
)
∑
i

rij

= (ln(σhj ) + βu)
∑
i

rij

(2.13)

aj = sigmoid(λ(βa − βu
∑
i

rij −
∑
h

costhj )) (2.14)

Pseudo-code for the EM-routing algorithm is shown in Listing 2.1. The algorithm
receives activations from capsules in the previous layer, and receives the predic-
tions calculated by multiplying poses from the previous layer with a pose-invariant
transformation matrix. The number of iterations is typically in the range of three
to five.

a l g o r i t h m EM−Rout ing ( a= a c t i v a t i o n s ,V= p r e d i c t i o n s , i t e r a t i o n s ) :
∀i ∈ ΩL, j ∈ ΩL+1 : Rij = 1

|ΩL+1|
f o r i t i n r a n g e ( 1 , i t e r a t i o n s + 1 ) :

λ = 1+(iterations−1)∗it
max(1.0,iterations−1.0)

∀j ∈ ΩL+1 : maximization step(a,R, V, j, λ)
∀i ∈ ΩL : expectation step(µ, σ, a, V, i)

p o s e s = µ . r e s h a p e ( |ΩL+1 | , 4 , 4 )
r e t u r n a , p o s e s

f u n c t i o n m a x i m i z a t i o n s t e p ( a , R , V, j , λ ) :
∀i ∈ ΩL : Rij = Rij ∗ ai
∀h : µhj =

∑
iRijV

h
ij∑

iRij

∀h : (σhj )2 =
∑

iRij(V h
ij−µhj )2∑

iRij

∀h : costh c a l c u l a t e d wi th E q u a t i o n 2.13 .
aj c a l c u l a t e d wi th E q u a t i o n 2.14

f u n c t i o n e x p e c t a t i o n s t e p (µ ,σ , a , V, i ) :

∀j ∈ ΩL+1 : pj = 1√∏
h 2π(σh

j )2
exp (−

∑
h

(V h
ij−µhj )2

2(σh
j )2 )

38



∀j ∈ ΩL+1 : Rij =
ajpj∑

k∈ΩL+1
akpk

Listing 2.1: An algorithm sketching the steps taken in the EM-rouing algorithm. ΩL is
the set of lower level child capsules in layer L, and ΩL+1 is the set of higher level parent
capsules. βa and βu are trainable parameters. λ is the inverse temperature which increases
for every routing iteration. The algorithm receives a set of activations and predictions from
child capsules in layer L, and returns the activations and pose matrices for layer L+1.

The network is trained using a spread loss starting with a small margin of 0.2,
which is increased linearly during training to 0.9. By starting with a small mar-
gin value, the issue of dead capsules is prevented in the earlier layers due to high
punishment of incorrect predictions.

When using convolutions to extract features, the same filter is applied to different
regions of the image. To compensate for spatial information loss between lay-
ers, a technique known as coordinate addition is used. This technique adds the
scaled coordinates from the centre of the current receptive field to the two first el-
ements of the prediction matrix. This will encourage the transformation matrices
to encode the position relative to the capsule’s receptive field in its predictions.

2.8.3 Segmentation
SegCaps extends the idea of capsules from the paper Dynamic Routing between
Capsules into an architecture performing semantic image segmentation. All lay-
ers in SegCaps are convolutional and similar to the U-Net architecture. Further,
SegCaps contains a contracting path and an expansion path with capsule concate-
nations between them. A consequence of the concatenation is that capsules in
the contracting path also learns to predict the outputs of capsules in the expan-
sion path. In order to reduce image size in the contracting path, some of the
convolutional capsules have strides of two, halving the dimensionality in all axes.
Similarly, to increase the image resolution, SegCaps uses deconvolutional cap-
sules performing strided transposed convolutions instead of regular convolution.

The differences between the routing algorithm used for SegCaps and the origi-
nal Capsule network implementation are subtle. Contrary to the original capsule
network, SegCaps has no fully connected layers. When using convolutional cap-
sules, weights are shared among capsules at different locations in the image, in
the form of a convolutional kernel. The paper Capsules for Object Segmentation
refer to this variant of the dynamic routing algorithm as the Locally-Constrained
Dynamic Routing algorithm, but in practice, it works the same way as the convo-
lutional capsules in the original paper.

39



Using weight sharing and locally-constrained routing, the number of trainable
parameters in SegCaps in reduced significantly allowing for segmentation of im-
ages up to 512x512 pixels in size. The network is trained using a combination
of weighted cross-entropy loss and an MSE reconstruction loss. The reconstruc-
tion loss attempts to reconstruct the pixel intensities of the pixels belonging to
the target class. While the purpose of optimizing the weighted cross-entropy is to
create accurate segmentations, the reconstruction loss is applied for regularization
of the model. By forcing the network to learn how to reconstruct relevant parts
of the input image, it is expected that the capsules better will learn meaningful
representations of structures in the data.

2.9 Previous Work
The U-Net architecture was introduced by Ronneberger et al. in the paper Con-
volutional Networks for Biomedical Image Segmentation [54]. The architecture is
fully convolutional and contains an encoder and a decoder path. Features taken
from specific locations in the encoder path is concatenated with feature maps from
specific points in the decoder path. Using this technique, the U-Net architecture is
capable of creating pixel accurate segmentation. The implementation was tested
on the task of segmenting neuronal structures in electron microscopic recordings
and cell segmentation, as a part of the ISBI cell tracking challenge 2014 [45]. The
model achieved very good results overall, and achieved above state of the art re-
sults on the challenge with a large margin.

In the paper Brain Tumour Segmentation and Radiomics Survival Prediction:
Contribution to the BRATS 2017 Challenge, Isensee et al. presented a U-Net based
model used for brain tumour segmentation [30]. The architecture was residual-
based and accepted three-dimensional image volumes of 1283 voxels. The imple-
mentation placed third in the BraTS 2017 competition [48], and achieved overall
good Dice scores of 0.896, 0.797 and 0.732 for the whole tumour, tumour core
and enhancing tumour, respectively. The authors concluded that the proposed
architecture is effective at segmenting medical image datasets with few images,
without suffering the consequences of overfitting. The paper acknowledges that
efficient augmentation methods such as elastic deformation are important for pre-
venting overfitting.

The winning submission of the Medical Image Decathlon was the framework
nnU-Net, short for no-new U-Net, presented in the paper nnU-Net: Self-adapting
Framework for U-Net-Based Medical Image Segmentation by Isensee et al. [31].
The submitted implementation consisted of an ensemble of three simple variants

40



of the original U-Net: Cascade U-Net using downsampled images, 2D U-Net, and
3D U-Net. The paper emphasizes the importance of model adaptation, prepro-
cessing, training and postprocessing. By using a sophisticated way of generating
image patches of appropriate size and adapting the network topology according to
the data that is used, the framework gave very good results at the challenge. The
submission placed first for all seven tasks in the first phase of the competition,
except for edema segmentation in the brain tumour challenge (Table 2.3), and was
placed first for all tasks except spleen in the second phase (Table 2.4).

BraTS Heart Liver Hippoc. Prostate Lung Pancreas

1 2 3 1 1 2 1 2 1 2 1 1 2

Results 67.7 47.7 68.2 92.8 95.2 73.7 90.4 89.0 75.8 89.6 69.2 79.5 52.3

Table 2.3: Results from nnU-Net when tested on data from phase one of the Medical
Segmentation Decathlon. Numbers reported are the Dice scores in percent for the different
label classes in every dataset.

Hepatic
Vessel

Spleen Colon

1 2 1 1

Results 63 69 96 56

Table 2.4: Results from nnU-net when tested on data from phase two of the Medical
Segmentation Decathlon. Numbers reported are the Dice scores in percent for the different
label classes in every dataset.

Sabour et al. presented a type of artificial neural network called Capsule networks,
along with an algorithm for training them in the paper Dynamic Routing between
Capsules [56]. The paper challenges some of the inherent limitations of convo-
lutional neural networks. Information is typically routed between convolutional
layers using max-pooling layers, which results in loss of spatial relations between
features. The suggested solution is to use a sophisticated dynamic routing algo-
rithm in combination with capsules. The capsules themselves attempt to capture
information about the instantiation parameters of an entity, and the routing algo-
rithm decides how much information that should be routed from every capsule in
a capsule layer to every capsule in the next. The paper showed that the capsule
network architecture was capable of achieving above state of the art performance
on the task of classifying highly overlapping digits using the MNIST dataset [40].

41



The authors concluded that capsule networks are promising in the field of com-
puter vision, but still require a lot of work before they can be applied to images or
volumes of a larger size than MNIST.

Building on the work from Dynamic Routing between Capsules, the same group
of researchers released a second paper called Matrix Capsules with EM Routing
in 2018 [26]. The paper suggests a new approach to the dynamic routing prob-
lem using the Expectation-maximization algorithm. This approach improves the
first capsule network implementation in several ways. Firstly, the new architecture
does not use the squashed capsule vector length to determine activation. Secondly,
it does not use the dot product of two vectors to measure agreement, but rather a
negative log variance of a Gaussian cluster. Because cosine saturates at 1, the dot
product is not the best choice for differentiating between good and very good pre-
dictions. Lastly, the EM-routing method uses a matrix to represent the pose of an
entity, rather than a vector. This reduces the number of parameters needed in the
transformation matrix significantly. The capsule architecture proposed gave state
of the art performance at detecting objects at novel viewpoints using the small-
NORB dataset [41].

In 2018 a paper named Capsule Networks against Medical Imaging Data Chal-
lenges looked at the usefulness of capsule networks for medical image applica-
tions [32]. The paper primarily looked at classification problems, and applied
capsule networks to the MNIST challenge [40], the Fashion-MNIST challenge
[67] along with TUPAC16 (mitosis detection) [65] and DIARETDB1 (diabetic
retinopathy detection) [33] for medical classification. The authors compared cap-
sule network to LeNet and showed that CapsNet, in almost all cases, outperformed
LeNet when having a limited amount of training data. The same conclusion is
made for experiments with a class imbalance. The last experiment showed how
SegCaps also outperforms LeNet when adding data augmentation. The conclusion
states that CapsNet requires less training data, is robust to class imbalance and at
the same time achieves the same, or better, performance than convolutional nets.
The authors reported a training time of 1-3 minutes per epoch for CapsNet, while
LeNet used 1-2 seconds per epoch, both depending on the number of classes to
be predicted. Despite a significantly higher training time for CapsNet, the paper
recommends exploring it further for medical image challenges, and in particular
medical segmentation tasks, due to the good performance when having a high
class-imbalance.

The first architecture for semantic image segmentation using capsule networks
was reported in the paper Capsules for Object Segmentation from 2018 [38]. The
network is much deeper in terms of layers than the original capsule network by

42



Sabour et al. while having roughly the same number of trainable parameters. The
increase in complexity without increasing the number of trainable parameters is
a consequence of not using any fully connected layers, but rather using only con-
volutional and deconvolutional capsule layers. Instead of forwarding every child
capsule to every parent capsule at every location, the predictions are forwarded
to parent capsules using a shared kernel. These modifications made it possible to
segment images up to 512x512 pixels, which also gave competitive results at the
task of lung segmentation using images from the LUNA16 dataset. The results
are shown in Table 2.5.

Method Parameters Split-0 Split-1 Split-2 Split-3 Average

U-Net 31.0M 98.353 98.432 98.476 98.510 98.449
Tiramisu 2.3M 98.394 98.358 98.543 98.339 98.410

Baseline Caps 1.7M 82.287 79.939 95.121 83.608 83.424
SegCaps (R1) 1.4M 98.471 98.444 98.401 98.362 98.419
SegCaps (R3) 1.4M 98.499 98.523 98.455 98.474 98.479

Table 2.5: The performance of SegCaps with 1 and 3 routing iterations compared to
regular U-Net, Tiramisu and a regular capsule network in the SegCaps paper. Numbers
are reported in percentages of Dice score.

The paper Fully CapsNet for Semantic Segmentation shows how a modified ver-
sion of capsule networks [63] outperforms fully convolutional networks on the
PASCAL VOC dataset [16]. The architecture modifies the dynamic routing al-
gorithm of Capsule networks into using partial connections instead of full con-
nections. This reduces the complexity in terms of required memory and com-
putations. The measurements were made using accuracy on the segmentation of
objects from PASCAL VOC such as airplane, sofa, bird, and boat. Further, their
experiments show that Fully CapsNet significantly outperforms FCN on the seg-
mentation of slightly rotated objects. However, the authors mention that the high
memory usage and computation requirements are some things that need to be han-
dled in future work.

Trace-back along Capsules and its Application to Semantic Segmentation is a pa-
per published in 2019 addressing the use of Capsule Networks for segmentation
[63]. The network purposed is called Tr-CapsNet and contains an operation se-
quence which derives class memberships of each pixel by recursively capturing
part-whole relationships. The architecture has 3 modules. The feature extrac-
tion module consists of several convolutional layers. The next module is called
the capsule and traceback module and contains capsule layers with a traceback

43



pipeline followed by one convolutional layer. At the end, the upsampling module
increases the size of the signal for the model to output a prediction of the intended
size. Deconvolutions are used for upsampling. The proposed architecture was
tested on the modified MNIST dataset [40] and a hippocampus dataset from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI). The performance was mea-
sured using pixel accuracy, mean class accuracy, and Dice score. A comparison to
a state of the art U-Net was made. For both datasets, the authors reported slightly
improved results using Tr-CapsNet compared to U-Net.

44



Chapter 3

Methodology

This chapter describes the methodology used for exploring the research questions.
It introduces the architectures, the datasets and the prepossessing used, the con-
ducted experiments, the training procedures and how the results were evaluated.

3.1 Architectures
Four architectures were used in the experiments. The 2.5D U-Net and the EM-
SegCaps architectures were implemented solely for this project. The SegCaps
architecture was the exact same as the one developed and published by LaLonde
et al. [38]. The Multi-SegCaps architecture was a modification of SegCaps, where
the changes were implemented during the course of this work.

3.1.1 2.5D U-Net
The implementation of 2.5D U-Net follows the architecture used by Isensee et
al. in the paper Brain Tumour Segmentation and Radiomics Survival Prediction:
Contribution to the BRATS 2017 Challenge [30] closely. However, it uses 2D
convolutions instead of 3D convolutions and spatial dropout in three dimensions
was replaced with spatial dropout in two dimensions. Due to the architecture be-
ing fully convolutional, it is capable of processing input slices of arbitrary size,
having an arbitrary number of input channels and an arbitrary number of output
classes. For a visual representation, see Figure 3.1.

The U-Net variant has a contracting path which reduces the image resolution, an
expansion path that increases the image resolution and concatenation operations
that combines features from the contracting path with features from the expansion
path. Convolutions in the contracting path are surrounded by residual skip con-

45



nections.

The contracting path consists of several context modules, where each has two
3x3 2D convolutions with a spatial dropout 2D layer in the middle. The dropout
probability was 0.3. The first convolution of a context module uses a leaky ReLU
activation, while the second convolution has no activation. The context mod-
ule is a residual block, which means that the output of the context module is
element-wise summed with its input. The residual sum is then activated using
Leaky ReLU. Afterwards, the activated feature maps are forwarded to the next
layer in the contracting path, as well as saved for concatenation in the expansion
path. Throughout the network, leaky ReLU uses a slope alpha = 0.01.

To reduce the computational burden of performing repeated convolutions on high-
resolution images, the resolution of feature maps are halved in all axes at the start
of every layer in the contracting path. This is accomplished using a 3x3 convo-
lution with a stride of two. The convolution outputs twice as many feature maps
as it receives. This is done to avoid losing valuable context information, resulting
from a loss in resolution. The output from this convolution is forwarded to the
next context module, and the process is repeated four more times. The contract-
ing path is in total five layers deep, starting with 16 convolution filters in the first
layer and ending with 256 filters in the last layer.

At each level of the expansion path, feature maps are forwarded to an upsampling
module, which first upscales them by a factor of two using nearest neighbour in-
terpolation, before a 3x3 convolution is applied to reduce the number of filters in
half. The upsampled features are then concatenated with features from the corre-
sponding level of the contracting path before they are forwarded to a localization
module. In the localization module, features from the concatenation are recom-
bined with a 3x3 convolution, which is followed by a 1x1 convolution that halves
the number of features again. The output from the last convolution is forwarded
to the next upsampling module, and the process repeats itself three more times.
At the top layer of the expansion path, the localization module is replaced with a
regular 3x3 convolution.

The output from the 3x3 convolution in the highest layer of the expansion path,
along with the output from the localization modules at the two levels below are
forwarded to segmentation layers. A segmentation layer is simply a 1x1 convolu-
tion, which outputs the same number of filters as there are classes in the dataset.
The segmentation from all three levels is combined in a specific way. The lowest
level segmentation is first upscaled using nearest-neighbour interpolation before
it is element-wise added to the output of the segmentation layer for the next level.

46



The residual sum of the two segmentation layers is then upscaled once more be-
fore it is element-wise summed with the output of the last segmentation layer. This
is done to accelerate convergence time. The last element-wise sum is the output of
the network. No activation is applied to the output, which differs from the original
paper. The reason why this was done was to avoid saturation of softmax, which
can happen with very imbalanced datasets.

3.1.2 SegCaps
The neural network architecture SegCaps presented in the paper Capsules for Ob-
ject Segmentation by LaLonde et al., was used to perform binary segmentation of
medical images. The code for the architecture was obtained from a GitHub repos-
itory they had created1. The architecture used is called SegCaps R3, referring to
the use of three iterations of the dynamic routing algorithm in each capsule. The
exact architecture is given in Figure 3.2.

A regular 2D convolution is performed on an input image to produce 16 feature
maps. The tensor consisting of 16 feature maps is reshaped in order to give it
a new dimension of length one, such that the reshaped tensor now represents a
single 16D capsule. The 16D capsule is forwarded to the primary capsule layer,
which is a regular convolutional capsule layer with one routing iteration, which
returns predictions of two 16D capsules.

Following the primary capsule layer, there are sets of two convolutional capsule
layers at every layer for the remainder of the contracting path. The first of the
two operations is a 5x5 convolutional capsule layer with stride two, which also
doubles the number of feature maps that are output. The second layer consists of
5x5 convolutional capsules without a stride. Output features from the latter oper-
ation are forwarded to the next level of the contracting path, as well as stored for
concatenation with capsules in the expanding path.

After predictions are downsampled in the contracting path, they are then upsam-
pled in three levels of the expanding path. Every level of the expanding path con-
tains two capsule layers. The first layer is a 4x4 deconvolutional capsule, which
upsamples the image by a factor of two using transposed convolution. The output
vectors from deconvolutional capsules are then concatenated with capsule output
from the corresponding level in the contracting path before they are used to pre-
dict the second layer of capsules. The second capsule layer uses the concatenated
predictions from both the contracting and expanding path, to predict a layer of

1https://github.com/lalonderodney/SegCaps

47



Figure 3.1: A diagram of the 2.5D U-Net architecture.

48



5x5 convolutional capsules. Instead of using 5x5 convolutional capsules in the
last layer, they are replaced with 1x1 convolutional capsules, which produces the
final segmentation vectors. The segmentation vectors are converted into actual
predictions by calculating the Euclidean length of them. For each pixel in the im-
age, it is classified as the target class if its length is longer than a given threshold.

To perform reconstruction of the pixels belonging to the target class, the output
from the last layer is reshaped from capsule form into a convolutional form. This
involves flattening the 16D capsule into 16 feature maps. Using ground truth la-
bels, the pixels that do not belong to the target class are masked out. This prevents
the reconstruction head from considering irrelevant background pixels. Three lay-
ers of 2D convolutions with a 1x1 kernel is applied to the masked feature maps.
The last of the three convolutions output a single filter giving a reconstruction
of the target class of the input image. A mean square error loss between pixels
from the input image and the reconstructed image is used in combination with
the segmentation loss, to train the network. To train the segmentation part of the
network, a weighted cross entropy loss is calculated using the Euclidean length of
the output capsule as prediction and a ground truth label that is 0 for background
and 1 for the target class.

3.1.3 Multi-SegCaps
The architecture proposed in the paper Capsules for Object Segmentation by LaLonde
et al., was extended to support end-to-end segmentation of different datasets con-
taining an arbitrary number of input modalities and output classes. Input modali-
ties could be several types of images acquired of the same tissue, this is commonly
obtained for MRI. Several output classes could, for example, be several parts of
a brain tumour, which has different labels. Due to the support for multiple target
classes, the architecture was called Multi-SegCaps.

The output capsule layer was modified to output N 16D output capsules, where
N is the number of classes in the dataset, including background, and the predicted
class is the one represented by the capsule with the longest euclidean length. The
network is trained using the predicted capsule lengths and one-hot encoded ground
truth labels.

Instead of only trying to reconstruct a single target class, multi-class SegCaps
attempts to reconstruct the pixels belonging to all classes, except the background
class. The segmentation capsule’s output is masked with a ground truth mask
for all these classes. The N 16D masked capsules are then flattened into N ∗ 16
convolutional feature maps that are forwarded to the reconstruction head. The re-

49



Figure 3.2: A diagram of the SegCaps architecture. The numbers in blocks show how
many capsules with a given dimension that is outputted from the respective layer.

50



construction head consists of three convolutional layers, each with a kernel size of
1. The last of the three convolutional layers will output as many filters as there are
input modalities. This incentivises the network to store properties about more than
one input channel, if available. The total reconstruction loss is the mean squared
error of pairwise output reconstruction and positive masked input modalities.

3.1.4 EM-SegCaps
The method from Matrix Capsules With EM-Routing was extended to perform
semantic image segmentation. The network has a U-Net-style encoder-decoder
topology, similar to the original SegCaps architecture, and is referred to as EM-
SegCaps. The architecture uses matrix capsules with EM-routing and is shown in
Figure 3.3.

A regular 2D convolution with kernel size 3x3 is applied to an input image, pro-
ducing 16 feature maps that are forwarded to the primary capsule layer. The
primary capsule layer is responsible for transforming the output from the first
convolution into an estimated pose and activation of a single capsule.

The primary capsule layer performs two sets of 2D convolutions with a 1x1 ker-
nel. The first convolution transforms the 16 input feature maps into 16 predictions
for each receptive field. The 16 prediction values represent the current pose of the
entity that is detected and can later be reshaped into a 4x4 matrix. The second
convolution in the primary capsule layer is also given the same 16 feature maps as
the previous convolution. The difference between them is that the second convo-
lution only calculates a single capsule activation for each receptive field. In other
words, for every pose matrix that is calculated, a single scalar is also detected.
The scalar is treated as the activation of the capsule and works similarly to how
convolutional kernels calculate activations in a convolutional neural network. The
difference between the activation value of a capsule in a capsule network and a
neuron in convolutional networks, is that capsule networks do not use the acti-
vation directly when calculating the output. It is rather used as a coefficient that
influences the amount of information that is forwarded from a capsule to different
capsules in the next layer. A sigmoid non-linearity is applied to the activation
values in order to scale them between zero and one. The primary capsule layer
concatenates the pose values and activation into 17D vectors, and returns it as its
output.

Apart from the first primary capsule layer, the capsule network architecture also
contains convolutional capsule layers, strided convolutional capsule layers, and
deconvolutional capsule layers. Convolutional capsule layers accept the poses

51



and activations from capsules in the previous layer and output new poses and ac-
tivations for the capsules in the next. This is accomplished using the Expectation-
maximization routing algorithm (EM-routing). Before performing EM-routing,
all child capsules cast an initial vote of the output for every capsule in the next
layer, using its own pose matrices. Casting this vote involves multiplying the pose
matrix by a trained transformation matrix going into the parent capsule, which is
shared by all child capsules. This effectively translates into performing a mod-
ified version of 2D convolution. Instead of performing pointwise multiplication
between a convolution kernel and the input image, each element in the kernel is
a transformation matrix that is multiplied by the pose matrix located at a specific
location in the receptive field. After the predictions are calculated, they are for-
warded to the EM-routing algorithm, along with the activations from the previous
layer. The EM-routing algorithm is run for three iterations before it returns the
final pose and activations for all capsules in the current layer.

Strided convolutional capsules are almost identical to regular convolutional cap-
sules. The only difference is that a stride of 2 is used during matrix convolution to
reduce the feature maps in half along the height and width axes. Deconvolutional
capsules are also similar to regular capsules, as they perform regular capsule con-
volution after upscaling by a factor of two, using nearest-neighbour interpolation.
They are technically not deconvolutional capsules as they don’t perform trans-
posed convolution, due to the technical challenges of implementing transposed
matrix convolutions.

At the time of writing Tensorflow has not implemented every operation needed
to build this architecture. By rolling out the convolution operation as a single ma-
trix, which repeats the pixel values according to how they would be multiplied
by a convolutional kernel, it was possible to emulate the operation using Python
and simple matrix multiplication in Tensorflow. However, this approach is very
demanding in terms of memory consumption. The EM-routing algorithm does
have a low-level Tensorflow implementation either but is rather written in Python,
which combines a series of simpler Tensorflow operations to accomplish its goal.

52



Figure 3.3: A diagram of the EM-SegCaps architecture.

3.2 Datasets
Seven datasets were used in this project. The LUNA16 dataset was applied by
LaLonde et al. in the paper Capsules for Object Segmentation. In this project, it
was used when testing the reproducibility of their work. Multiple datasets from
the collection Medical Segmentation Decathlon (MSD) were used to test the gen-
eralizability of the developed architectures on medical image segmentation tasks
[60]. The collection contains the BraTS dataset, which also can be found as a
separate challenge [48]. Several of the datasets from MSD were selected to test
the 2.5D U-Net as well as for testing SegCaps, Multi-SegCaps, and EM-SegCaps.
An overview of all datasets used in the experiments can be seen in Table 3.1. The
test volumes were only used for 2.5D U-Net when submitting the test set segmen-
tations to the MSD challenge.

Dataset Modality Training Testing Shape Target classes

LUNA16 CT 888 - 512x512xZ 1
Spleen CT 41 20 512x512xZ 1
Heart MRI 20 10 320x320xZ 1
Hippocampus MRI 263 131 XxYxZ 2
Liver CT 131 70 512x512xZ 2
Pancreas CT 282 139 512x512xZ 2
BraTS Multimodal MRI 484 266 4x240x240x155 3

Table 3.1: The datasets used in the experiments. Where X, Y or Z means that the given
dimension was of variable size.

53



3.2.1 LUNA16
The LUNA16 dataset for segmentation consists of 888 CT scans. The structure to
be segmented is the lungs. Each volume has two dimensions of 512 pixels and a
median volume depth of 237.5 slices. Originally the dataset consisted of several
classes, but for binary classification, the left lung, the right lung, and lung nodules
are all combined into one class. An illustration of how the volumes look like is
shown in Figure 3.4.

Figure 3.4: The left image shows an example slice from the LUNA16 dataset, the centre
image shows the same slice with its label and the right image shows a 3D visualization of
the label from a different angle.

3.2.2 Spleen
The spleen dataset contains 61 CT images. Only 41 of the images has a given
label and 20 volumes were reserved for testing. Like the LUNA16 dataset two
dimensions are 512 pixels. The median volume depth is 90 slices. An example
image is shown in Figure 3.5.

Figure 3.5: The left image shows an example slice from the spleen dataset, the centre
image shows the same slice with its label and the right image shows a 3D visualization of
the label from a different angle.

54



3.2.3 Heart
The heart dataset aims to segment the left atrium. An example can be seen in Fig-
ure 3.6. The dataset consists of only 20 MRI volumes for training. The slices from
the volumes are 320x320 pixels in size and have a median depth of 115 slices. This
task is challenging compared to the others because of the small training set and a
significant class imbalance between left atrium and background.

Figure 3.6: The left image shows an example slice from the heart dataset, the centre
image shows the same slice with its label and the right image shows a 3D visualization of
the label from a different angle.

3.2.4 Hippocampus
The hippocampus dataset has 263 training images. The images are from MRI
scans and are in the range of 35-45 pixels in size, for all dimensions. Image slices
were cropped to 32x32 pixels during training, for compatibility with network ar-
chitectures. An overview of the method used for training and inference on this
particular dataset is shown in Table 3.2. Because of the requirements of the ar-
chitectures and the variable size of the hippocampus volumes, the volumes were
cropped during training and padded during validation and testing. The dataset has
two labels: posterior and anterior hippocampus, also known as hippocampus head
and body. The small image sizes made this dataset suitable for experimenting with
new segmentation architectures. An example slice, as well as an illustration of a
3D label, are shown in Figure 3.7.

55



Method Training
shape

Testing
shape

2.5D U-Net 32x32 64x64
SegCaps 32x32 48x48
Multi-SegCaps 32x32 48x48
EM-Segcaps 32x32 48x48

Table 3.2: The input shapes used for training and validation/testing on the hippocampus
dataset.

Figure 3.7: The left image shows an example slice from the hippocampus dataset, the
centre image shows the same slice with its label and the right image shows a 3D visual-
ization of the label from a different angle.

3.2.5 Liver
The main challenge of the liver dataset is to segment two neighbouring classes
which are highly imbalanced; a large liver class and a small liver tumour class.
The dataset has 131 CT volumes that are reserved for training. A slice from a
liver volume is 512x512 pixels in size, while the depth of volumes varies a lot,
ranging from around 100 to 1000 slices. The median depth of liver volumes is
432 slices. An example of how the volumes look like is shown in Figure 3.8.

56



Figure 3.8: The left image shows an example slice from the liver dataset, the centre image
shows the same slice with its label and the right image shows a 3D visualization of the
label from a different angle.

3.2.6 Pancreas
The pancreas dataset consists of 281 labelled images and 139 test images. It has
two labels where the pancreas is of medium size and the pancreas tumour is small.
The structures are shown in Figure 3.9. The CT volumes are of 512x512 pixels
with a median depth of 93 slices.

Figure 3.9: The left image shows an example slice from the pancreas dataset, the centre
image shows the same slice with its label and the right image shows a 3D visualization of
the label from a different angle.

3.2.7 BraTS
The BraTS 2017 dataset is a collection of 3D MRI scans from different patients.
All images have four channels, each representing a different MRI imaging tech-
nique. Each modality has a dimension of 240x240x155 voxels. The modali-
ties represented in the dataset are FLAIR, T1-weighted (T1w), T1-weighted with
gadolinium contrast (T1Gd) and T2-weighted (T2w). 484 training volumes were
used for this project.

57



Image labels have three classes: edema, non-enhancing tumour and enhancing
tumour. As described by BraTS: ”These tumour substructures meet specific ra-
diological criteria and serve as identifiers for similarly-looking regions to be rec-
ognized through algorithms processing image information rather than offering a
biological interpretation of the annotated image patterns” [48]. An example of the
four modalities and three label classes are shown in Figure 3.10.

Figure 3.10: The top row shows three modalities of an example slice from the BraTS
dataset, the bottom row shows the last modality, the same slice with its label and a 3D
visualization of the label from a different angle.

3.3 Preprocessing
Normalization and augmentation were applied to images before training. While
normalization was only done once, augmentation was applied repeatedly, with
different parameters for every training iteration.

3.3.1 Normalization
The CT datasets were normalized and clipped using Hounsfield units with organ-
specific level and window values. The LUNA16 dataset was normalized similar
to how LaLonde et al. did in their work with SegCaps. The other datasets were
normalized using their minimum and maximum values. The hippocampus dataset

58



had images with a variable intensity range and thus used a different normalization
for each image. Each of those images was normalized by using the minimum and
maximum value in the respective image. For the BraTS dataset, the minimum and
maximum values were found for each modality in the order FLAIR, T1w, T1Gd,
T2w. The values used for normalizing all datasets are shown in Table 3.3.

Dataset Level Window Min Max

Spleen 45 250 -80 170
Liver 60 250 -65 185
Pancreas 33 500 -217 283
LUNA16 - - -1024 3072
Heart - - 0 2196
Hippocampus - - - -
BraTS - - 0, 0, 0, 0 6476, 9751,

11737, 5337

Table 3.3: The values used for normalization of the datasets. The level and window are
given for the CT data that were clipped and normalized by using Hounsfield units.

3.3.2 Augmentation
Augmentations were applied to the training data randomly. Table 3.4 shows the
applied augmentation and the probability of applying each transformation to an
image slice while training. An example of elastic deformations to the BraTS
dataset can be seen in Figure 3.11. The other transformations are illustrated on
a slice from the heart dataset in Figure 3.12.

Augmentation Parameters Probability

Rotation max degrees=45 10%
Flipping axis=0 10%
Flipping axis=1 10%
Shifting max horizontal=0.2, max vertical=0.2 10%
Shearing amount=16 10%
Zooming max zoom range=(0.75, 0.75) 10%
Elastic deformations alpha=1000, sigma=80, alpha affine=50 20%
Salt and pepper noise salt=0.2, amount=0.04 10%

Table 3.4: The different augmentations used in the experiment, their parameters and
probability being applied.

59



Figure 3.11: An example image with label on the first row and the same image after
applying elastic deformations at the bottom row

60



Figure 3.12: Augmentations used in the experiments. The augmentations are exaggerated
for this visualization.

61



3.4 Experiments
Four experiments were conducted, one for each research question. The goals were
to test the general performance of 2.5D U-Net, reproduce the results of SegCaps,
as well as applying SegCaps to new datasets, explore a multi-class version of
SegCaps and investigate the possibility of using EM-routing for SegCaps.

3.4.1 Experiment 1: 2.5D U-Net for Medical Segmentation Tasks
In order to address the first research question, RQ1, the developed 2.5D U-Net
architecture was trained on various medical segmentation tasks. The motivation
behind this experiment was to explore the possibilities of a general model that is
capable of adapting to different types of medical segmentation problems without
manual parameter tuning. It was also desirable to explore how well the architec-
ture would perform compared to state of the art results. Due to this, the obtained
results were submitted to the Medical Segmentation Decathlon.

The architecture was trained on six different datasets. The spleen dataset showed
the performance on a dataset with a structure of a reasonable size and a homoge-
neous appearance. This dataset was also used for investigating the impact of using
five consecutive slices as an input to the model rather than just a single slice. By
training the model on the heart dataset the ability to generalize from only a few
training samples was tested. The hippocampus dataset measured the performance
on low-resolution images as well as the ability to learn two neighbouring labels
with a similar appearance. The liver dataset was used to test the ability to learn
two target classes where one of them is negligible compared to the other. By
learning to segment the pancreas and pancreas tumour, the architecture was tested
on a similar task as liver, but on smaller and more complex structures. The final
evaluation on BraTS showed the ability to segment three target classes of tumour
from multi-modal MRI volumes.

3.4.2 Experiment 2: Reproduce Results from Capsules for Ob-
ject Segmentation

Applying the SegCaps architecture to three datasets would address the second re-
search question, RQ2. The goal was to reproduce the results presented in the
paper Capsules for Object Segmentation. Further, it was desired to test if the
architecture would perform well on other datasets without modifications. In the
original research paper, the results were given for the LUNA16 dataset and in this
experiment, the same architecture and parameters were applied to test the validity

62



of the results reported by LaLonde et al.

The spleen and the heart dataset were used to test if SegCaps would be able to
generalize to new datasets without modifying the network topology or parame-
ters. The reason why the spleen dataset was a good fit for this experiment is that
it is similar to LUNA16 in many ways. Both datasets contain CT images in the
same intensity range, and both datasets have CT images with identical slice di-
mensions. Lastly, the target classes for both datasets contain a single class besides
background with similar size structures: lungs and spleen. The heart dataset is
of similar difficulty as the spleen dataset. It contains fewer images which make
it faster to learn, but has more background voxels which result in a higher class
imbalance, giving the network a different challenge.

3.4.3 Experiment 3: Multi-class Segmentation using SegCaps
Capsule networks have previously shown promising results at performing binary
image segmentation with the SegCaps architecture. A lot of segmentation prob-
lems require that the algorithm used is capable of segmenting images into multiple
classes. To test the feasibility of performing multi-label semantic segmentation,
the SegCaps architecture was in this project modified to handle multiple classes.

The Multi-SegCaps model was trained on the spleen dataset, the heart dataset,
the hippocampus dataset, the liver dataset, and the BraTS dataset. The spleen and
heart datasets showed the performance impact of using a multi-class architecture
on a problem which could otherwise be solved using a plain binary segmenta-
tion architecture. This would address the first part of RQ3, regarding the pos-
sibility of multi-class segmentation and whether multi-class SegCaps would be
able to perform segmentation with the same performance as SegCaps. The first
part of this experiment used the spleen dataset for comparing the loss functions
Dice and weighted cross-entropy. The motivation behind this comparison was that
Dice loss had shown good results on the 2.5D U-Net, while the original SegCaps
used weighted binary cross-entropy. The hippocampus and liver dataset showed
the performance of multi-SegCaps when learning two target classes. Lastly, the
BraTS dataset was selected to test if the model was capable of handling this com-
plex problem containing multi-modal MRI and as many as three target classes. By
applying Multi-SegCaps to datasets with multiple target classes, RQ3 regarding
how well SegCaps adapts to multi-class segmentation was addressed further.

By using a similar training process as for 2.5D U-Net, the results for Multi-
SegCaps would be comparable to the U-Net based model. This would give an

63



answer to the second part of RQ3, which concerned the performance of SegCaps
compared to a U-Net based model.

3.4.4 Experiment 4: SegCaps with EM-routing
The dynamic routing algorithm proposed in the paper Dynamic Routing between
Capsules by Sabour et. al, has gained a lot of publicity in recent years. The
capsules architecture was originally designed to perform image classification but
has later been adapted to multiple domains including segmentation. The same
group of researchers publicized a second paper: Matrix capsules with EM rout-
ing, claiming that the purposed method might be able to solve the dynamic routing
problem in a way that is better than the one in the original paper. However, the
paper hasn’t gained the same level of publicity yet. The authors suggest improv-
ing capsule networks by using matrix capsules and EM-routing.

In order to address RQ4, concerning the possibilities and limitations of using ma-
trix capsules with EM-routing for segmentation, a new type of capsule network
architecture was designed for this project. The architecture was trained to perform
both binary segmentation of hippocampus, as well as multi-class segmentation of
anterior and posterior hippocampus.

The encoder-decoder style EM-SegCaps network was compared with Multi-SegCaps
on segmentation of hippocampus images. The experiment would show if SegCaps
with EM-routing would be able to learn the tasks using only 30,166 trainable pa-
rameters, compared to the 1,436,769 parameters used by Multi-SegCaps.

3.5 Training
During training, batches were generated by drawing random 3D images from the
pool of available data. Because all models use a type of 2D convolution, the
images used for training were randomly sampled 2D slices from the 3D volumes.
Slices from the images were sampled from the axis of the lowest resolution, which
is referred to as the depth axis. A given image slice was normalized, augmented
and then added to the batch if its label contained at least one pixel from a pos-
itive class. If the slice contained only pixels from the background class, it was
simply discarded. The reason was to decrease the effect of class imbalance, as
all datasets contained several times more of the background class than the target
classes. The process of selecting image slices was repeated until a batch had the
desired number of elements.

64



3.5.1 2.5D U-Net
The training process of 2.5D U-Net was similar for all datasets. The batch size
was 24, one epoch had 1000 steps and training was ended when the validation
score had not improved over the last 100 epochs. The model with the best valida-
tion score was used for testing. The initial learning rate was set to 0.001 and was
reduced to 70% every time the model did not improve over 5 epochs. A Beta 1
parameter of the Adam optimizer was set to 0.9. During training, augmentation
was used and five consecutive slices were used as input to the model. The excep-
tion was the first part of the experiment, which compared the performance of using
one and five consecutive input slices. Dice loss was minimized while training.

3.5.2 SegCaps
The training process of SegCaps was similar to the one used by LaLonde et al. It
lasted up to 200 epochs, but was terminated when the validation Dice score had
not improved for 25 epochs. One epoch is 10000 training steps with a batch size
of 1. Weighted cross-entropy loss and MSE reconstruction loss were minimized
with equal weight. The Adam optimizer was used for stochastic gradient descent
with an initial learning rate of 0.0001 and a Beta 1 of 0.99. The learning rate was
decayed by a factor of 0.05 if the validation Dice score did not improve the last 5
epochs. Training data was normalized and augmented.

3.5.3 Multi-SegCaps
The training was performed using a batch size of 1, due to memory limitations.
One epoch had 1000 steps, and the model early stopped if it did not improve for
100 epochs. These parameters were selected to match the ones used for 2.5D U-
Net. After early stopping, the model with the best validation score was stored, and
used for testing. For every validation, 500 steps were used. The initial learning
rate was set to 0.0005 and was reduced to 70% every time the model did not im-
prove over 5 epochs. The Adam Beta 1 parameter was set to 0.99, due to the low
batch size. Augmentation and reconstruction weighting was used for regulariza-
tion with a reconstruction weight of 0.01. 5 consecutive slices were used as input
for making a prediction for the middle slice. For all experiments except the first
one, which used Dice loss, the loss function used was weighted cross-entropy. An
example of the calculated weights used for weighted cross-entropy for the spleen
dataset can be seen in Table A.5.

65



3.5.4 EM-SegCaps
The EM-SegCaps architecture requires that all the images have the same dimen-
sions during training, so every slice in all the hippocampus images and masks
were cropped into 32x32x32 pixels. During inference, the hippocampus images
were zero padded to fit entire image slices into a batch, but the padded voxels
were removed before calculating performance metrics. Images were normalized
and used augmentation.

A modified version of the multi-class Jaccard Dice loss was used for optimiza-
tion. This loss function was used to reduce the effect of class imbalance. The
original Dice loss function calculates a total Dice score for all classes. The mod-
ified version calculates separate Dice loss scores for all classes, which are then
averaged into a single total Dice score.

3.6 Evaluation
Several evaluation metrics were used to determine the quality of the models. Pre-
cision, recall and the Dice similarity coefficient were used to compare the target
segmentation mask and the predicted segmentation mask. The metrics were cal-
culated in several ways, which are described in the second part of this section.

3.6.1 Metrics
Precision and recall are two commonly used metrics for evaluating how useful and
complete a method is. Precision, also known as the positive predictive value, is
the fraction of relevant cases compared to the retrieved cases. Recall, also known
as the sensitivity, is the fraction of relevant retrieved cases compared to the total
relevant cases.

A high precision could be achieved by classifying a few relevant cases correctly,
but that would give a low recall. Similarly, classifying all cases as relevant would
give a high recall, but give a low precision. Because of this, precision and recall
give a good indication of performance together.

Precision =
TP

TP + FP

Recall =
TP

TP + FN
The true positives (TP ) determine pixels (or voxels) correctly classified as being
part of the segmentation, a false positive (FP ) is a pixel incorrectly classified as

66



being part of the segmentation, and a false negative (FN ) is a pixel which should
have been part of the segmentation but was not.

The Dice similarity coefficient (DSC) is a spatial overlap index and the harmonic
mean of the precision and recall [14]. It is frequently used for evaluating medical
segmentations. The values of Dice ranges from zero to one, where zero indicates
no overlap between target and prediction, while one indicates complete overlap.
For two regions, A and B, the DSC is defined as two times the intersection over
the union.

DSC =
2(A ∩B)

A+B
=

2TP

2TP + FP + FN

3.6.2 Method
All experiments were performed using four splits. Each split was made up of 75%
of the training set for training and 25% for validation and final testing. Validation
was performed by calculating the score for random slices from the validation set
after each epoch. The training was terminated when the score on the validation
set had not improved over a number of epochs.

For each experiment, the recall, precision, and Dice values were calculated. To
find these statistics, a confusion matrix was calculated for every image. A confu-
sion matrix gives an overview of which predictions are correct, while also show-
ing what the incorrect guesses were predicted as. The rows of a confusion matrix
show the actual classes, while the columns show which classes are predicted. The
precision, recall, and Dice values were calculated by summing the confusion ma-
trices of all images, from all four validation splits. This was done to get accurate
statistics of the entire dataset, as predictions of each class will then be weighted
by the proportion of appearance in a given image.

Furthermore, a Dice value using the split scores were calculated. This Dice value
was calculated similarly to how LaLonde et al. did. For each split, the value is
the mean or the median of the Dice score of each image in the corresponding val-
idation set. As these scores are calculated differently than the overall dataset Dice
value, the given average of the splits is not necessarily equal to the overall dataset
Dice. This metric is not optimal from a statistical point of view, as the Dice score
of an image containing a single positive class pixel will be weighed equally as
an image with thousands of positive class pixels. However, it was necessary for
comparing achieved results with LaLonde et al. Notice that each split score is cal-
culated using the median in the second experiment, while the other experiments
use the mean. The reason is that LaLonde et al. used the median, while we found

67



the mean to be more describing.

All datasets from the Medical Segmentation Decathlon (MSD) contained a test
set without publicly available labels. In order to obtain official test scores, seg-
mentations of test sets using 2.5D U-Net were submitted to the MSD. By doing
so, the architecture obtained scores that could be directly compared to the winner
of MSD. Dice scores obtained from MSD were calculated as the mean of the Dice
scores of every image in the test set.

3.7 Environment
Most models were trained and tested using nodes from NTNU’s EPIC cluster.
SegCaps models were trained using Tesla P100 GPUs, while some of the 2.5D
U-Net models were run on Tesla V100 GPUs. Both GPUs were from Nvidia and
had 16 GB of video memory. Jobs were submitted using the Slurm2 job sched-
uler. By using EPIC it was possible to train and test many models at the same time.

To be able to train more models in parallel, some of the 2.5D U-Net models were
trained on NTNU’s DGX cluster. The cluster has V100 GPUs with 32GB of video
memory. Even though this gave the possibility of increasing the batch size, it was
kept unchanged for all 2.5D U-Net models, in order to have comparable results.

EM-SegCaps models were trained on a local computer having a single GTX1080
GPU with 11GB of memory. This was done because of an incompatibility be-
tween the way EM-SegCaps performs matrix multiplications of large batches of
matrices and the version of CUDA installed on the EPIC cluster.

2https://slurm.schedmd.com/documentation.html

68



Chapter 4

Results

This chapter presents the results of the four experiments that were set up to test dif-
ferent types of segmentation architectures. These architectures were 2.5D U-Net,
SegCaps, Multi-SegCaps and EM-SegCaps. Each experiment trained the respec-
tive architecture on one or several medical segmentation datasets. An overview of
Dice scores (in percent) achieved by a given architecture - dataset combination,
based on all experiments conducted, are shown in Table 4.1 and Table 4.2. The
first table shows datasets with a single target class, while the second table contains
datasets with multiple target classes. The columns show a score for each target
class in the respective dataset. The hippocampus dataset is represented two times
as EM-SegCaps had an experiment where the originally two hippocampus classes
were combined into one class. The SegCaps architecture is excluded from the
second table, as it only had scores for LUNA16, heart and spleen datasets.

LUNA16 Spleen Heart Hippoc.

1 1 1 1

2.5D U-Net - 90.0 91.3 -
SegCaps 98.2 40.4 60.4 -
Multi-SegCaps - 50.6 67.0 -
EM-SegCaps - - - 54.5

Table 4.1: An overview of Dice scores for all models, for the first part of the datasets.

69



Hippoc. Liver Pancreas BraTS

1 2 1 2 1 2 1 2 3

2.5D U-Net 84.2 82.7 91.0 68.9 69.5 18.2 65.0 26.1 34.6
Multi-SegCaps 72.4 70.5 66.1 0.2 - - 28.5 11.3 0.1
EM-SegCaps 18.7 24.5 - - - - - - -

Table 4.2: An overview of Dice scores for all models, for the second part of the datasets.

4.1 2.5D U-Net for Medical Segmentation Tasks
The developed 2.5D U-Net was tested on various medical segmentation tasks. The
chosen datasets aimed to segment the spleen, the heart, the anterior and posterior
hippocampus, the liver and liver tumour, the pancreas and pancreas tumour, as
well as three classes of brain tumour. These were selected for testing the architec-
ture on medical segmentation problems that are challenging in different ways.

Each of the datasets had a test set without publicly known labels. The segmen-
tation masks for these test sets were submitted to the Medical Segmentation De-
cathlon. The Dice scores obtained are shown in Table 4.3. The figure also shows
the scores of the nnU-Net, which won the challenge in 2018. 2.5D U-Net does
not manage to achieve higher scores than nnU-Net on any of the tasks. However,
some scores are only a few percentage points lower. The rest of this section shows
the scores calculated from the validation set when using four splits.

Spleen Heart Hippoc. Liver Pancreas BraTS

1 1 1 2 1 2 1 2 1 2 3

nnU-Net 96 93 90 89 95 74 80 52 68 48 68
2.5D U-Net 85 72 87 85 90 54 71 26 53 28 50

Table 4.3: Dice scores from the test sets, obtained from Medical Segmentation Decathlon.

4.1.1 Spleen
Table 4.4 shows the performance of the 2.5D U-Net when trained on the spleen
dataset. The performance of the model using one slice as input is slightly lower
compared to the model using five consecutive input slices for predicting the mid-
dle slice. For both experiments the recall is higher than the precision, indicating

70



that the prediction had few false negatives, but some of the background pixels
were incorrectly predicted as the spleen class. The performance on the splits is
shown in Table 4.5 for both the single slice and the five slice model. The table of
split scores shows a 10 percentage point difference between the best and the worst
performing split. An example segmentation using five consecutive input slices can
be seen in Figure 4.1. A comparison of predictions and the ground truth label on
a failure case is shown in Figure 4.2. The figure shows that this particular volume
suffered from severe under-segmentation, as well as slight over-segmentation of
irrelevant background. An activation from the output layer in 2.5D U-Net for a
spleen volume is visualized in in Figure A.1.

The average Dice scores of the two tables are not equal. The first table shows
the average of summing the confusion matrices of all volumes, from all four vali-
dation splits. The second table’s Dice score is the average of the four splits scores,
each being the mean of the Dice score of each volume in the corresponding vali-
dation set.

Recall Precision Dice

Spleen (1 slice) 93.234 86.097 89.524
Spleen (5 slice) 93.185 87.111 90.046

Table 4.4: Percentages of metrics totalled over the spleen dataset.

Split-0 Split-1 Split-2 Split-3 Average

Spleen (1 slice) 92.468 88.984 82.529 84.665 87.161
Spleen (5 slice) 92.373 89.256 82.861 87.773 88.066

Table 4.5: Percentages of correct classification (Dice score) on different splits of the
spleen dataset. Numbers reported in mean.

71



Figure 4.1: Slices from an example volume from spleen segmentation using 2.5D U-Net
with 5 slices as input. The upper row shows predictions, while the second row shows
ground truth. The Dice score of this particular volume was 95.772%.

Figure 4.2: A 3D visualization of spleen segmentation using 2.5D U-Net. From left
to right: prediction, ground truth and both combined. In the third image green is true
positives, red is false positives and yellow is false negatives. The volume acheived a Dice
score of 74.824%

4.1.2 Heart
The performance obtained on the heart dataset is shown in Table 4.6. The scores
for all the splits are shown in Table 4.7. Despite being a small dataset of only
20 volumes, the model performed reasonably well on all splits. Figure 4.3 shows
predictions made by the model. It shows that the model is able to capture small
parts of the left atrium, as well as larger parts.

72



Recall Precision Dice

Left atrium 90.690 92.114 91.396

Table 4.6: Percentages of metrics totalled over the heart dataset.

Split-0 Split-1 Split-2 Split-3 Average

Left atrium 90.477 92.130 90.763 91.883 91.313

Table 4.7: Percentages of correct classification (Dice score) on different splits of the heart
dataset. Numbers reported in mean.

Figure 4.3: Slices from an example volume from segmentation of the left atrium. The
upper row shows predictions, while the second row shows ground truth. The score of this
particular volume was 92.711%.

4.1.3 Hippocampus
The scores achieved after training the 2.5D U-Net model on the hippocampus
dataset are shown in Table 4.8. The model was able to achieve similar results

73



for both anterior and posterior hippocampus classes. Further, as shown in Table
4.9, the differences in performance for the splits were small. When compared
to state of the art results by nnU-Net (Table 4.3), 2.5D U-Net achieved only 3%
and 4% lower scores for anterior and posterior classes, respectively. An exam-
ple of segmentation can be seen in Figure 4.5. The middle slice shows how the
model incorrectly predicts some of the posterior class (red) as being the anterior
hippocampus (green). A 3D visualization of a segmentation is shown in Figure
4.4.

Recall Precision Dice

Anterior 84.546 85.818 85.177
Posterior 81.433 86.541 83.909

Table 4.8: Percentages of metrics totalled over the hippocampus dataset.

Split-0 Split-1 Split-2 Split-3 Average

Anterior 84.270 84.939 84.986 82.797 84.248
Posterior 83.374 83.477 82.466 81.601 82.730

Table 4.9: Percentages of correct classification (Dice score) on different splits of the
hippocampus dataset. Numbers reported in mean.

Figure 4.4: A 3D visualization of hippocampus segmentation using 2.5D U-Net. From
left to right: prediction, ground truth and both combined. In the third image green is true
positives, red is false positives, yellow is false negatives and blue is anterior predicted as
posterior, or vice versa.

74



Figure 4.5: Slices from an example volume from hippocampus segmentation. The upper
row shows predictions, while the second row shows ground truth. The score of this par-
ticular volume was 85.138% for anterior hippocampus (green) and 84.458% for posterior
hippocampus (red).

4.1.4 Liver
The architecture was able to learn the liver segmentation well, as indicated by
Table 4.10. However, Figure 4.7 shows that the scores for the segmentation of
liver class were steady while the scores for liver tumour were highly variable. This
is also reflected in Table 4.11, which shows the same trend for the splits. 2.5D U-
Net achieved 5% and 20% lower scores than nnU-Net for liver and liver tumour,
respectively (Table 4.3). A representative volume for the general performance is
shown in Figure 4.6. The volume shows that the model predicts the tumour in the
correct sport, but misses some pixels.

Recall Precision Dice

Liver 90.651 91.321 90.985
Tumour 62.755 76.445 68.927

Table 4.10: Percentages of metrics totalled over the liver dataset.

75



Split-0 Split-1 Split-2 Split-3 Average

Liver 92.061 91.581 88.461 90.070 90.543
Tumour 34.285 51.836 37.525 46.003 42.412

Table 4.11: Percentages of correct classification (Dice score) on different splits of the
liver dataset. Numbers reported in mean.

Figure 4.6: Slices from an example volume from liver segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 93.652% for liver (green) and 64.324% for liver tumour (red).

76



Figure 4.7: Dice scores per volume for the liver dataset using 2.5D U-Net.

4.1.5 Pancreas
Results of applying the 2.5D U-Net model to the pancreas dataset are presented
in Table 4.12. Despite containing more challenging structures than the previously
presented datasets, the performance on the pancreas test set was only 9% lower
than for nnU-Net for the pancreas class (Table 4.3). However, the model does
not manage to learn pancreas tumour very well. The low precision for tumour
indicates that the model misclassifies background and pancreas as being of the tu-
mour class, as shown in Figure 4.8. The low recall indicates that pancreas tumour
is often incorrectly predicted as pancreas or background. Even though each split
contains about 70 volumes, the performance of the splits is varying. The scores
for each split are shown in Table 4.13.

Recall Precision Dice

Pancreas 68.840 70.094 69.461
Tumour 12.746 31.663 18.175

Table 4.12: Percentages of metrics totalled over the pancreas dataset.

77



Split-0 Split-1 Split-2 Split-3 Average

Pancreas 67.744 69.471 74.087 63.134 68.609
Tumour 23.654 20.506 22.600 9.836 19.149

Table 4.13: Percentages of correct classification (Dice score) on different splits of the
pancreas dataset. Numbers reported in mean.

Figure 4.8: Slices from an example volume from pancreas segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice scores of this
particular volume was 50.691% for pancreas (green) and 53.131% for pancreas tumour
(red).

4.1.6 BraTS
Table 4.14 shows the results obtained when fitting the 2.5D U-Net to the BraTS
dataset. The scores for each split are shown in Table 4.15. The first two splits
achieved higher scores on all classes than the two last splits. Figure 4.9 shows
an example of one of the better predictions made by the model. It shows that the
model mostly captures all of the tumour, but confuses the classes.

78



Recall Precision Dice

Edema 67.263 62.861 64.988
Non enh. 33.458 21.427 26.124
Enh. 62.211 23.977 34.613

Table 4.14: Percentages of metrics totalled over the BraTS dataset.

Split-0 Split-1 Split-2 Split-3 Average

Edema 68.806 74.531 50.010 43.037 59.096
Non enh. 30.522 37.619 22.791 19.292 27.556
Enh. 64.926 63.825 41.414 41.069 52.809

Table 4.15: Percentages of correct classification (Dice score) on different splits of the
BraTS dataset. Numbers reported in mean.

Figure 4.9: Slices from an example volume from BraTS segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice scores of this
particular volume were 81.853% for edema (blue), 63.961% for non-enhancing tumour
(red) and 85.966% for enhancing tumour (green).

79



4.2 Reproduce Results from Capsules for Object Seg-
mentation

The SegCaps architecture presented in the paper Capsules for Object Segmen-
tation was trained on the LUNA16 dataset as well as the spleen and the heart
datasets. LaLonde et al. had applied the architecture to the LUNA16 dataset, and
the scores they reported were compared to the achieved scores. The spleen and
the heart datasets were used to investigate how applicable the same model was to
similar problems.

The number of epochs until the models early stopped, as well as training time
for the three datasets are shown in Table A.1. Training of the LUNA16 dataset
took about 2-4 days, the spleen dataset spent about 3-5 days and the heart dataset
spent 1-2 days.

4.2.1 LUNA16
The first row of Table 4.17 shows our scores for the LUNA16 dataset. The score
reported by LaLonde et al. in Capsules for Object Segmentation is shown in the
second row. They did not report which volumes their four splits were made up of,
so the scores for each split is not directly comparable. However, all split scores
of LaLonde et al. were higher than the ones achieved in this experiment. This
makes our median Dice score slightly lower than the one reported in the litera-
ture. Examples of segmentations made are shown in Figure 4.10 and Figure 4.11.
The latter figure shows a volume where the label appears to be wrong, while the
prediction is fine, revealing a weakness of the LUNA16 segmentation data. This
is reflected in Figure 4.12 which shows that the scores for a few volumes were
significantly lower.

An overview of total precision, recall and Dice score is shown in Figure 4.16.
While calculating these scores, a mistake in the source code by LaLonde et al.
was discovered and fixed. The test code did not use only the lung target class
for evaluation, but rather the original four segmentation classes from LUNA16.
Fixing this issue resulted in slightly different scores for the splits, given in Table
A.3. However, as the authors had used the test code with this mistake, we used our
average split score, calculated in the same way as theirs, for comparing the results.

The average Dice scores of Figure 4.16 and Figure 4.17 are not equal. The first
table shows the average of summing the confusion matrices of all volumes, from
all four validation splits. The second table’s Dice score is the average of the four

80



splits scores, each being the median of the Dice score of each volume in the cor-
responding validation set.

Recall Precision Dice

Lungs (Our results) 97.628 97.129 97.378

Table 4.16: Percentages of metrics totalled over the LUNA16 dataset.

Split-0 Split-1 Split-2 Split-3 Average

Lungs (Our results) 98.467 98.189 98.072 98.238 98.242
Lungs (LaLonde et al.) 98.499 98.523 98.455 98.474 98.479

Table 4.17: Percentages of correct classification (Dice score) on different splits of the
LUNA16 dataset. Numbers reported in median.

Figure 4.10: Example slices from LUNA16 segmentation using SegCaps. The top row
shows predictions, while the bottom row shows ground truth. The score of this particular
volume was 97.822 %.

81



Figure 4.11: Example slices from LUNA16 segmentation using SegCaps of an volume
with an incorrectly labelled ground truth. The upper row shows predictions, while the
second row shows ground truth. The score of this particular volume was 30.117 %.

Figure 4.12: Dice scores per volume for the LUNA16 dataset using SegCaps.

82



4.2.2 Spleen
The SegCaps architecture was applied to the spleen dataset, achieving the scores
shown in Table 4.18. The performance is significantly lower than for the LUNA16
dataset, and the Dice score is below half of the one obtained by the U-Net model
on the same dataset. Table 4.19 displays that the variation of performance achieved
by the different splits is high. The table gives each split score in both medians,
similarly to how LaLonde et al. calculated their scores for LUNA16, and in mean,
as the results from the other experiments were reported. Figure 4.13 shows pre-
dictions made by the model. The first slice shows how the model wrongly predicts
another body part as being the spleen.

Recall Precision Dice

Spleen 97.214 25.494 40.394

Table 4.18: Percentages of metrics totalled over the spleen dataset.

Split-0 Split-1 Split-2 Split-3 Average

Spleen (Median) 59.838 56.523 35.911 20.967* 43.310
Spleen (Mean) 61.320 47.233 41.832 23.354* 43.438

Table 4.19: Percentages of correct classification (Dice score) on different splits of the
spleen segmentation dataset. (*) Result from split 3 obtained from second training of
same split. Results from first training were 7.515% (median) and 7.979% (mean).

83



Figure 4.13: Example slices from spleen segmentation using SegCaps. The upper row
shows predictions, while the second row shows ground truth. The score of this particular
volume was 60.638 %.

4.2.3 Heart
SegCaps was also trained to segment left atrium, obtaining the results indicated by
Table 4.20. Compared to the U-Net model the average Dice score for this model
was about 30% lower. As for the spleen model, the model shows the ability to
achieve high recall, but the precision is poor. Figure 4.14 shows how the model
captures the heart well, but wrongly segments some of the background as the
target class. The scores for each split is given in Table 4.21. The difference in
score from the lowest to the highest performing model was about 20%. The table
gives each split score in both median, similarly to how LaLonde et al. calculated
their scores for LUNA16, and in mean, as the results from the other experiments
were reported.

Recall Precision Dice

Left atrium 96.348 43.962 60.376

Table 4.20: Percentages of metrics totalled over the heart dataset.

84



Split-0 Split-1 Split-2 Split-3 Average

Left atrium (Median) 70.550 57.292 68.366 50.922 61.783
Left atrium (Mean) 68.999 61.751 68.818 48.804 62.091

Table 4.21: Percentages of correct classification (Dice score) on different splits of the
heart segmentation dataset.

Figure 4.14: Example slices from heart segmentation using SegCaps. The upper row
shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 67.958 %.

4.3 Multi-class Segmentation using SegCaps
The implemented Multi-SegCaps architecture was applied to several medical seg-
mentation datasets. These datasets were spleen, heart, hippocampus, liver, and
BraTS. The goal was to see if the architecture performed as well as the regular bi-
nary SegCaps and to investigate if it was able to learn to segment several classes.

85



4.3.1 Spleen
By segmenting the spleen dataset it was possible to compare the performance
to the original SegCaps architecture. The spleen dataset was also used for ex-
perimenting with loss functions. The loss functions tested were Dice loss and
weighted cross entropy loss.

Table 4.22 and Table A.4 show that the Dice scores were 0 when using Dice loss
for Multi-SegCaps. The loss graph in Figure A.2 shows that the validation score
did not improve after epoch 28, even when training for 120 epochs. An example
of result and activations can be seen in Figure A.3 and Figure A.4. This shows
that when using Dice loss the predictions were solely background.

Recall Precision Dice

Spleen 0 N/A* 0

Table 4.22: Percentages of metrics totalled over the spleen dataset when using Dice loss.
(*) The value is not defined because there were no true positives or false positives.

Table 4.23 shows the performance on the spleen dataset when using weighted
cross-entropy as the loss function. The score on the different splits are shown in
Figure 4.24. The variation in score between the splits is high. Further, it was dis-
covered that training one split several times might yield different results. When
retraining the lowest scoring split (split 2), in the exact same way, it achieved
around 40% higher Dice score. The table shows that the overall performance is
higher than for the binary SegCaps model. An example of predictions can be seen
in Figure 4.15.

The Dice scores of Table 4.23 and Table 4.24 are not equal. The first table shows
the average of summing the confusion matrices of all volumes, from all four vali-
dation splits. The second table’s Dice score is the average of the four splits scores,
each being the mean of the Dice score of each volume in the corresponding vali-
dation set.

86



Recall Precision Dice

Spleen 78.104 37.469 50.643

Table 4.23: Percentages of metrics totalled over the spleen dataset when using weighted
cross-entropy loss.

Split-0 Split-1 Split-2 Split-3 Average

Spleen 41.637 46.512 64.374* 59.840 53.341

Table 4.24: Percentages of correct classification (Dice score) on different splits of the
spleen dataset when using weighted cross-entropy. Numbers reported in mean. (*) Second
training of same split, result from first training was 21.552%

Figure 4.15: Slices from an example volume from spleen segmentation. The upper row
shows predictions, while the second row shows ground truth. The score of this particular
volume was 80.307%.

87



4.3.2 Heart
Training Multi-SegCaps on the heart dataset gave higher scores than those achieved
by the original SegCaps architecture. The scores are shown in Table 4.25. Sim-
ilarly to the previous results, a variation in score between the splits are shown.
Table 4.26 shows the Dice scores for each split. An example of segmentation is
shown in Figure 4.16. As indicated by the low precision, the model segments
some false positives.

Recall Precision Dice

Left atrium 86.892 54.467 66.960

Table 4.25: Percentages of metrics totalled over the heart dataset.

Split-0 Split-1 Split-2 Split-3 Average

Left atrium 68.000 60.851 77.237 66.763 68.213

Table 4.26: Percentages of correct classification (Dice score) on different splits of the
heart dataset. Numbers reported in mean.

88



Figure 4.16: Slices from an example volume from heart segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 76.778%.

4.3.3 Hippocampus
The performance on the hippocampus dataset is shown in Table 4.27. The Dice
scores for anterior and posterior hippocampus are fairly good, showing that the
architecture was able to learn a multi-class problem. Table 4.28 shows the results
on each split. An example of segmentation is shown in Figure 4.17. The figure
shows that there is some confusion between the two classes. A 3D visualization
of a segmented volume is shown in Figure 4.18. The visualization shows that the
model is able to capture the main structures of the hippocampus, but struggles
to determine the class membership of the pixels at the borders. It also wrongly
predicts some of the background as the anterior hippocampus.

Recall Precision Dice

Anterior 80.764 65.645 72.424
Posterior 84.455 60.493 70.494

Table 4.27: Percentages of metrics totalled over the hippocampus dataset.

89



Split-0 Split-1 Split-2 Split-3 Average

Anterior 69.835 70.378 73.584 71.997 71.449
Posterior 69.716 67.812 68.127 75.183 70.210

Table 4.28: Percentages of correct classification (Dice score) on different splits of the
hippocampus dataset. Numbers reported in mean.

Figure 4.17: Slices from an example volume from hippocampus segmentation. The upper
row shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 76.549% for anterior hippocampus (green) and 79.122% for the
posterior hippocampus (red).

90



Figure 4.18: A 3D visualization of hippocampus segmentation using Multi-SegCaps.
From left to right: prediction, ground truth and both combined. In the third image green is
true positives, red is false positives, yellow is false negatives and blue is anterior predicted
as posterior, or vice versa.

4.3.4 Liver
The performance of Multi-SegCaps on the liver dataset is shown in Table 4.29.
The score for the liver is reasonably good, but the model did not seem to learn the
liver tumour class. Figure 4.19 shows an example of liver and tumour segmen-
tation. In the rightmost slice, we see one of the few examples where the model
started to learn how to segment tumour structures. The example achieved above
average performance, and is an example where parts of a tumour structure are
correctly segmented. The scores for each split is given in Table 4.30. It shows
that the different splits have quite different scores. An illustration of the scores
(Figure 4.20) shows that the liver class is learned pretty well, but not as good as
when using the 2.5D U-Net model (Figure 4.7). The volumes with a perfect Dice
score for liver tumour did not contain any tumour.

Recall Precision Dice

Liver 89.712 52.335 66.106
Tumour 0.098 3.210 0.191

Table 4.29: Percentages of metrics totalled over the liver dataset.

Split-0 Split-1 Split-2 Split-3 Average

Liver 67.440 73.790 69.897 56.419 66.887
Tumour 15.152 9.091 1.146 9.375 8.691

Table 4.30: Percentages of correct classification (Dice score) on different splits of the
liver dataset. Numbers reported in mean.

91



Figure 4.19: Slices from an example volume from liver segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 83.010% for liver (green) and 8.968% for liver tumour (red).

Figure 4.20: Dice scores per volume for liver dataset using Multi-SegCaps.

92



4.3.5 BraTS
The results on the BraTS dataset are presented in Table 4.31. The scores for
enhancing tumour are poor, while the model seems to have learned some of the
edema and the non-enhancing tumour classes. Table 4.32 shows the scores for
each split. As shown in Figure 4.21, the model seems to learn the location of the
tumour but predicts most of it as being edema.

Recall Precision Dice

Edema 66.236 18.195 28.548
Non enh. 6.712 34.937 11.261
Enh. 0.027 59.238 0.055

Table 4.31: Percentages of metrics totalled over the BraTS dataset.

Split-0 Split-1 Split-2 Split-3 Average

Edema 34.032 32.908 35.227 28.344 32.628
Non enh. 4.031 9.955 10.416 4.716 7.280
Enh. 0.000 0.191 0.000 0.000 0.048

Table 4.32: Percentages of correct classification (Dice score) on different splits of the
BraTS dataset. Numbers reported in mean.

93



Figure 4.21: Slices from an example volume from BraTS segmentation. The upper row
shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 32.295% for the edema class (blue), 6.785% for the non-enhancing
class (red) and 0.000% for the enhancing class (green).

4.4 SegCaps with EM-routing
The SegCaps architecture using EM-routing was tested by both using the hip-
pocampus dataset as a binary problem and as a multi-class problem. The architec-
ture was equal in the two cases, the only difference was that the first model used
two output classes, where the background is one class, and the second model used
three.

4.4.1 Binary Hippocampus
Table 4.34 shows that EM-Segcaps achieves Dice scores in the range of about 50-
60% for all four splits when performing binary segmentation of volumes from the
hippocampus dataset. The overall Dice score of the entire dataset was 54.500%.
Figure 4.22 and Table 4.33 shows that the model correctly classifies most pixels
belonging to the hippocampus class, but also incorrectly classifies some irrelevant
structures as being the hippocampus.

94



Recall Precision Dice

Hippocampus 71.264 44.122 54.500

Table 4.33: Percentages of metrics totalled over the hippocampus dataset.

Split-0 Split-1 Split-2 Split-3 Average

Hippocampus 61.564 52.735 54.021 51.090 54.853

Table 4.34: Percentages of correct classification (Dice score) on different splits of the
hippocampus dataset when considering posterior and anterior hippocampus as a single
class. Numbers reported in mean.

Figure 4.22: Slices from an example volume from hippocampus segmentation. The upper
row shows predictions, while the second row shows ground truth. The Dice score of this
particular volume was 58.279%.

95



4.4.2 Multi-class hippocampus
Table 4.36 shows that EM-SegCaps achieves mixed results when performing multi-
class segmentation of volumes from the hippocampus dataset. The model simply
predicts everything as background for two splits, giving Dice scores of zero. Split
0 and split 3 are capable of segmenting some structures. Split 0 predicts every
pixel to either background or posterior hippocampus, ignoring the anterior hip-
pocampus (Figure 4.23). Split 3 does the complete opposite and predicts some
structures as anterior while ignoring the posterior class altogether (Figure 4.24).
Table 4.35 provides the precision, recall, and Dice for the entire hippocampus
dataset. These results are significantly worse than the ones obtained using the
multi-class SegCaps and the 2.5D U-Net model.

Recall Precision Dice

Anterior 17.508 20.006 18.674
Posterior 19.008 34.548 24.523

Table 4.35: Percentages of metrics totalled over the hippocampus dataset.

Split-0 Split-1 Split-2 Split-3 Average

Anterior 0 0 0 31.470 7.868
Posterior 46.971 0 0 0 11.743

Table 4.36: Percentages of correct classification (Dice score) on different splits of the
hippocampus dataset. Numbers reported in mean.

96



Figure 4.23: Slices of a volume from split 0 used for hippocampus segmentation. The
upper row shows predictions, while the second row shows ground truth. The Dice score of
this particular volume was 0.000% for anterior hippocampus class (green) and 49.690%
for the posterior hippocampus class (red).

97



Figure 4.24: Slices of a volume from split 3 used for hippocampus segmentation. The
upper row shows predictions, while the second row shows ground truth. The Dice score of
this particular volume was 30.259% for anterior hippocampus class (green) and 0.000%
for the posterior hippocampus class (red).

98



Chapter 5

Discussion

5.1 2.5D U-Net for Medical Segmentation Tasks
The 2.5D U-Net architecture was applied to several medical segmentation datasets.
This addressed the first research question, RQ1, regarding how well the archi-
tecture would perform on medical segmentation tasks in general. Results were
submitted to the Medical Segmentation Decathlon, obtaining official results com-
parable to state of the art.

The first experiment regarding the 2.5D U-Net used the spleen dataset for compar-
ing the performance of using one and five consecutive input slices for predicting a
single slice. The results showed slightly higher scores when using five slices as an
input. Even though it could be caused by some random phenomena such as weight
initialization, the performance was not worse when using five slices. Further, the
use of four splits made us more confident that the improvement was not random.
Intuitively, having more information along the depth axis will give better context
information when predicting the segmentation. Thus, five slices were used for all
the remaining experiments with 2.5D U-Net and Multi-SegCaps.

The nnU-Net has previously shown state of the art results at the Medical Segmen-
tation Decathlon (MSD) challenge and was a well-suited benchmark to compare
our results with. The test scores of nnU-Net and 2.5D U-Net were calculated by
MSD using a test set without publicly available ground truth labels. Although
nnU-Net achieved overall higher scores than 2.5D U-Net, we observed that some
of the datasets, such as hippocampus, spleen, and liver, achieved comparable Dice
scores that were within a range of only ten percentage points.

While nnU-Net used an ensemble of three models for the predictions, we used

99



a single model that was trained using only 75% of the training set. Ensembles
have lower variance in their predictions than single model methods, and should
therefore usually outperform single models [15]. Another limitation of the 2.5D
U-Net framework may be that it does not allow for any dataset specific adapta-
tions, except for the input normalization, just to keep it as general as possible. It
is a fair assumption that a general algorithm not tuned for every specific dataset
will produce sub-optimal segmentation results. The reason is that the method is
unable to take into account any knowledge of the structure, size or location of
the interesting parts of the image when preprocessing an input slice. The heart
dataset does for instance only contain a small amount of its target class, roughly
in the centre of the image. By training the model on an entire slice from the 3D
volume, lots of more or less irrelevant background pixels in the image are con-
sidered in the loss function by the optimizer. Another consequence of this is that
we get a larger class imbalance between the interesting target class and the less
interesting background pixels. To compensate for the imbalance between classes,
the Jaccard Dice loss is used for optimization. It inherently counteracts the effect
of the imbalance, to some degree, by weighing the true positive rate of each class
in relation to its precision and recall. nnU-Net used dataset specific cropping of
the volumes, leaving out more of the irrelevant information and at the same time
getting a lower class imbalance. This could have been an important factor for
nnU-Net getting higher scores than 2.5D U-Net.

When investigating segmented volumes from 2.5D U-Net further, we observed
that the model was very often capable of segmenting the rough shape of the tar-
get class, for example a heart or a spleen, but lacks pixel-perfect precision at the
edges of the segmented classes. An explanation for this problem could lie in how
image patches are sampled. The number of pixels belonging to a target class is
calculated for every patch before using it for training, and if there are only back-
ground pixels in the slice, the slice is simply discarded. This filter ensures that
there is something to segment in every slice, and is also a way of reducing the
imbalance between classes. However, when there are only a few uncertain pixels
belonging to the border of a target class, and tens of thousands of pixels belong to
the background class, the error gradients for the few incorrectly classified pixels
belonging to the target class may be lost in the vast ocean of noise coming from
everything else, and thus not be able to learn to confidently classify them.

The most apparent example of the model lacking accurate segmentations at the
edges is when looking at the BraTS dataset. On the surface, it appears to cap-
ture the overall shape and location of a tumorous structure but suffers confusion
between the tumour classes. Looking at the precision of non-enhancing and en-
hancing tumour, we see scores in the low 20%, which could indicate that a lot

100



of the neighbouring pixels may have been incorrectly classified to those classes.
While the 2.5D U-Net in this experiment used the full MRI brain images padded to
a shape of 256x256, nnU-net used a heuristics for cropping the images to smaller
patches of size 192x160. Because nnU-net used more preprocessing (e.g calculat-
ing number of layers according to the dataset) and postprocessing (e.g connected
component analysis according to statistics about datasets) steps in its pipeline,
we can not conclude that using smaller, more concentrated patches alone is what
gives the model a much higher accuracy.

What is interesting about the BraTS dataset in particular, is that we have in previ-
ous research applied the exact same neural network architecture, but with a smaller
patch size of 128x128 (see Appendix B). When using a smaller patch size, the
performance was significantly higher. Although the scores are not directly com-
parable as the previous results were calculated using a BraTS specific metric for
evaluation. However, the difference in scores was so high that we were not in
doubt that when using the smaller patch size we achieved way better segmenta-
tions. To confirm this, segmentations were also manually inspected and compared.
Thus, we believe using a smaller patch size than the full 2D slice is important for
achieving good results, especially when the structure being segmented only occu-
pies a small section of the image, while the remaining is of background pixels.

Almost all datasets segmented by 2.5D U-Net experience over-segmentation on
some of the slices that are containing sole background. An example of this is the
circular shape that is predicted in the top left of Figure 4.2. Upon investigation,
it can be seen that the structure being incorrectly predicted in most cases have
a resemblance of parts of the actual structure in question. The reason why the
model is unable to distinguish some similar looking structures from the actual
target classes could be that we discarded all slices containing only background
pixels during training. The consequence of this design choice happens to be that
the model never gets exposed to this pattern, and thus face some confusion on how
to handle it when performing the actual evaluation. A more suited approach could
be to rather ensure that a given percentage of all slices contain some of the target
classes. This is the approach taken by nn-Unet, and may in retrospect be a better
suited strategy.

Regarding the first research question, RQ1, we believe 2.5D U-Net was able to
perform well on medical segmentation tasks in general. However, the scores were
lower compared to the state of the art. We believe using a smaller patch size,
along with task-specific automatic preprocessing and postprocessing would be
important for improving the results of 2.5D U-Net further.

101



5.2 Reproduce Results from Capsules for Object Seg-
mentation

The results presented in the paper by LaLonde et al. showed very good perfor-
mance at the task of segmenting lungs from CT images of patients. Accompanied
by the paper, the authors created a repository on GitHub containing the source
code used in the implementation. The exact source code was used in this experi-
ment in an attempt to recreate the same results. In addition, the same architecture
and parameter settings were used for training two other datasets. By applying
SegCaps to three datasets, RQ2 regarding reproducibility of Capsules for Object
Segmentation and adaptability of SegCaps to similar datasets was addressed.

The average Dice score achieved when the SegCaps model was trained using the
LUNA16 dataset in this project was 98.242%, which is almost as good as the
average Dice score of 98.479% that was presented in the literature. The perfor-
mance gap is not likely to be attributed to some random phenomena such as weight
initialization, seeing that all four training splits in the original paper achieved con-
sistently higher Dice scores than we did in this experiment. There could be several
reasons why the results differ slightly. For once, we had to make a couple of as-
sumptions about which hyperparameters should be used.

The reconstruction loss weight was unfortunately not mentioned anywhere in the
paper, which was an issue when attempting to reproduce the results of LaLonde
et al. Seeing that all other hyperparameters (except learning rate) had the same
default value in source code as mentioned in the paper, it was a fair assumption
that the actual reconstruction weight used was the same as the source code de-
fault. When using the default SegCaps parameters, reconstruction is weighted
131.072 times more than the cross-entropy loss used for segmentation. However,
when inspecting the code we found that loss weights are only passed to the Keras
model compilation call when using two or more GPUs for training. If the model
is compiled for training on a single GPU or on a CPU, the loss weighing is simply
ignored, setting the weights of segmentation and reconstruction to be equal. We
believed that this was a bug in the code, which could have caused the authors to use
a different weighting of reconstruction than what they thought. The researchers
behind the paper were contacted regarding this issue, but we did unfortunately not
get a response. Because of the uncertainty, SegCaps was trained once using a re-
construction weight of 1 and once using a reconstruction weight of 131.072. The
results showed that using equal weights outperformed using higher reconstruction
slightly and that using too much reconstruction could over-regularize the model,
at the cost of not learning segmentation as well. We discovered that the model

102



was not extremely sensitive to moderate changes in reconstruction weight, as both
options produced acceptable results.

The research paper stated that an initial learning rate of 0.00001 was used for
training. However, in the source code, the default learning rate was 10 times
higher, i.e. 0.0001. Because the learning rate was the only parameter that differed
between the source code and the paper, we thought it was worth investigating
if a difference in performance between the two would be observed. After train-
ing SegCaps with both learning rates, we observed that the achieved results were
about the same, and the models spent roughly the same amount of time to con-
verge. Which one of the two initial learning rates that is used was apparently not
very important for training SegCaps. This observation was further substantiated
by the fact that the learning rate is reduced to 1/25 of the previous after plateauing,
making the initial learning rate used by the optimizer less important.

The researchers stated that they went through the laborious task of manually ex-
amining all training images in the LUNA16 dataset, and removed all mislabelled
examples. The authors did not document which images that were left out, so all
images were used in our experiment. A mislabelled volume was demonstrated in
Figure 4.11. The lung ground truth mask is clearly incorrect, which resulted in a
very low Dice score for that particular prediction. The paper acknowledges that
some of the images in the LUNA16 dataset are obviously mislabelled, but does
not elaborate about why they are. LUNA16 is a dataset intended to be used for
nodule detection, and not lung segmentation. The documentation for LUNA16
clearly states that the lung labels should not be used as training data for segmen-
tation models because they are themselves automatically generated by an algo-
rithm. SegCaps is in other words supervised by another segmentation algorithm
when learning LUNA16, and thus, it is not capable of learning lung segmenta-
tion any better than the algorithm it attempts to mimic. Without studying the lung
labels further and comparing them to manually created labels, we can not com-
pletely rule out the thought that the lung annotations are simplified in terms of
structure and geometry compared to how manually annotated labels would look.
Segmenting lungs using LUNA16 may very well be a trivial task. In fact, U-Net
and Tiramisu achieved Dice scores that were only 0.03 and 0.06 percentage points
lower than SegCaps (Table 2.5). This demonstrates that several methods were ca-
pable of performing an almost perfect segmentation of LUNA16, and thus the task
might be a too simple benchmark for segmentation algorithms.

The possible configurations for the uncertain parameters, learning rate and re-
construction weight, were explored. These were not very likely to blame for the
performance gap between reported and achieved results on LUNA16. The results

103



in the paper itself were reported as the median of all images for every split. The
paper arguments for this with an explanation that a few of the evaluated images
have much worse performance than the others. For this reason, they used median
instead of average. When we did not exclude mislabelled images for evaluating
the performance, we likely got even more images with exceedingly poor perfor-
mance (Figure 4.12). This is expected to reduce the mean average a lot, while
only slightly reducing the median average. This is consistent with the results we
observed in this experiment, as we had a slightly lower median than LaLonde et
al. Thus, the performance gap is likely to be caused by the fact that LaLonde et
al. removed some images from the training set.

The exact same SegCaps architecture was also trained on the spleen and the heart
datasets from the Medical Segmentation Decathlon too. The goal was to test if
it was general enough to give competitive results on other datasets. This part of
the experiment addressed the second part of RQ2. The spleen dataset got a Dice
score of 43.310%, while the heart dataset got a score of 62.091% when averaging
the median per-image Dice score of all four splits. Both results were signifi-
cantly lower than the results achieved by nnU-Net and 2.5D U-Net. The result
was surprising, as SegCaps had slightly outperformed a U-Net based model on
the LUNA16 dataset when compared by LaLonde et al.

Applying SegCaps to the spleen and the heart datasets gave disappointing results
There could be several reasons why SegCaps achieved much better results on the
LUNA16 dataset. Our initial hypothesis was that SegCaps could be extremely
sensitive to hyperparameters, which possibly needed to be carefully tuned for the
task at hand. However, we did experiment with some changes to learning rate,
learning rate decay, and reconstruction weighting and did not observe these varia-
tions to make a significant impact on the performance. The results also showed a
high variation in the score when re-training a split, which could indicate that the
ability to learn was highly dependent on some random phenomena such as sam-
pling order or weight initialization.

The spleen dataset was chosen for this experiment because it was similar to LUNA16
in several ways. The dimensions were equal and the structures to be segmented
were similar, despite the spleen being of a smaller size than the lungs. This causes
the spleen dataset to have a higher class imbalance, which we believed was han-
dled by the weighted cross-entropy loss function. Table A.2 shows that lungs
were only weighted about 5 times more than the background class, while spleen
and heart were weighted about 70 and 145 times more, respectively. The high
recall of 97.214% and 96.348% combined with a low precision of 25.494% and
43.962% for spleen and heart, respectively, could indicate that the class weights

104



used by the cross-entropy loss favoured the target classes too strongly. The models
seemed to learn to segment most of the interesting structures, while at the same
time incorrectly segmented lots of background as being part of the target class.

We were able to reproduce the results of LaLonde et al. by using the SegCaps
architecture, answering the first part of RQ2. Despite the fact that the description
of their method had some weaknesses, we believe we were able to figure out how
their experiment was performed. We got a slightly lower score than LaLonde et
al., which is likely due to the fact that they chose to exclude some incorrectly
labelled images from the dataset. The labels of the LUNA16 dataset were them-
selves generated by an automatic algorithm, which had made several incorrect
labellings. Due to the lack of quality control, we believe the LUNA16 segmen-
tation dataset is insufficient for comparing algorithms. When applying the same
SegCaps architecture to the spleen dataset and the heart dataset, it achieved sig-
nificantly lower scores than 2.5D U-Net. To answer the second part of RQ2, the
application of SegCaps to new datasets exposes some challenges with the archi-
tecture.

5.3 Multi-class Segmentation using SegCaps
The SegCaps implementation was in this project extended to segmentation of an
arbitrary number of target classes. This was achieved by having as many capsules
in the output layer as the number of classes. The assumption of extending the
SegCaps architecture to a multi-class setting is that the background class itself
can be represented by a single capsule in the output layer. Because the back-
ground contains a lot of variation, it was uncertain if a single capsule could be
capable of learning what constitutes everything that is not of interest. Further, we
were not sure if the network could scale to segmentation of multiple target classes.

By applying Multi-SegCaps to the spleen and the heart dataset it was possible to
compare the architecture to the original SegCaps. For addressing whether Multi-
SegCaps would be able to segment several classes, it was also applied to three
datasets with multiple target classes. The goal was to answer the first part of
RQ3, concerning the possibility of extending SegCaps and whether the Multi-
SegCaps architecture would achieve similar results as the original SegCaps. The
second part of RQ3 was to compare SegCaps to a U-Net based model. While still
keeping most configurations as in the experiment with the original SegCaps, some
parameters were in this experiment changed to match the ones used in the 2.5D
U-Net for having comparable results.

105



Dice loss is commonly used for training U-Net based architectures. From experi-
ence, we have seen that it ensures a stable learning process, and usually gives good
results for the final segmentation. Our experience with weighted cross-entropy
from the previous SegCaps experiment was that it possibly requires fine-tuned
class weights and can give different results for every training despite using the
same parameters and data. Testing whether a Dice loss function could be used for
training a SegCaps model was therefore of interest. A Multi-SegCaps architecture
was developed and trained on the spleen dataset using Dice loss. Surprisingly, it
was incapable of learning how to segment anything of the target class, and all pre-
dictions were solely background; giving a Dice score of zero. The reason seems
to be that the model starts to output very confident predictions for the background
class and when this was combined with the non-linearity function of the output
capsule, we observed that the error gradients were vanishing. This prevented the
model from learning anything about the target class. As no results of interest were
accomplished, weighted cross-entropy was used for the remaining Multi-SegCaps
experiments.

When using Multi-SegCaps with weighted cross-entropy, the spleen and the heart
datasets achieved Dice scores of 50.6% and 67.0%, respectively. The scores were
a bit higher than when using regular SegCaps. We do not see any particular rea-
son why Multi-SegCaps should achieve better results than the binary version when
applied to a binary segmentation problem. However, there are some factors that
could have influenced the results. When using the multi-class version of the net-
work, the final layer consists of more capsules. The added weights in the network
could possibly add some assistance in separating the positive class from the back-
ground class. We believe this is unlikely, seeing that the architectural differences
are small and that segmenting background itself was not the end goal of the model,
but rather a by-product of Multi-SegCaps. A more likely explanation for the in-
creased performance is that the training routines are different. While the routine in
the previous SegCaps experiments was identical to Capsules for Object Segmen-
tation, the routine in this experiment was chosen to match the experiment with
2.5D U-Net, which favours shorter epochs and a smoother learning rate decay.
Another factor which could have influenced the gap is the number of consecutive
slices provided to the model during training. While SegCaps was only given one
slice, Multi-SegCaps was given five slices. The first experiment showed that using
multiple slices gave a slightly higher score, which could be a part of the explana-
tion behind Multi-SegCaps’ higher performance.

The last explanation for the gap in performance of SegCaps and Multi-SegCaps
could be attributed to some random phenomena, such as the weight initialization.
As for the original SegCaps, it was discovered that retraining the same splits sev-

106



eral times could yield completely different results. Split 2 of the spleen dataset
achieved a poor test score of 21.6%, and when retraining the split it was able to
gain 64.37%. Despite the unstable learning, we believe that the scores show that
the extension of SegCaps works, as it achieved results for the spleen and the heart
that was at least as good as the results from the original binary SegCaps.

Multi-SegCaps was further tested on the hippocampus dataset. Dice scores of
about 70% were reached for both anterior and posterior hippocampus. The dataset
was well suited for testing the architecture because it contains two target classes
of roughly equal prevalence. In addition, the hippocampus images are relatively
small, making the task fast to learn. The score was about 10% lower than for the
2.5D U-Net model, for both classes. This is a smaller gap in performance for the
architectures than what was observed for the spleen and the heart datasets. The
scores show that the extended SegCaps architecture was indeed able to learn two
target classes. However, inspecting the hippocampus predictions revealed some
confusion between the two classes, a similar issue as experienced with 2.5D U-
Net. A reason could be that classes lay next to each other. Upon investigation, we
were not able to see the boundary of the labels when inspecting the input images,
which might mean that the boundary was arbitrarily placed by human experts and
that the labels could contain some inconsistencies.

Applying the more difficult liver and BraTS datasets to Multi-SegCaps did not
give any remarkable results. The model did accomplish reasonable results for the
largest target class of each dataset: liver and edema. It was able to learn some of
the non-enhancing tumour in the BraTS dataset, but liver tumour and enhancing
tumour were close to having a Dice score of 0%. The reason for the poor per-
formance on these datasets might be composed of several factors. Tumours are
highly inconsistent in shape and appearance, making the task of segmenting them
challenging. In addition to being hard to locate, the least appearing classes might
not have had a high enough class weight for the weighted cross-entropy loss func-
tion. Another reason for the poor performance could be that some concepts might
be difficult to represent for a capsule. If an entity, such as a liver tumour, presents
itself with high variability, it could be difficult for some capsules to estimate its
instantiation parameters accurately. This would cause the capsule to not learn cer-
tain concepts sufficiently. To investigate this possibility further, the dimensions of
capsules could be increased. Unfortunately, it was not possible for us to test this
hypothesis on the relevant datasets, due to memory limitations.

There is a possibility that the Multi-SegCaps models were not fully trained. De-
spite letting the models train for as many as 100 epochs after plateauing, we did
experience that they could continue learning after being stuck on the same valida-

107



tion score for a long time. Depending on the complexity of the task, we experi-
enced that the models would early stop after three to five days. Further research
could investigate if SegCaps architectures need even more time to converge.

The memory requirements of SegCaps (and Multi-SegCaps) is an obvious lim-
itation. Using a larger batch size would have sped up the training process and
would likely have improved the results. A larger batch size would allow for more
stable gradient updates, thus allowing for faster convergence. This could also
have solved the previously described issue where the model gets stuck in a local
minimum during training and is not able to improve before the early stop limit
runs out. Multi-SegCaps was not able to learn segmentations with the same preci-
sion as 2.5D U-Net, and currently requires orders of magnitude more memory and
time. Optimizing the dynamic routing algorithm to use less memory and compute
time is absolutely necessary if SegCaps, and other capsule networks for that mat-
ter, is going be used in the future.

The SegCaps architecture for multi-class segmentation obtained results as good
as those for the original binary architecture. When segmenting anterior and pos-
terior hippocampus, scores close to the ones by 2.5D U-Net were achieved. These
results show that we were able to successfully extend SegCaps to multi-class seg-
mentation, as questioned in RQ3. The challenges appearing when applying Multi-
SegCaps to more difficult tasks is likely due to issues already existing in the Seg-
Caps architecture. In the second part of RQ3 we questioned whether SegCaps
would be able to compete with a U-Net based model. Except for the hippocampus
dataset, neither the original or Multi-SegCaps had a performance close to 2.5D
U-Net in segmentation performance.

5.4 SegCaps with EM-routing
Geoffrey Hinton is a pioneer in the field of deep learning and computer vision.
Lately, he has been working on capsule networks, which has resulted in two pub-
lications so far: Dynamic Routing between Capsules and Matrix Capsules with
EM-routing. In the latter paper, he argues that the capsule architecture they de-
veloped is promising, seeing that it achieves very good results at certain image
classification tasks while requiring relatively few trainable parameters. In this ex-
periment, an architecture based on matrix capsules was implemented to research
if matrix capsules and the EM-routing algorithm could be adapted for image seg-
mentation, while also investigating how feasible this is. By applying the devel-
oped architecture to the hippocampus dataset, the results would be used to address
the last research question, RQ4.

108



Initially, the model was developed to perform binary segmentation of the anterior
and posterior hippocampus classes as a single target class. The model achieved
a total Dice score of 54.5% when combining the predictions of all four training
splits. Although the result itself was not very good compared to 2.5D U-Net or
SegCaps, it showed that the method was indeed capable of performing segmenta-
tion, albeit on a primitive level. In Figure 4.22, we see that the model is capable of
capturing the rough structure of the hippocampus, giving the model a high recall
of 71.264%. Besides segmenting the hippocampus, the model shows a tendency
to incorrectly segment structures of background as hippocampus as well. There
might be several reasons why the model is not capable of constraining the seg-
mentation to only the region of interest. The network has only 30,166 trainable
parameters, which might be too few to learn segmentation of complex structures.

Although the low number of parameters may be partly to blame for the low per-
formance, another reason could be that the capsule network itself is not able to
accurately reason about the precise location of detected entities at different cap-
sule layers. Due to resource demands, EM-SegCaps has relatively few layers in
the network and small receptive fields of 3x3 in its convolutional capsule ker-
nels. Hence, the model may be too simple to reason about patterns observed at
one location in the image using information from other regions. Using the hip-
pocampus dataset, it is expected that the model will learn that it is supposed to
segment a single solid structure. Any other structures resembling a hippocampus
should, in theory, be explained away by the presence of another more prominent
hippocampus-like structure. The predictions contain multiple separate structures,
as well as individual pixels, labelled as the hippocampus. The explanation could
be that the network is either not able to take global feature information into ac-
count fully, or that the EM-routing algorithm fails at routing information in the
way we would expect, when used for segmentation.

Finding a better suited loss function may also improve the network’s ability to
learn. Spread loss, which was used in the original matrix capsules paper, weighted
cross-entropy and Jaccard Dice loss were tested for the architecture. None of these
loss functions were able to accomplish anything besides predicting everything as
background. The reason why the modified Jaccard Dice function was used in this
experiment is that it was the only loss function that managed to segment anything
at all. The loss function appears to be even less sensitive to class imbalance than
Jaccard Dice. Thus, the choice of loss function was more or less arbitrary and is
subject to improvements in the future.

For simplicity, the current EM-SegCaps implementation does not utilize the coor-

109



dinate addition technique, which is reported by Matrix Capsules with EM-Routing
to slightly improve the capsules’ ability to encode the spatial location of objects
in an image. It is doubtful that this alone will solve the current problem of over-
segmentation, as the reported improvements were only marginal. However, in the
future, it would be interesting to research how significant its effect would be on
segmentation tasks.

The second part of the EM-SegCaps experiment trained the architecture to seg-
ment both the anterior and posterior hippocampus classes. This was done in order
to make the results comparable to the other experiments and investigate the feasi-
bility of EM-routing for multi-class tasks. The model got a Dice score of 18.674%
for anterior and 24.523% for the posterior hippocampus classes. An interesting
observation is that all the correct predictions were made by either split 0 or split
3. Splits 1 and 2 predicted all pixels as background. The model did not seem to be
capable of separating the two hippocampus classes from each other. While split 0
had correct predictions for only the posterior hippocampus class, split 3 predicted
only the anterior class. A reason might be that there are too few capsules in the
later layers, which are used for the final segmentation. This could cause an in-
formation bottleneck that prevents useful information from being used in the final
evaluation.

The purpose of the experiments with EM-SegCaps was primarily to explore the
possibilities of using the EM-routing technique for image segmentation, rather
than creating the next state of the art framework. Matrix capsules were shown to
be capable of segmenting simple structures with some results, but a lot of work
still remains. When developing this architecture further in the future, a different
dataset than hippocampus, consisting of simple geometry would make the results
and how the model reasons more interpretable. The high memory requirements by
the model currently limit how far it can scale with regards to the input image size
and the number of target classes. The reason why EM-SegCaps was only tested on
hippocampus data, is because slices of volumes from that dataset are only around
32x32 pixels in size. The implementation of EM-SegCaps does not use any native
Tensorflow operations for the EM-routing algorithm, nor the matrix convolution
operation. Because these operations are not implemented and optimized in a low-
level programming language, they have to be emulated in Python code using other
Tensorflow operations. This made the calculations in this experiment extremely
expensive both in terms of computation and memory. According to the Matrix
Capsules with EM Routing paper, Hinton and his associates are currently working
on scaling the Capsules architecture to larger datasets. We believe this would re-
quire lots of optimizations to be feasible.

110



This experiment showed a proof of concept for an implementation of SegCaps
with EM-routing. The model was able to learn binary segmentation of hippocam-
pus, albeit on a primitive level. Our experiments showed that segmentation using
SegCaps with EM-routing appears to be possible, at least on a simple dataset,
answering RQ4. We recommend that segmentation is revisited later when the
method of EM-routing has matured.

5.5 Reflections
After previously having success with 2.5D U-Net (Appendix B) on the BraTS
challenge, we were excited to apply the dataset to multiple medical segmenta-
tion tasks. The scores achieved in this project were lower than the ones achieved
by nnU-Net and lower than our previous results. The main difference was the
patch size, as it was changed to match the one used by SegCaps. In retrospect
we should probably have spent more time on optimizing automatic task-specific
things as patch size, preprocessing and postprocessing. This was the focus sug-
gested by the authors of nnU-net, who won the Medical Segmentation Decathlon
with an ensemble of simple U-Net models.

During the time we worked with SegCaps some mistakes were discovered, both
in the code base and in the research method. This brings out the importance of
reproducing research and not trust results blindly. Although the correction did
not change the performance significantly, one of the errors found in the source
code did impact the result score. In addition, our experiments showed that the
performance on LUNA16 was not representative of the general performance of
the architecture. We emphasize the importance of using quality assured datasets
when assessing the quality of a new architecture.

During this project, we could have spent time exploring other capsule network
topologies, that are not based on the U-Net style encode-decoder path. Instead
of spending lots of time on extending the SegCaps architecture into performing
multi-class segmentation, time could have been spent on changing the architec-
ture of SegCaps. The experiment with the original SegCaps showed unsatisfac-
tory results and this was not the best basis for building an even more complicated
architecture.

111



Chapter 6

Conclusion and Future Work

6.1 Conclusion
Early diagnosis and correct treatment are important for improving a patient’s qual-
ity of life and increasing their chance of survival. There is a countless number of
diseases and the criteria of diagnosis differ widely between them. Finding general
methods for automatic analysis of diseases can reduce the time and costs required.
Medical imaging is a common way of detecting diseases by examining the struc-
tures inside the body. Developing an automatic method for analyzing arbitrary
medical images is therefore of great value to the medical community.

In this project, we developed a general U-Net based framework for automatic seg-
mentation of medical images. The framework showed a promising ability to adapt
when challenged with six medical segmentation tasks. U-Net is already exten-
sively researched and finding new alternatives might be necessary for improving
the state of the art. For this reason, we tested and further developed segmenta-
tion architectures based on capsule networks. Capsule networks show potential,
despite requiring optimizations and continued research before being able to chal-
lenge U-Net.

6.2 Future Work
In the future, researchers should look into decreasing the memory consumption of
SegCaps. We do not believe that the architecture will be able to outperform U-Net
as it is, keeping in mind that the training process is a lot slower and requires way
more memory. Furthermore, loss functions should be researched to speed up the
learning process and increase the stability of learning. Other network topologies
should be explored further, which are more carefully tuned to work with capsules.

112



For example, exploring architectures without a downsampling and upsampling
path is interesting, as a fair amount spatial information may be lost during these
operations. The concatenation operations give some of the spatial information
back, but this does not appear to be the optimal approach of routing spatial infor-
mation in capsule networks, in our experience. Additionally, it could be of interest
to investigate 3D capsule networks. We hypothesize that the dynamic routing al-
gorithm will be able to efficiently make use of the added context information, by
encoding 3D information into capsules. 3D medical images, in particular, could
benefit from this approach, seeing that many body structures have a very different
appearance across image slices.

To improve EM-routing, we suggest looking at decreasing memory usage. The re-
source requirements did not allow us to use larger receptive fields than 3x3 in the
convolutional capsule kernels. With lower memory requirements, the complexity
of the network could have been increased and the effect on segmentation accuracy
could have been studied. Similar to SegCaps, the network topology might not be
optimal and should be researched further. As the loss function may have a huge
impact on the result, it would be interesting to develop new loss functions de-
signed for segmentation with EM-routing. With such modifications, EM-routing
could potentially be a realistic alternative to other segmentation methods in the
future.

113



Bibliography

[1] Abadi, M., et al., 2015. TensorFlow: Large-scale machine learning on het-
erogeneous systems. Software available from tensorflow.org.
URL https://www.tensorflow.org/

[2] Al-Rfou, R., et al., May 2016. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints abs/1605.02688.
URL http://arxiv.org/abs/1605.02688

[3] Anderson, R. M., 1993. The gross physiology of the cardiovascular system.
Racquet Press.

[4] Armato III, S., et al., 01 2011. The lung image database consortium
(lidc) and image database resource initiative (idri): A completed reference
database of lung nodules on ct scans. Medical Physics 38, 915–931.

[5] Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. CoRR
abs/1511.00561.
URL http://arxiv.org/abs/1511.00561

[6] Bottou, L., 2010. Large-scale machine learning with stochastic gradient de-
scent. Physica-Verlag HD, Heidelberg, pp. 177–186.

[7] Brenner, D. J., Hall, E. J., 2007. Computed tomography an increasing source
of radiation exposure. New England Journal of Medicine 357 (22), 2277–
2284, pMID: 18046031.

[8] Brooks, R., October 1977. A quantitative theory of the hounsfield unit and
its application to dual energy scanning. Journal of computer assisted tomog-
raphy 1 (4), 487493.
URL http://europepmc.org/abstract/MED/615229

[9] Caruana, R., Lawrence, S., Giles, C. L., 2001. Overfitting in neural nets:
Backpropagation, conjugate gradient, and early stopping. In: Advances in
neural information processing systems. pp. 402–408.

114

https://www.tensorflow.org/
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1511.00561
http://europepmc.org/abstract/MED/615229


[10] Chollet, F., et al., 2015. Keras. https://keras.io.

[11] Cleeland, C. S., Bennett, G. J., Dantzer, R., Dougherty, P. M., Dunn, A. J.,
Meyers, C. A., Miller, A. H., Payne, R., Reuben, J. M., Wang, X. S., Lee,
B.-N., 2003. Are the symptoms of cancer and cancer treatment due to a
shared biologic mechanism? Cancer 97 (11), 2919–2925.
URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/cncr.11382

[12] Cole, L., Kramer, P. R., 2016. Chapter 6.4 - cardiovascular disease. In:
Cole, L., Kramer, P. R. (Eds.), Human Physiology, Biochemistry and Basic
Medicine. Academic Press, Boston, pp. 201 – 204.
URL http://www.sciencedirect.com/science/article/
pii/B9780128036990000426

[13] Cross, M., 1993. Elements of human cancer. geoffrey m. cooper. The Quar-
terly Review of Biology 68 (3), 472–472.
URL https://doi.org/10.1086/418278

[14] Dice, L. R., 1945. Measures of the amount of ecologic association between
species. Ecology 26 (3), 297–302.
URL http://www.jstor.org/stable/1932409

[15] Dietterich, T. G., 2000. Ensemble methods in machine learning. In: Multiple
Classifier Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–
15.

[16] Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn,
J., Zisserman, A., Jan. 2015. The pascal visual object classes challenge: A
retrospective. International Journal of Computer Vision 111 (1), 98–136.

[17] Felsberg, M., 2017. Five years after the deep learning revolution of computer
vision : State of the art methods for online image and video analysis.

[18] Frank, S. A., Dec 2004. Inheritance of cancer. Discov Med 4 (24), 396–400.

[19] Girshick, R. B., 2015. Fast R-CNN. CoRR abs/1504.08083.
URL http://arxiv.org/abs/1504.08083

[20] Goodenberger, M. L., Jenkins, R. B., 2012. Genetics of adult glioma. Cancer
Genetics 205 (12), 613 – 621.
URL http://www.sciencedirect.com/science/article/
pii/S2210776212002608

115

https://keras.io
https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.11382
https://onlinelibrary.wiley.com/doi/abs/10.1002/cncr.11382
http://www.sciencedirect.com/science/article/pii/B9780128036990000426
http://www.sciencedirect.com/science/article/pii/B9780128036990000426
https://doi.org/10.1086/418278
http://www.jstor.org/stable/1932409
http://arxiv.org/abs/1504.08083
http://www.sciencedirect.com/science/article/pii/S2210776212002608
http://www.sciencedirect.com/science/article/pii/S2210776212002608


[21] Gordillo, N., Montseny, E., Sobrevilla, P., 2013. State of the art survey on
mri brain tumor segmentation. Magnetic Resonance Imaging 31 (8), 1426 –
1438.
URL http://www.sciencedirect.com/science/article/
pii/S0730725X13001872

[22] Hayat, M. A., 2010. Methods of Cancer Diagnosis, Therapy, and Prognosis.
Springer.

[23] He, K., Gkioxari, G., Dollár, P., Girshick, R. B., 2017. Mask R-CNN. CoRR
abs/1703.06870.
URL http://arxiv.org/abs/1703.06870

[24] He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image
recognition. CoRR abs/1512.03385.
URL http://arxiv.org/abs/1512.03385

[25] Hill, T., Marquez, L., O’Connor, M., Remus, W., 1994. Artificial neural
network models for forecasting and decision making. International Journal
of Forecasting 10 (1), 5 – 15.
URL http://www.sciencedirect.com/science/article/
pii/0169207094900450

[26] Hinton, G. E., Sabour, S., Frosst, N., 2018. Matrix capsules with em routing.

[27] Hornak, J. P., 2017. The basics of mri.

[28] Hubel, D. H., Wiesel, T. N., 1968. Receptive fields and functional architec-
ture of monkey striate cortex. Journal of Physiology (London) 195, 215–243.

[29] Hyman, B., Van Hoesen, G., Damasio, A., Barnes, C., 1984. Alzheimer’s
disease: cell-specific pathology isolates the hippocampal formation. Science
225 (4667), 1168–1170.
URL https://science.sciencemag.org/content/225/
4667/1168

[30] Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K. H.,
2018. Brain tumor segmentation and radiomics survival prediction: Contri-
bution to the BRATS 2017 challenge. CoRR abs/1802.10508.
URL http://arxiv.org/abs/1802.10508

[31] Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P. F., Kohl, S.,
Wasserthal, J., Koehler, G., Norajitra, T., Wirkert, S., et al., 2018. nnu-net:
Self-adapting framework for u-net-based medical image segmentation. arXiv
preprint arXiv:1809.10486.

116

http://www.sciencedirect.com/science/article/pii/S0730725X13001872
http://www.sciencedirect.com/science/article/pii/S0730725X13001872
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.03385
http://www.sciencedirect.com/science/article/pii/0169207094900450
http://www.sciencedirect.com/science/article/pii/0169207094900450
https://science.sciencemag.org/content/225/4667/1168
https://science.sciencemag.org/content/225/4667/1168
http://arxiv.org/abs/1802.10508


[32] Jiménez-Sánchez, A., Albarqouni, S., Mateus, D., 2018. Capsule networks
against medical imaging data challenges. CoRR abs/1807.07559.
URL http://arxiv.org/abs/1807.07559

[33] Kauppi, T., Kalesnykiene, V., Kamarainen, J.-K., Lensu, L., Sorri, I., Ra-
ninen, A., Voutilainen, R., Uusitalo, H., Klviinen, H., Pietil, J., 01 2007.
Diaretdb1 diabetic retinopathy database and evaluation protocol. Vol. 2007.

[34] Kingma, D. P., Ba, J., 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[35] Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Fred-
eric, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D.,
Abdalla, S., Willing, C., 2016. Jupyter notebooks – a publishing format for
reproducible computational workflows. In: Loizides, F., Schmidt, B. (Eds.),
Positioning and Power in Academic Publishing: Players, Agents and Agen-
das. IOS Press, pp. 87 – 90.

[36] Krizhevsky, A., Sutskever, I., E. Hinton, G., 01 2012. Imagenet classifica-
tion with deep convolutional neural networks. Neural Information Process-
ing Systems 25.

[37] Krogh, A., Hertz, J. A., 1992. A simple weight decay can improve gener-
alization. In: Advances in neural information processing systems. pp. 950–
957.

[38] LaLonde, R., Bagci, U., 2018. Capsules for object segmentation. arXiv
preprint arXiv:1804.04241.

[39] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86 (11), 2278–
2324.

[40] LeCun, Y., Cortes, C., 2010. MNIST handwritten digit database.
URL http://yann.lecun.com/exdb/mnist/

[41] LeCun, Y., Huang, F. J., Bottou, L., et al., 2004. Learning methods for
generic object recognition with invariance to pose and lighting. In: CVPR
(2). Citeseer, pp. 97–104.

[42] LeCun, Y., Touresky, D., Hinton, G., Sejnowski, T., 1988. A theoretical
framework for back-propagation. In: Proceedings of the 1988 connection-
ist models summer school. Vol. 1. CMU, Pittsburgh, Pa: Morgan Kaufmann,
pp. 21–28.

117

http://arxiv.org/abs/1807.07559
http://yann.lecun.com/exdb/mnist/


[43] Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for
semantic segmentation. CoRR abs/1411.4038.
URL http://arxiv.org/abs/1411.4038

[44] Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-
Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P.,
Ellison, D. W., 2016. The 2016 world health organization classification of
tumors of the central nervous system: a summary. Acta neuropathologica
131 (6), 803–820.

[45] Maska, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Ur-
biola, A., Espaa, T., Venkatesan, S., Balak, D., Karas, P., Bolckov, T., tre-
itov, M., Carthel, C., Coraluppi, S., Harder, N., Rohr, K., Magnusson, K.,
Jaldn, J., Ortiz-de Solorzano, C., 02 2014. A benchmark for comparison of
cell tracking algorithms (advanced access 10.1093/bioinformatics/btu080).
Bioinformatics 30.

[46] Mathews, J. D., Forsythe, A. V., Brady, Z., Butler, M. W., Goergen, S. K.,
Byrnes, G. B., Giles, G. G., Wallace, A. B., Anderson, P. R., Guiver, T. A.,
McGale, P., Cain, T. M., Dowty, J. G., Bickerstaffe, A. C., Darby, S. C.,
2013. Cancer risk in 680 000 people exposed to computed tomography scans
in childhood or adolescence: data linkage study of 11 million australians.
BMJ 346.
URL https://www.bmj.com/content/346/bmj.f2360

[47] McCulloch, W. S., Pitts, W., Dec 1943. A logical calculus of the ideas im-
manent in nervous activity. The bulletin of mathematical biophysics 5 (4),
115–133.
URL https://doi.org/10.1007/BF02478259

[48] Menze, B. H., et al., Oct 2015. The multimodal brain tumor image segmen-
tation benchmark (BRATS). IEEE Transactions on Medical Imaging 34 (10),
1993–2024.

[49] Oliphant, T., 2006. NumPy: A guide to NumPy. USA: Trelgol Publishing.
URL http://www.numpy.org/

[50] Prull, M., Gabrieli, J., Bunge, S., 01 2000. Age-related changes in memory:
A cognitive neuroscience perspective. pp. 91–153.

[51] Purves, D., 2001. Neuroscience (Book with CD-ROM). Sinauer Associates
Inc.
URL https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/

118

http://arxiv.org/abs/1411.4038
https://www.bmj.com/content/346/bmj.f2360
https://doi.org/10.1007/BF02478259
http://www.numpy.org/
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420


dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&
tag=chimbori05-20&linkCode=xm2&camp=2025&creative=
165953&creativeASIN=0878937420

[52] Ren, S., He, K., Girshick, R. B., Sun, J., 2015. Faster R-CNN: towards real-
time object detection with region proposal networks. CoRR abs/1506.01497.
URL http://arxiv.org/abs/1506.01497

[53] Ren, W., Shengen, Y., Yi, S., Qingqing, D., Gang, S., 2015. Deep image:
Scaling up image recognition. CoRR abs/1501.02876, withdrawn.
URL http://arxiv.org/abs/1501.02876

[54] Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks
for biomedical image segmentation. In: International Conference on Medi-
cal image computing and computer-assisted intervention. Springer, pp. 234–
241.

[55] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., Fei-Fei, L., 2015.
ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision (IJCV) 115 (3), 211–252.

[56] Sabour, S., Frosst, N., Hinton, G. E., 2017. Dynamic routing between cap-
sules. In: Advances in neural information processing systems. pp. 3856–
3866.

[57] Seide, F., Agarwal, A., 08 2016. Cntk: Microsoft’s open-source deep-
learning toolkit. pp. 2135–2135.

[58] Simard, P. Y., Steinkraus, D., Platt, J. C., 2003. Best practices for convolu-
tional neural networks applied to visual document analysis. IEEE, p. 958.

[59] Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition. CoRR abs/1409.1556.
URL http://arxiv.org/abs/1409.1556

[60] Simpson, A. L., et al., 2019. A large annotated medical image dataset
for the development and evaluation of segmentation algorithms. CoRR
abs/1902.09063.
URL http://arxiv.org/abs/1902.09063

[61] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.,
2014. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15 (1), 1929–1958.

119

https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
https://www.amazon.com/Neuroscience-Book-CD-ROM-Dale-Purves/dp/0878937420?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0878937420
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1501.02876
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1902.09063


[62] Suh, J. K., Lee, J., Lee, J.-H., Shin, S., jin Tchoe, H., Kwon, J.-W., Oct.
2018. Risk factors for developing liver cancer in people with and without
liver disease. PLOS ONE 13 (10), e0206374.
URL https://doi.org/10.1371/journal.pone.0206374

[63] Sun, T., Wang, Z., Smith, C. D., Liu, J., 2019. Trace-back along capsules
and its application on semantic segmentation. CoRR abs/1901.02920.
URL http://arxiv.org/abs/1901.02920

[64] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A., 2014. Going deeper with convolutions.
CoRR abs/1409.4842.
URL http://arxiv.org/abs/1409.4842

[65] Veta, M., Heng, Y. J., Stathonikos, N., Bejnordi, B. E., Beca, F., Wollmann,
T., Rohr, K., Shah, M. A., Wang, D., Rousson, M., Hedlund, M., Tellez, D.,
Ciompi, F., Zerhouni, E., Lanyi, D., Viana, M., Kovalev, V., Liauchuk, V.,
Phoulady, H. A., Qaiser, T., Graham, S., Rajpoot, N., Sjblom, E., Molin, J.,
Paeng, K., Hwang, S., Park, S., Jia, Z., Chang, E. I.-C., Xu, Y., Beck, A. H.,
van Diest, P. J., Pluim, J. P., 2019. Predicting breast tumor proliferation
from whole-slide images: The tupac16 challenge. Medical Image Analysis
54, 111 – 121.
URL http://www.sciencedirect.com/science/article/
pii/S1361841518305231

[66] Walker, B. R., Colledge, N. R., Ralston, S. H., Penman, I. D., 2014. David-
son’s Principles and Practice of Medicine. Churchill Livingstone.

[67] Xiao, H., Rasul, K., Vollgraf, R., 2017. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR abs/1708.07747.
URL http://arxiv.org/abs/1708.07747

[68] Yadav, D., B Lowenfels, A., 06 2013. The epidemiology of pancreatitis and
pancreatic cancer. Gastroenterology 144, 1252–61.

[69] Yushkevich, P. A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S.,
Gee, J. C., Gerig, G., 2006. User-guided 3D active contour segmentation
of anatomical structures: Significantly improved efficiency and reliability.
Neuroimage 31 (3), 1116–1128.

[70] abi, S., Wang, Q., Morton, T., Brown, K. M., 2013. A low dose simulation
tool for ct systems with energy integrating detectors. Medical Physics
40 (3), 031102.

120

https://doi.org/10.1371/journal.pone.0206374
http://arxiv.org/abs/1901.02920
http://arxiv.org/abs/1409.4842
http://www.sciencedirect.com/science/article/pii/S1361841518305231
http://www.sciencedirect.com/science/article/pii/S1361841518305231
http://arxiv.org/abs/1708.07747


URL https://aapm.onlinelibrary.wiley.com/doi/abs/
10.1118/1.4789628

121

https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4789628
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4789628


Appendix A

Additional Results

A.1 2.5D U-Net

Figure A.1: Activation slice from the spleen dataset when a 2.5D U-Net model was
trained using Dice loss. Top row shows network output activations, while bottom row
shows expected activations. Red indicates a high output activation.

122



A.2 SegCaps

Epochs
(Split-0)

Epochs
(Split-1)

Epochs
(Split-2)

Epochs
(Split-3)

Minutes
per epoch

LUNA16 69 70 41 33 88
Spleen 59 50 79 56 89
Heart 82 42 29 57 39

Table A.1: Number of epochs trained on each split before early-stopping for the datasets,
reported in minutes per epoch. The last column is the average training time in minutes per
epoch reported using a single Nvidia P100 GPU.

Dataset Split-0 Split-1 Split-2 Split-3

LUNA16 5.4 5.3 5.2 5.2
Spleen 69.0 69.0 69.4 70.9
Heart 145.7 150.1 139.1 146.4

Table A.2: Class weights for the different splits for SegCaps when using weighted binary
cross-entropy loss

Split-0 Split-1 Split-2 Split-3 Average

Lungs (Original results) 98.467 98.189 98.072 98.238 98.242
Lungs (Fixed labels) 98.364 98.275 98.159 98.623 98.355

Table A.3: Percentages of correct classification (Dice score) on different splits of the
LUNA16 dataset before and after fixing an issue in test code. Numbers reported in me-
dian.

123



A.3 Multi-SegCaps

Split-0 Split-1 Split-2 Split-3 Average

Spleen 0 0 0 0 0

Table A.4: Percentages of correct classification (Dice score) on different splits of the
spleen dataset when using Dice loss. Numbers reported in mean.

Figure A.2: Loss graph from the spleen dataset when training Multi-SegCaps using Dice
loss.

124



Figure A.3: Segmentation slices from spleen dataset when training Multi-SegCaps using
Dice loss. Top row shows predictions, while bottom row shows labels.

125



Figure A.4: Activation slice from the spleen dataset when a Multi-SegCaps model is
trained using Dice loss. Top row shows network output activations, while bottom row
shows expected activations. Red indicates a high output activation.

Class Split-0 Split-1 Split-2 Split-3

Background 0.01428 0.01429 0.01421 0.01391
Spleen 0.9857 0.98571 0.98579 0.98608

Table A.5: Class weights for the different splits of the spleen dataset for Multi-SegCaps
when using weighted cross-entropy.

126



Appendix B

NAIS Submission

A position paper was delivered for the NAIS Symposium 20191. It was accepted
as a poster for the conference. The position paper was based on both previous
research by the authors, as well as the work done in this thesis.

1https://www.aisociety.no/nais2019/

127



Medical Image Segmentation using U-Net and
SegCaps

Jenny Stange Johansen?, Mathias Aarseth Pedersen∗, and Frank Lindseth ??

Norwegian University of Science and Technology

Abstract. In recent years, automatic image segmentation using deep
learning has shown great results. A CNN architecture developed by Ron-
neberger et al. in 2015 known as U-Net, is commonly applied to medical
image segmentation[6]. Further, a new architecture called SegCaps, based
on capsules networks has been introduced[3]. Even though medical im-
age segmentation has made great strides, it is still a complex task and
continuing research in this area is important.

A U-Net variant based on an article by Isensee et al.[2] was developed, as
well as a SegCaps model able to segment an arbitrary number of classes.
Two U-Net architectures were implemented, one for segmentation of 3D
volumes, and a 2.5D architecture for segmentation of single 2D slices us-
ing four of its neighbour slices. The U-Net models were trained to perform
brain tumor segmentation on the BraTS 2017 dataset. The 3D model was
able to achieve very good Dice scores of 88.9%, 83.8% and 79.5% for the
whole tumor, tumor core and enhancing tumor, respectively. Surpris-
ingly, the 2.5D model had an overall better performance achieving Dice
scores of 89.5%, 82.9% and 80.6%. The multi-class SegCaps model was
applied to two different datasets, showing the ability to segment several
classes performing reasonably well. Dice scores of 68.2% were achieved
for left atrium and scores of 71.4% and 70.2% were acheived for anterior
and posterior hippocampus, respectively.

Keywords: Medical Image Segmentation · U-Net · SegCaps

1 Introduction

Medical imaging is concerned with creating images of the human body. This
includes both internal structures and their function. Imaging technologies are
important tools for diagnosing disease and monitoring treatment response. The
analysis of medical images is a time consuming task which requires expert knowl-
edge; a type of problem that is well suited for many machine learning algorithms.
Medical image segmentation attempts to extract and locate the precise location
of organs, tumours and other structures of interest, with the intention of aiding
health professionals in making accurate diagnoses in a shorter amount of time.

? These authors contributed equally to this work.
?? https://orcid.org/0000-0002-4979-9218



2 Johansen and Pedersen

In recent years, convolutional neural networks has been commonly used for
image analysis problems. A successful application of CNN to the task of image
segmentation was shown by Long et. al. in 2014, when they introduced fully
convolutional networks[4]. The performance was improved by the elegant fully-
convolutional U-Net architecture, published by Ronneberger et al. in the paper
U-Net: Convolutional Networks for Biomedical Image Segmentation[6].

In 2017, Isensee et al. created a new U-Net type architecture, showing state
of the art performance on the task of multimodal brain tumour segmentation
using the BraTS dataset[2]. The architecture was residual and worked directly
with 3D patches of medical images.

Sabour et al. presented a brand new neural network architecture in the paper
Dynamic routing with capsules from 2017[7]. They showed that capsule networks
gave state of the art performance on the task of classifying highly overlapping
digits in the MNIST dataset, proving CapsNet to be an efficient architecture for
learning this type of problem.

Building on the work of capsule networks, LaLonde et al. presented a method
for performing binary image segmentation using capsule networks in their pa-
per Capsules for Object segmentation[3]. The number of parameters needed by
the architecture was reduced substantially compared to other capsule network
implementations, by constraining the dynamic routing to capsules only in a de-
fined kernel. The network showed good results when tested on lung segmentation
using the LUNA16 dataset.

In 2018, Hinton et al. released the paper Matrix capsules with EM routing [1].
The authors claimed that the EM-routing algorithm solves most of the issues
with the routing algorithm from Dynamic routing with capsules. It reduces the
number of parameters needed, as well as using a metric of agreement that does
not saturate with highly confident predictions. It gave state of the art perfor-
mance at detecting objects at novel viewpoints on the smallNORB dataset.

2 Methodology, Contributions and Datasets

U-Net based models Two U-Net based models were used to study the benefits
of using 3D convolutions directly on volumetric data, compared to using regular
2D-convolutions on 5 neighbouring slices of the same volume. The 3D model
was based on the architecture by Isensee et al.[2], and the 2.5D model was
identical, except that 3D operations were replaced with 2D operations. The
replaced operations were convolutions, spatial dropout and nearest neighbour
upsampling.

SegCaps based models The SegCaps architecture by LaLonde et al.[3], was
extended to perform multi-class image segmentation, while also supporting mul-
tiple input slices and multiple modalities. The architecture was constructed using
convolutional and deconvolutional capsule layers as building blocks in a U-Net
type encoder-decoder architecture. The convolutional capsule layers attempt to



Medical Image Segmentation using U-Net and SegCaps 3

predict the outputs for the next capsule layer in the network using the locally-
constrained dynamic routing algorithm.

The architecture used was identical to binary SegCaps until the last out-
put segmentation capsule layer. In the binary segmentation architecture, the
segmentation layer consists of a single 16D capsule that is shared between all
pixels. The euclidean length of this capsule at locations in the image decide if
a given pixel should be assigned to the background class or the positive class.
In the developed multi-class SegCaps architecture, the segmentation layer has
as many capsules as there are classes in the dataset, including background. The
class represented by the capsule having the longest euclidean length, is simply
the predicted class for a given pixel.

To extend input reconstruction to an arbitrary number of classes, only pix-
els labelled as not background were reconstructed. The reconstruction layers
attempts to reconstruct every input modality provided. The purpose of using
input reconstruction is to incentivize the network to create meaningful represen-
tations of structures in the data.

Datasets Images from the BraTS 2017 dataset[5] that was compiled for the
Medical Image Decathlon competition[8] were used in the experiments. They
were normalized and augmented. The dataset consists of MRI images with four
modalities: Flair, t1-weighted, t1-weighted with gadolinium and t2-weighted. All
image modalities were provided to the network as separate input channels.

The heart dataset was obtained from the Medical Segmentation Decathlon[8].
The goal is to segment the left atrium from one modality MRI images. The
dataset was normalized and augmented.

The hippocampus dataset, was like the other datasets retrieved from the the
Medical Segmentation Decathlon image collection. The hippocampus dataset
has two positive classes, anterior and posterior hippocamus. The dataset was
normalized and augmented.

3 Experiments and results

3.1 3D and 2.5D U-Net models

The 3D U-Net model was trained using image patches and labels of 128x128x128
voxels that were randomly sampled from BraTS training images. The 2.5D U-
net model was trained using randomly sampled patches of 128x128x5 voxels,
with a corresponding 128x128 pixel label belonging to the slice in the middle of
the 5 provided. The other four slices were given as additional input channels to
support the segmentation of the middle slice. An overview can be seen in Table
1. Both models were trained using Jaccard-Dice loss.

Table 2 gives an overview of the performance of the 3D model and the 2.5D
model. The performance was measured using the Dice coefficient, recall, and
precision on the different part of the segmentation. The measurements are given
for the whole tumor, the tumor core and the enhancing tumor. The calculations



4 Johansen and Pedersen

Convolution
type

Slice size Epochs Minibatch
size

Image modalities

3D U-Net 3D 128x128x128 300 2 FLAIR, T1w, T1Gd, T2w
2.5D U-Net 2D 128x128x5 300 32 FLAIR, T1w, T1Gd, T2w

Table 1. An overview of U-Net models trained for brain tumour segmentation.

were made using 96 images from the BraTS 2017 dataset, which was not used
during training. An example of segmentation from the 2.5D U-Net can be viewed
in Figure 1.

Model
Dice Precision Recall

Whole Core Enh. Whole Core Enh. Whole Core Enh.

3D U-Net 88.9 83.8 79.5 94.3 88.8 78.8 84.0 79.3 80.1
2.5D U-Net 89.5 82.9 80.6 90.3 87.5 80.5 88.7 78.7 80.6

Table 2. Results on validation data for the U-Net models showing percent Dice scores.

Fig. 1. Segmentation of two images using 2.5D U-Net. From left to right: FLAIR im-
age, ground truth and prediction. Edema, enhancing tumor and non-enhancing tumor,
marked in blue, green and red, respectively.

3.2 Multi-class SegCaps

The multi-class SegCaps model was trained on the heart dataset and the hip-
pocampus dataset. Both experiments used four splits for training. The loss



Medical Image Segmentation using U-Net and SegCaps 5

functions used were weighted binary cross-entropy for segmentation and mean
squared error for reconstruction. The training was performed using a batch size
of 1, due to memory limitations.

Heart The performance of multi-class SegCaps trained on the heart dataset can
be seen in Table 3. The experiment shows fairly good results, but the performance
has a high variance. An example segmentation can be seen in Figure 2.

Split-0 Split-1 Split-2 Split-3 Average

Left Atrium 68.0 60.9 77.2 66.8 68.2

Table 3. Percentages of correct classification (percent of dice score) on the mean
average for different splits of the heart dataset.

Fig. 2. Slices from an example image from heart segmentation. The upper row shows
predictions, while the second row shows ground truth. The score of this particular
volume was 76.8%.

Hippocampus Table 4 shows the result of training multi-class SegCaps on
the hippocampus dataset. The Dice scores show that the architecture is able to
segment two classes with high performance. An example of segmentation can be
seen in Figure 3.



6 Johansen and Pedersen

Split-0 Split-1 Split-2 Split-3 Average

Anterior 69.8 70.4 73.6 72.0 71.4
Posterior 69.7 67.8 68.1 75.2 70.2

Table 4. Percentages of correct classification (percent of dice score) on the mean
average for different splits of the hippocampus dataset.

Fig. 3. The upper row shows predictions, while the second row shows ground truth. The
dice score of this particular image was 76.5% for anterior hippocampus class (green)
and 79.1% for the posterior hippocampus class (red).

4 Conclusion and future work

For the 3D and the 2.5D U-Net architectures, the differences to Isensee et al. were
minor, yet we achieved slightly better Dice scores than they did. There might be
several reasons for this, including the use of a larger subset of the BraTS dataset
for training, a larger amount of elastic deformations and using a different loss
function. Surprisingly, the model we developed for 2.5D segmentation achieved
a higher Dice score than the 3D model on both whole tumor and enhancing
tumor. This could mean that global context information is less important for
tumor segmentation then we initially thought.

A CapsNet architecture was developed showing its ability to segment several
output classes. The performance on the datasets was lower than state of the art
results for U-Net models[8]. However, we believe that the results were promising.
In the future, modifications allowing of a lower memory consumption could be
interesting to look at. This would allow for a larger batch size and more efficient
training. We continue our research by applying the architecture to the BraTS
dataset, which might give more insights to the future of multi-class segmentation
by using SegCaps. Further we are also looking at EM-routing for SegCaps, which
could allow for segmentation using drastically less parameters.



Medical Image Segmentation using U-Net and SegCaps 7

References

1. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with em routing (2018)
2. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain

tumor segmentation and radiomics survival prediction: Contribution to the BRATS
2017 challenge. CoRR abs/1802.10508 (2018), http://arxiv.org/abs/1802.

10508

3. LaLonde, R., Bagci, U.: Capsules for object segmentation. arXiv preprint
arXiv:1804.04241 (2018)

4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. CoRR abs/1411.4038 (2014), http://arxiv.org/abs/1411.4038

5. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.,
Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso,
J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, ., Durst, C.R., Dojat, M.,
Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X.,
Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari,
D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Raviv, T.R., Reza,
S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H., Shotton, J., Silva, C.A.,
Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison,
N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic,
D., Prastawa, M., Reyes, M., Leemput, K.V.: The multimodal brain tumor image
segmentation benchmark (BRATS). IEEE Transactions on Medical Imaging 34(10),
1993–2024 (Oct 2015). https://doi.org/10.1109/TMI.2014.2377694

6. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical
image segmentation. In: International Conference on Medical image computing and
computer-assisted intervention. pp. 234–241. Springer (2015)

7. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. CoRR
abs/1710.09829 (2017), http://arxiv.org/abs/1710.09829

8. Simpson, A.L., Antonelli, M., Bakas, S., Bilello, M., Farahani, K., van Ginneken,
B., Kopp-Schneider, A., Landman, B.A., Litjens, G.J.S., Menze, B.H., Ronneberger,
O., Summers, R.M., Bilic, P., Christ, P.F., Do, R.K.G., Gollub, M., Golia-Pernicka,
J., Heckers, S., Jarnagin, W.R., McHugo, M., Napel, S., Vorontsov, E., Maier-Hein,
L., Cardoso, M.J.: A large annotated medical image dataset for the development
and evaluation of segmentation algorithms. CoRR abs/1902.09063 (2019), http:
//arxiv.org/abs/1902.09063


