
M
agnus B

ärnholt, A
ndreas S. Lyngby

A
n Internet-of-Things Softw

are Fram
ew

ork for Exergam
es

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Magnus Bärnholt
Andreas S. Lyngby

An Internet-of-Things Software
Framework for Exergames:

Architectural Requirements and Developer
Acceptance

Master’s thesis in Computer Science
Supervisor: Dag Svanæs

May 2019

Magnus Bärnholt
Andreas S. Lyngby

An Internet-of-Things Software
Framework for Exergames:

Architectural Requirements and Developer
Acceptance

Master’s thesis in Computer Science
Supervisor: Dag Svanæs
May 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Internet of Things offer a variety of solutions to connect sensors and integrated systems to
the internet and expand the way we use the internet today.

This thesis is part of the EXACT research project where the aim is to explore physical
exercise through exergames. The combination of exergames and internet of things is, as
of now, a relatively unexplored field. This thesis will help create a platform that allows the
creation of exergames.

In this thesis a framework was created for developing exergames using internet of
things, and it has been evaluated and tested with game developers. The development
of this framework has followed the principles of a Human User-Centered Design process,
where the thesis completes one iteration.

The technology chosen is based on a set of criteria that was researched before the
development of the framework started. These criteria fit the requirements of developing
exergames using internet of things.

To realize the framework, two tile types were prototyped, each containing one Arduino
based system on a chip, of the type ESP8266, with varying sensors and actuators fit for
pervasive exergames. These sensors include a Time of Flight sensor and an inertial mea-
surement unit. In addition, a Raspberry Pi working as an access point with an MQTT broker,
was used as a communication layer between the devices.

The framework itself is partly targeting the Unity game engine. As such, it has been
tested with Unity game developers with varying degrees of expertise, through usability test-
ing.

The usability testing consisted of two workshops, where the participants first got to
familiarize themselves with the framework before being given a task. The results of the
workshop were based on System Usability Scale forms, code review, and semi-structured
interviews. Based on the results of the tests, it was established that the criteria for the
framework mostly covered the game developers’ needs. However, there was a consensus
that the frameworks should be seamlessly integrated into Unity, or a more Unity-based
solution.

This study shows that game developers using the Unity game engine were interested
in a framework that enables them to use internet of things in conjunction with regular game
engines.

i

Sammendrag
Tingenes internett tilbyr en rekke løsninger for å koble sensorer og integrerte systemer

til internett og utvide måten vi bruker internettet i dag.
Denne oppgaven er en del av forskingsprosjektet EXACT, der målet er å utforske fysisk

trening gjennom exergames. Kombinasjonen av exergames og tingenes internett er et
relativt uutforsket felt. Denne oppgaven vil bidra til å skape en plattform som gjør det mulig
å utvikle exergames.

I denne oppgaven ble det utviklet et rammeverk for utvikling av exergames som bruker
tingenes internett. Det har blitt evaluert og testet med spillutviklere. Utviklingen av dette
rammeverket har fulgt prinsippene for en bruker-sentrert designprosess, hvor oppgaven har
fullført én iterasjonen i en slik prosess.

Den valgte teknologien er basert på et sett av kriterier som ble undersøkt før utviklingen
av rammeverket startet. Disse kriteriene passer til kravene for utvikling av exergames som
benytter tingenes internett.

For å realisere rammeverket ble to typer 3D-printede fliser prototypet. Hver av flisene in-
neholder en Arduino-basert ESP8266 brikke, med varierende sensorer og aktuatorer som
passer for gjennomgripende exergames. Disse sensorene inkluderer en Time of Flight-
sensor og en 9-akse-bevegelsessensor. I tillegg ble en Raspberry Pi brukt som et kom-
munikasjonslag mellom enhetene, den var konfigurert som ett aksesspunkt med en MQTT-
broker.

Rammeverket er delvis rettet mot spillmotoren Unity. Rammeverket har gjennomgått en
brukbarhetstest der Unity-spillutviklere med varierende grad av erfaring har testet rammev-
erket.

Brukbarhetstesten besto av to workshops, der deltakerne først ble kjent med rammev-
erket før de ble tildelt en oppgave. Resultatene fra workshopene var basert på en bruk-
barhetsskala for et system (SUS), kodevurdering og semistrukturerte intervjuer. Basert på
resultatene av testene ble det bevist at de gitte kriteriene for rammeverket hovedsakelig
dekket spillutviklernes behov. Det var imidlertid enighet om at rammeverket burde være
mer sømløst integrert imot spillmotoren Unity.

I denne studien kommer det frem at utviklere var interessert i et rammeverk der de
kunne benytte tingenes internett til å utvikle nye gjennomgripende spill med bruk av Unity
som spillmotor.

ii

Acknowledgements

We want to thank Dag Svanæs for his supervision and his guidance throughout the entire
project. He has helped clarify challenges during the implementation, his experience within
usability testing has been very valuable, and we’re especially thankful for his proof-reading
of the thesis.

We want to thank Terje Røsand for his involvement in 3D printing of prototypes and advice
regarding Arduino development. He has helped whenever we have had issues regarding
the hardware, and if we ever needed any extra equipment he would always supply it.

We also want to thank both of them for their passion within their field of expertise which
has been infections for us both.

Lastly, we want to thank the participants of the usability testing, who helped give us good
feedback on the system they tested, and gave us an opportunity to test the framework, and
Work Work for taking the time to let us present our project, it helped us recruit participants
to the usability testing.

Magnus Bärnholt & Andreas Schatvet Lyngby
Trondheim May 31, 2019

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents viii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Motivations . 1
1.2 Related work . 3
1.3 Objectives and Scope . 4
1.4 Research Questions . 4
1.5 Contribution . 4
1.6 Research Methods . 5
1.7 Participants . 5
1.8 Outline . 6

2 Backgound 9
2.1 Exergames . 9
2.2 Software Architecture . 12

2.2.1 Software Architecture Patterns . 13
2.2.2 Quality Attributes . 13

2.3 Internet of Things . 14
2.3.1 Digital Twin . 18
2.3.2 IoT Architecture Patterns . 21

2.4 Open Source Software . 24
2.5 Technology Acceptance Model . 26
2.6 User-Centered Design . 27

v

3 Research Methods and Design 29
3.1 Research Methods . 29

3.1.1 Qualitative and quantitative research 29
3.1.2 Interviews . 30
3.1.3 Prototyping . 30
3.1.4 Usability testing . 31
3.1.5 Guidelines for usability testing . 33
3.1.6 Questionnaires . 33

3.2 Validity of Research Methods . 34
3.3 Research Design . 35

3.3.1 Human-Centered Design: ISO 9241-210 35
3.3.2 RQ1: Requirements . 36
3.3.3 RQ2: Technology stack . 37
3.3.4 RQ3: Implementation . 37
3.3.5 RQ4: Usability and Usefulness . 38
3.3.6 RQ5: Updated Requirements . 39

4 Architectural Requirements 41
4.1 Stakeholders . 41

4.1.1 Project team (Framework Developers) 41
4.1.2 End-Users (Game Developers) . 41

4.2 Architecturally Significant Requirements (ASR’s) 42
4.2.1 Main functionality . 42
4.2.2 Criteria from Johansen . 42
4.2.3 Functional Requirements . 44
4.2.4 System Quality Attributes . 44
4.2.5 Quality Attribute Scenario . 45
4.2.6 COTS - Components and Technical Constraints 47

5 Technology 49
5.1 Technology Stack . 49
5.2 Hardware . 49
5.3 Software . 51

5.3.1 Connectivity . 51
5.3.2 Application . 51

5.4 Proposed Technology Stack . 52

6 Implementation 55
6.1 Implementation Overview . 55

6.1.1 Component Roles . 56
6.2 Component Connection . 57

6.2.1 Arduino and Unity . 57
6.2.2 Unity and Digital Twin . 64

6.3 Device Configurations . 65

vi

6.4 Examples . 67
6.4.1 Controller and Output . 67
6.4.2 Sample Tile . 67
6.4.3 Follow the Light . 68

6.5 Challenges and Reflection . 69

7 Usability Testing 71
7.1 Research design . 71
7.2 Planning . 71

7.2.1 Recruiting participants . 71
7.2.2 Location and equipment . 72
7.2.3 User tests and tasks . 73
7.2.4 Semi-structured interview . 73

7.3 Procedure . 75
7.4 Results workshop 1 . 76

7.4.1 Observations: Problems and challenges 76
7.4.2 Code analysis . 77
7.4.3 Group interviews . 77
7.4.4 System usability scale . 80

7.5 Results workshop 2 . 80
7.5.1 Observations: Problems and challenges 80
7.5.2 Code analysis . 81
7.5.3 Group interviews . 81
7.5.4 System usability scale . 83

8 Requirements Update 85
8.1 Summary of Semi-structured Interviews . 85
8.2 Updated Requirements . 86

9 Research Discussion 89
9.1 Validity . 89

9.1.1 Objectivity . 89
9.1.2 External validity . 89
9.1.3 Ecological validity . 90
9.1.4 Triangulation . 90
9.1.5 Test subjects . 90
9.1.6 The task . 91
9.1.7 Researcher Bias . 91

9.2 Alternative Research Approaches . 92
9.2.1 Field Study . 92
9.2.2 Field Experiment . 92
9.2.3 Open Source . 92

vii

10 Discussion 93
10.1 Research Question 1 . 93
10.2 Research Question 2 . 93
10.3 Research Question 3 . 94
10.4 Research Question 4 . 95
10.5 Research Question 5 . 96

11 Conclusion 99
11.1 Recommendations for Further Work . 100

Bibliography 103

Appendix 107

viii

List of Figures

1.1 Nintendo Wii workout, with a friend in multiplayer. 2
1.2 Playing with Moto Tiles . 3
1.3 Oates’s Research Process Model . 5

2.1 AR, VR and Tangible Computing . 11
2.2 Follow the Red Dot implementation from Johansen (2018) p. 23. 11
2.3 Simplified Technology Stack for IoT systems. 17
2.4 A simplified Broker Pattern diagram. 22
2.5 A simplified Multicast Pattern diagram. 23
2.6 A simplified Publish & Subscribe diagram. 23
2.7 Technology Acceptance Model. 27

3.1 Prototype triangle . 31
3.2 Errors detected given the number of user tests 32
3.3 SUS response . 34
3.4 Human-Centered Design . 36
3.5 Model of research process for RQ4 . 38
3.6 Model of the research process. 39

4.1 Quality attribute scenario Bass et al. (2003) 45

5.1 3D printed prototype tiles, blue and red. 50
5.2 A modified version of the technology stack seen in chapter 2.2. 52
5.3 Proposed technology stack for this project. 53

6.1 Architecture Overview . 56
6.2 Subscribe and Publish overview . 58
6.3 Information flow overview . 59
6.4 Sample Tile flow of events when tapped . 68
6.5 Flow of Follow the Light example . 69

ix

7.1 Layout of the UX-lab with computers, tables and separator walls set up. . . . 73
7.2 Keep the Light Alive gameplay steps . 74

11.1 Project.zip -> Arduino folder diagram . 107
11.2 Project.zip -> Unity folder diagram . 108

x

Abbreviations

Abbreviation = definition
AR = Augmented Reality
ARS = Architecturally Significant Requirement
AWS = Amazon Web Services
CAD = Computer-aided Design
CORBA = Common Object Request Broker Architecture
CoTS = Components and Technical Constraints
DHCP = Dynamic Host Configuration Protocol
DT = Digital Twin
DTPF = Digital Twin-driven Product Framework
EJB = Enterprise Java Beans
GPL = General Public License
HTML = Hypertext Markup Language
IMU = Inertial Measurement Unit
IoT = Internet of Things
ISO = International Organization for Standardization (from greek isos)
LED = Light-emitting Diode
MAC = Message Authentication Code
MQTT = Message Queuing Telemetry Transport
OSI = Open Source Initiative
OSS = Open Source Software
PLM = Product Lifecycle Management
QR = Quick Response
RFID = Radio-frequency identification
RPi = Raspberry Pi
SOA = Service-Oriented Architecture
SDK = Software Development Kit
SoC = System on a Chip
SUS = System Usability Scale
TAM = Technical Acceptance Model
ToF = Time of Flight
VR = Virtual Reality

xi

xii

Chapter 1
Introduction

1.1 Motivations

Exergames

Exergames are games that aim to improve and increase the user’s physical activity, involv-
ing the use of large parts of the body. Wiemeyer and Kliem (2012) explain that such types
of games have a lot to offer in physical activity and rehabilitation. The publication discusses
whether exergames can be used to prevent and rehabilitate older people’s health. It is
evident from existing studies that exergames have a lot to offer, but only if the games are
developed and designed based on an interdisciplinary understanding of the respective ap-
plication fields. Figure 1.1 illustrates a workout game, played with Nintendo Wii’s hand held
game controllers.

Pervasive Games defines them as having "one or more salient features that
expand the contractual magic circle of play spatially, temporally, or socially."

- Montola et al. (2009)

EXACT is an interdisciplinary research project between the Department of Computer
Science (IDI) and the Department of Neuromedicine and Movement Science (INB) at NTNU.
The primary objective of the project is to explore the use of exergames combined with social
media in physical rehabilitation.

The secondary objectives of the project are: (I) developing a design methodology, and
theoretical foundation for exergames in rehabilitation, (II) solving technical challenges re-
lated to applying the technology, and (III) evaluate the effect of exergames for rehabilitation.
This thesis focuses the on secondary objective II, solving technical challenges.

1

Chapter 1. Introduction

Figure 1.1: Nintendo Wii workout, with a friend in multiplayer.

A publication from Konstantinidis et al. (2017) discusses how IoT(Internet of Things)
devices such as game controls in the form of hand held devices or physical game objects
in the environment are relevant for serious and pervasive games. They conclude that IoT
devices are highly relevant in designing pervasive exergames.

A good example of a special kind of pervasive exergames is the Danish product Moto
Tiles. Moto Tiles have embedded sensors and LEDs, and by placing them onto the floor,
users can perform a variety of games and practices for fun, such as stepping the lighting
tile and turning it off, making sounds by steps, etc. The use of Moto Tiles amongst elders in
Denmark has shown remarkable effects of physical abilities in clinical effect studies, such
as increasing balancing skills. Jessen and Lund (2016). The Moto Tiles in action is shown
in figure 1.2.

Internet of Things

The Internet of Things gives us a world of new and interesting opportunities to create cre-
ative solutions in various applications. Everything from smart door locks, electric tooth-
brushes or complete surveillance of our house. Acknowledged cloud solutions like Amazon
AWS, Microsoft Azure and Google Cloud, have all set their foot in the IoT. Today all of them
are delivering a tailored ecosystem for IoT. In this thesis we want to develop a platform
where IoT devices are connected to a WiFi network, and paired up with a digital twin in the

2

1.2 Related work

Figure 1.2: Playing with Moto Tiles

Unity game engine. They should communicate over a lightweight publish-subscribe-based
messaging protocol, and have the opportunity to scale and communicate at a rapid speed.
In order to realize such a platform, we need to find a comprehensive architecture that makes
the platform stable and accessible to open source. It is also important that the architecture
is scalable, forward-looking, safe and covers the quality attributes the platform should have.
The motivation of this project comes from the possibilities IoT has been shown to offer,
together with the wish of helping game developers to create more pervasive exergames.

1.2 Related work

To our knowledge there is not much research to be found on the need of an IoT platform,
tailored for specific development of pervasive exergames. On the other hand, there is lots
of research on why exergames is health beneficial, and why exergames is becoming more
interesting in the field of rehabilitation and exercises of patients and older adults. Skjæret
et al. (2016). As mentioned earlier, the Danish product Moto Tiles has been a source
of inspiration for what exergames manage to achieve among the elderly. Moto Tiles has
provided clinical evidence of efficacy and scientific articles regarding its product. Unlike
what the EXACT project wants, Moto Tiles is developed with the idea of not being an open
source product. Nor is it a general framework that anyone can use to develop their very own
exergames. We have used the results and evaluation from the master’s thesis of Johansen
(2018) as a guideline to what criteria such an IoT platform may require.

3

Chapter 1. Introduction

1.3 Objectives and Scope

The main objective of this project is to develop an IoT platform for prototyping and devel-
oping pervasive games that utilize IoT technology based on open source platforms and
frameworks. This platform will give developers less barriers of develop exergames, when
using IoT devices as part of their game. The research is guided by five research questions
presented in the following section.

As this is an exergames-focused project, we have chosen not to look at security in the
communication between devices and games.

1.4 Research Questions

The overall research objective is to develop an open source IoT platform and find its require-
ments. The platform will undergo a usability test, and the uncovered errors will be used to
update new requirements. The IoT platform will be a part of the EXACT research project,
and its role is to make it easier for Unity game developers to create IoT-based pervasive
exergames.

RQ1: What are the requirements for an open source architecture to support the develop-
ment of pervasive exergames?

RQ2: What existing software technologies are best suited to realize these requirements?

RQ3: What are the challenges of implementing such an architecture for a specific target
technology?

RQ4: How do potential users of the resulting framework asses its usefulness and usability?

RQ5: Based on the previous questions; what are the requirements for such an architecture?

1.5 Contribution

This paper will contribute to research done on IoT based pervasive game frameworks. The
project will be to develop a platform where IoT devices can be connected as a digital twin
to an already existing game development platform. In order to realize such a platform, we
need to find a comprehensive architecture that takes the findings from Johansen’s thesis
Johansen (2018), and build upon them to make the platform stable, secure and accessible
with open source in mind. Undefined aspects like overall performance and scalability will be
measured and discussed along the way. The platform will undergo a usability test, where
we invite potential game developers with different level of programming skills to evaluate
the design. We hope that the results of this project will help game developers with different
levels of competence to easier develop pervasive exergames. If the platform evolves in the
open source community, we believe that more exergames will see tomorrow’s light and help
people through rehabilitation or give them a new way of playful exercise.

4

1.6 Research Methods

1.6 Research Methods

Our research methods are based upon the literature from the book Researching informa-
tion systems and computing by Oates. We will define our research questions based on a
mixture of conclusions drawn from Johansen’s master thesis and a literature review. Af-
terwards, we will go through a design and creation process where the framework will be
developed. Finally, an experiment will be conducted, where a usability test will be carried
out on the framework. Oates emphasizes that research projects should demonstrate not
just technical skills, but also academic qualities, for example analysis, argumentation and
critical evaluation, so it creates some new knowledge. Oates (2012). So, for our master
thesis we will round up the report with a research discussion, where we reflects upon the
findings and the validity of the experiment. Figure 1.3 outlines our research plan based on
Oates’ research process model.

Figure 1.3: Oates’s Research Process Model

1.7 Participants

The research was conducted by: Andreas Schatvet Lyngby (student), Magnus Bärnholt
(student), Dag Svanæs (professor) and Terje Røsand (senior engineer). Terje provided us
with technical advice regarding the Arduino hardware with its sensors. He was also respon-
sible of the hardware design and 3D-printing the prototypes. Dag was the lead supervisor
who would frequently monitoring our research progress and helped our focus to be pointed
in the right direction. For this master thesis, we planned to include some experiments on
a selective group of people. This project has NSF(ethics) approval as part of the EXACT
project. Users had to sign informed consent forms, and we made sure the data was stored
on NTNU’s data servers. We attached great emphasis in recruiting participants, and were
planning a presentation of the project for developers at the incubator Work Work in Trond-

5

Chapter 1. Introduction

heim. We wanted to recruit game developers who had both high competence and students
with less experience. This would give us the opportunity to make a broader analysis of the
evaluation results. Under the experimental stage of the research we wanted to participate
under guidance of Dag.

1.8 Outline

Chapter 1

Has an introduction to the research being done, along with some background information
for motivation and related work, and research questions to be looked at. Sets the baseline
for the report, and contains this outline for the rest of the report.

Chapter 2

Chapter 2 aims to explore some of the themes relevant to the research. Going over some
relevant background information with topics that fit the research. These topics include
software architecture, internet of things, digital twin, open source software, exergames and
lastly user-centered design and TAM.

Chapter 3

This chapter details the research methods and the validity of them, and ends with covering
all five research questions, giving them a more detailed explanation.

Chapter 4

This chapter covers the documentation in more detail in regards to the architecture. This is
more of an overview over the architecture itself, as well as some criteria set for ourselves
in terms of development of the architecture for the system.

Chapter 5

In chapter 5 we explore the technologies we used in our research, and in the design and
creation phase of the project. This includes software and to some extend hardware, and
also the technology stack suitable for our aimed product.

Chapter 6

In chapter 6 we detail the implementation at its current state. This includes an overview
of the architecture, in the way the components described in chapter 5 are connected, and
also how the software side works. The software code is also explained to some extent. In
addition, we go over some examples and some challenges during the implementation.

6

1.8 Outline

Chapter 7

This chapter details the entire usability testing, which includes research design, planning,
procedure and the results for the workshops.

Chapter 8

In chapter 8 we briefly cover some changes to the requirements that surfaced during the
usability testing.

Chapter 9

In this chapter we discuss the validity of our research, and explore alternative research
approaches.

Chapter 10

In this chapter we give a deeper discussion on each research question detailed in chapter
1 based on the results from our research approach.

Chapter 11

This chapter concludes our research for each research question. This chapter also has
some recommendations for further work.

Appendix

The appendix contains two folder structure diagram, documentation on the framework, a
questionnaire, SUS form, and lastly the partner agreement.

7

Chapter 1. Introduction

8

Chapter 2
Backgound

2.1 Exergames

Over the last decade, a lot of attention from the research community has been devoted to
some of the growing health-related issues in the modern western society. Some of these
issues relate to the increasing need of physical activity and improvements of health and
physical function in older adults Skjæret et al. (2016), as well as the growing problem of
obesity in the younger demographic due to less physical activity and non-physical activi-
ties related to playing video games and watching television Oh and Yang (2010). Some of
these issues stem from the way modern technology has transformed our lives, making us
comfortable and more prone to sedentary lifestyles. Given this, a focus has been put on
exploring a new type of games referred to as exergames, or exercise-games, and exergam-
ing. These are a subset of serious games, games more focused on mental and physical
benefits, not just entertainment.

The term exergames and exergaming has been given various definition and had var-
ious types of use due to interests spanning multiple research collectives. Oh and Yang
(2010) has done a review on the term usage within both health related and non-health re-
lated research to propose a new definition that combines exertion and video games. This
type of exertion includes strength training, balance and flexibility. From what they found,
most researchers consider exercise differently and has used the term in different settings.
Some consider all type of non-sedentary activity as exercise, while others have standard-
ized methods of monitoring activity levels. This makes comparing the different studies
difficult. To standardize the use of exergames and exergaming, Oh and Yang (2010) pro-
poses the following definitions, these are also the definitions we will follow:

9

Chapter 2. Backgound

Exergame A video game that promotes (either via using or requiring) players’ physical
movements (exertion) that is generally more than sedentary and includes strength, bal-
ance, and flexibility activities.

Exergaming An experiential activity where playing exergames, video-games, or computer-
based games is used to promote physical activity that is more than sedentary activities and
also includes strength, balance, and flexibility activities.

Benefits of exercise gaming

The benefits of exergames comes when you put your body in motion. Several exergames
have physical benefits similar to aerobic exercise, and helps reduce the risk of heart and
vascular disease, high blood pressure, obesity and diabetes. Manley (1996). In a report
from Siegel et al. (2009), scientists show that playing 30 minutes of exergames results in
an increased heart rate and calorie consumption that’s within what the American College
of Sports Medicine recommends for daily physical activity.

AR, VR and Tangible computing

When we talk about pervasive exergames, three new technologies are often discussed.
These are augmented and virtual reality, as well as tangible computing. Figure 2.1 provides
a graphic illustration of these three technologies. The augmented reality means that reality
is combined with the digital. Augmented reality can be created through e.g. a mobile
screen, where the camera observes the surrounding environment, and software generates
data images that is placed over the image of the physical world. Virtual reality on the
other hand generates a picture of a digital reality, and then locks you into this reality by
an isolated screen. One of the industries that has truly embraced augmented reality is the
gaming industry. A good example of a exergame using AR technology is Pokemon GO.
In our thesis, we will use physical objects to manipulate the digital state of a Unity gaming
object, which falls under the tangible computing category. The definition of a tangible user
interface is:

A tangible user interface can be defined as a device that converts physical in-
teractions into digital information and vice versa; it can therefore be considered
as a translator between the real and virtual environment.

- Patten et al. (2000)

10

2.1 Exergames

Figure 2.1: AR, VR and Tangible Computing

Examples of Exergames

In his thesis, Johansen (2018) details a proof of concept for an exercise game using micro-
controllers connected to a game engine called Unity. Here, he explores the use of different
technologies that can be used to connect a game engine and IoT technologies. From his
research spawned a sample game "Follow the Red Dot" in which the micro-controllers light
up and the player(the user of the system) has to touch the micro-controllers to turn the light
off. Another light will then appear on a different micro-controller. This proof of concept also
sets the starting point for our project. In figure 2.2 we see an implementation prototype of
this concept where the dot moves from one place to another.

Figure 2.2: Follow the Red Dot implementation from Johansen (2018) p. 23.

Another example of exercise games that follows the same concept direction is from
Moto (2017), called Moto Tiles(recall from chapter 1). This is a more complete package
and a finished product of what Johansen (2018) explored in his thesis. With an Android

11

Chapter 2. Backgound

tablet and their IoT tiles with pressure sensitivity, they have several modes of play where
the players either touch or step on the tiles to use them as controllers. See figure 1.2 from
chapter 1.

IoT-based Exergame Platforms

There are existing IoT-based frameworks and platform for games and exergames. Some of
these frameworks do however not have names, but they do have example games listed.

Henry (2018) has an interesting framework that uses MQTT as the middle-ware with
a Broker Pattern. They do have an example application called SEA: Student Engagement
Application. This one is interesting for reason we’ll get into in later chapters of this report.

Konstantinidis et al. (2015) has their framework for exergames removed from the tradi-
tional desktop application by embedding the application into HTML5 and thus bringing the
use of mobile devices for full body exergames.

Martin and Laviola (2016) brings the Transreality Interaction Platform which is a platform
where they mix Virtual Reality components and IoT.

Among other frameworks and platforms we have UKKO(Dickinson et al. (2015)), a
location-based pervasive game for students. There’s also the InLife (Kosmides et al. (2018))
framework for IoT-based Serious Games.

2.2 Software Architecture

Bass, Clements and Kazman define software architecture the following way:

The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them,
and properties of both.

- Bass et al. (2003)

Important to note is that this definition doesn’t limit itself to only define software archi-
tecture in a way where the architectural decisions are made early. With agile or spiral-
development, as examples, these decisions are made not only early, but also later in de-
velopment and implementation. Essentially, software architecture is all that describes the
system, from the implementation itself to the various types of documentation surrounding it.
For example, this report itself along the code and implementation, which will be explained
in further detail in chapter 4.

Within software architecture you have a few categories that help describe the system.
These are structures, views and patterns. A structure is the set of elements in the system,
as they are in the software or hardware. Views are representations of a coherent set of ar-
chitectural elements within the system as a whole, as it’s written and read by stakeholders,
thus also the relations between the elements. Patterns are strategies on how to solve the
problems the system will aim at, patterns are elaborated in the subsection 2.2.1.

Shortly explained, a view is a representation of a structure. Meaning if you have what’s
called a module structure, the model view is the documented representational view of said

12

2.2 Software Architecture

structure, which is made according to a template and used by stakeholders. Structures on
the other hand come in three major categories we will cover in short Bass et al. (2003)

• Module structures: These are essentially which decisions are used in how the sys-
tem is to be structured as a set of code or what kinds of data units have to be con-
structed or procured. These are static representations of the system, and have areas
of functional responsibility.

• Component-and-connector structures: These are decisions as to the system’s
structure of the run time behaviors(components) and interactions(connectors). The
views of this kind of structure are important in questioning the system’s run time
properties, such as performance, security, availability, etc.

• Allocation structures: These are structure that show the relationship between soft-
ware elements and other external environments in which the software is created and
executed. Often structured around deployment, implementation and work assign-
ment.

2.2.1 Software Architecture Patterns

Intel’s web-article on communication patterns briefly mentions that it’s important to decide
on an architecture pattern early, so you don’t paint yourself into a corner. Intel (2016). This
is mostly in terms of a project using devices and communication protocols, much like our
own. Bass, Clements and Kazman, defines architecture patterns as following:

An architectural pattern is a package of design decisions that is found repeat-
edly in practice, has known properties that permit reuse, and describes a class
of architectures.

- Bass et al. (2003)

The patterns themselves establish a relationship between various element; A context,
problem, solution, and element types, interaction mechanisms or connectors, topological
layout of of the components, and various semantic constraints. This relationship works as
a way to reason about the problem at hand. Which will be described throughout this report.

2.2.2 Quality Attributes

Quality attributes are the criteria that we define as non-functional requirements. These are
requirements used to evaluate the system as a whole, but not for specific behavior. Quality
attributes can be divided into two main categories. The attributes that affect system behav-
ior, design and the user interface, and those that affect the development and support of the
system. To achieve the greatest success with the architecture, it is a good idea to combine
quality attributes such as performance, reliability and ease of use. It is also important to
consider the impact the characteristics may have on the functional requirements and weigh
these against each other.

13

Chapter 2. Backgound

2.3 Internet of Things

In an article in the RFID Journal released in 2009, Kevin AshtonAshton et al. (2009) claims
to have coined the term "Internet of Things" back in 1999 when he had a presentation at
Procter & Gamble. His idea was for them to implement RFID into their supply chain.

What he believed back then and still believed at the time he wrote that article in the
RFID Journal, was that computers at the time, and today as well, relied heavily on human
beings for their information. Any type of data on the internet has been mostly built up by
humans in the way of interaction with the computers and the internet. The problem here
lies in the fact that this is not a very reliable source for information about the real world.
This is where the “things” come into play.

Since humans and the environment humans live in are physical, they’re in essence
based on things. Humans need the physical to live. This makes the “things” that much
more important compared to the ideas and information the internet represents without the
“things”. This also means that IT at the time of 2009, was so dependent on data from
people, and knew very little about the physical.

However, this is where the things he spoke of comes into play. If the computers knew
everything there was to know about things, with data gathered without the direct input from
humans, then this additional data could help us in many different ways. This is why he
thinks computers need their own way of gathering information. Which in turn will help the
computers “see, hear and smell” the world themselves.

This is where the RFID and sensor technology comes in. This technology would be
there to help computers get all this information. To then observe, identify and understand
the world, without depending too much on human input.

Early stages of IoT

Tracing back even before Ashton coined the term, the concept of IoT is old, more than 25
years old. Depending on how you choose to look at the history of IoT, what started it was
arguably a webcam pointing at a coffee machine. BCS (2017). This allowed for a stream
service from the camera that could be accessed in a web browser, and was considered
revolutionary in 1991. However, in the media it was considered a gimmick and was at a
relative level dismissed by the majority as they couldn’t see any better application for the
webcams, which are at present day so commonplace and no longer considered part of the
IoT ecosystem.

Development continued beyond this and RFID tags were starting to get used in develop-
ment. In Prof. Sanjay Sarma’s research team BCS (2017), one of the professor’s students
combined a simple RFID tag reader with a microwave oven. His idea was to have the oven
read tags connected to food items, then download the needed cooking instructions and
thus cook the item without needing any further human input.

From Sarma’s group, RFID became a huge focus and the Electronic Product Code
movement was started. With this, RFID as a product and utility was brought to the market
some years later. Though, it didn’t take off properly before the economic crash in 2008
where companies realized they needed to update their processes with inventory and prod-

14

2.3 Internet of Things

ucts. Through development by looking at different technology area, the cost of the sensors
were brought down and spread more.

However, today RFID technology is only a subset of what IoT really is, and the scope
of what IoT really is has been further developed and extended way beyond just RFID or
“extended barcodes”. There are more sensors and actuators, and other hardware, along
with software that builds up what we know as IoT now.

Directions of IoT

In general, IoT is a very broad term and it’s relatively difficult to properly define what it
is, along with the understanding of its scope. There is a suggested separation of IoT’s
development where you have two paths; the retrospective and prospective.

In the retrospective direction of IoT the main focus is on the uniqueness of things on-
line. The uniqueness here defined by the devices themselves usually only have a one-way
communicative connection to the internet, or to some other cloud. This is often achieved
through RFID and QR codes. This direction of IoT development is also mainly defined in
the category of hobbyist or private projects, though there are some companies that have
taken this direction of IoT development into use. An example of this is Apple’s wireless
beacons to send messages to phones. This direction does unfortunately not have much
of a commercial use and there has only been few major interconnected IoT projects within
this category.

In the prospective direction of IoT the main focus is having the thing as a complete pack-
age. Think of it as a readily available product for the consumers, like a fridge or a toaster,
or something similar. Here the device and the cloud has bidirectional communication con-
nectivity. The communication is embedded directly into the core of the thing and the thing’s
functionality is developed with this in mind. The general populace is still trying to figure out
the benefits of having various things connected to the internet, but TVs are getting smarter
and smarter and could be considered IoT in its own right, even if they’re moving more and
more towards being complete packages of a computer.

Further Defining IoT

When it comes to defining what IoT is, or what kind of ramifications IoT has, there are many
suggested definitions. Especially, also, considering what IoT entails. The International
Telecommunication Union puts it nicely:

A global infrastructure for the Information Society, enabling advanced services
by interconnecting(physical and virtual) things based on, existing and evolving,
inter-operable information and communication technologies.

- Wortmann and Flüchter (2015)

This definition is particularly nice because it encompasses something relatively close to
a full definition covering most aspects of IoT. The things, both physical and digital. The con-
tinued development. The communication between the things. How interconnected these
things become with those interacting with them.

15

Chapter 2. Backgound

Smart Industry Intelligent production systems
Connected production sites
Industry 4.0

Smart Home Intelligent thermostats
Security systems

Smart Energy Smart electricity
Gas and water meters

Smart Transport Vehicle fleet tracking
Mobile ticketing

Smart Health Patient surveillance
Chronic disease management

Smart City Real-time monitoring of parking space avail-
ability
Intelligent lighting of streets

Table 2.1: List of areas of IoT and some applications

There are also other definitions for IoT. Some of which focus more on the things them-
selves, and their connection to IoT. Some of which focus more on the internet-related as-
pects of IoT, meaning how the things interact, with internet protocols and network tech-
nology. And some of which are more related to the semantics challenges of IoT, covering
storage, search and organization of large volumes of information. Though these are some
focuses that definitions often fall under, there are also other definitions for IoT that are more
similar to the one from the International Communications Union.

Applications of IoT

There are many diverse applications for IoT, and the solutions based on IoT seem to be
increasing in virtually every aspect of everyday life. In table 2.1 some areas of IoT are
covered along with a couple of applications-areas for each.

All of these areas are the result of innovation of IoT. This innovation has, through com-
bining the physical and digital, created a vast array of new products, as well as enabled
new novel business models. With IoT, new technology is also developed at the same time
as the technology behind the IoT products gets further developed, increasing the quality of
various components used within IoT. A lot of this new technology has also helped in making
digitizing the things easier.

IoT has also brought new opportunities for incremental value generation. What this
means is that a physical thing is enhanced with the digital in newer and newer ways. First
on a local level and then as they are further developed, on a global level.

An example of this incremental value generation is a simple light bulb. Its primary
function is lighting up areas. With IoT and various sensors, the light bulb can detect human
presence and in turn act as a low-cost security system if it blinks and sends a message to
whoever owns the light bulb.

Another example is by taking a simple storage bin. Its primary function is storage. With
IoT you can have sensors that detect how many items are in this storage and can then

16

2.3 Internet of Things

Figure 2.3: Simplified Technology Stack for IoT systems.

detect low stock. If it’s connected further, it can also send out requests to be replenished.
Innovation within IoT is, however, not only limited to the individual connected thing.

This innovation can be brought over to a multi-product layer in terms of the products being
connected as part of a product system. An example of this could be a tractor connected
to a larger ecosystem for farm equipment including other vehicles at the farm. This then
used to monitor the different equipment and measure the efficiency of the equipment in the
system. To take it even further, multiple product systems could be interconnected. This
type of connection of systems in systems can expand industry boundaries.

Technology Stack in IoT

From a technological standpoint, the implementation of the software and hardware used in
IoT product solutions usually come in a multi-layer technology stack where you have three
main categories of layers. The thing or device layer, the connectivity layer and the cloud
layer.

At the thing or device layer, you usually have your typical IoT-related hardware, in some
cases Arduinos, with additional components such as sensors, actuators and even in some
cases more processors components. Along the hardware is usually also some embedded
software which can be modified or integrated to manage and operate the physical thing.

At the connectivity layer you have communication protocols such as MQTT or Web-
Sockets which aids in the communication between the thing/device and the last layer, the
cloud layer.

At the cloud layer you have various management software which helps in device com-
munication, and is used to communicate with, provision and manage the various connected
things. At this level is also an application platform which helps in terms of development and
execution of IoT applications. A lot of the management also comes down to analysis and
data management, while there can also be a process management software which helps
to define, execute and monitor processes between the categories of people, system and
things.

In figure 2.3, a simple technology stack of the various layers can be seen. A more
detailed overview of a suggested full technology stack, with more details of what goes
into each layer, can be seen in the article Technology and Value Added by Wortmann and
Flüchter (2015).

17

Chapter 2. Backgound

In the more detailed technology stack diagram, they have listed a few more elements
that span the three layers in the technology stack. The first is something they call Identity
and Security, which covers everything of user authentication and access to assure security
across the different layers. The second one being Integration with Business Systems, which
covers software components used to integrate enterprise systems. Lastly we have External
Information Sources, which covers software components to enable integration of external,
third-party information.

2.3.1 Digital Twin

The concept of Digital Twin is a relatively recent one, and there’s a bit of a split exactly
where the terminology and concept of it stems from. According a paper on the subject from
Glaessgen and Stargel (2012), NASA and the U.S Air Force, the term Digital Twin was first
conceived at DARPA, and then later Grieves and Vickers (2017) properly conceptualized
the terminology around it in their early works of Product Life cycle Management(PLM) from
2002 until around 2011 where the concept was finalized to where it is today. However, ac-
cording to Tao et al. (2018) the most commonly used definition of Digital Twin was proposed
by Glaessgen and Stargel:

Digital twin means an integrated multiphysics, multiscale, probabilistic simula-
tion of a complex product, which functions to mirror the life of its corresponding
twin.

- Glaessgen and Stargel (2012)

Before the concept of Digital Twin was properly in place, the product development of
complex systems were at a completely different scale. With only being able to work with
physical objects, the range of the investigation done during testing was only limited to when
they could have the product in a physical environment with actual forces. This meant the
first time a condition not covered by the physical tests would show up, would be when the
object was in actual use. This increased the unpredictability of the product, as well as cost
and time-consumption in fixing these errors.

According to Grieves and Vickers (2017) there are three types of systems; simple,
complicated, and complex. Simple systems are simple by nature because it’s predictable
and the observer can easily understand how it works. Complicated systems are also pre-
dictable. However, a complicated system is comprised of a larger number of components,
but it’s still predictable and straightforward, Complex systems however are characterized
as large networks of components with many-to-many communication channels and ad-
vanced information processing. These complex systems are complex because they’re not
predictable like the two others and results are difficult to discern.

The issues appearing when just testing on the physical, and the complex systems, are
what the concept of Digital Twin is aimed at combating. Looking back at the previously
mentioned PLM, this is where the digital twin had its groundwork established. The idea for
PLM comprised of elements that now make up what’s known as a Digital Twin; a physical
space and a virtual space. Between these two spaces, there would be a link for data to flow

18

2.3 Internet of Things

both directions. This gives us a system that consists of the two systems with the physical
being as it always has been, and the virtual space containing all information available about
the physical. This gives a mirrored system. Grieves and Vickers (2017) has proposed four
extra definitions when it comes to Digital Twin and it’s different manifestations. These four
are the following:

• Digital Twin: A set of virtual information that describes a potential or actual physical
object or product ranging from micro to macro level. At its core, any information that
could be gotten from the actual physical object should be obtainable from the virtual
object as well. This is the "parent" definition for the three other definitions, which
include the Digital Twin Prototype, Digital Twin Instance and Digital Twin environment.

• Digital Twin Prototype: This is a type of Digital Twin that describes a physical pro-
totype object. Meaning it has the information required to describe and produce a
physical version of the virtual object. This is akin to a class in terms of programming.

• Digital Twin Instance: This is a type of Digital Twin that describes a specific corre-
sponding physical object. This is on an individual level, and means the link between
the virtual and the physical remains throughout the life of that physical product. This
is more akin to an instance of a class.

• Digital Twin Environment: This is the integrated, multi-domain physics application
space for operating on Digital Twins for a variety of purposes.

In essence, the Digital Twin concept is about information. The information used in the
Digital Twin model is there to replace the wasted physical resources that was a problem in
the past before the digitization which happened at the end of the 20th or start of the 21st
century.

A good example of this information use is the manufacturing of large vehicles that NASA
and the U.S. Air Force has detailed from Glaessgen and Stargel (2012). The vehicles
produced, and the problems they face, are that of complex systems where, in NASA’s case,
they have an extensive set of requirements and regulations in place for how a vehicle should
operate, and their required performance. With the help of digital twins, there has been
put systems in place on the vehicles where the Digital Twin can forecast the health of the
vehicles or system, its remaining life and probability of mission success. With the help of the
Digital Twin, a prediction can also be made on the safety of critical events, and help predict
unknown issues before they become critical. The systems should also be able to mitigate
damage or degradation with the help of self-healing mechanisms or recommend changes
in the vehicle’s mission profile to increase life span and mission success probability.

While Grieves and Vickers (2017) and Glaessgen and Stargel (2012) has focused more
on the heavy-duty, complex system side of things for the Digital Twin paradigm, Tao et al.
(2018) claims that little had been done in terms of exploring the value of DT in terms of
consumer product design. With this, they have looked at various different data-driven de-
sign frameworks for product development and concluded the need for a Digital Twin-driven
Product Framework, to help generalize and set a methodology for the development of Digi-
tal Twin-based products.

19

Chapter 2. Backgound

With their Digital Twin-driven framework, Tao et al. (2018) proposes three parts that the
Digital Twin mode consists of. The first part are the physical entities in the physical space.
These are real products that can be operated by the users, man manufactured from raw
material or parts. During it’s life cycle, these physical entities have varying characteristics,
behaviors and performance.

The second part of the Digital Twin mode is the virtual space. These are virtual map-
pings of the physical products in virtual space. Preferably, they reflect their physical twin
throughout the whole life cycle, and also simulate, monitor, diagnose, predict and control
the states and behaviors of their physical twin. These virtual models should also preferably
have information about the geometric models of the physical entity, as well as its rules and
behaviors, with material properties, mechanical analysis, and health monitoring. As well
as various other information about the physical object. While these are preferable, the twin
can also be simpler with less data about the physical entity, but enough to mirror it properly
with behavior and functionality.

The third part of the Digital Twin model is the connected data that ties the physical and
the virtual spaces. This data includes the subsets of physical and virtual data, as well as
new data that is acquired after integration, fusion and analysis of the physical and virtual
data. The purpose of this third part is to achieve a two-way data transmission process
between the physical and virtual. This gives us a closed-loop process.

In their creation of the Digital Twin-driven Product Framework, Tao et al. (2018) has
proposed six steps needed to create a fully functional Digital Twin. However, while these
are considered steps to creating Digital Twins, there is no need to strictly follow the steps
in sequential order, and can be done simultaneously. The steps in order to create a fully
functional Digital Twin according to Tao et al. (2018) are as follows:

1. Build the virtual representation of the physical product
This step is usually done with computer-aided design (CAD) and 3D modelling. This
virtual product usually includes three parts; elements, behaviours, and rules. The
elements usually means the geometric model and physical model together. The be-
haviours usually mean not only the behavior of user and product, but also analysis
of of the product and user interaction generated by this behavior and modeling. The
rules are usually the evaluation, optimization and forecasting models.

2. Process data to facilitate design decision-making
Data collected from various sources are analyzed, integrated and visualized. Raw
data is converted into concrete information which helps designers in decision-making
about the product. The data being from various sources also helps discovering pat-
terns that wouldn’t be discovered if the source was singular. Visualization is used to
present the data in a meaningful way. In this step, artificial intelligence can also be
incorporated to help enhance the DT’s cognitive ability, so it can make some simple
recommendations itself.

3. Simulate product behaviours in the virtual environment
This step is helped by simulation and virtual reality. The simulation can help simulate

20

2.3 Internet of Things

how the product would behave in the real world. Virtual reality can be used to help
involve designers and creators interact directly with the virtual product.

4. Command the physical product to perform recommended behaviours
Based on recommendations of the DT, the physical is equipped with the capabilities
to adjust itself in the physical world. This is done with various actuators. Sensors and
actuators are the backbones of the DT (Tao et al. (2018)). Sensors sense the physical
world, and actuators execute desirable adjustments. Sometimes augmented reality
(AR) can be used as well to reflect some parts of the virtual product in the physical
world. This can be used to view the real-time state of a product, as an example.

5. Establish real-time, two-way, and secure connections between physical and vir-
tual product
The enabling technologies here are network communication, cloud computing and
network security. The DT is connected to the cloud through the network connection,
then sends data to the "cloud" where the virtual product is. Then in the cloud, the vir-
tual product can be developed, deployed and maintained in the "cloud", which means
anyone with internet access can work with it. Lastly, the product data are directly and
indirectly concerting user-product interactions, so secure connections between the
physical product and virtual product is necessary.

6. Collect all kinds of product-related data from different sources
According to Tao et al. (2018) there are four types of product-related data that should
be processed by DT. These are product data, environmental data, consumer data
and interactive data. Product data has consumer comments, viewing, and download
records. Interactive data has user-product-environment interaction, such as stress,
vibration, etc. IoT technologies can collect some of this type of interactive data in real
time, and can then analyze it, and then make evaluations which are fed back into the
first step. Thus, a loop to create a more functional virtual product is made.

Interestingly, Tao et al. (2018) mentions a new paradigm shift for bicycle use which
is happening in China. There, they have share bicycles which are locked and unlocked
through QR codes scanned with an application on a smart phone. Since the bicycles have
location-based IoT technology, the user can open the app and find nearby bicycles for use.
If they do need to use it, they can scan the QR code to unlock it, ride it where they need to,
then lock it and pay for the ride through the application. According to Tao et al. (2018) this
new "bicycle-sharing" (as it’s called) has been a success case within public transportation,
and shows how new IT technology, digital twins and IoT can help bring upon new changes
in our daily lives.

2.3.2 IoT Architecture Patterns

With Intel’s article about architecture patterns for IoT, it was an easy decision as to what
architectural patterns fit the idea for our system. The patterns we will mostly focus on are
Broker Pattern, and Publish and Subscribe. While it is a relatively new pattern, We will talk
about the concept of Digital Twins in its own section.

21

Chapter 2. Backgound

Broker Pattern

As a baseline for this project, the architectural pattern we will be working with is the broker
pattern. What this pattern does is define a run time component called a broker that acts as
an intermediary between the client side components and the servers. As can be seen in
figure 2.4 where a very simplified broker pattern diagram has been set up.

Figure 2.4: A simplified Broker Pattern diagram.

The problem this patterns solves is one where the service users don’t necessarily know
the nature and location of the service providers. This makes it easy to dynamically change
the bindings between users and providers in real time.

However, this does not come without its downsides. With the use of a broker, there is
an added complexity to the system where there might be a need for both client-side and
server-side proxies to the brokers, and there might be a need to set up custom messaging
protocols. The added complexity also makes it more difficult to test the system. With the
added node, so to say, between the client and server, there’s also an added latency in the
communication and the communication is reliant on another node with being online. The
broker is also the key point of attack in a security related manner, which means extra care
needs to be put in to make sure the broker and the communication is secure.

While these weaknesses may seem daunting, the benefits of such a system outweighs
the negatives depending on the use case of the system. To start off the is the added benefit
of modifiability as to how the system interacts between the components. It’s easy to change
between the connections and add/remove links between the service providers and service
users. All this without either party knowing about the change. This could be an added
performance benefit where the broker can easily assign work to the least busy server. With
this there’s also the added benefit of availability in the case of a server going offline. The
broker can then replace the failed server and the client continues its work without knowing.

There are many uses of this pattern, but we will mention of few of the bigger or more
common ones. The fist widely used implementation of the pattern is the Common Object
Request Broker Architecture CORBA (2018), CORBA for short, which is an open, vendor-
independent architecture and infrastructure that computer applications use to work together
over networks. The more common uses of the pattern can be found in Enterprise Java
Beans ORACLE (2018), EJB, and Microsoft’s .NET platform Microsoft (2018), both of which
are distributed service providers, and have a service-oriented architecture (SOA) approach.

22

2.3 Internet of Things

Figure 2.5: A simplified Multicast Pattern diagram.

Publish and Subscribe

Before going into the Publish and Subscribe pattern, we should briefly mention Multicas-
ting. Multicasting is an extension of the broker pattern. How the Multicast pattern works
is that instead of sending messages back and forth on a one to one basis, like a regu-
lar broker pattern, the sender sends a message to the intermediary, the broker, which in
turn distributes the message to multiple recipients. This can be seen in figure 2.5, which
is a simple version of the Multicast pattern. Not including proxies and other components
relevant to the pattern.

A benefit from the Multicasting pattern is its bandwidth efficiency compared to one to
one communication. The sender can simply send the message to the broker and not worry
about using more bandwidth. As with the regular broker patter, the sender doesn’t need to
know who the recipients are. Intel does note that there are downside to the pattern, with
security as an example, and the fact that the bandwidth save only matters if most or all
values of the transmitted message is used.

Moving on, the Publish and Subscribe pattern is an extension of both Broker and Mul-
ticasting patterns. This is an event-based pattern and has an indirection layer between
senders and receivers. There are independent processes or objects(namely also clients
and servers) which react to events in the system, and thus reacts accordingly depending
on the announcements. This is the pattern that most closely reflects the system being de-
scribed in this report. A simplified diagram of this pattern can be seen in figure 2.6. Here
the client has a subscription in the system and receives the event-based message sent by
the server. The usage of this pattern in our system is further explained in chapter 4.

Figure 2.6: A simplified Publish & Subscribe diagram.

23

Chapter 2. Backgound

A benefit of the Publish and Subscribe pattern is the separation of sender and recipient
where both sides are ignorant of the other side. This makes for easy change in the system
in relation to change of the servers and consumers. This is however not without a cost.
Given the indirection of the system, there’s an added latency. In turn there is a run time
performance reduction. This can affect the scalability of the system, depending on how it’s
implemented.

More often than not, in practice the pattern is realized by having a message-oriented
middle-ware. The broker then takes this role. As the middle-ware, the broker manages the
connections and information flow between the servers and receivers.

The pattern can take on a few different forms:

• List-based publish-subscribe: Here the publisher has a list of subscribers(receivers
with an interest in the event). This makes for a less separated system with less run
time overhead, but with the drawback of it being less modifiable.

• Broadcast-based publish-subscribe: Here the publishers have less to no knowl-
edge of the subscribers. An event published and broadcasted. Subscribers then
receive and examine if the event is within their interest before reacting. This can be
inefficient if there are a lot of messages with no interest points.

• Content-based publish-subscribe: Here there’s a distinction from the other two,
which are topic-based variants. Topics are predefined messages and the receiver
subscribes to all events within the topic. Content-events are associated with a set of
attributes and delivered to a subscriber if those attributes match subscriber-defined
patterns.

2.4 Open Source Software

Gaff and Ploussios (2012) defines Open Source Software (OSS) as a way to distribute a
piece of software or application in the form of source code that other developer can view,
modify, extend, and further distribute with or incorporated into their own software. There
are, however, restrictions on OSS that anyone who decides to incorporate it into their own
software need to be aware of. This is because it usually has a varying option of licenses it
incorporates. All from more restrictive licenses to open licenses.

Buxmann et al. (2012) further defines OSS with the Open Source Initiative’s (OSI) def-
inition around OSS, which also sets some criteria that OSS needs to comply, as open
source doesn’t simply mean access to the source code. OSI gives nine criteria (which is
also based on the licensing of the OSS):

1. Free redistribution
The license linked with the OSS application shall not restrict any party from selling
or giving away the software as a component of an aggregate software distribution
containing programs from several sources. There should be no royalty or fee for
sales.

24

2.4 Open Source Software

2. Source code
The source code must be included and allow distribution of source code and com-
piled application. If no distribution of source code, the application should be well-
documented with means of downloading the source code. Obfuscation of the source
code is not allowed. Intermediate forms are not allowed.

3. Derived software
The license must allow modifications and derived works, and must allow these to be
distributed under the same license as the original software.

4. Integrity of the author’s source code
The license can restrict parts of the code from being distributed after modified, but
only if the license allows for "patch files" with the source code for modification when
the code is compiled. The license must explicitly permit distribution of software built
from the modified source code. And the license may require the derived works to
carry a different identifier from the original.

5. No discrimination against persons or groups
Anyone should be able to contribute.

6. No discrimination against fields of endeavor
Anyone should be able to use the program in any field of endeavor.

7. Distribution of license
The license connected to the program carries over when there’s a redistribution, with-
out the need to add additional licenses.

8. License must not be specific to a product
The rights attached to the program shouldn’t depend on the program being part of a
particular software distribution. If the program is extracted from said distribution and
used or distributed within the terms of the program’s license, then all parties receiving
the program have the same rights as the original.

9. License must not restrict other software
The license on one specific OSS must not place restrictions on other software that is
distributed along that OSS.

Some of the more advantageous reasons to use OSS is that, since it’s open, there are
no royalties, or license fees. Usually, there’s also a community of users that are continu-
ously contributing with improvements, debugging, testing and updating the OSS applica-
tion. This makes OSS good for quality and cost.

Muir (2005) tells a story in their journal about one of their first encounters with OSS as a
concept. At an event they attended there was a hackfest they couldn’t attend, where people
were split into groups and were tasked with making an application. When at the end of the
day they wanted a report on how the hackfest had gone, they were baffled by how quickly
people were solving their issues and creating their applications. This was largely due to

25

Chapter 2. Backgound

these groups, those ahead of the others, had OSS solutions in the application creation.
Which shows the power of using OSS.

But in the end, who owns the resulting product from the OSS? The original developers
of the OSS or their work partners own the copyright in the OSS. Through licensing, these
owners can make the OSS available for anyone to use under the terms they’ve specified.
We mentioned licensing in OSI’s definition or criteria of OSS. If someone wants to copy,
modify, create a derivative, or distribute the OSS, then they either need to own the copyright,
or do so under a license from the copyright holder. Failure to do so, even when the OSS is
included in a larger package, means breach of copyright.

Without going too much into the specifics of the licenses used for OSS, According to
Gaff and Ploussios (2012) OSS usually has three different categories of licensing. These
are; restrictive(called "copyleft"), moderately restrictive(called "copycenter"), and permis-
sive. While there can be a number of different licenses, they usually fall within these three
categories. As can be guessed, these categories have different levels of what they restrict,
with restrictive, as it implies, being the most restrictive license type. A lot of what these
licenses restrict is defined by GNU’s General Public Licenses (GPL).

OSS is with this generally considered a great resource and option, because if, say a
company, wants to supplement and extend their existing software or hardware products
they can use OSS. This will allow the company to focus on core proprietary functionality,
while the OSS is developed by third-party (here communities or other companies).

2.5 Technology Acceptance Model

Technology Acceptance Model (TAM) explains how a new technology and the various as-
pects of it are received and used by the user. It says in its simplest form that the utility of the
technology is the strongest influence on whether the technology is put to use, while how
easy the technology is to use is less important. Davis (1989). We can use TAM to predict
that an IT system experienced as useful by users will be used, even if they have to struggle
to learn it. Conversely, a system that is easy to use and learn, isn’t used if people doesn’t
see the benefits of it.

In the model, attitudes are assumed to predict intention of use, which can predict the
actual use. Attitude toward use depends on two variables, perceived usefulness and per-
ceived ease of use. Perceived usefulness says something about how much the user be-
lieves the technology will help improve efficiency, while perceived ease of use tells how
comfortable the user is in using the technology. Both of these variables determine the user’s
attitudes to the system. The user’s intention and perceived utility influence the individual
user’s use or discard of the system. Figure 2.7 shows the model that Davis presented in
1989. Since the announcement, the model has been introduced in several IT environments,
but as many models it has received its criticism. Therefore, researchers have expanded the
original TAM to TAM 2 and 3, to comply with the criticism as well as the ever-changing IT
environment.

26

2.6 User-Centered Design

Figure 2.7: Technology Acceptance Model.

2.6 User-Centered Design

User-centered design is an iterative process that iterates over four phases, see ISO 9241-
210 ISO (2010), figure 3.4. The first phase is about understanding and convey the usage.
To understand the usage context, we use techniques such as, field studies, interviews,
role-play or literature study. For the communication of the usage context, we use personas
that are based on observations and interviews, as well as scenarios of a relevant situation.
The second phase is about specifying the user requirements, here are also interviews
and focus groups good techniques for specifying the requirements. In order to convey the
requirements, a prioritized list of all the requirements with an explanation is a good option.
The third phase deals with the actual development of the design solution. Here, several
forms of prototyping are used, both low- and high-fidelity, as well as design guidelines. In
order to convey the design solutions, it is common to do demonstrations of the prototype.
Norman (2013). The final phase is evaluation of the design encouraged by the requirements
given in phase two. Evaluation methods are, usability testing in lab, focus groups with
feedback on solution, field tests and scoring forms such as SUS. See section 3.3.6 for
more on SUS forms. The results of such evaluations can be presented in the form of a test
report, summary report, or a data analysis.

27

Chapter 2. Backgound

28

Chapter 3
Research Methods and Design

This section will first address the theory and aspects of the research methods presented
under chapter 1.6, with the figure 1.3. Then moving over to research design. In the research
design section, we present all five research questions and methods we used to collect
data for answering them. In this section, each research question is linked to the iterative
processes of the human-centered design model, and to the research process model by
Oates. The last part of the chapter, we will look at the validity of the research methods.

3.1 Research Methods

3.1.1 Qualitative and quantitative research

Qualitative research is about studying objects in their natural surroundings, and the desire
to gain a better understanding. Quantitative research is concerned with finding a statisti-
cally significant relationship or for comparing two or more groups.

Qualitative data includes all data that is not a number, such as words, images, sound
and likewise. These data are found in methods such as interviews, documents and obser-
vations. The desire here is to gain a deeper understanding of various phenomena such as
human behavior. The data basis is usually large, as there is also the possibility of several
explanations for a problem, rather than than only one correct explanation(Mcleod (2017)).

Quantitative data is data or evidence based on numbers. There are mainly data pro-
duced from surveys and controlled experiments. Analyzing quantitative data is based on
finding a pattern in the amount of data. Tables and graphs are often used to visualize the
data(Oates (2012)).

This study will use a combination of quantitative and qualitative research methods, but
with a main emphasis on the qualitative.

29

Chapter 3. Research Methods and Design

3.1.2 Interviews

Interview is a special type of conversation between people. The conversations are usually
not random as a person wants to collect information from several interview objects.

Interviews can be divided into three categories: Structured, semi-structured and un-
structured. Structured interviews use predetermined questions. It is more like an oral
reading from a questionnaire, where social interaction is used to clarify misunderstandings.
In semi-structured interviews, there are prepared questions, but not all must be used and
the order may vary. In addition, new questions that were not prepared can be asked during
the conversation. In the case of unstructured interviews, the interviewer has much less
control compared to the other methods. It is often started by introducing a topic, where the
interview objects can freely talk about their opinions and what else they might think about
the topic, with as few interruptions as possible from the interviewer. Semi-structured and
unstructured interviews receive extra data that would not have appeared in a questionnaire,
but are best suited for discoveries than checking.

The interviewer’s role can have an effect on the data being collected. People may
respond differently depending on who is conducting the interview. An interview may be
easier if the interviewer and interviewees have the same background and a feeling that
they understand each other. It is important to have good contact with the interviewees,
listening and showing attention can be at the expense of writing down answers. Therefore,
it might be wise to use video and audio recordings. Often, people can give the answers they
assume the interviewer wants to hear. And this can be reinforced by the fact that people
are often a little restrained when audio and video recording occurs(Walsham (2006)).

3.1.3 Prototyping

A prototype is a preliminary edition of a product. A realization of a design that stakeholders
can see, touch and explore in the given environment. The limitation with the prototypes
is that they often focus on a small characteristic of the product itself and disregard ev-
erything else. Prototypes can be anything from a small and advanced software code to
being simple drawings and sketches. Prototypes are meant to be an aid to clarify com-
munication between team members, and to explore design ideas with stakeholders and
designers(Preece et al. (1994)).

One often distinguish on low- and high-fidelity prototypes. Low fidelity is far from the
end product, but rather reproduces some aspects of it. The materials used for such pro-
totypes are often cheap, simple and easy to change. For example, paper sketches and
history boards. Low-fidelity prototypes are important in early development phases because
they are simple, and encourage to explore and modify the possibilities that exist. Vague
requirements can also be tested to see if they can be made concrete or removed. Another
advantage is that the threshold for feedback on such simple prototypes is much lower than
that of high-fidelity prototypes, and it is easier to get more constructive criticism from user
tests.

The disadvantage of low fidelity prototyping is that they are not a part of the actual
end-product, it is only meant for exploration. Therefore, it is important to evaluate them

30

3.1 Research Methods

against each other and see if the time and resources used, is considered worthy from
such prototypes. It also requires a little imagination from users who are going to test such
prototypes, as they often sit with a piece of paper in their hand and try to imagine it being a
smart phone.

High-fidelity prototypes use materials that are likely to be found in the final product,
and provide a clear picture of how the product will be. Such prototypes address some
parts of the product, and are useful for detecting technical problems. These prototypes
can also be reused in the end product itself, but they require more time and resources to
complete. When testing high-fidelity prototypes, the threshold for feedback may be slightly
higher than for low-fidelity prototypes. When users have an almost finished product in front
of them, they can hold back the criticism because they think changing the prototype will
take a lot of time and resources. Candidates can often get caught up in superficial things
with the prototype than the content itself(Preece et al. (1994)).

It is common to look at prototypes that either cover a breadth of functionality or depth
of functionality. Wide prototypes deal with many different functionalities, often low-fidelity
prototypes, while depth prototypes detail in small areas, often high-fidelity. The type of
prototype that is created depends on which original questions are the starting point for the
prototyping.

Figure 3.1: Prototype triangle

Figure 3.1 shows a model to help with
the choice of how prototypes must be de-
signed, where each corner of the triangle
represents important questions that are es-
sential to the design of the system. De-
signers can use the model to separate de-
sign into three classes of questions that
often require different approaches to pro-
totyping. Implementation usually requires
a functioning system to be built and deals
with technical aspects of the system. Look
and feel is about the user experience and
requires a specific user experience to be
simulated or actually created. Role is
about what role the system should have for the users, and requires a context towards the
objects to be created. Being explicit about which motives and questions must be answered
makes the model an important aid in determining what kind of prototype to build. The model
helps to visualize the focus of exploration(Houde and Hill (1997)).

3.1.4 Usability testing

For testing how useful a system or product is, user testing is the most significant research
strategy that can be utilized. In human-machine interaction design processes, this is a

31

Chapter 3. Research Methods and Design

major part, where the objective is to discover how helpful an item is to the intended user
group, with the goal that they can increase the usability of the system. The term usability
includes several concepts and the ISO standard: 9241-11:2018 defines usability as:

"Extent to which a system, product or service can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use."

- ISO (2018a)

The definition highlights which characteristics must be measured to determine how use-
ful a system is. The effect of the system refers to how precisely the user is able to complete
the task on a system. Something that can be measured is for example: Number of tasks a
user can complete, or how far a user came to a specific task. Efficiency is about how much
work is needed to complete a task. This can be measured, for example, in the number of
mouse clicks. The last characteristic, satisfaction, is about the user’s individual attitude to
using the system. This can be measured, for example, in an interview or with a question-
naire.

By constantly keeping users in mind, (user-centered design), it is possible to achieve
these goals. Implementing a user-centered design process is about getting user feedback
during the design and creation process. Always keeping in mind how the user solves this
problem and consulting with users when in doubt.

When usability testing is to be carried out, goals and what must be achieved from the
test must be set in advance. The tasks in the test must resemble the tasks that the devel-
opers should do in the final product, and the tasks must allow them to explore.

After the tasks for the test are made, participants must be recruited. Participants should
be potential users of the system and should not be overqualified. By over-qualified de-
velopers we mean people who have had too much insight into the product at an earlier
stage.

Figure 3.2: Errors detected given the number of
user tests

The number of participants being
tested has a lot to say about how much er-
ror can be found using the tests. Figure
3.2 shows how many participants must be
tested to find the desired amount of errors.
Nielsen and Landauer (1993) has found
that after testing 5 users they found 85%
of the errors. Several claim that 5 is too
small, especially if it is a large software pro-
gram. The number of participants can al-
ways be increased to find more errors, but
this will come at the expense of time and
resources.

32

3.1 Research Methods

The next point to be determined is the test environment. When a prototype is to be
tested on users, natural surroundings can be a good solution, or an artificial environment
can be set up in a lab. In order to get as good feedback as possible, the test environment
should resemble the environment the system is intended to be used in. It may be wise
to film the tests, but then the users must be informed and approve it in advance. The
roles of a user test are important to determine. There are test participants, test leader and
some observers. The test leader guides the participants throughout the test and acts as an
interviewer to get the participants to come up with their thoughts about the experience of
the product.

3.1.5 Guidelines for usability testing

When performing a usability test, there are several things that must be considered. A typical
usability test includes several components. Tognazzini (1992) provides ten guidelines for
developers and researchers on how a usability test should be organized:

1. Introduce yourself and any other persons who are involved in the usability test.

2. Explain the purpose of the test and specify that it is the product being tested, not the
participant.

3. Inform the participant that he / she can quit the test at any time without any further
explanation.

4. Describe the technical equipment set up for user testing. Explain the purpose of the
equipment and how it will be used in testing.

5. Teach the participant how to think out loud to gain insight into the participants’ thoughts

6. Explain that you will not be able to give the participant help during the test.

7. Describe the task given to the participant and introduce the product / prototype being
tested.

8. Ask if the participant has any questions about the task before the actual test is start-
ing.

9. End the test by letting the user comment on the product / prototype.

10. Use the results.

3.1.6 Questionnaires

Questionnaires is a widely used quantitative research method. A questionnaire is a prede-
fined set of questions, assembled in a specific order. The data collected can be used for
statistical analysis and is therefore widely used. Oates (2012). Questionnaires can either
be self-administered or research-administered. When a questionnaire is self-administered,
the participant completes the questionnaire without any communication with the researcher.

33

Chapter 3. Research Methods and Design

Self-administered questionnaires can either be given in paper or electronic forms. Research-
administered questionnaires are very similar to structured interviews. The researcher is
present and writes down the answers. The advantages of this method rather than self-
administration questionnaires is that there can be more precise answers, especially if the
participant does not fully understand the question. The disadvantage is that it is time and
resources demanding.

System Usability Scale (SUS)

A System Usability Scale form, hereafter referred to as SUS. Is a good and quick way to
provide quantitative measurements of usability after a usability test. The SUS form is a
simple form consisting of ten statements, in which the participant should give an indication
of how he or she agrees or disagree with statement. The participants response on a scale
from 1 to 5, where 1 strongly disagrees and 5 strongly agree. See figure 3.3

Figure 3.3: SUS response

A SUS score is calculated based on how many points are given to each question. For
the odd statements 1,3,5 etc. subtract one from the user response. For the even-numbered
statements, subtract the user’s responses from 5. This scales all values from 0 to 4, with
four being the most positive response. To calculate the SUS score, all the answers for each
user are summed and the sum is multiplied by 2.5. This converts the values to 0 to 100
instead of 0 to 40. A SUS score of more than 68 points is considered above average and
slightly below 68 is below average. Sauro (2011). The SUS form is enclosed as appendix
(D).

3.2 Validity of Research Methods

When considering all the data from the usability test, the group interviews and the ques-
tionnaires, it is important to look at the validity of this data. In this study, it is important
to consider objectivity, transferability to other users, ecological validity and triangulation.
Oates (2005).

Objectivity is about the extent to which the data collected comes from the interview
subjects and participants in the tests, and not from the researcher itself. To prevent this,
it is important to minimize unintended influence that the researcher may have over the
participants and not ask leading questions.

It is also important that the data collected is transferable to other users. If there are too
few users or not enough representative users in tests or interviews, the results will not be
good enough for generalization. Oates (2005).

34

3.3 Research Design

Ecological validity concerns whether the user tests are performed in environments simi-
lar to those in which the users will be using them. The closer to the natural environment the
user tests can be kept in, the higher the ecological validity. The user tests shall be carried
out in a usability lab, where the surroundings will be approximately the same as the real
ones. This will provide high validity. Oates (2005).

Triangulation means that two or more methods are used to collect data in a study to
check the results. If this is used, inconsistency in the data being collected can be minimized.
For example, during a user test it may be observed, interviewed and given a questionnaire
to the user to collect data. Oates (2005).

After the usability test, all data that is collected will be evaluated and discussed accord-
ing to these criteria for validity in chapter 9.1.

3.3 Research Design

The research design defines how research methods were applied to the research questions
in order to answer them. The ISO standard is not a research method as such, but a design
framework. This has for us been useful for structuring our research process. The research
questions are covering five stages of product development. First, the product requirements,
followed by the technology stack and then the challenges with implementation towards the
given technology. The last two questions focus on the usability of the product with the
updated requirements found during the experiment.

3.3.1 Human-Centered Design: ISO 9241-210

ISO 9241-210, ISO (2010), Is an international standard that provides requirements and
guidance for user- and human-centered design principles and activities throughout the life
cycle of computer-based interactive systems. It is intended to be used by those manag-
ing design processes, and is concerned with ways in which both hardware and software
components of interactive systems can enhance human–system interaction.

The ISO standard is not a research method as such, but a design framework. This has
for us been useful for structuring our research process. The research questions are cov-
ering five stages of product development. See figure 3.4. First, the product requirements,
followed by the technology stack and then the challenges with implementation towards the
given technology. The last two questions focus on the usability of the product with the
updated requirements found during the experiment.

35

Chapter 3. Research Methods and Design

Figure 3.4: Human-Centered Design

3.3.2 RQ1: Requirements

What are the requirements for an open source architecture to support the develop-
ment of pervasive exergames?

This research question falls under the activity "Specify the user requirements". The
activity is about identifying the user’s needs and functional requirements for different solu-
tions. In human-centered design processes, user requirements should be set in relation to
the intended context in use. The user requirements are a subset of the total requirement
specification for an interactive system. In order to find the requirements for the architecture
of an open source IoT platform, we first have to look at the criteria set by the EXACT project.
Then we have to do literature review through previous master’s theses associated with the
project. In addition, we must do research on experiences in IoT architecture, where the
focus lays in strengths, weaknesses, omissions or bias in the previous work. With enough
information, we can compare and analyze the literature and previous experience. Our goal
is to identify common elements, issues and technologies to find similarities, that will help
clarify the requirements we search. This question falls under Oates literature review pro-
cess. Figure 3.4 shows where RQ1 fits into the human-centered design processes.

36

3.3 Research Design

3.3.3 RQ2: Technology stack

What existing software technologies are best suited to realize these requirements?

This research question falls under the activity "Produce design solution to meet user
requirements". Design decisions will have a major impact on the user experience of a sys-
tem. The design solutions should include an overview of the technology stack, user-system
interaction and the user interface. The design solution should be made more concrete by,
for example, creating scenarios, simulations or prototypes. To answer this question, the
findings from question one, will help to come up with a design solution. In addition, the
literature study will be expanded to cover various technologies and opportunities that might
be best for realizing the requirements from question one. Part of the answer to the research
question will also be based on experience gained by the implementation itself, and from the
updated requirements from research question five. It is possible that technology found by
literature search was not necessarily best suited to realize our requirements. Therefore, it
is important to reflect on the technologies at both the implantation and after a usability test.
This question fits the design part of the design and creation process under the literature of
Oates.

3.3.4 RQ3: Implementation

What are the challenges of implementing such an architecture for a specific target
technology?

This research question falls under the activity "Produce design solution to meet user re-
quirements", and under the creation part of the design and creation process. The decisions
made during implementation ties in with the design decisions made. The implementation
solutions should tie the required software and hardware together in a sensible way, given
the requirements of the system.

To answer this question, the findings in question one and two help in determining the
best way to implement such an architecture. Research on various different technologies
helps the realization of which technologies and softwares are the best fit for a system. All
of these findings result in a developed framework and examples.

Many of the answers regarding this question will reveal itself in the implementation
phase itself, including internal testing and reflection on what has been done wrong and
what can be better, this from the development itself with the code-base and the use of
the decided technologies. With the implementation phase itself spanning user testing and
updating of requirements, as per questions four and five, some challenges also reveal
themselves during these phases.

37

Chapter 3. Research Methods and Design

3.3.5 RQ4: Usability and Usefulness

How do potential users of the resulting framework assets its usefulness and usabil-
ity?

This research question falls under the activity "Evaluate design against requirements".
User-centered evaluation is an important and necessary part of human-centered system
design. The evaluation is important for gathering new information on users requirements,
and feedback on the design’s strengths and weaknesses. Such an evaluation checks
whether the user requirements for the design are met or not, and then compare several
design solutions.

To answer the research question, two user tests will be held in the form of workshops.
The user tests will be twofold, as it is interesting to look at two different work methods.
One user group will work in groups of two, while the other user group will work one by one.
Participants will be new to the product and have never tested it before. Each workshop will
take about 3 hours including a 15 minute break in the middle.

During the user tests of the framework, the participants’ thoughts, discussions and re-
actions are observed. This will provide the basis for qualitative data that can provide insight
into what the participant feels about the framework. After testing the framework, partici-
pants will receive a System Usability Scale form (SUS) that they will answer individually.
This provides the basis for quantitative data and provides a quick overview of how usable
the framework was. Then, a semi-structured group interview will be held for collecting qual-
itative data. This will contribute to a more detailed understanding of the user experience.
During the entire user test and interviews, video and audio recordings are made. This
means that the test leader does not have to make notes through the interview, in addition
we get the opportunity to analyze the user test afterwards. Figure 3.5 shows how the ex-
periment will be used to generate data using interviews, observation and questionnaires,
achieving good method triangulation. The procedure for the user test will be described
in chapter 7, the agenda for the workshop is also described in chapter 7 and the System
Usability Scale form is enclosed as appendix (D).

Figure 3.5: Model of research process for RQ4

38

3.3 Research Design

3.3.6 RQ5: Updated Requirements

Based on the previous question; what are the requirements for such an architecture?

This research question iterates back to the activity "Specify the user requirements". In
order to answer the question in the best possible way, we need to look at everything we have
learned through the research process. Experience and motivation, literature review, design
and creation and the results of the experiment. When looking at how new user requirements
affect the existing requirements for architecture, we must reflect on more aspects than just
the results from the usability test. This allows us to see how the results from the usability
test affect the starting criteria stated by the EXACT project, and how new requirements can
pose challenges in connection with implementation. By answering the question in this way,
we get a more general view of the overall user-centered design process and we create a
better basis for updating the requirements for architecture. Figure 3.6 is based on Briony J
Oates’s research process model, and it shows the entire overview of our chosen research
process.

Figure 3.6: Model of the research process.

39

Chapter 3. Research Methods and Design

40

Chapter 4
Architectural Requirements

In this chapter, we consider the stakeholders for the framework, ASR’s as a subset of the
requirements. Followed by the main functionalists and functional requirements, the modi-
fied criteria of Johansens research, and in the end we look at quality attributes, scenarios
and components and technical constraints.

4.1 Stakeholders

The term stakeholder is used to refer to any person or group who will be affected by the
framework, directly or indirectly. Stakeholders include end-users who interact with the sys-
tem and everyone else in a project who may be affected by its installation. Other stakehold-
ers may be open source contributors who are developing or maintaining the framework.
This definition is partly borrowed from Sommerville (2016)

4.1.1 Project team (Framework Developers)

The project team as stakeholder is the EXACT project team including us as master stu-
dents. The project team is concerned about good cooperation and easily task dedication,
as well as delivering an open source framework with high quality documentation. This is for
the project to be easier transferred to new developers, both within the project and by any
open source developers from communities such as GitHub.

4.1.2 End-Users (Game Developers)

End user is concerned about how easy and interesting the platform is. Game developers
is mainly interested in the frameworks documentation, which provides information of the
frameworks features and functionality, as well as examples. Further work developers is
mainly interested in the overall architectural documentation including the updated require-
ments from usability testing.

41

Chapter 4. Architectural Requirements

4.2 Architecturally Significant Requirements (ASR’s)

Architecturally significant requirements are the requirements that measurably affects a
framework’s architecture. This may involve both programming and hardware requirements.
It’s a subset of the architectural requirements, which affects the construction of a framework
in quantifiable recognizable ways. Chen et al. (2013).

4.2.1 Main functionality

Physical game object with an instance

The most important driver for the functional requirements is the possibility of physical game
objects being instanced as a digital instance. These objects can be viewed as a digital
twin of the physical object. The state of the physical and the digital object should be syn-
chronized. To meet this requirement we need to have a stable lightweight communication
protocol.

Enable game engines to centralize the game logic

In order for a gaming engine to be able to control the central game logic in such a platform,
it is important to adapt an adapter between the game engine and the communication layer.
This adapter must transport the information between the gaming engine to the communi-
cation technology and then on to the physics objects.

Communication protocol

Communication protocol is a critical component of the system. It must be fast and easy at
the same time as it must ensure that communication is understandable and that it appears
as quickly as possible. We want to use Message Queuing Telemetry Transport (MQTT) as
this is an ISO standard that meets the requirement for a publish-subscribe pattern we need.

DHCP router

To create a whole platform, we need a DHCP router that manages the wireless link between
the different hardware we use. We want to use a Raspberry Pi with WiFi technology built-in.
This will then act as a wireless router, with the ability to customize according to functional
requirements. The operating system should be open source.

4.2.2 Criteria from Johansen

As a baseline we have taken the criteria from Johansen (2018) and modified them to fit our
project. Where applicable, they’ve kept their numbering from the original criteria table. See
table 4.1 for its current state.

42

4.2 Architecturally Significant Requirements (ASR’s)

Criteria Description
C1.0 - Reduce implementation cost The framework and the technology used

should reduce the overall cost of prototyping
pervasive exergames

C2.1 - IoT Flexibility IoT technology should support different I/O
modules to allow developers to customize the
game objects
to their game design.

C2.2 - Addressability IoT technology should provide the ability to
uniquely identify and address the device.

C2.3 - Device-to-Device communication IoT technology should support the ability to
transfer and receive data from different IoT
devices.

C2.4 - Distributed vs Local use IoT technology should support both local and
distributed applications.

C2.5 - Scalability The IoT technology should support the ability
to be used in pervasive games with different
amounts or sorts of devices.

C3.1 - Interoperability The framework and the technology used
should support communication between vari-
ous IoT devices.

C3.2 - Connecting new devices The framework should provide intuitive han-
dling of connecting new devices both during
development and run time.

C3.3 - IoT Flexibility The framework should allow developers to
create custom interaction and visualization of
different virtual I/O components that mirror
traditional physical I/O modules.

C3.4 - Game logic centralized The framework should support running the
game logic outside of the IoT devices.

Table 4.1: Modified criteria based on findings from Johansen (2018)

43

Chapter 4. Architectural Requirements

4.2.3 Functional Requirements

ID Requirement Priority
FR1 Working MQTT Broker on a RPi High
FR1.1 DHCP Server on RPi High
FR2 Create individual Arduino configurations Low
FR3 Connect class instances with physical objects High
FR4 Automatic setup out of the box Medium
FR5 Synchronization between physical and virtual objects High

Table 4.2: Functional Requirements

4.2.4 System Quality Attributes

We have classified the most relevant system quality attributes for the project into primary
and secondary according to their relevance. These quality attributes must be reflected in
the IoT Platform architecture.

Modifiability

This is one of the main quality attributes of our platform. This should be reected in the
architecture. It should be easy to add or remove new features in the future. For example,
replace the game engine for one that fits better for the game to be developed.

Interoperability

Real-time synchronization between game objects is the main feature of the platform, and
interoperability is therefore an important quality attribute, so that both physical and virtual
game objects maintain the same state at all times. Additionally the framework and tech-
nology should support communication between various IoT devices without knowing the
specications of each device.

Usability

Usability is an important quality attribute for this platform. The platform will be used by
game developers with different levels of programming skills. It is important that the platform
clearly documents functionality, so that those who use it easily understand functionality and
also makes it easier to further develop the platform.

Performance

A weak spot in all small hardware is performance. It is therefore important to develop a
platform that uses efficient technology, which doesn’t drain too much resources from the
hardware. This arguments for why performance is another signicant quality attribute for

44

4.2 Architecturally Significant Requirements (ASR’s)

this IoT platform. It will significantly impacts the device’s user experience. Our platform will
seek to deliver as low latency as possible.

4.2.5 Quality Attribute Scenario

Quality attribute scenario is a schematic overview of the specific quality attributes, we use
them as a means of characterizing the quality attributes. These forms consist of six parts;
source of stimulus, stimulus, artifact, environment, response and response measure. Fig-
ure 4.1 shows a graphical illustration of a scenario. For our architecture we have chosen
modiability and interoperability as the primary quality attribute, performance and usability
as secondary quality attributes. Following sub classes address the quality attributes indi-
vidually through scenarios presented in tables.

Figure 4.1: Quality attribute scenario Bass et al. (2003)

Modifiability

ID: M1
Source: Developer
Stimulus: Wishes to change the game engine
Artifacts: Code
Environment: Design time
Response: Makes changes
Response Measure: Unknown

Table 4.3: Modifiability 1

45

Chapter 4. Architectural Requirements

ID: M2
Source: Developer
Stimulus: Wishes to change to a different MQTT broker
Artifacts: Hardware/Software
Environment: Design time
Response: Make changes
Response Measure: Within less than eight hours

Table 4.4: Modifiability 2

Interoperability

ID: I1
Source: Developer
Stimulus: Request to setup a new devices
Artifacts: Code and Arduino device
Environment: Normal operation and design time
Response: Unity application handles request
Response Measure: All request are handled in the correct format

and order

Table 4.5: Interoperability 1

Performance

ID: P1
Source: Unity application
Stimulus: Receives data from client
Artifacts: Arduino device
Environment: Normal operation
Response: Data is used to update virtual objects
Response Measure: Expected 40 messages per second

Table 4.6: Performance 1

46

4.2 Architecturally Significant Requirements (ASR’s)

ID: P2
Source: Unity application
Stimulus: Send data to client
Artifacts: Arduino devices
Environment: Normal operation
Response: Data is used to update and operate physical

objects
Response Measure: Expected 40 messages per second

Table 4.7: Performance 2

Usability

ID: Usability 1
Source: User/Game developer
Stimulus: Implement the framework
Artifacts: Code
Environment: Design time
Response: Framework works according to the documen-

tation
Response Measure: At least four hours

Table 4.8: Usability 1

4.2.6 COTS - Components and Technical Constraints

Raspberry Pi and Raspbian Linux OS

Raspberry Pi (RPi) a small cheap single-board computer, with enough resources to run
the features the platform requires. The requirement for an open source platform puts con-
straints on which operating system can be used. In our project we will use the Linux distri-
bution Raspbian.

ESP8266 running Arduino

ESP8266 is a small Arduino chip with wireless communication technology Wi-Fi and Blue-
tooth. It is designed to run the Arduino platform, a platform based on open source. It makes
it easy to use with sensors and actuators. This is cheap technology that makes it possible
to customize any instance of a game object. Its constraints are the Arduino platform, and
that the development environment comes with a C / C ++ library called "Wiring".

Eclipse Mosquitto - MQTT broker

Mosquitto MQTT Broker is a lightweight message protocol using the pattern publish-and-
subscribe. It makes it easy for low power devices to communicate between different IoT

47

Chapter 4. Architectural Requirements

devices. The Mosquitto project utilizes a C-library for implementation of MQTT clients,
which adds constraints to the types of chipsets we can use. Fortunately, this fits well with
the ESP8266 and the Arduino platform, but will require an adapter plugin towards the game
engine.

48

Chapter 5
Technology

5.1 Technology Stack

Recall from chapter 2 where we covered the IoT technology stack at the end in section
2.3. In this technology stack we had three main elements that made up the stack. Those
elements were listed in figure 2.3, but as a reminder, these three are:

• IoT Cloud

• Connectivity

• Things/Devices

There are three more elements that span the layers of the stack. However, these ele-
ments are outside the focus of this project as we’re not integrating either enterprise soft-
ware, nor third-party information. An argument could be made for the inclusion of the
security element, but that too is outside of our focus.

5.2 Hardware

For the hardware side of things, aside from using breadboards to connect various compo-
nents for testing, we had two main hardware setups made specifically for the platform and
testing.

Tiles

These two hardware configurations are what we dubbed in the code RedTile and BlueTile.
They are essentially plates with various hardware inside, and can be seen in figure 5.1.
The two tiles have slightly different configurations.

49

Chapter 5. Technology

(a) Blue Tile (b) Red Tile

Figure 5.1: 3D printed prototype tiles, blue and red.

The blue tile seen in figure 5.1a has a ring of LEDs(Ring Light), a tone player, a dis-
tance measurer(Time of Flight), and a gyro and tap sensor(IMU). While the IMU has the
functionality for a gyro, it is not enabled in this hardware configuration.

The red tile seen in figure 5.1b has almost the same configuration as the blue tile, with
a ring of LEDs, a tone player and a gyro and tap sensor. What differs in this configuration
is that it lacks the distance measurer, but has the gyro enabled.

ESP Arduino

Powering both tiles is an ESP8266 Adafruit Huzzah Feather from Adafruit (2018), a type of
Arduino micro-controller. The ESP8266 is a low-power and light chip that was specifically
made to be small and light, and thus perfect for portable micro-controller usage, according
to Adafruit. This chip was selected due to its low price tag, and because of it’s shape and
size makes it a good fit for the components being developed for the prototype. The chip
also supports built-in WiFi and Bluetooth modules. This is perfect as you only need the chip
itself and not other separate parts as you would with other Arduinos, as can be seen with
Sparkfun’s board list (Sparkfun (2018)) of different Arduino boards fit for different projects.

Raspberry Pi

For the prototype we are developing, and the wish for a portable system, there was a need
for something that could be used with the system as a connector to the Arduinos. While
a laptop or even a second Arduino could be used for this purpose, a small computer like
the Raspberry Pi (Foundation (2018a)) seemed like a good fit. In our case, the Raspberry
Pi 3 Model B. As the Raspberry Pi itself is a small computer, it serves well as a connector
for the Arduinos and beyond that. It runs the Raspbian Foundation (2018b) operating sys-
tem, which is based on Debian, a Unix-based operating system. This is a small and light
operating system, which is needed given the hardware of a Raspberry Pi.

50

5.3 Software

5.3 Software

5.3.1 Connectivity

In this section we go over the software used in the connectivity layer in the development
process of the prototype. These will also be used in the final prototype of the framework.

MQTT

MQTT ISO (2016), Message Queuing Telemetry Transport, is an ISO (2018b)-compliant
Client/Server messaging protocol that solves the problem of the Publish and Subscribe
architectural pattern described in chapter 2. It is lightweight, open and simple, and designed
to be easy to implement, which makes it ideal to use for communication in constrained
environments like the IoT context considering the small code footprint or network bandwidth
it requires.

It requires an ordered, loss less, and bi-directional network protocol like TCP/IP to work
and has the following base features:

• One-to-many message distribution and decoupling from the Publish and Subscribe
pattern.

• A messaging transport that is agnostic to the content of the payload.

• Three qualities of service for message transport:

– At most once: Messages transported the best it can within the constraints of the
operating system. This means message loss can occur

– At least once: Messages can be assured to arrive, but duplicates can happen.

– Exactly once: Messages can be assured to only arrive once.

5.3.2 Application

Unity Game Engine

Unity is a game engine made by Unity technologies that supports both development of 3D
and 2D games. What a game engine is, Unity Technologies puts nice and shortly:

A game engine is the software that provides game creators with the necessary
set of features to build games quickly and efficiently.

- Unity (2018)

The game engine supports exporting for up to 27 different platforms, including consoles,
mobile, and traditional computers. Games developed in Unity are developed using C#, but
over its lifetime Unity has had support for the UnityScript system Boo, a Unity-exclusive

51

Chapter 5. Technology

scripting language, and JavaScript as well. In 2014 Boo-scripts were deprecated and re-
moved, while JavaScript has been in use up until Unity 2017 where its deprecation process
started.

Unity is used by small indie studios and professional AAA studios alike, and is consid-
ered one of the, if not the, biggest game engines at the moment. This is due to how intuitive
it is to use and its cross-platform capabilities. It also has good support for importing assets
from other programs like Blender, 3ds Max, Photoshop, and more. However, while Unity
does support basic shape objects, any complex modeling has to be done in third party pro-
grams like the ones mentioned earlier. It also sports the Assets Store which is an assets
library where developer can share their custom assets to help the community.

Given the use of C#, Unity also has the ability to import other standard .NET libraries,
making it easy to implement protocols and libraries such as MQTT.

Some Other Game Engines

One of the biggest game engines is Unreal Engine (EpicGames (2018b)). This is a game
engine created by the game studio Epic Games (EpicGames (2018a)), the studio behind
arguably the biggest game of 2018(as of writing this report). It supports development in
the programming language C++ and their custom UScript language, and also their custom
Blueprints which allows non-programmers to use their engine to create.

Another big game engine is Cryengine (Crytek (2018)) from the studio Crytek. This is
one of the more powerful game engines in terms of pushing "realistic" graphics and visuals.
It supports the programming languages C++, C# and the script language Lua.

We also have a relatively new game engine called Godot Godot (2018) from the Godot
studio. This is a free to use and open source game engine for 2D and 3D game creation.
This game engine supports visual programming akin to Unreal Engine’s Blueprints, but also
its own scripting language Godot Script and the programming language C#.

5.4 Proposed Technology Stack

Figure 5.2: A modified version of the
technology stack seen in chapter 2.2.

While the original three-layer technology stack
proposed by Wortmann and Flüchter (2015) works
fine for our project, there are different ways to setup
a technology stack, and we have decided then to
modify this technology stack a little. This modified
technology stack can be seen in figure 5.2.

The main difference between our suggested
technology stack base and the original proposed
technology stack, is adding a layer for the object
abstraction which covers the connections types be-
tween devices, like WiFi, Bluetooth, or similar. We
have also changed the name of the IoT Cloud layer

52

5.4 Proposed Technology Stack

to Application to better fit the use of a program made
with the Game Engine Unity. Though the name of
the layer is changed, the use is practically the same as the proposed technology stack
describes it; a management software.

Figure 5.3: Proposed technology stack
for this project.

With this modified technology stack organiza-
tion, this gives us the following technology stack,
which can be seen in figure 5.3.

Briefly, this gives us the following organization;
Unity program as a data and device management
software, the brain of the system. MQTT as the
connection handler between devices in the system,
where most of the messages go back and forth
between devices and Unity. WiFi as the connec-
tion type, and how devices are connected together.
Lastly, Arduinos and a RPi being the main IoT de-
vice objects with actuators and sensors. Their im-
plementation will be covered in the next chapter.

53

Chapter 5. Technology

54

Chapter 6
Implementation

The aim of this chapter is to give an overview of the architecture being developed, with how
the components are set up, their roles in the architecture, and their communication. As
well as covering some examples of the use of the framework developed in Unity, and our
challenges during development.

6.1 Implementation Overview

The figure 6.1 presents a general overview of the architecture being developed. As can
be seen, the architecture is modelled after the Publish and Subscribe and the Digital Twin
patterns described in chapter 2. With the illustration of how the system is set up with
MQTT, it can easily be expanded with other components that uses MQTT as a messaging
protocol. Pattern-wise we see a raspberry Pi as the messaging broker in the system with
different clients connected to it. The digital twins connected to the PC/Unity components
are digital representations of the physical Arduino components. How these are set up will
be described below. All the communication is done over either WiFi or Ethernet, as required
by the MQTT messaging protocol.

55

Chapter 6. Implementation

Figure 6.1: Architecture Overview

6.1.1 Component Roles

Raspberry Pi

The Raspberry Pi is the broker in the pattern and is set up with the Mosquitto message
broker which implements the MQTT protocol. Ecclipse (2018). This is a very lightweight
message broker, which makes it perfect to use in low power single board computers like
the raspberry pi, and is widely used in IoT projects. In the system, all messages passes
through the Raspberry Pi since it works as a broker, it’s powerful enough to run a DHCP
server as well, turning it into a router and a connection point for all the other devices.

PC/Unity

The PC component is a computer running the game program compiled from Unity. While
Unity can compile to Linux, which makes the Raspberry Pi a potential target for running the
game itself if it’s light enough, a distinction has been made to properly separate Unity as its
own component.

This component in the architecture runs the game logic and will function as a server or
service provider for the rest of the system, as per the Publish and Subscribe pattern. With
the game, the logic of the system, and digital twin data, all run here. While all the MQTT
messages run through the broker, the other components will not talk to each other and will
act separately with all handling of the messages being done in Unity.

Arduino

The Arduino component(denoted by the Arduino logo in figure 6.1) is a reactionary com-
ponent in the system. Aside from going online and connecting to the MQTT broker and

56

6.2 Component Connection

subscribing to certain messages, this component mostly awaits messages from the broker
to update its actuators (lights, sound, etc), or sends a message over MQTT if a user inter-
acts with one of the input sensors. As the specific Arduinos used in this system does not
have Ethernet connections, they run on WiFi to connect to the DHCP server on the Rasp-
berry Pi. The configurations and how the Arduinos are set up can vary from component to
component, but their role remains that of a client, as per the Publish and Subscribe pattern.

Game Object (Digital Twin)

The Game Object component is a sub-component of the PC/Unity component. These are
Unity-specific Game Objects which have class objects that hold information based on the
various Arduino components. This can be information on the whole configuration of the
device it’s a Digital Twin of, or the states of the various components, such as button and
light states, or methods for controlling the different physical actuators connected to the
Arduino. This acts as a synchronized digital mimic of the physical device.

6.2 Component Connection

While the Publish and Subscribe pattern is used, the broker in the system is only there to
relay the messages between the various components. This is only there to help realize
our system and architecture, it is not necessarily a point of interest connection-wise in the
architecture. There are then two connections to focus on; the connections between Arduino
and Unity, and Unity and the Digital Twins.

6.2.1 Arduino and Unity

The connection between an Arduino and Unity has most of the information about the type
of message sent set in the topics of the MQTT messages. As MQTT and the Publish and
Subscribe pattern works with the client subscribing to certain messages/topics and the
service sending out messages fitting these, Unity will send messages fit for each Arduino
with different types of messages specified in the message topic.

Within MQTT, the topics are flexible and a client can subscribe to all or some sub-
topics within a topic. Let’s take an example of this with the topic a client subscribes to
being "device". MQTT allows you to have different layers of topics separated by a delimiter
"/", and also subscribe to all topics within a topic with the symbol "#". Say a client wants
to subscribe to all topics within the "device" topic, the client would have to subscribe to
"device/". On the flip side, a client can subscribe to specific messages like "device/update".

Message Overview

Previously in the section we talked about how the "#" character in the MQTT message topic
helps the device subscribing to all messages within a topic. In this architecture this is used
for both Unity and the devices. Unity subscribes to all the sub-topics within the "unity/#"
topic. The Arduinos do the same, with their MAC-addresses being their individual identifier

57

Chapter 6. Implementation

Figure 6.2: Subscribe and Publish overview

in the topic. The Arduinos all send their messages within the "unity" topic, while Unity sends
its messages within the topics of the unique identifiers from the Arduinos. This message
structure can be seen in figure 6.2.

In this system, there has been set up five different types of sub-topic messages handled
throughout. These are as following:

• Event message: A message sent from an Arduino when a sensor has an event
happening.

• Action message: A message sent from Unity to make a change in an actuator con-
nected to an Arduino.

• Get message: A message sent from Unity when it needs to get the value from either
an actuator or sensor. May have limited use as sensors send their values as they
update.

• Value message: A message sent from an Arduino with the value of a connected
component when it receives a get message from Unity.

• Ping message: A message couple between Unity and an Arduino to check if they’re
still connected to each other. Will be initiated by Unity at certain intervals if needed.
Not a message type the game developer needs to worry about as it’s controlled by
the system on its own.

The general message flow can be seen in figure 6.3. The ping messages are not
included here as they are simply periodic messages happening within the system and not
handled based on what the user of the framework programs.

58

6.2 Component Connection

Figure 6.3: Information flow overview

Connect Message

The connect message is a message type sent from the Arduino when it connects to the
MQTT network. The connect message’s structure includes the unique identifier of the
Arduino in a sub-topic. During this connection message, the configuration ID of the Ar-
duino is sent as well. This specific ID sets which digital twin the Arduino is linked up
with in Unity. The configuration of the Digital Twin and Arduino is decided based on
how the game developer creates their own configurations, or if they use one of the few
pre-made configurations included in the framework. The connect message is formed as:
unity/connect/MAC-Adress/configurationID. However, before the connection message is
sent, the Arduino needs to subscribe to its specific unique identifier, making it ready to
receive Unity’s response to the connection message. Due to the limitations of our sys-
tem in its current state, Unity is required to be online before the Arduino goes online. The
Arduino’s connection set up can be seen in the following code snippets.

The Arduino retrieving its MAC-Address and subscribing to it:

1 c l i e n t I D s t r = WiFi . macAddress () ;
2 c l i e n t . subscr ibe ((c l i e n t I D s t r + " /# ") . c_s t r ()) ;

With the subscription set up, the Arduino is ready to publish its connect message with
the structure from earlier, with the MAC-Address and configuration ID. A couple of the
various configurations will be covered later. The publish message being sent can be seen
in the following snippet:

1 c l i e n t . pub l i sh ((" u n i t y / connect / "+ c l i e n t I D s t r + " / "+con f ig ID) . c_s t r () , " 1 ") ;

Given that Unity is already online prior to the Arduino sending its message, means it has
already subscribed to its topic of choice. when Unity goes online, it simply subscribes to the
"unity/" group of topics, making it ready to receive messages from all the other components.
This is done in the following snippet:

1 c l i e n t . Subscribe (new s t r i n g [] { " u n i t y /# " } , new byte [] { MqttMsgBase .
QOS_LEVEL_EXACTLY_ONCE }) ;

59

Chapter 6. Implementation

The client here is the MQTT Client object inside Unity from the MQTT library used in the
framework.

When Unity receives a message, an MQTT Handler class handles the MQTT message,
extracting both the MAC-Address and the configuration ID before linking up a Digital Twin
object for the specific Arduino within Unity. When the Digital Twin setup is done, it is ready
to send and receive other message types. These messages are mostly dictated by unity.

The twin setup on the Arduino’s connect message is done with the following code snip-
pet, where the message is first split, then handled:

1 vo id handleMQTTMessage (ob jec t sender , MqttMsgPublishEventArgs e) {
2 S t r i n g t o p i c = e . Topic ;
3 S t r i n g [] t o p i c S p l i t = t o p i c . S p l i t (’ / ’) ;
4 i f (t o p i c S p l i t [0] == " u n i t y ") {
5 i f (t o p i c S p l i t [1] == " connect ") {
6 deviceConnect (t o p i c S p l i t) ;
7 }
8 }
9 }

10

11 p r i v a t e vo id deviceConnect (s t r i n g [] t o p i c S p l i t) {
12 bool l i n k L i s t F u l l = t rue ;
13 L i s t <GameObject> o b j e c t L i s t = gameLogic . ge tTwinOb jec tL is t () ;
14 foreach (GameObject ob j i n o b j e c t L i s t) {
15 i f (! ob j . GetComponent<TwinObject > () . ge tL inkSta tus ()) {
16 ob j . GetComponent<TwinObject > () . l i nkDev ice (t o p i c S p l i t [2]) ;
17 l i n k L i s t F u l l = f a l s e ;
18 break ;
19 }
20 }
21 i f (l i n k L i s t F u l l) {
22 sendDeviceMessage (t o p i c S p l i t [2] + " / p ing " , 0) ;
23 }
24 }

The MQTT handler class takes the message, extracts the Arduino’s MAC-Address and
the configuration ID, checks the Digital Twin objects created to see if they have the appro-
priate configuration setup the Arduino can be linked to. If it does manage to find a Digital
Twin for the physical device, it responds to the connect message with a ping message.

Ping Message

The ping message is a message that is sent periodically from Unity to a device to see if said
device is still connected to the broker. While the MQTT broker does have a ping message
of its own built into Mosqitto(the MQTT software running on the Raspberry Pi), some level
of control is needed on the Unity-side of the system. This can be useful when a device
disconnects as that Digital Twin will be freed up to give room for a different device to take
its place if the previous one doesn’t come online again.

On the Unity side, the device is sent a ping message at a certain interval to make sure
it’s still alive and connected. If using the the Unity code structure, the classes that are
connected to the game objects in unity have their own update function called every frame,
which makes ping timing relatively easy, putting the ping message method call there with

60

6.2 Component Connection

some simple time management. This also makes the time interval easily changeable by
the game developer working on the system. This ping timing is set for all Digital Twin game
objects and a call to a ping message method is made where the twin object calls on its
reference to the MQTT Handler to send the ping to the linked device.

1 p u b l i c vo id sendPingMessage (s t r i n g deviceID) {
2 mqttHandler . sendDeviceMessage (deviceID + " / ping " , 1) ;
3 }

On the Arduino side of things, it’s a simple matter of taking the received ping message,
extract the message type to call the ping message method and send the required response
back to Unity. Usually the ping message is sent with a payload of byte "1", but if the Arduino
connects to the system and Unity doesn’t have any available spots for that Arduino config-
uration, a payload of "0" will be sent instead to let the Arduino know it hasn’t connected and
can, as an example, go offline again. Both the connect message’s response ping message
and a regular ping messages are the same and are handled by the same ping message
method on the Arduino side, seen in the follow code snippet:

1 vo id ping_event (byte∗ payload) {
2 S e r i a l . p r i n t (" Ping event rece ived ! ") ;
3 i f ((char) payload [0] == ’ 1 ’) {
4 S e r i a l . p r i n t (" Pinging back ! ") ;
5 c l i e n t . pub l i sh ((" u n i t y / device / " + c l i e n t I D s t r + " / p ing ") . c_s t r () , " 1 ") ;
6 } e lse {
7 WiFi . d isconnect (t r ue) ;
8 }
9 }

Action Message

The action message is a message sent from Unity whenever it wants to trigger some sort of
output in the Arduino. This could be everything from an LED, buzzer, or any other physical
component the Arduino is configured with that Unity has an implementation for.

The message structure is built from whatever component Unity wants to change. In sim-
ilar fashion to the ping message’s structure of deviceID/ping the action message, the action
message is structure as deviceID/action/component/component-output. The component-
output part is what’s being changed on the component. Eg. on an RGB LED that could be
the state or the color of the light. The action message method can be seen in the follow
code snippet:

1 p u b l i c vo id sendActionMessage (s t r i n g componentName , byte [] payload) {
2 i f (mqttHandler != n u l l) {
3 L i s t <byte > temp = new L i s t <byte > () ;
4 temp . Add ((byte) payload . Length) ;
5 temp . AddRange (payload) ;
6 addActionMessageToBuffer (componentName , temp . ToArray ()) ;
7 }
8 }

There’s a check to see if the MQTT Handler object reference exists so the Unity pro-
grams can be tested without connecting to the network if necessary. The action message
buffer method call is there to build the action message buffer which is used to combine all

61

Chapter 6. Implementation

action message called within one frame in Unity into one single action message to send to
the Arduino.

For the Arduino, it’s a simple matter of filtering the message to the action message
method call and from there, extracting which component and what to change on the com-
ponent. As the Arduino code base(c++) doesn’t have a simple way to split strings, this is
done with a loop and some if-else statements. The following code snippet shows a short
example of updating an LED’s state.

1 vo id ac t ion_event (char ∗ topicElement , byte ∗payload) {
2 whi le (top icElement != NULL) {
3 i f (strcmp (topicElement , " led ") == 0) {
4 top icElement = s t r t o k (NULL, " / ") ;
5 i f (strcmp (topicElement , " s t a te ") == 0) {
6 i f (payload [0] == 1) {
7 l i gh tsOn () ;
8 } e lse i f (payload [0] == 0) {
9 l i g h t s O f f () ;

10 }
11 }
12 }
13 top icElement = s t r t o k (NULL , " / ") ;
14 }
15 }

Event Message

The event message is a message type sent from the Arduino whenever an input or sensor is
triggered. As an example, this could mean a button press or release, a distance measure,
or any other form of input. MQTT supports sending messages (Kathrin (2015)), which
means any type of sensors with a continuous change in the input could send a stream of
messages, making the change in Unity fluid.

A quick example is looking at the code for a button input on an Arduino. Here there
button is a c++ class with an update function which reads the physical state of the button.
Then the button’s state is checked and a message is sent depending on the change in the
button state. Similarly, a continuous input would send a message if a change is found.

1 but ton . update () ;
2 i f (bu t ton . pressed ()) {
3 c l i e n t . pub l i sh ((" u n i t y / device / " + c l i e n t I D s t r + " / event / but ton ") . c_s t r () , " 1 ") ;
4 } e lse i f (bu t ton . re leased ()) {
5 c l i e n t . pub l i sh ((" u n i t y / device / " + c l i e n t I D s t r + " / event / but ton ") . c_s t r () , " 0 ") ;
6 }

For Unity, the incoming event message is taken in and filtered by the update method to
the correct device’s twin component object. The components values are updated based on
this event message.

The first method for this functionality is the deviceEvent method which is called from
the initial method call from the message being received. In this deviceEvent the incoming
message is further filter to the specific Digital Twin object it’s meant for. This twin object is
called from the list of all twin objects with an on-going connection in the MQTT network.

62

6.2 Component Connection

1 p r i v a t e vo id deviceEvent (s t r i n g [] t o p i c S p l i t , byte [] payload) {
2 TwinObject to = getObjectByID (t o p i c S p l i t [2]) ;
3 i f (to != n u l l) {
4 to . eventMessage (t o p i c S p l i t , payload) ;
5 }
6 }

1 p u b l i c v i r t u a l vo id eventMessage (s t r i n g [] top ic , byte [] payload) {
2 pingTime = 60∗60;
3 EventMessage msg = new EventMessage (t o p i c [4] , t o p i c [5] , payload) ;
4 updateComponent (msg) ;
5 onEvent (msg) ;
6 }

Here the eventMessage method on the Digital Twin object class is called, which takes
the message, creates an EventMessage class object that prepares an event object and
passes said object on to the updateComponent method.

In the updateComponent method, the components are individually updated based on
the values in the EventMessage object. This is a methods that’s overridden by the config-
uration classes that inherit the Twin Object class. This means the user of the frameworks
needs to updated the device components on the digital side themselves, but it also gives
more general flexibility. The updatedComponent code is listed further down.

Get Message

The get message is very similar to a standard get message call in any polling based pro-
gramming. In this case, the get message is Unity asking the Arduino for the value of a
specific component. The Arduino responds with a message containing the value for the
specified component.

As with the action message function call, the get message function call is similar, with
a few parameters and message building before being sent by the MQTT handler to the
Arduino.

1 p u b l i c vo id sendGetMessage (s t r i n g componentName)
2 {
3 i f (mqttHandler != n u l l) {
4 getMsgBuffer . Add (new MessagePair (componentName , new byte [] { 0 })) ;
5 }
6 }

As with the action message, every time the get message builder is called, the message
in question is added to the get message buffer to handle multiple messages on the same
frame in Unity, giving the Arduino time to handle messages.

Value Message

The value message is the Arduino’s response to the get message from Unity. This is
essentially the returned value from a get method call in any polling based programming.
The value of the physical component attached to the Arduino(or other types of messages
depending on the configuration) is retrieved and returned to the calling object. In this case,

63

Chapter 6. Implementation

the value is sent back to Unity in the form of a "value" return message over MQTT and
handled as a regular update call on the Unity side.

1 vo id get_event (char ∗ top icElement) {
2 whi le (top icElement != NULL) {
3 i f (strcmp (topicElement , " imu ") == 0) {
4 top icElement = s t r t o k (NULL, " / ") ;
5 i f (strcmp (topicElement , " r o t a t i o n ") == 0) {
6 c l i e n t . pub l i sh ((" u n i t y / device / " + c l i e n t I D s t r + " / value / imu / r o t a t i o n ") . c_s t r

() , r o t a t i o n) ;
7 }
8 }
9 top icElement = s t r t o k (NULL, " / ") ;

10 }
11 }

As can be seen in the code snippet above, the get message is handled similarly to an
action message, but a value message(similar to an event message) is sent immediately.
As can be seen in this example, the value of a measured rotation is returned. In cases
where there’s a constant change in values and where the values are measured continuously
without break, a get call is better than a continuous stream of messages. This depends
on the sensor type as some only return measured values at certain times, some return
measured values all the time, and others send off a single signal.

On the Unity side, the value message is received and handled the same way as an
event message, calling the updateComponent method.

6.2.2 Unity and Digital Twin

While this isn’t an external connection between devices like the connectivity between Unity
and an Arduino, this is an internal connection between the data object of the Digital twin
and the rest of the Unity code. Without going into detail listing every function of the Digital
Twin objects, we can look at the more important ones.

We’ve briefly mentioned it, but the updateComponent method is the main way to update
the components on Digital Twin objects. By taking parameters for the EventMessage class
object built from the message received over MQTT, this method does the work of sorting
out which components needs change, and then call the components’ functions to make the
appropriate changes to the component. Depending on how the component is implemented,
and what type of component it is, the component will do a method call on Unity to make
and send a message to the Arduino connected with the Digital Twin object. In some cases,
an update on a component will also fire a Unity message method call to the game object,
meaning users can have event based update methods like "OnTapped", or similar, where
updates can happen without the user needing to poll for values from sensor components.
The following code snipped shows an example of an updateComponent method.

1 pro tec ted ove r r i de vo id updateComponent (EventMessage e) {
2 i f (e . component == " t i m e o f f l i g h t ") {
3 t im eOfF l i gh t . se tDis tance (e . value) ;
4 t im eOfF l i gh t . setMeasuring (e . s t a te) ;
5 } e lse i f (e . component == " r i n g l i g h t ") {
6 i f (e . name == " s ta te ") {

64

6.3 Device Configurations

7 r i n g L i g h t . se tS ta te (e . s t a t e) ;
8 } e lse i f (e . name == " co lo r ") {
9 Color tempColor = new Color (e . payload [0] / 256.0 f , e . payload [1] / 256.0 f ,

e . payload [2] / 256.0 f) ;
10 r i n g L i g h t . se tCo lor (tempColor) ;
11 } e lse i f (e . name == " numOfLeds ") {
12 r i n g L i g h t . setNumOfLeds (e . value) ;
13 }
14 } e lse i f (e . component == " imu ") {
15 i f (e . name == " tapped ") {
16 imu . setTapped () ;
17 }
18 }
19 }

The other major method in the connection between the Digital Twin objects and Unity
is the linkDevice method. It was shown in the part where the new connection type mes-
sage was explored. This is the method that is called when a device is connected to the
network. This device is linked up with a digital representation of itself, namely the Digital
Twin object. The linkDevice method itself is very short, and triggers a ping message to the
physical device letting it know it has connected properly, as can be seen in the following
code snippet.

1 p u b l i c vo id l i nkDev ice (s t r i n g deviceID) {
2 t h i s . deviceID = deviceID ;
3 t h i s . l i n k e d = t rue ;
4 sendPingMessage () ;
5 }

Lastly, we have the method calls in the Digital Twin object that build messages that are
sent from Unity to the Arduinos. All the Digital Twin objects have a reference to the MQTT
Handler class, so the object just calls on the the main send message function with the
message built inside the object. Different method calls has been implemented for ease of
use, though the message structure is simple enough where only one or two methods could
have been enough for the functionality. The following methods has been implemented, with
various versions with different parameters, but the following listing of the methods has the
standard parameter usage:

• sendPingMessage. Parameters: device ID.

• sendActionMessage. Parameters: device ID, component, payload.

• sendGetMessage. Parameters: device ID, component.

6.3 Device Configurations

The plan for the framework is to have various preset device configurations people can use
with certain Arduino setups, and also the possibility to easily make custom configurations.
During the development of the framework we’ve explored a few different configurations for
testing purposes.

65

Chapter 6. Implementation

Cube 1: LED

Cube 1 is the first configuration we made and is noted as "cube1" in the Arduino code.
This is a simple Arduino setup with a single LED connected to it. The LED has simple
controls where it can be toggled, set to blinking, or changed blinking speeds. The blinking
functionality is only available when the LED itself has been set to the "ON" state.

Cube 2: Button and Potentiometer

Cube 2 is the second configuration we made and is noted as "cube2" in the Arduino code.
This is a sensor-focused Arduino setup with a button and a potentiometer. The button sends
event messages on press and release, while the potentiometer has a stream of messages
if it has a change over a certain value. A variable holds the current potentiometer value and
could be retrieved with a get message with a few tweaks.

Tiles: Red and Blue

The tiles have been explored in a previous chapter and are the last configurations we tested
during development. They’re noted as "redtile" and "bluetile" in the respective Arduino
codes. The both have a good mix of sensors and actuators connected, which makes for a
good exploration and testing tool for the framework, as they both have continuous update
components and single event components. The actuators connected, ring light and tone
player, are also good to test various degrees of messages from Unity.

Other Configurations

The users of the framework can also set up their own configurations by extending the
Twin Object class. The base class makes it easy to integrate other configurations into
the system, with the logic of the custom configurations all being up to the users of the
framework. The components are added the same way as a normal Unity component is
added to a Unity game object, with AddComponent method calls. An example of a custom
configuration setup, without the updateComponent method, can be seen in the following
code snippet. This is a custom configuration with an LED and a button. In this snipped the
meat of the update and updateComponent methods have been removed, as well as getters
for the components.

1 p u b l i c c lass Cube3 : TwinObject {
2 p r i v a t e Led led ;
3 p r i v a t e Button but ton ;
4

5 p u b l i c ove r r i de vo id S t a r t () {
6 base . S t a r t () ;
7 configName = " cube3 " ;
8 but ton = new Button (t h i s) ;
9 l ed = new Led (t h i s) ;

10 }
11 p u b l i c ove r r i de vo id Update () { }
12 pro tec ted ove r r i de vo id updateComponent (EventMessage e) { }
13 }

66

6.4 Examples

6.4 Examples

In this section, the different examples created during the implementation process will be
described.

6.4.1 Controller and Output

The controller and output example is the first and simplest test done during the implemen-
tation. This example consisted of two configurations for the devices in the system, namely
a controller and output. Both configurations were set up on breadboards to quickly and
easily test the physical side of the system.

The output configuration is the simplest of the two and consist only of a single LED(cube1).
For this particular example the LED has three modes of operation; off, on and blinking. Off
and on are fairly self-explanatory. Blinking, on the other hand, is more a sub mode of the
‘on’ mode, as to have the LED blinking, it needs to be set to the ‘on’ mode. The blinking
itself has four different speeds that are controlled by the controller device. The blinking
speeds are denoted by the numbers zero through four, and is handled by Unity.

The controller configuration consists of a button and a potentiometer(cube2). On a
change on either the button or the potentiometer, the device sends a message over MQTT
to Unity which handles the operations and updates the output device. The button controls
the LED on the output to toggle between the modes ‘off’ and ‘on’. The potentiometer sets
the blinking speed of the LED where the lowest value is not blinking.

6.4.2 Sample Tile

The Sample Tile example is based on something the supervisor created running locally on
a single tile device(see chap. 5 for the device). While not all of the functionality was ported
over, enough was done to have a functional test of proper continuous data streams both
from the physical device and Unity.

For this example the Ring Light LEDs light up when the IMU sensor registers a tap on
the device and a distance measured from the Time of Flight sensor. For the IMU tap detec-
tion, a signal is sent to Unity which turns on the LEDs for a split second before turning them
off again. This action takes first priority as you could still tap the device while measuring a
distance. Which leads us to the distance measure. Here, a value is sent continuously from
the device to Unity with the distance measured. Unity takes this distance measured and
sets how many LEDs on the Ring Light should be used and turns them on accordingly. It
also sets the color of the LEDs depending on the distance measured.

This example was especially helpful in showing potential users the various run time
delays of the system. Both to show the limitations of the system and also what’s available
to them.

In figure 6.4 we can see the flow of events from the tap signal on the physical device
to the Ring Light’s reaction to the tap event. From this, it can be seen that Unity does all
the handling of events and updates the physical device with the values set on the digital
device. Similar flows of events could be drawn from the events of rotating the tile to light

67

Chapter 6. Implementation

Figure 6.4: Sample Tile flow of events when tapped

up various single LEDs on the Ring Light depending on the rotational direction, or with the
distance measured on the time of flight sensor giving different number of LEDs lit up with
varying colors. Not included in this figure is the event of resetting the Ring Light to a default
state after any action.

This example was implemented with one single class for the tile device(blue tile) used
for the example, as no other classes were necessary to handle the events and information
updates on the tile. However, since there were priorities in the output of the device, we
needed some control, so a SampleTile class which inherited the blue tile’s class was cre-
ated. In this class all the necessary MQTT handling was added, as well as some polling on
the various components of the device to make sure the priorities were intact. This can be
seen in the following code snippet.

1 i f (imu . justTapped ()) {
2 r i n g L i g h t . se tCo lor (Color . green) ;
3 r i n g L i g h t . setNumOfLeds (r i n g L i g h t . getMaxNumLeds ()) ;
4 r i n g L i g h t . se tS ta te (t r ue) ;
5 } e lse i f (t imeO fF l i gh t . getMeasuring ()) {
6 r i n g L i g h t . se tCo lor (Color . b lue) ;
7 i n t calcLeds = (i n t) ((t imeO fF l i gh t . getDis tance () / 200 f) ∗ r i n g L i g h t .

getMaxNumLeds ()) ;
8 r i n g L i g h t . setNumOfLeds (calcLeds) ;
9 i f (r i n g L i g h t . ge tSta te () == f a l s e) {

10 r i n g L i g h t . se tS ta te (t r ue) ;
11 }
12 }

There is also some handling to turn off the light on the tile again when nothing happens,
which has been excluded from the code snippet above.

6.4.3 Follow the Light

The last example created during testing was the Follow the Light(previously called Follow
the Red Dot) game concept that Johansen also had in his proof of concept, see figure 2.2.
This example was also used as the base for a task the test users had to create during the
usability testing detailed in chapter 7. For simplicity, only the tap events from the IMU, the
tone player and the Ring Light’s light, color and number of LEDs functionality are used in
this example.

68

6.5 Challenges and Reflection

This example game is very simple with, after all the devices connect to the system, one
of the devices lighting up and playing a sound to start off the game. When said device
detects a tap from the player, a signal is sent to Unity which selects one of the other de-
vices(Unity shouldn’t be able to select the same device twice in a row) and sets that device
to light up and play a sound.

Figure 6.5: Flow of Follow the Light example

Figure 6.5 shows the flow of the Follow the Light game as described in the previous
paragraph in its simple form and the example pre-prepared for testing of the framework.
However, there is a more complex version of this that was developed as well. With the se-
lection of the tiles and user input events being the same, there was also an added difficulty
in the form of a countdown shown on the tile with a decreasing number of LEDs being lit
up. When said countdown reaches zero, the game is over and all the tiles light up blinking
in a different color for a while before restarting the game.

For the development of this example, two red tiles and two blue tiles were used to signify
the usage of different devices, even though the two of them are quite similar. With this setup
we developed the game two ways; one with everything in the game logic class using the
tile class configurations as they were, and the other with the game logic class as setup for
the game and initiating the game by selecting the first tile with the tiles extending from the
base tile configurations to contain some logic.

6.5 Challenges and Reflection

While the examples explained above are relatively simple, the development of them wasn’t
without problems, having issues with both the hardware and the software. Most of the
issues we had, aside from figuring out exactly how to code things and set things up, were
on the Arduino part of the framework.

Setting up MQTT on all devices and getting them to communicate was never any issue,
but on the Arduino side we had some issues with how the libraries themselves were set
up. Seeing as we didn’t want to tinker with the libraries too much, and the publish method
call for the MQTT client required a c-type string, we had to go through some small hoops
to convert various variable types to the required variable type. This was mostly converting
to raw data as that’s what was required for the MQTT message. we could have done some
editing on the libraries themselves for the Arduino, but decided against it to keep whatever

69

Chapter 6. Implementation

coding we did limited to our own code.
While our work is focused on the software, we did have some issues with the hardware

during testing. These issues arose mostly during the time when we connected the same
components used in the tile configuration on breadboards before the tiles themselves were
completed. We thought both during and after testing with the breadboards that the boards
themselves were the issue, as there might have been some bad connections between the
wires, boards and components. The IMU and Time of Flight components used a certain
amount of power and had to be connected to the 5V output of the Arduino. Due to either the
wiring or the breadboards themselves, we often got issues with those components where
the Arduinos wouldn’t detect them. Though, after the tile setups were completed with the
parts soldered together, this issue was gone.

Lastly, more is written about this in the last chapter in the section about further work, but
we could have handled the code differently for Unity. As the code is right now, it’s mostly
a polling based framework with few ties to how Unity usually does things with their game
components steer away from how Unity developers want their system, as we’ll get a closer
look at in the next chapter about our testing of the framework.

70

Chapter 7
Usability Testing

7.1 Research design

The usability testing as an experiment is a strategic research method we use to obtain
the data we need to answer research questions four. There will be two user tests, as it
is interesting to look at two different working methods. The first user group will work in
pairs, while the second workshop the users will work individually. During the user tests of
the framework, the participants’ thoughts, discussions and reactions are observed. This
will provide the basis for qualitative data that can provide insight into what the participant
feels about the framework. After testing the framework, participants will receive a System
Usability Scale form (SUS) that they will answer individually. This provides the basis for
quantitative data and provides a quick overview of how usable the framework was.

7.2 Planning

This section details the recruitment process of the participants, the location and equipment
used during the tests, a description of the test prepared for the participants, and details
about a semi-structured interview.

7.2.1 Recruiting participants

For this study of the framework being developed, it’s important to get participants for testing
within the target group, namely software/game developers. If the number of participants
within the target group isn’t satisfactory, students can fill the missing spots given they have
experience with game development or Unity, or have had a specific game design subject at
NTNU.

Access to developers withing the target group was limited and wholly dependant on the
participants’ interest in the project and whether they have time, as we can’t expect people
to take time off from work.

71

Chapter 7. Usability Testing

Through the school/supervisor’s connections, our supervisor got in contact with Work
Work, a workplace of several smaller companies where some of them are game developers.
With this we got a time slot during their lunch where we could present our project and recruit
participants.

The students were recruited through an email sent out to an email group consisting of
the students who had a game design course at the university during fall 2018. This part of
the recruitment process was done as there was not a satisfactory number of participants
from the Work Work recruitment phase. Aside from the requirement of having had the sub-
ject, there was also a requirement that the students were studying Informatics or Computer
Science and had some experience with Unity. The students filling these requirements are
also close to actual software developers and game developers reducing the loss of validity
from the testing considerably.

For supervising the process of the workshops with us, we had our supervisor help with
introductions and controlling the workshop. And our co-supervisor helped with recording
the workshops for use in later review.

With this we had two workshops with a total of 3 participants from the Work Work
recruitment phase and 3 participants from the student group, and our supervisors helping
out. One of the students was moved to the first group so we could run two pairs of two and
two, and singles the second workshop.

7.2.2 Location and equipment

For the workshops we were able to use the UX-lab, Svanæs (2015), at the university as our
location for the testing. The lab has the ability to record both sound and video of the testing
area, letting us observe our testers without being in the room watching over them.

As we were only testing a software framework, we didn’t need much of equipment. For
the workshops we needed two sets of raspberry pis, tiles and computers. As the tiles
were made for our testing during development as well, we could supply the workshops with
both raspberry pis and tiles. The computers, monitor, keyboard and mouse included, were
borrowed from the university. Everything else in terms of tables and seating, etc, was either
in the UX-lab already or borrowed from the university.

The UX-lab has two main rooms, seen in figure 7.1. One for observation, and one for
testing. In the observation room there is equipment for controlling the recording equipment,
and monitors to watch what is recorded. In the testing area are 4 cameras with microphones
for the recording, the area we used to set up our own equipment, and where most of the
workshop took place.

We had some refreshments - coffee, water and some snacks - placed on a table by one
of the doors in the testing area.

By the refreshments, to the left in figure 7.1, we had some chairs to be used by the
participants during various parts of the workshop, facing a monitor. To the middle of the
room we made an equipment setup with the two groups on each side of a separator wall.

72

7.2 Planning

Figure 7.1: Layout of the UX-lab with computers, tables and separator walls set up.

7.2.3 User tests and tasks

For these workshop, we were testing the usability of the framework we created. The partic-
ipants had access to a wiki we have created, and the rest of our code to look at. Due to the
nature of what we’re testing, it works a bit different than regular usability testing where you
can easily see how the users handle what they’re working with.

For most of the time during the workshops, the participants were on their own. This was
to test how easy it was for said participants to get familiar with the framework supplied, and
how quickly they could get to a point where they could properly both explore and work with
the framework.

After the participants had some time to familiarize themselves with the framework, they
were given a task. This task was a continuation of the example in chapter 6.4.3, here
dubbed Keep the Light Alive. To make sure the task was solvable, we did the task our-
selves before the workshop. The point of the task wasn’t necessarily to finish creating what
we wanted them to, but to get some form of results and see how they worked with the
framework. We will have a closer look at how various participants worked with the task in
sections 7.4.2 and 7.5.2.

For the task Keep the Light Alive, the participants were supposed to make the light
count down, showing how much time the player has left with the number of lights on the
Ring Light. As can be seen in figure 7.2, the game follows a few general steps. Some of
the steps are very similar to the regular Follow the Light example detailed in the previous
chapter, but with a few added steps. New additions to this updated game are the steps 2,
3a and 4a. For step 2, the countdown on the selected tile starts as soon as it’s selected.
If this countdown reaches 0, as seen in step 3a, the game over phase is initiated which
should make all the tiles blink a few times for a set period in step 4a before restarting the
game back at step 1.

7.2.4 Semi-structured interview

At the end of each workshop, we had semi-structured interviews. It is important to get the
participants’ opinions and experiences with the framework, as this can help guide further

73

Chapter 7. Usability Testing

Figure 7.2: Keep the Light Alive gameplay steps

development of the framework before an eventual finished product. As the interview ses-
sions are semi-structured, they allow for changes in order of questions and follow-up ques-
tions from the interviewer. For these interviews we were mainly interested in usefulness,
usability and context of use, with questions within these categories. As all participants,
and supervisors, of the workshop were Norwegian, the interviews and questions are all in
Norwegian. The following questions have been translated from their original language. The
questions were based on the TAM model Davis (1989) and ISO9241-11(ISO (2018a)) on
usability.

• Usefulness:

– Do you think you could use this framework in a project? Explain.

• Ease-of-use:

– Was the framework easy to use?

∗ What was easy? Examples.

∗ What was difficult? Examples.

∗ What could have been done differently? Examples.

• Fit with context of use:

– How does the framework fit with how you work when you design games? Ex-
plain.

74

7.3 Procedure

• Summary:

– The best part about the framework.

– The worst part about the framework.

– Would you recommend this framework to your colleagues?

– If no: What would need to change for you to recommend it?

7.3 Procedure

This section will detail our schedule for the two workshops we had, see table 7.1. Everything
in both the workshops were scheduled to take about 3 hours, from 4 pm to 7 pm. As
mentioned in the section about the user tests, before the workshops were held we did the
task given ourselves to make sure parts, if not all, of it were possible to do within the given
time frame. The second workshop was as similar to the first workshop as we could manage.

Time Activity
16.00 - 16.30 Introduction

- Purpose of the workshop
- Architecture
- Demo
- Declaration of consent

16.30 - 17.00 Preview of code on GitHub
17.00 - 17.15 Task introduction
17.15 - 17.30 Break (Questionnaire)
17.30 - 18.30 Task: Keep the red dot alive
18.30 - 19.00 Group reflection
19.00 - 19.10 Hand out of gift cards

Table 7.1: Schedule of the workshops.

For the introduction of each workshop, we first introduced the project and the purpose
of the workshop. Mostly what we were making and what we wanted to test. This lead into
a brief talk about how the architecture of our framework works. A demo was then done
to show the framework, and something made with the framework, in action. For this we
used the last two examples detailed in chapter 6, the Follow the Light and Sample Tile
examples. Underway we were open for questions from the participants in case something
was unclear during the explanations. Lastly, the introduction was rounded off with the
participants signing the declarations of consent.

After introductions, it was time for the participants to get familiar with the framework. For
this we had the workstations each group would use. The first workshop split the participants
in groups of two and two, while the second workshop split them individually, one and one.
For the review process of the framework, they had access to the GitHub where the code
was stored, and also the accompanied wiki pages also located on GitHub.

We held the task introduction before the break to give the participants some time to think
about, discuss and plan their work with the task. For this, we held a small presentation

75

Chapter 7. Usability Testing

of the task before letting them have their break. As we needed to find a good time for
the participants to answer a questionnaire about their use of frameworks, what platforms
they’ve developed for, etc, this was done during the break as well. For the break, we also
reminded the participants about the refreshments in the room. Consisting of some biscuits,
fruits, coffee and tea, and water.

After the break, it was time for the user test with working on the task given. For this
part of the workshop, all the supervisors left the test area room to observe the participants
from the observation room. The participants were told that they would only get help with
technical difficulties, e.g. with the hardware.

After the time was up for working with the task, we handed out SUS forms for them
to fill out, before starting the semi-structured interviews. The interviews were recorded
as it would be useful to go back and review the feedback from the participants. For this
interview, we were mainly interested in what was both good and bad about the framework,
and if anything needed to change, both in general and if they were to use or recommend it.

7.4 Results workshop 1

In this section, the results from the first workshop, where we had four participants split into
groups of two, are detailed. We will look at some of our observations during the workshop,
the code from the participants and how they decided to solve the task, some information
we got from the group interviews, and the results of the SUS.

7.4.1 Observations: Problems and challenges

Given the hands-off approach to the task solving part of the workshop, the participants had
to solve any software issues of their implementations on their own.

For the first workshop, there were no real issues we had to solve for the participants
other than once. In this instance, one of the groups had an issue where they used the
sample code supplied by us where an IP-address was set. This led to the group getting
null-pointers and not being able to run the program at all. Since this wasn’t a very obvious
error for them, this led to some confusion about their own code and of how they used our
framework. After fixing the error for them, the other group was notified as well about the IP
change.

The above error isn’t an error that’s necessarily very clear to the participants when
developing using the framework. On the layout that can be seen in figure 7.1, the raspberry
pis acting as brokers in the systems are placed next to the respective PC setups. Both
supplied with their own screens. However, when not directly working with it, and the task
for the participants was to work on the Unity code alone, it becomes very unclear how to
solve such a problem unless they were told about it beforehand.

Interestingly, during the framework- and code-review part of the workshop, one of the
groups dove straight into the code and navigated their way through, finding out which meth-
ods were called from where, and the structure of the framework. This group consisted of
both of the game developers. The other group took their time reading the wiki-pages we

76

7.4 Results workshop 1

had prepared, and spent considerably less time looking at the code itself. It was around this
time it became clear that there was a considerable thought-process difference between the
two groups, which led to two very different approaches to the task solving following this, and
the game developer group probably developed a deeper understanding of the framework
itself just from navigating all the code.

7.4.2 Code analysis

In the previous sub-section, we mentioned how the two groups had different approaches
towards solving the task given, where they were to take the concept of the Follow the
Light game in the examples and make the Keep the Light Alive game we introduced to
them before their break in the workshop. We had told them they could either start over,
or expand upon what we had already made. Giving them the possibility to copy and paste
code if they needed, almost encouraging it.

While there might be an experience and framework knowledge gap between the groups,
as discussed in the previous sub-section, the group getting closest to solving the task,
creating what we wanted them to create, was the group with the students. This is probably
due to how each of them are used to working, and their though processes on what they
wanted to do.

The first group took what we said to heart and expanded one of the existing examples
that came with the framework. This gave them an existing base that worked out the gate,
and they only had to add the missing features the task required them to create. While
they didn’t finish, they had a working countdown on the tile objects, and got furthest in
completing the task.

The other group with the game developers had a different approach to the whole task.
Initially they had a sine wave going on the system to test the change in number of lights on
a tile. They told us this was to get a better understanding of the framework and the system
at hand, and to get more familiar with the delays in the system. Continuing this, they didn’t
necessarily go directly towards solving the specific task with adding the missing features
to one of the existing examples. They were thinking bigger and started implementing their
own game handler, with needed classes. This had an obvious effect on how far they got
with the task, but it was valuable input in seeing how different people worked towards the
same task. With their game handler they could have potentially used it for other games,
while the other group went for a more specialized task solution.

7.4.3 Group interviews

While the SUS scores we’ll present in the next part gives a good indication of how usable
a system is, it’s also important to get concrete feedback from the users on what was good
and bad about the framework. Semi-structured interviews aids in this. Instead of having
all the participants separately, they were all interviewed together so they could speak up if
comfortable and add to what others said if they felt they needed to. We will abstain from
quoting what the participants said as it wouldn’t necessarily be accurate with a translation.

77

Chapter 7. Usability Testing

Usefulness

For the usefulness aspect on its own, we were interested in whether they could see them-
selves using the framework either in their jobs or some form of projects.

For the students, they couldn’t really comment on the aspect of using the framework in
a working situation, but they both expressed interest in Internet of Things, and potentially
using the framework on a private basis. One of them noted how they struggle with setting up
Arduinos and such, and connecting them. They could see themselves using this framework,
given that it helps with such things.

The two developers both saw they could hypothetically use the framework if they had
an idea where they could use it. One of them noted how the framework is, in a way, split
in two. On one hand you have the things that you need to set up, and then on the other
hand you need to use the things with the framework. We do see how this could be a
potential entry barrier for some. They also noted how they sometimes work with clients,
and it’s useful to have something like this in their toolbox if someone comes in and wants
to gameify something, and they spar back and forth on development ideas.

The two developers also referenced some examples where you could have games de-
veloped with this framework. A simple and obvious example is a whack-a-mole game. The
Follow the Light game is very similar to this. Another example is to gameify exercises in
football where the players run back and forth between boxes, which is a typical exercise in
football.

Ease-of-use

For the usability questions, we were interested in the general aspect of whether the frame-
work was easy to use. What was easy, difficult and what needed changes. Something
of note is that when we went to Work Work where the game developers work to hold our
presentation, we handed over the link to our code repository to those interested as a hook
to garner even more interest. The two developers did note that, in terms of validity of the
testing, they did have some prior knowledge of the framework going in as they did look at
the code in the repository.

All of them had various different ways of saying it, but there was a lack of commenting
and documentation in the code itself, making the framework a little difficult to get into.
For some, it was the distinction between the game objects themselves, from the example
code we gave them, and the core device within the framework. They struggled to see
the difference in the game object and the class object being a twin of the physical device.
They also wanted to see information about what kind of physical components a device had
in the documentation. E.g. how many lights and other components. In general, they all
wanted more documentation both in the code, and about the devices themselves, which is
something we obviously should have had ready before the workshop.

Something of note as well, is that one of them wanted a higher abstraction level where
they didn’t have to worry about specifically the components themselves or other things, and
just have an abstract class they could refer to and just say "I want the lights to be on". But
this is also something some of the others did themselves with adding interfaces to their

78

7.4 Results workshop 1

classes to make their classes more abstract and have common methods they could call on.
While there were issues with the documentation and abstraction levels of the code, they

all had some sort of consensus that the framework was simple and because of that (rela-
tively) easy to understand. The game developers noted how the framework was functional
out of the box and that things they didn’t need to see, like network handling etc, was hidden
from them and they didn’t have to worry about it. They could just start developing with-
out too many worries. One of the game developers said they liked the component system
we had implemented in Unity. From this, they all agreed they could see how flexible the
framework could be, even if it’s very simple in nature.

Fit with context of use

For this part the we wanted to know how the framework would fit into how they as develop-
ers work when designing games.

While one of the developers liked the component system we had, they also came with
a change they wanted when we asked about how well the framework fits into the work flow
of a Unity developer, and this brought up the component system Unity already has. They
said that if they could make a request then and there, it would be to have the system mimic
the Unity component system in terms of adding components to game objects, as we now
have everything in code and more like general C#.

Summary

For this part of the interview we wanted to know some of the best and worst parts of the
experience with working with the framework, or just about the framework itself, and whether
they could see themselves recommending the framework to a colleague and any changes
needed for that to happen.

For the best of the framework, they all had a general consensus about the fact that the
framework was relatively easy to understand and start using, and also the fact that it was
a very simple framework. The two students noted that they could see there was a lot of
freedom with the framework if they had time to explore more. The game developers were
happy that the framework was what it was, and not something more complicated. Often
when they start using new SDKs(software development kits) and plugins, there’s often a lot
to learn, and they were happy this framework was pretty simple and lightweight. They did
note that they would’ve liked to see how it would’ve been to work freely during the workshop
instead of working on the given task to see what could be done with the framework.

For the worst of the framework, they all agreed that there needed to be a better level
of documentation for the framework, as it did take some time to read and understand what
each method did. One of the student wanted something different from the examples of a
finished game in terms of tutorials. Something more akin to instructables where you have
a small code snippet focusing on an individual functionality. There was also an expressed
want for a more Unity-like event system when variables change instead of the polling based
system that is currently in place, as they had heard it was an event based system and

79

Chapter 7. Usability Testing

almost expected events to be in place. This was most likely a confusion about the events
going between the physical and digital devices from our initial explanation.

In terms of recommending the framework to colleagues or work more on their own with
it, they could totally see that happening, but to make this easier, they did wanted some
changes. One of them wanted more devices to show the extremes of what’s possible with
the framework, another wanted less devices to keep it simple enough where you could use
it to teach programming in school, another wanted a way to simulate everything in Unity.

7.4.4 System usability scale

An SUS form gives a general measurement on how usable a system is. A modified version
of the SUS form, to fit the unity framework, was given to the participants. Table 7.2 shows
the results from the SUS form for the four participants in this round of workshops.

Participant SUS Score
Student 1 80
Student 2 70
Developer 1 72.5
Developer 2 82.5
Average 76.25

Table 7.2: SUS score from workshop 1.

7.5 Results workshop 2

In this section, the results from the first workshop, where we had two participants split
separately, are detailed. We will look at some of our observations during the workshop, the
code from the participants and how they decided to solve the task, some information we
got from the group interviews, and the results of the SUS.

7.5.1 Observations: Problems and challenges

As with the first workshop, given the hands-off approach to the task solving part of the
workshop, the participants had to solve any software issues of their implementations on
their own.

For this second workshop, there weren’t any problems for us to solve for the participants
given the restraints we gave on both ourselves and them, aside from the IP-change issue
showing up once for one of the participants. The other participant did have some issues
where we could see on the recording that he repeatedly closed and reopened Unity, where
we thought there were issues with Unity itself, or hardware issues, but it was a pure code
issue outside of the framework.

For the framework- and code-review part of the workshop, they were both mostly read-
ing the wiki on the repository page, with some occasional review of the code inside the
editor itself.

80

7.5 Results workshop 2

We do see that since this workshop only had two participants where they were working
on their own, as compared to the first workshop where they worked in pairs, they didn’t
have any partners to discuss and get help from, but it didn’t seem like that hindered them
as they were both quick to get started with their implementations of the task, with both of
them getting close to finishing it.

7.5.2 Code analysis

As with the first workshop, we told the participants that they could either start over, or
expand upon what we had already made. Giving them the possibility to copy and paste
code if they needed, almost encouraging it.

While it was interesting to see the different approaches to the task in the first workshop,
it’s also interesting to see that both participants here, did the same as one of the groups
in the first workshop. They were both expanding on one of the examples, and at that
expanding the Keep the Light alive example where we gave them two tile classes with game
logic in them together with the game logic class. While the two participants this round had
different results in terms of how far they got, what they coded was relatively similar.

7.5.3 Group interviews

As with the other workshop, we held a semi-structured group interview with both of the
participants to get more concrete feedback on what was good and bad about the framework.
As with the group interview section for the first workshop, we will abstain from quoting what
the participants said as it wouldn’t necessarily be accurate with a translation.

Usefulness

For the usefulness aspect on its own, we were interested in whether they could see them-
selves using the framework either in their jobs or some form of projects.

Both students said the framework was interesting and that they could see themselves
using it in a project at a later time. One of them also brought up the point that was brought
up by one of the game developers the first workshop about using the framework in an
educational setting in schools.

Ease-of-use

For the usability questions, we were interested in the general aspect of whether the frame-
work was easy to use. What was easy, difficult and what needed changes. Differing in this
workshop from the first workshop, is that none of the participants had prior knowledge of
the code before coming in.

Both participants said the wiki was good and understandable making it relatively easy
to understand the framework. Noting also how the framework is simple and lightweight, but
very flexible in terms of what could be done with it.

81

Chapter 7. Usability Testing

They did mention some issues in terms of method names, where they weren’t sure what
a method would return or do just based off the name itself, and had to think twice before
using them. However, once they had the full picture on how the framework was set up, it
was easier to understand what methods did and how things were connected.

Fit with context of use

For this part the we wanted to know how the framework would fit into how they as develop-
ers work when designing games.

Both of them weren’t sure about how the framework fit a game development work flow,
considering they were both students and at most had experience from that one game de-
sign course, and most of what they had done weren’t related to this type of project. They
did say it depended on the type of project, and they would have to see from there.

From the work flow question, we had posed a leading question on what they thought
of the component structure, given what we had heard in the first framework to see if they
agreed or not. They both agreed that a more Unity-like component system would be better
for the general Unity developer, even if a software developer/computer science student
would understand the current system just fine.

Summary

For this part of the interview we wanted to know some of the best and worst of the ex-
perience with working with the framework, or just about the framework itself, and whether
they could see themselves recommending the framework to a colleague and any changes
needed for that to happen.

The best part of the framework according to them was that it reminded them a bit of
Arduino programming with setting LEDs, etc. It was also well structured so you knew what
you were doing and didn’t just pull a magical method out of nowhere.

For the worst part of the framework, one of them only had some small issues with how
the naming convention we ended up using didn’t properly fit C#’s naming conventions. The
other had some issues that were more technical in terms of physical devices taking some
time to connect and some delays making it more difficult to debug. However, this is a bit
outside of what we were testing as we’re focusing on the software.

In terms of recommending the framework to others, one of them brought up how his
younger siblings in secondary school have started with Arduino programming and some
Unity as well, but for Unity they’ve mostly done visual scripting. He could see high school
students being a good target for this sort of framework.

82

7.5 Results workshop 2

7.5.4 System usability scale

An SUS form gives a general measurement on how usable a system is. A modified version
of the SUS form, to fit the unity framework, was given to the participants. Table 7.3 shows
the results from the SUS form for the two participants in this round of workshops.

Participant SUS Score
Student 1 65
Student 2 87.5
Average 76.25

Table 7.3: SUS score from workshop 2.

83

Chapter 7. Usability Testing

84

Chapter 8
Requirements Update

8.1 Summary of Semi-structured Interviews

In this section we will summarize the participants’ thoughts from the two workshops detailed
in chapter 7. Every question will be listed with a summarized and short version of what
everyone said. We will also cover a question regarding open source that wasn’t included in
the interview guide.

• Do you think you could use this framework in a project? Explain.

– Depends on the project from a customer, and other ideas.

– Could use it in Hobby projects.

– Potential for use in an educational setting.

• Was the framework easy to use?

– Easy to use after some exploration.

– Not being Unity-based made it harder to get into.

– Wiki helped in understanding the framework.

• What was easy? Examples.

– Simple framework, thus easy to use.

– Use of components.

– General use with the lack of worry about network components.

• What was difficult? Examples.

– Separation between game object and class object.

• What could have been done differently? Examples.

85

Chapter 8. Requirements Update

– More documentation.

– Unity-like code structure.

– Higher abstractation.

• How does the framework fit with how you work when you design games? Explain.

– Developers wanted a more Unity-like component system.

• The best part about the framework.

– Felt like Arduino programming.

– Easy to understand and start using.

– Freedom and flexibility.

• The worst part about the framework.

– Hardware: Connection time and delays.

– Documentation.

– Lack of Unity-like event system.

– Examples structure. One wanted a different type of examples.

• Would you recommend this framework to your colleagues?

– Could be recommended in use for High School teaching.

– General consensus on agreeing that they could recommend the framework.

• If no: What would need to change for you to recommend it?

– Not directly a no: Wanted to show extremes in terms of devices being able to
connect to the system.

– Not directly a no: The ability to simulate inside Unity.

8.2 Updated Requirements

In this section we will list the updated requirements for the framework based on feedback
from the workshops. This will not include every change the participants from the workshops
wanted, but there were a few good suggestions for changes.

The problem we encountered is that most of the changes the participants in the work-
shops wanted were code-base related and framework documentation. These won’t really
change the functional requirements, or the criteria from Johansen (2018) much, but the
little that changes will be included. The changes included are in bold in table 8.1.

86

8.2 Updated Requirements

Criteria Description
C1.0 - Reduce implementation cost The framework and the technology used

should reduce the overall cost of prototyping
pervasive exergames, by having sensible
examples to work with to learn the frame-
work and reduce learning time.

C2.1 - IoT Flexibility IoT technology should support for different
I/O modules to allow developers to customize
the game objects
to their game design.

C2.2 - Addressability IoT technology should provide the ability to
uniquely identify and address the device.

C2.3 - Device-to-Device communication IoT technology should support the ability to
transfer and receive data from different IoT
devices.

C2.4 - Distributed vs Local use IoT technology should support both local and
distributed applications.

C2.5 - Scalability The IoT technology should support the ability
to be used in pervasive games with different
amounts or sorts of devices.

C3.1 - Interoperability The framework and the technology used
should support communication between vari-
ous IoT devices.

C3.2 - Connecting new devices The framework should provide intuitive han-
dling of connecting new devices both during
development and run time.

C3.3 - IoT Flexibility The framework should allow developers to
create custom interaction and visualization of
different virtual I/O components that mirror
traditional physical I/O modules.

C3.4 - Game logic centralized The framework should support running the
game logic outside of the IoT devices.

C3.5 - Framework Seamless integration with the develop-
ment environment.

Table 8.1: Updated criteria from Johansen (2018)

While the functional requirements won’t change, the quality requirements do have some
changes. However, the only quality requirements being changed here are performance re-
quirements P1 and P2. The changes in the requirements can be seen in the second column
of both tables 8.2 and 8.3. Both had a response measure of "Expected 40 messages per
second", which is now changed to expect more than 60 messages per second. While this
is probably the most desirable performance goal as the standard update speed of Unity

87

Chapter 8. Requirements Update

is 60 frames per second, or about every 17 milliseconds, a lower message rate could be
enforced given a smooth rate up date in Unity. Though, this is heavily related to the hard-
ware used in conjunction to the framework, meaning it’s a bit outside our focus being the
framework and software, but it can also possibly be enough with different variable handling
on the Arduinos and some slight changes to the Unity framework. Lastly, a new criteria has
been added for the framework to cover the wanted support for seamless integration with
Unity, or the code-base change to a more Unity-based solution.

ID: P1
Source: Unity application
Stimulus: Receives data from client
Artifacts: Arduino device
Environment: Normal operation
Response: Data is used to update virtual objects
Response Measure: Expected more than 60 messages per sec-

ond

Table 8.2: Performance 1

ID: P2
Source: Unity application
Stimulus: Send data to client
Artifacts: Arduino devices
Environment: Normal operation
Response: Data is used to update and operate physical

objects
Response Measure: Expected more than 60 messages per sec-

ond

Table 8.3: Performance 2

88

Chapter 9
Research Discussion

This section contains a discussion of the results derived from this study in relation to the
validity of the research methods. The validity will be discussed in relation to objectivity,
external validity, ecological validity and triangulation, all of which are described in Chapter
3.3.

9.1 Validity

9.1.1 Objectivity

In our study, much of the results were based on the semi-structured group interviews, and
there was a risk that the interviewer could influence the participants’ answers. To avoid
this, audio and video recordings were taken during the user tests and interviews. This
made it possible to analyze whether the participants were affected in their behavior after the
interview. However, it is not possible to eliminate the influence of the interviewer completely.
It seemed that most of the participants were sincere in their answers, although there is a
possibility that some of the participants wanted to be positive in their answers.

9.1.2 External validity

There is sufficient basis for the conclusions drawn from the results of the data collection
from the user tests to be valid. As mentioned in chapter 3.3, the criteria for research
results being valid include transferability to other users. If there are too few participants,
conclusions cannot be a representative generalization of the entire user group. Ideally, we
should have ran a third workshop, but Nielsen and Landauer (1993) states that testing on
5 people is sufficient to reveal 85% of the errors. Should we run several workshops this
would be at the cost of time, which we didn’t have.

89

Chapter 9. Research Discussion

9.1.3 Ecological validity

NTNU UX-lab was used during the usability tests. This lab was set up to achieve high
ecological validity. At the UX-lab, the test subjects were separated by a light wall, see
figure 7.1. This meant that during the first workshop with group testing, it was possible to
hear discussions through the wall. This UX-lab layout is not entirely optimal, and the results
could have been different if the groups were more separated. When it comes to ecological
validity, our setup is representing a certain degree of working in an open plan office.

9.1.4 Triangulation

In order to answer research questions 1, it was based on previous work and a literature
study. To meet the triangulation requirement, there might have been added an additional
method to increase the validity of the findings. Despite that, we saw it sufficient with previ-
ous work and literature study as this was intended as a first iteration in the design process
of the framework.

For research question 2 and 3 it was based on a combination of literature review and
design and creation. For better triangulation we could have added survey or field study for
gathering a better insight into how game designers work against game engines. Here we
could possibly have anticipated some of the feedback that came from the group interviews.

To answer research questions 4 and 5, a usability test with observation, interview and a
survey was done to collect data. This meets the requirements for triangulation where there
must be at least two methods for collecting data.

9.1.5 Test subjects

Recruiting the right participants is crucial to getting valuable results from a usability test.
Our participants were primarily recruited through a presentation we had at Work Work, in
addition to sending out an e-mail to students who had taken the subject Game Design
(TPD4168 NTNU). We wanted to gather a group of representative end-users where the
skills were from novice to experts, to improve the chances of meeting the true end-users.
Norman (2013). For the usability test results to be valid, it was important that the users
had not seen or tried the system in advance. Here we made a small mistake, where one of
the participants during the presentation at Work Work wanted a link to the repository of the
code (GitHub). Without us being able to confirm or deny whether the participant has read or
tested the code in advance, we should have avoided this. Another thing that is important in
recruiting is acquaintance. Often people you know can give a more positive opinion about
the product they are testing, leading to weaker credibility in the answers. In our usability
test there was none of the candidates we had significant relation to. We therefore assume
that this did not affect the results we received.

90

9.1 Validity

9.1.6 The task

Moran (2018) explains in her article that a set of carefully crafted tasks is needed to succeed
in any form of usability testing. There are some characteristics we have focused on in our
task, as the usability test is primarily qualitative. We wanted to discover issues in the user’s
experience of the framework, and therefore aimed to create a task that would highlight the
difficulties that the participants might experience. It was important to make the task as
open and realistic as possible, as well as emotionally neutral. It contains no direct clues,
but presents a hint that the example code from Github can be used as an starting point.
This example code was used during the introduction of the task to create motivation. In
conclusion, we left the task open for the participants to use their creativity to build on, if there
was time left. In practice, the task was somewhat more time-consuming than assumed and
none of the participants finished within the set time frame.

9.1.7 Researcher Bias

The area where researcher bias would affect the most, is the qualitative data gathering
and analysis for the workshops, described in chapter 7. Oates (2012) describes the bias in
relation to qualitative data analysis as how the researchers interpret the data is closely tied
to the researcher, their identity, background, assumptions and beliefs. And that conclusions
must then be more tentative than with quantitative analysis. Any preparations done before
the data gathering could also affect the data collected. Including for us then the preparation
of the workshops and the execution of them. As the workshops were the first iteration, the
focus is rather on the execution of the workshops and the interviews at the end.

It’s important to note that our work is from a developer perspective. This has some
positives and negatives. The positive here is mainly that we understand our test users and
can better connect with them. The negative is mainly that we can get blinded in terms
of what we’re working on without understanding the other perspectives, like a business
perspective, project lead perspective, etc.

To facilitate any researcher bias during the workshops, and to stay as objective as
possible, we made sure to keep them as similar as possible across both days. We had
a plan for the general flow of the workshop, and when the participants worked on the task
we gave them, as described in chapter 7, we were hands-off with the users with being in
the observation room to not influence them in any way. The interviews were a bit more
free-form, but they still followed a general guide on what questions to ask the participants,
and were kept fairly neutral and similar across both days. However, there was one point in
the second workshop interview where one of us asked a leading question based on what
one of the participants said in the first workshop. This was clearly a biased question to
probe and expect an answer from the participants, but it also got the participants to reflect
about other things for the framework.

91

Chapter 9. Research Discussion

9.2 Alternative Research Approaches

9.2.1 Field Study

An alternative research method that could have provided good effect is the field study. A
field study is a general research method that involves collecting data material in a specific
field of research. It involves interviews and observations. For example, visiting Work Work
to observe how they work on game design against Unity could provide us with a better basis
for understanding and specifying the context of use. It is a normal approach in the Human-
Centered Design process and could have been done before we started specifying the user
requirements. See figure 3.4 Understand and specify the context of use. We thought
that literature review together with the findings from Johansen’s master thesis would be
sufficient for a first iteration. A field study would have been at the expense of the time we
had for the development of the framework and the usability test.

9.2.2 Field Experiment

A field experiment allows researchers to test theories and answer questions with a higher
degree of external validity as it is done in a real-world environment. If we wanted to run
an experiment in the end user’s environment, it would involve doing the usability test at
Work Work. Some advantages is that more participants with different backgrounds, might
have brought different feedback. The product could have been tested in several creative
ways, and maybe even on their own projects where they found it useful. For our part, it
was important to have the opportunity to record audio and video to analyze the results
afterwards. This could have been more difficult to archive if the experiment was held at
Work Work. A field experiment might be better suited to the product at a later iteration of
the design process. First iteration is very vulnerable to functional errors and it would be
easier to handle these under the test environment at the university.

9.2.3 Open Source

An open source research approach would allow us to test how the project evolves by having
other developers submit whatever changes they see fit for the framework. To explore this
approach, we would have to have a working base early as a starting point. Going through
with this approach would mean we would also have to curate any incoming changes from
other developers, but it would allow us to see exactly what kind of changes users wanted.
However, doing this approach would assume the people contributing to the framework had
the necessary hardware to test making something, which could, given the flexibility of the
framework, mean anything supporting MQTT. Another problem is that this approach would
take an uncertain amount of time. Given that we could have uploaded the project and
released it as early as the start of the thesis in January, how well the framework would do
as an open source project would depend on who found it, or what kind of people we would
manage to get in contact with. To have time to try this approach, we would have had to do
this on the first iteration of the framework, which most likely would have been to early.

92

Chapter 10
Discussion

10.1 Research Question 1

What are the requirements for an open source architecture to support the develop-
ment of pervasive exergames?

In order to answer research question 1, we chose to look at the criteria from Johansen
thesis, as well as literature review. The criteria we considered most relevant are presented
in table 4.1. Of these criteria, we chose to change C3.1 (C3.2 in Johansen’s table). We
removed the part there various IoT devices could communicate without knowing the spec-
ification of each device. We considered this a smart functionality, but demanding to imple-
ment as not all potential IoT devices have a configuration they can send to the system. The
change here is that Unity will know the specification of the connected devices. Unlike Moto
Tiles, we have criteria that state that our framework should be open source and support
customizable IoT devices with various sensors. This opens the possibility of creating ex-
ergames, where the devices are different both physically and digital. To better support open
source, we decided that the game logic should be centralized. This would allow the frame-
work with some simple adjustment to work with alternative game engines and IoT devices.
An important requirement that must be made to the framework is the choice of message
protocol. It should have good credibility, be lightweight and fast for streaming sensor data
to low-energy chip sets. To lower the barriers of using the framework, we chose a message
protocol that was free and defined as an ISO standard.

10.2 Research Question 2

What existing software technologies are best suited to realize these requirements?

Based on the research we have done; we have concluded that technologies that are ei-
ther well established or defined as a standard are the technologies that will live the longest.

93

Chapter 10. Discussion

In other words, it is wise to choose technologies where chances are greater that they will
be supported in the future. In addition to this, it is necessary to look at which of these
technologies will meet the requirements of sensor based IoT devices.

As a message protocol we have chosen MQTT. It was chosen because it’s an ISO
standard and were designed for remote devices where a small code footprint and limited
network bandwidth are important.

For the game engine, there was a project requirement that Unity should be the chosen
one. Regardless of this requirement, Unity is one of the largest gaming engine with a broad
platform coverage, it supports third party frameworks such as MQTT and allows you to
develop games for free as long as gaming revenue does not exceed $ 100K per year. Thus,
this game engine is well suited to realize the requirements for the development of pervasive
exergames with a tangible user interface. Other game engines, like Unreal Engine, could
have been chosen. A fully open source game engine, like Godot, could have been used for
a fully Open Source solution, if desired.

When it comes to the IoT devices, we chose Arduino as a technology platform. Arduino
is an open-source platform where the focus is on user-friendly hardware and software. It
uses C ++ as a programming language and has good documentation in addition to a large
environment of users within IoT projects. Regarding the design and creation of IoT devices,
there are lots of cheap SoC microcontrollers, and sensors based on Arduino. We therefore
considered it a favorable technology platform for realizing pervasive exergames.

Between the IoT devices and the machine running Unity, we have chosen to place a
Raspberry PI. This runs a linux distro where the software "dnsmasq" is used for a DHCP
server, “hostapd” for an access point and Mosquitto MQTT as a message broker. All three
of these softwares are built on open source and are well established within the Linux com-
munity. For the development of the framework, we saw it as user-friendly to have this
raspberry pi as a hub for connecting the IoT devices and for handling MQTT messages. In
theory, this unit can be replaced by the same machine running Unity.

10.3 Research Question 3

What are the challenges of implementing such an architecture for a specific target
technology?

To answer this question, we need to look at the challenges we had during the Design
and Creation progress, with tie-ins to the usability testing. In chapter 6, we detailed the
implementation choices we made for the architecture, and how different parts of the archi-
tecture works. Through this implementation process, we got some first-hand experience in
the challenges involved. These include uncertainties with the technologies used, and how
to use said technologies.

One of the biggest issues we noticed that most people will probably run into is unfa-
miliarity with libraries used on the Arduino side. This was apparent to us when we tried
develop the Arduinos using their functionality. Most of the this came down to handling the
data from the components using the libraries. To alleviate some of the unfamiliarity, it was

94

10.4 Research Question 4

helpful to use the examples shipped with the libraries as a base to work from. This was
especially helpful with the MQTT library used as it set the base for all the Arduino device
configurations. This unfamiliarity also stemmed from the inexperience with using C++ as
a programming language, which was less of an issue when dealing with Unity, as C# is
relatively similar in syntax to Java, which we have experience with. This meant we had to
learn how the libraries worked, how Arduinos worked in its execution flow, and how specific
things worked in C++.

For developing the Unity-side of the architecture, something didn’t occur to us until we
had it tested with users, which is how specific you want to be towards the technology. Going
into this project, we didn’t have much experience with developing for Unity and had more
general programming knowledge. Given this we ended up going for a more general C#
solution, than a more Unity focused solution. This has its pros and cons depending on how
you weigh them. Given the more general C# solution, porting the framework to a different
game engine using C# should be easier than if we had a more Unity focused solution.
However, given the fact that our target demographic is Unity developers, we should have
considered this sooner and made a framework more suited for Unity. It’s easy to fall into
pitfalls depending on the mindset you have as you begin developing. This can be seen in
the results from our testing in chapter 7.

While the focus of our work is related to software, we can’t ignore the challenges we
had with the hardware. Our initial prototypes were made using breadboards to connect
the components with the Arduinos. The components themselves weren’t incompatible with
the Arduinos as they worked fine in the soldered prototypes, the tiles, but there were a lot
of issues with the components not being detected, or suddenly not working. We think this
could be related to the slight physical connection errors in the breadboards, as several were
tested and the setups could stop working without even touching them.

These issues somewhat limited our exploration with different components as the goal
was to use the ones we had in the red and blue tiles. With the time constraints we had, this
led to limitations on what kind of prototypes we had to work with. While we could influence
what prototypes were made, we weren’t directly in control of that process. This somewhat
limited what components were coded for in Unity, but this made it all the more important to
make sure that it’s possible to extend on this. This also limited the examples made to some
extent.

10.4 Research Question 4

How do potential users of the resulting framework asses its usefulness and usabil-
ity?

For this question, we need to consider what potential users we tested the framework
with. Our user group consists of game developers with programming experience using
Unity. Of the people who participated during the testing, we had two game developers and
four students who had a game design course at the university. None of them knew much
about pervasive games, and had not developed for that before, which may influence some
of the answers they gave or the results we ended up with. The usability test focused only

95

Chapter 10. Discussion

on how the framework was towards game development in Unity. We do not test how to
program IoT devices according to the Arduino side of it.

For the usefulness of the framework, all of the participants said the framework could
be used in projects, or IoT projects outside work, given the idea and how the framework
could fit. One of the things that came up during both interviews was the idea of using the
framework in a school setting to teach teens coding, as the framework is relatively simple
and reminded some of them of Arduino programming, which is what one of the participants’
brother had done at school already. Another example brought up was a football setting
where the athletes could run between boxes similar to how Follow the Light works, which is
more of a game idea than a use of framework idea, but still interesting to look at.

From the aspect of usefulness, it’s interesting to see that the participants could see
themselves using the framework, and that they already thought of ideas for other places it
could be used as well.

On the aspect of usability, we had SUS forms the participants filled in. While there
might be some uncertainties regarding the score with how the participants answer it, where
participants can give more positive answers to be nice, it gives a good guideline on where
we are with the framework. With the SUS score average for a good usability set to 68, our
average score across all participants being 76.25 means we’re on the right track towards a
good framework.

However, there were still changes the participants wanted to see that could improve
the system more. As they were Unity developers, they might be more biased towards that
as a development tool, and as such might explain their desired changes for a more Unity-
focused framework. But we can see this being better for general Unity developers, to have
tools more integrated to the working environment they are used to.

The participants also had some issues in the separation of objects in Unity referring to
the physical objects and the game objects in Unity, and the general link between physical
objects and digital twins. We could see this being an issue as the documentation on the
system both in code and on the wiki pages for the Github repository weren’t completed yet.
But what we had helped fill some of the holes, and the participants still saw the framework
as relatively small, but still very flexible.

10.5 Research Question 5

Based on the previous questions; what are the requirements for such an architec-
ture?

An updated requirement is that the framework must have a good documented wiki page,
where all functions must be clearly explained. In addition, good code examples must be
enclosed so that a developer can more easily familiarize himself with the framework. This
was a requirement already from earlier, but there was a desire for an improvement of the
existing documentation.

The participants wanted the framework to remain open source so that they could use it
as a free tool for their own projects and get the opportunity to contribute to the framework.

96

10.5 Research Question 5

It was not discussed which software license the framework should have beyond that it
remains open source. It is therefore not possible to conclude any updated requirements on
the framework in connection with which license the framework should be submitted to.

All participants in the usability test were recruited following a requirement for experience
in Unity game development. One common idea among the participants was to make the
code base even more aimed at Unity. Those of the participants with a heavier programming
background liked that the framework was small and clear, it was positive that it wasn’t big
and complicated.

An interesting thought is; What results would we have if we had two tasks, one aimed at
Unity and one against another game engine. Would there be an equally great desire for a
framework dedicated to the individual game engine or not? Since the EXACT project made
demands on Unity as a gaming engine, a new requirement for this framework would be to
change the code base to be more focused on Unity.

97

Chapter 10. Discussion

98

Chapter 11
Conclusion

The motivation for our study was to design and create a user-friendly framework that will
make it easier for game developers to create pervasive exergames. The framework will give
developers the opportunity to focus on a tangible user interface, with the ability to connect
customizable IoT devices to a digital twin object in Unity. The study has focused on design
and creation with an experiment in the end, where we test the usability of the framework.
We hope that this framework will be an important part of the EXACT project, and will open
the possibility for new pervasive exergames to be developed.

Five research questions were designed to conduct the research of this study. The first
research question was to find out what requirements a framework should have to support
the development of pervasive exergames. Based on a literature study and the findings
in Johansen’s Master’s thesis, it was concluded that the requirements for the framework
should be based on the criteria of Johansen’s thesis and the extent to which the literature
study agrees with it. We therefore ended up with the requirements presented in table 4.1.

The second research question regarded which existing technologies are best suited to
realize the requirements we found in research questions 1. The technologies we chose
were; MQTT as a message protocol between the IoT device and the gaming engine, Ar-
duino as a technology platform for the development of IoT devices and a Raspberry Pi
running the operating system Raspbian with DHCP, Access Point and MQTT Broker ser-
vices. The game engine was already decided to be Unity before we defined this research
question. It’s important to stress that everything regarding the Raspberry Pi in terms of
the DHCP and access point is not part of the actual framework developed, but more of a
component to help the communication between devices.

The third research question regarded the challenges in the implementation of such a
framework for the specific technologies chosen. The biggest challenge we thought we
would face would be the libraries used for the Arduinos and the unfamiliarity with the pro-
gramming language C++. What turned out to be the biggest frustration during prototyping
and testing in the early stages ended up being the breadboard setups before we had phys-
ical tiles to work with. The connections between physical components on the breadboards

99

Chapter 11. Conclusion

were unstable until we had a soldered solution. The direction you take your code is also
a challenge as you may end up going varying directions depending on how you as a de-
veloper first think the code should be structured, which may turn out to need change after
testing.

The fourth research question regarded how the potential users of the resulting frame-
work asses its usefulness and usability. For this we had semi-structured interviews and
SUS forms for the participants of the workshops we held. For usefulness some of them
could see themselves using it in projects, both for work on a hobby basis, and some could
see it being used in education. The discussion during the interviews lead to the partici-
pants thinking about various exergame ideas that could be developed with the framework.
For usability the SUS form revealed that we had a score of 76.25 which is considered
"good". Bangor et al. (2009). There was an agreement from the participants between both
workshops that the framework should be more integrated into Unity. We’re pleased with the
results from the usability tests considering that this is the first iteration of the framework.

The last research question regarded what would be the requirements for this architec-
ture based on the previous research questions. During the workshops we got a confirmation
that the documentation in terms of the wiki-pages including the code examples were good,
but there is room for improvement. The participants also agreed that the framework should
remain open source as the code being open source had an impact on the decision making
in terms of what frameworks to use. There was also a consensus that the code-base should
be more aimed at Unity if the expected end-user is a Unity developer.

11.1 Recommendations for Further Work

The results of the research indicated that there are several improvements for future devel-
opment on the framework. As a start, the code should be ported from the more general C#
solution to a more integrated Unity solution, which means it should be more familiar to the
way Unity handles game objects and class components.

One thing that was not addressed during the usability test, but is important for future
work, is to look deeper into the security of the framework. In particular, it is important to
add extra care in making the broker and the communication secure.

With the Unity integrated solution, one idea to further develop the framework, would be
to create game objects representing the physical components, as an example a sphere for
an LED. This could enable the end user to use these components as building blocks to
create a digital twin by nesting them in the Unity Editor.

Regarding the Arduino code, there are several structure changes that could be done to
make it easier for future contributors. This could involve having the functionality for each
Arduino component in their own classes, and thus provide a better API.

We consider the current version of the framework more akin to an alpha version, and
as such there are several steps needed to be fulfilled before a proper beta version is ready,
among these the changes described above. Preferably more iterations of testing need to
be done after the changes regarding the Unity integration mentioned above. In these extra
iterations, it could be wise to do a field experiment to further test the framework outside of a

100

11.1 Recommendations for Further Work

more controlled environment like the UX-Lab at NTNU. This could spark an interest among
potential contributors and users as we see the project being released as an open source
project.

101

Chapter 11. Conclusion

102

Bibliography

Adafruit, 2018. Adafruit feather huzzah with esp8266 - loose headers. https://www.
adafruit.com/product/2821, accessed on 2018-10-29.

Ashton, K., et al., 2009. That ‘internet of things’ thing. RFID journal 22 (7), 97–114.

Bangor, A., Kortum, P., Miller, J., 2009. Determining what individual sus scores mean:
Adding an adjective rating scale. Journal of usability studies 4 (3), 114–123.

Bass, L., Clements, P., Kazman, R., 2003. Software architecture in practice. Addison-
Wesley Professional.

BCS, T. C. I. F. I., 2017. The Internet of Things: Living in a connected world. British Com-
puter Society.

Buxmann, P., Diefenbach, H., Hess, T., 2012. The software industry: Economic principles,
strategies, perspectives. Springer Science & Business Media.

Chen, L., Babar, M. A., Nuseibeh, B., 2013. Characterizing architecturally significant re-
quirements. IEEE software 30 (2), 38–45.

CORBA, 2018. Common object request broker architecture. http://www.corba.org/,
accessed on 2018-10-30.

Crytek, 2018. Cryengine. https://www.cryengine.com/.

Davis, F. D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS quarterly, 319–340.

Dickinson, A., Lochrie, M., Egglestone, P., 2015. Ukko: enriching persuasive location based
games with environmental sensor data. In: Proceedings of the 2015 Annual Symposium
on Computer-Human Interaction in Play. ACM, pp. 493–498.

Ecclipse, 2018. An open source mqtt broker. https://mosquitto.org/, accessed on
2018-11-05.

103

https://www.adafruit.com/product/2821
https://www.adafruit.com/product/2821
http://www.corba.org/
https://www.cryengine.com/
https://mosquitto.org/

EpicGames, 2018a. Epic games. https://www.epicgames.com/site/en-US/home.

EpicGames, 2018b. What is unreal engine 4. https://www.unrealengine.com/

en-US/what-is-unreal-engine-4, accessed 08-12-2018.

Foundation, R. P., 2018a. Raspberry pi 3 model b. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/, accessed on 2018-10-29.

Foundation, R. P., 2018b. Raspbian. https://www.raspbian.org, accessed on 2018-
10-31.

Gaff, B. M., Ploussios, G. J., 2012. Open source software. Computer 45 (6), 9–11.

Glaessgen, E., Stargel, D., 2012. The digital twin paradigm for future nasa and us air force
vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Ma-
terials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. p.
1818.

Godot, 2018. Godot engine - free and open source 2d and 3d game engine. https://
godotengine.org/.

Grieves, M., Vickers, J., 2017. Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems. In: Transdisciplinary perspectives on complex systems.
Springer, pp. 85–113.

Henry, J. M., 2018. The development of a modular framework for serious games and the
internet of things. Ph.D. thesis, Liverpool John Moores University.

Houde, S., Hill, C., 1997. What do prototypes prototype? In: Handbook of human-computer
interaction. Elsevier, pp. 367–381.

Intel, Jun 2016. Choose the right communication pattern for your
iot project. https://software.intel.com/en-us/articles/

communication-patterns-for-the-internet-of-things, accessed on
2018-10-28.

ISO, Mar 2010. Ergonomics of human-system interaction – part 210: Human-centred de-
sign for interactive systems. https://www.iso.org/standard/52075.html, ac-
cessed on 2019-04-28.

ISO, Jun 2016. Information technology – message queuing telemetry transport (mqtt)
v3.1.1. https://www.iso.org/standard/69466.html, accessed on 2018-10-30.

ISO, Mar 2018a. Ergonomics of human-system interaction – part 11: Usability: Definitions
and concepts. https://www.iso.org/standard/63500.html, accessed on 2019-
05-10.

ISO, 2018b. International organization for standardization. https://www.iso.org/

home.html, accessed on 2018-10-30.

104

https://www.epicgames.com/site/en-US/home
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspbian.org
https://godotengine.org/
https://godotengine.org/
https://software.intel.com/en-us/articles/communication-patterns-for-the-internet-of-things
https://software.intel.com/en-us/articles/communication-patterns-for-the-internet-of-things
https://www.iso.org/standard/52075.html
https://www.iso.org/standard/69466.html
https://www.iso.org/standard/63500.html
https://www.iso.org/home.html
https://www.iso.org/home.html

Jessen, J. D., Lund, H. H., 2016. Evaluation and understanding of Playware Technology–
trials with playful balance training. Technical University of Denmark, Department of Elec-
trical Engineering.

Johansen, P. B., 2018. Iot-based pervasive game framework - a proof of concept case
study. Master’s thesis, Norwegian University of Science and Technology, released on
NTNU Open Access.

Kathrin, u., 2015. How fast can you publish mqtt messages? | bitreactive2015.

URL

Konstantinidis, E. I., Bamparopoulos, G., Bamidis, P. D., 2015. Transfering full body ex-
ergames from desktop applications to mobile devices: the role of the internet of things. In:
Interactive Mobile Communication Technologies and Learning (IMCL), 2015 International
Conference on. IEEE, pp. 254–258.

Konstantinidis, E. I., Billis, A. S., Paraskevopoulos, I. T., Bamidis, P. D., 2017. The interplay
between iot and serious games towards personalised healthcare. In: 2017 9th International
Conference on Virtual Worlds and Games for Serious Applications (VS-Games). IEEE, pp.
249–252.

Kosmides, P., Demestichas, K., Adamopoulou, E., Koutsouris, N., Oikonomidis, Y., De Luca,
V., 2018. Inlife: Combining real life with serious games using iot. In: 2018 IEEE Conference
on Computational Intelligence and Games (CIG). IEEE, pp. 1–7.

Manley, A. F., 1996. Physical activity and health: A report of the Surgeon General. Diane
Publishing.

Martin, K. A., Laviola, J. J., 2016. The transreality interaction platform: Enabling interaction
across physical and virtual reality. In: Internet of Things (iThings) and IEEE Green Com-
puting and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), 2016 IEEE International Conference on.
IEEE, pp. 177–186.

Mcleod, S., 2017. Qualitative vs quantitative research | simply psychology.
https://www.simplypsychology.org/qualitative-quantitative.html

Microsoft, 2018. .net. https://www.microsoft.com/net, accessed on 2018-10-30.

Montola, M., Stenros, J., Waern, A., 2009. Pervasive games: theory and design. CRC
Press.

Moran, K., 2018. Writing tasks for quantitative and qualitative usability studies.
https://www.nngroup.com/articles/test-tasks-quant-qualitative/

Moto, 2017. Moto tiles. http://www.moto-tiles.com, accessed 02-12-2018.

Muir, S. P., 2005. An introduction to the open source software issue. Library Hi Tech 23 (4),
465–468.

Nielsen, J., Landauer, T. K., 1993. A mathematical model of the finding of usability prob-
lems. In: Proceedings of the INTERACT’93 and CHI’93 conference on Human factors in
computing systems. ACM, pp. 206–213.

105

http://www.bitreactive.com/blog/2015/06/26/how-fast-can-you-publish-mqtt-messages/
https://www.simplypsychology.org/qualitative-quantitative.html
https://www.microsoft.com/net
https://www.nngroup.com/articles/test-tasks-quant-qualitative/
http://www.moto-tiles.com

Norman, D., 2013. The design of everyday things: Revised and expanded edition. Basic
books.

Oates, B. J., 2005. Researching information systems and computing. Sage.

Oates, B. J., 2012. Researching information systems and computing. Sage, first published
2006.

Oh, Y., Yang, S., 2010. Defining exergames & exergaming. Proceedings of Meaningful
Play, 1–17.

ORACLE, 2018. Enterprise javabeans technology. https://www.oracle.com/technetwork/
java/index-jsp-140203.html, accessed on 2018-10-30.

Patten, J., Griffith, L., Ishii, H., 2000. A tangible interface for controlling robotic toys. In:
Conference on Human Factors in Computing Systems: CHI’00 extended abstracts on Hu-
man factors in computing systems. Vol. 1. Citeseer, pp. 277–278.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T., 1994. Human-
computer interaction. Addison-Wesley Longman Ltd.

Sauro, J., 2011. Measuring usability with the system usability scale (sus).
https://measuringu.com/sus/

Siegel, S. R., Haddock, B. L., Dubois, A. M., Wilkin, L. D., 2009. Active video/arcade games
(exergaming) and energy expenditure in college students. International journal of exercise
science 2 (3), 165.

Skjæret, N., Nawaz, A., Morat, T., Schoene, D., Helbostad, J. L., Vereijken, B., 2016. Exer-
cise and rehabilitation delivered through exergames in older adults: An integrative review of
technologies, safety and efficacy. International journal of medical informatics 85 (1), 1–16.

Sommerville, I., 2016. Software engineering, 10th Edition. Pearson.

Sparkfun, 2018. Choosing an arduino for your project. https://learn.sparkfun.

com/tutorials/choosing-an-arduino-for-your-project/all, accessed on 2018-
10-29.

Svanæs, 2015. Ntnu health informatics usability and design lab. interactions 22 (3).

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F., 2018. Digital twin-driven product
design, manufacturing and service with big data. The International Journal of Advanced
Manufacturing Technology 94 (9-12), 3563–3576.

Tognazzini, B., 1992. Tog on interface, 1st Edition. Addison-Wesley.

Unity, 2018. Unity. https://unity3d.com/, accessed on 2018-11-01.

Walsham, G., 2006. Doing interpretive research. European journal of information systems
15 (3), 320–330.

Wiemeyer, J., Kliem, A., 2012. Serious games in prevention and rehabilitation—a new
panacea for elderly people? European Review of Aging and Physical Activity 9 (1), 41.

Wortmann, F., Flüchter, K., 2015. Internet of things. Business Information Systems Engi-
neering 57 (3), 221–224.

106

https://www.oracle.com/technetwork/java/index-jsp-140203.html
https://www.oracle.com/technetwork/java/index-jsp-140203.html
https://measuringu.com/sus/
https://learn.sparkfun.com/tutorials/choosing-an-arduino-for-your-project/all
https://learn.sparkfun.com/tutorials/choosing-an-arduino-for-your-project/all
https://unity3d.com/

Appendix

Appendix A - Code

The MQTT implementation used in the framework was created by GitHub user vovacooper(https:
//github.com/vovacooper/Unity3d_MQTT/). Included below are a few of the imple-
mented classes in the framework, namely the MQTTHandler, TwinObejct base class, De-
viceComponent base class.
Folder Structure

The folder included, Project.zip, is devided into two subfolder. One containing Arduino
code, called Arduino. The other containing the Unity project and code, called Unity. The
Arduino folder stucture diagram contains all folders and files included, except the ".vscode"
folders(Visual Studio Code editor program settings folder generated by the program). The
Unity folder structure diagram will list project folders as "Project Folders/Files" and "Code
files"(our code files) due to the amount of folders and files in the Unity folder. ".meta" files
generated by Unity3D has been omitted as well.
Arduino Folder Structure

Figure 11.1: Project.zip -> Arduino folder diagram

107

https://github.com/vovacooper/Unity3d_MQTT/
https://github.com/vovacooper/Unity3d_MQTT/

Unity Folder Structure

Figure 11.2: Project.zip -> Unity folder diagram

108

1. Installation
This guide assumes you have Unity (Unity3D) already installed.

Unity

1.Download the git repository, either by cloning it or downloading as a zip.
2.Place the library folder your Unity project’s Asset folder.

2. MQTTHandler

Fields:
Private:

MqttClient client MQTT Client Object from the MQTT library found at
https://github.com/vovacooper/Unity3d_MQTT. Handles the connection to the MQTT Broker,
and sending and receiving of messages. Message receiver runs on a second thread outside of
the main unity thread.

List twinObjects Holds all the TwinObject objects set by the user. Also acts as a controller for
the allowed device types to connect to the game. TwinObject explained in its section.

List msgBuffer Message buffer for incoming MQTT messages. Accessed by the update
function ran within the main Unity thread. MessagePair explained in its section.

Methods:

MQTTHandler(string, int) - Constructor

Constructor. Takes hostname/ip-address of the broker and port. Sets up the MQTT Client and
connects to it. Sets up the callback function for the incoming messages.

update() - Void

Update function to run through the mssage buffer filled by the callback function from the MQTT
client. Calls the appropriate private methods to connect and update TwinObjects, and their
components.

addTwinObject(TwinObject) - void

Takes one TwinObject and ads it to the list of TwinObjects. Sets the mqttHandler to the
TwinObject for its mqttHandler-calls.

allDevicesConnected() - boolean

Checks all TwinObjects in the twinObject-list to see if they’re connected to a physical device.
Returns true if all devices are connected.

Appendix B - Documentation

109

getConnectedTwinObjects() - List

Returns all the TwinObjects in the twinObject-list that have a connection to a physical device.

getTwinObjectList() - List

Returns the list of all TwinObjects, regardless of whether they are connected or not.

getObjectByID(string) - TwinObject

Returns the TwinObject with the given string ID if it exists in the TwinObject-list.

3. TwinObject
Abstract class.

Code for this class at (need link)

Parent Classes

MonoBehaviour

Child Classes

RedTile, BlueTile, Cube1, Cube2, Cube3, Tile

Fields
Private:

MQTTHandler mqttHandler

MQTTHandler object reference. Used to call the message sending function.

string deviceID

ID of the device. Set when a device with the appropriate configuration is connected and linked
with the TwinObject. A unique identifier.

bool linked

If a physical device is connected to the TwinObject, this variable is true.

int pingCount, pingTime

Used in ping handling with the physical device.

Protected:

string configName

Configuration name of the TwinObject set by the child classes, and used as an identifier for
connecting devices to set up links.

Appendix B - Documentation

110

Methods

getDeviceID() - string

Returns the unique device ID string of the object.

getLinkStatus() - bool

Returns true if the TwinObject is linked with a physical device.

setLinkStatus(bool) - void

Sets the link status of the TwinObject. Usually called by the MQTTHandler.

linkDevice(string) - void

Sets the deviceID string of the TwinObject to the device ID of the physical device. Set the link
status bool to true and sends a ping message to the physical device.

getConfigName() - string

Returns a string with the name of the configuration set by the child class.

3.1 Red Tile
Parent Classes

MonoBehaviour, TwinObject

Fields
Protected:

RingLight ringLight

Object reference for the RingLight component class.

TonePlayer tonePlayer

Object reference for the TonePlayer component class.

IMU imu

Object reference for the IMU component class.

Appendix B - Documentation

111

Methods

getRingLight() - RingLight

Returns the RingLight object for this device.

getTonePlayer() - TonePlayer

Returns the TonePlayer object for this device.

getIMU() - IMU

Returns the IMU object for this device.

3.2 Blue Tile

Parent Classes

MonoBehaviour, TwinObject

Fields
Protected:

RingLight ringLight

Object reference for the RingLight component class.

TonePlayer tonePlayer

Object reference for the TonePlayer component class.

IMU imu

Object reference for the IMU component class.

TimeOfFlight timeOfFlight

Object reference for the TimeOfFlight component class.

Methods

getRingLight() - RingLight

Returns the RingLight object for this device.

Appendix B - Documentation

112

getTonePlayer() - TonePlayer

Returns the TonePlayer object for this device.

getIMU() - IMU

Returns the IMU object for this device.

getTimeOfFlight() - TimeOfFlight

Returns the TimeOfFlight object for this device.

4. DeviceComponent
Abstract class.

Child Classes

IMU, TimeOfFlight, RingLight, TonePlayer

Fields
Protected:

TwinObject device

Sets the device that uses the component class. Used for message sending to the physical
version of the TwinObject when a component is updated, or for appropriate calls.

Methods

setDevice(TwinObject) - void

Sets the TwinObject device of the component.

getDevice() - TwinObject

Returns the TwinObject device of the component.

update() - abstract void

Called for some of the component classes inheriting this class.

Appendix B - Documentation

113

4.1 IMU
Parent Classes

DeviceComponent

Fields

Rotations rotation

Object to hold the rotation(link) of the device measured from the IMU.

bool tapped

Bool set when the IMU detects a tap on the physical device. Set to false each frame if set to
trrue.

Methods

IMU(TwinObject) - Contructor

Sets the device of the component to the TwinObject. Sets a defult 0,0,0 rotation for the
rotation object.

update() - void

Sets tapped bool back to false.

getRotation() - Rotation

Returns the Rotataion(link) object of this class.

setRotation(Rotation) - void*

Sets the rotation(link) object of this class to a different rotation object.

setRotation(float, float, float) - void

Sets the Rotation(link) object’s yaw, pitch and roll values.

setTapped() - void

Sets the tapped bool to true. Usually called when the TwinObject receives a tapped call over
MQTT from the physical device.

justTapped() - bool

Returns the tapped bool. Useful to see if the device was just tapped.

Appendix B - Documentation

114

4.2 RingLight
Parent Classes

DeviceComponent

Fields
Private:

Color color

Unity Color object. Holds various color related values.

bool state

Bool value for whether the ring light is on or off.

int numOfLeds

Number or active leds on the ring light.

List ledList

List of RingLightLed(link) objects. Each objected represents one led on the physical ring light.

Methods

RingLight(TwinObject, Transform) - Constructor

Takes the TwinObject device to set for the DeviceComponent device object. The Unity3D
Transform object is used to extract the RingLightLed’s(link) from the 3D virutal representation
of the RingLightLeds(link). If they don’t exist, the led list is filled with dummy leds, that
function the same way.

toggle() - void

Flips the state boolean. Calls the setState method with the flipped bool.

setState(bool) - void

Sets the state of the ring light. Sets the state of the RingLightLeds(link) as well according to
the number of active leds.

getState() - bool

Returns the state bool of the ring light.

setColor(Color) - void

Sets the Color of the ring light. Sets the color of each individual led as well.

Appendix B - Documentation

115

setColor(Color, int) - void

Sets the Color of an individual led in the led list.

setAllLedsColor() - void

Sends all the individual led colors down to the physical device.

getColor() - Color

Returns the Color varialble from the ring light.

setNumOfLeds(int) - void

Sets the active number of leds on the ring light.

getNumOfLeds() - int

Returns the number of active leds on the ring light.

getLedList() - RingLightLed[]

Returns the list of RingLightLeds(link) from the ring light.

4.3 TimeOfFlight
Parent Classes

DeviceComponent

Fields
Private:

int distance

Holds the distance measured by the TimeOfFligth component on the physical device.

Methods

TimeOfFlight(TwinObject) - Constructor

Sets the TwinObject device to the component device. Defaults distance to 0.

setDistance(int) - void

Sets the distance variable. Usually called by the TwinObject when a value is received over
MQTT.

getDistance() - int

Returns the distance value.

Appendix B - Documentation

116

4.4 TonePlayer
Parent Classes

DeviceComponent

Methods

TonePlayer(TwinObject) - Constructor

Sets the TwinObject device to the component device.

playTone(int) - void

Sends a play message over MQTT with a frequency. Plays a tone that lasts forever at the given
frequency.

playTone(int, int) - void

Sends a play message over MQTT with a frequency and duration. Plays a tone with the
frequency and duration.

stopTone() - void

Sends a stop message over MQTT. Stops whatever tone the tone player is playing.

Appendix B - Documentation

117

Questionnaire

Name:
Age:
Gender:
Employee / Student:
Working title / Study
program:

Your experience from (1-5) where 1 = very little and 5 = very much

Unity:

1 2 3 4 5

C#:

1 2 3 4 5

Internet of Things

1 2 3 4 5

Use of frameworks:

1 2 3 4 5

Game design:

1 2 3 4 5

To what extent are you
free to choose
frameworks in projects:

1 2 3 4 5

Check of other platforms you have experience with in game development:

Windows:
Mac:
Linux:
Playstation:
Nintendo:
XBOX:
iOS:
Android:
Other:

Appendix C - Questionnaire

118

System Usability Scale

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person
 (e.g. skilled programmer) to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most Unity
 developers would learn to use this
 system very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Appendix D - SUS form

119

	
Deltakelse	i	forskningsprosjekt.	

	
Samtykkeerklæring	
	
Dataspill	har	stort	potensiale	som	hjelpemiddel	i	fysisk	rehabilitering.	I	dette	
prosjektet	skal	vi	evaluere	programmeringsrammeverk	for	utvikling	av	slike	
spill.	
	
Institutt	for	Datateknikk	og	Informatikk	ved	NTNU	er	ansvarlig	for	prosjektet,	i	
samarbeid	med	Fakultet	for	Medisin	og	Helsevitenskap	ved	NTNU.	Oppgaven	
befinner	seg	innen	fagområdet	Menneske-Maskin	Interaksjon.	
	
Formålet	med	dette	konkrete	prosjektet	er	å	få	konstruktiv	tilbakemelding	fra	
potensielle	brukere	av	et	slikt	rammeverk.	Vi	vil	samle	data	gjennom	
observasjon	og	uttesting	av	denne	teknologien	i	lab.	De	data	som	samles	er	
bilder,	video	og	lyd.	Datamaterialet	planlegges	anonymiseres	ved	prosjektslutt	
31.12.2019.	
	
Jeg	har	mottatt	informasjon	om	studien,	og	fått	anledning	til	å	stille	spørsmål.	Jeg	
er	klar	over	at	det	er	frivillig	å	delta,	og	at	jeg	kan	trekke	meg	fra	studien	når	som	
helst	uten	å	oppgi	noen	grunn.		
	
Det	vil	bli	tatt	video-	og	lydopptak.		Dette	gjøres	for	at	vi	skal	kunne	analysere	
opptakene	i	etterkant	og	sikre	at	vi	har	forstått	deres	utsagn	og	handlinger	riktig.	
Vi	vil	sørge	for	at	materiale	vil	bli	anonymisert	slik	at	det	ikke	vil	være	mulig	å	
føre	opplysningene	tilbake	til	enkeltpersonene	som	deltar	i	prosjektet.		
	
Dette	innbærer	at	informasjon	som	blir	formidlet	til	offentligheten	ikke	vil	kunne	
settes	i	sammenheng	med	den	enkelte.	Enkeltpersoner	vil	ikke	kunne	
gjenkjennes	i	de	endelige	publikasjoner.	Det	er	kun	de	involverte	i	prosjektet	
som	vil	kunne	se	opptakene	i	ettertid.		
	
	
Jeg	samtykker	i	å	delta.	
	
	
Trondheim,	_________________________	(dato)	

Underskrift	
	
	
Kontaktperson:		
	 Professor	Dag	Svanæs		
	 Institutt	for	Datateknologi	og	Informatikk	
	 NTNU	-	Trondheim	
	 e-mail:	dags@idi.ntnu.no	

Appendix E - Partner Agreement

120

Agenda Workshop 26 & 27. March

16.00 – 16.30 Introduction:

- The purpose

- Architecture

- Demo

- Consent form

16.30 – 17.00 Example review on Github

17.00 – 17.15 Introduction to the assignment

17.15 – 17.30 Break (Questionnaire)

17.30 – 18.30 The assignment: Keep Alive Red Dot

18.30 – 19.00 Group Reflection (Interview)

19.00 – 19.10 Distribution of gift cards

Appendix F - Agenda for Workshop

121

122

M
agnus B

ärnholt, A
ndreas S. Lyngby

A
n Internet-of-Things Softw

are Fram
ew

ork for Exergam
es

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Magnus Bärnholt
Andreas S. Lyngby

An Internet-of-Things Software
Framework for Exergames:

Architectural Requirements and Developer
Acceptance

Master’s thesis in Computer Science
Supervisor: Dag Svanæs

May 2019

	Summary
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Motivations
	Related work
	Objectives and Scope
	Research Questions
	Contribution
	Research Methods
	Participants
	Outline

	Backgound
	Exergames
	Software Architecture
	Software Architecture Patterns
	Quality Attributes

	Internet of Things
	Digital Twin
	IoT Architecture Patterns

	Open Source Software
	Technology Acceptance Model
	User-Centered Design

	Research Methods and Design
	Research Methods
	Qualitative and quantitative research
	Interviews
	Prototyping
	Usability testing
	Guidelines for usability testing
	Questionnaires

	Validity of Research Methods
	Research Design
	Human-Centered Design: ISO 9241-210
	RQ1: Requirements
	RQ2: Technology stack
	RQ3: Implementation
	RQ4: Usability and Usefulness
	RQ5: Updated Requirements

	Architectural Requirements
	Stakeholders
	Project team (Framework Developers)
	End-Users (Game Developers)

	Architecturally Significant Requirements (ASR's)
	Main functionality
	Criteria from Johansen
	Functional Requirements
	System Quality Attributes
	Quality Attribute Scenario
	COTS - Components and Technical Constraints

	Technology
	Technology Stack
	Hardware
	Software
	Connectivity
	Application

	Proposed Technology Stack

	Implementation
	Implementation Overview
	Component Roles

	Component Connection
	Arduino and Unity
	Unity and Digital Twin

	Device Configurations
	Examples
	Controller and Output
	Sample Tile
	Follow the Light

	Challenges and Reflection

	Usability Testing
	Research design
	Planning
	Recruiting participants
	Location and equipment
	User tests and tasks
	Semi-structured interview

	Procedure
	Results workshop 1
	Observations: Problems and challenges
	Code analysis
	Group interviews
	System usability scale

	Results workshop 2
	Observations: Problems and challenges
	Code analysis
	Group interviews
	System usability scale

	Requirements Update
	Summary of Semi-structured Interviews
	Updated Requirements

	Research Discussion
	Validity
	Objectivity
	External validity
	Ecological validity
	Triangulation
	Test subjects
	The task
	Researcher Bias

	Alternative Research Approaches
	Field Study
	Field Experiment
	Open Source

	Discussion
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4
	Research Question 5

	Conclusion
	Recommendations for Further Work

	Bibliography
	Appendix

