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Abstract

The development and capability of autonomous vehicles have skyrocketed
in the last decade. Unfortunately the dream of having traffic consisting of
exclusively autonomous vehicles are still not realistic, at least for a cou-
ple of more years. In the meantime the need to optimize traffic flow, es-
pecially at intersections, are increasing. New vehicles, and especially the
autonomous ones, are packed with new and expensive sensor technology.
These sensors have the ability of collecting huge amounts of data about the
traffic around them, and that data could be used for additional purposes.
Like for example managing intersections more efficiently. In this period
between now and a future where humans are taken out of the driver seat, it
should be possible to use these sensors stuffed vehicles to close the infor-
mation gap created by vehicles not equipped with these sensors.

Our thesis attempts to use the camera sensors of autonomous and con-
nected vehicles to detect and extract information about other vehicles, and
communicate this information to a V2I system on behalf of the other vehi-
cles for intelligent traffic management. The research questions investigate
the possibility to use a monocular camera to detect and count vehicles in
different lanes, estimate their distance, and compute their speed.

The thesis give evidence that such system has potential, and with further
refinements it would be able to confidently provide some of the necessary
information to manage intersections more optimally.

Keywords
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Sammendrag

Utviklingen og evnen til selvkjgrende kjgretgy har gkt drastisk det siste
tiaret. Dessverre er drgmmen om et trafikkbilde som utelukkende bestar av
selvkjgrende kjgretgy, fortsatt ikke realistisk, i hvert fall i noen ar til. I mel-
lomtiden gker behovet for a optimalisere trafikkflyten, spesielt ved veikryss.
Nye biler, og spesielt de selvkjgrende, er fullpakket med ny og dyr sensorte-
knologi. Disse sensorene har muligheten til & samle store mengder data om
trafikken rundt seg og informasjonen disse samler inn kan brukes til flere
formal. Som for eksempel a styre optimalisere trafikkflyten i veikryss. I
denne perioden mellom na og en fremtid hvor mennesker blir tatt ut av
forersetet, bgr det veere mulig & bruke disse sensorene pa selvkjgrende
kjgretgy for a lukke informasjonsgapet forarsaket av kjgretgyer som ikke
er utstyrt med disse sensorene.

Var masteroppgave forsgker a bruke kamerasensorene til autonome og
tilkoblede kjgretgy for & oppdage og hente ut opplysninger om andre kjgretgy,
og videre formidle denne informasjonen til et V2I-system pa vegne av
de andre kjgretgyene for intelligent trafikkstyring. Forskningsspgrsmalene
undersgker muligheten til a bruke et monokulart kamera for a oppdage
og telle kjoretgy 1 forskjellige kjgrebaner, estimere avstanden og beregne
hastigheten.

Masteroppgaven gir bevis for at et slikt system har potensial, og med yt-
terligere forbedringer vil det vaere mulig a formidle noen av de ngdvendige
opplysninger for a styre veikryssene mer optimalt.
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Chapter

Introduction

1.1 Background

Autonomous vehicles have been under rapid development in the last decade
and are expected to become a significant factor in the traffic in a couple of
years [1]. At the same time, non-autonomous vehicles have become more
and more connected to the infrastructure.

The use of different sensors and automated systems, such as cameras
and driving assistants, has become more frequent the recent years. These
sensors could potentially be utilized to provide necessary information to an
Intelligent Transportation System (ITS) which aims to create better traffic
flow, reduce congestion, and decrease pollution in cities.

1.2 Motivation

The motivation behind this thesis was to utilize sensors mounted in a ve-
hicle, more specifically a camera to extract information about the traffic
situation in the vicinity of a vehicle. This information could then be com-
municated to an ITS to increase its performance. To be able to do this, a
system that uses this data and analyzes it with state-of-the-art image pro-
cessing techniques had to be built.




1.3 Research Questions

To build such aforementioned system, we designed three research ques-
tions to help us solve parts of the bigger solution. These questions were as
follows:

RQI1: How can the number and type of vehicles in nearby lanes of a vehicle
be found using image data captured from a vehicle-mounted monoc-
ular camera?

RQ2: What is the most accurate combination of width and height when cal-
culating distance using image data captured from a vehicle-mounted
monocular camera?

RQ3: How can speed of the nearby vehicles be estimated by using distance
calculated from image data captured by a vehicle-mounted monocu-
lar camera?

1.4 Research Method

The research method used was the Design Science Research Process, de-
signed by Peffers et al. [2]. This method was a six-step method that was
built on the design and development of a system to solve the overall re-
search goal.

1.5 Research Results

The general result is a working proof of concept, which utilized state-of-
the-art object detection algorithms and computer vision methods, to provide
information to a V2I system for intelligent intersection management.

To evaluate the performance of the system with respect to RQ1, the
output of three different traffic scenarios were compared with the manually
counted numbers for each scenario. The vehicle detection demonstrated
promising numbers, with a detection error of only 7.6%. This number does
not take vehicle type into consideration and was merely a measurement of
the ability to detect objects. When also strictly evaluating vehicle type,
the error increased to 38%, mostly due to misclassification of vehicle type
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and wrongly detected lane lines. Overall the result showed that the system
was not performing as good as hoped, but with some further work it could
achieve satisfiable results. The object detection algorithm could perform
better with more fine tuning and more specific training of the ANN, and a
more advanced lane detection approach could improve the lane detection.
Finding the most accurate combination of height and width for RQ2
was done by measuring stationary vehicles. The vehicles were recorded at
different distances and measured by a laser to know the true distance. The
system computed the distance using different ratios of height and width,
and the output was compared with the ground truth from the laser. This
experiment showed that the most accurate ratio between height and width
was a distribution of 85% of the height and 15% of the width. Limitations of
the experiment was that the vehicles were stationary, and future work would
be to validate the findings with ground truth on real traffic measurements.
To estimate speed of other vehicles for RQ3, the system used distance
calculated with the ratio found in RQ2. To evaluate the performance of
the system, the “true” speed of the target vehicle were manually calcu-
lated and compared with the system output. This experiment gave evidence
that computing speed of vehicles in front of the camera was feasible when
using estimated distance from object detection and a monocular camera.
Improvements of the other aspects of the system would yield more stable
measurements and could improve the speed estimation further.

1.6 Thesis Structure

The thesis is structured in the following way:

e Chapter 1 - Introduction: This chapter presents the outline of the
thesis.

e Chapter 2 - Background: This chapter presents the background the-
ory and required information for the thesis.

e Chapter 3 - Related Work: This chapter presents the state-of-the-art
technology and work already done in the field.

e Chapter 4 - Research Design and Motivation: This chapter presents
more in-depth the motivation, research goals, research questions, and
the research method.




Chapter 5 - Research Implementation: This chapter presents the
research implementation used to answer the research questions. Here
technology choices for the system are described.

Chapter 6 - Research Results and Evaluation: This chapter presents
the different results generated by the implementation of each research
question. The results were also evaluated here.

Chapter 7 - Discussion: This chapter presents the results and evalu-
ation.

Chapter 8 - Conclusion and Future Work: This chapter presents
the conclusion of the thesis and future work.




Chapter

Background

This chapter present the background information needed to understand the
overall problem and motivation for this thesis. The chapter gives an intro-
duction to intelligent intersection management, and autonomous vehicles.

2.1 Intelligent Traffic Management

An ITS is by the European Union (EU) defined as

Advanced applications which without embodying intelligence
as such aim to provide innovative services relating to different
modes of transport and traffic management and enable various
users to be better informed and make safer, more coordinated
and ‘smarter’ use of transport networks[3].

These systems are used widely in the world today, and in intersection man-
agement, they can vary from just using sensors [4] to more complex systems
where machine learning and image processing are in use [5].

2.1.1 Signalized Intersections

Light signals have been the primary method for managing traffic flow in
intersections for many years. The traffic regulated intersections are mostly
using timers to control the flow with a fixed green light interval. If pedes-
trians are taken into account, there is often a button that interrupts the fixed
interval and gives the green light to the pedestrians.




There are different problems with how the most common signalized
intersection handles the traffic. Engineers, researchers, and governments
are continually trying to overcome as much congestion as possible, by for
instance, making the light intervals more efficient [6, 7].

Use of Inductive Loops in Intersections

One of the oldest and most used approach to control intersections in high-
density areas is to use inductive loops built into the road [4]. This has
proven to have good results regarding the counting of vehicles at the in-
tersections with accuracy on around 98% [8]. However, the installation of
inductive loops can be expensive as they have to be built into the road, and
maintenance costs on a faulty sensor will cost the equivalent amount. A
faulty sensor will also often results in the intersection allocation the max-
imum green light possible, and this can cause serious congestion in the
intersection [9]. The loops can also not be replaced in cold weather [10].

Use of Cameras in Intersections

A newer approach to intersection management is to use cameras to count
and track the number of vehicles waiting at an intersection. This is an
approach that has been around since the early 90s [11], and in the 2000s,
the state of Texas developed a manual for installing cameras in intersections
[12].

In recent years, when object detection has become more prevalent in
computer science, this has also become a lot more common in intersection
management. Moshiri et al. made a comparison with different intersection
management systems [10], and discovered it could be hard for the camera
systems to be accurate with the change of light and weather conditions. The
systems were useful in clear weather, but the accuracy declined with worse
weather and especially when it was snowing.

2.2 Autonomous and Connected Vehicles

2.2.1 Autonomous Vehicles

Research on Autonomous Vehicles (AVs) has been conducted since at least
the 1920s. In the early stages of development, AVs had some form of guid-
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ance through electric or magnetic cables embedded in the road [13]. Devel-
oping fully autonomous vehicles has proven to be a challenge. Compared
to other types of vehicles, such as planes and boats, there are more variable
factors to take into consideration when driving a car. Other drivers and ve-
hicles, pedestrians, and varying road conditions are some of the challenges
faced by AVs [14, 15].

With the development of many different automatic features for driving,
it was necessary to classify to which degree the system is involved in the
driving task. Society of Automotive Engineers (SAE) has developed a stan-
dard for levels of automation in AVs in SAE (J3016) [16]. The standard has
six levels, ranging from O to 5, where 0 is no automation at all, and 5 is full
automation. Table 2.1 shows how the different levels of automation work
and what they demand of an autonomous system.

Most of the new vehicles today have systems on board that places them
in automation level 2 or 3. Sensors, such as LIDAR, RADAR, Ultrasonic
sensors, and cameras, are installed in many of the most advanced car mod-
els. Almost every vehicle manufacturer are working towards delivering a
car that satisfies the level 4 or 5 requirements. It is a race to be the first ve-
hicles manufacturer that delivers this, and many of them claim in 2018 they
will have a commercial product within the next 3 to 5 years. This means
that the car industry is working hard on research and development. Every-
one thinks that fully autonomous cars are the future, and everyone wants to
be a part of the journey.

Big manufacturers such as Volvo [17, 18], BMW [19], Ford [20, 21]
and Tesla [22, 23] are currently installing equipment in their vehicles to in-
crease the level of automation and they are approaching their goal quickly.
Tesla has a working autopilot today, where the vehicle can drive by itself
in certain scenarios just based on cameras, sensors, and other hardware in-
stalled in the vehicles [22, 23, 24].

2.2.2 Connected Vehicles

A connected vehicle is a vehicle that is wirelessly connected to internal and
external environments [25]. The connected vehicles can be connected in
different environments, such as Vehicle-to-Infrastructure (V2I), Vehicle-to-
Vehicle (V2V) and Vehicle-to-X (V2X) to create better ITSs and increase
the level of automation of the vehicles [26].




Automation Name

Level

Description

Level O

Level 1

Level 2

Level 3

Level 4

Level 5

No Automation

Driver Assistance

Partial Automation

Conditional Automa-
tion

High Automation

Full Automation

Human driver is responsible of all aspects
of the driving task

Human driver performing all tasks, but
having a system assisting with either
steering or acceleration/deceleration

A driver assist system performs the
task of both steering and accelera-
tion/deceleration by using information
about the environment. The human driver
must be monitoring the driving environ-
ment and be ready to take over

Automated driving system perform all as-
pects of the driving task, but the human
driver must be ready to respond and inter-
vene when needed

Automatic driving system perform all as-
pects of the driving task. Can handle most
situations even if the driver does not re-
spond to requests to intervene

Automatic driving system perform all as-
pects of the driving task. Human inter-
vention is not necessary

Table 2.1: Levels of Automation according to SAE [16]




2.3 Intersection Management using information
from Autonomous Vehicles

As mentioned in Section 2.1.1, there has been research and proposed solu-
tions on creating more dynamic flow in intersections, which can increase
the throughput of vehicles. There are already different solutions today that
utilize the benefits of AVs and use their reliability and non-biased driving
to create solutions based on V2I communication [27, 28]. These solutions,
however, are possible when all the traffic consist of AVs, and human control
is not present, as humans are unpredictable.

An example of a solution that relies on V2I communication and fully
autonomous vehicles are the solution presented by Chouhan and Banda in
2018 [27]. All vehicles were assigned a slot by a central vehicle scheduler,
and all traffic had to drive in the corresponding lane related to their destina-
tion. By knowing this lane restriction and assuming all vehicles listened to
the vehicle scheduler, they were able to create a system that controlled an
intersection automatically.

2.4 The use of Information from Autonomous
and non-Autonomous Vehicles Together

Connected vehicles do not need to be autonomous to be connected. There
are several situations where both AVs and manually steered, but connected
vehicles, can communicate to create better traffic flow.

Priemer and Friedrich presented in their paper a new and innovative way
to improve the traffic flow in signalized intersections by using V2I commu-
nication [29]. With Dynamic Programming and Complete Enumeration in
an algorithm, they attempted to solve the next 20 seconds of queue length
quicker by using earlier seen examples. The proposed solution was to in-
stall communication devices in the vehicles to create connected vehicles
and then let the vehicles provide information about their ID, position, and
velocity data to the system. The algorithm also utilized data from inductive
loop sensors placed in front of the stop line, as these provided real-time
data of vehicles that were standing in the intersection.

A problem with these solutions today, and this was also something that
Priemer and Friedrich experienced, was the number of vehicles that have a
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communication device installed [29]. They were dependent on a high pen-
etration rate and could only rely on vehicles with these installed. The effect
of the system decreased significantly when the penetration rate dropped.

2.4.1 Communication Standards

To be able to use V2X communication to exchange data with connected
vehicles, a few standards for communication was needed. The most sig-
nificant standards today are developed by European Telecommunications
Standards Institute (ETSI), Institute of Electrical and Electronics Engineers
(IEEE), and Society of Automotive Engineers (SAE). These standards can
vary based on the location of the infrastructure and vehicles, but they are
quite similar.

In the United States, a spectrum band is dedicated to V2X communica-
tion. This is called the Dedicated Short Range Communication (DSRC)
spectrum band [30]. Figure 2.1 shows how the DSRC communication
bands are divided into different channels allocated for different purposes
when communicating V2X.

Critical Safety High Power
of Life Control Channel Public Safety
Ch 172 Ch 174 Ch 176 Ch178 Ch 180 Ch 182 Ch 184
e i
2 2 2 2 2 g 2 g
[--} [--] =] = o« (-] (=] (-]
1] w w 1] w w w

o
Frequency (GHz)

Service Channels Service Channels

Figure 2.1: The figure shows how the DSRC spectrum is dived into separate chan-
nels for different types of communication. Certain channels are regulated, but the
use of the DSRC band is free as long as the communication type is related to the
specific band’s purpose [30].

This network band in the US is regulated by multiple standards. One of
them is the IEEE 1609 WAVE, which stands for Wireless Access in Vehic-
ular Environment [31]. This standard works alongside the IEEE 802.11p to
create a reliable communication service that is easy to use [31]. The WAVE
architecture is complex and brings different IEEE standards together to cre-
ate a complete communication system. Figure 2.2 shows how the WAVE
architecture brings all these standard together to create a fully working V2X
system.
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IEEE 1609.3 WAVE
MIB Networking Services
WAVE
iglmnlinls IEEE 802.11

Enti 11p

4 i WAVE MAC
IEEE 802.11p

s WAVE PHY

Figure 2.2: This figure shows an overview of WAVE and its different components.
This show how IEEE 809.11p can relate to WAVE and be used as a communication
standard V2X. The different components are used for different parts of the system,
such as resource management and security [31].

There are multiple other standards developed. One of them is the ETSI
TS 302 637 [32], which is a similar standard developed for Europe. There
is also another type of standards developed, such as eCoMessages, which
focuses on an environmental effect [33].

2.5 Required Information for Intersection Man-
agement

To create an intersection system which can utilize data from connected ve-
hicles with V2I communication, there is a need for specific information
about the traffic that approaches. Table 2.2 display the essential informa-
tion which is required [27, 34].
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Data: Description:

Vehicle ID An ID of the vehicle in the intersection

Source lane The entering lane of the vehicle

Destination lane The destination of the vehicle

Entering velocity The velocity of the vehicle when entering the intersection
Vehicle length The length of the vehicle

Vehicle acceleration The capability of acceleration of the vehicle

Position The position of the vehicle in longitude and latitude

Table 2.2: Required Information Needed to Create a V2I Intersection Manager

12



Chapter

Related work

This chapter presents the state-of-the-art of Computer Vision. Further, it
elaborates how Computer Vision are utilized in traffic and vehicle-related
affairs.

3.1 Computer vision

Using images or video from cameras on a vehicle to extract information
about the surrounding traffic requires the computer system to see and un-
derstand the traffic. Making a computer see and understand the same way
humans do is not a simple task. Computer Vision (CV) has been a research
topic for many years and is still a difficult problem to solve [35]. A ma-
jor contributor in recent years development is the availability of computing
power, with the increasing power and decreasing cost of graphics proces-
sor units (GPUs). This enables the utilization of deeper Artificial Neural
Networks (ANNs) to perform the calculations needed to identify objects in
images, and solve other Computer Vision tasks. Computer Vision is a sub-
field of Artificial Intelligence (Al), and this section will elaborate how CV
utilize Al and machine learning to make computers see.

3.1.1 Artificial Neural Networks

ANN:Ss is one of the most common ways to do machine learning today and
has been around for many years. ANNSs has gained traction in the last
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decade, due to the development and availability of hardware with good
enough performance. As Warren Sarle wrote in his paper [36], the idea
was to replicate the brain with concepts collected from the human brain. A
basic model takes input and processes the value based on different weights
that are related to the different “neurons” in the system. An output is gen-
erated based on activation functions in the layers of the network, and the
last layer returns the output. Figure 3.1 describes a simple ANN with three
layers without any activation functions or weights included.

In order to receive accurate data, the network has to be trained. This is
done by adjusting the different weights in the network with a factor gener-
ated from a loss function that processes the error from the previous run.

Figure 3.1: Illustration on how a basic artificial neural network is structured. The
red layer works as an input layer with three different inputs. These values are pro-
cessed in the green hidden layer with different weights on the connections between
the neurons. Finally, the yellow output-layer produces two different outputs.

3.1.2 Deep Learning

Deep learning is a method of doing machine learning with ANNs where
networks with many layers are used. Shallow networks have been around
for decades, but the ability to do computations on deeper networks have not
been possible until years when enough computational power became more
available [37]. It is possible to do deep learning on many types of ANNS,
such as feed-forward networks, networks with backpropagation, and Con-
volutional Neural Networks. The latter works great on images and other
two dimensional data.
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3.1.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a specialization of an ANN. The
use of these networks has increased in the last couple of years, mostly due
to the ability to successfully detect objects in images. The main difference
between normal ANNs and CNNs are the use of convolution instead of
general matrix multiplication [38].

Convolution

The definition of a CNN, is an ANN which uses convolution in at least one
layer of the network. Convolution is an operation that combines two func-
tions and produces a new function with smoothed results between the two
earlier functions. CNNs use convolution with a function often referred to as
the kernel, with the weights and the input, which is values from an image.
Images are often in multiple dimensions and the mathematical equation 3.1
describes a two-dimensional image with a two-dimensional kernel [38]. In
this equation, [ is the input image, K is the two dimensional kernel, ¢ and
j are coordinates in the image array. The output is the the value of the
specific part of the image with the kernel taken into consideration.

S(i,j) = (I K)(i,j) =Y I(mn)K@i—m,j—n)  (3.1)

Equation 3.1 makes it possible to do convolution on regions of the im-
age and at the same time reduce the number of computations needed to find
edges. Where convolutional layers use the convolutional formula, regular
layers often use matrix multiplication. Convolutional nodes with different
kernels will find different features in the image.

Pooling

Another important feature of a CNN is the pooling layers across the net-
work. These layers will pool results from the network together and merge
previous outputs into one value. One of the most used pooling techniques
in CNNs is max pooling, which takes the result of the node with the highest
output and transfers this result further. Figure 3.2 shows how this is done in
practice. When using this on images, each bottom layer node will typically
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have a feature, and the layer will forward the value from the most likely
correct feature [38].

Figure 3.2: Illustration of how a pooling layer works when using max pooling.
The node will forward the highest input and discard the others.

3.1.4 The Use of Convolutional Neural Networks on Im-
ages

As mentioned, the use of CNNs has increased the last couple of years and
contributed to the breakthroughs in object recognition and CV. The use of
these networks has been good at recognizing different objects in images
due to the use of pooling and different convolutional layers. Figure 3.3
describes how a CNN works on a small picture to recognize the eye of a
dog. The different features of the image are extracted based on different
similarities, and then different color values are extracted based on the RGB
values of the eyes [39].
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Figure 3.3: Illustration of a Convolutional Neural Network. First the image is split
up into an array of red, green and blue values, and then these are pooled together
into features. Each image is a feature map generated by the convolutional layers.
[39]
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3.2 Detecting Vehicles with Computer Vision

Object detection is a significant part of CV and crucial for autonomous ve-
hicles to be able to operate. They must be able to detect objects related to
traffic such as vehicles, pedestrians, signs, traffic lights, but also other ob-
jects that may interfere with the process of driving. For use in autonomous
driving, the object detection must be of high accuracy, but also high compu-
tational speed. Real-time performance is required, which means as fast as
the image source provides input. Most video cameras operate at 30 Frames
Per Second (FPS), which means a processing time of 33 ms per image. To
achieve this, the hardware often requires a GPU and a highly optimized
object detection system.

3.2.1 Convolutional Neural Network Implementations

One of the big breakthroughs in object detection came with the introduc-
tion of AlexNet in 2012. AlexNet uses CNNs to classify images on the
ImageNet dataset and is often considered the father of the big CNNs of
today [40]. One of the biggest reasons for AlexNets success was the uti-
lization of multiple GPUs, ReLLU, and dropout [41]. After the success of
AlexNet, many improvements have been done with object detection and
CNNss the last couple of years up until today’s state of the art.

R-CNN is one of the algorithms that obtained the status of state-of-the-
art right after AlexNet in 2014. The algorithm utilized the properties from
AlexNet to do the feature extraction from images, before several Support
Vector Machines (SVMs) did the final classification [42]. This was more
efficient than AlexNet and other algorithms of the time, as they used multi-
ple datasets for training such as Pascal VOC [43], and not only ImageNet,
which was the major dataset of the time.

3.2.2 YOLO - You Only Look Once

You Only Look Once (YOLO) was a relatively new approach to the task
of object detection in CV. The algorithm was published in 2016 and was
the state of the art of object detection. One of the main advantages over
other CV algorithms was the speed, making it very suitable for real-time
usage. Previous methods used classification to perform the detection, but
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YOLO used bounding boxes and regression to associate class probabilities
to possible objects [44].

Multiple algorithms were based on classification [42, 45]. They per-
form multiple steps to perform the object detection task, where the first
step often is to find parts of the image that may contain an object. When all
interesting regions are found, the second step is to try to classify each re-
gion individually to find which object is present. Detection systems before
YOLO evaluated a classifier for an object at different locations and scales
in an image. Running a classifier over an image is recognized as a sliding
window approach. Another way to do detection is to first propose poten-
tial bounding boxes around possible objects and then run classification on
these boxes. Post-processing is done to remove duplicate detections and
refine the bounding boxes. R-CNN uses this region proposal method [42].
The entire pipeline is complex and hard to optimize since the individual
parts must be trained separately. This also causes speed and performance
to suffer.

YOLO differs from these classification approaches by basing the de-
tection on regression. Instead of first finding parts of the image and then
do classification, YOLO propose bounding boxes around possible objects
and calculates the probability distribution of which classes might be present
within that bounding box. This makes the process much faster because the
image is processed only once in a run through the algorithm. The class that
has the highest probability score is selected as the object in that bounding
box. The minimum probability for a class also must be above a certain
threshold to be selected as an object and for the bounding box not to be
discarded. YOLO uses non-max suppression to overcome the issue with
overlapping bounding boxes detecting the same object.

YOLOs way of doing detection proposes several advantages compared
to older algorithms. In addition to having significantly higher speed com-
pared to other object detection algorithms, the detection pipeline is less
complex. This causes less computational load due to the processing of an
image being done only once. It is also fast to do detection and classification
when the network is already trained. The detection accuracy is also on par
with other state of the art algorithms, such as Faster R-CNN, but YOLO
is up to 10 times faster. The drawbacks of YOLO are the slightly lower
accuracy and the weakness to smaller objects and small input images. The
weakness of smaller objects has been rectified with the latest iteration of
the algorithm [46].
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Figure 3.4: YOLOv3 Comparison [46]

One must look at the use case for an algorithm to determine if the draw-
backs are worth the advantages. In object detection for use in traffic; time
is of the essence, and the slightly lower accuracy of YOLO is worth the
speed-up. For use in real time vehicle detection, the YOLO algorithm is
therefore very suitable. [44, 47, 46]

Zhou et al. used YOLO in their paper where they looked at ”...vehi-
cle detection and classification problems using Deep Neural Network ap-
proaches” [48]. Some of their work revolved around how to utilize Deep
Neural Networks for vehicle detection, and they demonstrated that YOLO
gave good results. In YOLO version three, the algorithm also scored sig-
nificantly better than other comparable algorithms such as RetinaNet [49].
Figure 3.4 show how YOLO compares to other algorithms..

3.2.3 Keeping Track of Detected Vehicles

Often it is not enough to only detect a vehicle in an image. If the input is a
video, it is desired to track the vehicles between multiple frames, identify-
ing the same vehicle even though it may have moved. By tracking vehicles,
it is possible to calculate more information that is not directly detected,
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such as the vehicles speed.

Most of the research where the goal is to keep track of multiple vehicles
with a camera is done with stationary cameras filming the traffic [5, 50,
51]. Chang and Wong managed to keep track of different vehicles in an
intersection by using the pedestrian crossing as a size reference to calculate
the distance and size, and used the FPS to calculate speed [5]. They used
the optical flow method to do the calculations, and the features extracted
were used to track the movement of each vehicle and classify them into
different categories. Some of the results they achieved were the findings of
different driving patterns between non-stopping vehicles with green light,
vehicles that stopped at red light, and vehicles that just slowed down. Why
a vehicle slowed down was difficult to tell. All this data was used to manage
the intersection.

Akoum wrote in 2017 about another approach where the goal was to
count vehicles in an intersection with CV using edge detection [50]. The
first method he provided was a filter method on a video stream, where he
used a filtering technique to detect the foreground and background of the
image to detect the vehicles. He used Gaussian Mixture Models, changed
the colors, and applied filters to do this. After the foreground was detected,
the image was processed to remove noise and all objects that had fewer
pixels than a given threshold. The three last steps were about the detection
of vehicles, tracking, and counting. To detect the vehicles, he looked at the
change in the picture since he dealt with moving vehicles. For tracking, he
used a Foreground Detector Blob Analysis function. This detected vehicles
and drew rectangles around them. To count the vehicles, he just counted
the bounding boxes around the vehicles.

This methods approach was similar but less naive than the method Pan-
charatnam and Sonnadara proposed in 2008 [51]. Here they looked at deter-
mining the performance of different processing techniques. Where Akoum
filtered out the background with much processing, Pancharatnam and Son-
nadara looked at the video when the pixels were stable, and no vehicles
were present, to extract the background. They could then identify vehicles
by subtracting the background from frames containing vehicles.

A projective transformation matrix was used to map image coordinates
to road coordinates [51]. This calibration was necessary to be able to find
correct values for speed. They made the assumptions that the road was
straight, flat, that the traffic flow corresponded to the y-axis, and the x-axis
was perpendicular to the traffic flow.
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Figure 3.5: Results of Vehicle Counting in Separate Lanes from Pancharatnam
and Sonnadara’s Research [51]

The goal of their project [51] was to identify vehicles in separate lanes.
Lanes were identified by their center line, and vehicles were tracked along
this center line for each lane. Vehicle detection and tracking were done by
identifying pixel value change along the proposed center lines and using
the values in a binary column vector. If a column of 1-values were long
enough to be classified as a vehicle, it was tracked over multiple frames.

To test the counting capabilities of the system, they compared the result
of the system with a manual count. The camera was positioned on a bridge
above the traffic on a highway. Figure 3.5 display their results.

Their research confirmed that a system was able to efficiently and reli-
ably track vehicles. With optimal camera calibration, they were able to get
results above 90% accuracy. For lanes furthest to the side, causing more
distortion in the image, the results were considerably worse.

The second approach Akoum developed was about detecting the vehi-
cles in a single image from a stationary camera [50]. He used edge detec-
tion to find the edges of the vehicles in the image and then used the image
created to track the vehicles. The techniques proposed by Akoum could
be implemented quite cheap because only one camera per intersection was
needed. His experiments showed an accuracy of around 90% when count-
ing the vehicles both on video and by image.

Raj Uppala demonstrated in 2017 how he used a SVM to perform vehi-
cle detection and tracking [52]. He used Histogram of Oriented Gradients
for feature extraction on a labeled dataset to train a linear SVM classi-
fier. The sliding window technique was used to identify vehicles in an
image. Tracking was done by generating a heat map of detections for each
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frame in a video sequence and identifying recurring detections over multi-
ple frames. Uppala’s conclusion was that the method to identify and track
vehicles worked ok, but the drawbacks were the performance. A slow and
computationally expensive pipeline made the method not very suited for

real-world scenarios. His suggestions for a better solution were to use an
ANN or the YOLO algorithm.
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3.3 Detecting Lanes

Several ways to detect lanes from images has been under development for
years. Detecting straight lane lines is easier than detecting curved, and a
greater challenge is detecting lanes when the markings are old and worn
out [53]. This section will focus on different techniques of detecting lanes
from a vehicle.

3.3.1 Detecting Edges in Images

The first step to detect lanes is to find the edges in the image. These edges
are the areas where different parts of the image meet, and the color change
is over a set threshold. Multiple algorithms can be used to find these edges,
and those presented here are some of the most common used.

The Sobel Edge Detection algorithm utilizes an operator called the So-
bel operator, which is an estimation to a derivative of the image values [54].
By using a 3x3 matrix for both x and y coordinates, the operator is applied
through the whole image and differences are calculated, with a focus on the
pixels that are connected to the origin of the operator. If the difference is
above a threshold, an edge is found.

The Prewitt Edge Detection algorithm [55] is similar to the Sobel Edge
Detection algorithm. This algorithm also has an operator that is used in the
process, called the Prewitt operator. This algorithm uses the vertical and
horizontal lines in the image by looking at differences in pixel intensity.
A 3x3 matrix is also used here, but there is no focus on the pixel that is
touching the origin of the matrix.

The Canny Edge Detection algorithm [56] has a multiple step approach.
First, it first uses Gaussian filters to smooth the image, This is to remove
noise that can act as edges, but it is essential not to remove too much.
The algorithm then calculates the gradients of the image using an opera-
tor which for instance could be the Sobel or Prewitt, operator. Finally, the
algorithm suppresses non-maximum values and then use a threshold to find
the values that represent the edges in the image.

These algorithms are all reliable algorithms that are commonly used.
There is done multiple comparisons of different algorithms, and they are
all good on different scenarios [57] [58].
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3.3.2 Detection of Lanes

A typical edge detector when dealing with lanes is the Canny Edge De-
tector [59, 60, 61] and then use a variation of Hough Transform (HT) to
detect lines from the edges [60, 62]. This subsection describes different
approaches used to detect lanes.

The first approach was to use HT to detect the lines. As mentioned,
this was a common method that is widely used. Satzoda et al. [62] and
Deng and Wu [60] used different variations of HT to detect straight lines in
an image. HT consists of two steps, “voting” and “peak decision.” In the
voting step, each edge pixel P(x,y) is transformed into a sinusoidal curve
with equation 3.2. In the equation, p is the length of the perpendicular line
passing through (z,y), and @ is the angle made by the perpendicular line
with the x-axis.

p=1xcosf+ ysinf (3.2)

HT is quite resource consuming as it has to be done on every pixel in
the edge map. Satzoda et al. proposed another solution which they called
Hierarchical Additive Hough Transform, where they grouped pixels instead
to reduce the resource cost. Another variation of HT is the Progressive
Probabilistic Hough Transform [63]. This variant instead chooses random
points in the edge maps for voting and analyze if the probability of the
point being noise or not. A threshold is set to ensure that false positives and
negatives are not discovered. This was a more inaccurate approach than the
standard HT, but it reduced the computational time.

The use of Region of Interests (ROIs) was also an approach that was
used to minimize the computational power needed to detect the lanes [60].
This was an approach that removed unnecessary areas in the image, to re-
duce computations needed, as the lanes could be assumed to always be on
the lower part of the image.

Kim developed a method that could detect lanes in several steps which
followed the “hypothesize and verify” paradigm [53]. The method con-
sisted of rectifying the image, detecting possible lanes in the image before
grouping this into lane hypotheses of where the system thought where the
lanes were. These hypotheses were taken as input into an ANN that selected
a right and a left lane. To detect the lanes in the rectified image, the image
was first converted into grayscale to make the computation easier, and then
the algorithm detected the possible lane pixels which were grouped into
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uniform cubic-spline curves. The fitting algorithm that was detecting lanes
grouped these curves into line segments and used Gaussian smoothing to
remove noise. Everything was scored by an ANN, and the highest score
was chosen to be the left and right lane.

Methods using HT has received great results on straight lines where
Deng [60] and Wu [64] managed to detect 98% of the proposed lines whereas
Kim [53] managed to detect around 80% of the lanes fed into his algorithm.
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3.4 Distance Estimation

3.4.1 Estimating Distances in Images

Calculating distance to an object in an image is easy if all information about
the equipment and the actual size of the object is known. To find the dis-
tance to an object, the Pinhole Camera Model can be used [65]. Equation
3.3 shows this model and how it is possible to calculate the distance. In the
equation the distance to the object is denoted d, F, is the focal length of
the camera, H, is the real height of the object, and h,, is the height of the
object in pixels. Figure 3.6 shows the general model of the pinhole model.

H,

Figure 3.6: The pinhole camera model. F, shows the focal length, H,, is the real
height of the object, h,, is the height of the object in pixels and d is the distance
from the pinhole to the object

3.4.2 Using Camera to Estimate Distance to Vehicles

Measuring distance to vehicles in a video can be challenging if the dimen-
sions of the vehicle are unknown. As Equation 3.3 states, the size of the
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object in real life must be known in order to calculate the distance. Most
of the research done on this matter use the Pinhole Camera Model. Han
et al. wrote in their paper about how they could measure distance and fea-
tures of other vehicles using only a monocular camera [66] . The distance
were used to control different safety systems in the vehicle, such as forward
collision warning (FCW) and autonomous emergency braking (AEB).

The main concern Han et al. experienced was to know the size of the
vehicle they tried to calculate the distance to. They thought the most in-
tuitive thing was to use the height of the vehicles to calculate distance, as
there were often fewer variations in vehicle height than in vehicle width.
However, they found that the use of width was more accurate since it was
hard to calculate the exact vehicle height due to factors such as the hori-
zontal line changing. This line would change based on the conditions the
vehicles were driving in and would change the height of the vehicles even
though they were located at the same distance.

The algorithm proposed by Han et al. depended on the calculation of
the width of the vehicle to work. To calculate the width, they provided two
methods. The first one was based on lane width as a reference point and
only worked if the lane markings were good enough to be detected. This
method was the most efficient, and they did a validity check on the lane
quality before determining if the quality was over a threshold. If the quality
was good enough, they could store the width of the vehicle and use it until
the vehicle disappeared from the video. Equation 3.4 describes how the
width of the vehicle was calculated if the lane markings were good enough.
In the Equation, wj is the lane image width and W;(k) is the physical width
of the lane [66].

wy (k)

Wolk) = S W) (3.4)

To calculate features such as position, velocity, and acceleration, they
used Kalman filters [66, 67] with a constant acceleration model. If the lane
information was not valid, they used a temporary calculation which lasted
until valid lane information was found. Here they used a temporary es-
timation of the horizontal line and the bottom edge of the vehicle. They
used other vehicles’ width and horizontal line to estimate each vehicle re-
cursively. Finally, the values were as in the preferred method used as an
input in a Kalman filter, and they could calculate the position, velocity, and
acceleration.
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The results of this algorithm showed that it could be comparable with
some of the state-of-the-art algorithms [66]. However, the algorithm had a
lower accuracy when the lane information was invalid.

A similar approach to this was the solution developed by Park and
Hwang in 2014 [68]. The primary purpose of their research was to pro-
vide a method to estimate range for use in vision-based collision warning.
They proposed a method to estimate the distance to other vehicles by using
the height from the horizon to the bottom of the vehicle. This assumed that
the camera pitch angle was zero. If the camera pitch angle was nonzero,
the angle also had to be taken into the equation. The reason was that small
variations in the horizon position could cause a large error.

Their main contribution was to propose a method that estimated a vir-
tual horizon line, which in turn were used to estimate the range to the ve-
hicle in front [68]. The virtual horizon line was estimated by finding the
average horizon height from multiple detected vehicles. Their estimated
horizon height could vary because of false detection and an insufficient
number of detections. To combat this, they suggested using average height
over multiple frames. In case they only detect one vehicle, their method
used only size information to calculate the distance with the pinhole cam-
era method.

The object detection part of their algorithm was supported by Haar-
like features and AdaBoost. During their experiment, the reference horizon
was identified manually. They compared the proposed distance estimation
of their method, with the estimated distance found by using the pinhole
method. Evaluation of their range estimation demonstrated that each esti-
mation method had good accuracy when the vehicle was within 50 meters.
Their error increased when the distance increased above 50 meters.

Another approach was developed by Joglekar et al. in 2011 [69]. They
used the geometry and point of contact with the vehicle to calculate a ref-
erence point. They mounted the camera in such a way that the optical axis
was parallel to the road. By doing this, they could use the height of the
objects to calculate the distance by utilizing the similarity of triangles. This
algorithm assumed that the road was planar and would not work correctly
if this was not the case. Their results showed an accuracy of 96%.
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3.4.3 LIDAR Technology

LIght Detection And Ranging (LIDAR) technology is a technology that is
useful for generating detailed information about the surroundings. A LI-
DAR unit consists of several lasers that send and receives light. By rotating
the sensor, it is possible to create a 360°field view of the surroundings, and
let a vehicle traveling in up to 65 km/h to detect objects as small as 15 cm
with a range of 50m. LIDAR sensors can collect 1.3 million data points
each second. A LIDAR generates a point cloud of the area based on how
the light is reflected, and since the traveling time is known, this can be used
to calculate the distance between the sensor and the object [70].

A LIDAR for 3D mapping is expensive and there has been developed
different LIDARSs that map the environment 1 2D instead [71]. Catapang
and Ramos tried to develop an object detector that could measure how far
away different obstacles were by using a 2D LIDAR in 2016 [71]. The
LIDAR they used has a limited range of 40 meters, but their results showed
that it was possible to receive good results with an error of only a few
centimeters when measuring distance within the LIDARs capable range.
Huang and Barth combined CV with LIDAR in 2009 to create an object
detection algorithm [72]. They used AdaBoost as their detection algorithm,
and the results showed that this combination worked well as they managed
to both detect the objects and the distances to them.

3.4.4 Distance Estimation with Stereoscopic Cameras

Stereoscopic cameras are cameras that can give a 3D representation of the
image by using two pictures taken at two different positions [73]. This
makes it possible to, for instance extract information about distance by
knowing the distance between the cameras.

The use of stereoscopic cameras are versatile due to the 3D representa-
tion, and they can be used in traffic to estimate distances [74]. Results on
the research of this matter show an error rate of around 7% when measuring
the distance [74].
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3.5 Speed estimation

The equation for calculating speed is straightforward. From basic physics,
it is given that speed is the change in position over the change in time.
Equation 3.5 shows how this is done.

_ As
At

When calculating the speed of vehicles with only a monocular camera,
the same equation could be applied. The principle is the same. The follow-
ing section will make a summary of some research done on this topic.

v

(3.5)

3.5.1 Measuring Speed from a Monocular Camera Mounted
in a Vehicle

Liu et al. demonstrated the estimation of speed based on object detec-
tion with YOLO, together with an Optical Flow Calculation [75]. Their
approach combined the two CNNs YOLOV2 and FlowNet to estimate the
speed of objects in real time. YOLO provided the detection of object size,
type, and location, while FlowNet provided the optical flow of the whole
image. The object location and size were needed to select the object parts
from the optical flow image, to be able to calculate the optical flow for each
object. They concluded that their method worked, and they were able to
estimate the right speed of an object in real time.

As mentioned in Section 3.4.2, Han et al. measured the distance to other
vehicles by using a monocular camera and the width of the vehicle in front
[66]. They assumed that the vehicle in front was moving with constant
acceleration and used Kalman filters to estimate the speed. As described
in Section 3.2.3, Chang and Wong used a stationary camera but utilized the
knowledge of the frame rate to keep track of the change in distance per time
[5].

Rohit Sharma published an article in January 2019 where a YOLO
object detector was used to estimate vehicle speed [76]. The center y-
coordinate of the bounding box from YOLO was used as the center point
in the speed calculation. His approach was to generate a histogram of all
the center-coordinate values and calculated the average speed between the
frames. With the center-pixel distance for one frame being calibrated ac-
cording to the known speed limit of the road, the speed calculation was done
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by mapping speed of bounding boxes from pixels/sec, to vehicle speed in
km/h.

Wu et al. wrote an article in 2015 about how they could calculate the
speed of vehicles by only using a stationary monocular camera [64]. The
research received great results with 95% accuracy when the ground truth
was calculated by a LIDAR.

The first step of their method was to detect the vehicle. They did not
track the actual vehicle, but the license plate mounted aft on the vehicle.
They used the license plate to detect an initial speed and then calculated
the actual height of the license plate to refine the speed. A license plate
had consistent features, and this was something that lacked in other vehicle
parts. To detect the actual license plate, they limited the ROI by track-
ing the motion of objects to reduce the interesting objects in the video.
This also prevented similar objects such as posters to be detected as license
plates. The detection was based on a standard window-search, which was
done inside each ROI. After the license plate was detected, they tracked
the plate/vehicle by looking at the offset between frame 1 and 2, and then
assumed the same offset in the rest of the frames.

As stated in the articles above, the speed could be calculated with rea-
sonably good results, as long as the change in position and a time unit was
known.
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Chapter

Research Design and Motivation

This chapter will present the motivation and strategy for the research.

4.1 Research Motivation

With the focus on autonomous and connected vehicles in the last 5-10 years,
and with a focus on better I'TS solutions, there were many possible areas for
research and development.

Having a traffic environment consisting of only autonomous vehicles
would be beneficial with regards to safety and efficiency, but it was not
realistically to achieve this in the next couple of years of the time of writing.
Until that was the case, there would be a state with mixed traffic containing
both autonomous and human-driven vehicles.

Makarem and Gillet demonstrated that knowing the inertia (cost of
changing direction and/or speed) and intention of nearby vehicles in an in-
tersection had a great effect on traffic flow and efficiency [77]. They based
the simulations on the assumption that all vehicles passing the intersection
were autonomous, and could communicate their speed, intention, position,
and other information with each other.

As mentioned in Chapter 2, getting all vehicles to communicate with
each other, and decide how to pass the intersection the most optimal way,
may not be feasible in the nearest future. Another possible solution was to
have a system dictate the traffic through an intersection to attempt to get
the best possible flow. Each vehicle passing through the intersection would
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communicate with the management system to provide information about,
e.g., speed, path, and intended direction. This could help the ITS decide
how and when to pass the intersection the most optimal way for all vehicles
in the vicinity.

The motivation for this thesis relied on the potential usage of both ex-
isting infrastructure and components in already built vehicles to contribute
to improving the traffic flow in signalized intersections.

As stated in Section 2.4, one problem with existing research was the
lack of enough vehicles with the right equipment. Relying on expensive
equipment, such as LIDARs, could result in not enough vehicles having
the equipment installed. By using something cheaper like a camera, the
probability of enough vehicles having this installed would be much higher.
It could also be cheaper to implement on a scalable basis.

4.2 Research Objectives

We wanted to close the gap between now and the future, where all vehi-
cles were able to communicate their position, speed, and intention when
approaching an intersection. We based our research on utilizing equip-
ment that already existed in autonomous vehicles, to investigate the option
to use this equipment to extract information about other non-autonomous
vehicles. The advantage of focusing on the camera sensor was the possi-
bility cameras had of being installed on vehicles that did not have this as
a standard. The main objective of this thesis was, therefore, to investigate
if monocular cameras could be used to extract information about the sur-
rounding traffic, which would be communicated to an ITS. An Intersection
Manager requires the information described in 2.2, and our objective was
to try to provide this information from the extracted information from the
camera.

The last objective of this thesis was to provide data for use in further
research at the department.

4.3 Research Questions

We developed the following research questions to help us achieve the re-
search objectives of this thesis.
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RQ1: How can the number and type of vehicles in nearby lanes of a vehicle
be found using image data captured from a vehicle-mounted monoc-
ular camera?

RQ2: What is the most accurate combination of width and height when cal-
culating distance using image data captured from a vehicle-mounted
monocular camera?

RQ3: How can speed of the nearby vehicles be estimated by using distance
calculated from image data captured by a vehicle-mounted monocu-
lar camera?

RQ1 was about finding where the vehicles in the vicinity of the vehicle
were located. As Table 2.2 stated, the arrival lane of a vehicle was essential
for an intersection manager to know. The number of vehicles approaching
and the type of vehicle was also required information.

RQ2 was built upon earlier work done in other research. There were
many different approaches when calculating the distance to a vehicle, but
there was often a choice between using the height or width of the vehicle.
The goal of this research question was to see if the results became better
when using a combination of these values and which ratio that gave the best
accuracy.

Finding the speed of other vehicles was often done by using an algo-
rithm that looked at the change of pixels. RQ3 was about using the change
of a distance already calculated in RQ2 and known data from a standard
vehicle to calculate the speed and how this could be done with acceptable
results.

4.4 Research Method

The research strategy for this project was the Design Science Research Pro-
cess, described by Peffers et al. [2]. It was chosen because it fits well with
this type of project since the desired output is not only academic results but
also a working system for further use and development.

The research strategy consisted of six steps, which was answered through-
out the thesis. The following list describes the steps and what part of the
thesis they relate to.

35



. Problem identification and motivation - This step was about defining

the problem and why this was a problem to solve. In this thesis,
this was located in Section 4.1, where the research motivation was
described.

. Objectives of a solution - The second step was about the objectives of

the proposed solution. Should the solution be better than an existing
solution, or should it be something new? In this thesis, the objectives
for the proposed research results are presented in Section 4.2.

. Design and development - This step is all about the design and de-

velopment process of the solution. Chapter 5 describes the full im-
plementation of the system and why different technologies and algo-
rithms were chosen when the system was developed.

. Demonstration - This is about how the solution performed and how

the solution could be used to solve the problem. Chapter 6 describes
the result and evaluation of the solution.

. Evaluation - The results need to be evaluated with the objectives de-

scribed in step 2. This step was also presented in chapter 6, where
each result was evaluated with related work and ground truth if pos-
sible.

. Communication - The final step was about how the results, the prob-

lem, and the solution could be communicated to fellow researches
and others. This was described more in chapter 7 where the results
are discussed.
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Chapter

Research Implementation

We decided to build a system based on different state-of-the-art algorithms
to answer our Research Questions. The system was developed in Python
and utilized popular frameworks that had well-documented results in dif-
ferent projects. This chapter presents the different choices made during the
research and development of the system for answering the Research Ques-
tions. The chapter is divided into different sections where design choices
for each research question are presented. Lastly, the whole system pipeline
is described.

5.1 Research Question 1

Research Question 1 was about "How can the number and type of vehicles
in nearby lanes of a vehicle be found using image data captured from a
vehicle-mounted monocular camera?”.

To answer this question, the system had to accomplish two require-
ments. The first requirement was the ability to detect other vehicles at the
road in the vicinity of the vehicle. The other requirement was the ability to
distinguish the vehicles in separate lanes.

5.1.1 Vehicle Detection

Object detection was one of the most resource demanding tasks of a system
that are supposed to read the traffic and keep track of vehicles. As written
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in Section 3.2, there was multiple algorithms and other research done on
the subject.

Since the state of the art was good and was fully capable of detecting
vehicles, we decided to use an already trained network which had proved
great performance on different data sets [46]. As described in Section 3.2,
YOLO was a state-of-the-art algorithm that was capable of detecting ob-
jects fast and accurate. We chose to use an existing implementation of
an object detector with YOLO as a foundation for the system, and further
develop this to fit our objectives [78]. The selected implementation was
trained on the COCO data set [46, 79].

As the creators of the YOLO algorithm, Redmon and Farhadi stated in
their paper about the new version of YOLO, the algorithm runs significantly
faster, and the results are more accurate than other similar algorithms such
as RetinaNet [46, 80].

5.1.2 Lane Detection

In order to fulfill the second requirement of distinguishing vehicles in dif-
ferent lanes, the lanes had to be detected.

Lane Detection Method

In Section 3.3, we described different methods of detecting lanes used in
research. There were several available algorithms, and the main arguments
when deciding which one to use was accuracy and speed. After looking
at different solutions, we decided to use Progressive Probabilistic Hough
Transform since it provided great results for a small cost of computing
power [63].

Edge Detection Method

To be able to use the HT approach, the edges of the image had to be de-
tected. As described in Section 3.3.1, there are different methods of doing
this. As stated in Section 3.3, almost all used Canny Edge detection [56].
Since it was not too time-consuming to implement all these edge detec-
tion techniques, we tried them all to see which one that performed best.
Figure 5.1 show the results, and this shows that Sobel Edge has too much
noise, while Prewitt showed to few edges. Canny, however, showed a good
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amount of lane edges, but without much noise. Due to these results and the
wide use of Canny in different research, we chose this algorithm.

Figure 5.1: Comparison of different edge detection algorithms. Top Left: Sobel
Edge Detection, Top Right: Canny Edge Detection, Bottom Left: Prewitt Edge
Detection and Bottom Right: The Original Image

Lane Detection Algorithm

To further reduce the computation time, the system converts the image to
grayscale to get an intensity value instead of RGB-colors, and also use the
ROI approach described in Section 3.3.

The algorithm is shown in Figure 5.2 and was as follows:

1. Convert the image to gray-scale for easier processing by changing
colors to intensity values.

2. Blur the image to remove noise before edge detection.

3. Apply the Canny Edge detection algorithm to find edges. The image
now consists of only 0’s and 1’s. Edges are marked as 1’s, while the
rest of the image is 0. Figure 5.3 show how this looks.

4. Crop the image to remove areas that are not containing lane lines.
The ROI was cropped in a way that caused the part to formed as a
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trapezoid at the bottom half of the image. Figure 5.4 displays this
step.

5. Apply Progressive Probabilistic Hough Transform to find continuous
lines in the ROI. This step also divides the line in left and right groups
based on the direction of their slope. A positive slope means the lanes
go upward from left to right, and the opposite is true for the other
lane. Figure 5.5 shows the results of this step.

6. Merge the detected lines to form one long continuous line for each
side. Figure 5.6 shows the lanes that the system detected.

The output of this algorithm was image coordinates for the two lane
lines.
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Figure 5.2: Steps of the Lane Detection Algorithm
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Figure 5.3: Canny Edge Detection

Figure 5.4: The Cropping of the Image Before Hough Transform

Figure 5.5: Hough Transform Applied
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Figure 5.6: Lanes Detected at the Road
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5.2 Research Question 2

Research Question 2 was about ”What is the most accurate combination of
width and height when calculating distance using image data captured from
a vehicle-mounted monocular camera.”

Another important part of the system was knowing approximately where
the vehicles were located. Finding the distance was a key component to do
this. To use the pinhole camera model find the distance in an image, it
was required to know the true size of the object. Research shows that there
were different ways of doing this. We wanted to investigate whether us-
ing height or width had an impact in accuracy and if combining them gave
better results. Moreover, if that was the case, what was the best ratio?

To be able to answer this question, we had to implement a solution that
found the distance to a vehicle and do some experiments.

5.2.1 Detection of Distance

As stated in Section 3.4, the pinhole model could be used to calculate dis-
tances in images as long as the objects real size was known. This was also
the model which were used in other research in the field.

The biggest challenge when calculating distance was often to know the
size of the vehicle that should be measured. Other research use reference
points such as lane markings [66], or the horizontal line with the vehicles
height [68]. Since our research was not safety critical, but should merely
provide ancillary information, we looked at combining height and width
calculated by using the size of the object from the object detection algo-
rithm. To be able to use the pinhole model for calculating distance, the
system had to know the true values for different vehicle types. Table 5.1
show the values used for the calculations, based on approximated sizes of
vehicles.

The system calculated the distance twice, first by using height, then by
using width. Afterward, the average was computed by using a weight factor
to determine the ratio between height and width. Equation 5.1 show how
the distance was calculated, based on the distance found for both height
and width with Equation 3.3, and how the weight factor was used in the
calculation. The factor used to control which of the height or width values
that should be prioritized was denoted ~y. Calculated distance by height
was denoted dj,, and calculated the distance by width was denoted d,,. d,
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Type of vehicle Width Height

Bus 24m 40m
Car 1.8 m 1.6 m
Motorbike 1.0 m 1.0 m
Truck 24m 40m
Van I9m 25m

Table 5.1: Height and width values used by the system for different vehicle types

represented the estimated distance from the camera to the object.

L+9) di+ (1=9) - dy

dU:(
2

—1l<y<1 3.1

5.2.2 Distance Estimation Algorithm

Figure 5.7 display the algorithm of the distance estimation part of the sys-
tem. The algorithm to computed the distance to a detected vehicle was as
follows:

1. The detection part of the system provide the type, together with height
and width in pixels.

2. Use the type to find the correct, true values of the object.
3. Compute the distance for both width and height.

4. Use the weight factor in the calculation of the average of the two
values.

5. Return the estimated distance.
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5.3 Research Question 3

The final research question was, "How can speed of the nearby vehicles
be estimated by using distance calculated from image data captured by a
vehicle-mounted monocular camera.”. This RQ built upon the other two
RQs.

5.3.1 Measuring Speed

As Chang and Wong [5] did when they calculated the speed of the vehicles
in the intersections, we chose to use the known frame rate when calculating
the estimated speed on the vehicles in the vicinity. Since the FPS specifica-
tions of the camera was known, the time between each frame could be used
directly.

The intuition behind the method to estimate speed was based on the
Equation 3.5. We knew the FPS the videos were captured in and used this
to know the time between each frame. 30 frames equaled 1 second, which
by Equation 3.5 meant that the change in distance over 30 frames equaled
change in distance per time, which was the speed. From the distance esti-
mation part, we had the distance to other vehicles and used that to calculate
how much the distance changed. For each vehicle, the system calculated the
average change in distance over the last 30 frames to find the change per
second. The average was used to remove spikes or other sudden changes in
distance, which would cause the speed estimate to spike as well. Therefore,
by using the estimated distance to a vehicle, and how much that changed
over 30 frames, the system found the speed of each vehicle, relative to the
camera. By finally adding the camera’s speed, which was extracted from
the GPS data, the speed of each vehicle was found.

5.3.2 Tracking of Vehicles

To be able to calculate the speed of vehicles, we needed to track the vehicles
between multiple frames. Since our camera was vehicle-mounted, the same
vehicles could be in view for an extended period of time.

To track the vehicles over time, the system calculated and used the
centroids of the bounding boxes that the YOLO-implementation created
around the vehicles. The system kept track of the centroids between the
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frames and then used Euclidean distance to calculate the positional differ-
ence. On the next frame, the calculated centroids were compared to the
previous ones, and the closest centroid in the euclidean distance was con-
sidered to be of the same object. This information was then used to calcu-
late the change and then speed of the vehicles. Figure 5.8 show the steps of
how the tracking was done.

5.3.3 Speed Estimation Algorithm

Figure 5.9 shows how the system calculated the speed of the vehicles. The
system was designed to calculate the speed for all detected vehicles per
frame it processed. The steps taken to calculate the speed for a vehicle was
as follows:

1. Vehicle is detected by the object detection algorithm and given an ID
by the object tracker.

2. The distance of the vehicle is calculated and stored with the object
ID.

3. For every frame: Take the change in distance, use the stored data for
the vehicle, and calculate the change in distance since the last frame.

4. For every frame: Calculate the average change in distance for the last
30 frames.

5. Return the calculated speed based on the distance estimation.
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5.4 General System Implementation

The system developed incorporated all the parts mentioned for each RQ
into one system. In this Section, we will go through the different frame-
works and technologies used and also the general system pipeline.

5.4.1 Frameworks

The system was built using existing frameworks written in Python. Differ-
ent frameworks were used in different parts of the system.

PyTorch

The pre-trained version of YOLO that was used was implemented in Py-
Torch [81]. PyTorch was as Paszke et al. described it in their paper, “a li-
brary designed to enable rapid research on machine learning models” [81].
The framework was open source and made it easy to implement machine
learning models.

OpenCV

We used OpenCV to detect the lanes when driving [82]. OpenCV was an
open source CV framework that had implementation of multiple CV al-
gorithms. Since OpenCV already had support for all the edge detection
algorithms tested in Section 5.1.2, it was an easy choice to use this frame-
work.

5.4.2 System Overview

The system consisted of the parts described earlier in this chapter, and they
were used together to find the relevant data needed to detect, calculate and
estimate the data needed to answer the RQs, but also produce data for fur-
ther research. Figure 5.10 list all the steps of the system.

1. First the video file is imported into the system.
2. Each frame is pre-processed to fit in the ANN for the YOLO-algorithm.

3. The frame goes through two separate algorithms. One does the lane
detection, and the other is YOLO, which will detect objects.
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. The output from lane detection and YOLO will be used in the vehicle

counting part, which will count all vehicles in each lane.

. Distance to all detected vehicles is calculated using the pinhole model

and values from the object detection algorithm.

. Each vehicle are assigned an ID and stored, or updated if already

existing.

. The speed for each vehicle is estimated by using the stored data from

the tracking and the speed from the GPS-data.

. This process is repeated for each frame in the video.

. Every 5 seconds the detected and computed info is saved to a file for

later use, e.g., analysis or simulation.
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Chapter

Research Results and Evaluation

In this chapter, the results of the research are presented. The chapter is
divided into different sections, where the results of each research question
are presented and evaluated.

6.1 Data Collection

To be able to do experiments and test our system, we needed video footage
of traffic and road. Because we did not have a video an autonomous vehicle,
we had to record our own footage. We chose to use a GoPro Hero 7 camera
[83] since we had one available and the camera had the ability to record
GPS-data. To obtain video footage, we mounted the GoPro to our car and
drove a pre-planned route in Trondheim while recording. The video was
captured at a resolution of 1920 x 1080, at a frame rate of 30 FPS. Since
the GoPro had built-in video stabilization, this was also used. The GPS-
sensor recorded data every 55 ms, and each GPS-entry contained latitude,
longitude, altitude, speed, and a UTC stamp.

The route we planned had different types of the road such as motorway
with multiple lanes, city traffic with traffic lights, busses, and pedestrians,
road sections with tunnels or roundabouts, and other mixed traffic. The
recording took place between 9-10 AM on a normal workday. Figure 6.1
show the route plotted in Google Maps [84]. After the video was recorded,
it was necessary to split the footage into manageable sequences and extract
the GPS data into separate files. A simple video editing program was used
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to split the videos, and an online tool was used to extract GPS-data into
a JSON-file [85]. The JSON-file contained a list of GPS readings for the
whole video file. The GPS-file would also be split into separate files to
match the video sequences.
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Figure 6.1: Route used to collect data. Google Maps was used to plot the map
[84] and the location of different scenarios used are marked in red.
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6.2 RQI1 - Finding position and lane counting

The first Research Question was "How can the number and type of vehi-
cles in nearby lanes of a vehicle be found using image data captured from a
vehicle-mounted monocular camera?” To attempt to answer this question
we used a state of the art object detection algorithm, YOLO, together with
popular image processing techniques to detect lanes on the road, and built
a system to detect vehicles and their relative position. Information from
object detection and lane detection were merged and processed to give in-
formation about which lane each detected vehicle was positioned in. The
individual components of the system are described in Chapter 5. This sec-
tion will evaluate the performance of the object detection and lane detection
part of the system.

Figure 6.2 show how the system displayed information during run time.
The system updated number of vehicles every 2-3 seconds, which was the
average number of vehicles it detected over the last 2-3 seconds worth of
frames (which at 30 FPS were 60-90 frames).

Figure 6.2: Lanes and vehicles detected on the road
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6.2.1 Testing procedure

To evaluate the performance of the system with respect to RQ1, we took
three different sequences of varying duration and location from the route
(Figure 6.1) and compared the results from the system with a manually
counted number of vehicles for the corresponding sequence. The system
output and manually counted vehicles were noted every 2-5 seconds. We
have these two performance measures for our tests:

e Measure 1: Overall detection- and counting ability of objects, not
respecting vehicle type.

e Measure 2: Number of times vehicles were counted correct and in-
correct in different lanes, respecting vehicle type.

The first performance measure was associated with the performance of
the object detection part of the system and the ability to identify vehicles.
The second performance measure was linked to how well the system was
able to correctly identify and count the correct number of vehicles in a lane.

In addition to these performance measures, when a wrong counting oc-
curred, we examined more closely why the system made that mistake. For
example, when the counted numbers were wrong, we inspected the visual
detection output to examine if the lanes were detected wrong or if the clas-
sification of the vehicle caused the error. This gave an indication on which
parts of the system were not performing or working as desired and could
require some further development.
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6.2.2 Results
Scenario 1 - Elgeseter - City traffic

Scenario 1 were captured northbound on Elgeseter street and could be
classified as city traffic, with several traffic light intersections, busses and
pedestrians. The video sequence was 4 minutes long in total, and 72 read-
ings were done, giving a reading approximately every 3.5 seconds. Table
6.1 show how the system performed with respect to the performance mea-
sures.

In the tables, “counted too many” and “counted too few” means how
many times the system counted too many vehicles or too few vehicles, com-
pared to the true number of vehicles in each of the lanes. Together these
two values gives the total amount of wrong countings for each lane.

Lane
A) Left Mid Right Total
Manual 99 419 50 198
System 85 51 60 196
Error 141% 41% 20,0 % 1,0 %
Lane
B) Left Mid Right Total
Counted too many 12 12 18 42
Counted too few 11 10 11 32
Total wrongs 23 22 29 74
Total corrects 419 50 413 142
Lane
c) Left Mid Right Average
Counted too many 17 % 17 % 25% 19 %
Counted too few 15 % 14 % 15 % 15 %
Total wrongs 32% 31% 40 % 34 %
Total corrects 68 % 69 % 60 % 66 %

Table 6.1: Results from Scenario 1
A) Total counted objects of the sequence, not respecting object type.
B) How many times the system counted right or wrong out the 72 readings,
also respecting object type.
C) The percentage distribution of subtable B)
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Scenario 2 - Lade - Mixed traffic

Scenario 2 were captured along Haakon VIIs street at Lade. This video
sequence had normal to busy traffic, with multiple traffic light intersections
and crossing traffic. A repeating source of error for this sequence was the
surrounding parking lots, causing vehicles from the parking lots be detected
by the system. The duration was 3.5 minutes, with 78 readings, giving a
reading every 2.7 seconds. Table 6.2 show how the system performed with
respect to the performance measures.

In the tables, “counted too many” and “counted too few” means how
many times the system counted too many vehicles or too few vehicles, com-
pared to the true number of vehicles in each of the lanes. Together these
two values gives the total amount of wrong countings for each lane.

Lane
A) Left Mid Right Total
Manual 265 56 159 480
System 228 70 131 429
Error 140% 250% 17,6%| 10,6%
Lane
B) Left Mid Right Total
Counted too many 29 15 13 57
Counted too few 12 15 25 52
Total wrongs 41 30 38 109
Total corrects 37 48 40 125
Lane
c) Left Mid Right Average
Counted too many 37 % 19 % 17 % 24%
Counted too few 15 % 19 % 32% 22%
Total wrongs 53 % 38% 49 % 47 %
Total corrects 47 % 62 % 51% 53%

Table 6.2: Results from Scenario 2
A) Total counted objects of the sequence, not respecting object type.
B) How many times the system counted right or wrong out the 78 readings,
also respecting object type.
C) The percentage distribution of subtable B)
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Scenario 3 - Tempe to Lerkendal - Mixed traffic

Scenario 3 were captured from Tempe to Lerkendal. This route had normal
to busy traffic, and the lanes were separated by a central reservation with
a medium-high fence. The duration was approximately 1.5 minutes, with
27 readings, giving a reading every 3.5 seconds. Table 6.3 show how the
system performed with respect to the performance measures.

In the tables, “counted too many” and “counted too few” means how
many times the system counted too many vehicles or too few vehicles, com-
pared to the true number of vehicles in each of the lanes. Together these
two values gives the total amount of wrong countings for each lane.

Lane
A) Left Mid Right Total
Manual 35 39 24 98
System 40 21 31 92
Error 143%  462% 29,2 % 6,1 %
Lane
B) Left Mid Right Total
Counted too many 6 8 6 20
Counted too few 5 1 2 8
Total wrongs 11 9 8 28
Total corrects 16 18 19 53
Lane
c) Left Mid Right Average
Counted too many 22% 30% 22% 25%
Counted too few 19 % 4% 7% 10%
Total wrongs 41 % 33% 30% 35%
Total corrects 59 % 67 % 70 % 65 %

Table 6.3: Results from Scenario 3
A) Total counted objects of the sequence, not respecting object type.
B) How many times the system counted right or wrong out the 27 readings,
also respecting object type.
C) The percentage distribution of subtable B)
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6.2.3 Evaluation

By evaluating the results from each of the three scenarios we got an indica-
tion on how the system performed, and how accurate it were able to find the
lane position of vehicles. Table 6.4 showed the total error when all read-
ings from all three scenarios were combined. Table 6.5 show the total error
when the three scenarios were combined, but for each lane independently.
Looking at performance with respect to measure 1, not respecting type, the
system was able to detect objects with an overall average error of 7.6%.

Compared to [51] from Section 3.2.3, which achieved an average er-
ror of 5.3% for their vehicle counting system, an error of 7.6% was con-
sidered acceptable. Considering they used a downward facing stationary
camera mounted above the road, they had less potential sources of error
with fewer possible interfering objects. Our vehicle-mounted camera was
parallel with the road and captured much more of the surroundings. The
fact that the camera was moving and did not have a constant background
probably caused a greater potential of noise and faulty detections of objects
not related to the traffic. Since our numbers, compared with the calculated
per-lane error of [51] in Table 6.6, was similar, they confirm that the object
detection part of our system performed well when only looking at vehicle
detection and not respecting vehicle type.

Scenario 1) 2) 3) Total

Manual 98 480 198 776
System 92 429 196 717
Error 6,1% 10,6 % 1,0 % 7,6%

Table 6.4: Total vehicle detection error for scenarios in Section 6.2

Lane Left Mid Right Total

Manual 399 144 233 776
System 353 142 222 717
Error 11,5 % 1,4% 47 % 7,6%

Table 6.5: Total vehicle detection error, per lane, for scenarios in Section 6.2
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Lane Error
1 0,0 %
2 2,8%
3 105%
4 122%
5 200,0%
Total 53%

Table 6.6: Calculated accuracy of results from Pancharatnam and Sonnadara [51],
based on numbers from Table 3.5

Performance measure 2 were used to assess the systems ability to cor-
rectly count and place vehicles in different lanes. To achieve a correct
counting, the system had to detect the exact number of vehicles in that lane,
also respecting vehicle type. This requirement made this a very strict mea-
sure. From Table 6.7 we saw that the average error across all the three sce-
narios were 38%, which meant that the total number of vehicles across all
lanes were counted wrong in 38% of the manually counted measurements.
Because counting even one vehicle wrong in any of the lanes counted as
an error, the threshold for an error appeared to be low since the failure rate
seemed high. Table 6.8 showed that the counting error per lane differed
somewhat, with the mid lane being most accurate but only slightly better
than average.

Scenario 1) 2) 3) Average
Total wrongs 35% 47 % 34 % 38%
Total corrects 65 % 53 % 66 % 62 %

Table 6.7: Average counting error for the system by scenario

Lane Left Mid Right Average
Total wrongs 42 % 34 % 40 % 38%
Total corrects 58 % 66 % 60 % 62 %

Table 6.8: Average counting error for the system by lane

Table 6.9 show that most of the errors were caused by the Detection part
of the system misclassifying vehicles, and infrequently not detecting the ve-
hicle at all. The other main cause of error was the Lane markings. Missing
or faulty lane markings on the roads happened frequently and caused ve-
hicles to be counted in the wrong lane. Additional sources were Distance,
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which meant that the vehicles were too far away to get an accurate detection
and classification, and Delay, which meant the system sometimes did not
update the average until vehicles were out of the frame. The last category
was Other vehicles, which meant other vehicles that were not a part of the
traffic. Especially in Scenario 2, this was a major problem since the road
was closely surrounded by parking lots. This caused many errors.

It was not given that each of the sources of error was exclusive. An error
could have multiple causes, such as that both erroneously lane markings and
a faulty detection contributed to the error. This is why the percentages add
up to over 100% in Table 6.9.

Scenario
1) 2) 3) Average

Number of errors 47 66 19

Lanes 28 % 39 % A7 % 38 %
Distance 30% 8% 5% 14 %
Detection 62 % 30% 79% 57%
Delay 13 % 0% 11 % 8%
Other vehicles 0% 50 % 0% 17 %

Table 6.9: Sources of error categorized

Most of the errors belonged to the category “Detection,” which included
all errors tied to the vehicle detection part of the system pipeline. This was
mostly wrongly classified vehicles, which occurred when for instance a car
was classified as a van, or a bus classified as a truck. Often the reason
for these misclassifications was objects interfering with the line of sight,
overlapping vehicles or the same vehicle being detected multiple times.
Only a small portion of the detection errors was caused by objects not being
detected at all. Although the object detector was able to detect most of the
objects, as mentioned earlier in this section, the vehicles were not always
assigned the correct type. This became apparent when evaluating what
caused most of the errors.

The other relatively major source of error was wrongfully detected lanes
or lack of detected lanes. The strict evaluation criteria of performance mea-
sure 2 resulted in some errors counting double, which contributed to explain
why the error in Table 6.7 and 6.8 were high. For instance, if the algorithm
found two vehicles in the center lane but in reality, there was one in the
center lane and one right lane, this counted as two errors. This problem
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occurred if the lanes were detected too far off to one side or the angle was
incorrect. Figure 6.3 show an example of how detected lanes with small
variations, would result in multiple errors. The vehicle in the figure had
three different positions in a short amount of time due to wrong lane detec-
tions. The figure shows that the lanes varied somewhat and that this caused
the error.
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(a) Vehicle detected left

1
y

(b) Vehicle detected right

(¢) Vehicle detected mid

Figure 6.3: Lane detection faults on the same vehicle
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Another problem with lane detection was related to the vanishing point,
which corresponds to the Distance category in sources of error. Vanishing
point was where the lanes meet and vanish in the horizon. When objects
were too far ahead, they became very small, and the system struggled with
detecting them. This was a known limitation of YOLO, as mentioned in
Section 3.2.2. In addition to this, the lane markings and lane detection lines
intersected at the vanishing point, which made it difficult to distinguish
which lane a vehicle far away belonged to. Minor variations of the detected
lanes cause great variations at the vanishing point. Figure 6.4 show how
vehicles far away appear, and that it could be challenging to distinguish
which lane they belong to.

Figure 6.4: Example of vehicles clustered together at the vanishing point

The last problem with lane detection, which caused errors was the prob-
lem with bad or non-existing lane markings. If no lane markings were
present, or the system found presumable better edges, the lanes could be
completely wrong, which caused many errors. Figure 6.5 show an example
when the system did not find any lane markings, used a wrongly detected
edge which placed the lane line incorrectly, and therefore detected the ve-
hicles erroneously in the center lane. Figure 6.6 show a situation when the
system detected a wrong lane marking and why it was detected this way.
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Figure 6.5: Faulty lane detection
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(a) Edges found

(b) Detected lines

(¢) Detected lane lanes

Figure 6.6: Detection of wrong lane markings caused wrong lane line to be de-
tected
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6.3 RQ2 - Combination of Height and Width
when Calculating Distance

With Research Question 2, we wanted to explore whether using height or
width of the vehicle had any impact when calculating the distance to the
camera using the pinhole model. Would the distance estimate get more
accurate if we used a combination of the two, and in that case, what was
the most accurate combination?

6.3.1 Test procedure

The experiment for this part needed its own videos, so these recordings
were captured separately from the previously mentioned data collection
6.1. Data for these tests were acquired by recording video clips of sta-
tionary cars at different lengths and measure the distance with a simple
laser measuring tool'. Then the different video clips were run through the
system with different ratios of height and width. The output was compared
with the truth from the laser to find which ratio was most accurate.

6.3.2 Results

Figure 6.7 show one of the test vehicles measured at different lengths and
angles. Figure 6.8 show the average error of different tests with varying
ratio of height and width. The best ratio we found was 85% of the height
and 15% of the width.

6.3.3 Evaluation

The probable reason the found ratio of 85% height and 15% width gave the
best result was that height was the most stable measurement, as shown in
Table 6.8. Depending on which angle a vehicle was detected, the width var-
ied more than height. A vehicle detected from the side should not even be
measured by the width, but rather by the length. Determining if a vehicle
was seen from the behind or the side was out of the scope for this system.
In traffic situations, the vehicles would rarely be detected straight from the

IThis was a simple consumer laser measuring tool, and could unfortunately not be used
when driving.

70



(a) Side/Far

(d) Behind/Far (e) Behind/Mid (f) Behind/Near

Figure 6.7: Distance to vehicle measured at different lengths and angles

behind, and therefore some of the length would be considered as width. Be-
cause the length of a vehicle is longer than the width, the computed distance
would have greater fluctuations when some of the length are considered as
width, causing the the detected width to be wider than the actual width of
the vehicle. Therefore, to achieve a stable estimate, a combination of height
and width were used, where the width had lesser weight than the height.
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Figure 6.8: Average error with varying ratio of height and width
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6.4 RQ3 - Estimate Speed Using Distance

The last Research Question was "How can speed of the nearby vehicles
be estimated by using distance calculated from image data captured by a
vehicle-mounted monocular camera”. To answer this question, we used the
already calculated distance and looked at the speed of the filming vehicle
and the change in distance over time to do the calculation. The implemen-
tation is described more in-depth in chapter 5.

6.4.1 Test procedure

To evaluate the accuracy of the speed estimation, the estimated speed of a
vehicle should be compared to its true speed. However, since we did not
have the equipment to measure the true speed for vehicles in the record-
ings, we had to find another way to calculate the accuracy of the systems
speed estimation. By assuming the relative distance from the distance es-
timation was correct, we used traveled distance per time, to calculate the
“true” speed. Since we knew the FPS of the videos, we could accurately
calculate the difference in time between x number of frames. Utilizing this
knowledge, we manually analyzed the output of the system to get values
for comparison.

First, a suitable sequence of output had to be found among different
video sequences. A suitable sequence was a sequence where a vehicle was
in view for an extended period of time, which meant the vehicle was mostly
driving in front of the camera vehicle. Then, at the start of the sequence, we
noted the values for our speed, the distance to the designated vehicle, and
also its estimated speed. We then proceeded to manually step forward an
arbitrary number of frames, mostly in the range of 30-60 frames, and after
the given number of frames, we noted the same values, with the addition
of noting down how many frames were skipped. This process of stepping
a number of frames and noting down output values from the system was
repeated until a sufficient amount of data were acquired.

The "true” speed of the designated vehicle was calculated for each of
the selected frames. The method to calculate this speed was to first calculate
the time since the previous measurement, then find the traveled distance of
the designated vehicle and lastly dividing this distance by the time, which
gave the speed. The traveled distance of the designated vehicle was found
by taking the distance the camera vehicle moved, calculated by taking speed
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multiplied with time, adding this with the distance to the selected vehicle,
and then subtracting the previously recorded distance to the selected vehi-
cle.

6.4.2 Results

The same videos from the previously mentioned data collection, Section
6.1, were used for these tests. As they also were already run through the
system, from looking at RQ1, the same output was used for this analysis.

Figure 6.9, 6.10 and 6.11 show the results of the three manually an-
alyzed video sequences. The graphs show the “true” speed, based on the
calculation described in the test procedure, and the estimated speed done by
the system. The average difference of the total 75 manual readings across
all the sequences was 2.09 m/s, and the maximum difference was 10.64
m/s.
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Figure 6.9: Speed analysis 1 - Plot of the true calculated speed and estimated
speed of the system
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Figure 6.10: Speed analysis 2 - Plot of the true calculated speed and estimated
speed of the system
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Figure 6.11: Speed analysis 3 - Plot of the true calculated speed and estimated
speed of the system
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6.4.3 Evaluation

As seen in the graphs, the estimated vehicle speed was not very far off in
either scenario. When analyzing the videos, we experienced that estimated
speed lagged slightly behind compared to the true speed. It was often the
case that if the speed of the vehicle went down, it took a couple of sec-
onds until the estimated speed slowed down correspondingly. Similar if the
speed increased. This is best visible on Figure 6.9. The reason was that
the speed calculation, which takes the average distance the last 30 frames
to calculate the speed, took some time to respond to sudden changes.

Wu et al. [64] managed to receive an accuracy of 95% when they mea-
sured speed with a stationary camera and used the license plates as a refer-
ence point. Our results were not equally accurate, and the mentioned slight
delay in the update of the speed was possibly the leading cause of this. It is,
however, complicated to directly compare only the error rate. Since speed
is a relative measure, the error rate would be significant with errors on low
speeds. For example, our biggest error was 2300% in one of the readings.
The reason was that the calculated “true” speed was very low, below 1 m/s,
and the estimated speed was a couple of meters per second. Using this in
an overall calculation of the error rate would have a dramatic impact on the
result. We, therefore, chose to present our accuracy in terms of average and
maximum difference between estimated and “true” speed for all the three
sequences.
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Chapter 7

Discussion

This chapter will discuss the different results and limitations with the re-
search of this thesis. The chapter is structured with a discussion of each
research question before a discussion of the general system at the end.

7.1 Finding Position and Lane Counting

This section will discuss Research Question 1. The results of this question
were presented and evaluated in Section 6.2. The results proved that the
system developed to answer the questions had some limitations, but also
solved parts of the question well.

7.1.1 Object Detection

The overall object detection part with YOLO worked quite well in the re-
search. The results in section 6.2 showed this with an average accuracy of
92,4% for detecting vehicles. However, it struggled more with the classifi-
cation of the vehicles, which lead to the position in lanes to be less accurate.
Almost 60% of the errors were caused by the detector misclassifying vehi-
cles. As stated in section 5.1.1, the network was trained on the COCO data
set [46]. COCO was a data set that contained 80 different objects, and not
only objects related to traffic [79]. A network more specialized for detect-
ing vehicles and traffic objects could possibly contribute to improving the
classification accuracy, thus lowering the error rate and therefore boost the
accuracy of the system.
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As described in section 3.2.1, there were multiple different algorithms
that could be used for object detection. YOLO was the best one as stated
in section 3.2.2, but also other algorithms, such as RetinaNet [49], could
possibly have worked better to increase the accuracy. YOLO was chosen
because of its speed, so a possible drawback of choosing another algorithm
would be longer processing time.

Another solution could be to just track parts of the vehicle, such as
license plates [64]. License plates have standardized sizes which could
make distance estimation more stable as well since the distance would be
calculated from a measure that is equal for all vehicles. The drawback of
this approach would be that the license plates become too small when the
distance becomes too long. Using the license plate was also only tested on
stationary cameras, and it was uncertain how accurate this would be for a
moving camera. Using another reference to the detect the objects would,
however, require both data collection, labeling of data, and retraining of the
object detector. This would also remove the capability the detect different
vehicle types.

Limitations

One limitation of the object detection could be the used of a pre-trained
neural network. As stated earlier, the COCO data set was trained on a lot
more objects than needed for this problem, and a more specialized network
with only vehicles could have worked better.

Finally, the bounding boxes created around the object was sometimes
unstable and varied more than desired between frames. The reason for
this was YOLOs’ way of detecting the bounding boxes and using non-max
suppression to eliminate multiple bounding boxes for the same object [44].

7.1.2 Lane Detection

Another key feature of the system was the ability to detect lanes and sepa-
rate vehicles in the different lanes. In our experience of testing the system,
this worked well on straight roads when the lane markings were clear and
easily visible. As the related work mentioned in section 3.3 about HT, the
results confirmed that HT with Canny Edge detection worked as expected to
detect the lanes. However, the overall lane detection did not work satisfiable
on lane markings with much curvature as the output of the lane detection
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algorithm was exclusively straight lines. The ROI part that [60] proposed
in their paper worked well and excluded many false lane detections since
only the road was in focus.

The edge detection part with Canny Edge, proposed by several papers
of related work [59, 60, 61], worked as expected. The edge detection tech-
nique managed to find the appropriate edges when the markings were good
enough, but sometimes the edge detector also detected curbs as a lane edge.

The results and evaluation demonstrated that wrongfully detected lanes
were the second highest source of error. Some of the problems with the
lane detection would be difficult to improve, such as lanes far away being
difficult to detect and distinguish, and bad or non-existing lane markings.
Some improvements could, however, be done. It was not given that HT
was the best choice when choosing the line detection part of the algorithm.
The method proposed by Kim [53], of tracking left and right lane markings
separately and utilizing an ANN that were trained to detect lines could pos-
sibly have increased the accuracy. This would also have the added benefit
of being able to detect lanes with curves. However, using an ANN would
potentially increase the resource demand and would also require training.

Another potential improvement could be to utilize standardized lane
sizes in the algorithm. The Norwegian Public Roads Administration had
a handbook [86] with different standard sizes of lanes and markings. This
could ensure that different lane detections were not bigger than a set thresh-
old.

Limitations

The lane that was detected on the left side was often the lane with opposing
traffic, which was a problem that often created noise in the results. Also,
when there was a central reservation that separated the two traffic directions
the lane became unclear to the detection algorithm.

Another limitation of the lane detection was the conditions of the road.
Since the edge detector needed clear markings, both worn out markings and
weather conditions such as snow would potentially have an impact on the
system performance. We were not able to test the system on snowy condi-
tions, but the possibility of complications of detecting lanes would be high.
Light conditions would probably also have an impact on the performance,
but not as much as worn out markings and weather-related issues.

The lane detection had problems with separation of lanes near the van-
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ishing point and when the lanes were curved. The system was also only
able to separate vehicles in three lanes, by essentially finding the two lane
lines for the lane the camera vehicle were situated in, and placing other
vehicles in either side of these lines. For the system to work properly on
bigger roads, the system should be able to detect and place vehicles in more
than three lanes. This would require an expansion of the algorithm.
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7.2 Combination of Height and Width when Cal-
culating Distance

This section will discuss the distance estimation part of the system, which
is tied to Research Question 2. The results were presented and evaluated in
section 6.3.

To estimate distance in images with only 2D-information, we used the
pinhole model, as described in section 3.4.1. The pinhole model required
the true size value of the object to be known to calculate the distance. Ve-
hicles in traffic had varying sizes, so to calculate the distance for different
vehicle types, the system had to differentiate which values it used for the
calculation based on the type of vehicle. The values used were listed in
Table 5.1 from section 5.2.1.

The results demonstrated that a combination of 85% of the distance
calculated based on the height, and 15% of the distance calculated based
on the width, gave the lowest amount of error with 11% on average.

The same camera, with the same settings, that was used to record our
traffic footage, was also used for this experiment. This ensured that the
behavior of the footage for this experiment was equal to the rest of the video
footage used in this thesis, which was important for the transferability of
the result.

7.2.1 Limitations

When the system was to measure the distance of vehicles in traffic, the
object detection part of the system caused some issues. Due to the camera
movement and varying sizes of the generated bounding boxes, which could
vary from frame to frame, the pixel sizes of the detected vehicles would
also vary. This caused the actual distances estimates of vehicles in traffic to
vary a lot more than when they were detected on stationary vehicles in the
experiment.

However, since we did not have any advanced equipment to measure
the true distance to vehicles while we drove and captured our test data, we
had to rely on stationary vehicles to measure and calculate the best ratio.
More accurate results could be achieved by conducting tests on moving
traffic, but that would require the use of more advanced equipment such as a
LIDAR, which as stated in section 3.4.3 are more accurate when calculating
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distances due to the available 3D information it generates.

Using a set of fixed values for the true vehicle sizes were also a limiting
factor for distance estimation. As discussed earlier, these values were rarely
100% right and contributed to some error in the distance measure. The use
of calculated true values would probably have given higher accuracy but
would require stable reference points which could be challenging to locate
and utilize.

Wrongly classified vehicles were a limitation as well. This was tied
to the limitation of the object detector and was discussed previously. It
was however, also a source of error for this part of the system. Wrongfully
classified objects meant that the wrong, true measures were used to estimate
distance. An improvement of the object detection part could also bring
refinement to distance estimation.
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7.3 Estimate Speed Using Distance

This section will discuss Research Question 3, which was about "How can
speed of the nearby vehicles be estimated by using distance calculated from
image data captured by a vehicle-mounted monocular camera.” The results
and evaluation belonging to this question were presented in section 6.4.

The speed estimation worked as desired for vehicles in front of, and go-
ing the same direction as the camera, with a mean difference of 2.09 m/s.
As mentioned in the evaluation part, we did not use any extra equipment
to measure the real speed of the target vehicle. Instead, we calculated a
comparable speed based on GPS data and knowing the FPS of the videos.
Incorporating GPS data should suffice, but because we also based the cal-
culations on the distance estimation done by the system, it was plausible
that the real average difference could be higher.

While using and analyzing the different parts of the system, we experi-
enced that the speed estimation of vehicles other than those which moved
the same direction as the camera, was not not as accurate. A probable rea-
son was that the vehicles driving in the opposite direction were often in
view only a short period, which gave fewer measurements for calculating
the speed accurately.

Another inaccuracy we experienced was that, because the camera was
in motion, stationary vehicles appeared to have movement. This caused
them to be wrongfully assigned a speed other than zero. The reason for this
was that even though the vehicles were stationary, e.g., waiting on a traffic
signal, the bounding box would change in size as an effect of the movement
of the camera.

The issue with the vanishing point and vehicles far away being too small
to achieve accurate estimations also applied to the speed estimation.

Accurate speed estimation relied on accurate distance estimation. As
stated in Section 7.2, these estimations were not always stable. The speed
estimation would work as expected as long as the distance measure was
consistent and stable. A significant error in estimated speed occurred if the
estimated distance suddenly spiked or varied between consecutive frames.
To combat the varying distance estimation, it was chosen to calculate an
average to get the change in distance per time. This made the fluctuations
much smoother and prevented the small inconsistency between consecutive
frames having too great of an impact on the speed. The drawback of this
was seemingly a lag in the speed estimate, where the system would take
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up to a couple of seconds before the speed was adjusted in the event of
a sudden change of speed. It could be possible to adjust the size of the
window used to calculate the average distance change, but reducing it too
much could cause the speed to become too erratic.

7.3.1 Limitations

The research demonstrated that it was feasible to estimate the speed of
nearby vehicles, using just image data from a vehicle-mounted camera, and
the implementation itself answers how it could be done. However, as men-
tioned above, it had its limitations and challenges. Just the task of extracting
3D information from a 2D image was dependent on a lot of coherent fac-
tors. When the motion was to be incorporated into the equation as well, the
problem became even more complicated.

As mentioned earlier, the delay in update of the estimated speed should
be dealt with in case of future iterations, as it was a limitation for the system
in its state then. If the distance estimation were less erratic, it would perhaps
not necessary to use a running average, and the speed estimation would
maybe be more responsive.

An issue we experienced with the system was that the tracking of al-
ready detected vehicles was sometimes unstable, especially in sharp turns.
This led to assigned IDs of vehicles being lost and the vehicles reassigned
new IDs. An unwanted effect of this was that the history was lost and the
new IDs had fewer data to calculate averages from, causing greater fluctu-
ations than desired. A more fine-tuned object detector could prevent this
from happening by not losing the already detected vehicle longer than the
system could manage without error.
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7.4 General Discussion

This section will discuss the overall research without limiting the discus-
sion to the research questions. Here topics such as the general system and
privacy are taken into consideration.

7.4.1 System in General

A system was built using different algorithms and image processing tech-
niques that answered the different research questions. The implementation
and pipeline of this system were described earlier in Section 5.4. As the
results from RQ1 demonstrated, it did not perform as well as we hoped
concerning the vehicle counting ability. The error rate was higher than we
expected, and the system needs some adjustments before working as well
as this type of systems should.

The idea of the system was to the best of our knowledge a new way of
using these algorithms for extracting traffic data since most of the Related
Work (Chapter 3) were using stationary cameras or relied on other sensors
for speed and distance estimation. We did our research with a vehicle-
mounted camera, with the challenges that brought with it. Other research
that was done with a moving vehicle [66, 68, 69], focused on a single ve-
hicle in front and were not concerned with the general traffic situation, or
required V2I-information.

The combination of these technologies is what made these results unique,
and the system could be viewed as the first iteration of something that could
be utilized in the future.

Focusing this thesis on a monocular camera was a deliberate choice
since we wanted to investigate its possibilities, and discover eventual limi-
tations. Utilizing a stereoscopic camera could possibly improve the perfor-
mance of the distance detection part of the system due to the ability to use
geometry for distance estimation. However, it could also complicate other
aspects and further increase the demand for computing power required.
Some challenges with using a stereoscopic camera would be camera cali-
bration, image synchronization, and the need for a parallel object detection
pipeline.
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7.4.2 Computational Performance

The computational performance of the system must also be discussed. Even
though it has not been a core part of the research, the system was devel-
oped with performance in mind. Using a state-of-the-art object detection
algorithm as a foundation for the system, especially when it comes to com-
putational speed, was a deliberate choice early on. Also, the programming
language and frameworks were selected with performance in mind, since
they allowed the usage of a GPU for increased computational power. Even
though the system was not going to be used in safety critical applications,
it was still essential to achieve acceptable operation times. Without going
too much into details, the system ran at around 10-15FPS on a medium to
high-end desktop computer, with an Intel 17-7700k CPU and NVIDIA GTX
1080ti GPU. This gave a processing time of 60-100 ms per frame. Consid-
ering the videos were captured at 30 FPS, this meant that when running the
system, the performance was equal to the videos playing at half the speed.

To speed up the system and increase the performance, it could be pos-
sible to only process every other frame, effectively doubling the frame rate
and achieving real-time calculation speeds. Based on some small tests con-
ducted during development, the effect of this caused some measurements
to become more unstable due to more significant differences between pro-
cessed frames. To fix this, it would require some changes in the way some
parts of the system operates, but it should be attainable. This is something
that could be considered if the system were to undergo further development,
and real-time performance was desired.

7.4.3 Privacy

Privacy was a concern when researching on topics where people could be
identified, and sensitive data about them could be stored. Since we de-
veloped a system that used videos of traffic, we captured people driving
and the license plates of many vehicles. It was also possible that situations
where people were involved, could occur and that people were recorded
unwillingly and unknowingly. To deal with this, The Norwegian Center for
Research Data (NSD) [87] was contacted with an application of allowance
to research image data with mentioned content.

The answer we received from NSD was that this research was not a
concern as we did not develop a system that handled sensitive information.
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To stay on the safe side, we chose to manually blur the license plates of
vehicles used in this thesis anyway, and not use images where people could
be recognized. An algorithm that automatically blurs the license plates
could be considered if footage should be released in the future, even if the
project is not required to have an NSD approval. The videos and data used
were also only stored on our computers and systems, to not involve any
external parties that may have been non-compliant with NSD.
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Chapter

Conclusion and Future Work

This chapter presents the conclusion of each research question and takes
the scientific contribution and future work into consideration.

8.1 Object and Lane Detection

The object and lane detection part of the system tried to answer the first
research question, which was: "How can the number and type of vehicles
in nearby lanes of a vehicle be found using image data captured from a
vehicle-mounted monocular camera?”.

The results from this question demonstrated that the results were not
perfect, but the question was answered with a working proof of concept
that was able to produce a general overview of the traffic surrounding the
vehicle. There was to the best of our knowledge, no other research or ap-
plication that utilized object detection coupled with lane detection, from a
vehicle point of view, to achieve this.

Our contribution on this topic was to test the possibilities for a system
that did all this combined.

Future work on this question was mainly about performance and how
to lower the error rate in real traffic. The system will need an iteration to
be able to work in a broader environment and consider more lanes. More
specialization of the object detector is another point for improvement, and
this could as described earlier, possibly be done with training on a data set
with fewer classes. The lanes detected could also be approved by possibly
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using standard lane sizes to set a threshold of size and look at ways to
detect curved lanes. Since our system was based on a single forward facing
camera, it was only able to detect other vehicles in front of the vehicle. A
possible extension of this system could be to additionally use a backward
facing camera to get complete information about the surrounding traffic.
In theory, the system does not need that many adjustments to be able to
incorporate this.

8.2 Distance Estimation

Distance Estimation was an essential part of the system and was closely
related to Research Question 2, which was: ”What is the most accurate
combination of width and height when calculating distance using image
data captured from a vehicle-mounted monocular camera.”.

The results and discussion show that a combination of 85% distance
measured from using the height and 15% of the distance measured from
the width of the vehicle worked best when calculating a measured distance.

Our contribution with this research question was this ratio to use when
using the pinhole model to estimate distance in a traffic environment.

Future work would be to measure the ground-truth in traffic, and see if
it was confirmable that this was the best ratio.

8.3 Speed Estimation

Speed Estimation was a part of Research Question 3, which was: “How
can speed of the nearby vehicles be estimated by using distance calculated
from image data captured by a vehicle-mounted monocular camera.”

The results and discussion show that measuring the speed of vehicles
driving the same direction as the filming vehicle was doable with just a
small error margin. This results assumed the distance estimation to be cor-
rect.

Our contribution with this research question was proof of speed estima-
tion being feasible from a moving vehicle using only a monocular camera.

To further improve this part of the system, the limitations discussed in
Section 7.3 were issues that should be corrected to create a better system.
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Also looking at other methods for the actual speed estimation could be of
interest when dealing with unstable distances.

8.4 System in General

The system created to answer the research questions utilized state-of-the-art
object detection algorithms and Computer Vision methods in an attempt to
extract information about nearby traffic. The different components worked
well together, and this thesis demonstrated that creating such a system was
possible. The system had a lot of potential and managed to some degree to
find the information required for a V2I system and intelligent intersection
management. With future work, the system might be able to gather more
of the information needed from Table 2.2.
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