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Abstract

Measuring the fractional flow reserve (FFR) is one method used for diagnosing coronary artery disease (CAD),
which involves a small invasive surgical procedure. By using both CT scans to extracting the geometric structure
of the coronary artery and fluid dynamics, the measuring of FFR can be done automatically. This, in turn, will
reduce the total cost, resources, and health risks. This thesis is focusing on extracting the geometrical structure of
the coronary artery using deep learning models.

Models used in this thesis are BVNet, BVNet3D, and SegCaps. The BVNet model is using more channels
to get a 3D effect, and it has less computation cost because all the mathematical operations are in 2D. This is
exploried in experiment 1, which consists of finding the optimal channel size and stride for getting the best BVNet
model. The dice score is increased with some exceptions by increasing the channel size and by using stride 2. The
model with 7 channels and stride 2 had the best mean Dicepost score and smaller gaps between the true positive.

The general BVNet model with 5 channels and stride 1 are used in the other experiments, which had relatively
low computational cost and the best mean Diceraw score.

The BVNet3D model is the BVNet model with all the 2D operations replaced with 3D, which increases the
computational cost of this model.

The SegCaps model came in 2018 and uses CapsuleNet for segmentation. CapsuleNet is using vectors instead
of scalers and routing strategies for avoiding the usage of maxPooling. The scalars is used by the conventional
networks models, such as BVNet and BVNet3D.

Next, the models were tested on different data splits with the labels for the coronary artery, Aorta, and portal
vein in order to find the benefits and disadvantages of these binary classification models. The Aorta has a large
tubular structure, which should be easy to find. The portal vein is used in order to check if these models could be
used on other vessels. The BVNet model was the best at predicting the Aorta with dice score in most cases around
90%, where the other models contained a lot of false positive. BVNet3D model predictions have less false negative
and more false positive for the coronary artery and portal vein.

The SegCaps model was the worst but showed huge improved potential.

The last experiment consisted of exploring the Frangi filter, which is used to enhance the vessel structure.
Past one of the experiment consisted of using The Frangi filtered CT slices as input for the BVNet model.

There was a huge difference between the dice score of the test images, which indicates that the hyperparameters
used to create the Frangi filtered CT images was not optimal for all the CT images.

Part two of the experiment consisted of using a combination of Frangi filtered CT and regular CT images as in-
put. The result did not increase the dice score, but the variation between the best and worst prediction was reduced
and had fewer gaps between the true positive.

These models seems promising, but none of the models tested in this thesis is good enough to measure the FFR
without further development.
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Sammendrag

En metode for diagnostisering av hjerte-karsykdommer er å måle FFR (fractional flow reserve), som innebærer
et lite kirurgisk inngrep. Ved å ekstrahere den geometriske strukturen av hjertets kransarterier fra CT bilder sam-
men med fluiddynamikk kan FFR bli målt automatisk. En automatisk måling av FFR vil kunne spare ressurser,
kostnader og redusere helseriskoer for pasienten. Denne masteroppgaven omhandler hvordan den geometriske
strukturen til kransarteriene kan ekstraheres automatisk gjennom CT bilder ved bruk av dyplæring modeller.

Modellene brukt i denne oppgaven er BVNet, BVNet3D og SegCaps. BVNet modellen bruker 2D skiver av
CT bildene, men benytter seg av flere kanaler for å få en 3D effekt og den har lavere minnebruk fordi alle de
matematiske operasjonene er 2D. Dette utforskes i ekperiment 1 som besto av å finne det optimale antall kanaler
og steglengde for å forbedre BVNet modellen. I dette eksprimentet økte dice verdien med noen untak ved å øke
kannal størrelsen og steglengde 2. Den modelen med best gjennomsnittlig Dicepost verdi var med 7 kanaler og
stride 2, men den inneholdt noen sprik mellom de sanne positive.

Den generelle BVNet modellen har 5 kanaler og steglengde 1 og er brukt i de andre eksprimentene, fordi den
har lavere minnebruk og har den beste gjennomsnittlig Diceraw verdien.

BVNet3D modellen har samme arktitektur som BVNet modellen bortsett fra at alle de 2D matematiske op-
erasjonene er byttet ut med 3D, som gjør at den får større minnebruk. SegCaps modellen bruker CapsuleNet til
segmentering, og ble først brukt til dette i 2018.

CapsuleNet bruker vektorer framfor skalarer og egne strategier for å bestemme hvilke av capsulene i det neste
laget som skal aktiveres, slik at de kan unngå å bruke maxPooling. Skalarer blir brukt av convolutional nettverk
modeller som BVNet og BVNet3D.

Videre er modellene testet på forskjellige data spliter av kransarteriene, Aorta og portalvenen for å finne
fordeler og ulemper ved de ulike modellene for binær klassifikasjon. Aorta er valgt på bakgrunn av at den har en
stor tubulær struktur som betyr at den i utgangspunktet skal være lett å finne. Portalvenen er valgt for å undersøke
om modellene kan bli brukt på årer generelt. BVNet modellen var best til å prediktere Aortaen best dice verdien
i den fleste tilfeller rundt 90 %, hvor de andre modelene hadde mange falske positive prediksjoner. BVNet3D
modelen hadde færre falske negative and flere falske positive prediksjoner for segmenteringen av kransearteriene
og portal venene.

SegCaps modelen var dårligst, men viste et stort forbedringspotensial.

Det siste eksperimentet utforskes bruken av Frangi filteret, som blir brukt til finne årestrukturer. Målet med
dette eksperimentet er for å finne ut om bruken av Frangi filteret kan gjøre BVNet modellen mer presis i å finne
kransarteriene.

I del en av det siste eksperiment blir Frangi filterte benyttet på CT bildene som input på BVNet modellen.
Resultatet hadde stor forskjell mellom dice verdiene for de ulike testbildene, som indikerer at de beste hyperpa-
rameterne ikke ble brukt til å generere Frangi filteret i fleste tilfeller.

I del to av Frangi filter eksperimentet blir både CT bilder og Frangi filteret CT bilder brukt som input på BVNet
modellen. Resultatet økte ikke dice verdien, men forskjellen mellom den beste og værste prediksjonen ble redusert.

Modellene brukt i denne oppgaven ser lovende ut, men ingen av dem er gode nok til å bli brukt til å måle FFR
uten videre utviklig.
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Chapter 1
Introduction

Computer vision with deep learning has become a popular field, which is used for object recognition. The mo-
tivation is to replace many of the manual tasks, like face recognition, that is time-consuming. One of the more
complicated tasks in computer vision are image segmentation because it needs to both locate and classify each
pixel belonging to a given class.

Image segmentation has recently been used on medical images to find complex geometrical structures like
vessels and arteries. The goal in this thesis is to perform automatic segmentation of the coronary artery using deep
learning methods that will be described in section 1.2.

The main motivation of this thesis is to extract the geometrical structure of the coronary artery from CT images,
for making the procedure of measuring FFR with fluid dynamics automatic. This will be explained further in
section 1.1.

This chapter ends with a description of the contribution in section 1.3 followed by an overview of the outline
in section 1.4.

1.1 Motivation
Coronary artery disease (CAD) is the leading cause of death globally [21], and its relevance will increase as the
global population ages. An effect of the CAD is that the blood supply to the heart muscle is impaired due to
stenosis in one or more of the larger coronary arteries. Stenosis is a narrowing or obstruction of the artery.

Fractional Flow Reserve (FFR) is an index to characterize the functional significance of coronary artery steno-
sis. The index is used for measuring the ratio between the actual blood flow over the hypothetical blood flow,
which would be observed in the absence of the stenosis under examination.

In clinical practice, however, a proxy for the ratio is obtained through invasive pressure measurements, up-
stream and downstream of the stenosis. Even though FFR is considered the gold standard for diagnosing CAD, it
remains underused, mainly due to its need for a specialist, and its relatively high cost. As a consequence, many at-
tempts have been made to predict FFR non-invasively through computational fluid dynamics. An important step in
such an attempt is the definition of the patient-specific coronary anatomy/geometry, which is commonly performed
through segmentation of the coronary artery from Computed Tomography (CT) images. Most existing methods
rely on manual or semi-automatic segmentation, which is time-consuming and highly dependent on the observer
performing the segmentation. This thesis focuses on automatic methods for coronary artery segmentation based
on CT images.

1.2 Project Goals and Research Questions
The goal of this project is to compare different models and processing techniques in order to get better predictions
of the coronary artery. The different models used are BVNet, BVNet3D, and SegCaps, which will be explained in
chapter 3. These models are also tested on the Aorta and portal vein. The Aorta label is using the same CT input
images as the coronary artery. It is used to checks if the models are good to detect large tubular structures, which
should be easier than detecting the coronary artery. The portal vein is used for finding out if the models can be used
for detecting arteries/vessels in general. For reaching these goals, the following research questions were created:
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RQ1: Is it possible to improve the BVNet model’s understanding of the predicted slice surroundings?

RQ2: What is the advantages and disadvantages of BVNet, when used for segmenting the coronary artery,
Aorta, or portal vein?

RQ3: What is the advantages and disadvantages of BVNet3D model, when used for segmenting the coronary
artery, Aorta, or portal vein?

RQ4: What is the advantages and disadvantages of SegCaps model, when used for segmenting the coronary
artery, Aorta, or portal vein?

RQ5: Can a Frangi vessel filter help increase the dice score for the BVNet model?

1.3 Contribution
The first contribution of this thesis is finding the optimal number of channels and stride used for the BVNet. Stride
is in this context the step size of which of the slices are going to be added as channels.

Next, it compares the BVNet, BVNet3D, and SegCaps model. The SegCaps model has been used for lung
segmentation. This thesis explores if SegCaps can be used on more complex structures. The last contribution
consists of combining a traditional method with a modern model. This is done by using Frangi filtered CT images
as input on the BVNet model, and using both CT images and Frangi filtered CT images as input on the BVNet
model.

1.4 Outline
This section gives a short overview of the structure of this thesis.

Introduction
This chapter begins with an explanation of the primary motivation for developing methods for automatic segmen-
tation of coronary arteries based on CT images. Next, it covers the goals, the research questions, the contribution,
and the structure of the thesis.

Background
The background chapter explains some basic medical terms, some general deep learning techniques, and related
work. The medical terms include CT images, FFR, and the different structures of the coronary arteries. The related
work section gives an insight into the different methods used in the field. This includes some traditional methods
consisting of vessel enhancement filters, a more modern method of using deep learning models, and the SegCaps
model that uses capsuleNet for segmentation.

Methodology
This chapter describes the methods used for performing the different experiments. It contains details of the dataset,
how it is preprocessed and the training strategy used, in addition to a description of the evaluation metrics. The
chapter finishes with a detailed description of the different experiments.

Result
The result chapter contains the result of the different experiments. The result is consisting of both tables and
visualizations.

Discussion
This chapter discusses the results of the experiments, which are presented in the previous chapter, in relation to the
research questions.
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Conclusion and Future Work
The final chapter gives the conclusions of the results and the discussion and finishes with suggestions for future
work.
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Chapter 2
Basic Theory

This chapter will first explain some medical terms in section 2.1 in order to get a deeper understanding of the
motivation and the dataset itself. Next, different concepts of deep learning will be described in section 2.2 and
the aim is to provide a greater understanding of the network used for the automatic segmentation of the coronary
artery. The chapter finishes with an overview of the related work in the field.

2.1 Coronary Artery
The dataset in this thesis consists of CT-scans of coronary arteries. In subsection 2.1.1, the general anatomy of
the coronary artery, its functionality, and the coronary artery disease are described. The definition of FFR can be
found in subsection 2.1.2. This section finishes with a basic introduction of CT imaging in subsection 2.1.3.

2.1.1 Structure and Functionality
The function of the coronary artery is to supply the heart muscles with blood. It consists of two main branches,
which is the left coronary artery (LM) and the right coronary artery (RCA) shown in Figure 2.1. The coronary
arteries originate from the Aorta, immediately downstream of the aortic valve. The LM splits into two main
branches, and further into smaller arteries, which mainly supplies the left side of the heart. The RCA branches into
smaller arteries, which mainly supplies the right side of the heart [26].

Figure 2.1: Structure of the coronary artery which consists of RCA and LM.
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Coronary artery disease (CAD) is caused by a plaque build-up on the inside of the artery wall, which mainly
consists of cholesterol and white blood cells. The plaque build-up introduces a narrowing of the artery wall, often
denoted stenosis, which may impair the blood supply to the downstream, if the plaque blocks the blood flow
completely, or if part of the plaque ruptures, the person could suffer from a heart attack [10].

2.1.2 FFR
The fractional flow reserve (FFR) is defined as

FFR =
P̄distal
P̄proximal

(2.1)

where P̄distal is the cardiac cycled averaged pressure down-stream of the stenosis, and is measured with a sensor-
tipped wire. P̄proxinal is the cardiac cycle averaged pressure at the Aorta and is measured by a catheter. The
purpose is to measure the FFR in the stenosis that may have CAD [6].

2.1.3 Computed Tomography (CT)
A doctor can take a CT or MRI scan if a visualization of bones, organs, vessels, or other tissues of the human
body is necessary for analysis or surgery planning. A CT-scan consists of a patient laying on an X-ray sensitive
plate with a ring of detectors that encircles the patient and an X-ray source. The X-ray source rotates with the
ring of detectors around the patient. During the rotation, the X-ray goes through the patient to the detectors on the
opposite end of the X-ray. When the X-ray has rotated to the starting point, a 2D slice of the patient is constructed.
For generating the CT-scan, several 2D slices of different depth are stacked together [8, p.28].

In a CT-scan, different tissue will have its value given by the Hounsfield scale. The Hounsfield scale is central-
izing water with 0 intensity. In this case, the minimum intensity is the air with -1000 and the maximum is the bone
with 1000.

In order to increase the contrast in the CT-scan for a given tissue, a more suitable window size and level can
be used. A Hounsfield window and level are used to map the intensity of the Hounsfield scale into new intensity
values. The level is used to centralize the grey scale image of the CT-scan. The window size is the range of the
extended values in the window, which consists of an interval. If the window level is 300, and the window width
is 500, the interval of the window is (50, 550). The values not in the window are clipped to the minimum or
maximum value [1]. In this thesis is the term CT image used as a CT-scan.

2.2 Deep Learning
Deep learning is a field in artificial intelligence consisting of deep neural networks. This chapter begins with
introducing a basic neural network in subsection 2.2.1 followed by how the optimizer tells the network to update
the weights discussed in subsection 2.2.2.

The next topic is the common practice of creating data splits for training the network explained in subsec-
tion 2.2.3. This is followed by some techniques for helping the learning process described in sections 2.2.5 - 2.2.8.
The vessel enhancement filters will be described in subsection 2.2.6, which can be used as a preprocessing or post
processing step. The section ends with a description of the convolution neural network and capsuleNet.

2.2.1 Artificial Neural Network
The artificial neural network was inspired by the biological neural network and its ability to learn. Like the
biological neuron gets signals from dendrites the artificial neuron gets input z from input data x, weights w, and
bias b shown in Figure 2.2. The weights tell the neuron how much the given input should count, and the bias is
some additional value that is added to the values of inputs and weights. Inside the artificial neuron the input z
transform to the output a with an activation function φ [20].

Two common activation functions are sigmoid and ReLU, defined as

sigmoid =
1

1 + e−z
(2.2)

ReLU = max(0, z). (2.3)
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2.2 Deep Learning

Figure 2.2: An artificial neuron with input x, weight w, bias b, activation function φ.

Sigmoid has an output between 0 and 1, which makes it suitable for a probability distribution for binary classifi-
cation. A problem with sigmoid is that the gradient sometimes becomes so small that it approximates to zero [9,
p.65,178]. This problem is called vanishing gradient and will be explained further in section 2.2.2.

The functionality of the ReLU is that it removes all the negative values by setting them to zero. It does not
have the vanishing gradient problem like Sigmoid but will stop learning where the inputs are negative[9, p.187].

An artificial neural network consists of connected neurons in layers. The different layers are the input, hidden,
and output layer, where the hidden layers are all layers between the input and output layer. A network where all
the neurons are connected to all the neurons in the next layer is called a fully connected network, as shown in
Figure 2.3.

Figure 2.3: The different layer in an artificial neuron network

To speed up the different calculates in the artificial neural network, the bias trick is applied. It consists of only
doing matrix calculations, and it is done by adding an extra input of value 1 and using the bias as its weight, as
shown by 

x1
...
xn
1

× [ w1 . . . wn b
]

= z. (2.4)

A forward pass is when the inputs have gone through the artificial neural network, and a prediction is given
from the output layer. When learning, it uses a loss function to calculate the loss of the predicted and the actual
value.

The next step is an optimization that is done by an optimizer like stochastic gradient descent, which will be
described in subsection 2.2.2. The optimizer’s job is to update the weights and biases. An artificial neural network
uses this process to train. An epoch is when the artificial neural network has gone through all of the training
samples once.

2.2.2 Optimizer
As mention in subsection 2.2.1, the job of the optimizer is to update the weights and bias in neurons to reduce the
training error, a process that makes the network able to learn. The optimizers use the delta rule, defined by

θ = θ + ∆θ, (2.5)
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for updating the weights and bias (θ). The different types of optimizers are distinguished by how they calculate
∆θ, and some examples are given below.

Stochastic Gradient Descent(SGD): In deep learning is all the training samples typically divided into groups
called batches of size m, for updating θ. SGD first calculated the mean gradient of the loss function (L) for a batch
defined by

g =
1

m
∇θ

m∑
i=0

L(xi). (2.6)

It then uses
∆θ = −ηg (2.7)

to calculate ∆θ, where η is the learning rate, which is how much the network should learn from each error.
After the neural network has calculated the forward pass for all the samples in a given batch, it uses back-

propagation to calculate the different gradients in the neural network. Back-propagation uses the chain rule for
getting all the gradients of the loss function on all the weights and biases of the network. A problem with SGD
is finding the optimal parameters for not getting stuck in local minima, such as the learning rate [9, p.147-149,
286-288].

Momentum can be used to speed up the training for SGD. The momentum takes the previous gradient (v) into
consideration when calculating the ∆θ. The α constant is used to decide how much v should count in the new
calculation of ∆θ

∆θ = αv − ηg (2.8)

[9, p.288-290].

Adam: An adaptive learning optimizer is an optimizer where each parameter has separate learning rate parame-
ters. These parameters are p1 for the first momentum s and p2 for the second momentum r when using the Adam
optimizer. The first and second momentum are zero initialized and updated by

s = p1s+ (1− p1)g (2.9)

r = p2r + (1− p2)g � g (2.10)

The gradients g are calculated in the same way as for SGD. Next step is to make estimates for s and r

ŝ =
s

1− pt1
(2.11)

r̂ =
r

1− pt2
(2.12)

with t being the current epoch. ∆θ is calculated from

∆θ = −η ŝ√
r̂ + δ

, (2.13)

where δ is a small constant used to prevent division by zero. A benefit of using Adam is that learning is less
sensitive again chosen hyperparameters than SGD [9, p.301-302].

Problems with optimization: The problems of under- and overfitting, described in subsection 2.2.3, are two
common problems in deep learning. Another problem is vanishing and exploding gradients. The optimizer some-
times gets stuck in a local minimum when trying to find the global minimum for the loss during the training of the
model. One solution is to use an adaptive learning optimizer, such as Adam that is described above. The vanishing
gradient problem is when the derivative of the gradient is approximate to zero, with the result of parameters not
being updated [20, chap.5]. Exploding gradients are when the gradients become too big and result in large updates,
which makes the predictions more unreliable. One solution to this problem is to use cliffs gradients, which consists
of clipping all gradients over an upper limit to the max value [9, p.281]
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2.2.3 Training and validation set
In deep learning, the dataset is typically divided into training, validation, and test set. First is the dataset is usually
divided into 80% samples in training and 20% for the test set. Next, the training set is typically divided into 80%
samples for training and 20% for validation. The functionality of the validation set is to monitor the generalization
error during training. The generalization error is the error the network has on unseen samples and makes it easier
to observe when overfitting has occurred.

The problem of overfitting and underfitting is common in deep learning. Underfitting occurs when the model
has problems finding any patterns in the training data usually caused by having a small dataset with too much
variation. Overfitting is when the model finds patterns that are only in the training set [9, p.109].

Some data augmentation and regularization techniques can be used for reducing the chance of overfitting,
which will be explained in the sections below.

2.2.4 Dataset Augmentation:
This technique consists of getting more data by applying affine transformations to some of the training data, as
shown in Figure 2.4. It is important that these transformations are realistic and could occur in the dataset for
reducing the generalization gap. The transformations can be shear, rotation, scale, flip, and translation [9].

Another strategy is to apply noise in order to make the neural network more robust. Noisy images is a common
problem in some cases, such as medical imaging or old images. A typical noise is salt and pepper noise, which
makes white and black dots occur on the image[8, p.178].

Another strategy is to use elastic deformations as used in U-Net [23], which is used for making variations in
the surface. It is done by generating a random distribution vector from a Gaussian distribution on a coarse grid of
3x3 grid and using bicubic interpolation afterward.

(a) Orginal image (b) Salt and pepper noise (c) Rotation

(d) Brightness (e) Scale (f) Translation

Figure 2.4: Examples of some types of augmentation data
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2.2.5 Regularization
Some regularization techniques can be used for reducing the chance of overfitting [9, chap.7], where some of the
most common techniques are explained below.

Weight decay: A way of reducing the chance of overfitting is to regularize the weight update in the optimization
by adding a weight penalty (αΩ(θ)).

α has values in the interval [0,1] and is used to denote how much the weights is contributing, where 0 is none.
The weight penalty is only used on weights because a regularization on bias can cause underfitting [9, p. 223].

L2 =
1

2
||w||2 (2.14)

L1 =
1

2
||w|| (2.15)

are the two common weight decay(Ω(θ)) strategies. When using L2, the weights will shrink on the features
that have a high variance on the features of the target [9, p.224-227].

L1 has another effect on the weight decay than L2. The weights will become sparse and can be used for feature
selection. The reason is that a subset of the weights will be zero, and the non-zero can be used for feature selection
[9, p.227-230].

Early Stopping: Sometimes the generalization error keeps on increasing during training, and the neural network
gets overfitted. Early stopping ends the training if the validation loss has not decreased after a x number of epochs,
where x is called patience [9, p.242-245].

Dropout: Another method, called dropout, is used for preventing overfitting by applying dropout layers. In these
layers are neurons deactivated with the probability p and the active neurons are multiplied with 1−p to scale down
the active weights [9, p.251-262].

Batch Normalization: A method that achieves the same effect as dropout is batch normalization. In these layers,
the output is normalized between 0 and 1 for each batch [9, p.260,309-312].

2.2.6 Vessel Enhancement Filters
A way of preprocessing or post processing an image is to apply a filter to extract wanted features. A vessel
enhancement filter is typically used to enhance vessels or other tubular structures, and it is categorized either as
Hessian-based or diffusion-based filters. The most popular Hessian-based filters are Frangi and Sato. All the
Hessian-based filters calculate the Hessian matrix to get the eigenvalues. This can be used to enhance vessels
because it gathers both the direction and the brightness. The Hessian matrix is the derivative in the vertical and
horizontal direction of the image.

In the Frangi filter, the eigenvalues λ are sorted by increasing absolute value, with λ1 being the smallest. The
α, β, γ are constants set to control the sensitivity values of

RA = |λ2
λ3
| (2.16)

RB =
|λ1|√
|λ2λ3|

(2.17)

RS =

√∑
j

λ2j . (2.18)

The Frangi filter uses

VF (σ) =

{
0, if λ2 > 0 or λ3 > 0

(1− e−
RA

2

2α )e−
RB

2

2β (1− e−
RS

2

2γ ), otherwise
(2.19)
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to enhance the vessels.
The Sato filter differs from the Frangi in that it only uses two eigenvalues. The first eigenvalue is the largest of

the eigenvalues λ1 > λ2 > λ3. The second eigenvalue λc is min(−λ2,−λ3). It uses

VS(σ) =

e
−λ1

2

2(α2λc)λc, if λ1 5 0, λc 6= 0

e
−λ1

2

2(α2λc)
2 λc, otherwise

(2.20)

for finding the vessels, where the α1 and α2 are used to optimize the ratio between the two eigenvalues.
The diffusion filters uses the partial differentiation ut = div(D,∇u). The D is the diffuse tensor and the ∇u

is the gradient of the image. This method can be divided into anisotropic and isotropic diffusion.
The anisotropic method changes locally magnitude, the direction of the smoothing with diffusion tensor, where

isotropic diffusion uses the local gradient magnitude to decide the smoothing. An example of isotropic diffusion
is RPM and anisotropic is HDCS [18].

2.2.7 Post processing
The predicted image needs to be thresholded to get binary values. This threshold value is usually 0.5, but finding
the best threshold value can be difficult. The Otsu method tries to find the optimum global threshold for the image.
This method uses the histogram of the image and chooses the threshold that minimizes the weighted sum of the
group variance [8, p.764-769].

Sometimes the predicted images contain some unconnected or noisy parts, like small dots that do not belong to
the main object. A way of solving this problem is to use morphological operations like erosion, dilation, opening,
and closing. The functionality of erosion is thinning the border of the image.

It is

A	B = {z|(B)z ∩Ac = ∅}, (2.21)

which means all the possible translates of the filter B within the image A containing uncommon elements is set to
zero. The dilation expand the border of the image and are defined as

A⊕B = {z|(B̂)z ∩Ac 6= ∅}, (2.22)

where B̂z is B reflected around its origin and shifted by z. The result of the dilation is that all the uncommon
elements is set to one.

Opening is erosion followed by dilation and is used for removing small areas, like vertical lines in an image.
Closing is dilation followed by erosion and are used for filling holes, for example, an image with a circle with spots
[8, p.652-654, 657-660].

Another way of doing post processing is to find the connected components and remove unwanted connected
components. Region growth is a method for finding connected components. It starts by setting out some seed
points in the image. Next, it collects all the neighbors over a given intensity threshold. Then it finds the neighbors
of the neighbors over a given intensity threshold until there are no more to be found [8, p.174-176].

2.2.8 Transfer Learning
In deep learning, the initial model weights are usually zero or random. The purpose of transfer learning is to give
the model a better starting point by using the weights from another model as the starting point. Transfer learning
is most beneficial when the transfer weights have been trained on a similar data form.

By using transfer learning, a small dataset may use longer time to overfit because it already has learned some of
the special features from the transfer model. Another benefit is that the training may converge faster to the desired
value, which reduces the training time, and less data may be needed [22].

2.2.9 Convolutional Neural Network(CNN)
For a neural network to be a convolution neural network, it has to have at least one convolution layer. A convolution
layers consisting of x filters to extract different features by using convolution defined by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.23)
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where the input is referenced as I with size (m, n) and the filter as K with a size of (i, j). S is called the feature
map and contains the detected features. The size of the filter is essential for the feature detection. A small filter will
find more specific features, and a large filter will find more general features. A feature can be corners or intensity
changes in an image. The filters in a convolution layer are the weights at that layer, which are updated during
training.

The advantages of using CNN is that it will still recognize the object if its location change and the use of
parameter sharing. The benefit of using parameter sharing is that some of the computation cost will be reduced [9,
p. 321-330].

In the CNN architecture is it normal to have some convolution layer with nonlinear activation functions fol-
lowed by a pooling layer. The functionality of the pooling layer is downsampling its input. This is done for making
the input more robust against small, large, or both small and large changes because it replaces a given location with
a summary of the nearby inputs. The summary can be the maximum, minimum, or average value of the nearby
inputs.

The nearby inputs and the replaced point are selected similar to the convolution filter moving across the image
with the stride as the step size [9, p. 330-335].

For making the upsampling learnable transposed convolution can be used. It uses the the principle that con-
volution can be translated to matrix operations between the flattened input I of size (Nx1) and the filter K with
size (MxN). For performing a forward pass the input is multiplied with K and back-propagation is computed by
multiply the loss with KT . The transpose convolution multiplies the input with KT for the forward pass and the
loss with K for back-propagation [5].

2.2.10 CapsuleNet
CapsuleNet was introduced in 2011 and is a new way of making the recognition more viewingpoint invariant and
will be discussed in Transforming Auto-encoders. The pooling reduces the computational cost by downsampling
its input parameters, but in this process are a lot of information lost. The CapsuleNet uses routing agreement
techniques for reducing some of the computational cost without losing information, which will be explained below.

Transforming Auto-encoders: One of the difficult tasks in computer vision is to recognize the object with all
possible angles and shapes. One problem with convolution neuron networks is that it does not know the relationship
between the features. An example is in face recognition, where CNN will still predict a face even if the nose and
mouth switched place.

The neurons in the convolution network produce scalars for the feature detectors as a summary of the activity.
An alternative is to use ”capsules”, which produce a vector with the probability of the different viewing conditions,
such as rotation, brightness, and deformations. These parameters are called instantiation parameters and are used
to give information about the rendered object, as shown in Figure 2.5. An advantage is that the instantiation pa-
rameters can be used to debug where the recognition went wrong.

Figure 2.5: Some instantiation parameters of the rectangle and triangle.

This concept is similar to the affine transformations from computer graphics, where it is possible to apply
different linear transformations to end up with the wanted pose. An example is an image of a smaller rotated
hand-written number. It needs to be rotated back and scaled up to the general representation of the object and is
then viewpoint-invariant.

Transforming auto-encoders are used to create the first capsule layers from the pixel intensities. This is done
by each capsule having a recognition and generation unit. The recognition unit consisting of p(probability of the
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object being present), x, y, that is passed forward to the next layer. The generation is p(x + ∆x) and p(y + ∆y),
and by multiplying with p decides how much of the generation unit to consider when generating the output. The
model created by Hilton had the weakness that the capsules could only represent one representation of the object
at the same time [11].

Dynamic Routing Between Capsules: Routing agreement technique is used for selecting which of the capsules
in the next layer to activate without losing any information like pooling layers do. Sabour [25] chose to use the
capsules output vector vj length for denoting the probability for whether the entity of the object was present. An
example is shown in Figure 2.6.

Figure 2.6: It is an example on some of capsules output vectors for finding rectangles and triangles with their pose. The black
arrows belong to the rectangle, and the purple arrows belong to the triangle. The different poses of the arrow are the different
values of the rotation instantiation parameter. The red rings are around the longest output vector of the rectangle class and
longest output vector of the triangle class.

The capsule output vector is calculated by

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

, (2.24)

where sj is the the total input for that capsule that is calculated by

sj =
∑
i

cij ûj|i (2.25)

except for the first capsule layer. The first capsule layer is created by resampling its input and ”squashing” it to
have values below 1.

The idea is that ”routing-by-agreement” can lean the relationship between the features by making the lower
level capsule only activates all the possible parents at the next layer. In the Figure 2.6 is the rectangle and triangle
the low level capsules and the possible parents is the different ways of putting them together. The wanted possible
parents are the rectangle and triangle, forming an arrow such as in the figure.

The activation is done by first sending the scaled down output vector of the low level capsule to each of the
possible parents. It is scale down by the coupling coefficient, which is calculated by

cij =
exp bij∑
k exp bik

, (2.26)

where bij is the softmax of the prior log probability that capsulei should be routed to capsulej . Next each parent
capsule multiplies its own output ui with the weight matrix Wij , which is called the ”prediction vector”

ûj|i = Wijui. (2.27)

The possible parent with a large scalar of the prediction vector and output vector get an increment of the
coupling coefficient, and all the others get a decreasing. This is done by updating bij

bij = bij + ûj|i · vj . (2.28)

After some iterations are some of the possible parents become so small that they are denoted as deactivated cap-
sules.
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EM Routing: Hilton [12] published a new routing agreement between capsules in 2018 called EM Routing. In
this cases is the capsules in layer L is denoted as ΩL, and each of them has a 4x4 pose matrix M and an activation
probability a as shown in Figure 2.7. For training, a 4x4 transformation matrix Wij is used as weights. Each of
the capsules in ΩL is voting for finding which of the capsules in ΩL+1 that should be activated. The voting is by
calculating Vij = MiWij .

Figure 2.7: Overview of which values the EM-Routing gets from the capsules

This algorithm consists of an E-step and M-step. The E-Step calculates the probability of a datapoint of
ΩL belonging to a given gaussian distribution of the ΩL datapoints to a given capsule of ΩL+1, which is used as
weights. The M-step is used to calculate the mean and variance of the datapoints, and is approximating the gaussian
distribution to best fit the datapoints assigned to it. This is done by making each gaussian distribution maximize
the sum of weighted log probability of these datapoints. The idea is that after three iterations of EM-routing is only
the capsules in ΩL+1 with higher probability than the activation cost will be activated.

2.3 Related Work
In this section, different architectures of segmentation on medical images with main focus on vessels and artery
structures will be explored. First, the traditional methods consisting of using vessel filters will be described in
Vessel filters-based segmentation models. Next, a more modern method of using different architectures of the
fully conventional network for segmentation found in subsection 2.3.2. The chapter finishes off with the SegCaps,
which uses new deep learning network, capsule network explained in subsection 2.2.10, for segmentation.

2.3.1 Vessel filter-based segmentation models

There are many different ways of doing vessel segmentation. Jimenez-Carretero [14] created a method for lung
vessel segmentation consisted of the Frangi filter described in subsection 2.2.6 for detecting lung vessels and the
inverse to detect airways in the vessel. Segmentation was calculated by

VFvessel(x ∈WallCandidates(y)) = max(0, VFvessels(x)− VFairway(y)). (2.29)

Next, is a kind of a region-growth method from Luu [18] for segmenting liver vessels. The method is sum-
marized in Figure 2.8. The first step is to apply a filter that can be either Hessian or diffusion based on the input
image. This is followed by generating liver masks on both the input and filtered version image.

The Masking Liver step consists of making contours on some slices where the liver vessel are. The Histogram-
based Estimation step is used to calculate the threshold value for the seed points in the Region growing step and
the Regional maxima step.

The Regional maxima step is used to remove some of the seed points used in the Region Growing step. The
Region growing step works like the connected component analyses explained in subsection 2.2.7. The postpro-
cessing step is applied to remove noise, which consists of using closing explained in subsection 2.2.7 with a filter
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5 x 5 x 3. The best result was with the Frangi and HDCS filters.

Figure 2.8: A summarization of the liver segementation method of [18]

A method consisting of combining the Frangi filter with deep learning model was created by Fu [7] and used
on Retina vessels. This method involved using Frangi filter as pre-trained weights in the neural network. The
first step was to convert the output of the filter to a binary mask. This was done by subtracting a threshold and
asymmetrically scale it and last apply a Sigmoid layer to get a probability distribution. The architecture is designed
to be equivalent to the Frangi filter described in subsection 2.2.6. The idea is that the weights from the convolution
net can be used in another network to improve the segmentation on tubular structures.

Bhattacharya [2] created a method for coronary artery segmentation. It consists of the Frangi filter and an
anisotropic diffusion technique called ”Optimized Anisotropic Rotational Invariant Diffusion Scheme”. The first
step of the method used an angiography image as input and set the values for α, β, and σmax. The σmax values
are the max limit for the standard derivative. Second step is to apply the Frangi filter and use the result that is
F (x) = maxσf(x, σ). Next part of the method is Optimized Anisotropic Rotational Invariant Diffusion Scheme”.
It begins by applying the Gaussian smoothing on the output of the Frangi filter, then calculating the Hessian for all
the pixels and finding the eigenvalues of it afterward. Next, the diffusion tensor is calculated with the eigenvalues
as directions. The method finishes with a finite Difference scheme before it applies all of the steps one more time.
This method had some improvement in finding smaller arteries.

2.3.2 Fully Convolutional Networks Segmentation models
Ronnebergers U-Net [23] has become one of the gold standards for segmenting biomedical images. It won the
ISBI challenge in 2015, which consisted of segmenting cells and membranes. In this challenge, U-Net overcomes
the limitation of the training data size by using strong data argumentation and an autoencoder architecture. Shift,
rotation, greyscale variations, and elastic deformations were used as data augmentation to make the training data
more robust to unseen samples.

The architecture has an encoder and decoder path with depth four shown in Figure 2.9. The upsampling layer
at depthx concatenate the last layer of the encoding block at depthx and the last layer of the decoder block at
depthx−1.

This is used for getting both low and high-resolution features. The U-Net applies a convolution layer with valid
padding, which means the output size will become smaller than the input size of that layer. Another benefit of the
U-Net model is that it can be trained end-to-end.

One of the challenges with segmenting cells and membranes was separating touching objects. This was solved
by using a weighted loss function, where the weight was calculated using morphological operations.

15



Chapter 2. Basic Theory

Figure 2.9: The architecture of U-Net

16



2.3 Related Work

The 3D U-Net model came in 2016 [3], which has the same architecture as U-Net except all the 2D opera-
tions are replaced with 3D operations. This architecture is, therefore, more computationally expensive. Between
the convolution layer and the activation function was batch normalization applied. This was done for making
the model converge faster and decrease the change of overfitting. The model was trained on the Xenopus kidney
dataset, which was divided into voxels before passing through the model.

Another segmentation architecture for volumetric images came in 2016 called V-Net [19], which was used for
segmenting the prostates from MRI images. It has an autoencoder architecture with a depth of four. The loss
function used is dice loss that handles the strong imbalance between foreground and background voxels. Instead
of pooling is downsampling done with the usage of convolution layer with 2x2 filters and stride of two. The up-
sampling is done by using convolution transpose layers a 2x2 filters with stride two. The activation function used
between the convolution layers is PReLU. It uses max(αx, x), which treats α as a learnable parameter.

Roth [24] created a two-stage pipeline for multiclassification, which is used for segmenting different anatomical
structures from CT images. The anatomical structures include vessels and different organs.

The first stage is to make the FCN separate the foreground and background voxels from each other. The last
stage helps the model segmenting the smaller classes, like vessels, with focus on the boundary. The model used
for the different stages is the 3D U-Net with a modified loss function.

Kjerland [16] used the Deep Medic model for coronary artery segmentation. This architecture consists of two
residual paths connecting at the end, where one of the residual paths being a scaled-down version of the image.
This method used data refinement, in the form of connected component analysis, on the predicted image to improve
the result.

Joacobsen [13] used the U-Net, BVNet, and 3D U-Net model in his thesis for segmenting coronary arteries.
For making the training data more robust, data augmentation were applied in the form of elastic deformation,
brightness, rotation, and scale.

The two next and previous slices were added as channels to help the model get a better understanding of the
predicted slice surroundings. By using this technique, the model is training on the channel in the middle.

The BVNet differ from U-Net having depth three and an extra convolution layer at each encoding block located
at the end and decoding block locating at the beginning, which is shown in Figure 2.10. The extra convolution
layer differs from the other convolution layers in that block with having twice as many parameters.
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Figure 2.10: Architecture of BVNet
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2.3.3 SegCaps
LaLonde and Bagci [17] were the first to use capsules for segmenting medical images, and the architecture is called
SegCaps. It has a convolutional-deconvolutional, architecture that is shown in Figure 2.11, and was used on the
LUNA16 dataset that consists of CT images of lungs. The capsules pass forward to the next layer capsules using
dynamic routing between capsules as described in subsection 2.2.10. Both the capsule architecture and the routing
algorithm are memory expensive. In an effort to solve this all capsules of a given type share the transformation ma-
trix T, which cut down the number of parameters learned by back-propagation. The capsule type is a user-defined
kernel to the parent capsule. For calculating the segmentation mask the length of the final layer, capsules are used
for assigning the class if the magnitude is over a given threshold.

Figure 2.11: Architecture of SegCaps
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Chapter 3
Methodology

This chapter explains the implementation details for performing the experiments. First, an introduction to the
dataset is given in section 3.1. This is followed by a description of the various technical tools needed to perform
the experiments. In section 3.3 will some of the general implementation details be explained, which is common
for all the experiments. The chapter finishes with a description of all the different experiments.

3.1 Dataset
The main dataset is provided by st.Olav hospital as a part of the FFR project. The dataset consists of 3D CT images
explained subsection 2.1.3 of size (512, 512, z), where z is the depth that has a value around 300 for most of the
images. There is some variation between the voxel spacing, which is around (0.38, 0.38, 0.3). The images are
having different Hounsfield levels and window size, which makes them have different contrast and intensity.

Each input image has three labels, namely RCA, LM, and Aorta. In this thesis, the RCA and LM label is
combined into one ground truth known as the coronary artery label.

At the beginning of this thesis, the dataset consisted of 82 CT images, but because this is still an ongoing
project, 8 more images were available through out the thesis.

The dataset was divided into three different splits, which is shown in Table 3.3, for seeing more general patterns
in the prediction. The size of the dataset is quite small, which makes it sensitive for edge cases.

The split-0 contains 66 training images because it was created before more images were available. Split-1 and
split-2 contain 72 training images. All the images for training, validation, and testing were selected randomly for
the splits.

Another dataset called 3Dircadb1 is used to check if the models can be used to segmenting other vessels. The
dataset is created by IRCAD for the 3D-ircadb 01 project1, which consists of 20 CT images with labels from the
different parts of the liver, where 75% has hepatic tumors. The images have a Hounsfield level at−0.5 and window
size 2047. The voxel spacing has values around 0.6 for the x- and y-axis and 1.6 for the z-axis. The size of the
images is (512, 512, z), where z is the depth that has a value around 125 for most of the images.

In this thesis, the portal vein label is used, and the dataset is divided into three splits. Each data split consisted
of 16 training, 2 validation, and 2 test images, as shown in Table 3.3.

Split-0 Split-1 Split-2
Training images 66 72 72
Validation images 8 8 8
Testing images 8 8 8

Table 3.1: Dataset from st.Olav

Split-0 Split-1 Split-2
Training images 16 16 16
Validation images 2 2 2
Testing images 2 2 2

Table 3.2: 3Dircadb1 dataset

Table 3.3: Information about the different splits.

1https://www.ircad.fr/research/3d-ircadb-01/
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3.2 Technical Tools
This section gives a description of all the different technical tool used in this thesis.

GPU Cluster A cluster where each user can connect to a node that can have one or more GPUs connected to
it. In this thesis two different GPU clusters were used. One containing Tesla V100 GPUs with
34 GB GPU and another with two Tesla v100 GPUs with 50GB. In this thesis the GPU is used
to speed up the calculations and shorten the training time.

Docker2 A platform used for making it easier to develop, deploy and run applications, by using containers
that is a running docker image. An docker image contain all the dependencies needed to run an
application. The benefit of this is that the container isolates the software environment, which
that makes the application run independently on any computer. In this project, it was used to run
programs on the GPU cluster.

Keras3 A python library used for deep learning. It uses either TensorFlow, CNTK, or Theano as backend
for creating and usage of the network. Many of Keras functionality can be seen as a black box,
which makes it easy to use, like the fit method used for training the model, where only the
hyperparameters and data needs to be specified. Another aspect is that it is modular, as it is easy
to add and remove functionally such as performance metric or a layer in the model. In Keras is it
possible to make custom metrics and loss functions, which is useful when doing research. In this
project, the dice similarity and dice similarity loss are custom objects and TensorFlow is used as
backend.

ITK-Snap4 A program that is written in C++ and provides 3D segmentation. It supports different 3D image
domains like NIfTI and DICOM[27]. In this project, it is used to visualize 3D structure, mainly
of the ground truth segmentation and the predicted segmentation.

VMTK5 A program consisting of different libraries and tools for making it easier to analyze and model
blood vessels. In this thesis the VMTK program was used for creating the Frangi filtered images.
This will be explained further in subsection 3.4.3.

3.3 Implementation
The general implementation details are explained in this section. This is everything from the different preprossing
approaches, to the training strategies and the post prossesing. The code implementation6 is forked from laLonde’s
implementation of SegCaps7.

3.3.1 Preprosessing
The 3Dircadb1 dataset is a small dataset, and a new Hounsfield window size and level were applied to increase the
contrast at the portal vein. The portal vein has an intensity value around 200, which became the new Hounsfield
level. Next, an assumption was taken about the intensities, which consisted of that the intensity range of the portal
vein would not change more than +/− 500. This resulted in a new Hounsfield window of 1000.

The next step is common for both the 3Dircadb1 and st.Olav dataset. It consisted of subtracting each image by
its mean and dividing it by its standard deviation.

3.3.2 Training
The training is set to 500 epochs with early stopping with monitoring the validation loss for preventing overfitting
as explained in subsection 2.2.5. The batch size is set to the maximum possible size, which is 8 for BVNet and
BVNet3D and 1 for SegCaps. The optimizer is Adam, described in subsection 2.2.2, with a starting learning rate

2https://docs.docker.com/get-started/
3https://keras.io
4www.itksnap.org
5http://www.vmtk.org
6https://github.com/Trudelutt/SegCaps
7https://github.com/lalonderodney/SegCaps
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of 0.0001. To help the model with getting a better learning rate, a learning scheduler is used. It decreases the
learning rate by 0.05 if the validation loss has not decreased after five epochs. After each epoch, all the training
and validation images are shuffled to create more variation. The slices of the image are also shuffled to make the
model less sensitive to the order of the slices in the image.

For centralizing the training, all the image slices and patches only containing background are removed from
the training set.

3.3.3 Evaluation Metrics
An evaluation metric is used for evaluating the prediction result. For using the evaluation metrics, the prediction
needs to be binary. For making the predictions become binary, a threshold of 0.5 is used during training, and
the Otzu threshold for testing. As mention in subsection 2.2.7, the Otzu threshold is the value that minimizes
the weighted sum of the group variance of the image’s histogram. The result of the prediction can either be true
positive (TP), true negative (TN), false positive (FP), or false negative (FN), as explained in Table 3.4.

Term Desciption

True positive(TP)
Predicts that it is the given class
when it is the given class.

True Negative(TN)
Predicts that is not the given class
when it is not the given class.

False Positive(FP)
Predicts that it is the given class
when it is not the given class.

False Negative(FN)
Predicts that it is not the given class
when it is the given class.

Table 3.4: Predictions Outcome

The segmentation task of this thesis consists of binary classification. It consists of classifying all of the pixels
to either be the background or the wanted class.

Dice Score The dice similarity coefficient metric takes the class imbalance problem into consideration when
measuring the performance of the network, by valuing the true predictions twice as much. It
both encourages the model to find the true positive without predicting all to positive [4]. The
dice score is defined by

Dice Score =
2TP ∩ TN

2TP ∪ FP ∪ FN
. (3.1)

Recall Recall measures the ratio of the correct target values detected and is defined by

Recall =
TP

TP + FN
. (3.2)

In the case of class imbalance, the recall will be high if the model only predicts the given class
[9, p.411].

Precision The precision metric measures the amount of correct predictions defined by

Precision =
TP

TP + FP
. (3.3)

In the case of class imbalance the prediction will be high if the model identifies none of the target
values of TP, when background is the dominating class [9, p.411].

3.3.4 Loss Function
The loss function explained in subsection 2.2.1 is used to measure how good the model is at making correct
predictions. The dice loss was used in this thesis, and is calculated by

Dice Loss = 1−Dice Score(T, P ), (3.4)
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where P contains values between 0 and 1.
The dice loss is beneficial to use when there are large differences in the number of pixels belonging to the

different classes. In this thesis, the background class is much larger than the ground truth class.

3.3.5 Post Prosessing

The post processing step consists of applying some image processing techniques, with the goal of improving the
prediction, most of these techniques are explained in subsection 2.2.7. All the predictions are binary after applying
the Otzu threshold. This is the raw test predictions in chapter 4. Next step, used connected components analysis.

Three different cases are used to decide which of the connected components that should be removed.
The first case involves removing all the connected components except the largest. The condition is that the

largest component needs to be a lot larger than the second largest component. The assumption is that the largest
component is the Aorta or the portal vein.

The second case involves removing all the components except the two largest components. Here is the condi-
tion that the second largest component needs to be a lot larger than the third component. In this case, the assumption
is that the two largest components are RCA and LM.

The third case removes all the components of size less than 500 when none of the cases above are accurate.
The removing threshold is set to 500 because a higher threshold is more likely to remove some of the TP of the
smaller arteries.

3.4 Experiment

In this section a detailed description is given for all the experiments. All of these experiments are created to gather
information in order to answer the research questions from section 1.2. In the table below gives an overview of the
step up of each of the experiments.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
RQ RQ1 RQ2 RQ3 RQ4 RQ5
Label {CA} {CA, Aorta, PV} {CA, Aorta, PV} {CA, Aorta, PV} {CA}
Model BVNet BVNet BVNet3D SegCaps BVNet
Channels {1,3,5,7,9} {5} {1} {1} {5, 10}
Stride {1,2,5} {1} {1} {1} {1}
Batch size 4 8 8 1 8
lr 0.001 0.0001 0.0001 0.0001 0.0001
lr scheduler - X X X X
Split {0} {0,1,2} {0,1,2} {0,1,2} {0,1,2}

Input {CT} {CT} {CT} {CT} {Frangi,
CT & Frangi}

Metric
{dice score,
recall, precision}

{dice score,
recall, precision}

{dice score,
recall, precision}

{dice score,
recall, precision}

{dice score,
recall, precision}

Table 3.5: A summary of the different elements in each of the experiments, where CA = coronary artery, PV = portal vein, lr =
learning rate, and Frangi = Frangi filtered image.

3.4.1 Experiment 1: Channels and Stride

In this experiment is the BVNet model from subsection 2.3.2 used with transpose convolution for upsampling. The
images are divided on the z-axis into slices before they are used as input on the 2D model. The BVNet model’s
input shape is (512, 125, c) where c is the number of channels. The channel size needs to be an odd number
because the model only trains on the middle channel. The channels are put together by adding the x previous and
x next slices. The x value is calculated by

⌊
c
2

⌋
. The stride value is how many steps to move from the given value

when adding the previous and next channels. If stride is two, every other slice before and after the given slice is
added.
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This experiment consists of experimenting with a different number of channels and stride of the BVNet model.
The goal of this experiment is to check if it is possible to improve the BVNet model’s understanding of the predicted
slice surroundings to answer RQ1.

The experimenting consists of using the channel size of {1, 3, 5, 7, 9} and the different stride of {1, 2, 5}.

3.4.2 Experiment 2: BVNet
In this experiment, the BVNet model with the channel size and stride of the best mean Diceraw with a relatively
low computational cost model form experiment 1 used, which was 5 channels and stride 1. The BVNet model will
be tested on the coronary artery, Aorta, and portal vein. This experiment gathers information in order to answer
RQ2. For being able to answer RQ2, the advantages and disadvantages of BVNet need to be found. This is done by
checking how good the model is at finding large tubular structures like the Aorta, and how good it is on a smaller
dataset that is not from st.Olav containing the portal vein. The reason for using the portal vein is to check how
good the model is at finding arteries/vessels in general.

3.4.3 Experiment 3: BVNet3D
The BVNet3D model replaces all the 2D operations of the BVNet model with 3D operations, similar to the trans-
formation from U-Net to 3D U-Net. This experiment is created for answering RQ3 by finding the advantages and
disadvantages of BVNet3D used for segmenting the coronary artery, Aorta, and portal vein. For using BVNet3D,
the images need to be divided into patches before they can be used as input because of the computational cost.
For this experiment, the patches have the size (64, 64, 64), where the image is padded with zero on the axese not
dividable on 64.

3.4.4 Experiment 4: SegCaps
This experiment gathers information about the SegCaps in order to answer RQ4, which consists of finding the
benefits and disadvantages of the SegCaps model when used for segmenting the coronary artery, Aorta, and portal
vein. The SegCaps model uses CapsuleNet in an encoder-decoder architecture for segmentation as described in
subsection 2.3.3. In this experiment, dynamic routing is used to decide which of the capsules to activate in the next
layer with three iterations.

3.4.5 Experiment 5: Frangi Filter
This experiment is created to check if the Frangi filter can help increase the dice score of the BVNet model when
segmenting the coronary artery, which is RQ5. This experiment consists of two parts; namely using Frangi filtered
images as input to the BVNet model and using a combination of both CT and Frangi filtered images as input to the
BVNet model. The Frangi filter is explained in subsection 2.2.6 and is created by the VTMK with α 0.3, β 500,
and γ 100.

The first part uses Frangi filtered images as input to the BVNet model with channel size 5 and stride 1.
The last part uses both CT and Frangi filtered CT images as input to the BVNet model with 10 channels and

stride 1. The five first channels consist of CT slices, and the rest is the result of applying the Frangi filter on these
slices as shown in Figure 3.1.
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Figure 3.1: A visualization of combined CT and Frangi as input for the BVNet model
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Result

This chapter gives an overview of the different result from the experiments explained in section 3.4. The visual-
izations are color-coded prediction with blue for TP, green for FP, and red with low opacity for FN.

4.1 Experiment 1: Channels and Stride
In this experiment, the goal is to gather enough information to answer the first research question (RQ1). It entails
finding the optimal number of channels and stride of the step size of the next slice, to be added as a channel on the
BVNet model described in subsection 3.4.1. Table 4.1 shows the result of the mean Diceraw score of the models
with different channels and stride. The main focus in this experiment is going to be on the Diceraw because the
Dicepost has similar to the Diceraw. The mean Diceraw and Dicepost is gathered from the tables in appendix A,
which contains the result of each model in the form of dice score, recall, and precision for each raw and post
processed test image.

Table 4.1 shows that the Diceraw is in the interval (0.324, 0.593). From the tables in appendix A is it possible
to observe a small increment in the mean Diceraw score with five or more channels. Another observation is that
the mean precision is higher than the mean recall in most cases.

Next, are the tables in appendix A showing that an increment of the channel size increases the dice score in
general, but the minimum dice score is still relatively low. The stride of 2 seems to entail a minor increase in the
mean Diceraw score for 3 and 7 channels, but the stride of 5 slightly decreases the mean dice score. The best mean
Diceraw is BVNet with 5 channels and stride 1.

1-Channel 3-Channels 5-Channels 7-Channels 9-Channels
Stride Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost
S-1 0.324 0.304 0.525 0.516 0.593 0.59 0.544 0.538 0.547 0.54
S-2 - - 0.553 0.543 0.555 0.541 0.59 0.59 0.471 0.449
S-5 - - 0.51 0.504 0.563 0.551 0.583 0.577 0.494 0.498

Table 4.1: Average dice score from different channels and stride combinations.

In Figure 4.1 is the best predicted image of the raw test images from the different models, which is the same
image for all the different channels and stride. Prediction with 9 channels is the only one that is fully connected on
the left main branch of the LM. All of the predictions are almost not finding any of the thin arteries in the middle,
but 3 channels with stride 2 and 5 and 7 channels with stride 2 did find some pixels of it.

The prediction with the worst Diceraw score from the different models are shown in Figure 4.2, which has more
FP and FN than the predictions in Figure 4.1. In Figure 4.2 are all the models having the same worst prediction
test image, except for the model with channel 1 and 9 channels with stride 2. These two predictions contain almost
none TP and FP. The rest of the predictions have a lot of FP, where some contain large vessel/artery like structures.
An observation is that these predictions detect many small connected components of TP on the LM.

Another observation is that all of these models have a problem with predicting the connection to Aorta. The
model with 7 channels and stride 1 stands out as being the only one finding some of the parts closest to Aorta in
RCA.
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(a) 1 channel and 1 stride

(b) 3 channels and stride 1 (c) 3 channels and stride 2 (d) 3 channels and stride 5

(e) 5 channel and stride 1 (f) 5 channels and stride 2 (g) 5 channels and stride 5

(h) 7 channels and stride 1 (i) 7 channels and stride 2 (j) 7 channels and stride 5

(k) 9 channels and stride 1 (l) 9 channels and stride 2 (m) 9 channels and stride 5

Figure 4.1: A visualization of prediction with the best raw dice score for the BVNet model with all the different channels and
stride, where the prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN. Some of the subfigure are
captured at different levels of zoom.
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4.1 Experiment 1: Channels and Stride

(a) 1 channel

(b) 3 channels and stride 1 (c) 3 channels and stride 2 (d) 3 channels and stride 5

(e) 5 channels and stride 1 (f) 5 channels and stride 2 (g) 5 channels and stride 5

(h) 7 channels and stride 1 (i) 7 channels and stride 2 (j) 7 channels and stride 5

(k) 9 channels and stride 1 (l) 9 channels and stride 2 (m) 9 channels and stride 5

Figure 4.2: A visualization of prediction with the worst raw dice score for the BVNet model with all the different channels and
stride, which is not on the same input image for all of the models. The prediction is color-coded with blue=TP, green=FP, and
red with low opacity=FN. Some of the subfigure are captured at different levels of zoom.
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4.2 Experiment 2: BVNet
For this experiment, the BVNet will be tested on three different splits for the coronary artery, Aorta, and the portal
vein as described in subsection 3.4.2.

4.2.1 Coronary Artery
Table 4.2 contains the different dice scores from the dataset splits, where all the splits have a mean over 0.5, which
is quite high. Another observation is that all the splits have a similar maximum Diceraw score, but there are some
large differences between the splits, such as split-0 having the smallest minimum Diceraw of 0.233 and split-2
having the largest minimum Diceraw of 0.547. In section B.1 is the tables of the dice score, recall, and precision
for each test image for all of the splits, which shows that the precision is in most cases higher than the recall.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.233 0.223 0.445 0.444 0.547 0.548
Max 0.774 0.795 0.781 0.784 0.803 0.81
Mean 0.54 0.545 0.622 0.642 0.686 0.694

Table 4.2: The dice score of the different splits of the coronary artery using the BVNet model.

Figure 4.3 shows the best Diceraw prediction of the splits and the post processed version. The split-0 prediction
is unconnected in the left branch in the LM, where it branches into the two main branches. The FP in this prediction
has some quite big FP without the tubular structure and some other making the smaller arteries longer. In this case,
post processing helps split-0 by removing some of the FP.

Similar to split-0, the post processing helps split-1 by removing most of the FP not connected to the RCA or
the LM. In split-1 most of the ground truth in the main branches of the RCA and the LM is found. There is a small
gap in the curved area in the left main branch of LM. In this prediction is almost none of the smaller arteries found.

The best prediction for split-2 distinguishes from the best predictions from the other two split with having few
FP around RCA and LM. Instead, some of the FP is connected to the TP, which in some cases extending the branch
length.

Figure 4.4 shows the worst raw prediction of the splits and that prediction after the post processing step. It
shows that none of the split has predicted the connection point to aorta correctly. Another thing the splits have
in common is that they have a lot of gap between the TP, which makes some of the TP connected components
very small. The split-1 has a lot more FP than the other two. The FP does not have a tubular structure and is not
connected to either the RCA or the LM. The post processing step in split-1 is both removing some FP and a lot of
the TP in LM. The split-1 has almost none of the TP in the right branch of LM and the RCA has large gaps. The
split-2 consists of large TP connected components. It has some large gaps in the connects part of the branches in
the LM and FN, where the thin branches curves. The split-2 is the split with the least amount of FP.

In the CT slices of the best and worst raw prediction shown in Figure 4.5 are the worst CT slices darker than
the best. The FN is in the darker part. The slice 237/316 in the worst prediction have some FP at the bones. The
CT slices in section B.1 have, in most cases, low contrast where the FN is located, and there is some intensity
difference between the different test images.

The graphs from Figure 4.6 show a similar evolution for the splits. There is a large difference between the
training and validation values for the dice score and the loss. The validation values contain many spikes, and the
training values has a stable evaluation for both the dice score and loss. The training loss is smallest for split-2, with
values around 0.1. The split-2 trains for almost 15 epochs longer than split-0, which has the largest loss. Split-0
flattens around 0.35 and split-1 flattens around 0.3. The validation loss for split-1 is the one that is closest to the
training loss with a difference around 0.25. The dice score of split-0 is almost the same as the validation dice score
for split-2, except for some spikes. The split-0 validation loss has a large variation in the spikes.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.3: A visualization of the prediction of the coronary artery with the best raw dice score for the BVNet model with 5
channels and stride 1 where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.4: A visualization of the prediction of the coronary artery with the worst raw dice score for the BVNet model with 5
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.5: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the coronary artery
splits, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Figure 4.6: A graphs of the dice score and loss over the epochs for the different splits on the BVNet model with the coronary
artery label.
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4.2.2 Aorta
In the Table 4.3 are the different dice scores of the splits, which are very high. There are not huge differences
between the minimum and maximum Diceraw score, except for the split-0, where the difference is 0.277.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.682 0.728 0.798 0.8 0.91 0.923
Max 0.959 0.963 0.933 0.939 0.969 0.985
Mean 0.909 0.919 0.885 0.926 0.944 0.959

Table 4.3: The dice score of the different splits of the Aorta using the BVNet model.

The visualization of the best raw prediction is shown in Figure 4.7. The FP in split-1 and split-2 have some
connected components around the Aorta, which are removed by the post processing step. All the predictions have
FP in the bottom part of the Aorta and FN, where it branches into RCA and LM. The split-0 prediction has some
FP in the back part as well.

(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-1: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.7: A visualization of the prediction of the Aorta with the best raw dice score for the BVNet model with 5 channels
and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN.

The worst raw prediction is shown in Figure 4.8. The split-0 prediction is missing the bottom part and has
some FP connected to the TP and around the Aorta, forming a tubular structure.
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In split-1 there is almost none FN, but it has some large FP predictions around the Aorta, which are removed
by the post processing.

The ground truth of split-2 distinguishes from the rest of the ground truth by containing some clumps connected
to the Aorta, which was predicted to be FN. Most of the FP is connected to the bottom part of the Aorta. The post
processing step is removing the FP not connected to the Aorta.

(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.8: A visualization of the prediction of the Aorta with the worst raw dice score for the BVNet model, where the row is
the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.

The CT slices in Figure 4.9 show the best and worst raw prediction on these slices. The FP in Figure 4.9a) is
either in the slices not containing any ground truth with similar intensity or as a part of the correct predicted Aorta.
The Figure 4.9 b) shows that the FP is on another circular shape at the CT slice, which looks like a large vessel
close to the spine. The ground truth from section B.2 shows that slices, where the Aorta has a more circular shape,
have less FN.

Evaluation of the dice score and loss is similar for the different splits, as shown in Figure 4.10. All the training
losses increase and flatten out to around 0.1 already in epoch 15. The validation loss contains small spikes after
epoch 15, which is around the value 0.6. Split-1 is training longer than the other splits. The validation dice score
of split-1 is the only one that distinguishes from the rest by having greater spikes in the interval of values around
(0.5, 0.7).
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(a) Best Prediction

(b) Worst Prediction

Figure 4.9: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the Aorta splits, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure 4.10: A graphs of the dice score and loss over the epochs for the different splits of Aorta using the BVNet model.
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4.2.3 Portal Vein
In the Table 4.4 is a summary of the dice score of the portal vein, where split-2 has a very similar minimum and
maximum dice score. The split-1 differences from the other two by having a difference between the minimum and
maximum of 0.256. All the splits have a relatively low dice score on the two test images from the different splits.
The recall and precision results have a lot of variation between each test image, as shown in section B.3, where the
recall in most cases is higher than the precision.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.244 0.261 0.141 0.128 0.356 0.371
Max 0.323 0.332 0.406 0.423 0.362 0.368
Mean 0.284 0.296 0.274 0.275 0.359 0.369

Table 4.4: The dice score of the different splits of the portal vein using the BVNet model.

A visualization of the best raw prediction of the two test images is shown in Figure 4.11. The predictions of
split-1 and split-2 are most of the thickest part of the portal vein found. In these splits are many of the FP formed
as vessels or clumps. The post processing step does not remove these NP because of there size. The majority of
the FN is in the smaller veins. The prediction of split-2 also contains a lot of TP in the bottom part and FP, mostly
located in the top area.

In the prediction of split-1 is almost all of the ground truth found in the upper part. The prediction also consists
of some large clump formed FP in the bottom part and some around the smaller veins in the top part. Most of these
FPs are removed in the post processing step together with the TP in the bottom part.

In Figure 4.12 are the worst raw predictions of the portal vein splits. The split-0 prediction has few TP and a
lot of FP, which is located in the top part. There are few TP and FP in the split-0 prediction, and the existing TP
are in the smaller veins. The prediction of split-2 differences from the others splits by founding a lot of the ground
truth. Most of the FP is located close to the TP veins, and the FN is mainly located in the smaller veins endpoint.

The Figure 4.13 shows the best and worst prediction on the different splits of the portal vein on the correspond-
ing CT slice. Both the best and worst do not find the part of the portal vein inside the liver. The worst is predicting
some of the other vessels instead, which is also the case in most of the other predictions in the different splits on
the corresponding CT slice, shown in section B.3.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.11: A visualization of the prediction of the portal vein with the best raw dice score for the BVNet model with 5
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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4.2 Experiment 2: BVNet

(a) Ground Truth (b) Post Prossesed

(c) Ground Truth (d) Prediction (e) Post Prossesed

(f) Ground Truth (g) Prediction (h) Post Prossesed

Figure 4.12: A visualization of the prediction of the portal vein with the worst raw dice score for the BVNet model with 5
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.13: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the portal vein splits, where
the corresponding Prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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The training performance is shown in Figure 4.14. There is a gap between the training and validation results
in both the dice score graphs and the loss graphs. In the dice score graphs is the evaluation similar for all the
splits, except the validation of split-1, which contains some large spikes in the end. The training loss has a stable
decrement that flattens out around 0.55, and the validation loss for split-0 and split-2 is quite unstable with large
spikes. The validation loss for split-1 is different with having values around 0.95 with some minor spikes resulting
it to training longer than the others.

Figure 4.14: A graphs of the dice score and loss over the epoches for the different splits of portal vein on the BVNet model.

43



Chapter 4. Result

4.3 Experiment 3: BVNet3D
In experiment 3, the BVNet3D model is trained on the coronary artery, Aorta, and portal vein in order to find the
advantages and disadvantages of the model described in subsection 3.4.3.

4.3.1 Coronary Artery
In Table 4.3 are the different dice scores of the different splits. There is a great variation in the minimum and
maximum Diceraw score for each of the splits. The split-0 and split-2 have a difference between 0.228 in the
minimum value, where split-2 has the greatest minimum value. The recall and precision values found in section C.1
indicate that the model is finding more of the TP with the cost of having more FP because the recall is higher than
the precision.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.185 0.182 0.302 0.32 0.413 0.448
Max 0.667 0.713 0.73 0.814 0.7 0.723
Mean 0.444 0.472 0.48 0.52 0.519 0.55

Table 4.5: The dice score of the different splits of the coronary artery using the BVNet3D model.

The best raw predictions of the different splits are shown in Figure 4.15. All the predictions contain few FN,
where some are located in the connection point to Aorta and others in the thin branches. A common factor in
these predictions is a lot of FP is located around the coronary artery. Some of these FPs are removed in the post
processing step.

In Figure 4.16 is the worst raw prediction of the coronary artery from the different splits. In these results are
split-0 different from the other splits, because it has few TP. The FP in this prediction has a tubular structure, which
makes it look like vessels. In split-1 is some of the FP looking like bones in the form of ribs. It contains few FN,
and most of the TP is connected to either RCA or LM. In this case, the RCA is very small with long and thin
branches. The split-2 prediction has almost none FN, but some of them are in the area where the coronary artery
connects to the Aorta. This prediction contains many FP, which is not connected to RCA or LM without a tubular
structure.

In Figure 4.17a) is the best raw prediction on the corresponding CT slices, which contains mostly TP. It has
some FP in slice 97/293 located close to some of the bones. The FP in slice 219/293 is around the Aorta. In
Figure 4.17b) is the worst raw prediction, which has a lot of FN and some FP.

A huge gap between the training and validation loss can be observed in Figure 4.18. The validation loss has
values close to 0.95 for all the splits, and the training loss decreases to values between 0.6 and 0.4 for the different
splits. The gap between the training and validation dice score is around 0.15, which is moderate. There is a
difference in the dice score between split-0 and split-1 at almost 0.2.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.15: A visualization of the prediction of the coronary artery with the best raw dice score for the BVNet3D model,
where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.16: A visualization of the prediction of the coronary artery with the worst raw dice score for the BVNet3D model,
where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.17: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the coronary artery
splits, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Figure 4.18: A graphs of the dice score and loss over the epochs for the different splits on the BVNet3D model with the
coronary artery label.
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4.3.2 Aorta
In Table 4.6 is a summary of the test result of the different splits, which shows that all the splits have similar mean
values. The split-0 and split-1 have similar minimum dice score values, and the split-1 and split-2 have similar
maximum dice score values. The tables in section C.2 contains all the individual test results from the splits, which
shows that the majority of the results is closer to the minimum dice score value. This draws down the mean dice
score even though it has the greatest maximum value of the splits. The mean recall is high, and the mean precision
is low for the splits.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.368 0.369 0.367 0.367 0.44 0.443
Max 0.742 0.781 0.653 0.661 0.659 0.661
Mean 0.492 0.505 0.515 0.521 0.572 0.593

Table 4.6: The dice score of the different splits of the Aorta using the BVNet3D model.

A common factor of the best raw predictions and the worst raw prediction is that they contain a lot of large FP
connected components.

In the first row in Figure 4.19 are there many FN in the bottom part and some small FP. One of the FP is
forming a large tubular structure with some missing pieces. The second row has almost none FN, and the FP has a
large tubular structure shape, which looks like a large artery or vessel. In the last row is the best raw prediction of
split-2, which is having a lot of FP with a more cubical structure. The post processing is not making a significant
improvement of the best prediction for split-1 and split-2.

Like mention above the worst raw predictions of the different splits contains lots of FP, as shown in Figure 4.20.
The Aorta is found in all the worst raw predictions of the splits with some FP extending its structure. The majority
of the FP is located around the Aorta in a cubical form with some flat sides.

The worst raw prediction on the corresponding CT slice is shown in Figure 4.17, which have some FP parts
consisting of straight lines starting to form a square. The general representation from section C.2 shows that most
of the predictions detect some part of the large artery/vessel laying close to the spine and some of the sides are put
orthogonal on each other.

The Figure 4.22 shows all the training and validation results of both the dice score and the loss, where the
training results have a stable evaluation that flattens out after epoch 15. The decrement in the loss does not seem
to affect the validation loss of the splits, which has values around 0.95 during training. The dice score of the
validation have some instability in the form of large spikes, but all are increasing and have values around 0.55 after
epoch 15. An interesting observation is that the top value of the spikes in the validation dice score of split-2 is very
close to the training dice score for the given epoch.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.19: A visualization of the prediction of the Aorta with the best raw dice score for the BVNet3D model, where the row
is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.20: A visualization of the prediction of the Aorta with the worst raw dice score for the BVNet3D model, where the
row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.21: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the Aorta splits, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure 4.22: A graphs of the dice score and loss over the epochs for the different splits on the BVNet3D model with the Aorta
label.
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4.3.3 Portal Vein
In the Table 4.7 is a summary of dice score from the different splits. As mention earlier has each test split two
samples, which means that the result below is of the hole test split. The table shows some difference in the dice
score between the splits. The recall and the precision values are mostly the same, which are around 0.4, but in
some cases are the precision better than recall like the 3Dircadb1.9 test image from split-1 shown in section C.3.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.476 0.485 0.533 0.529 0.365 0.359
Max 0.477 0.517 0.678 0.663 0.481 0.494
Mean 0.476 0.501 0.606 0.596 0.423 0.427

Table 4.7: The dice score of the different splits of the portal vein using the BVNet3D model.

The best raw predictions are shown in Figure 4.23. All the splits have TP in the midsection of the portal vein,
which is the largest part. The split-0 prediction has some trouble finding the smaller veins and has almost only NP
in the bottom. The existing TP is in the lower area, which is removed by the post processing step. In the top part is
some of the smaller veins found. In split-1 is most of the ground truth found except the smaller veins. It has some
gaps in the lower part of the portal vein. The smaller veins in split-1 are not as long as the one in split-0.

The split-2 ground truth distinguishes from the other two with almost having none smaller veins. The FN is
mainly located where the veins branches out and in some of the endpoints. All the splits have some FP, but they
are less than the FN.

Most of the worst raw predictions are finding a major part of the portal vein with some small differences, as
shown in Figure 4.24. This makes some of them have a similar dice score to the best raw predictions. The worst
raw prediction of split-0 is having a couple of FP formed as veins close to the TP. The lower part of the portal
vein is having some FN close to where the largest vein branches out at the endpoints without creating gaps. The
majority of the FN is in the upper half of the portal vein, where the smallest vein should have been.

The split-1 prediction has almost not found any of the smaller veins and has some connected components of
FP, where the post processing step removes most of them. Most of the TP is connected together expect some parts
of the smaller veins. The post processing also removes these parts.

The split-2 has the worst raw prediction, which has fewer TP. These TPs consists of three large connected
components in the largest vein and some small TP in the smaller veins. The majority of FP consists of three
connected components with some tubular structure not connected to the portal vein. The post processing step
removes the TP and FP in the smaller veins.

In Figure 4.25 is the best and worst raw prediction on the corresponding CT image. In general, is it hard to
see some of the ground truth in a) because it has a similar intensity to the liver tissue. The slice112/151 in Fig-
ure 4.25b) shows that some of the FP, FN, and TP can be distinguished from the liver, but it is difficult to separate
them because they all have similar intensity.

Figure 4.26 shows some variation in the training performance. The split-2 has the lowest validation loss and
the highest training loss of the splits, and only trains for almost 35 epochs, which means that the weights used for
testing were from around epoch 10. There is not that most none variation in the validation loss.

All the splits had validation loss values close to 1 with some minor spikes. Another observation is that there is
almost 0.2 difference between the training loss values between split-1 and the others.

In the first to the tenth epochs are there some huge spikes from split-1 and split-2 in dice score for the valida-
tions. Afterward is the split-0 and split 1 having a similar evaluation with smaller spikes around the 0.8 value. The
splits continue with some smaller spikes around the 0.65 value. The training dice score has a stable increment to
the tenth epoch, where the split-0 and split-2 flatten out around 0.4 and split-1 around 0.5.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.23: A visualization of the prediction of the portal vein with the best raw dice score for the BVNet3D model, where
the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.24: A visualization of the prediction of the portal vein with the worst raw dice score for the BVNet3D model, where
the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.25: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the portal vein
splits, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Figure 4.26: A graphs of the dice score and loss over the epochs for the different splits on the BVNet3D model with the portal
vein label.
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4.4 Experiment 4: SegCaps
In this section is the result of experiment 4, where SegCaps is used for segmenting the coronary artery, Aorta, and
portal vein.

4.4.1 Coronary Artery
Table 4.8 is a summary of the dice score of the different splits. The variance between the minimum and maximum
dice score from the different splits is around 0.2. This is almost the same as the variance between split-1 dice
scores and the rest of the splits dice scores in Table 4.8.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.46 0.48 0.262 0.294 0.439 0.449
Max 0.77 0.801 0.486 0.501 0.667 0.679
Mean 0.599 0.617 0.365 0.392 0.578 0.593

Table 4.8: The dice score of the different splits of the coronary artery using the SegCaps model.

Figure 4.27 is showing the best raw predictions of the different splits. In the first row is the best raw prediction
of split-0, where the TP contains large connected components. In this prediction is most of the RCA found with
some FP forming parts of a small artery close to the first curve. The rest of the FP is very small and laying close to
the coronary artery except for two large clump formed connected components.

The best raw prediction of split-1 did find most of the RCA but had a gap after the first out branching and is
not finding any of the smaller arteries. The left main branch of LM is having a lot of FN, and the TP is mostly tiny
connected components. One of the parts not found in LM is where it branches into the two main branches. The FP
consists mainly of many small parts close to each other. The post processing step removes almost all of the FP and
some TP.

The best prediction of split-2 have almost none FN, and the existing ones are in the LM, where it connects to
Aorta area and the smaller arteries. One of the connected components of the FP is a long curved tubular structure
and some others being smaller tubular structures or small noisy parts. The post processing steps remove the noisy
parts.

The worst raw predictions of the splits are shown in Figure 4.28. These predictions distinguish from the best
raw predictions with having a lot more FP and more gaps between the TP, which is best illustrated by the worst
raw prediction of split-2.

In Figure 4.29a) is the best raw prediction on corresponding CT slices, which contains almost none FP. On slice
306/409 is there a thin and small FN located close to the TP. In b) are the worst raw prediction, which contains
few TP and many small FP. The FP is mostly located around bones.

Figure 4.30 is showing the evaluation of the training performance of the dice score and the loss. An observation
is that there is a small gap between the training and validation for the different splits. The split-0 has the lowest
loss and the highest dice score, and the split-1 has the highest loss and lowest dice score. The difference between
split-0 and split-1 is around 0.2 for both the dice score and the loss. During the training are the splits having a
stable evaluation of the loss and the dice score, which flattens around epoch 15. The validation evaluation contains
some minor spikes for both the loss and the dice score. Another observation is that the validation dice score is a
bit lower than the training dice score for all the splits.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.27: A visualization of the prediction of the coronary artery with the best raw dice score for the SegCaps model with 1
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.28: A visualization of the prediction of the coronary artery with the worst raw dice score for the SegCaps model with
1 channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red
with low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.29: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the coronary artery
splits, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Figure 4.30: A graphs of the dice score and loss over the epochs for the different splits on the SegCaps model with the coronary
artery label.
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4.4.2 Aorta
Table 4.9 is a summary of the dice score of the different splits of Aorta. The result of split-0 and split-2 is similar
with both having dice score 0 after post processing. The split-1 of the other hand has a maximum Diceraw score,
which is almost 0.3 higher than the other two splits.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.102 0.0 0.196 0.217 0.047 0.0
Max 0.353 0.387 0.668 0.688 0.335 0.353
Mean 0.212 0.207 0.43 0.446 0.238 0.235

Table 4.9: The dice score of the different splits of the coronary artery using the SegCaps model.

The best predictions of each of the splits are shown in Figure 4.31. Both the best raw prediction from split-0
and split-2 have a lot of FP in most of the tissue close to the Aorta, which creates a large connected component.
This connected component does contain some of the TP as well. Some of the FP looks like arteries/vessels or some
part of the heart.

Most of the split-2 prediction consists of the Aorta and a large artery/vessel. All of the predictions have in
common that they have some FN in the outer layer of the Aorta.

All the worst prediction of the splits is shown in Figure 4.32. The worst prediction of split-1 is similar to the
best prediction of split-0 and split-2 with containing some part of the heart, a tubular structure as part of the Aorta,
and having the outer layer of the Aorta not being predicted. The post processing step removes the tubular structure
prediction.

The worst prediction of the split-0 and split-2 is similar with predicted most of another shape as Aorta, which
has some kind of tubular structure. The TP part is so small that it is removed in the post processing step in these
two predictions.

The rest of the best and worst raw predictions of the different splits on some of the corresponding CT slices in
section D.2 shows that some of the FP are in general located at the bones. In most of these cases is the Aorta found
with some FP of similar intensity laying around it.

The graph of the training performance for each split is shown in Figure 4.34. An interesting observation is
that the validation loss is much smaller than the training loss. The validation loss has a more unstable evaluation
caused by some spikes. The split-2 validation is the one with the largest spikes, which is in the interval (3.5, 5).
The training loss is quite similar between the splits, but the split-1 is a little bit lower and stops training around the
35 epoch. All the dice score values flatten out around epoch 15. The validation splits are containing some minor
spikes. The training dice score is higher than the validation dice scores, with the split-1 having the highest values.

Figure 4.33 shows the best and the worst raw prediction on some of the corresponding CT slices of the splits.
In Figure 4.33a) is a lot of the ground truth found except the ones in the outer layer. The rest of the slices shown
of the best raw prediction contains a lot of FP at a circular shape close to the spine. Figure 4.33b) is almost none
of the ground truth found, and most of the FP is located at the bones.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.31: A visualization of the prediction of the Aorta with the best raw dice score for the SegCaps model with 1 channels
and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.32: A visualization of the prediction of the Aorta with the worst raw dice score for the SegCaps model with 1
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.33: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the Aorta splits, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red=FN
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Figure 4.34: A graphs of the dice score and loss over the epochs for the different splits on the SegCaps model with the Aorta
label.
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4.4.3 Portal Vein
A summary of the dice score of the different splits is found in Table 4.10, which shows that the dice score is low
for all the splits.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.038 0.05 0.021 0.018 0.043 0.045
Max 0.049 0.053 0.114 0.053 0.077 0.083
Mean 0.044 0.052 0.067 0.035 0.06 0.064

Table 4.10: The dice score of the different splits of the portal vein using the SegCaps model.

The visualization of the best raw prediction of the splits are shown in Figure 4.35 and the worst raw in Fig-
ure 4.36. All of these predictions have in common that they contain a lot of FP formed as kidneys, liver, or vessels.
In the best raw predictions are some of the portal vein found with a lot of FP connected to them. The best raw
visualization of split-1 and split-2 are most of the TP in the lower part removed by the post processing.

The worst raw predictions of all the splits have detected the perimeter of the liver shown in Figure 4.37b). The
general pattern from the rest of these slices, found in section D.3, is that these models predict almost all of the liver
tissue to be the portal vein. This is resulting in a lot of FP connected to the TP. In Figure 4.37a) are some of the FP
in the vessel area, but the majority is in the kidneys.

The training preforming graphs in Figure 4.38 shows that there is almost none evolution during the training,
except for the dice score of split-1. This split has some spikes in the beginning and flattens out around the 0.2
value, where the rest of the splits have values close to 0. The validation results for all of the splits have almost the
same value as the split-0 and split-2.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.35: A visualization of the prediction of the portal vein with the best raw dice score for the SegCaps model with 1
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.

70



4.4 Experiment 4: SegCaps

(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.36: A visualization of the prediction of the portal vein with the worst raw dice score for the SegCaps model with 1
channels and stride 1, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN.
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(a) Best Prediction

(b) Worst Prediction

Figure 4.37: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the portal vein splits,
where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Figure 4.38: A graphs of the dice score and loss over the epochs for the different splits on the SegCaps model with the portal
vein label.
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4.5 Experiment 5: Frangi Filter
This experiment consists of two parts, as described in subsection 3.4.5. The first part is using Frangi filtered CT
images as input to the BVNet model, and the second part is to use a combination of CT and Frangi filtered images
as input to the BVNet model.

4.5.1 Frangi Input
The Table 4.11 shows a huge difference in the minimum and maximum dice score for each of the splits. The
split-0 and split-1 have minimum Diceraw around 0.03, which means that these predictions almost did not find any
ground truth or have a lot of FP. The tables from section E.1 shows a great variation in the dice score for each of
the test images, which means that there are a lot of both very low and relatively high dice scores.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.033 0.031 0.014 0.009 0.225 0.232
Max 0.636 0.648 0.493 0.49 0.611 0.609
Mean 0.258 0.267 0.297 0.312 0.443 0.473

Table 4.11: The dice score of the different splits of the coronary artery using the BVNet model with input of Frangi filtered CT
images.

The Figure 4.39 shows the best raw predictions for each split. The best raw prediction for split-0 have a few
gaps in the smaller arteries of the LM. The post processing step removes most of the TP in the smaller arteries not
connected to the main branch.

Both in the RCA and LM is the connection to Aorta predicted as NP. The RCA prediction contains a huge gap
in the main branch, where it curves.

The split-1’s best raw prediction is the one with most FP, which is located around the coronary artery with a
tubular structure. Both split-1 and split-2 prediction is finding most of the main branches and having a lot of FN in
the smaller branches. The FP in split-2 is mainly consisting of small tubular structure around the coronary artery,
where the post processing removes most of them. The RCA’s connection to the Aorta is extended with a couple of
FP for split-2.

The worst raw prediction of the splits is shown in Figure 4.40. The two first splits have almost none TP and
have few FP. The split-2 differences with predicting most of the left main branch in LM correct and having some
TP in RCA. This prediction has a lot of FP next to the coronary artery.

The best and the worst raw prediction of the splits on some of the corresponding Frangi filtered CT slices is
shown in Figure 4.41. The NP is located in some of the low intensity areas of the slices. An observation is that
both the best and the worst prediction slices have higher intensity at the other vessels.

The Figure 4.43 shows the evaluation of the dice score and loss during training for the splits. All of the splits
have almost the same dice score and loss values, which have a stable evaluation that flattens out around epoch 15.
The validation dice score and loss contains large spikes for all the splits. The split-2 had a validation loss minimum
around the value 0.6, which is smaller than the minimum loss value of the others.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.39: A visualization of the prediction of the coronary artery with the best raw dice score for the BVNet model with
Frangi filtered CT images as input, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP,
and red with low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.40: A visualization of the prediction of the coronary artery with the worst raw dice score for the BVNet model with
Frangi filtered CT images as input, where the row is the different splits. The prediction is color-coded with blue=TP, green=FP,
and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure 4.41: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery splits with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction is color-
coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure 4.42: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the
coronary artery splits with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction
is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure 4.43: A graphs of the dice score and loss over the epochs for the different splits of the coronary artery on the BVNet
model with Frangi filtered CT input
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4.5.2 Combined CT and Frangi Input
Table 4.12 consists of a summary of the dice score of the BVNet model with combined CT and Frangi input for
each of the splits. The tables in section E.2 consist of the individual test image results of each of the splits, which
is used to create Table 4.12.

Split-0 Split-1 Split-2
Diceraw Dicepost Diceraw Dicepost Diceraw Dicepost

Min 0.332 0.324 0.518 0.529 0.521 0.52
Max 0.821 0.85 0.809 0.806 0.759 0.753
Mean 0.555 0.558 0.646 0.667 0.645 0.654

Table 4.12: The dice score of the different splits of the coronary artery using the BVNet model with combined input of CT and
Frangi filtered CT images

Figure 4.44 shows the best raw prediction for each of the splits. Split-0 and split-1 are finding most of the
ground truth except for the ones in the smallest arteries. This makes most of the TP connected in both the RCA
and LM. These two splits have few FP, but the existing ones are either connected to or around the coronary artery.

The split-2 prediction contains more FP and FN than the other two splits. The RCA ground truth is only
predicted in the main branch, and LM have FN in the smaller arteries and in the connection to the Aorta. There
are some FP connected to LM, creating a smaller artery on the left main branch. Most of the FP are around the
coronary artery. The post processing removes some of the TP in the smaller arteries.

Figure 4.45 is showing the worst raw predictions of the splits. The split-0’s worst prediction have found most
of the RCA. A majority of the FN is in the starting point of the RCA for this prediction. The predicted LM has
a lot of small connected TP, which is creating some gaps. The FP in this prediction consists mainly of tubular
structures close to the RCA. The worst raw prediction of split-1 is finding most of the LM, but very few of the
smaller arteries. The RCA is missing some parts, which is creating some large gaps. Most of the FP is connected
with the TP.

The split-2 worst raw prediction distinguishes from the other to with having a lot of FP around the coronary
artery. The TP is mainly in the main branches, and the FN is mostly in the last part of the smaller arteries in LM.
There are also some gaps, where the LM branches out to smaller arteries.

Both in Figure 4.46 and Figure 4.47 shows that the majority of the NP is in areas with low intensity in the
Frangi filtered CT image. This is a general pattern in the rest of the best and worst predictions found in section E.2.

The training performance is shown in Figure 4.48. Both the dice score and the loss for the splits have a stable
evaluation. The validation loss for the splits contains some spikes and has values around 0.65 after epoch 15. The
split-2 has its lowest validation loss around epoch 15, which makes it stops the training earlier than the other two.
The validation dice score for split-0 has smaller spikes than the other two, which makes the evaluation more stable.
The split-1 have a little bit lower validation dice score. There is a gap between the training and validation results
during the training.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.44: A visualization of the prediction of the coronary artery with the best raw dice score for the BVNet model with
combined input of CT and Frangi filtered CT images, where the row is the different splits. The prediction is color-coded with
blue=TP, green=FP, and red with low opacity=FN.
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(a) Split-0: Ground Truth (b) Split-0: Prediction (c) Split-0: Post Processed

(d) Split-1: Ground Truth (e) Split-1: Prediction (f) Split-1: Post Processed

(g) Split-2: Ground Truth (h) Split-2: Prediction (i) Split-2: Post Processed

Figure 4.45: A visualization of the prediction of the coronary artery with the worst raw dice score for the BVNet model with
combined input of CT and Frangi filtered CT images, where the row is the different splits. The prediction is color-coded with
blue=TP, green=FP, and red with low opacity=FN.

82



4.5 Experiment 5: Frangi Filter

(a) Prediction on CT slices

(b) Prediction on Frangi filtered CT slices

Figure 4.46: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery splits with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on CT slices

(b) Prediction on Frangi filtered CT slices

Figure 4.47: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the coronary
artery splits with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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Figure 4.48: A graphs of the dice score and loss over the epochs for the different splits of the coronary artery on the BVNet
model with combined CT and Frangi filtered CT input
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Chapter 5
Discussion

This chapter discusses the result from chapter 4, and attempts to answer the research questions. It begins with
the Channel and Stride experiment, which includes a discussion of what characteristics of the predictions are most
important for the FFR-project. Next, the benefits and disadvantages of the models BVNet, BVNet3D, and SegCaps
will be discussed in distinct sections. The following section contains a discussion of the usage of Frangi filter with
the BVNet model. The chapter finishes with a reflection about what could have been done differently in this thesis.

5.1 Channels and Stride
Before suggesting an answer to RQ1 with the optimal number of channels and stride for improving the BVNet
model understanding of the predicted slices surroundings, there needs to be a discussion of what the optimal pre-
diction is. As explained in the motivation, the prediction results need to be good enough to be used with fluid
dynamics in order to measure the FFR automatically. To be able to do that, the predictions of the coronary artery
need to be connected without gaps and without FP on the inner radius of the arteries. The small connected compo-
nents of FP around the coronary artery are not important. Because they can be removed by using a more strict post
processing, which only keeps the two largest components. Most of the worst predictions from experiment 1 have
few TP, which makes the models in this experiment unsuitable for the FFR project without any further development.

The huge difference in the minimum and maximum dice score may be a result of overfitting. Another reason
could be that the image with the minimum dice score is an edge case, but to be sure the experiment should have
been tried out with more splits. The difference between the minimum and maximum dice score can probably
be reduced by applying data augmentation or adding more images to the dataset. The data augmentation should
include minor intensity and contract changes or other characteristics, which would make the model more invariant
against small changes in the dataset.

The usage of stride 2 increases the dice score for some of the models. The reason why this is not true for
all models may be that these models may have gotten stuck in a local minimum during training. This may be an
effect of some of the random events during training. The random events consist of shuffling at the beginning of
each epoch or the random weights it is initialized with. A way to help the model to generalize is to test different
learning rates, and perhaps add a learning scheduler.

The results of experiment 1 has few patterns, but one pattern is that the models with more channels have a better
connection between the TP components and sometimes contain more noise. The results show that an increment in
the number of channels sometimes result in a smaller difference between the minimum and maximum dice score if
the model with 9 channels and stride 2 is not included. The result of 9 channels and stride 2 is most likely a result
of the model getting stuck in a local minimum, which is probably caused by some of the random events mentioned
earlier. This could also be the case of 5 channel and stride 2. Because it does not have the same pattern as the
3 and 7 channels with stride 2, where the dice mean dice score is a little better with stride 2 than stride 1 and 5.
However, to be certain more testing is needed.

There are some minor differences in the number of FP and TP in the worst predictions. The model with
7 channels and stride 1 is the only one that finds almost the entire main branch of RCA and most of the LM
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with some gaps. The model with 3 channels and stride 5 and the model with 7 channels and stride 2 have a
similar prediction of LM, which finds a lot of the ground truth with a lot of small gaps. This may indicate that a
combination of increasing the channel size and stride may reduce the gaps. Because this pattern does not fit all
cases, more testing needs to be done to be sure.

From this experiment, the model with 7 channels and stride 2 has the predictions closest to the optimal predic-
tion because it has the second highest mean Diceraw score and the highest mean Dicepost score with smaller gaps
between the TP. The model with 5 channels and stride 1 has the highest mean Diceraw score but contains larger
gaps between some of the TP. The model with 5 channels and stride 1 has used in the other experiments because it
has a lower computational cost than the model with 7 channels and stride 1.

To summarize the result from section 4.1 shows that the mean dice score will increase if more than 1 channel is
used. By increasing the channel size and stride will the gaps between the TP become smaller in some cases. This
is most likely caused by the model getting more context of the predicted slice surroundings. None of these models
are good enough to be used with fluid dynamics to measure the FFR automatically without further development,
because there is a lot of gaps between the TP.

5.2 BVNet
This section will explore RQ2 by discussing the result from section 4.2. The result shows a big difference between
the minimum and maximum dice score for all of the splits. As mention earlier, this could be a result of some image
characteristics being underrepresented in the training set. Contrast variation is such a characteristic, which could
make some of the smaller arteries harder to separate from its surrounding. The smaller arteries have some variation
in the form of location and structure as well, which is another reason why they are a difficult target to predict.

A lot of the predictions contained some gaps in the larger arteries, which is unexpected because of the size but
could be caused by a stenosis. The gaps before the out-branching may be an effect of these splits taking various
forms, and the contrast could make it hard to find. The contrast problem may be solved by changing the Hounsfield
window and level, which will involve finding the general intensity range of the coronary artery.

Another problem with this model is that it almost always has problems finding the right amount of ground truth
where the connection to the Aorta starts for the coronary arteries. This may be a result of the labeling not being
consistent in this area. In general, this model’s best prediction is quite good, as it does not contain many FP and
having a small amount of FN. The model is best at detecting the RCA of the coronary arteries. This may be a result
of the LM having more variation in the number of smaller arteries and the shape of the arteries. Another interesting
observation is that the split-0 Diceraw score is a bit lower than the result of experiment 1 with 5 channels and stride
1. The random events explained earlier, the learning scheduler or the batch size increment may have resulted in
the decrement of the dice score. Because of these instabilities, more testing is needed to be sure that the model is
not just unlucky with some of the random events.

The coronary artery segmentation predictions contain few FN and FP. The worst predictions from the different
splits have more FN and FP than the best predictions, which indicates that the model is not very robust against
changes. This could be fixed by analyzing the dataset further and applying some data augmentation to the under-
represented changes in the dataset. The contrast change which is done in the portal vein segmentation will most
likely help the st.Olav dataset by centralizing the training, which may make removing of the only background
slices unnecessary.

The minimum and maximum dice score of the Aorta segmentation is quite good for all the splits except the
minimum of split-0, which is missing most of the bottom part. The majority of the best result has almost all of the
FP connected to Aorta, and the ones not connected is removed by the post processing step. Most of the FN and FP
connected to the Aorta is in the lower end or the back. These results may be caused by the Aorta not having many
variations. One variation is that the surface can in some areas have a bulge. Another variation is at the end of the
Aorta, which sometimes has a clean cut. This may be one of the reasons why the model has problems detecting
these areas.

The predictions on the corresponding CT slices give us some information on the different contrasts and what is
wrongly classified. From these figures is it possible to observe that many of the FP are on the slices not containing
any Aorta masks. This means that the model wrongly predicts unseen slices, which is to be expected.

The result of the worst prediction of split-2 had some strange placed half ball ground truth close to the Aorta.
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The predictions are probably not too affected by these ground truth because they are only in a very small portion
of the dataset and that none of the seen predictions share these characteristics. The worst prediction of the split-0
may be a result of this, but it is more likely that it is a result of some uncommon structure, intensity, or contrast in
that image.

The segmentation of the portal vein has some variation in the splits. The 3Dircadb dataset only contains 20 CT
scans as mention earlier in chapter 3, which make this dataset more likely to overfit or underfit. The result is that
the validation and test split only contain two images each, which makes it hard to see general trends in the results.
This is most likely the reason why split-1 has very close maximum and minimum dice score.

Both the best and worst predictions show that the model has some problems with finding some of the lower
parts of the portal vein. The CT scans with the corresponding prediction slice may indicate these NP’s is in the
areas with low contrast or intensity. This may be caused by not choosing the best Hounsfield level and window,
which can be found by analyzing the CT images further and testing them with the model. This is probably the
reason why the worst prediction in split-0 has many FP looking like smaller veins only in the top area. Another
reason may be that the training images have too different characteristics from the validation and testing images.

From the training graphs of the coronary artery, Aorta, and portal vein, there is a difference between the vali-
dation and training result, as the training graphs is much better than the validation graphs. This is an indication of
overfitting. The reason why there is some variation between the splits may be that some splits have easier valida-
tion images, or by some of the random events mention earlier.

5.3 BVNet3D

The following discussion of the results from experiment 3 will provide an answer to RQ3.
The results of the portal vein segmentation have less FP than the coronary artery and Aorta segmentation. This

is probably because the ground truth of the portal vein is taking up more space in the CT images than the other
two, which is resulting in less removed patches for the portal vein. Both the result of the coronary artery and portal
vein have almost none of the smaller arteries/veins, which is a disadvantage for the BVNet model.

There is a large variation in the portal vein structure, which can be seen in the ground truth of the test images
from the different splits in chapter 4. Most of them have in common a larger vein in the middle, which may be
why the model leans this part best and have problem with the smaller veins. This problem can be solved by getting
more images or adding data argumentation.

The BVNet3D model is better than the BVNet model at finding more of the ground truth masks and making
fewer gaps in general. The BVNet3D model contains more FP than the BVNet model, which is most likely why it
has a lower dice score. Most of the FP is located next to the artery with some looking like ribs or another tubular
structure. The BVNet3D model has the same problem as the BVNet model with predicting the correct amount
of the connection to the Aorta, which could be the result of some inconsistency labeling in this area. The worst
prediction in split-0 is more or less the same for BVNet and BVNet3D, which indicates that this image is an edge
case of the dataset.

The training performance graphs show that the model is overfitting because there is a huge difference between
training and validation loss. The validation loss has values very close to 1 in all cases with some minor variation.
This means that most of the validation samples are very different from the ones used for training. This is correct
because all of the patches only containing background are removed in the training set.

In the case of Aorta, the dice score of the different splits become lower for BVNet3D than the BVNet model,
which may be the result of it having fewer patches samples to train on. The Aorta is a relative huge artery, but it
is only in a minor part of the CT images. This is probably the reason why the model has started to predict another
relative huge artery/vessel close to the spine, as it has a structure similar to the Aorta. The relative huge artery may
be predicted because the patches of this tubular structure look a lot like the other Aorta patches.

The major part of the FP is around the Aorta, and it is to be expected that the model wrongly predicts samples
it has not seen before. The partly cubic shaped predictions may be caused by the patch size of (64, 64, 64) not
being optimal. The reason may be that some of the Aorta ground truth is in the endpoints of the patches.
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A way to improve the model is to use overlapping patches for the training set. This will create more patches of
the different connections areas and greater variations on where the ground truth is located in the patches. Another
way is to add some previous and next patches as channels like done with slices for experiment 1, which helps the
model by giving more context to the predicted slice but with patches in this case. Another disadvantage with this
method will be the high computational cost.

5.4 SegCaps

In this section is some information on the SegCaps model discussed in order to answer the RQ4. CapsuleNet
was first used for segmentation last year, and it is a relatively new field. The experimentation done by laLonde
explained in subsection 2.3.3 was done by segmenting lungs of CT slices. The ground truth of the lungs will in
most cases be in over 50% of the slice, which makes it easier to find than arteries/vessels, which sometimes are in
less than 10% of the given slice.

The training performance gaps show that all of the SegCaps models have a low generalization gap compared
to BVNet and BVNet3D. This is good when the optimal prediction should have a low number of NP for all the
cases. The result of experiment 4 has a large difference in the dice score between the segmentation on the different
labels. The coronary artery segmentation is founding a majority of the ground truth with some FP and the Aorta
and portal vein containing a lot of FP and a few FP.

The worst prediction of the Aorta and portal vein have a lot of FP consisting of most of the tissue/organs close
to the given label. The capsule has a vector instead of scalar containing some information about some features
like intensity, rotation, etc., which is supposed to make the model more robust against changes. In this case, the
capsules are making the difference between the maximum and minimum dice score lower than the BVNet and
BVNet3D model, but the capsules may have confused the SegCaps model trained on Aorta. In some cases is
another large tubular structure predicted with only few TP of the Aorta, where the post processing step removes
the TP. The artery/vessel prediction and the Aorta prediction are having a large tubular structure, which may have
led them to have a very similar capsule representation.

The prediction of the other tubular structure with few TP is most likely a result of low training performance
because it predicts most of the spine instead of the Aorta in split-2. .

The Aorta and portal veins contain less training slices than the coronary artery because the Aorta ground truth
are in fewer slices in the CT image and the portal vein is collected from only 16 CT images. This is probably one
of the reasons why the Aorta and portal vein is harder to generalize than the coronary artery.

The SegCaps model does almost not learning anything when segmenting the Aorta and portal vein. This could
be the effect of Sigmoid in the last layer, Adam, and dice loss not being the best combination when learning to
segment these labels. Another reason could be that the routing between the capsules is not optimal or that they are
hard to generalize.

The best portal vein prediction contains few vessel structures and a majority of the liver. This may be a result
of the few samples and not the most optimal Hounsfield level and window. The BVNet and BVNet3D models
nevertheless did not have trouble with this, but the SegCaps model can be sensitive to it.

The training performance graphs of the portal vein show that the model some minor improvement in the loss
value during the training, which means that it almost did not learn anything. This fits with the visualizations of the
results, which almost did not remove anything from the CT image.

The results of the SegCaps model is not as good as the BVNet and BVNet3D model, which could be caused by
the SegCaps model only uses one channel of predicting the results. The coronary artery prediction had a similar
result to the BVNet model with channel 1 but had a lower variance between the minimum and maximum dice
score. The experiment 1 showed that the BVNet model increased the dice score by increasing the channel size.
This is why the SegCaps model may increase the dice score by increasing the channel size like in experiment
1. The BVNet with channel 1 had a similar result but higher variance between the minimum and maximum dice
score. Because this model was not tested on the Aorta and portal vein, it is hard to compare.
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5.5 Frangi Filter
The result in section 4.5 has gathered information about the result of using the Frangi filter with BVNet model in
order to answer RQ5. As mention in the section 5.1, the result needs to have connected TP without FP in the inner
radius of the arteries to be used in the FFR project.

The worst predicted result of split-0 and split-1 did almost predict an empty image, which may be the result of
not using the optimal hyperparameters to create the Frangi filtered images. This may explain why there is a huge
difference in the results of the splits and the validation results. The best predictions are not on the same test image
as the BVNet model without the Frangi filter. The Frangi input prediction image has fewer gaps in the TP and
more FN than the BVNet with CT input prediction.

Some of the images have low intensity in some of the coronary artery locations, which could confuse the model.
This is probably one of the reasons why the usage of the Frangi filter did not improve the mean dice score.

The combination of both CT and Frangi input have increased the minimum and maximum dice score for split-0
and split-1 compared to the BVNet with regular CT images input. In this case, the worst prediction has fewer gaps
between the TP in the LM. The predictions of split-2 have more FP, which is located at the lung vessels shown by
the slices in section E.1.

A way to improve the predictions could be to centralize the input image around that image intensity of the coro-
nary artery for being able to use the same Frangi hyperparameters in general. In this case, the Frangi filter may be
a lot less confused about which tubular structures it is supposed to find. Both the Frangi input and the combination
model sometimes needs to guess there are parts of the coronary artery that are not visible in the Frangi filtered CT
image.

The combination model has less FP in the worst case than the BVNet3D model. Both these model contain
fewer gaps in the main branches, but the BVNet3D model is better at finding smaller arteries. This may be caused
by a combination of the smaller arteries having less intensity in the Frangi filtered images and the BVNet3D model
getting more information about the surroundings.

The combination input model of split-1 prediction has more FP connected to the outer radius than the other
models. This may be caused by the model assuming some of the background around the higher intensity areas
is part of the coronary artery. Another reason may be that some part of the ground truth incorrectly labeled as
background.

To summarize the Frangi filter can in some cases improving the dice score in general. The TP is more connected
as the predictions in BVNet3D, but in most cases contain less FP around the coronary artery. More testing is needed
for finding the most optimal Frangi filter hyperparameters in order to improve the model even further.

5.6 Reflection
These models are computationally expensive, which is resulting in the calculations of one epoch is taking around
an hour and others more than an hour. Most of the models train for around 45 epochs, which means that these
models used around two days for training. This thesis had a lot of experimenting with the different model archi-
tecture and different label to predict because of the training time where has not much room for experimenting with
different hyperparameters.

In hindsight, the focus should not have been to experiment with the Aorta and portal vein labels, but only fo-
cusing on the coronary artery. On the other side, these experiments provided a greater understanding of the benefits
and disadvantages of the models when segmenting tubular structures in general. For improving the coronary artery
predictions, more analysis on the dataset should have been done. This could have made it easier to know which of
the preprocessing techniques to use on the CT images. Due to the time limitations of this thesis, there was only
time to analyze a selected number of the CT images.

The post processing in this thesis did not provide most different in the dice score. This is mainly because of
the large difference between the minimum and maximum dice score.

By using a more strict post processing would in some cases give a significant better dice score, but in most
cases would have removed a lot of the TP. In the case of the BVNet3D and SegCaps, the FP sometimes got larger
than the TP, which made it difficult to make a post processing method that worked in most of the cases. This was
not prioritized in this thesis.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion
This thesis has experimented with different approaches for segmenting the coronary artery from CT images by
using deep learning models. The wanted predictions from the models need to focus on finding the ground truth
without FP in the inner radius of the arteries for all the CT images. The model should not mainly focus on remov-
ing the FP unconnected to the coronary artery because it can be removed by using a better post processing step.

Experiment 1 tested out the BVNet model with different channels and stride, which shows that increasing the
number of channels will, in some cases, result in more of the wanted prediction characteristics. Because it gets
a better understanding of the surroundings by the 3D effect, some other result indicates that using stride 2 may
increase the dice score with some exceptions. The optimal channel size and stride depends on whether it is more
beneficial to have fewer correct prediction with a lower computation cost or more correct predictions with higher
computation cost.

The one with most connected TP and best mean Dicepost score was BVNet with 7 channels and stride 2, and
BVNet with 5 channels and stride 1 had the best Diceraw score.

The BVNet with 5 channels and stride 1 were used for the other experiments because it has lower computa-
tional cost than the model with 7 channels and stride 2. For both the coronary artery and portal vein, the BVNet
model had problems with finding small arteries/veins and had in general many unconnected TP. The BVNet model
was best at predicting the Aorta, which means it is good at finding large tubular structures.

The BVNet3D model is the model with most TP for the coronary artery and portal vein, and a lower prediction
of TP in Aorta than the BVNet model. The increment of the FP may be caused by removing patches with only
containing background.

BVNet3D did find most of the coronary artery but had a lot of FP around. Removing the input patch only
containing background did most likely be the reason for the high validation loss and the FP around. This model
found most of the portal vein, which means that it can probably be used on other artery or vessels as well with some
further development, as explained below. The patches of the Aorta were too few after the removing of the only
background patches, which resulted in making the BVNet model better than the BVNet3D model. The BVNet3D
model predicted less TP and most more FP than the BVNet model.

The SegCaps model is the worst of the three models, but it shows potential. This is because it uses 1 channel
and has a smaller gap between the training and validation values than the BVNet and BVNet3D model. This means
it probably does not need much data augmentation for getting better results, but fine-tuning the hyperparameters.
One large disadvantage of the SegCaps model is that it does not learn much when used on the Aorta and portal
vein label. This is most likely caused by using too few training samples, which makes them harder to generalize.
Another reason may be that not the optimal optimizer, loss function, or hyperparameters were chosen.

The use of Frangi filtered input does not increase the mean dice score, but sometimes it reduces the gaps
between the TP, especially when using combined CT and Frangi filtered CT images as input. In many of the
predictions on some the corresponding CT slices shows that some the ground truth is in very dark areas, which
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make them hard to find. By finding the optimal hyperparameters for the Frangi filter, the dice score will probably
increase.

None of the models used in this thesis are good enough to be used together with fluid dynamics for automati-
cally measure the FFR without further development.

6.2 Future Work
As mention in the discussion, there is a lot of improvement that can be done with the different models, which may
result in good enough predictions for the FFR-project. The first step is to find the optimal Hounsfield level and
window for the coronary artery in order to make it easier for the model to separate it from the other tissue. For
finding the correct values, more analyzation of the dataset is needed.

As shown in the result is the combination of CT and Frangi filtered CT images as input helping the BVNet
containing less gaps in the TP, which shows great potential. The next step is to find the optimal values of the
hyperparameters of the Frangi filter for getting the intensity at the coronary artery higher. A way to further develop
the BVNet3D model and SegCaps model is to experiment with the combined CT and Frangi filtered CT images as
input.

The next step for the SegCaps model is to add some previous and next slices in order to get a 3D effect, as
experiment 1 did for the BVNet model. The same can be done for the BVNet3D only with patches instead of
slices. Another improvement regarding the SegCaps model is to find the optimal loss function, optimizer, learning
rate, and other hyperparameter values.

Another improvement that can be done in general is to either add more data or apply data augmentation to
decrease the overfitting problem. Experimenting with not removing the only background slices or patches needs to
be done for testing whether it will decrease the number of FP without decreasing the TP. For helping the training,
transfers learning should be tested by transferring weights of a large dataset of arteries/vessels for centralizing the
training. This could also be done by first training the coronary artery on FrangiNet explained in subsection 2.3.1
and use its weights as a starting point for the other models.
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Appendix A
Experiment 1: Channels and Stride

In this appendix is all the results of the models with different channel size and stride from experiment 1. The tables
below were used to create the Table 4.1 and to find the prediction with the minimum and maximum dice score for
each of the models.

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.251 0.246 0.257 0.238 0.245 0.255
CT FFR 19 0.296 0.276 0.21 0.186 0.504 0.537
CT FFR 28 0.611 0.608 0.463 0.455 0.896 0.915
CT FFR 32 0.355 0.322 0.232 0.201 0.761 0.807
CT FFR 39 0.674 0.641 0.588 0.511 0.789 0.859
CT FFR RETRO 14 0.113 0.075 0.06 0.039 0.891 0.949
CT FFR 50 0.037 0.029 0.019 0.015 0.671 0.63
CT FFR RETRO 29 0.373 0.393 0.528 0.515 0.288 0.318
CT FFR RETRO 64 0.205 0.145 0.126 0.085 0.551 0.502
Average Scores 0.324 0.304 0.276 0.249 0.622 0.641

Table A.1: Result of split-0 of the BVNet with 1 channels and 1 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.247 0.24 0.161 0.145 0.526 0.689
CT FFR 19 0.587 0.56 0.462 0.421 0.804 0.835
CT FFR 28 0.649 0.65 0.5 0.495 0.925 0.947
CT FFR 32 0.67 0.686 0.62 0.587 0.728 0.825
CT FFR 39 0.809 0.819 0.827 0.826 0.791 0.813
CT FFR RETRO 14 0.292 0.253 0.175 0.148 0.871 0.889
CT FFR 50 0.374 0.364 0.258 0.245 0.681 0.715
CT FFR RETRO 29 0.675 0.681 0.616 0.601 0.747 0.786
CT FFR RETRO 64 0.424 0.394 0.292 0.26 0.775 0.806
Average Scores 0.525 0.516 0.435 0.414 0.761 0.812

Table A.2: Result of split-0 of the BVNet with 3 channels and 1 in stride
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.234 0.22 0.177 0.16 0.344 0.351
CT FFR 19 0.677 0.66 0.54 0.511 0.906 0.933
CT FFR 28 0.743 0.744 0.625 0.623 0.916 0.924
CT FFR 32 0.658 0.671 0.62 0.618 0.702 0.734
CT FFR 39 0.825 0.832 0.847 0.844 0.805 0.82
CT FFR RETRO 14 0.242 0.179 0.144 0.101 0.773 0.778
CT FFR 50 0.562 0.563 0.506 0.498 0.631 0.648
CT FFR RETRO 29 0.619 0.634 0.669 0.653 0.576 0.617
CT FFR RETRO 64 0.412 0.383 0.295 0.26 0.682 0.727
Average Scores 0.553 0.543 0.491 0.474 0.704 0.726

Table A.3: Result of split-0 of the BVNet with 3 channels and 2 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.248 0.245 0.204 0.189 0.315 0.349
CT FFR 19 0.506 0.464 0.375 0.326 0.78 0.808
CT FFR 28 0.513 0.505 0.353 0.343 0.935 0.961
CT FFR 32 0.68 0.693 0.641 0.633 0.723 0.765
CT FFR 39 0.757 0.761 0.673 0.665 0.866 0.888
CT FFR RETRO 14 0.344 0.314 0.215 0.191 0.866 0.876
CT FFR 50 0.554 0.56 0.461 0.459 0.693 0.717
CT FFR RETRO 29 0.53 0.559 0.473 0.452 0.602 0.732
CT FFR RETRO 64 0.456 0.437 0.314 0.292 0.836 0.875
Average Scores 0.51 0.504 0.412 0.394 0.735 0.775

Table A.4: Result of split-0 of the BVNet with 3 channels and 5 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.361 0.359 0.269 0.258 0.55 0.589
CT FFR 19 0.728 0.72 0.614 0.595 0.895 0.91
CT FFR 28 0.782 0.78 0.687 0.681 0.908 0.914
CT FFR 32 0.544 0.553 0.505 0.5 0.588 0.618
CT FFR 39 0.794 0.8 0.868 0.865 0.731 0.744
CT FFR RETRO 14 0.455 0.441 0.318 0.301 0.798 0.824
CT FFR 50 0.499 0.493 0.428 0.415 0.598 0.607
CT FFR RETRO 29 0.647 0.668 0.672 0.662 0.624 0.673
CT FFR RETRO 64 0.525 0.495 0.412 0.374 0.725 0.734
Average Scores 0.593 0.59 0.53 0.517 0.713 0.735

Table A.5: Result of split-0 of the BVNet with 5 channels and 1 in stride
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.239 0.213 0.156 0.132 0.511 0.544
CT FFR 19 0.641 0.616 0.49 0.458 0.927 0.937
CT FFR 28 0.728 0.727 0.592 0.587 0.945 0.954
CT FFR 32 0.729 0.764 0.755 0.755 0.705 0.774
CT FFR 39 0.777 0.781 0.71 0.708 0.858 0.871
CT FFR RETRO 14 0.34 0.284 0.208 0.167 0.929 0.937
CT FFR 50 0.629 0.635 0.594 0.584 0.669 0.694
CT FFR RETRO 29 0.684 0.678 0.593 0.579 0.809 0.819
CT FFR RETRO 64 0.223 0.173 0.127 0.095 0.904 0.964
Average Scores 0.555 0.541 0.469 0.452 0.806 0.833

Table A.6: Result of split-0 of the BVNet with 5 channels and 2 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.279 0.258 0.171 0.153 0.755 0.819
CT FFR 19 0.658 0.642 0.537 0.507 0.852 0.874
CT FFR 28 0.704 0.697 0.573 0.562 0.911 0.918
CT FFR 32 0.753 0.759 0.806 0.766 0.706 0.752
CT FFR 39 0.801 0.807 0.782 0.78 0.821 0.837
CT FFR RETRO 14 0.287 0.249 0.173 0.146 0.843 0.854
CT FFR 50 0.634 0.634 0.579 0.574 0.701 0.708
CT FFR RETRO 29 0.601 0.6 0.585 0.572 0.618 0.631
CT FFR RETRO 64 0.349 0.316 0.215 0.189 0.933 0.955
Average Scores 0.563 0.551 0.491 0.472 0.793 0.816

Table A.7: Result of split-0 of the BVNet with 5 channels and 5 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.288 0.294 0.248 0.239 0.343 0.385
CT FFR 19 0.581 0.573 0.437 0.419 0.865 0.906
CT FFR 28 0.638 0.637 0.489 0.482 0.92 0.935
CT FFR 32 0.754 0.771 0.755 0.753 0.754 0.79
CT FFR 39 0.783 0.792 0.741 0.738 0.831 0.854
CT FFR RETRO 14 0.321 0.288 0.196 0.169 0.875 0.963
CT FFR 50 0.665 0.678 0.621 0.615 0.715 0.755
CT FFR RETRO 29 0.516 0.541 0.617 0.604 0.443 0.489
CT FFR RETRO 64 0.348 0.268 0.228 0.162 0.732 0.768
Average Scores 0.544 0.538 0.481 0.465 0.72 0.761

Table A.8: Result of split-0 of the BVNet with 7 channels and 1 in stride
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.29 0.293 0.258 0.252 0.332 0.35
CT FFR 19 0.678 0.661 0.569 0.542 0.839 0.847
CT FFR 28 0.764 0.754 0.664 0.64 0.9 0.918
CT FFR 32 0.704 0.728 0.765 0.765 0.652 0.695
CT FFR 39 0.829 0.836 0.843 0.84 0.816 0.833
CT FFR RETRO 14 0.39 0.375 0.252 0.238 0.863 0.879
CT FFR 50 0.671 0.677 0.746 0.739 0.61 0.624
CT FFR RETRO 29 0.57 0.579 0.643 0.637 0.511 0.531
CT FFR RETRO 64 0.415 0.403 0.297 0.279 0.686 0.726
Average Scores 0.59 0.59 0.56 0.548 0.69 0.711

Table A.9: Result of split-0 of the BVNet with 7 channels and 2 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.291 0.287 0.207 0.194 0.492 0.546
CT FFR 19 0.674 0.627 0.565 0.486 0.834 0.885
CT FFR 28 0.741 0.742 0.622 0.621 0.916 0.922
CT FFR 32 0.736 0.752 0.736 0.734 0.737 0.771
CT FFR 39 0.841 0.854 0.84 0.84 0.842 0.869
CT FFR RETRO 14 0.303 0.277 0.189 0.168 0.763 0.792
CT FFR 50 0.604 0.603 0.518 0.508 0.724 0.741
CT FFR RETRO 29 0.634 0.649 0.648 0.643 0.62 0.656
CT FFR RETRO 64 0.425 0.399 0.291 0.264 0.789 0.821
Average Scores 0.583 0.577 0.513 0.495 0.746 0.778

Table A.10: Result of split-0 of the BVNet with 7 channels and 5 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.231 0.219 0.175 0.158 0.342 0.356
CT FFR 19 0.644 0.623 0.517 0.489 0.855 0.858
CT FFR 28 0.703 0.698 0.571 0.561 0.915 0.923
CT FFR 32 0.755 0.768 0.768 0.73 0.743 0.809
CT FFR 39 0.815 0.831 0.84 0.827 0.792 0.836
CT FFR RETRO 14 0.238 0.189 0.15 0.116 0.574 0.526
CT FFR 50 0.631 0.635 0.651 0.647 0.612 0.623
CT FFR RETRO 29 0.536 0.542 0.662 0.647 0.451 0.467
CT FFR RETRO 64 0.373 0.356 0.26 0.239 0.658 0.701
Average Scores 0.547 0.54 0.51 0.49 0.66 0.678

Table A.11: Result of split-0 of the BVNet with 9 channels and 1 in stride
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.171 0.144 0.118 0.096 0.306 0.292
CT FFR 19 0.478 0.446 0.326 0.296 0.896 0.906
CT FFR 28 0.525 0.519 0.367 0.36 0.924 0.932
CT FFR 32 0.705 0.703 0.629 0.602 0.802 0.845
CT FFR 39 0.828 0.833 0.773 0.758 0.892 0.925
CT FFR RETRO 14 0.099 0.054 0.052 0.028 0.871 0.986
CT FFR 50 0.641 0.641 0.537 0.534 0.794 0.801
CT FFR RETRO 29 0.583 0.6 0.556 0.552 0.613 0.656
CT FFR RETRO 64 0.207 0.105 0.122 0.058 0.679 0.544
Average Scores 0.471 0.449 0.387 0.365 0.753 0.765

Table A.12: Result of split-0 of the BVNet with 9 channels and 2 in stride

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.198 0.19 0.168 0.151 0.241 0.257
CT FFR 19 0.545 0.52 0.431 0.396 0.743 0.757
CT FFR 28 0.654 0.657 0.524 0.522 0.868 0.886
CT FFR 32 0.575 0.599 0.566 0.566 0.585 0.637
CT FFR 39 0.777 0.845 0.821 0.819 0.736 0.873
CT FFR RETRO 14 0.255 0.213 0.152 0.122 0.778 0.844
CT FFR 50 0.613 0.619 0.544 0.54 0.702 0.726
CT FFR RETRO 29 0.417 0.435 0.491 0.477 0.362 0.4
CT FFR RETRO 64 0.409 0.4 0.323 0.299 0.557 0.607
Average Scores 0.494 0.498 0.447 0.432 0.619 0.665

Table A.13: Result of split-0 of the BVNet with 9 channels and 5 in stride
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Appendix B
Experiment 2: BVNet

In this appendix is the results of the segmentation of the coronary artery, Aorta, and portal vein using BVNet
model, where each subsection contain tables of the dice score, recall, and precision of the predictions on the test
splits used for calculating the Table 4.2 for the coronary arteries, Table 4.3 for Aorta, and Table 4.4 for the portal
vein. Each of the subsections has as well a figure of the best and worst prediction slices on the corresponding CT
slice, which was used as input.

B.1 Coronary Artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.233 0.223 0.215 0.19 0.255 0.272
CT FFR 19 0.574 0.564 0.479 0.453 0.714 0.748
CT FFR 28 0.703 0.705 0.603 0.601 0.842 0.854
CT FFR 32 0.718 0.752 0.732 0.73 0.704 0.776
CT FFR 39 0.774 0.795 0.816 0.813 0.737 0.779
CT FFR RETRO 14 0.278 0.255 0.177 0.153 0.655 0.778
CT FFR 50 0.643 0.648 0.63 0.624 0.657 0.673
CT FFR RETRO 29 0.559 0.601 0.659 0.647 0.485 0.56
CT FFR RETRO 64 0.377 0.357 0.276 0.244 0.594 0.668
Average Scores 0.54 0.545 0.51 0.495 0.627 0.679

Table B.1: Result of split-0 of the BVNet for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.445 0.444 0.371 0.346 0.556 0.62
CT FFR 37 0.616 0.654 0.774 0.751 0.511 0.58
CT FFR 18 0.658 0.635 0.516 0.465 0.909 1.0
CT FFR 40 0.769 0.834 0.865 0.864 0.692 0.807
CT FFR 8 0.721 0.73 0.599 0.591 0.903 0.955
CT FFR RETRO 86 0.781 0.784 0.666 0.663 0.945 0.96
CT FFR RETRO 89 0.539 0.525 0.515 0.363 0.566 0.949
CT FFR Pilot 7 0.622 0.642 0.533 0.525 0.745 0.824
Average Scores 0.644 0.656 0.605 0.571 0.728 0.837

Table B.2: Result of split-1 of the BVNet for the coronary artery
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.693 0.704 0.697 0.694 0.69 0.715
CT FFR 25 0.627 0.651 0.801 0.799 0.515 0.549
CT FFR 4 0.803 0.81 0.806 0.774 0.8 0.85
CT FFR RETRO 23 0.547 0.548 0.39 0.383 0.912 0.963
CT FFR RETRO 83 0.664 0.664 0.658 0.592 0.67 0.756
CT FFR 16 0.69 0.734 0.681 0.649 0.699 0.844
CT FFR Pilot 3 0.631 0.606 0.476 0.441 0.937 0.97
CT FFR 33 0.686 0.694 0.67 0.666 0.703 0.725
Average Scores 0.668 0.676 0.647 0.625 0.741 0.796

Table B.3: Result of split-2 of the BVNet for the coronary artery

Figure B.1: A selection of some of the CT slices of the BVNet model’s best prediction of the coronary artery split-0, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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(a) Best Prediction

(b) Worst Prediction

Figure B.2: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the coronary artery split-
1, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN

Figure B.3: A selection of some of the CT slices of the BVNet model’s worst prediction of the coronary artery split-2, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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B.2 Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.682 0.728 0.577 0.577 0.833 0.986
CT FFR 19 0.951 0.966 0.964 0.964 0.939 0.968
CT FFR 28 0.918 0.923 0.934 0.934 0.901 0.912
CT FFR 32 0.945 0.947 0.976 0.976 0.916 0.919
CT FFR 39 0.958 0.963 0.988 0.988 0.929 0.938
CT FFR RETRO 14 0.925 0.936 0.888 0.887 0.966 0.99
CT FFR 50 0.959 0.963 0.981 0.981 0.939 0.946
CT FFR RETRO 29 0.908 0.909 0.889 0.889 0.929 0.929
CT FFR RETRO 64 0.933 0.935 0.879 0.879 0.994 0.999
Average Scores 0.909 0.919 0.897 0.897 0.927 0.954

Table B.4: Result of split-0 of the BVNet for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.815 0.878 0.855 0.855 0.779 0.901
CT FFR 37 0.939 0.946 0.911 0.911 0.969 0.983
CT FFR 18 0.875 0.972 0.973 0.973 0.795 0.971
CT FFR 40 0.912 0.968 0.958 0.958 0.87 0.978
CT FFR 8 0.917 0.967 0.978 0.978 0.863 0.957
CT FFR RETRO 86 0.925 0.944 0.926 0.926 0.923 0.963
CT FFR RETRO 89 0.798 0.8 0.94 0.94 0.694 0.696
CT FFR Pilot 7 0.899 0.935 0.968 0.968 0.839 0.905
Average Scores 0.885 0.926 0.939 0.939 0.841 0.919

Table B.5: Result of split-1 of the BVNet for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.939 0.971 0.978 0.978 0.903 0.964
CT FFR 25 0.964 0.967 0.994 0.994 0.936 0.941
CT FFR 4 0.91 0.923 0.935 0.935 0.886 0.912
CT FFR RETRO 23 0.934 0.936 0.894 0.893 0.978 0.983
CT FFR RETRO 83 0.959 0.968 0.97 0.97 0.948 0.967
CT FFR 16 0.969 0.985 0.994 0.994 0.945 0.976
CT FFR Pilot 3 0.935 0.94 0.943 0.943 0.926 0.936
CT FFR 33 0.947 0.986 0.976 0.976 0.919 0.996
Average Scores 0.944 0.959 0.96 0.96 0.93 0.959

Table B.6: Result of split-2 of the BVNet for Aorta
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Figure B.4: A selection of some of the CT slices of the BVNet model’s best prediction of the Aorta split-0, where the corre-
sponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

(a) Best Prediction

(b) Worst Prediction

Figure B.5: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the Aorta split-1, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

107



Figure B.6: A selection of some of the CT slices of the BVNet model’s worst prediction of the Aorta split-2, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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B.3 Portalvein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.20 0.244 0.261 0.462 0.402 0.166 0.193
3Dircadb1.7 0.323 0.332 0.451 0.44 0.252 0.266
Average Scores 0.284 0.296 0.457 0.421 0.209 0.23

Table B.7: Result of split-0 of the BVNet for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.9 0.141 0.128 0.104 0.088 0.22 0.234
3Dircadb1.17 0.406 0.423 0.406 0.32 0.407 0.624
Average Scores 0.274 0.275 0.255 0.204 0.314 0.429

Table B.8: Result of split-1 of the BVNet for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.6 0.362 0.368 0.292 0.28 0.477 0.536
3Dircadb1.18 0.356 0.371 0.597 0.589 0.254 0.271
Average Scores 0.359 0.369 0.445 0.434 0.365 0.403

Table B.9: Result of split-2 of the BVNet for the portal vein

Figure B.7: A selection of some of the CT slices of the BVNet model’s worst prediction of the portal vein split-0, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure B.8: A selection of some of the CT slices of the BVNet model’s best prediction of the portal vein split-1, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

(a) Best prediction on the corresponding CT slice

(b) Worst prediction on the corresponding CT slice

Figure B.9: A selection of some of the CT slices of the BVNet model’s best and worst prediction of the portal vein split-
2, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Appendix C
Experiment 3: BVNet3D

In this appendix is all the individual test image result for each of the splits for the segmentation of the coronary
artery, Aorta, and portal vein using the BVNet3D model.

C.1 Coronary Artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.185 0.182 0.192 0.175 0.178 0.19
CT FFR 19 0.548 0.582 0.547 0.536 0.548 0.637
CT FFR 28 0.561 0.584 0.524 0.521 0.603 0.664
CT FFR 32 0.647 0.797 0.835 0.792 0.528 0.802
CT FFR 39 0.667 0.713 0.893 0.888 0.532 0.596
CT FFR RETRO 14 0.235 0.211 0.181 0.143 0.335 0.399
CT FFR 50 0.615 0.63 0.707 0.705 0.544 0.57
CT FFR RETRO 29 0.31 0.334 0.721 0.69 0.198 0.22
CT FFR RETRO 64 0.232 0.216 0.212 0.168 0.257 0.304
Average Scores 0.444 0.472 0.535 0.513 0.414 0.487

Table C.1: Result of split-0 of the BVNet3D for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.56 0.586 0.735 0.725 0.452 0.492
CT FFR 37 0.367 0.408 0.799 0.799 0.238 0.274
CT FFR 18 0.388 0.411 0.597 0.578 0.287 0.319
CT FFR 40 0.474 0.514 0.909 0.909 0.32 0.359
CT FFR 8 0.73 0.814 0.718 0.695 0.742 0.982
CT FFR RETRO 86 0.621 0.678 0.671 0.66 0.578 0.696
CT FFR RETRO 89 0.302 0.32 0.639 0.629 0.198 0.215
CT FFR Pilot 7 0.396 0.432 0.619 0.618 0.291 0.331
Average Scores 0.48 0.52 0.711 0.702 0.388 0.459

Table C.2: Result of split-1 of the BVNet3D for the coronary artery
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.413 0.448 0.715 0.715 0.29 0.326
CT FFR 25 0.434 0.479 0.901 0.901 0.286 0.326
CT FFR 4 0.7 0.723 0.826 0.826 0.608 0.643
CT FFR RETRO 23 0.48 0.492 0.418 0.408 0.563 0.62
CT FFR RETRO 83 0.495 0.535 0.732 0.709 0.374 0.429
CT FFR 16 0.655 0.691 0.792 0.785 0.559 0.618
CT FFR Pilot 3 0.517 0.542 0.553 0.542 0.486 0.542
CT FFR 33 0.456 0.488 0.771 0.763 0.323 0.358
Average Scores 0.519 0.55 0.713 0.706 0.436 0.483

Table C.3: Result of split-2 of the BVNet3D for the coronary artery

Figure C.1: A selection of some of the CT slices of the BVNet3D model’s best prediction of the coronary artery split-0, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

Figure C.2: A selection of some of the CT slices of the BVNet3D model’s worst prediction of the coronary artery split-1, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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(a) Best Prediction

(b) Worst Prediction

Figure C.3: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the coronary artery
split-2, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN
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C.2 Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.395 0.396 0.411 0.41 0.38 0.383
CT FFR 19 0.52 0.521 0.918 0.918 0.363 0.364
CT FFR 28 0.377 0.377 0.938 0.938 0.236 0.236
CT FFR 32 0.368 0.369 0.922 0.922 0.23 0.231
CT FFR 39 0.618 0.62 0.994 0.994 0.449 0.451
CT FFR RETRO 14 0.474 0.475 0.734 0.734 0.35 0.351
CT FFR 50 0.42 0.421 0.98 0.98 0.267 0.268
CT FFR RETRO 29 0.517 0.581 0.887 0.886 0.365 0.433
CT FFR RETRO 64 0.742 0.781 0.748 0.746 0.736 0.821
Average Scores 0.492 0.505 0.837 0.836 0.375 0.393

Table C.4: Result of split-0 of the BVNet3D for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.367 0.367 0.993 0.993 0.225 0.225
CT FFR 37 0.653 0.661 0.96 0.96 0.495 0.504
CT FFR 18 0.45 0.451 0.981 0.981 0.292 0.293
CT FFR 40 0.566 0.566 0.986 0.986 0.396 0.397
CT FFR 8 0.592 0.63 0.944 0.944 0.431 0.473
CT FFR RETRO 86 0.584 0.586 0.943 0.943 0.423 0.425
CT FFR RETRO 89 0.431 0.432 0.929 0.929 0.281 0.281
CT FFR Pilot 7 0.474 0.476 0.97 0.97 0.314 0.316
Average Scores 0.515 0.521 0.963 0.963 0.357 0.364

Table C.5: Result of split-1 of the BVNet3D for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.44 0.443 0.99 0.99 0.283 0.285
CT FFR 25 0.468 0.47 0.993 0.993 0.306 0.308
CT FFR 4 0.56 0.561 0.943 0.943 0.398 0.399
CT FFR RETRO 23 0.624 0.778 0.64 0.64 0.608 0.993
CT FFR RETRO 83 0.624 0.626 0.972 0.972 0.46 0.462
CT FFR 16 0.659 0.661 0.992 0.992 0.493 0.496
CT FFR Pilot 3 0.631 0.633 0.941 0.941 0.474 0.477
CT FFR 33 0.572 0.574 0.974 0.974 0.405 0.407
Average Scores 0.572 0.593 0.931 0.931 0.428 0.478

Table C.6: Result of split-2 of the BVNet3D for Aorta
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Figure C.4: A selection of some of the CT slices of the BVNet model’s worst prediction of the Aorta split-0, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

Figure C.5: A selection of some of the CT slices of the BVNet3D model’s best prediction of the Aorta split-1, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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(a) Best Prediction

(b) Worst Prediction

Figure C.6: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the Aorta split-2, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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C.3 Portal Vein

Test Image Dice Recall Precision
3Dircadb1.20 0.477 0.517 0.468 0.4 0.486 0.731
3Dircadb1.7 0.476 0.485 0.503 0.479 0.451 0.491
Average Scores 0.476 0.501 0.486 0.44 0.469 0.611

Table C.7: Result of split-0 of the BVNet3D for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.9 0.533 0.529 0.445 0.371 0.665 0.923
3Dircadb1.17 0.678 0.663 0.66 0.578 0.697 0.777
Average Scores 0.606 0.596 0.553 0.474 0.681 0.85

Table C.8: Result of split-1 of the BVNet3D with 5 channels and 1 in stride for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.6 0.481 0.494 0.387 0.381 0.635 0.703
3Dircadb1.18 0.365 0.359 0.35 0.312 0.381 0.423
Average Scores 0.423 0.427 0.369 0.346 0.508 0.563

Table C.9: Result of split-2 of the BVNet3D for the portal vein

Figure C.7: A selection of some of the CT slices of the BVNet3D model’s best prediction of the portal vein split-0, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure C.8: A selection of some of the CT slices of the BVNet3D model’s worst prediction of the portal vein split-1, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

(a) Best Prediction

(b) Worst Prediction

Figure C.9: A selection of some of the CT slices of the BVNet3D model’s best and worst prediction of the portal vein split-
2, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Appendix D
Experiment 4: SegCaps

In this appendix is the result of the different splits containing each test image for the coronary artery, Aorta, and
portal vein using the SegCaps model. The tables below are used to create the tables in section 4.4.

D.1 Coronary Artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.46 0.48 0.437 0.422 0.486 0.558
CT FFR 19 0.612 0.632 0.492 0.478 0.811 0.93
CT FFR 28 0.705 0.716 0.6 0.597 0.853 0.893
CT FFR 32 0.683 0.717 0.627 0.621 0.751 0.848
CT FFR 39 0.77 0.801 0.826 0.821 0.722 0.782
CT FFR RETRO 14 0.472 0.466 0.342 0.321 0.76 0.848
CT FFR 50 0.66 0.668 0.611 0.602 0.717 0.75
CT FFR RETRO 29 0.515 0.57 0.768 0.727 0.387 0.469
CT FFR RETRO 64 0.518 0.502 0.434 0.391 0.642 0.704
Average Scores 0.599 0.617 0.571 0.553 0.681 0.754

Table D.1: Result of split-0 of the SegCaps for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.29 0.271 0.192 0.163 0.595 0.8
CT FFR 37 0.286 0.366 0.404 0.359 0.222 0.374
CT FFR 18 0.424 0.486 0.388 0.359 0.467 0.749
CT FFR 40 0.363 0.414 0.349 0.32 0.378 0.587
CT FFR 8 0.443 0.434 0.346 0.297 0.615 0.806
CT FFR RETRO 86 0.486 0.501 0.421 0.363 0.576 0.812
CT FFR RETRO 89 0.262 0.294 0.35 0.288 0.21 0.301
CT FFR Pilot 7 0.361 0.371 0.343 0.303 0.382 0.479
Average Scores 0.365 0.392 0.349 0.306 0.43 0.613

Table D.2: Result of split-1 of SegCaps for the cornary artery
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.439 0.449 0.491 0.475 0.396 0.426
CT FFR 25 0.579 0.621 0.76 0.758 0.467 0.527
CT FFR 4 0.667 0.679 0.625 0.61 0.716 0.766
CT FFR RETRO 23 0.596 0.606 0.475 0.457 0.802 0.9
CT FFR RETRO 83 0.574 0.594 0.494 0.456 0.686 0.851
CT FFR 16 0.62 0.626 0.519 0.494 0.769 0.855
CT FFR Pilot 3 0.638 0.64 0.501 0.473 0.877 0.99
CT FFR 33 0.513 0.528 0.506 0.468 0.521 0.606
Average Scores 0.578 0.593 0.546 0.524 0.655 0.74

Table D.3: Result of split-2 of SegCaps for the coronary artery

Figure D.1: A selection of some of the CT slices of the SegCaps model’s worst prediction of the coronary artery split-0, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

Figure D.2: A selection of some of the CT slices of the SegCaps model’s best prediction of the coronary artery split-1, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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(a) Best prediction sat on the corresponding CT slice

(b) Worst prediction sat on the corresponding CT slice

Figure D.3: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the coronary artery
split-2, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with
low opacity=FN
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D.2 Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.102 0.0 0.098 0.0 0.107 0.0
CT FFR 19 0.291 0.302 0.828 0.828 0.176 0.184
CT FFR 28 0.211 0.212 0.865 0.865 0.12 0.121
CT FFR 32 0.154 0.162 0.937 0.937 0.084 0.089
CT FFR 39 0.353 0.387 0.881 0.881 0.221 0.248
CT FFR RETRO 14 0.178 0.179 0.586 0.585 0.105 0.105
CT FFR 50 0.215 0.224 0.976 0.976 0.121 0.126
CT FFR RETRO 29 0.256 0.257 0.879 0.879 0.15 0.151
CT FFR RETRO 64 0.146 0.145 0.235 0.231 0.106 0.106
Average Scores 0.212 0.207 0.698 0.687 0.132 0.126

Table D.4: Result of split-0 of SegCaps for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.196 0.217 0.84 0.84 0.111 0.125
CT FFR 37 0.668 0.688 0.769 0.768 0.591 0.623
CT FFR 18 0.441 0.449 0.643 0.643 0.335 0.345
CT FFR 40 0.467 0.468 0.906 0.906 0.315 0.315
CT FFR 8 0.587 0.644 0.815 0.815 0.458 0.532
CT FFR RETRO 86 0.471 0.484 0.795 0.794 0.334 0.348
CT FFR RETRO 89 0.328 0.329 0.821 0.821 0.205 0.206
CT FFR Pilot 7 0.282 0.286 0.732 0.731 0.174 0.178
Average Scores 0.43 0.446 0.79 0.79 0.315 0.334

Table D.5: Result of split-1 of SegCaps for Aorta

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.155 0.155 0.84 0.84 0.085 0.086
CT FFR 25 0.22 0.221 0.959 0.959 0.124 0.125
CT FFR 4 0.335 0.353 0.942 0.942 0.203 0.217
CT FFR RETRO 23 0.047 0.0 0.052 0.0 0.043 0.0
CT FFR RETRO 83 0.332 0.333 0.892 0.892 0.204 0.205
CT FFR 16 0.319 0.32 0.907 0.907 0.194 0.194
CT FFR Pilot 3 0.265 0.271 0.699 0.699 0.164 0.168
CT FFR 33 0.23 0.23 0.834 0.834 0.133 0.133
Average Scores 0.238 0.235 0.766 0.759 0.144 0.141

Table D.6: Result of split-2 of SegCaps for Aorta
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(a) Best Prediction

(b) Worst Prediction

Figure D.4: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the Aorta split-0, where
the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN

Figure D.5: A selection of some of the CT slices of the SegCaps model’s worst prediction of the Aorta split-1, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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Figure D.6: A selection of some of the CT slices of the SegCaps model’s best prediction of the Aorta split-2, where the
corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN
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D.3 Portal Vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.20 0.038 0.05 0.492 0.486 0.02 0.026
3Dircadb1.7 0.049 0.053 0.933 0.933 0.025 0.027
Average Scores 0.044 0.052 0.712 0.71 0.023 0.027

Table D.7: Result of split-0 of SegCaps for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.9 0.021 0.018 0.095 0.069 0.012 0.01
3Dircadb1.17 0.114 0.053 0.506 0.172 0.064 0.031
Average Scores 0.067 0.035 0.301 0.12 0.038 0.021

Table D.8: Result of split-1 of SegCaps for the portal vein

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

3Dircadb1.6 0.077 0.083 0.565 0.56 0.041 0.045
3Dircadb1.18 0.043 0.045 0.84 0.84 0.022 0.023
Average Scores 0.06 0.064 0.702 0.7 0.032 0.034

Table D.9: Result of split-2 of SegCaps for the portal vein
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(a) Best prediction on the corresponding CT slice

(b) Worst prediction on the corresponding CT slice

Figure D.7: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the portal vein split-
0, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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(a) Best prediction on the corresponding CT slice

(b) Worst prediction on the corresponding CT slice

Figure D.8: A selection of some of the CT slices of the SegCaps model’s best and worst prediction of the portal vein split-
2, where the corresponding prediction is overlaid. The prediction is color-coded with blue=TP, green=FP, and red with low
opacity=FN
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Appendix E
Experiment 5: Frangi Filter

In this appendix is the result of all the different test images of the different splits from experiment 5, which consisted
of experimenting with the Frangi filter. The tables below are used to create the summary tables in section 4.5 and
the CT and Frangi filtered CT slices with the corresponding prediction overlaid is used to finding the general trends
of which tissue is wrongly classified.

E.1 Frangi Input

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.049 0.041 0.044 0.033 0.055 0.055
CT FFR 19 0.153 0.171 0.222 0.204 0.117 0.147
CT FFR 28 0.333 0.313 0.204 0.188 0.914 0.923
CT FFR 32 0.057 0.057 0.03 0.03 0.884 0.956
CT FFR 39 0.554 0.605 0.636 0.636 0.49 0.577
CT FFR RETRO 14 0.106 0.111 0.16 0.134 0.079 0.095
CT FFR 50 0.636 0.648 0.533 0.524 0.787 0.849
CT FFR RETRO 29 0.401 0.429 0.747 0.734 0.274 0.304
CT FFR RETRO 64 0.033 0.031 0.024 0.02 0.052 0.065
Average Scores 0.258 0.267 0.289 0.278 0.406 0.441

Table E.1: Result of split-0 of the BVNet with Frangi filtered images for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.458 0.455 0.339 0.317 0.706 0.806
CT FFR 37 0.315 0.345 0.736 0.729 0.201 0.226
CT FFR 18 0.287 0.343 0.637 0.63 0.185 0.236
CT FFR 40 0.014 0.009 0.007 0.005 0.272 0.405
CT FFR 8 0.397 0.441 0.57 0.563 0.305 0.363
CT FFR RETRO 86 0.093 0.098 0.584 0.569 0.051 0.054
CT FFR RETRO 89 0.208 0.195 0.135 0.119 0.459 0.524
CT FFR Pilot 7 0.493 0.49 0.388 0.359 0.679 0.769
Average Scores 0.297 0.312 0.442 0.429 0.37 0.446

Table E.2: Result of split-1 of the BVNet with Frangi filtered images for the coronary artery
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Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.519 0.528 0.552 0.549 0.49 0.507
CT FFR 25 0.251 0.293 0.783 0.779 0.149 0.181
CT FFR 4 0.559 0.675 0.602 0.584 0.521 0.799
CT FFR RETRO 23 0.285 0.318 0.344 0.331 0.244 0.307
CT FFR RETRO 83 0.611 0.609 0.522 0.498 0.737 0.785
CT FFR 16 0.527 0.54 0.554 0.546 0.502 0.534
CT FFR Pilot 3 0.225 0.232 0.221 0.189 0.23 0.3
CT FFR 33 0.567 0.587 0.629 0.621 0.516 0.557
Average Scores 0.443 0.473 0.526 0.512 0.424 0.496

Table E.3: Result of split-2 of the BVNet with Frangi filtered images for the coronary arteryl

(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.1: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the coronary
artery split-0 with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction is color-
coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.2: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery split-1 with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction is color-
coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.3: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery split-2 with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction is color-
coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.4: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the coronary
artery split-2 with Frangi filtered CT images as input, where the corresponding prediction is overlaid. The prediction is color-
coded with blue=TP, green=FP, and red with low opacity=FN.
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E.2 Combined CT and Frangi Input

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR RETRO 18 0.332 0.324 0.278 0.258 0.414 0.436
CT FFR 19 0.668 0.674 0.552 0.545 0.846 0.884
CT FFR 28 0.778 0.779 0.687 0.684 0.898 0.905
CT FFR 32 0.613 0.628 0.597 0.597 0.63 0.663
CT FFR 39 0.821 0.85 0.899 0.899 0.756 0.806
CT FFR RETRO 14 0.346 0.321 0.215 0.195 0.894 0.906
CT FFR 50 0.54 0.541 0.453 0.449 0.67 0.679
CT FFR RETRO 29 0.455 0.473 0.697 0.678 0.337 0.363
CT FFR RETRO 64 0.443 0.431 0.351 0.326 0.6 0.639
Average Scores 0.555 0.558 0.525 0.515 0.672 0.698

Table E.4: Result of split-0 of the BVNet with both CT and Frangi filtered images as input for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 31 0.518 0.529 0.516 0.511 0.519 0.549
CT FFR 37 0.6 0.647 0.757 0.741 0.498 0.574
CT FFR 18 0.697 0.695 0.565 0.552 0.908 0.938
CT FFR 40 0.725 0.738 0.895 0.892 0.61 0.63
CT FFR 8 0.735 0.735 0.677 0.646 0.804 0.853
CT FFR RETRO 86 0.809 0.806 0.768 0.757 0.855 0.863
CT FFR RETRO 89 0.532 0.536 0.585 0.462 0.488 0.637
CT FFR Pilot 7 0.646 0.667 0.599 0.594 0.7 0.76
Average Scores 0.658 0.669 0.67 0.644 0.673 0.725

Table E.5: Result of split-1 of the BVNet with both CT and Frangi filtered images as input for the coronary artery

Test Image Dice Recall Precision
Raw Post Raw Post Raw Post

CT FFR 12 0.627 0.636 0.646 0.645 0.609 0.627
CT FFR 25 0.63 0.662 0.877 0.877 0.491 0.531
CT FFR 4 0.759 0.753 0.736 0.707 0.783 0.805
CT FFR RETRO 23 0.521 0.52 0.37 0.361 0.881 0.929
CT FFR RETRO 83 0.694 0.698 0.633 0.573 0.768 0.892
CT FFR 16 0.698 0.716 0.623 0.594 0.794 0.901
CT FFR Pilot 3 0.597 0.592 0.434 0.426 0.956 0.969
CT FFR 33 0.638 0.655 0.611 0.606 0.668 0.714
Average Scores 0.645 0.654 0.616 0.599 0.744 0.796

Table E.6: Result of split-2 of the BVNet with both CT and Frangi filtered images as input for the coronary artery
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.5: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery split-1 with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.6: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the coronary
artery split-1 with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.7: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s best prediction of the coronary
artery split-2 with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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(a) Prediction on the CT slices

(b) Prediction on the Frangi filtered CT slices

Figure E.8: A selection of some of the CT and Frangi filtered CT slices of the BVNet model’s worst prediction of the coronary
artery split-2 with combined CT and Frangi filtered CT images as input, where the corresponding prediction is overlaid. The
prediction is color-coded with blue=TP, green=FP, and red with low opacity=FN.
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