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Abstract

The football betting market is an enormous market, with numerous bookmakers
allowing hopeful punters to place bets on almost every aspect of a match. The
most popular aspect of football betting is placing bets on the final match outcome.
Predicting these outcomes is a difficult task given the complexity of the game, but
by consistently producing better predictions than the bookmaker, an opportunity
to make a profit on the market may arise.

In this thesis, two match prediction models using artificial neural networks are
developed, where one is a fully data-driven adaptation of a successful Bayesian
network model utilizing domain expert knowledge. The effect of utilizing domain
knowledge in the structure of neural networks is explored by grouping related input
features into separate sub-networks.

The profitability of the models is evaluated over two seasons of the English
Premier League using different money management strategies. Experiments in
using reinforcement learning methods to train a money management agent are
performed to explore the possibility of building a complete end-to-end betting
system.

Some model-strategy combinations were able to generate a profit over both
test seasons, showing that it is indeed possible to profit from football betting
using artificial neural networks.
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Sammendrag

Markedet for fotballtipping er enormt, og mange tippeselskaper lar h̊apefulle spillere
plassere veddemål p̊a omtrent alle aspekter av en kamp. Det mest populære ved-
demålet er å spille p̊a kampens sluttresultat. Å forutsi disse utfallene er en vanske-
lig oppgave p̊a grunn av spillets kompleksitet, men ved å konsekvent produsere
bedre forutsigelser enn tippeselskapene kan muligheten for profitt vise seg.

I denne oppgaven blir to kamppredikeringsmodeller basert p̊a nevrale nettverk
utviklet, hvor en er en fullstendig datadreven tilpasning av en vellykket Bayesiansk
nettverks-modell avhengig av kunnskapen til en domeneekspert. Effekten av å ut-
nytte domenekunnskap i strukturen av nevrale nettverk er utforsket ved å gruppere
relaterte inputvariable i separate sub-nettverk.

Lønnsomheten til modellene er evaluert over to sesonger av den engelske Pre-
mier League med ulike spillstrategier. Eksperimenter med å bruke metoder fra
reinforcement learning for å trene en spillstrategi-agent blir utført for å utforske
muligheten til å bygge et komplett ende-til-ende spillsystem.

Enkelte modell-strategi-kombinasjoner klarte å generere profitt over begge test-
sesongene, som viser at det er mulig å profittere fra fotballtipping med kunstige
nevrale nettverk.
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Chapter 1
Introduction

Association Football (hereafter referred to as simply football) is a sport which
engages fans all over the world. In a professional game played in a top league in
Europe, several thousands of fans can be present at the stadium and millions could
be watching on the television.

Due to its enormous popularity and interest, football has also become very popular
in the field of sports betting. Many people dedicate all of their spare time to try
and analyze every inch of this game so that they may be able to make accurate
predictions of multiple aspects in a game of football, whether it is predicting the
final result, how many goals are scored in the game or which player receives a red
card. Being able to correctly predict these outcomes is not so straightforward,
however. There are an enormous number of factors that may contribute to the
final result in a game of football. Which players are playing, the strengths of each
team, who are playing at home and recent form are all examples of factors that
could influence the outcome of a game.

Even with so many different factors and the high complexity of the game, several
researchers have taken an interest in building models which can reliably predict
the outcomes of matches. These models have mostly been based on statistical
data, and they have yet to provide bettors a major breakthrough which can make
them able to beat the bookmakers at their own game. In the current age of
Big Data, sports are no exception; services like Understat.com and Opta Sports
gather and store data from thousands of games in all kinds of sports worldwide.
This data foundation, combined with enormous quantities of historical data which
these companies also supply, may enable new angles and interesting models, if one



2 Goals and Research Questions

is able to manage it correctly.

The focus and motivation for this thesis is to create models for predicting the
outcomes of football matches and generating a profit on the betting market. By
combining the force of machine learning methods and the vast data foundation
we aim to create a data-driven system able to do such. This report will explore
how different machine learning methods, specifically artificial neural networks and
reinforcement learning, can be used for this purpose.

1.1 Goals and Research Questions

To guide our research throughout this project, the following research goal has been
formulated:

Goal Explore the possibilities of generating a profit on the football betting market
using data-driven machine learning methods.

In order to achieve this goal, the following research questions were formed:

Research question 1 Can football matches be adequately predicted by artificial
neural networks?

Betting companies provide odds on match outcomes for football matches, and these
can be viewed as a prediction of the outcome by the bookmakers. For a prediction
model to be successful, it needs to model the true probability distribution for match
outcomes for matches better than what the bookmakers do. Our thesis aims to
find out if the power of artificial neural networks and its ability to extract patterns
from a large set of features can be applied to adequately predict the outcome of
football matches.

Research question 2 Does utilizing domain knowledge in the structure of arti-
ficial neural networks increase their predictive performance?

In a fully connected feed-forward neural network trained by gradient descent back-
propagation, the connections between neurons are strengthened or weakened dur-
ing training to try to capture their related effect on the output. As the designers
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of an experiment, we may already have a preconceived notion that certain input
features might be more closely related than others. By using this domain knowl-
edge, the network could be constructed in such a way that related features are
grouped together and isolated from the rest of the features for a number of layers,
allowing the network to find valuable intermediary representations, before treating
the problem as a whole. This research question concerns the performance of such a
network, compared to a network using the same features, but in a more traditional
fully connected setup.

Research question 3 Under what assumptions can standard reinforcement learn-
ing methods be used to learn an approximately optimal money management
strategy?

When using artificial neural networks as a predictor, it is easy to think of the
output of a softmax layer as representing the model’s confidence. However, that
is not the case, as a model can be uncertain in its predictions even with a high
softmax output (Gal [2016]). As most money management strategies for sports
betting use the punter’s perceived probability of each outcome to determine how
to place bets, using the output of a prediction model might not yield the best
results. This output might not directly represent the model’s confidence in each
outcome.

Because of this, we wish to explore the possibilities of using reinforcement learning
methods to train a money management system, using the output of the prediction
models as input, yielding a complete end-to-end betting system.

1.2 Thesis Structure

This section presents an overview of the rest of the thesis.

• Chapter 2 presents relevant background theory in order to understand the
contents of this report, such as artificial neural networks, reinforcement learn-
ing and an accuracy metric suitable for outcome prediction models.

• Chapter 3 presents related research on football match prediction and money
management strategies.



4 Thesis Structure

• Chapter 4 presents the proposed match prediction models, as well as ex-
ploratory experiments in using reinforcement learning for money manage-
ment.

• Chapter 5 presents the data sources used for the experiments conducted in
this project, as well as a brief overview of the software components built to
facilitate these experiments.

• Chapter 6 presents the experiments conducted and their results in terms
of both accuracy and profitability.

• Chapter 7 presents a discussion of the performance and limitations of the
different prediction models and money management strategies.

• Chapter 8 presents the conclusion and summarizes our findings in light of
the research questions. Suggestions for future improvement of the system
and experiments are also presented.



Chapter 2
Background Theory

This chapter presents the background theory which is essential for understanding
the upcoming chapters in this report. Section 2.5 and Section 2.1 were part of a
specialization project done at NTNU (Nielsen and Sandøy [2018]).

2.1 Artificial Neural Networks

Artificial neural networks (ANN) are a computational model inspired by neuro-
science. The concept enables a computer to learn from observational data and
it can be used to extract patterns and recognize trends in the data that are too
complex for a human to process. In particular, the model is based on the hypoth-
esis that human mental activity consists primarily of electrochemical activity in
networks of brain cells called neurons (Russell and Norvig [2016]). Inspired by
this hypothesis, some of the earliest AI work aimed to create artificial neural
networks, and McCulloch and Pitts [1943] devised a simple mathematical model
of a human neuron. This concept was extended by Rosenblatt [1958] and he called
this model a perceptron. This is illustrated in Figure 2.1. The concept is that a
perceptron activates when a linear combination of its inputs exceeds some thresh-
old, much like how human neurons activates when given a certain stimulation.
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Figure 2.1: A simple mathematical model for a neuron. Taken from Russell and
Norvig [2016]

By chaining perceptrons together in a layered network and by varying the weights
and activation thresholds, one can get different models of decision-making, which
makes neural networks a very flexible architecture. Perceptrons in each layer
can make decisions by weighing up the results from the preceding layer which
makes the decision more complex and abstract. Multilayer networks can engage
in sophisticated decision making. A neural network is illustrated in Figure 2.2.
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Figure 2.2: A simple feed-forward neural network with one hidden layer. Here one
can see the directed links between the nodes in each layer and its corresponding
weights.

The weights between layers in a neural network are tuned by a process called
backpropagation. After the network has forward-propagated its input signals
and calculated an output, the backpropagation phase begins. The idea of back-
propagation is to tweak the generated output toward the desired target output.
Here the generated output is compared to the target output using a loss function.
This loss function calculates the difference between the generated output and the
target output. Since the input is constant for each case, it is only the weights that
need to be tweaked, and the idea is that changes in the weights cause changes in
the output. After calculating the error, the errors propagate backwards through
the network, calculating an error gradient value for each neuron in the layers, with
respect to the weights.
These errors are then fed to a optimization function, which adjusts the neuron
weights with respect to minimizing the loss calculated by the loss function. Gra-
dient Descent is a very common optimization function which is used in backprop-
agation. This algorithm follows the gradient of the function to be optimized until
a minimum is reached. The speed of the convergence is controlled by the learning
rate α, which needs to be chosen carefully. Too high learning rate can lead to the
algorithm becoming unstable, while too low learning rate can lead to getting stuck
in local minima. Algorithm 1 displays the Gradient Descent Algorithm.
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Algorithm 1 Gradient Descent algorithm

w ← tensor of all weights in the network
α ← learning rate
loop until convergence do

for each wi in w do
wi ← wi − α ∂

∂wi
Loss(w)

This gives neural networks an ability to generalize and to respond to unexpected
inputs in pattern recognition. The neurons are taught to recognize various spe-
cific patterns and whether or not to fire when that pattern is given as input. If
given enough examples, a network can then generalize and learn the relationships
between the input variables. In our case, a neural network may be able to spot
the relationships between the features we think have the most impact on a match
result and also recognize some patterns that are unknown to us when predicting
a match outcome.

2.2 Reinforcement learning

Reinforcement learning is a class of machine learning methods where an agent
learns to achieve a goal by performing actions on its environment. Unlike super-
vised learning methods, there is no training set of labeled examples. Instead, the
agent must explore its environment, and observe how it changes based on its ac-
tions. The following explanation of reinforcement learning agents is adapted from
Sutton and Barto [2018].

Beyond the agent itself and the environment it operates in, there are four main
elements of a reinforcement learning system: a policy, a reward signal, a value
function, and optionally a model of the environment (Sutton and Barto [2018]).

The policy πt defines the agent’s behavior at timestep t, and is a function mapping
the observed state st of the environment with state space S, to an action at in the
agent’s action space A, i.e

π : S → A (2.1)

The reward signal is sent from the environment to the agent on each timestep, and
consists of a single number called the reward. The reward signal defines the goal
of the agent, as the agent’s objective is to maximize its total accumulated reward.
This reward signal is used to alter the agent’s policy; if the selected action results
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in a low reward, the policy may be changed to prefer another action in the given
situation in the future.

Where the rewards signalize the immediate desirability of an environmental state,
the value function evaluates how beneficial a given state is in the long term. The
value of a state represents the total amount of reward the agent can expect in the
future, starting from this state using its current policy π. When choosing between
possible actions, the agent bases its choice on the values of the resulting states,
and not the rewards. The problem lies in the fact that the values are harder to
determine than the rewards, generally requiring estimations and recalculation as
the agent explores more of the environment. As this value estimation governs the
actions made by the agent, a method for estimating the value of states is the most
important component of most reinforcement learning algorithms.

The final element used in some reinforcement learning systems is a model of the
environment. The model is the agent’s internal representation of the environment’s
behavior, and allows the agent to make inferences of how the environment will
change based on its actions. Model-based reinforcement learning methods generally
use their model for planning, while model-free methods take a simpler trial-and-
error approach to learning.

2.2.1 Markov Decision Processes

The Markov decision process (MDP) is the mathematical foundation for most re-
inforcement learning systems, and frames the problem of learning from interaction
to achieve a goal. Central to this process is the interaction between the agent
and the environment, where the agent selects and performs an action, and the
environment responds.

Figure 2.3: The agent-environment interaction in an MDP, from Sutton and Barto
[2018]
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The interaction is formalized over a sequence of discrete time steps, t = 0, 1, 2, ....
At each time step t, the agent receives a representation of the environment’s state,
St ∈ S, and based on this state, the agent selects an action, at ∈ A(s). On the
subsequent time step, the agent then receives a reward rt+1 ∈ R ⊂ R, as well as
the resulting next state St+1.

When the state, action and reward spaces (S,A,R) have a finite number of ele-
ments, the dynamics of the MDP can be defined by

p(s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s, At−1 = a} (2.2)

for all s′, s ∈ S, r ∈ R and a ∈ A.

The defining characteristic of an MDP is that the probability of each possible value
for St and Rt is dependent only on the immediately preceding state and action
St−1 and At−1, not on a sequence of preceding states and actions. This is called
the Markov property, and should be seen as a property of the state, more than a
restriction on the actions.

Because of the Markov property, Equation 2.2.1 completely characterize the envi-
ronment, and interesting properties of the environment can be computed from it.
For instance, the state-transition probabilities

p(s′|s, a) = Pr{St = s′|St−1 = s, At−1 = a} =
∑
r∈R

p(s′, r|s, a)

and the expected reward for a given state-action pair

r(s, a) = E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a)

The Markov Decision Process serves as an abstraction of goal-directed learning
from interaction, reducing the process down to three signals being passed between
the learning agent and the environment. Despite its simplicity, it has nevertheless
shown to be useful and applicable to a lot of problems. Much of the challenge in
using this abstraction is in the representation of the states and actions, as well as
actually formulating the given problem as a formal MDP.

2.3 Measuring the accuracy of a prediction model

Constantinou and Fenton [2012] outline in their paper that measuring the accuracy
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of a prediction model is a crucial part of its validation. When determining the
accuracy of prediction models so-called scoring-rules are used and these assign a
numerical score to each prediction based on how ”close” the probabilities are to
the actual observed outcome. Defining suitable scoring rules for match outcome
forecasts in football matches has proven to be extremely difficult (Constantinou
and Fenton [2012]). The authors observe that the set of outcomes (home, away,
draw) must be considered on a ranked scale, which means that the outcomes are
ranked by how close they are together. A draw outcome for a match is closer to an
away outcome than an away outcome is to a home outcome, since only one goal is
required to go from a draw to an away outcome.

Two hypothetical prediction models, α and β, are presented in their paper and
Constantinou and Fenton [2012] evaluate these models by looking at their predicted
probability distribution compared to the actual match outcome. Figure 2.4 shows
the two predictions for the two models for each of the five matches.

Figure 2.4: Predicted probabilities by the two hypothetical prediction models, α
and β, for five hypothetical matches. Taken from Constantinou and Fenton [2012]

As can be seen from Figure 2.4 model α is the model which scores the higher
in each of the matches and Constantinou and Fenton [2012] argues that this is
because:

• Match 1: Model α predicts the actual outcome with total certainty and
hence must score higher than β.

• Match 2: Both models assign the highest probability to the winning out-
come H, with the remaining two outcomes evenly distributed. Since the
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observed value of α is higher than that of β, it must score higher.

• Match 3: Both models assign the same probability to the correct outcome,
but model α is more accurate since its overall distribution is more indicative
of a draw.

• Match 4: Both models assign the same probability to the correct outcome,
but model α is more accurate since its overall distribution is more indicative
of a home victory.

• Match 5: In this example β predicts the correct outcome with a higher
probability than α. However, the distribution of model α is more indicative
of a home win than model β. Constantinou and Fenton [2012] explains this
by considering a gambler who is confident that the home team will not lose,
and seeks to place a lay bet (a bet that is successful if the home team wins,
or the match ends with a draw). If α and β are forecasts by two different
bookmakers, bookmaker α will pay less for the winning bet.

They then present five different scoring rules, and show why these are not able
to correctly evaluate the accuracy of two hypothetical prediction models. Figure
2.5 shows how these scoring rules score models α and β. A tick means that the
scoring rule correctly scores model α higher than β. A double cross means that
the scoring rule scores β higher than α, and a single cross means that the scoring
rule returns the same value for both models.
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Figure 2.5: Applying the specified scoring rules to each benchmark presented in
Figure 2.4. Taken from Constantinou and Fenton [2012]

As can be seen from the Figure, none of the scoring rules returns the ”correct”
outcome for all 5 scenarios. Indeed, all of the scoring rules fail to correctly identify
model α as superior for scenarios 4 and 5.

Subsequently, Constantinou and Fenton [2012] present the Rank Probability Score
(RPS) as an alternative scoring. RPS was introduced by Epstein [1969] and has
been described as a particularly appropriate scoring rule for evaluating probability
forecasts of ordered variables. Equation 2.3 presents the RPS

RPS =
1

r − 1

r−1∑
i=0

(
i∑

j=0

(pj − ej))2 (2.3)

where r is the number of outcomes (r=3 for football matches), pj is the predicted
probability for outcome j and ej is the actual observed outcome for j. Figure
2.6 presents the generated score for each of the scenarios presented in Figure 2.4,
along with the respective cumulative distributions. A lower score indicates a better
forecast, and one can see that the RPS, unlike the previous metrics, manages to
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correctly score α as the best model for all 5 matches. Constantinou and Fenton
[2012] suggest using either the arithmetic mean over the individual scores, or the
total of the individual scores when using RPS to evaluate a prediction model over
several matches.

Figure 2.6: Scores generated by the RPS for each hypothetical model. Taken from
Constantinou and Fenton [2012]

.

2.4 Odds features

In order to understand how to make a profit in sports betting, it is useful to first
examine how the odds for match outcomes are formed.

Bookmakers who offer odds on match outcomes are interested in making a profit.
They want to ensure that no matter the final outcome of a match, they are still
left with a profit. There are several features of sports betting odds which can
impact both the betting agent’s selection of bets to take and the profit for the
bookmakers. The bookmakers try to take advantage of these features and in this
section we will highlight some of them.
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2.4.1 Margin

The added margin to each match is one way for the bookmakers to ensure profit.
Vlastakis et al. [2009] illustrate that the expected margin for an event with n
possible outcomes can be represented as

E(M) = 1−
n∑

i=1

Pi ∗ ωi ∗ di (2.4)

where i corresponds to a match outcome (home, draw or away victory) and n =
3 for football matches. According to Equation 2.4, the expected margin (M)
on each match depends on the probability associated with each outcome (Pi),
the percentage of bets placed on each outcome (ωi) and the given odds (di) for
each outcome. This equation implies that there are several ways in which the
bookmakers can set their prices to achieve the highest amount of profit. For
example, bookmakers may try to forecast game outcomes as accurately as possible
so that the odds reflect these expectations. Alternatively, they may try to forecast
the distribution of bets on each outcome. A third option is that the bookmakers
use a combination of these two approaches.

Since the true probability of each outcome is not known the bookmakers can only
control the values of di. The values of ωi often changes rapidly (often corresponding
to the values of di), and are controlled by the bettors. The bookmakers must thus
ensure that

∀i ∈ 1, 2, 3 : ωi ∗ di < 1 (2.5)

If ωi ∗ di > 1 and i is the actual outcome of the match then the bookmakers will
receive a negative profit for that given match.

To calculate the actual margin that bookmakers earn from a single match Equation
2.4 displays the need to know both the odds on each outcome as well as the
distribution of bets across these outcomes. The odds are publicly available, but
this is not the case for the bet-distributions. This means that one cannot calculate
the actual margin for bookmakers, but rather an implied margin, denoted here as
M ′. This is estimated by assuming that the bets are equally distributed across
outcomes and that the odds are set according to the true probabilities (Vlastakis
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et al. [2009]). That is,

∀i ∈ 1, 2, 3 : ωi =
1

3
(2.6)

It is assumed that the odds are set on the basis of the true probabilities of each
outcome. The fair odds on an outcome is simply the reciprocal of the probability
Pi of the occurrence of that outcome. However, if odds were priced exactly at
their fair level according to the true probabilities then the expected bookmaker
gain would be zero (this can be easily seen if one replaces di with Pi in Equation
2.4). For this reason, actual odds are somewhat smaller than fair odds in order
to allow a positive margin for bookmakers (Vlastakis et al. [2009]). Accordingly,
actual odds do not correspond to true probabilities but to somewhat larger implied
probabilities (denoted P

′
i ). The expected implied margin can be estimated as

E(M
′
) = (

n∑
i=1

P
′

i )− 1 = (
n∑

i=1

1

di
)− 1 (2.7)

When Liverpool FC played at home against Burnley FC on March 10, 2018 in the
English Premier League the average odds were 1.17, 7.96, 18.46 for each of the
match outcomes (home, draw and away, respectively). Inserting these odds into
Equation 2.7 the implied margin for the bookmakers was 1

1.17
+ 1

7.96
+ 1

18.46
− 1 =

0.034. This means that the bookmakers were expected to gain a profit of 3.4% for
this given match. Thus, in order for football prediction models to make a profit
the models must also beat this built-in margin.

2.4.2 Bias

Another mechanism in the gambling markets in the bookmakers’ advantage are
odds biases. These biases are biases which have been observed for different kinds of
bets, and they are important to consider when placing bets, as they can strongly
impact the profitability of a strategy. Constantinou and Fenton [2013] presents
three odds biases which can be utilized when creating a betting strategy for pre-
diction models:

• Favorite-longshot bias: This bias implies that bets placed on favourites
yield a higher return than bets placed on longshots. According to Constanti-
nou and Fenton [2013], this is caused by the bettor’s preference for backing
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risky outcomes (longshots). This means that bettors prefer betting on out-
comes which give a higher return rather than betting on a “safe” outcome
which would need the bettor to stake more money on the given outcome.
Bookmakers are believed to exploit these types of behaviour and increase
profitability by offering more-than-fair odds for “safe” outcomes, and less-
than-fair odds for “risky” outcomes.

• Home-away bias: Constantinou and Fenton [2013] demonstrates that bet-
ting on home wins yields the highest cumulative return under most of the
experimented scenarios. This phenomenon does not appear to be particu-
larly profitable, but it shows that the home-away bias appears to be equally
as strong as the favorite-longshot bias. Here, away wins can be seen as
longshots, but this does not hold for a large portion of the matches.

• Most-likely/least-likely bias: Constantinou and Fenton [2013] outline
how the odds are tailored in favor of the most-likely outcome of a match. The
cumulative loss when betting on all least-likely outcomes was significantly
higher than when betting on all most-likely outcomes. Overall, the results
appear to be in agreement with the favorite-longshot bias, whereby most-
likely bets generate considerably higher returns than least-likely bets.

2.5 Expected goals

There are several companies that gather massive amounts of statistics from foot-
ball matches. Opta Sports is one of these companies, and by gathering these vast
amounts of data, several new statistical measurements which can denote teams
strengths and weaknesses have emerged. One of these metrics is called expected
goals (xG), and it allows you to evaluate team and player performance. Histor-
ically, a very popular metric for evaluating which team has produced the most
chances, and whether the result of a game is accurate compared to these chances,
is the number of shots each team has attempted. One merely counts scoring at-
tempts while the only differentiation among them is whether an attempt went on
or off target. Several researchers have used these metrics to measure a team’s
attacking strength. Shots and shots on goal may give an indication of how much
a team is attacking, but it is not necessarily a metric which represents how many
goals each team should have scored, or how many chances they have created. Pol-
lard et al. [2004] reported that scoring attempts differ from each other by a number
of parameters. They used data from the World Cups of 1986 and 2002 and inves-
tigated the effect of the location of the shot on the chances of scoring, together



18 Expected goals

with the influence of the following factors:

• The distance from the goal

• The angle from the nearest goalpost

• Distance to the nearest opponent at the time of the shot.

An overview of how the angle to the nearest goalpost and the distance from the
goal are calculated can be seen in Figure 2.7, which also depicts the average number
of shots per goal from the different shot zones.

Figure 2.7: Scoring zone with average number of shots per goal from different
locations. Taken from Pollard et al. [2004]

Football data experts at Opta have later expanded this model by analyzing over
300,000 shots to calculate the likelihood of an attempt resulting in a goal given a
specific position on the pitch. This fairly new metric allows prediction models to
more accurately describe each teams attacking strengths, since they now contain
more precise and comprehensive data. The idea is that xG’s values give an indica-
tion of whether a team’s results are based on sustainable factors like consistently
creating chances or denying the opposition chances, or whether it is down to less
sustainable factors like high chance conversion or a sensational goalkeeper. xG is
a much better evaluator than purely the shot-on-goal-counter, since shots on goal
do not discriminate between a 40-yard shot and an open goal miss.



Chapter 3
Related Work

In this chapter we will present related work in regards to football match outcome
prediction models and how some of these have inspired us to create our own models,
as well as highlighting different money management strategies which can utilize the
output from the prediction models in order to make a profit on the betting market.
To get a thorough review of the state of the art, one can read our specialization
report (Nielsen and Sandøy [2018]).

3.1 Previous match outcome prediction models

This section presents prediction models of football match outcomes which were
found in the literature. We will highlight the models in which we have drawn
inspiration from when creating our own prediction models.

3.1.1 pi-football

Constantinou et al. [2012] present a Bayesian network model for predicting football
games, which they call pi-football. Their model considers the factors strength, form,
psychology and fatigue for both the home and away team. As these factors can be
hard to quantify from the available sports data, data-driven objective components
are combined with components based on subjective input from a person familiar
with the league to construct a complete model.
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Figure 3.1: Overview of pi-football, from Constantinou et al. [2012]

The objective component models a team’s strength by the points accumulated
in the previous five seasons, the team’s current points, and points expected from
residual matches in the season. The output of this component is a probability dis-
tribution over the three possible outcomes of a football match, which the subjective
components can skew towards home or away victory.

Three separate subjective components model each of the remaining factors. Team
form is modeled by the availability of three key players specifically, and also the
availability of the rest of the first team players as a whole. The impact of first
team players returning after being absent a few matches, and whether the team
is playing at home or away is also part of the form model. The model for the
psychological factor takes into account the impact of the manager, the team’s
motivation and team spirit, and potential head-to-head biases. The variables in
the fatigue model are the number of days since the last match, first team players
rested during last match, the toughness of previous match and the level of national
team participation of the team’s players.

In each subjective component, their output is the difference in the given factor
between the home and away team. The three outputs together are then used to
skew the output of the objective component towards the team it considers has an
advantage, resulting in the final subjective forecast. This structure is presented in
Figure 3.1.
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In evaluating the accuracy of their system, they found that their objective com-
ponent (i.e. team strength only) was significantly worse than the bookmakers’
predictions, but by revising their objective prediction using their subjective com-
ponents (i.e. form, psychology, fatigue), the system as a whole performed on par
with the bookmakers. A profitability measurement was also conducted, wherein
their system was evaluated over a complete season of the English Premier League.
Three simulations were run, using the highest available odds, the mean odds and
the odds of the most common English bookmaker, William Hill. In all three
simulations, the systems made a profit, ranging from 2.87% for the mean odds
simulation to 9.48% for the William Hill simulation.

A revised version of this system was presented in Constantinou et al. [2013], which
both simplified the original system, as well as improving its forecasting capability.
In the revised system, the factors fatigue and psychology are modeled together
in a new component called Fatigue and Motivation, and form is not dependent
on identifying three key players as in the original system. Another key change is
the way the subjective components are used to influence the match forecasts. In
Constantinou et al. [2012], the values of the subjective components for each team
were compared, and the discrepancy between them was used to skew the forecast
towards either home or away win. In Constantinou et al. [2013], the subjective
components are instead used to modify a team’s strength distribution, and from
the difference between the two teams’ distribution, a new forecast can be made.
Also, the impact of each model component is inferred hierarchically, and a forecast
can be made on each level. The architecture of this revised system is shown in
Figure 3.2.

In evaluating this revised system, the authors found that it improved upon the
forecasting probabilities of their original system. The forecasts generated at level
2, i.e. considering team strength and a subjective measure of form, were superior
to the forecasts at level 1, i.e. considering only team strength from objective
historical data. At level 3, the forecasts were inferior to level 2, but still superior
to level 1 . A sub-component evaluation showed that their model overestimated
the negative impact of fatigue, and that this should be taken into account for
future models. The authors also suggest that greater results could be achieved by
input from a genuine expert, as the results in this paper were achieved by input
from a football fan, but not an expert of the league.
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Figure 3.2: Simplified topology of revised pi-football, from Constantinou et al.
[2013]

3.1.2 FiveThirtyEight’s Club Soccer Prediction

FiveThiryEight [2018]’s Soccer Power Index (SPI) is an international and club
rating system designed to be the best possible representation of a team’s current
overall skill level. This rating system is a substantially revised version of ESPN’s
Soccer Power Index, which dates back to 2009 (Silver [2009]). Its goal is to be
accurate, reliable and up-to-date. Their system calculates which teams in a given
league that are most likely to finish at given table positions. SPI is defined as
being a forward-looking system. SPI is trying to predict future events, and it uses
statistics that correlate better future success, which is the scoring margin. This
is an alternative approach compared to other standard models, for example the
FIFA rankings, which are based on wins and losses only.

In FiveThirtyEights’s Club Soccer Prediction, each team has an offensive rating
that represents the number of goals it would be excepted to score against an
average team on a neutral field, and also a defensive rating represents the number
of goals they are expected to concede. These ratings are then used to calculate
win/loss/draw probabilities for future matches and simulate the season thousands
of times to estimate each team’s chances of winning the title. The overall SPI
rating is the percentage of points the team is expected to take in a match such as
described above.
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FiveThirtyEight’s Club Soccer Prediction uses three metrics when they are evalu-
ating a team’s performance after each match:

• Adjusted goals

• Shot-based expected goals

• Non-shot expected goals

Adjusted goals accounts for the conditions under which each goal was scored. They
reduce the value of goals scored when a team has more players on the field, as well
as goals scored late in the match when already leading. After down-weighting
these goals, they increase the value of all other goals to make the total number of
adjusted goals generally add up to the total number of actual goals scored over
time.

Shot-based expected goals is equal to the expected goals described in Section 2.5,
which is an estimate of how many goals a team should have scored, given the
attempted shots.

Non-shot expected goals, however, is an estimate of how many goals a team should
have scored based on non-shooting actions they took around the opposing team’s
goals: passes, interceptions, take-ons and tackles.

Both these expected goals metrics have a dynamic score linked to them based on
which player is taking the shot, or making the pass. There is an adjustment for
each action based on the success rates of the player doing the action, so the fact
that Lionel Messi is more probable to score at a shot from 10 yards than Robert
Huth is implemented into the model.

When generating the total offensive and defensive score for each team, these three
metrics, which are directly comparable, is an average across all three performance
metrics.

For each upcoming game in a given league, FiveThirtyEight provides a probability
distribution for the match outcomes, which is calculated from the SPI-ratings. See
Figure 3.3 for a detailed example.

The model is very dynamic, and as a season plays out a team’s rating is adjusted
after every match based on its performance in that match and the strength of its
opponent. This ensures that a team’s rating will not necessarily improve after a
win - if it performs worse than expected, its ratings can decline.
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Figure 3.3: Performance metrics, prior probabilities and given result between Ev-
erton and Man. City in January 2017. Taken from FiveThiryEight [2018]

.

As seen in Figure 3.3 it is not always the team that creates the most chances that
wins the match. In January 2017 Everton beat Manchester City 4-0, which is
a pretty dominant win. Prior to the match, the SPI predicted that Man. City
were 54% likely to win the match given the respective team SPI-ratings. Despite
the fact that Everton won by a four goal margin, the in-game stats provided by
SPI shows that this win may not have been as dominant as one would think.
Everton produced fewer chances both based on the shot-based xG and the non-
shot xG. This displays how hard it is to create an entirely accurate predictor in
the game of football given only statistical approaches. Some minor errors in the
predictions must be allowed however, given the sheer complexity of the game.
What is important is the fact that the system works in the long haul and can see
past some minor fluctuated results.

3.1.3 Beating the Bookmakers

Borøy-Johnsen [2017] used artificial neural networks in order to predict the out-
comes of football matches. By collecting a vast amount of relevant data from the
football statistics website whoscored.com and mapping these data into different
kinds of input patterns, ANNs were constructed in order to predict the outcomes
of matches from two successive seasons of the English Premier League. The goal
of the thesis was to generate a profit given odds from seven international book-
makers, and the predictions from the neural networks were used to decide whether
or not the place bets on the outcomes.
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Several different models were proposed and evaluated, using different network
topologies, activation functions and input features. Historical football data from
whoscored.com is used as input data, and the neural networks try to learn pat-
terns in these datasets. For each prediction model the author tests several network
configurations and stores the most promising configuration of each network, which
is then used for evaluation in the test cases.

Borøy-Johnsen [2017] showed in his thesis that some of the models created were in
fact able to generate a profit across two full seasons of the English Premier League.
We highlighted all the models he created in our Specialization Project, and in the
upcoming section we will highlight the one relevant to our thesis.

Player Rating

Whoscored.com provides ratings on players which measures how a player con-
tributes to his team. Borøy-Johnsen [2017] proved that these ratings have pre-
dictive results by feeding these ratings to a feed-forward-network and predicted
the results with 90% accuracy. As input to the prediction model each player’s
last three matches are taken into consideration, and for each match the following
features are added as input:

• Final rating.

• Portion of the match played. Number of minutes divided by 120. This to
increase the impact of players playing the whole match.

• The player’s team’s final rating. Added to capture cases where the player
rating are affected by the team’s collective effort.

• Other team’s final rating. Added to capture cases where the player rating
are affected by the other team’s collective effort.

• A playing at home-flag. Added to take home ground advantage into consid-
eration.

• Days since last match. Modelled as e
−days−since−match

7 . Added to increase the
impact of recent matches.

In addition to these match features, the number of matches for each player the last
two game weeks was added as input. This was added to capture possible fatigue



26 Money Management

for players. This gives 3 * 6 + 1 = 19 features for each player. With 22 players
participating in each match, this gives 22 * 19 = 418 features per match.

For the player rating-prediction model a network structure with a single hidden
layer of 256 nodes and the tanh-function as activation function yielded the most
promising results. However, the network did not achieve consistently good results,
and combined with several different betting strategies, some of them only gen-
erated minor profit and others went completely bankrupt. Borøy-Johnsen [2017]
concluded that player ratings tend to overestimate the probability of too many
high-odds outcomes. Over the two seasons, the prediction model won approxi-
mately 20.4% of all bets places, with an average odds of 4.34.
The most profitable strategy for this model generated a mean ROI of 0.25 in the
2015/2016 season, while the most profitable strategy in the 2016/2017 season gen-
erated a ROI of -0.053. The strategy that got a ROI of 0.25 in the first season got
a ROI of -1.0 in the second season, which shows the inconsistency of the model.

3.2 Money Management

When applying football prediction models in the field of sports betting the focus
shifts from measuring model-accuracy to measuring the profit the model makes.
The ultimate goal is not that the model is right every time, but the focus is
rather to win money. Whether or not the model makes a profit is determined
by a combination of the accuracy of the model and the type of betting strategy
the betting agent implements. There are multiple established money management
strategies in the field of sports betting, and in the upcoming section we highlight
the most popular strategies from the literature.

Money management in the field of sports betting consists of finding feasible bets
where the odds offered by a bookie is better than the calculated probability for a
given outcome implies it should be. In essence this means finding bets in which
the prediction models implies a higher probability than the bookmakers’ reward.
Langseth [2013] outlines that the expected gain per unit at stake is calculated as
P ∗d−1, where P is the calculated probability for that outcome and d is the odds
offered. During a round of games, there may be several bets that have a positive
expected profit. The punter must then be able to balance how much money to put
on each of these bets.

Given a series of expected profitable matches, the issue now consists of deciding
on how much money to place on each match. Consider the following examples:
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• Game A: P2 = 0.3, d2 = 3.6

• Game B: P0 = 0.9, d0 = 1.2

Here, the expected gain per unit stake for each of the bets is P ∗ d − 1 = 0.08.
Thus, the games can be seen as equivalent from a punter’s perspective, but it is
still not clear how much money the punter should put on each of these bets. One
can argue that the safest action to take is to stake your money on Game B, since
the probability of winning is higher. A downside of this, however, is the fact that
one must wager a lot more money on this game than Game A to win the same
amount of money, so the risk is higher for Game B. This gives rise to a number
of different strategies for so called money management problems. Langseth [2013]
presents five different money management strategies which determines how much
money to place on a bet in a given match, based on the probability Pi of the
outcome, the odds di, and the bankroll C of the punter. Each of the strategies
outputs the amount ci to place on a given bet. The strategies are as follows:

• Fixed bet: A simple strategy of allocating the same amount to each feasible
bet, ci ∝ 1.

• Fixed return: Make sure the same profit can be obtained from each bet.
This will result in lower amounts staked on the high-gain/low-probability
outcomes. ci ∝ 1

di

• Kelly ratio: Kelly [1956] suggested a strategy based on a decision-theoretic
approach to the money management problem. In this strategy the utility of
having an amount C after a bet has been rewarded is defined to be lnC, and
thus the utility of going broke approaches −∞. The expected utility of a bet
ci, when the bankroll is C is thus Pi ∗ ln(C + dici) + (1− Pi) ∗ ln(C − ci).
The utility is maximized by choosing ci = C ∗ Pidi−1

di+1
. Langseth [2013] also

proposes a modified approach so that the total bets during one round cannot
exceed a predefined value C0, which is chosen to be much smaller than the
bankroll at the beginning of the simulation. This is to ensure that a system
that loses heavily during the first few rounds is not excessively punished at
a later stage.

• Variance-adjusted: Rue and Salvesen [2000] looked at the difference be-
tween the expected profit and the variance of that profit, and wanted to min-
imize this number. After betting ci, the difference is Pidici−Pi(1−Pi)(dici)

2

which is minimized by choosing ci ← (2di(1− Pi))
−1)
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• Markowitz portfolio management: The variance-adjusted approach can
be seen as a simplification of Markowitz portfolio management (Markowitz
[1952]). In this strategy one looks at a collection of bets over a game-week.
The goal is to find the allocation of bets which maximizes

n∑
i=1

(E[∆i]− vVar[∆i])

under the constraint that the bets during the game-week sum to a predefined
value C0. v represents the accepted level of risk by the punter. The dual
representation of the optimization problem is then to minimize

∑n
i=1 Var[∆i]

under the constraints
∑n

i=1 ci = C0 and
∑n

i=1 E[∆i] = µ. µ a risk acceptance
parameter. Langseth [2013] experimented with three different µ-values in his
paper:

1. µ = µ↓ = (
∑n

i=1 Pidi)/n− 1

2. µ = µ↑ = maxiPidi − 1

3. µ = (µ↓ + µ↑)/2

µ↑ models the risk-seeking approach, which will force all stakes to be placed
on the single bet with the highest expected return. µ↓ models a more risk-
aversive approach, where it only requires the expected return per unit stake
of the combined bet to attain the average value of each bet. (Langseth
[2013]).

Langseth [2013] compares different statistical models for predicting the outcome of
football matches in his paper. He compares three different models by simulating
bets being made on matches in the English Premier League using the different
betting strategies presented above. Langseth [2013] conducts his experiments over
the course of two consecutive seasons of the English Premier League, and in the first
season each of the prediction models was able to make a profit using the different
money management strategies. It must be noted that the three prediction models
experienced its most profitable results using different betting strategies. For the
second season, however, only a single combination of prediction model and betting
strategy made a profit (this profit was of only 0.4%). These results show how
important it is that one chooses a betting strategy which suits the prediction
model.

Langseth [2013] argues that one should try to make models that incorporate more
of the available information describing the games to improve predictions which in
turn could help to beat the bookies.
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It should be noted that Langseth [2013] conducted his experiment against the odds
from William Hill, which had an average margin of 6.1% during these seasons. This
means that losing less than 6.1% should be considered a decent result for a given
prediction model.
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Chapter 4
Models

In the fall of 2018, we conducted a Specialization Project which investigated the
state-of-the-art in predicting the outcomes of football matches based on informa-
tion available before kick-off(Nielsen and Sandøy [2018]). Based on the collected
research, two new prediction models were suggested as possible improvements to
the previous models. This Chapter presents these models, as well as the rationale
behind them.

In addition to the prediction models, preliminary experiments using reinforcement
learning methods to learn a money management system were performed. This
Chapter also presents these experiments.

4.1 Data-driven pi-football

The two different versions of a Bayesian network-based model called pi-football,
presented in Constantinou et al. [2012] and Constantinou et al. [2013], were both
able to achieve a positive return on investment over a full season of the English
Premier League. The downside of their models, however, is that they rely on
subjective input from an expert of the league. The core idea of pi-football is to
attempt to model the four generic factors strength, form, psychology and fatigue,
and their impact on the outcome of a football match. Of these factors, only the
strength factor is modeled by objective historical data, while the rest are dependent
on the expert’s input.
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While pi-football’s promising results could be attributed to the use of expert knowl-
edge, the four generic factors could possibly also be modeled by historical data.
The advantage of going for a purely data-driven approach is that the same model
could be applied to different leagues, as long as the data is available. It would also
remove any subjective biases an expert may have.

Our model tries to utilize some key features taken from both pi-football and
FiveThirtyEight, described in Section Section 3.1.1 and 3.1.2 respectively. The
data set from FiveThirtyEight offers a wide range of interesting data. Data points
such as expected goals, SoccerPowerIndex-rating and match importance for each
team are all data which could help eliminate the need for a subjective input in
the pi-football system. FiveThirtyEight claim that their system has powerful pre-
dictive power, and we want to test this predictive power in our thesis by feeding
the available data from FiveThirtyEight as input features into an artificial neural
network.

A challenge of a data-driven approach without the help from a domain expert,
could be to identify data points that may influence the slightly abstract factors
form, psychology and fatigue. Given FiveThirtyEight’s vast and granular dataset,
described in Section 5.1.2, an opportunity to eliminate the subjective input from
the pi-football-model has arrived.

An overview of the input features to the model is presented below.

Input

• Strength factors

– SoccerPowerIndex-rating for home team.

– SoccerPowerIndex-rating for away team.

• Form factors

– Form-aggregated SoccerPowerIndex-rating for home team.

– Form-aggregated SoccerPowerIndex-rating for away team.

• Psychology factors

– Match importance for home team.

– Match importance for away team.

• Fatigue factors
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– Days since last match for home team. Modeled as e
−days−since−match

7 .
Added to increase the impact of recent matches.

– Days since last match for away team. Modeled as e
−days−since−match

7 .
Added to increase the impact of recent matches.

This yields 8 different features fed into the network as input per match. For
the strength factor, FiveThirtyEight’s SoccerPowerIndex may work perfectly to
measure a team’s strength. As described in Section 3.1.2, the overall SPI rating
is the percentage of points the team is expected to take in a match against an
average team on a neutral field.

To model a team’s form, the data-driven pi-football system applies the exponen-
tially moving average-formula to the SPI-rating for each team. Exponentially
moving average is a first-order infinite impulse response filter that applies weight-
ing factors which decrease exponentially (Investopedia [2019]). In short, an EMA
is like a simple moving average, except it weights recent instances more than older
instances based on an alpha parameter. This allows the calculated rating to put
more weight on recent ratings and less on past rating, which in turn models the
team’s current form.

The match importance calculated for both teams by FiveThirtyEight could be
a perfect way to model the psychology factor for the pi-football-system. Match
importance is a measure of how much the the outcome of the match will change
each team’s statistical outlook on the season, and this can be seen as a potential
replacement of the need for a domain expert offering input to the Bayesian model.

Fatigue is modeled by counting the number of days since the last match for each

team and applying the exponential function e
−days−since−match

7 to increase the impact
of more recent matches.

4.2 Expected goals of starting lineup

One of the most promising papers discussed in our Specialization Project (Nielsen
and Sandøy [2018]) is Borøy-Johnsen [2017], who used artificial neural networks
as an architecture for his prediction models. Borøy-Johnsen [2017] constructed
several different prediction models using neural network and was able to generate
a profit over two full seasons for some of them. One model which had an interesting
rationale was the Player Rating-network, described in Section 3.1.3. The idea was
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to capture how much each player in a starting lineup contributes to his team in
that given match. Borøy-Johnsen [2017] attempted this by applying the player
ratings scraped from whoscored.com. He also used each team’s total rating as
input features to the network. This model failed to capture consistent results,
yielding a profit for one of the test seasons, but a loss for the other. These results
indicate that these ratings did not have the predictive power to accurately estimate
the outcomes in football matches.

A better approach would be to apply player statistics which have a greater impact
on the outcome of the match. In this regard, utilizing player level expected goals
from Understat, described in Section ??, as input features instead could prove to
be a better predictor for football outcomes. This metric describes how much each
player in a team has contributed to the number of goals his team is expected to
score, which is a statistic that directly impacts what we are trying to predict. By
scraping understat.com and storing the expected goals-values for each player in
every available match in a database, the total expected goal for a team’s lineup
can be calculated prior to that game.

By taking another approach than Borøy-Johnsen [2017] for the Player Rating
model, but still using the days since last match-feature, we want to test this mod-
ification to the model, and test if this improves the model and can produce more
consistent results. Borøy-Johnsen [2017]’s Player Rating-model was implemented
by only taking the three latest matches a team has played into account. This es-
sentially means that if a reasonably strong team has played stronger opposition in
the latest matches, it will be regarded as a relatively weak team in the next match.
We will try to battle this problem by implementing an expected goals-value based
on current form and also an expected goals-value based on the team’s performance
for the whole season. By incorporating team performances for the whole season
and also having a recent matches-factor, both the strength factor and the form
factor for teams are persisted as features to the network.

Since expected goals mostly depict the attacking strength of a team, our model
would fail to capture the defensive strengths of teams if only xG-values would be
fed into the model. To battle this, the model will consider the expected goals
against(xGA)-values provided by Understat. This data represents the defensive
strength of a team since it is a measure of how many goals a team is expected
to concede. By considering both the current form of the team for the last five
matches, and also the overall quality of the team during the whole season in the
same approach as the expected goals-values, our model will try to incorporate the
defensive strengths of each competing team.
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An overview of the input features to the model is presented below.

Input

• Form-aggregated xG90 for each player in the home team. Taking the last 5
games into consideration.

• Form-aggregated xG90 for each player in the away team. Taking the last 5
games into consideration.

• Current season-aggregated xG90 for each player in the home team. Accumu-
lating the offensive form of the player over the whole season.

• Current season-aggregated xG90 for each player in the away team. Accumu-
lating the offensive form of the player over the whole season.

• Form-aggregated xGA90 for the home team. Taking the last 5 games into
consideration.

• Form-aggregated xGA90 for the away team. Taking the last 5 games into
consideration.

• Current season-aggregated xGA90 for the home team. Accumulating the
defensive form of the team over the whole season.

• Current season-aggregated xGA90 for the away team. Accumulating the de-
fensive form of the team over the whole season.

• Days since last match for the home team. Modeled as e
−days−since−match

7 .
Added to increase the impact of recent matches.

• Days since last match for the away team. Modeled as e
−days−since−match

7 .
Added to increase the impact of recent matches.

There are 22 players in the starting lineups, each with 2 features each. This
gives 22 ∗ 2 + 2 + 2 + 2 = 50 different features fed into the network per match.
Both offensive and defensive team-strength is modeled in the network, with the
expected goals and expected goals against-values respectively. Form is modeled by
attempting to capture the current form of each player by taking the last 5 games
into consideration and aggregating expected goals and expected goals against-
values. Fatigue is modeled by considering how many days its been since each team
played its last game.
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4.3 Network Structure

As described in Section 1.1, our thesis is investigating whether or not utilizing do-
main knowledge when structuring artificial neural networks increases their predic-
tive performance. This particular research question is inspired by the pi-football-
model (Constantinou et al. [2012], which groups related features into different
components in a Bayesian Network. By grouping the features related to each com-
ponent together in different sub-networks in a neural networks architecture before
merging the sub-networks into a single network will isolate them from the rest of
the features for a number of layers, which may allow the network to find valuable
intermediary representations, before merging the layers later on treats the problem
as a whole.

Thus, for both of our suggested prediction models, we will attempt to group related
features together and isolating these features in individual sub-networks before
grouping them together. See Figure 4.1 for an overview of such a composition. In
this example the features are grouped into four different components: strength,
form, psychology and fatigue. Figure 4.1 also shows the identical features applied
to a fully connected neural network instead. In this setup, every input feature is
connected to every weight in the corresponding hidden layer. By doing this kind
of grouping and measuring the performances of the different networks our thesis
will have a solid basis to answer the constructed research question.
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Figure 4.1: The two different network architectures. The top figure displays a
fully connected model with four different components. The bottom displays the
sub-network-architecture, which groups the components into sub-networks before
merging them.
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During this thesis we aim to investigate whether or not this kind of grouping using
domain knowledge increases the predictive performance of the network, and our
two suggested prediction models will be constructed in a fully connected- and a
sub-network fashion. In total, this means that 4 different models will be trained
and tested in our experiment.

4.3.1 Model component grouping

The component grouping for the pi-football model is described in Section 4.1, and
the model is split up into four different components: strength, form, psychology
and fatigue.

Since each model has a unique set of features, this makes it difficult to group the
models into a fixed set of components based on these features. The psychology
component which the pi-football model utilizes is not incorporated into the ex-
pected goals of starting lineup model, and thus this component is excluded in the
model.

An overview of the grouping of the input features for the expected goals of starting
lineup model is presented below.

Expected goals of starting lineup

• Strength factors

– Current season-aggregated xG90 for each player in the home team.

– Current season-aggregated xG90 for each player in the away team.

– Current season-aggregated xGA90 for home team.

– Current season-aggregated xGA90 for away team.

• Form factors

– Form-aggregated xG90 for each player in the home team.

– Form-aggregated xG90 for each player in the away team.

– Form-aggregated xGA90 for home team.

– Form-aggregated xGA90 for away team.

• Fatigue factors
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– Days since last match for home team.

– Days since last match for away team.

The rationale behind this grouping is relatively straightforward. The fatigue factor
is grouped in the same way as pi-football as this is the identical data-point. For the
strength factor the defensive and offensive performances for the team is grouped
together and bound by the performances across the whole season, while the form
factors takes the same data-points but the data is for a smaller window.

4.4 Money Management

A number of experiments were performed to explore the viability of using re-
inforcement learning techniques in a money management context. Given a pre-
diction model’s forecasts and a bookmaker’s odds, an agent is to learn to place
profitable bets on an upcoming football match. For a match with true probabilities
{Ph, Pd, Pa} and odds {dh, dd, da} (h, d and a meaning home team win, draw and
away team win), placing a unit bet on an outcome o ∈ {h, d, a} where Po ∗do > 1
would be a rational action, as the expected value of the bet would be greater
than zero. The problem is of course that we do not know the true probabilities,
and treating the softmax output of a prediction model as probabilities may also
be problematic, as the softmax output cannot be accurately interpreted as the
model’s confidence (Gal [2016]). If an agent could learn a relationship between
the outputs and the model’s real confidence, it may be able to find a different
threshold for making rational actions.

A reinforcement learning agent learns to adapt to its environment, and care must
be taken when modeling the environment to achieve the desired behavior in the
agent. In our model of the environment, a time step represents a single football
match, and the fundamental elements of the observation space are

• Outcome predictions, i.e. predicted probabilities of home team victory, away
team victory or draw,

• Match odds from a single bookmaker, and

• The agent’s current bankroll.

When betting on the outcome of a football match, there are four distinct classes
of actions to take: bet on home team, bet on away team, bet on draw, or refrain
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from betting. One must also decide how much one should wager, in the range [0, b],
where b is the current bankroll of the punter, making the action space a subspace
of R3, with the origin representing the no-bet action. A simplification of the action
space has been made in these experiments, where the wagers are fixed at one unit.
This reduces the action space down to the four discrete choices {H,D,A,NB},
meaning bet on home team, bet on draw, bet on away team, or no bet respectively.

The agents were trained using a Deep Q-Network (Mnih et al. [2015]), a model-free
reinforcement learning method which should be a good fit due to the size of the
multidimensionally continuous observation space.

4.4.1 Weekly Betting Environment

When betting on a football match, one obviously has to wait for the match to end
before knowing how the bet went. In most leagues multiple matches are played
simultaneously, and a punter has to decide how to spread his bets before they
start, and does not receive his winnings before after the matches are over.

If one is to consider one match at a time, as an agent would do with our model of
the environment, a punter would need to keep track of how many more matches
he has to consider before payout, as well as how well he expects his already placed
bets to pay. In order to capture this in a betting agent, these variables are added
to the observation space.

As an agent would not know how his bets would resolve before all the matches
have finished, the agent is only rewarded when the last bet in a round has been
placed. The reward function R(st, at) was therefore implemented as

R(st, at) =


−10 if b < 0

0 if not done with betting round∑n
i=0 Profit(st−i, at−i) if done with betting round

where n is the number of matches in a betting round, and

Profit(st, at) =


0 if at = NB

−1 if lost bet

da if won bet

These experiments were done in parallel with the development of our prediction
models, therefore the match forecasts used are from FiveThirtyEight (FiveThiryEight
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[2018]) rather than from our own models. The odds used are the closing odds
from William Hill. An agent was trained on 3903 matches from the 2016/2017,
2017/2018 and half of the 2018/2019 seasons of the English Premier League, Bun-
desliga, Serie A, La Liga and Ligue 1. The matches are randomly drawn from
this pool, and an episode ends after the agent has considered 500 matches, or
is bankrupt. A betting round was defined to consist of 10 matches, meaning 10
consecutive time steps.

Figure 4.2: Accumulated reward per episode, Weekly Environment

Figure 4.2 shows the development of the reward accumulated by the agent over the
training episodes, along with the reward achieved by following a baseline policy
π(s) = argmax

a
(Pa ∗ da − 1) (with PNB = dNB = 1). As seen in the figure, the

agent fails to improve in any significant way, and the per-episode reward varies
wildly.

The policy learned by the agent is to almost always bet on the home team, choosing
the H action 96% of the time, with the remainder being the no-bet action NB and
the draw and away team bets never being selected at all. On average, the net profit
achieved in test episodes was -3.4%, but the worst case was bankruptcy, and the
best case was 272.4%, meaning the policy is very unpredictable in terms of profit.
Regardless of profitability, the agent seemingly fails to capture the relationship
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between the forecasts and the odds, and the resulting behavior is trivial as a
betting strategy.

4.4.2 Perfect Information Environment

As the more realistic approach of weekly betting failed to give satisfactory results,
exploratory experiments were performed using a highly stylized environment. In
this environment, the match forecasts observed by the agent are the true probabil-
ity distributions over the outcomes. Additionally, the odds observed are randomly
generated and not correlated with the outcome probabilities. This should be a sig-
nificantly easier environment for the agent to learn, as the bets where Po ∗ do > 1
will always be rational. These bets will also be more frequently observed when
the odds and probabilities are not correlated. Another simplification of this envi-
ronment is disregarding the fact that multiple matches are played simultaneously;
the agent sees the reward and profit of its action at each time step.

Feasibility Reward

To verify that an agent could make rational decisions with the given observation
space, an agent was trained with the following reward function:

R(s, a) =

{
0 if a = NB

Pa ∗ da − 1 otherwise

This reward function should teach the agent to bet on outcomes where the ex-
pected value of the bet is greater than zero, which in the long run should be a
viable betting strategy. While the resulting money management strategy would
not be very interesting and easily achieved without using reinforcement learning,
this reward function serves to confirm that the environment contains enough in-
formation for an agent to learn. As the agent is not exposed to any uncertainty
in the outcomes, we expect the agent to learn optimal behaviour quickly, placing
almost all bets in the profitable zone.
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Figure 4.3: Accumulated reward per episode, Perfect Information Environment,
Feasibility Reward
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Figure 4.4: Distribution of bets made by agent trained in Perfect Information
Environment using Feasibility Reward

As Figure 4.3 shows, the agent is clearly able to learn its reward function. The
policy used as a baseline policy in the weekly betting experiment is in this envi-
ronment the optimal policy, as the probabilities used here is the true probability
distribution over the outcomes. As seen in the figure, the agent learns a policy very
close to optimal. Figure 4.4 shows the bets considered by the agent during a test
episode after training. As we can see from the figure, the agent places almost all
its bets in the profitable side of the break-even line, i.e. the area where Po ∗do > 1.
We also see that there are quite a few bets in the profitable area that the agent
has decided not to take. This is likely due to the agent only placing one bet per
match, and since the odds are generated at random, there could be more than one
feasible bet available for each match.
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Profit Reward

Having verified that recognizing profitable bets is possible, a single-match version
of the reward function used in the weekly betting experiment was implemented:

R(s, a) =


0 if a = NB

−10 if lost bet and bankroll < 0

−1 if lost bet

da if won bet

Since the agent’s possible actions is to place a unit bet on an outcome (or don’t bet
at all), this reward function corresponds to the profit made on the bet. Using this
reward function, the agent is actually exposed to the uncertainty in the outcomes.
As the agent knows the exact probability distribution over the outcomes, we expect
the agent to again learn a similar policy to the previous experiment, i.e. showing
a preference for bets where Po ∗ do > 1.

Figure 4.5: Accumulated reward per episode, Perfect Information Environment,
Profit Reward
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Figure 4.6: Distribution of bets made by agent trained in Perfect Information
Environment using Profit Reward

As with the feasibility reward, Figure 4.5 shows that the agent is able to learn
using this reward function, but with greater variance in reward from episode to
episode. The same optimal policy as in the feasibility experiment is also displayed,
and we see that the policy learned by the agent is very close to optimal.

The bet distribution shown in Figure 4.6 is very similar to the one in the previ-
ous experiment. This indicates that the agent managed to learn the relationship
between the odds and outcome probabilities and makes mostly feasible bets even
when faced with random sampling of outcomes.

4.4.3 Single Match Environment

As the experiments using perfect information showed that learning to recognize
profitable bets is possible, the logical next step is to reintroduce the real data. This
environment uses the same data as in the weekly betting experiment, but using
the simplification of treating each match on its own, as in the perfect information
environment.
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This environment should be a great deal more challenging than the previous one.
Not only are we relying on the match forecasts being reasonably accurate, but also
for there to be a discrepancy between the forecasts and the implied probability of
the odds. If the bookmaker and the predictor are in agreement on the probability
distribution of the outcomes, we have Po ∗ do = 1, and there is no margin to
make a profit. In the previous environment with perfect information, the odds
and probabilities were not correlated, giving the agent many opportunities to find
bets where the discrepancy between odds and predictions were favorable. This is
not likely to be the case with real predictions and odds.

The goal of these experiments is to see if an agent can learn which bets are ra-
tional to make given the observed predictions and odds. As we can’t assume the
predictions are the true probabilities, the rational bets may not be all bets where
Po∗do > 1, but might be along another implicit curve depending on the biases and
uncertainty of the predictions. As such, the feasibility reward function is largely
uninteresting in this case, and is therefore not used in these experiments.

Profit Reward

An agent was trained in this environment using the same profit reward function
used in the Perfect Information environment. Figure 4.7 shows the development
of the accumulated reward per episode, along with the reward accumulated by
following the policy π(s) = argmax

a
(Pa ∗ da − 1). This policy - which we described

as the optimal policy in the perfect information environment - is here treated as a
baseline again, as we cannot assume that the policy is optimal in this environment.
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Figure 4.7: Accumulated reward per episode, Real Data Environment, Profit Re-
ward

As seen in the figure, the agent does not improve in any significant way, and there
is a high degree of variance in the rewards achieved. It does however fare quite
similarly to the baseline policy, which suffers from the same problems.

Figure 4.8 shows the aggregated distribution of bets made by the agent over 100
separate test episodes, where we can see that behavior learned by the agent is
to bet on outcomes where Po is approximately greater than 25-30%, regardless of
odds. This is distinctly different from a policy of betting when Po ∗ do > τ for
some τ ∈ R like we had expected.

The agent has mostly learned to avoid betting, choosing the no-bet action around
62% of the time. When it actually does place a bet, the vast majority of the bets
made are on the home team, with 30% of the actions chosen. Even though it
has adopted a rather conservative behavior, it is not very effective, as on average,
the agent is bankrupt after 325 matches, with approximately 70% of episodes
ending in bankruptcy. Overall, it seems that the agent does not manage to find
an exploitable relationship between the forecasts and odds, and therefore does not
learn a useful strategy for profiting on the bets.
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Figure 4.8: Aggregated distribution of bets made by agent trained in Real Data
Environment
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Chapter 5
Data and System Design

A thorough review of several sources of football data was conducted as part of
the specialization project preceding this Master project. In this chapter, we will
present a condensed version of the Data Sources-chapter from our specialization
project (Nielsen and Sandøy [2018]), as well as the general architecture of the
components of our system.

5.1 Data sources

5.1.1 Understat

Understat (www.understat.com) is a football statistics website based around the
expected goals (xG) metric described in Section 2.5, offering detailed statistics and
metrics for some of the top European leagues going back to the 2014/2015 season.

For each match, Understat offers data on a shot level, a player level, and an overall
match level. The data consists of both basic football statistics such as goals, shots
on goals and bookings, but also their own data on a higher abstraction level, such
as expected goals and expected assists. Table 5.1 shows the data points available
on the match level, while Table 5.2 shows the data points available for each player
in a given match.
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Data Point Description
Date The date the match was played
Teams Names of the teams playing
Goals Goals scored by each team
xG Expected goals at match end for each team
Shots Number of shots made
Shots on target Number of shots made that went on target
Deep passes Number of passes completed within 20 yards of goal
PPDA Passes allowed per defensive action in the opposition half
xPTS Expected points

Table 5.1: Description of match level data from Understat.com

Data Point Description
Name Name of the player
Position Position of the player in the match, e.g. goal keeper, forward
Goals Number of goals scored
Assists Number of passes made by the player that lead to a goal
Key Passes Number of passes made by the player that lead to a shot
Shots Shots made by the player
Cards Number of yellow and red cards received
Time Number of minutes played in the match
Substitution time Match time when the player was brought on or off
xG Expected goals of shots made by the player
xA Sum of xG values of shots from the players key passes
xGChain Total xG of every possession the player was involved in
xGBuildup Total xG of every possession the player is involved in with-

out key passes or shots

Table 5.2: Description of player level data from Understat.com

One can for example look up the number of goals Eden Hazard is expected to
contribute to during a match, and make assumptions on Chelsea’s next perfor-
mance based on if he is starting the game or not. If Chelsea’s xG drops massively
because Diego Costa suddenly fell ill before kick off, this might have a great im-
pact on the outcome of the match. Which players starts for a given team in the
Premier League is announced an hour before kick off, so if one is using Understat
as a data-source combined with the official line-up, one can easily calculate how a
team is expected to perform given a certain line-up.
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Figure 5.1: Overview of Chelsea’s player-statistics during the 2016/2017-season
and the expected values for each player, taken from Understat.com. The green
and red numbers denotes the difference between expected goals and actual goals.

Understat does not offer their data through an API or downloadable files, and can
only be viewed by browsing through their website. As such, to efficiently collect
all their data, an HTML scraper must be used.

As mentioned, Understat offers detailed statistics and metrics for some of the top
European leagues dating back to the 2014/2015-season. These leagues are

• English Premier League

• Italian Serie A

• Spanish La Liga

• French Ligue 1

• German Bundesliga

• Russian Premier League

This is in total 6 different leagues, four of them having 380 matches per season,
while the German Bundesliga has 340 matches per season and the Russian Premier
League 300 matches per season. Dating back 4 full seasons, this means that
Understat.com offers data for 4 ∗ 6 ∗ 380 + 340 + 300 = 9760 different matches.



54 Data sources

5.1.2 FiveThirtyEight

FiveThirtyEight is a website focusing on statistical analysis of politics, economics
and sports. In January 2017, they started their Club Soccer Prediction project,
where they attempt to predict the outcome of football matches in the top leagues
around the world. The forecasts are based on a substantially revised version of
ESPN’s Soccer Power Index (SPI), which is a measure of the strength of a team
within their league. After each match, the teams’ SPI is adjusted based on three
metrics they call adjusted goals, shot-based expected goals and non-shot expected
goals. They also calculate the importance of a given match for the two teams, based
on how the teams’ position in the league table may shift based on the outcome of
the match.

All their forecasts, as well as the underlying metrics and raw data from 2016 and
onward is available for download in CSV format from their website.

FiveThirtyEight’s data dates two complete seasons back, which means that data
available starting from the 2016/2017-season in the English Premier League is
available. See Table 5.1.2 for a detailed description of what kind of data FiveThir-
tyEight offers.

Data
Date Actual #goals Team 1
Team 1 Actual #goals Team 2
Team 2 Match importance Team 1
SPI for Team 1 Match importance Team 2
SPI for Team 2 xG for Team 1
Prob. for Team 1 xG for Team 2
Prob. for Team 2 Non-shot xG for Team 1
Prob. for tie Non-shot xG for Team 2
Projected #goals Team 1 Adjusted goals for Team 1
Projected #goals Team 2 Adjusted goals for Team 2

Table 5.3: Overview of the data available from Soccer Power Index.

What makes FiveThirtyEight an interesting data source is that they offer data
from over 30 different leagues all over the world. Each league has data for two
complete seasons back and this means that there is over 60 different seasons for
our models to train on. A result of this is that our models will be able to train
on more generalized data and not only the data which is available for the English
Premier League, which in turn could allow us to extend our models to multiple
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different leagues while still achieving a profit.

5.1.3 Football-Data

Football-Data.co.uk is a free football betting portal providing historical results and
odds, downloadable in convenient Excel or CSV formats (Football-Data [2018b]).
They offer datasets for up to 22 European league divisions from the 1993/94 season
and onwards. The datasets up until the 2000/01 season only contain fulltime and
halftime results, but from then on, the datasets also contain match betting odds
from up to 10 major bookmakers. The 2000/01 season datasets also introduced
match statistics such as shots on goal, corners, fouls and more, similar to those
available through Understat Football-Data [2018a].

5.2 Data collection

5.2.1 Understat scraper

As Understat does not offer an API or downloadable files, an HTML
scraping system was created using Python and the Python library Beau-
tifulSoup4. A given season of a league Understat has data on is ac-
cessed at www.understat.com/league/<league name> /<season> . At this
page, a Javascript variable called datesData contains the match IDs for
all the matches of the season. This variable is parsed by our scraping
system, and used for accessing each match page. On each match page
(at www.understat.com/match/<match id> ), the three Javascript variables
shotsData, rosterData and matchData are parsed by the scraper. These three
variables contain the shot level data, the player level data and the overall match
data, respectively.

As Understat is the most comprehensive and granular of the data sources used in
this project, the data collected from Understat serves as the basis of our database,
in terms of team names and match IDs.
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5.2.2 Football-Data scraper

Because Football-Data.co.uk offers its data as downloadable files, the data col-
lection procedure for this data source is simpler than for Understat. The
data is organized as a CSV file for every season of every league, available at
www.football-data.co.uk/mmz4281/<season> /<league code>.csv. Using the
Python library Pandas, the CSV files are downloaded, parsed and manipulated as
the data is extracted and stored in the database.

5.2.3 FiveThirtyEight

FiveThirtyEight offers its data as downloadable files in a CSV-format. The data
is available at

https://projects.fivethirtyeight.com/soccer-api/club/spi matches.csv.

Using the Python library Pandas, the CSV file is downloaded, parsed and manip-
ulated as the data is extracted and stored in the database.

5.3 System Design

5.3.1 Database

In order to store the data available from our data sources, a relational database
has been applied. This is in order to gather the data in one place with a relational
structure that easily allows our models to collect their necessary data. By storing
the data in a database, this saves a lot of time and computer resources since we
only have to scrape the data sources once.

Table overview

Figure 5.2 shows an overview of the tables stored in the database. Please note
that the attributes stored in the figure only is a bare-minimum representation of
the tables and a more thorough overview can be inspected in Appendix A.
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Figure 5.2: Overview of the database used by the system.

5.3.2 Neural networks

The prediction models described in Chapter 4 were implemented using the Python
library Keras. To facilitate experimentation and limit duplicate code, common
super-classes were created for the fully connected and sub-network models. The
abstract classes act as a wrapper for Keras and handles functionality such as
constructing the Keras model, training the model and saving and loading trained
models. Each prediction model was implemented as a subclass of an abstract class,
and handles features related to the specific model, such as which input features it
needs.

5.3.3 Betting simulator

To evaluate the profitability of the prediction models, a system simulating a full
season of betting was created. The simulator simulates a season of a given tour-
nament week by week, presenting relevant data available before the game starts,
along with the closing odds for each game in the week from several bookmakers.
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Based on the odds and the forecasts made by the model being evaluated, bets may
be placed, and their profits are recorded. The workings of the betting simulator
are shown in Algorithm 2.

Algorithm 2 Betting simulator

C ← initial bankroll size
τ ← confidence threshold parameter
ε← minimum probability parameter
for all match week ∈ season do
bets← empty list
for all match ∈ match week do

p← outcome predictions from model, p ∈ R3

d← odds for the given match, d ∈ R3

for all outcome i ∈ {0, 1, 2} do
if di ∗ pi > 1 + τ and pi > ε then
ci ← GetBetSize(di, pi, C)
C ← C − ci
bets← Append( (match, i, di, ci), bets)

end if
end for

end for
for all bet (di, ci) ∈ bets do

if bet is successful then
C ← C + di ∗ ci

end if
end for

end for

Different bet staking strategies are implemented by different implementations of
the GetBetSize function, and the risk allowed in the betting procedure is con-
trolled by the two parameters τ and ε.



Chapter 6
Experiments and Results

This chapter presents the experimental setup and results conducted in this thesis.
The chapter first presents a description of the prediction models. A presentation
of the betting simulation procedure is then presented before the experiment is
conducted and its results are presented.

6.1 Experimental Plan

In our experiment, we will attempt to achieve the research goal and answer the
research questions defined in Section 1.1.

The ultimate goal of the experiment is in line with the research goal of this thesis,
which is to make a profit on the football betting market using data-driven machine
learning methods. By training, validating and testing our suggested neural network
models, which are described in Chapter 4, this experiment aims to generate a profit
over two whole seasons in the English Premier League.

The performances of the two different network architectures, described in Section
4.3, will be compared and evaluated in order to investigate how the architecture
affects the models’ performance. The profitability, validation accuracy and model
prediction quality will be assessed when comparing these architectures and by
presenting and comparing these our experiment aims to discover results which can
lead us to a definite answer to this particular research question.
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6.2 Experimental Setup

6.2.1 Network setup

All of our suggested models mentioned in Section 4 are neural networks, which
yields a large number of possible configurations. The networks could vary in loss
function, optimization algorithm, network dimensions, network layer sizes and
activation function.

To prevent this experiment from training several thousand models, fixed loss func-
tions and optimization algorithms have been applied to the models. The loss
function used is categorical cross entropy and the optimization algorithm is Adam.

A neural network instance can differ vastly in both size and shape. It can have
a varied number of both hidden layers and the number of neurons in each layer.
For our experiment, a fixed number of sizes and layers have been defined. A list
of layers, layer sizes and hidden layer activation functions are iterated through,
and for each configuration, five instances of the given configuration are trained.
At each training instance, the training data is also shuffled, and by combining
shuffled training data with multiple configuration instances, the results present
the overall accuracy of that given network, and not just the effects of a potentially
lucky combination of initial weights, biases and training data.

The following parameters were applied to our experiment:

• Layer size. The number of neurons each hidden layer contains.

– Values: [8, 16, 32, 64].

• Layer depth. The number of hidden layers in the network.

– Values: [1, 2, 3].

• Activation function. Which activation function the hidden layers apply.

– Values: [Sigmoid, Tanh, ReLU].

• Number of configuration runs. How many networks of each configuration are
trained.

– Values: 5.
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By iterating through each possible configuration listed above, this yields 4 ∗ 3 ∗ 3 ∗
5 = 180 different networks for each of the suggested models in Chapter 5. After
training, the accuracy and RPS values achieved on the validation data for each
configuration is stored, and the configuration with the lowest mean RPS value for
each model is selected for profitability evaluation on the test set.

6.2.2 Data

In this section we will describe the data available for each model, and how this
data is split up in training, validation and test data.

The training set is the data set used to train the model. The goal is for the model
to see and learn patterns from this data set.

The validation set is used to evaluate the given model. After each training epoch
the validation data set is fed through the model for evaluation. The model never
learns from this data set and it is only used as an unbiased evaluation of how well
the model behaves with unseen data. Models which perform well on the validation
data have not overfitted on the training data, and the best performing models on
the validation data can be considered as the best models dealing with unseen data
and is thus chosen to be tested on the test data.

The system randomly scrambles the training and validation data before splitting
the data in a fixed ratio. 10% of the available training data is split into validation
data and used for evaluating the models after each training epoch.

The test data is every match from the 2016/2017 and 2017/2018 seasons of the
English Premier League. This data is used to provide an unbiased evaluation of a
final model fit on the training dataset, which in turn will determine how well the
model deals with unseen data. This is also the data which the model will predict
the final match outcomes on and attempt to make a profit using the different
betting strategies described in Section 6.2.3.

Expected goals of starting lineup

For the expected goals of starting lineup-model data primarily from Understat.com
are used. As described in Section 5.1.1, Understat provides statistics for six dif-
ferent leagues dating back to the 2014/2015-season. This means there are 9860
different matches for the model to train on. Since the experiment aims to test the
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models predictive power on the 2016/2017 and 2017/2018 seasons of the English
Premier League these seasons are excluded from the training set. This means that
in total there is 9860− 760 = 9100 matches for the model to train on.

Data-driven pi-football

For the two models discussed in Section 4.1 primarily data from FiveThirtyEight
are used. The data is thoroughly described in Section 5.1.2.

FiveThirtyEight provides data dating back only two full seasons, but what it lacks
in number of seasons it makes up in number of leagues. Statistics for over 30
different leagues is provided in the dataset, which means that there exist over
18,000 matches with data.

The data point match importance, which we use to model the psychology factor
from pi-football, is not provided in every single match. The leagues where this
statistic is missing is thus removed from the training set. In total there are 14009
matches with match importance set and by excluding the matches with insufficient
data from the test set there are a total of 14009 − 760 = 13249 matches in the
training set.

Cold-start

Since all of our prediction models try to model a team’s strength by using the
team’s performance relative to the current season in some kind of way, certain
states from the data set need to be handled. To battle null-values at the start
of the season which may ruin the model’s ability to distinguish weak teams from
teams that have yet to play in the current season, the first two rounds in each
training and test season are scrapped from the data set.

Normalizing features

All data fed into a neural network is of a numeric value. These values are prop-
agated through the network and combined with its corresponding weights is re-
sponsible for the final output for the network. Since each input is multiplied with
its connected weights, this results in input values with large magnitudes having a
far greater influence on the final output. For example, let’s say we have a neural
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network with two different features, X and Y. The X feature has a value of 0.5 and
the Y feature a value of 99. A neural network weight change of 0.1 will change
the magnitude of the X factor by 0.1 ∗ 0.5 = 0.05, but the Y factor’s magnitude
changes by 0.1 ∗ 99 = 9.9. In essence, normalization is needed because it removes
any biases large data points may provide in the network. If all of the data is
normalized and scaled to the same range then this issue is taken care of. The
normalization technique applied is min max normalization. See Equation 6.1 to a
detailed overview of the formula.

Ic,j =
fc,j − fj,min

fj,max − fj,min

(6.1)

Feature j for case c, i.e. fc,j, is scaled to Ic,j (the value of input neuron j for case
c) as described in Equation 6.1 and this ensures values in the range [0, 1]

6.2.3 Betting evaluation

The betting performance of each model is evaluated using 5 instances of the net-
work configuration with the lowest RPS score on the validation set. Each model
is evaluated by its profit by simulating the model over the course of two seasons
in the English Premier League using the betting simulation described in Section
5.3.3, with betting parameters τ = 0.1 and ε = 0.1. For each model, four of the
betting strategies described in Section 3.2 are applied:

• Fixed bet, with ci = 1

• Fixed return, with ci = 1
di

• Kelly ratio, with C0 = 0.05

• Variance-adjusted

The initial bankroll is set to 100 for all strategies. The profitability of a model-
strategy combination is evaluated by its Return on Investment (ROI), defined as

ROI =
End bankroll − Initial bankroll

Cost of Investments
(6.2)

This profitability evaluation compared to a plain net profit return, is more fair.
This is due to the fact that the Kelly ratio strategy will place bets with much
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larger sizes than the other strategies since this strategy factors in the bankroll
when determining bet sizes. If presenting just a plain net profit for each strategy,
then the Kelly ratio strategy when successful would return way larger profits than
the other strategies, and vice versa if unsuccessful. An evaluation criteria which
factors in the cost of investments, i.e. how much each strategy has staked, is thus
a much fairer type of evaluation.

For each model-strategy combination, the weekly development of the ROI over
the span of a season is presented for the most and least profitable instances, along
with the mean of all instances.

6.3 Experimental Results

This section presents the experimental results achieved in this report. For each
model, the validation results and model prediction quality are presented. The
profitability evaluation for both test seasons is also presented, as well as betting
distributions for both seasons. The goal of this section is not to take a deep-dive
into how and why each model performed the way it did, but rather give an overview
of how each model fared against the test data, so that there is room for discussion
and evaluation in a later section.

6.3.1 Baselines

In order to assess the networks chosen for evaluation some baseline values are
needed. The baselines represent the bare minimum of what the networks should
be able to achieve.

The bookmakers set their odds based on their own predictions of the match out-
come. For each match, the team with the lowest odds is the team which the
bookmakers deems most probable to win. A benchmark could thus be beating the
profit generated by betting on the favorite for each match. If the models beat this
baseline, we can safely conclude that our system has learned to predict something
useful. By deeming the outcome with the lowest odds for each match as a feasible
bet and applying a fixed bet-strategy, a return on investment can be generated
and used as a benchmark. Betting on the least favorite in each match is also added
as a benchmark in order to assess the opposite effect compared to the most likely
outcome. Another benchmark is based on the home ground advantage. 46.2% of
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all matches in the Premier League in the seasons from 1992/1993 to 2014/2015
ended in a home victory (SMarkets [2019]) and by applying the fixed bet strat-
egy on a home victory for each match another baseline to beat is generated. If
our models can generate a higher profit than this benchmark it shows that the
networks have learned something else than to just bet on the home team.

Table 6.1 shows the return on investment for the three different benchmarks listed
above.

Season Always home Most likely Least likely
2016/2017 0.0710 0.0968 -0.2018
2017/2018 0.0230 -0.0378 -0.0630

Table 6.1: Return on investment for three benchmarks using the fixed bet strategy

When evaluating if the models are adequately predicting the match outcomes the
fact that that the bookmakers adds a margin (described in Section 2.4.1) to each
match must be taken into account. In essence this means that losing less than a
given margin for each season could be considered a decent result. See Table 6.2
for the calculated margin for William Hill during the two test seasons.

Season Margin
2016/2017 0.0470
2017/2018 0.0485

Table 6.2: Calculated margin for William Hill in the English Premier League

By inspecting the benchmarks generated in Table 6.1, it is evident that the always
home-benchmark returns a ROI which exceed the margin that William Hill applied
on the two seasons. The always home benchmark returns a ROI of 7.1% for the
first season and a ROI of 2.3% in the second season. The most likely-benchmark
returns a ROI of 9.7% after the 2016/2017 season, but fails to replicate these
results in the second season, generating a negative ROI of -3.8%.

6.3.2 Fully connected expected goals of starting lineup

Table 6.3 shows the RPS values and accuracy achieved by the expected goals
of starting lineup-model with a fully connected neural network. This model is
thoroughly described in Section 4.2. A single hidden layer with 32 neurons and
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the Rectified Linear Unit (ReLU) as the activation function generated the best
validation results, and will therefore be used to evaluate the profitability of the
model.

Layer sizes Activation Accuracy RPS
[8] ReLU 0.523097826 0.20187376
[8,8] ReLU 0.524456522 0.20287714
[8,8,8] Tanh 0.517663043 0.20310548
[16] ReLU 0.539402174 0.20181155
[16,16] Sigmoid 0.517663043 0.20289664
[16,16,16] Sigmoid 0.517663043 0.20332393
[32] ReLU 0.520380435 0.20153609
[32,32] Sigmoid 0.514945652 0.20286488
[32,32,32] Tanh 0.516304348 0.20296864
[64] ReLU 0.529891304 0.20233367
[64,64] Tanh 0.531250000 0.20224941
[64,64,64] Tanh 0.527173913 0.20185789

Table 6.3: Fully connected expected goals of starting lineup - validation results

Model prediction quality

This section presents the model’s predictions for all matches in the test set com-
pared to its corresponding match outcome. The section will visualize how the
model fares in its prediction compared the actual outcomes of each match, and
figures will be presented to visualize these correlations. This is a qualitative anal-
ysis meant to provide insight into how the model’s prediction quality is calibrated
across the outcome distributions.

Figure 6.1 illustrates all the predicted probabilities for the model relative to the
actual outcomes. Each prediction receives a y-label based on the actual outcome,
1 if the predicted outcome occurred and 0 otherwise. A cubic smoothing spline
is then applied to the prediction-outcome points to approximate the distribution
of outcomes relative to predictions. The goal by illustrating this is to explore
the quality of the predicted probabilities from the model compared to the actual
outcomes. A dotted line is plotted to visualize the ideal distribution of outcomes
and probabilities, where probability equals outcome distribution at each point,
x = y. This line represents the baseline for which the predictions from the model
should follow. If the model’s prediction is in close proximity to this line, the closer
the model’s predictions are to the true probabilities for each match.
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Figure 6.1: Predicted probabilities compared to actual outcomes, fully connected
expected goals of starting lineup.

The smoothed distribution-curve of probabilities, represented in Figure 6.1, shows
that the model is relatively decent in predicting the probabilities of match out-
comes. Bar some minor fluctuations the model follows the ideal red-dotted line
rather closely. A little bump can be spotted in the [0.65,0.75] region of the x-
axis. At the 0.7 mark, the model expects to be correct 70% of the time. By the
blue curve, we see that the actual distribution of these outcomes is around 80%,
meaning that the model underestimates the probabilities in this region. In this
region, the model is at risk of missing out of some bets, since the model predict the
outcomes with a 70% probability, while the actual probability is 80%. The model
also struggles with a slight dip in the [0, 0.1] interval, and in this region the model
has a tendency to overestimate the outcomes. This might lead the model to being
too eager when placing bets, should the odds correspond to the ideal line. This
is not an issue in our betting simulation though, since the minimum probability
parameter for our betting simulator, described in Section 5.3.3, is set to 0.1. The
model is relatively well calibrated along the ideal line, but the smoothed distribu-
tion is not enough to guarantee a profit, though it displays the inherent potential
of the model.
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Betting results

Figure 6.2 and 6.3 shows the development of the ROI for all of the betting strategies
generated by the model across the 2016/2017 and 2017/2018 seasons in the English
Premier League.

Figure 6.2: ROI for all of the betting strategies over the span of the 2016/2017
season in the English Premier League using the fully connected expected goals of
starting lineup model.
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Figure 6.3: ROI for all of the betting strategies over the span of the 2017/2018
season in the English Premier League using the fully connected expected goals of
starting lineup model.

Table 6.4 shows the generated return on investment for the model at the end of the
2016/2017 and 2017/2018-season of the English Premier League. The table shows
the most profitable, least profitable and mean profitable return on investment for
each of the betting strategies across the five simulations for both seasons.

2016/2017 2017/2018
Strategy Min Max Mean Min Max Mean
Fixed bet -0.1100 -0.0332 -0.0610 0.0905 0.2277 0.1750
Fixed return -0.0150 0.0252 0.0089 0.0200 0.1702 0.1050
Kelly Ratio -0.1921 -0.0761 -0.1421 -0.0141 0.2311 0.1298
Variance-adjusted 0.0134 0.0789 0.0527 0.0270 0.1428 0.0928

Table 6.4: ROI after the 2016/2017 and 2017/2018 seasons for all betting strategies
for the fully connected expected goals of starting lineup-model.

As seen from the table, there are two strategies which return a profit after the first
season is finished. The variance-adjusted and fixed return strategies generates a
ROI of 5.3% and 0.9% respectively. During the latter season, all of the strategies
return a profit at the end of the season. The fixed bet strategy is the most profitable
strategy this season, generating a mean ROI of 17.5%. Each strategy this season
generated a ROI over 9%. The table also shows that the variance-adjusted strategy
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returns a positive ROI for all of the model instances for both of the seasons.

Figure 6.4 shows the bet distribution for an instance of the fully connected expected
goals of starting lineup model during the 2016/2017 and 2017/2018 seasons.

Figure 6.4: Bet distribution for the model visualized by offered odds and predicted
probabilities over the span of the 2016/2017 and 2017/2018 seasons in the English
Premier League.

Model summary

This model manages to achieve consistently good results over the course of the
two seasons for two different betting strategies. These two strategies are the fixed
return and the variance-adjusted strategies. The fixed bet strategy generates the
highest ROI of the second season, but is barely beneath the profit line with a ROI
of -0.6% for the first season, while the Kelly ratio strategy is hugely unsuccessful
in the first season, returning a ROI of -14%.

In Section 6.3.1 the baselines for our experiment are presented. The calculated
margins that William Hill adds are 4.7% and 4.8% for the respective seasons,
and thus any strategy which exceeds ROI = 1 − margin for each season can
be considered a decent result. Each strategy except the Kelly ratio strategy is
successful in beating William Hill’s margin. Looking at the betting-baselines, the
always home-strategy was the most successful baseline with a ROI of 7.1% and
2.3%. None of the strategies manage to beat this baseline for the first season, but
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all of them are able to outperform the baseline in the second season.

Another interesting observation from Figure 6.4 is the fact that there are numerous
bets that exceeds the bookmakers’ implied probabilities. The model tends to
overestimate the probability for certain match outcomes it deems feasible. By
inspecting the figure, we can see that the lower threshold for placing bets is along
the curve probability∗odds = 1.1, as specified by the betting simulator parameters.
The further away bets are from this curve, the more confident is our model on that
match outcome relative to the odds. These bets have a tendency to fail for this
given model while the bets closer to the curve has a higher success rate. This
is not entirely surprising as as the bookmakers can be considered very decent in
predicting match outcomes. Model predictions where p ∗w � 1 are more likely to
be caused by the model’s prediction being off, rather than the bookmaker.

6.3.3 Expected goals of starting lineup with sub-networks

Table 6.5 shows the RPS values and accuracy which the expected goals of starting
lineup-model grouped in sub-networks generated. This model is thoroughly de-
scribed in Section 4.2. A single hidden layer with 32 neurons and the hyperbolic
tangent function (tanh) as the activation function generated the best validation
results, and will thus be used to evaluate the profitability of the model.

Layer sizes Activation Accuracy RPS
[8] Tanh 0.464673913 0.20992414
[8,8] Tanh 0.471467391 0.210191052
[8,8,8] Tanh 0.46875 0.210135152
[16] Tanh 0.463315217 0.210083199
[16,16] Tanh 0.46875 0.209987271
[16,16,16] Tanh 0.472826087 0.210410086
[32] Tanh 0.472826087 0.209659552
[32,32] Sigmoid 0.471467391 0.210132925
[32,32,32] Sigmoid 0.466032609 0.210163158
[64] Tanh 0.476902174 0.209862298
[64,64] Sigmoid 0.471467391 0.210077992
[64,64,64] Sigmoid 0.471467391 0.210124469

Table 6.5: Expected goals of starting lineup with sub-networks - validation results
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Model prediction quality

Figure 6.13 illustrates all the model’s predicted probabilities relative to the ac-
tual outcomes. The dotted line represents the baseline for which the predictions
from the model should follow, while the blue curve is the approximation of the
distribution of outcomes relative to the model predictions.

Figure 6.5: Predicted probabilities compared to actual outcomes, expected goals
of starting lineup with sub-networks.

By inspecting the smoothed distribution of probabilities relative to the outcomes,
several minor fluctuations can be spotted. The model struggles to follow the ideal
red-dotted line for two different intervals, and the most notable ones are [0.1,0.2]
and [0.5,0.7]. For the first interval, the model expects to be correct 20% of the
time, but by inspecting the blue curve one observes that the actual distribution
of these outcomes is around 30%. This means that the model underestimates the
probabilities in this region, and this can lead to the model being too conservative
when deciding to bet on outcomes, should the odds correspond to the ideal line in
this region.
For the other interval, the model has a tendency to overestimates the probabilities.
Across the [0.5,0.7] interval, the model consistently finds itself under the ideal line.
This may lead the model to being too eager when placing bets, should the odds
correspond to the ideal line in this region. Compared to its fully connected version,
the sub-network model looks qualitatively weaker in terms of prediction quality,
and thus weaker betting results is to be expected.
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Betting results

Figure 6.6 and 6.7 shows the development of the ROI for all of the betting strategies
generated by the model across the 2016/2017 and 2017/2108 season in the English
Premier League.

Figure 6.6: ROI for all of the betting strategies over the span of the 2016/2017
season in the English Premier League using the expected goals of starting lineup
model with sub-networks.
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Figure 6.7: ROI for all of the betting strategies over the span of the 2017/2018
season in the English Premier League using the expected goals of starting lineup
model with sub-network.

Table 6.6 shows the generated return on investment for the model at the end of the
2016/2017 and 2017/2018-season of the English Premier League. The table shows
the most profitable, least profitable and mean profitable return on investment for
each of the betting strategies across the five simulations.

2016/2017 2017/2018
Strategy Min Max Mean Min Max Mean
Fixed bet -0.1858 -0.0544 -0.1044 0.0645 0.1130 0.0858
Fixed return -0.1375 -0.0570 -0.0863 -0.0092 0.0248 0.0146
Kelly Ratio -0.4391 -0.1150 -0.2546 -0.1494 -0.0602 -0.0907
Variance-adjusted -0.1015 -0.0262 -0.0510 -0.0644 -0.0156 -0.0356

Table 6.6: ROI overview after the 2016/2017 and 2017/2018 seasons for all betting
strategies for the expected goals of starting lineup-model with sub-networks.

As can be seen from the table, neither of the strategies manage to generate a
positive ROI after the 2016/2017 season. Not a single instance of the generated
models were able to generate a positive return. For the 2017/2018 season, two of
the four strategies manage to generate a positive return. The fixed bet strategy is
the strategy which generates the highest ROI with 8.58%.
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Figure 6.8 shows the bet distribution for an instance of the expected goals of
starting lineup with sub-networks model during the 2016/2017 and 2017/2018
seasons.

Figure 6.8: Bet distribution for the model visualized by offered odds and predicted
probabilities over the span of the 2016/2017 and 2017/2018 seasons in the English
Premier League.

Model summary

The expected lineup-model when grouped into sub-networks fails to generate con-
sistent results over the course of two seasons in the English Premier League. All
strategies yield a negative return on investment during the first season, and thus
the positive results achieved for two of the models in the second season is insignif-
icant.

Figure 6.8 illustrates the relationship between the odds from the bookmakers and
the probabilities predicted by the model for each bet the model placed, and by
inspecting this figure we see a tendency of struggling with overestimating the
outcomes. As the bookmakers can be considered very decent in predicting match
outcomes, model predictions where p ∗ w � 1 are more likely to be caused by the
model’s prediction being off, rather than the bookmaker. The sub-network model
struggles with a lot of outcomes being predicted with a higher probability than the
odds should imply, which in turn results in the model being unsuccessful across
the two test seasons.
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When inspecting Figure 6.5 and 6.1, which depicts the model prediction quality
of the models, we suggested that the sub-network version would struggle more
when run through the betting simulation than the fully connected version. This
turned out to be very much the case, as the fully connected version managed a
profit across the two seasons, while the sub-network failed to accomplish this. The
sub-network model struggled to follow the optimal distribution of outcomes in its
predictions and the betting results across the two test seasons is evidence of this.

6.3.4 Fully connected pi-football

Table 6.7 shows the RPS values and accuracy which the data-driven pi-football-
model with a fully connected neural network generated. This model is thoroughly
described in Section 4.1. A single hidden layer with 32 neurons and the Rectified
Linear Unit (ReLU) as the activation function generated the best validation results,
and will therefore be used to evaluate the profitability of the model.

Layer sizes Activation Accuracy RPS
[8] ReLU 0.592297477 0.180972756
[8,8] ReLU 0.585657371 0.181313198
[8,8,8] Tanh 0.593625498 0.181691941
[16] ReLU 0.588313413 0.181014172
[16,16] ReLU 0.592297477 0.181367379
[16,16,16] ReLU 0.590969456 0.18143818
[32] ReLU 0.586985392 0.18095835
[32,32] ReLU 0.588313413 0.181545909
[32,32,32] ReLU 0.594953519 0.181569471
[64] ReLU 0.586985392 0.181361335
[64,64] Sigmoid 0.586985392 0.181505336
[64,64,64] Sigmoid 0.584329349 0.181534505

Table 6.7: Fully connected pi-football - validation results

Model prediction quality

Figure 6.9 illustrates all the model’s predicted probabilities relative to the actual
outcomes. The dotted line represents the baseline for which the predictions from
the model should follow, while the blue curve is the approximation of the distri-
bution of outcomes relative to the model predictions.



Experiments and Results 77

Figure 6.9: Predicted probabilities compared to actual outcomes, fully connected
pi-football.

The smoothed distribution of probabilities displays that the model is relatively
decent in predicting the probabilities of match outcomes. By inspecting the figure
one observes that the curve follows the red-dotted ideal line rather closely, except
for a little dip that can be spotted in the [0.25,0.35] region of the x-axis. At the
0.3 mark, the model expects to be correct 30% of the time. By the blue curve, we
see that the actual distribution of these outcomes is around 20%, meaning that
the model overestimates the probabilities in this region. This may lead the model
to being too eager when placing bets, should the odds correspond to the ideal line.

Betting results

Figure 6.10 and 6.11 shows the development of the ROI for all of the betting
strategies generated by the model across the 2016/2017 and 2017/2018 seasons in
the English Premier League.
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Figure 6.10: ROI for all of the betting strategies over the span of the 2016/2017
season in the English Premier League using fully connected data-driven pi-football
model.

Figure 6.11: ROI for all of the betting strategies over the span of the 2017/2018
season in the English Premier League using fully connected data-driven pi-football
model.
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Table 6.8 shows the generated return on investment for the model at the end of the
2016/2017 and 2017/2018 seasons of the English Premier League. The table shows
the most profitable, least profitable and mean profitable return on investment for
each of the betting strategies across the five simulations.

2016/2017 2017/2018
Strategy Min Max Mean Min Max Mean
Fixed bet -0.0364 0.2010 0.0510 -0.1939 -0.0827 -0.0394
Fixed return 0.0103 0.1557 0.0665 -0.1210 -0.0368 -0.0546
Kelly Ratio -0.0784 0.2383 0.0481 -0.1350 0.0452 -0.0569
Variance-adjusted 0.0651 0.1151 0.0824 -0.1301 0.0483 -0.0686

Table 6.8: ROI overview after the 2016/2017 and 2017/2018 seasons for all betting
strategies for the fully connected pi-football-model.

The table shows that the model manages to generate sizeable positive results for
the 2016/2017 season for every strategy, with each strategy generating a ROI of
over 4%. The variance-adjusted strategy is the most profitable strategy with a ROI
of 8.24%. For the second season, neither of the strategies manages to generate a
positive ROI after the 2017/2018 season, the best strategy generating a ROI of
-4%.

Figure 6.12 shows the bet distribution for an instance of the fully connected data-
driven pi-football model during the 2016/2017 and 2017/2018 seasons.
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Figure 6.12: Bet distribution for the model visualized by offered odds and predicted
probabilities over the span of the 2016/2017 and 2017/2018 seasons in the English
Premier League.

Model summary

This model failed to achieve consistent result over the course of two full seasons
in the English Premier League. The first season, each strategy performed well
and gained profit. For the second season, however, it failed to do so. None of the
strategies managed a mean positive return on investment for the second season.

It is worth noting that some instances of the model managed to stay on the positive
side for the second season, with the Kelly ratio and variance-adjusted strategies
gaining a profit of 4% for their best instances. The fixed bet strategy on average
also manages to beat the built-in margin by William Hill which was 4.8% this
season, and can thus be considered a decent result.

When investigating Figure 6.12, one sees that most of feasible bets generated by
the model is in close proximity to the curve odds ∗ probability ≈ 1.1, which is
the lower threshold for which the betting strategies operates. The further away
bets are from this curve, the more confident is our model on that match outcome
relative to the odds. By staying close to this curve it shows that the model and
the bookmakers are relatively close to each other when predicting matches, which
speaks for the models prediction quality, as agreeing with the bookmakers is decent
since they are good at predicting match outcomes. A consequence of staying too
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close to the bookmaker’s odds, however, is that the bookmaker’s margin, described
in Section 2.4.1, kicks in. Since the bookmakers add an overhead to their odds in
an attempt to ensure a profit, the models will lose money if they are in line with
the bookmakers prediction.

6.3.5 Data-driven pi-football with sub-networks

Table 6.9 shows the RPS values and accuracy which the data-driven pi-football-
model with sub-networks generated. This model is thoroughly described in Section
4.1. A single hidden layer with 32 neurons and the Rectified Linear Unit (ReLU)
as the activation function generated the best validation results, and will thus be
used to evaluate the profitability of the model.

Layer sizes Activation Accuracy RPS
[8] ReLU 0.52457 0.199803
[8,8] Tanh 0.51793 0.199910
[8,8,8] Tanh 0.51527 0.199450
[16] ReLU 0.50600 0.199081
[16,16] Tanh 0.50996 0.199236
[16,16,16] Tanh 0.51660 0.199464
[32] ReLU 0.51527 0.198822
[32,32] Sigmoid 0.51129 0.199460
[32,32,32] Tanh 0.51800 0.199673
[64] ReLU 0.52191 0.198829
[64,64] Tanh 0.50600 0.199404
[64,64,64] Sigmoid 0.51527 0.199011

Table 6.9: Pi-football with sub-networks - validation results

Model prediction quality

Figure 6.13 illustrates all the model’s predicted probabilities relative to the ac-
tual outcomes. The dotted line represents the baseline for which the predictions
from the model should follow, while the blue curve is the approximation of the
distribution of outcomes relative to the model predictions.
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Figure 6.13: Predicted probabilities compared to actual outcomes, pi-football with
sub-networks.

The smoothed distribution of probabilities displays that the model is relatively
decent in predicting the probabilities of match outcomes. By inspecting the figure
one observes that the curve follows the red-dotted desired line rather closely. A
little dip can be spotted in the [0.25,0.35] region of the x-axis. At the 0.3 mark,
the model expects to be correct 30% of the time. By the blue curve, we see that
the actual distribution of these outcomes is around 20%, meaning that the model
overestimates the probabilities in this region.

An interesting observation is that the fully connected pi-football model and the
sub-network model are very similar in their shape, though not entirely surprising
given that they share features. Both models follow the same curve for most of the
intervals, only the difference being the fully connected model having slightly larger
deviations from the ideal line than the sub-network version.

Betting results

Figure 6.14 and 6.15 shows the development of the ROI for all of the betting
strategies generated by the model across the 2016/2017 and 2017/2018 seasons in
the English Premier League.
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Figure 6.14: ROI for all of the betting strategies over the span of the 2016/2017
season in the English Premier League using data-driven pi-football model with
sub-networks.

Figure 6.15: ROI for all of the betting strategies over the span of the 2017/2018
season in the English Premier League using data-driven pi-football model with
sub-networks.
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Table 6.10 shows the generated return on investment for the model at the end of the
2016/2017 and 2017/2018 seasons of the English Premier League. The table shows
the most profitable, least profitable and mean profitable return on investment for
each of the betting strategies across the five simulations.

2016/2017 2017/2018
Strategy Min Max Mean Min Max Mean
Fixed bet -0.0096 0.2630 0.1168 0.0200 0.1030 0.0753
Fixed return 0.1034 0.2599 0.1744 -0.0085 0.0420 0.0242
Kelly Ratio 0.0034 0.2930 0.1474 -0.1318 0.0986 0.0054
Variance-adjusted 0.1500 0.2180 0.1800 -0.0480 0.0610 0.0150

Table 6.10: ROI overview after the 2016/2017 and 2017/2018 seasons for all betting
strategies for the pi-football-model with sub-networks.

The table displays that each strategy on average manages to generate a positive
return on investment. After the 2016/2017 season for the data-driven pi-football-
model with sub-networks the variance-adjusted strategy is the most profitable with
a ROI of 18%. For the latter season, each of the four strategies also manages to
generate a positive return on investment. During this season the fixed bet strategy
is the most profitable one with a ROI of 7.53%.

Figure 6.16 shows the bet distribution for an instance of the data-driven pi-football
with sub-networks model during the 2016/2017 and 2017/2018 seasons.
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Figure 6.16: Bet distribution for the model visualized by offered odds and predicted
probabilities over the span of the 2016/2017 and 2017/2018 seasons in the English
Premier League.

Model summary

This model managed to achieve consistently good results for all strategies over the
course of two seasons in the English Premier League. The most stable strategy
across the models in terms of ROI is the fixed bet strategy, generating a ROI
of 11% the first season and a a ROI of 7.5% the second season, which can be
considered pretty decent.

By investigating Figure 6.16 and 6.12, it is evident that the sub-network model
and the fully connected model for pi-football are relatively similar. This is not
surprising, as the networks share the same features, but what separates these two
models is the number of matches they deem feasible. The sub-network-model is
much more conservative compared to the fully connected model, placing a lower
number of bets per season, and as a result is successful in generating a profit for
both seasons. Neither of the models have great discrepancies when comparing the
predicted probabilities with the odds, and most of the predicted match outcomes
follow the curve odds ∗ probability ≈ 1.1.

Figure 6.13 illustrates the model’s predicted probabilities relative to the actual
outcomes, and this figure displays a little dip in the [0.25,0.35] region of the x-
axis. The model expected to be correct around 30% of the time in this region,
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but the model’s curve showed that the distribution of outcomes is around 20% in
this region. By comparing this figure with Figure 6.16, which is the distribution
of bets which the model places, it becomes evident that the model struggles in
this region. The model places 22 bets in this region across the two seasons and 5
of them are successful. This yields an accuracy of 22%, which is in line with the
distribution illustrated in Figure 6.5.

By inspecting the experiment’s baselines, which are described in Section 6.3.1, it
is evident that several strategies beat the betting-baselines for both seasons. The
always-home-baseline returns a ROI of 7.1% and 2.3% for the first and second
season respectively, and both the fixed bet strategy and the fixed return strategy
exceed these values for both seasons. Given that each strategy returns a profit for
all strategies it also is evident that they beat the built-in margin by William Hill
quite clearly.



Chapter 7
Discussion

This chapter presents a thorough review of the results and findings from our con-
ducted experiments. Prediction model performance comparison, betting strategy
evaluation, as well as possible limitations to our experiments will be discussed and
presented.

7.1 Model performance comparison

The results from Chapter 6 show that the choice of prediction model is crucial
in terms of model accuracy and profitability. Tables 7.1 and 7.2 show the mean
ROI achieved by each model and each strategy across the two test seasons in the
English Premier League.
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Model Fixed bet Fixed return Kelly ratio
Variance
adjusted

xG of starting lineup
fully connected

-0.0610 0.0089 -0.1421 0.0527

xG of starting lineup
sub-networks

-0.1044 -0.0863 -0.2546 -0.0510

Data-driven pi-football
fully connected

0.0510 0.0665 0.0481 0.0824

Data-driven pi-football
sub-networks

0.1168 0.1744 0.1474 0.1800

Table 7.1: Mean ROI for the models after the 2016/2017 season

Model Fixed bet Fixed return Kelly ratio
Variance
adjusted

xG of starting lineup
fully connected

0.1750 0.1050 0.1298 0.0928

xG of starting lineup
sub-networks

0.0858 0.0146 -0.0907 -0.0356

Data-driven pi-football
fully connected

-0.0394 -0.0546 -0.0569 -0.0686

Data-driven pi-football
sub-networks

0.0753 0.0242 0.0054 0.0150

Table 7.2: Mean ROI for the models after the 2017/2018 season

Two of the models were able to generate a profit across the two seasons by applying
the betting strategies, namely the fully connected expected goals of starting lineup
and the data-driven pi-football with sub-networks-model. The two other models
did not achieve consistent results and generated a profit for one season, while
failing to do so for the other season.

Based on the profitability evaluation, the data-driven pi-football model with sub-
networks is the model which generates the most profitable and consistent results.
Each strategy is successful in generating a positive ROI for both of the seasons in
the test set. The most consistent strategy is the fixed bet strategy, generating a
ROI of 11% and 7.5%. The other strategies are also successful, but the discrepancy
between the seasons in terms of ROI is greater for these strategies.
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The fully connected expected goals of starting lineup is also successful generating a
profit across the two test seasons, but not for every strategy. The fixed return and
the variance-adjusted strategies manage to gain a profit for both of the seasons,
while the fixed bet and Kelly ratio strategies fail to do so.

Based on the results conducted in our experiment and by inspecting Table 7.1 and
7.2, the data-driven pi-football-model with sub-networks applying the fixed bet
strategy is the most consistent model-strategy-combination. The model manages
to beat the bookmaker’s built-in margin as well as returning a substantial amount
of profit, generating the highest average ROI across the two seasons with 9.5%.
Based on these findings, this is the recommended combination which should be
used when attempting to make a profit on the betting market.

7.2 Betting strategy performance

The four betting strategies explored in this report produced varying results, each
of them generating both profit and loss across the test seasons.

The Kelly ratio strategy is the most high-risk, high-reward strategy. Ranging from
generating ROIs of -44% and 29% for the different model instances, this shows the
strategy’s high potential gain while also showing the high risk involved. This is
not surprising, as this strategy has a higher ceiling when it comes to maximal bet
size compared to the other strategies evaluated. Neither of the other strategies
factors in the bankroll when determining bet sizes, while the Kelly ratio strategy
wagers an amount proportional to the current bankroll.

The fixed return, fixed bet and variance-adjusted strategies generated more stable
results. For the fixed bet strategy, winning at most 17.5% and losing at most
10.4%, the fixed return with winning at most 17.4% and losing at most 8.8%, and
the variance-adjusted strategy losing no more than 6.8% and gaining at most 18%.

An interesting observation is the stability of the variance-adjusted strategy, which
is the only strategy that manages to return a positive ROI for both seasons for
all model instances of a configuration. Each of the model instances for the fully
connected expected goals of starting lineup model managed to return a positive
ROI when using the variance-adjusted strategy, while failing to do so using the
other strategies. The variance-adjusted strategy aims to minimize the difference
between expected profit and the variance of that profit, which in turn results in
reducing the bet size for low-probability bets. If one inspects Figure 6.4, which
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is the betting distribution for the model, it becomes evident that the model has
placed a lot of bets on low-probability outcomes. Since the variance-adjusted
strategy reduces the bet sizes for these bets might be why it fares better than the
other strategies.

7.3 Effect of domain knowledge structuring

One of the research questions for this thesis was whether or not utilizing domain
knowledge when structuring artificial neural networks increased their predictive
performance which in turn could aid the models into generating a profit. To shed
light on this questions, the suggested models were implemented with two different
network structures; one fully connected structure, and one using separate sub-
networks. This is thoroughly described in Section 4.3.

By the profitability results, the fully connected version of the starting lineup-model
outperformed the sub-network version, while the opposite is true for the pi-football
model. For both models, the lesser performing architecture failed to generate a
profit with any betting strategy. Based on the profitability alone, it is hard to
argue that one architecture is better than the other.

The different model’s performance in terms of validation accuracy is also an in-
teresting observation when comparing their predictive power. As seen in Table
6.3 and 6.5, which are the validation results of the two different expected goals
of starting lineup models, the fully connected version outperforms its sub-network
competitor quite clearly. The fully connected model achieves a validation accuracy
of 52%, while the sub-network version only manages an accuracy of 47%. This is
also the case for the pi-football model, where the fully connected version achieves
an accuracy of 58% and the sub-network is left with an accuracy of 51%. The fully
connected models generates higher accuracies on average than the sub-network in-
stances and the domain-driven structuring of networks fails to produce satisfactory
results compared to the fully connected models.

Figures 6.9 and 6.13 shows the smoothed betting distribution relative to outcomes
for the fully connected and the sub-network pi-football model. These figures rep-
resent the models prediction quality and by examining these figures a minor differ-
ence in prediction quality can be spotted. Both models follows a relatively similar
curve across the probability distribution, and they are also pretty decent in pre-
dicting the probabilities of match outcomes, which is illustrated in how close the
smoothed curve is to the ideal line. The difference between the models lies in the
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deviation from the optimal line in the fully connected version. The sub-network
model lies closer to the line and fully connected suffers from larger dips in the
regions where the models are not in line with the optimal distribution. This in-
dicates that the sub-network model’s prediction are of a higher quality and this
statement can be backed by the fact that this model performs better in the betting
simulation.

Based on the contradictory findings from our conducted experiment, where the
fully connected models outperforms the sub-networks in some manner of evaluation
and vice versa, it is not possible to conclude that the grouping of related features
into sub-networks increases neither the predictive power nor the profitability of
neural network models.

7.4 Domain knowledge limitations

In one of our research questions we asked whether or not utilizing domain knowl-
edge when structuring artificial neural networks increased their predictive perfor-
mance. We answered this by comparing the performance of our prediction models,
where our models were built by both structuring related features into sub-networks
and plain fully-connected networks where all features shared the same input net-
work. When grouping related features into separate components, it is obvious that
a certain amount of domain knowledge is needed. To be able to identify related
features to be grouped into different components requires high domain knowledge,
and while we do consider ourselves as engaged football fans who follow the sport
relatively closely, we still might not be equipped with enough knowledge to sepa-
rate all the given features in a satisfactory way. This is thus a possible limitation
of our thesis is that the related features might not be grouped correctly.

7.5 Model selection limitations

When conducting our experiments, the best configuration for each model was
chosen by calculating the RPS-values from the validation data after training and
then choosing the best model based on the lowest RPS-values. This model was
then run through the betting simulator and evaluated by profitability.

By inspecting the best RPS-values generated from each model, it becomes evident
that there is little to no correlation between RPS and generating a profit on the
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betting market. For the data-driven pi-football model, the fully connected outper-
forms the sub-network version quite heavily when inspecting the RPS-values. The
fully connected version logs a RPS-value of 0.18, while the sub-network generates
a RPS of 0.198.

When comparing these two models in terms of profitability the tables have turned,
however. The sub-network-version manages to generate a profit for both test
seasons, while the fully connected model fails to generate such numbers. Thus, a
possible limitation for this thesis is the selection of which model configuration to
run through the test set. Since there is little correlation between what is evaluated
for the validation data and the test data, the models can possibly suffer from this.

A better solution could be to evaluate the training and validation data in a stricter
betting fashion, and this could be achieved by running the betting simulator on
the validation data with a fixed strategy and logging the best profit for each
configuration. Thus, one could select models from the training data based on
evaluations which are completely related to the ultimate goal of the thesis, which
is generating a profit.

7.6 Money management agent

Although the money management agent did well on the stylized environment with
perfect predictions and random odds, it did not converge on an useful betting
strategy when using real match predictions, outcomes and odds. The idea behind
using reinforcement learning for this purpose, was that an agent could learn to
compensate for systemic errors in the match predictions, yielding better betting
results than established strategies.
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Figure 7.1: FiveThirtyEight’s predicted probabilities compared to actual outcomes

For instance, as seen in Figure 7.1, FiveThirtyEight have a tendency to underes-
timate the low probability outcomes, particularly around the 25% mark. If the
agent had been able to learn the environment properly, it could have recognized
this, and been more aggressive on the bets in this region. This might only hold
up to a certain point; if the probability predictions are too far off compared to
the odds and the true probability distribution, and off in a random, non-systemic
fashion, there might not be enough of a pattern for the agent to recognize.

The fact that the action space was simplified significantly, only allowing the agent
to place unit bets, may have hindered it from learning a profitable betting strat-
egy. The money management strategies used in the evaluation of our prediction
models (except the fixed bet strategy) modify the bet size to optimize some util-
ity function. For example, the variance-adjusted strategy from Rue and Salvesen
[2000] places bets to maximize the expected profit minus the variance of the profit,
which may give more stable results. A mechanism like this is unavailable to an
agent operating in our simplified fixed bet action space, giving the agent no room
to mitigate risk other than refraining from betting.

Another hindrance is that the money management problem may not fit the model
of a Markov Decision Process very well. In a Markov Decision Process, the state of
the system should have the Markov property, which states that the future is inde-
pendent of the past given the present. While that technically holds in our model
of the betting environment, most of the state space is also wholly independent of



94 Money management agent

the present. The odds and probabilities observed in St is in no way affected by
the observation St−1, and the only part of the state affected by the agent’s action
is the current bankroll. On the other hand, the agent operating in the stylized
environment did manage to learn and improve, so the loose fit of the MDP model
may not be a big issue in itself.

In summary, the results on the highly stylized environment showed promise, being
able to recognize betting situations where a unit bet would be a rational decision.
When applied to real odds and predicted probabilities, the agent was not able to
learn a strategy that can outperform established betting strategies, most likely due
to a too constrained action space not giving the agent enough options to mitigate
risk.



Chapter 8
Conclusion and Future Work

This chapter presents the conclusions drawn based on the results achieved in this
report in light of the research questions. Suggestions for improvements to the
system and experiments are also presented.

8.1 Conclusion

Section 1.1 presented the goal of this thesis, as well as three research questions to
guide the research towards that goal. The goal of this thesis was to generate a
profit on the football betting market using data-driven machine learning methods.

The first research question consisted of whether or not football matches could
be adequately predicted by artificial neural networks. Chapter 4 presents two
different match outcome prediction models using neural networks, the expected
goals of starting lineup and the data-driven pi-football models. Chapter 6 showed
that a neural network instance was able to predict the outcomes of matches with
up to 58% accuracy, and this predictive performance assisted it in returning a
profit on the betting market. This result displayed that football matches can in
fact be adequately predicted by artificial neural networks.

The second research question asked if utilizing domain knowledge in the structure
of artificial neural networks increases their predictive performance. In Section
4.3 we described how we aimed to answer this research question by grouping re-
lated features in each model into separate components in a neural network before



96 Future Work

merging them later on in the network structure. In Chapter 6 we compared the
performances of these networks compared to fully connected versions. In Section
7.3 it was concluded that the contradictory findings from the conducted experi-
ment, where fully connected models outperforms the sub-networks in some matter
of evaluation and vice versa, made it impossible to conclude that utilizing domain
knowledge in the structure of neural networks increased their predictive perfor-
mance.

Research question 3 concerned using reinforcement learning techniques to learn
profitable money management strategies for sports betting. Our exploratory ex-
periments in Section 4.4 showed an agent trained in a stylized environment con-
verging on the optimal policy, but failed when operating with the uncertainty of
actual match predictions and odds. This failure seems to stem from the simpli-
fication of the action space in our experiments, where the agent was not able to
choose how much to wager on an outcome, leaving very little way for the agent to
control the risk of the investments.

By writing a specialization report in the fall of 2018, which investigated the state-
of-the-art in predicting the outcomes of football matches and found new statistical
features not utilized in previous literature, several new prediction models were sug-
gested. In this thesis the models were created, and put to the test. By conducting
experiments which simulated these prediction models across two different seasons
of the English Premier League, two of our prediction models managed to retain
a profit for both seasons. The research goal can thus be considered fulfilled and
deemed successful.

8.2 Future Work

8.2.1 Threshold for expected gain

One interesting finding from our conducted experiment was the prediction models’
tendencies to overestimate the probability of match outcomes relative to the odds.
This yielded in p∗w � 1 for a number of matches, and by inspecting these matches
the models struggled with most of these outcomes resulting in losing bets.

As the bookmakers can be considered pretty decent in predicting match outcomes,
model predictions where p ∗ w � 1 are more likely to be caused by the model’s
prediction being off, rather than the bookmaker. To combat this, a possible im-
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provement could be to discard bets where p ∗ w is outside a specified range, for
instance only placing a bet if 1.1 < p ∗ w < 1.2.

8.2.2 Betting-based validation criteria

As mentioned in Section 7.5, a limitation of the system is the way it chooses models
to run through the betting simulation. Since there is little correlation between the
evaluation of validation data and evaluation of test data, the models chosen based
on the validation evaluation may not be the models which are best equipped for
returning a profit. A better way could have been to formulate a betting-based
validation criteria, which would more directly optimize for the end goal of making
a profitable betting system. For instance, a fixed bet strategy simulation on the
validation data could be a better evaluator for the prediction system.

8.2.3 Considering multiple bookmakers

In our experiments, only the odds from William Hill were considered, which is one
of the largest betting companies in the world. William Hill can thus be considered
very decent in setting the correct odds for outcomes which ensures a profit for
the bookmakers, but as there are over 50 bookmakers who offers odds on the final
outcome of English Premier League matches, a possible improvement of the system
might be to consider odds from multiple bookmakers.

By looking at the odds offered by all available bookmakers and collecting the
highest odds on each outcome, opportunities that generate more profit may arise,
since the betting biases added by the bookmakers will be decrease by considering
multiple bookmakers odds.

8.2.4 More complex action space for betting agent

To successfully and consistently profit from sports betting, just knowing whether
to bet on a match or not is generally not enough. By also choosing how much to
wager, a punter can attempt to account for the uncertainty and randomness of out-
comes by valuing bets differently. The agents trained in our reinforcement learning
experiments were constrained to only placing a unit bet on a single outcome, or
to not bet at all, removing an entire dimension of control over its profits.
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An obvious extension to our model of the environment would be to introduce a
more complex action space, where the agent also has control of the size of the bets
it is placing. One suitable option would be a subspace of R3, with one dimension
with domain [0, b] for each outcome and current bankroll b. An action could then
be chosen by selecting the dimension with the highest value, or alternatively allow
the agent to bet on multiple outcomes simultaneously. Another option would be a
discrete-continuous hybrid action space, with the discrete actions being the possi-
ble outcomes plus the no-bet action, and the wager being a continuous parameter
of each discrete action. In the case of the hybrid action space, Xiong et al. [2018]
propose an interesting extension to the DQN algorithm operating on hybrid action
spaces without using approximation or relaxation of the action space, which could
be a perfect fit for this model.
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Database tables overview

Team
Attribute Type
Team id int
Name String

Player
Attribute Type
Player id int
Name String

Bookmaker
Attribute Type
Bookmaker id int
Name String
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Match
Attribute Type
Match id Int
Date Date
Home team id Int
Away team id Int
League String
Season Int
Home goals Int
Away goals Int
Home xG Float
Away xG Float
Home shots Int
Away shots Int
Home shots
on target

Int

Home team
importance

Float

Away team
importance

Float

Home
soccerpowerindex

Float

Away
soccerpowerindex

Float

BookmakerMatchOdds
Attribute Type
Match id Int
Bookmaker id Int
Home odds Float
Draw odds Float
Away odds Float

BookmakerMatchOdds
Attribute Type
Match id int
Bookmaker id int
Home odds Float
Draw odds Float
Away odds Float
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