
A
lice G

udem
M

itodetect: Estim
ating com

m
on m

aternal ancestry in the H
U

N
T study

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Alice Gudem

Mitodetect

Estimating common maternal ancestry in the
HUNT study

Master’s thesis in Computer Science
Supervisor: Prof. Magnus Hetland, Prof. Pål Sætrom

June 2019

Alice Gudem

Mitodetect

Estimating common maternal ancestry in the HUNT
study

Master’s thesis in Computer Science
Supervisor: Prof. Magnus Hetland, Prof. Pål Sætrom
June 2019

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Summary

Mitochondrial DNA is maternally inherited, as opposed to nuclear DNA which is inherited
from both parents. This means that distantly related individuals who have almost no DNA
in common, might have close to identical mtDNA if they have a direct maternal line to a
common maternal ancestor.

There exist many methods that can estimate relatedness between individuals and re-
construct pedigrees, based on their nuclear DNA, but little work has been put into looking
at mitochondrial DNA and to whether it is possible to estimate if two individuals are ”mi-
tochondrially related”, i.e. that they do in fact have a direct maternal line to a common
maternal ancestor.

This further raises questions like how different mitochondrial DNA is between indi-
viduals in a population, if you also take their degree of relatedness into account.

To address this question, I developed the function mitomatch which calculates mi-
tochondrial distances between pairs of individuals. These distances were further com-
pared with the individuals’ degree of relatedness estimated by DRUID, and this compar-
ison showed that for individuals in the HUNT study, the distributions of mitochondrial
distances of 6th degree relatives and above are indistinguishable from the distributions of
mitochondrial distances between unrelated individuals.

Furthermore, mitochondrial distances between father/child-pairs – with the mother and
father being 7th degree relatives or more distantly related – were used to estimate p-values
that indicate the chance that two individuals have similar mtDNA simply by coincidence.

These p-values were used in a hypothesis test to decide whether individuals are mito-
chondrially related.

mitomatch and the hypothesis test is available as the software Mitodetect.

i

Sammendrag

Mitokondrie-DNA blir arvet fra mor til barn, i motsetning til vanlig, autosomt DNA
som blir arvet fra begge foreldre. Dette betyr at personer som er fjernt i slekt vil ha veldig
lite vanlig DNA til felles, men de kan ha nesten identisk mitokondrie-DNA hvis de har en
direkte moderlinje til en felles stammor.

Det finnes mange metoder som kan estimere grad av slektskap mellom individer og
rekonstruere familietrær basert på autosomt DNA, men det finnes ikke mye arbeid som
fokuserer på mitokondrie-DNA, og som ser på om det er mulig å estimere om to personer
er i ”mitokondrie-slekt”, altså at de faktisk har en direkte moderlinje til en felles stammor.

Hvis man i tillegg sammenligner mitokondrie-DNA mellom personer i en befolkning,
hvordan vil disse forskjellene være hvis man også tar hensyn til personenes grad av slekt-
skap?

For å adressere dette spørsmålet, har jeg utviklet funksjonen mitomatch, som bereg-
ner avstander på mitokondrie-DNA mellom par, og disse avstandene har blitt sammen-
lignet med parenes grad av slektskap, estimert av programmet DRUID. Denne sammen-
ligningen viste at for personer som har vært med i HUNT-studien, så er distribusjonene av
6. grads slektninger lik distribusjonen av distanser mellom personer som ikke er i slekt.

Videre så har mitokondrie-avstander blitt beregnet på far/barn-par – der mor og far
er 7. grads slektninger eller fjernere i slekt – og distribusjonen av disse avstandene har
blitt brukt til å estimere p-verdier, som skal indikere sjansen for at to personer har likt
mitokondrie-DNA ved en tilfeldighet, og ikke fordi de er i slekt.

Disse p-verdiene ble brukt i en hypotesetest for å avgjøre om personer er i ”mitokondrie-
slekt”.

Denne hypotesetesten, sammen med funksjonen mitomatch er tilgjengelig som pro-
gramvaren Mitodetect.

i

Preface

This report is a master thesis within the field of Computer science, written during the
Spring of 2019 at the Norwegian University of Science and Technology. And it is a con-
tinuation of my project thesis, written fall 2018.

I would like to thank my supervisors, Prof. Magnus Hetland and Prof. Pål Sætrom for
providing exceptional guidance throughout the two semesters, as well as PhD Candidate
and researcher Anne Heidi Skogholt for helping with access to the HUNT data set and
Post. Doc. Laurent Thomas for providing trio data.

ii

Contents

Summary i

Summary i

Preface ii

Table of Contents v

List of Tables vii

List of Figures xi

1 Introduction 1

2 Genetics 5
2.1 Biology . 5

2.1.1 Cells . 5
2.1.2 DNA and the genome . 6
2.1.3 Loci . 7
2.1.4 Genes . 7
2.1.5 Chromosomes . 8
2.1.6 Alleles, genotypes and phenotypes 8
2.1.7 Haplotypes and haplogroups . 9
2.1.8 Single-nucleotide Polymorphisms 9

2.2 Heredity . 9
2.2.1 Meiosis . 9
2.2.2 Degree of relatedness . 11
2.2.3 Pedigrees and cryptic relationships 11

3 Background 13
3.1 The probability of two individuals having different mitochondrial alleles . 13
3.2 A common maternal ancestor . 14

iii

3.2.1 Using mitochondrial distance 14
3.2.2 Using the degree of relatedness 16

3.3 A weighted distance . 17
3.4 The HUNT study . 17
3.5 Software . 18

3.5.1 Sequoia . 18
3.5.2 DRUID . 18

4 Methods 19
4.1 Analysis . 19

4.1.1 Selecting subsets . 19
4.1.2 Running DRUID on all subsets 20
4.1.3 Calculating mitochondrial distances 20
4.1.4 Comparing mitochondrial differences with DRUID output 22
4.1.5 Calculating missingness in the data set 22
4.1.6 The probability of mtDNA variant differences 22

4.2 Trio data . 23
4.2.1 Estimating the degree of relatedness between parents 23
4.2.2 The mitochondrial distance between parents and their children . . 24
4.2.3 Estimating a density function 24

4.3 Mitodetect . 25
4.4 Sequoia . 25

4.4.1 Installation and documentation 25
4.4.2 Execution . 26

5 Results and discussion 29
5.1 Mitochondrial DNA comparisons and the degree of relatedness 29

5.1.1 Hamming distance . 30
5.1.2 Mitochondrial DNA variant probabilities 31
5.1.3 Weighted distance . 33
5.1.4 Genotype missingness . 34

5.2 Looking at trios . 36
5.3 Mitodetect . 38
5.4 mitomatch . 39

5.4.1 Code optimizations . 39
5.5 Pedigree reconstruction- and relatedness estimation-methods 42

6 Conclusion 43

Bibliography 45

Appendices 47

A Genetic mapping file 49

iv

B Programs 51
B.1 Specifications and equipment . 51
B.2 CLAPPER . 53

B.2.1 Inbreeding coefficient . 53
B.2.2 Input files for clapper . 55
B.2.3 Running CLAPPER . 56
B.2.4 Results . 56

B.3 Padre . 57
B.3.1 PLINK preprocessing . 58
B.3.2 PRIMUS . 58
B.3.3 ERSA . 58

C Mitodetect 63
C.1 Source code . 63
C.2 Tests . 72

D Scripts 83

E Plots 91
E.1 Hamming distance and degree of relatedness (DRUID) 91
E.2 Weighted distance and degree of relatedness (DRUID) 95

F Information about the HUNT data set 99

v

vi

List of Tables

5.1 The results of t-tests on the distribution of distances between 5th-, 6th-,
7th-degree relatives and unrelated individuals 34

5.2 Genotype missingness in all ten subsets, where the first column shows how
many genotypes each individual are missing on average, the second col-
umn shows how many individuals who does not have any genotype miss-
ingness and the last column shows the three highest numbers of missing
genotypes found in individuals for every subset. 35

5.3 The timings and speedup of each iteration of the code optimizations. . . . 40

B.1 The programs and their versions that has been used. 51
B.2 The columns of the .het file output when running plink --het. . . . 53

vii

viii

List of Figures

1.1 The figure depicts a pedigree spanning four generations, where squares
represent males and circles represent females. A and B’s DNA is in-
dicated by their respective colors, and the pedigree shows how much of
their DNA is inherited by their descendants. More specifically, their great-
grandchildren have inherited about 25% of their DNA combined. 2

1.2 This shows the same pedigree as in Figure 1.1, but instead of showing nu-
clear DNA inheritance, the figure depicts mitochondrial DNA inheritance,
which follows the maternal line. 2

1.3 In this figure, we simply know that C and D are relatives but not how
distant. In addition, they have a direct maternal line to a common female
ancestor. 3

2.1 This figure shows a simplified eukaryotic cell – all the stuff that is not
necessary for this report has simply been taken out, and what remains is
the cell with its nucleus and its mitochondria, enclosed within the cell
membrane. 6

2.2 The image depicts two strands of DNA and how they are connected in a
double helix with the four chemical bases. Source: user:Forluvoft / Wiki-
media Commons / Public Domain . 7

2.3 The chromosomes in a male individual. It shows the 22 chromosomes
and a pair of sex chromosomes, numbered according to decreasing size.
Source: National Cancer Institute / Wikimedia Commons / Public Domain . 8

2.4 An example of how chromosomes are created based on two homologs
during meiosis. 10

ix

2.5 This is a pedigree with 12 individuals. Males are shown with squares and
females with circles. The two vertical bars in each node represent two
homologous chromosomes (e.g. chromosome 1), and the colors indicate
how these chromosomes are inherited. It shows how the pair of cousins
in the bottom share an IBD segment inherited from their shared grandfa-
ther. Source: user:Gklambauer / Wikimedia Commons / CC-BY-CA-3.0 /
GFDL . 11

3.1 An example of a population with six individuals, where an edge between
two individuals indicate different alleles on a given marker. The graph is
divided in two, with three individuals on each side: The group on the left
has one allele and the one on the right has another. As can be seen, for
every individual in the left group, there are three edges to individuals in
the right group, i.e. a total of 3 × 3 edges. 14

3.2 An example of a probability distribution on distances between father/child
pairs, with the p-value given by the distance dA,B being the area under the
distribution. 15

3.3 An example of how there are n parents on the paths between nth degree
relatives, when you assume that all siblings share the same parents and no
inbreeding has occured. 16

4.1 The pipeline of SEQUOIA. Source: Huisman, 2017 / CC-BY-CA-4.0 . . 26

5.1 The plot shows the distributions of Hamming distances over all degrees
of relatedness for subset 1, where n is set to be the number of relatives
found for each degree. The distributions are shown as letter value plots
(Hofmann, Kafadar, & Wickham, 2011), where letter values are used to
approximate more quantiles, and hence show more information about the
tails of the distribution. The black horizontal lines indicate the median,
and the inner boxes correspond to the first upper and lower quantiles (i.e.
25% and 75%). The dots represent outliers, defined to be a proportion of
0.007. 30

5.2 This plot shows the Hamming distance on the y axis and the degree of
relatedness on the x axis, along with the distribution of the upper and lower
quantiles (75% and 25% respectively) and the median values for all ten
subsets. 31

5.3 This figure shows a heatmap with the ten subsets over the y-axis and the
326 mitochondrial markers on the x-axis. The colors indicate the number
of pairs in a subset that has different alleles on a mitochondrial marker,
where darker color indicated a higher number. 32

5.4 This heatmap shows the probabilities that two individuals don’t share a
variant in the 10 subsets, and the average over all subsets has also been
added on the bottom. The variants with an average probability above 0.25
has been marked together with their probabilities. 32

x

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
https://creativecommons.org/licenses/by-sa/4.0/

5.5 The plot shows the distributions of weighted distances over all degrees of
relatedness for subset 1, along with the number of relatives found for each
degree. 33

5.6 This plot shows the weighted distance on the y axis and the degree of
relatedness on the x axis, along with the distribution of the upper and lower
quantiles (75% and 25% respectively) and the median values for all ten
subsets. 34

5.7 The average number of missing genotypes per variant over all subsets,
sorted in increasing order. 35

5.8 This shows the results from calculating Hamming distances and weighted
distances on father/child and mother/child relationships, where mother and
father are 7th degree relatives or more distantly related, as estimated by
DRUID. In addition, the distribution of distances between all unrelated in-
dividuals found in the ten subsets has been added for comparison. There
were 6953 pairs in the father/child- and mother/child-distributions and
486 394 pairs of individuals in the unrelated distribution. 36

5.9 This shows the distribution of weighted distances between father/child
pairs, where the line indicates an estimated density function. The shaded
area under the density-function is equal to α = 0.05. 37

5.10 The distribution of hamming distances between father/child pairs, where
the line indicates an estimated density function. The shaded area under the
density-function is equal to α = 0.05. The histogram has as many bins as
discrete values. 38

5.11 The average number of individuals that have and does not have a direct
maternal line to a maternal ancestor across all subsets, estimated by Mi-
todetect. The y-axis shows the count scaled with log10, and the x-axis
shows the degree of relatedness. The black vertical lines shows the confi-
dence intervals for the average values. 39

B.1 The histogram of the inbreeding coefficients calculated with PLINK based
on a pruned data set. 54

B.2 The method flow of PADRE. 57

xi

Chapter 1
Introduction

The mitochondria are organelles located our cells, and they are often labeled ”the pow-
erhouses of the cells” – needless to say, they are responsible for generating most of the
cells’ energy. The mitochondrion has its own DNA which is inherited maternally, from
our mothers – as opposed to ”normal” nuclear DNA, which is inherited from both par-
ents. Mutations in the mitochondrial DNA is known to cause an array of diverse disorders
(Schon, DiMauro, & Hirano, 2012), which further encourages research on the mitochon-
drial DNA.

In genetics, it is essential to know the relationship between individuals when studying
their DNA. At one end, close relatives are needed in family association- and linkage-
studies, and at the other end, case-control studies require non-relatives (Daly & Day,
2001).

There already exists established protocols for accounting for relatedness, when study-
ing nuclear DNA. One might make use of reported pedigrees (e.g. family connections
taken from health registers), but it is nonetheless normal to apply some sort of pedigree
reconstruction method or relatedness estimation based on the individuals’ DNA, to en-
sure one knows the truest relationship between the individuals, and to avoid inflated false
positive rates due to cryptic relationships (Voight & Pritchard, 2005).

However, there is no established protocols when it comes to studying the mitochondrial
DNA of individuals data sets. Assume you have a large biobank where thousands of indi-
viduals have participated, and their mitochondrial DNA has been sampled. You want to do
a statistical analysis on their mitochondrial DNA, but you need samples to be independent,
i.e. unrelated. Would it be enough to only apply a relatedness estimation method on the
individuals, when the relatedness estimation only takes their nuclear DNA into account?
This question arises because mitochondrial DNA is inherited in its entirety from mothers,
while nuclear DNA is inherited from both parents and are subject to recombination in each
generation.

To illustrate this with an example, consider the two following figures: Figure 1.1 shows
a pedigree spanning four generations with the colors indicating nuclear DNA inheritance.
The couple A and B are the great-grandparents of C and D, who are second cousins. As

1

Chapter 1. Introduction

can be seen, both C and D will have inherited on average 25 % of their DNA from A and
B (or 12.5 % from each of them). However, as C and D are second cousins (and hence 5th
degree relatives), they will only share on average about 3% of their DNA with each other.

Figure 1.1: The figure depicts a pedigree spanning four generations, where squares represent males
and circles represent females. A and B’s DNA is indicated by their respective colors, and the pedi-
gree shows how much of their DNA is inherited by their descendants. More specifically, their great-
grandchildren have inherited about 25% of their DNA combined.

In contrast, Figure 1.2 shows the mitochondrial inheritance, which is inherited ma-
ternally. Both C and D have a direct maternal line to their great-grandmother, B, and –
assuming no mutations have occurred – C and D, therefore, have the exact same mito-
chondrial DNA.

Figure 1.2: This shows the same pedigree as in Figure 1.1, but instead of showing nuclear DNA
inheritance, the figure depicts mitochondrial DNA inheritance, which follows the maternal line.

2

A lot of effort has been put into creating large biobanks in later years (Ramstetter et
al., 2018), with thousands of genotyped individuals, but the situation shown in Figure 1.2,
with four generations or more being genotyped, is not necessarily common. It is more
likely you only have the DNA of C and D (and perhaps their parents), and you could still
perform some relatedness estimation on these individuals to find out that they are related,
but would it be possible to find out whether they both have a direct maternal line – a series
of mothers – to a common maternal ancestor, as indicated in Figure 1.3?

Figure 1.3: In this figure, we simply know that C and D are relatives but not how distant. In addition,
they have a direct maternal line to a common female ancestor.

This leads up to my goal, which is to look into how can you find out whether two ran-
domly selected individuals are ”mitochondrially related”, i. e. they have a direct maternal
line to a common maternal ancestor. A part of this goal will be to create a software that
will try to estimate this.

Given a population, it is already possible to infer whether some of the individuals
are mitochondrially related. Namely, mother/child pairs, grandmother/grandchild pairs,
full siblings and half siblings on the mother’s side are examples of individuals who share
mitochondrial DNA due to common maternal ancestry – and these relationships might be
possible to infer with pedigree reconstruction-methods. I will therefore test some pedigree
reconstruction methods, to see how they perform on the HUNT set:

Question 1: Which pedigree reconstruction-methods can be used to find individuals
that have a direct maternal line to a maternal ancestor for close enough relatives?

However, it is not possible to use pedigree reconstruction methods or relatedness es-
timation methods alone to infer maternal relationships, if there are missing links between
two individuals or if they are distantly related. E.g. if you have a grandmother/grandchild
relationship, you cannot know if they are on the same maternal line without knowing if the
grandmother is on the mother’s side. However, you can use the mitochondrial differences
between pairs of individuals – if the grandmother and grandchild have identical mtDNA,
this is a strong indicator for the missing link between them being the mother.

3

Chapter 1. Introduction

So a way to infer whether two individuals share a direct maternal line to a maternal
ancestor, would be to compare their DNA. Additionally, you can take the degree of related-
ness between C and D into account, because if you know that C and D are related in some
way, this would naturally increase the chance that they have are mitochondrially related.
Besides, the chances for them having a direct maternal line to a common maternal ancestor
would be higher if they are 4th degree relatives, as opposed to 7th degree relatives. So how
different are mtDNA between individuals when taking their relatedness into account? A
way to answer this question would be to take a group of genotyped individuals, measure
the difference between their mitochondrial DNA in some way, and compare this to their
degree of relatedness:

Question 2: At what degree of relatedness do the distributions of mtDNA differ-
ences look like those of unrelated individuals?

At last, we need to measure the difference between individuals’ mtDNA somehow,
and a way would be to calculate the distance between pairs of individuals. The Hamming
distance is one opportunity – calculate the number of different variants – and a weighted
distance is another opportunity. But to calculate a weighted distance, weights are needed,
and to obtain weights, we can look at which variants in the mitochondrial DNA of the
population varies a lot, and which do not:

Question 3: What is the probability that two individuals will not share a given
mitochondrial variant?

In order to answer these questions, I have had access to the HUNT biobank, a part
of a large health study conducted in Nord-Trøndelag in Norway, where about 70 000 of
the participants have provided DNA samples. Therefore, it is worth mentioning that the
information I find will be valid for the HUNT population, but not necessarily all other
populations. The HUNT study has a high number of participants, as well as a high cover-
age of the population in Nord-Trøndelag, which likely results in a lot of relatives among
the participants. Indeed, a study of 1000 randomly selected individuals from the HUNT
biobank showed that each individual was related to on average 970 other individuals in
the subset, when considering up to 12th degree relatedness (Gudem, 2018). This might
affect how distributions of mitochondrial differences look like when taking the degree of
relatedness into account. Besides, different populations will have different mitochondrial
variants that vary a lot, which again will affect the probabilities that two individuals will
not share a variant.

Chapter 2 starts with an introduction to some topics in genetics and biology which
might be necessary to have a grasp of when reading the rest of this paper and chapter 3
talks about probabilities, weights and ways to estimate whether two individuals are mito-
chondrially related. In addition, the chapter has information about the HUNT study and
the software that has been used, namely DRUID (Ramstetter et al., 2018) and Sequoia
(Huisman, 2017).

In chapter 5, you will find the results and discussions of the analyses that I have run
on the HUNT set and the software I have made. chapter 4 describes how the analyses has
been run, and how to run the software.

At last, the conclusions of my findings is found in chapter 6.

4

Chapter 2
Genetics

This chapter has been taken in its entirety from my project thesis (Gudem, 2018).
This chapter will contain a brief introduction to biology and genetics that is necessary

to have a grasp of when reading the rest of the paper. Some parts will have a rather brief
and superficial explanation, while others will go more in depth. It is also recommended to
read this chapter sequentially for readers who are not familiar with concepts within these
subjects.

Section 2.1 will explain relevant topics within biology and genetics, including the cell,
DNA, mitochondria, gene and chromosomes to name a few. Section 2.2 will further ex-
plain concepts within heredity, including how DNA is inherited, what identity by descent
means and the concepts degree of relatedness, pedigrees and cryptic relatedness.

2.1 Biology

2.1.1 Cells

A cell is the basic structural, functional and biological unit of all living organisms. It
is enclosed within a membrane and contains several organelles, which is a specialized
subunit that serves some special function.

Eukaryotic cells and the nucleus

A eukaryotic cell is a cell that has a nucleus. The nucleus is one of the larger organelles in
a cell, and it contains the cell’s genetic material, i.e. this is where most of an organism’s
DNA is located. The nucleus maintains the integrity of the DNA and controls the activities
of the cell by regulating the gene expression. In other words, it works like the cell’s control
center.

A simplified eukaryotic cell is shown in Figure 2.1.

5

Chapter 2. Genetics

Figure 2.1: This figure shows a simplified eukaryotic cell – all the stuff that is not necessary for this
report has simply been taken out, and what remains is the cell with its nucleus and its mitochondria,
enclosed within the cell membrane.

Mitochondria

Another important organelle of the cell is the mitochondrion (plural mitochondria). It
is often nicknamed the “Powerhouse of the Cell”, mainly because it is responsible for
supplying cellular energy by converting energy from food into a form that cells can use.

2.1.2 DNA and the genome

DNA is the hereditary material in humans and nearly all other organisms. All DNA in a
human is referred to as the genome.

The DNA is arranged in two long strands of nucleotides that form a spiral called a
double helix. This double helix structure looks like a spiraling ladder as can be seen in
Figure 2.2.

A nucleotide consists of a sugar molecule, a phosphate molecule and one of four chem-
ical bases: Adenine (A), thymine (T), guanine (G) and cytosine (C). As shown in Fig-
ure 2.2, each base is paired up with another base in the two connected strands: Adenine is
paired with thymine and cytosine is paired with guanine. One of the strands is, therefore,
a “mirror” of the other.

The order of these chemical bases determines the information available for building
and maintaining organisms, and hence DNA can be expressed as strings (e.g. “TATA”
would be a sequence of nucleotides with the bases thymine, adenine, thymine and ade-

6

2.1 Biology

Figure 2.2: The image depicts two strands of DNA and how they are connected in a double helix
with the four chemical bases. Source: user:Forluvoft / Wikimedia Commons / Public Domain

nine). A specific sequence (e.g. a gene) at a specific location in the DNA will, therefore,
act as a code for some function (e.g. whether you have blue or brown eyes). Human DNA
consists of about 3 billion bases, and more than 99% of these are the same in all people.

Nucleus DNA

The DNA located in the nucleus is called the nucleus DNA or simply DNA.

Mitochondrial DNA

The Mitochondrial DNA or mtDNA is a DNA found in the mitochondria. It is inherited
directly from the mother, and can thus be used to trace the maternal line.

2.1.3 Loci

A locus (plural loci) is a fixed position on a chromosome, like the position of a gene or a
genetic marker.

2.1.4 Genes

A gene is a sequence of the DNA string and is the basic physical and functional unit of
hereditary. A gene can be coding or noncoding, whereas the former acts as instructions to
make protein sequences and constitutes about 1% of all human DNA (it is the proteins that
do the actual work of the cell). The noncoding genes perform other tasks.

7

Chapter 2. Genetics

2.1.5 Chromosomes
In the nucleus of the cell, the DNA molecule is packed into thread-like structures called
chromosomes. Each chromosome is made up of DNA coiled tightly together many times
around proteins called histones that support their structure.

Each person normally has 23 pairs of chromosomes, where 22 of these pairs are called
autosomes and look the same in both males and females. The 23rd pair, the sex chromo-
somes (or allosome), differ between males and females. Females have two copies of the
X-chromosome while males have one X- and one Y-chromosome. The chromosomes are
numbered after size in decreasing order.

Chromosome pair 1-22 are called homologeous chromosomes or homologs, meaning
that they have the same size and code for the same genes – e.g. if one homolog con-
tains a specific gene at a specific locus, the other homolog will have the same gene at the
same locus, but they can have different alleles. Besides, a woman’s X-chromosomes are
homologs, but a man’s Y and X-chromosomes are not.

Figure 2.3: The chromosomes in a male individual. It shows the 22 chromosomes and a pair of
sex chromosomes, numbered according to decreasing size. Source: National Cancer Institute /
Wikimedia Commons / Public Domain .

2.1.6 Alleles, genotypes and phenotypes
An allele is the form a gene can take – where the gene is the variable, an allele is its value
encoded in the DNA string.

A genotype is the alleles located at the same locus in a pair of homologs. More specif-
ically, a genotype can be on the form Aa, where A is the allele on one of the homologs and
a is on the other. A could be the allele for brown eye color, and a the allele for blue eye

8

2.2 Heredity

color. The actual manifested physical trait is called the phenotype.
When individuals are genotyped (their DNA is sampled), the genotypes are often un-

phased, meaning that one doesn’t know which homolog has what allele. It is possible to
infer the phasing of genotypes by looking at whole populations.

2.1.7 Haplotypes and haplogroups
A haplotype is a group of alleles that have been inherited together from a single parent, and
hence will be located on one of the homologs. A haplogroup is a set of different haplotypes
at different chromosome regions that are closely linked and are usually inherited together.
Two examples of haplogroups are the Y-chromosome haplogroup and the mitochondrial
haplogroup.

2.1.8 Single-nucleotide Polymorphisms
A Single-nucleotide polymorphism, often shortened SNP is a variation in a specific posi-
tion on the genome where each variation occurs above some threshold for a population
(e.g. more than 1%). For example, an SNP may replace the nucleotide cytosine (C) with
thymine (T) on a certain stretch of DNA in about 20% of the population.

2.2 Heredity
As stated in subsection 2.1.5, each person has 23 pairs of chromosomes. For each of these
pairs, one chromosome is inherited from the mother and one is inherited from the father.

This essentially means that each person has inherited roughly half their DNA from
their mum and the other half from their dad.

2.2.1 Meiosis
So how is DNA from a parent duplicated to their offspring? It is done during meiosis, the
process of creating gametic cells (gametic cells are either egg cells or sperm cells). As
opposed to normal copying of DNA, which is called mitosis, where you want to copy the
DNA exactly, gametic cells contain chromosomes that are a mixture of the two homolo-
gous chromosomes in the original DNA, for each of the 22 pairs of chromosomes. As can
be seen in Figure 2.4, four different chromosomes have been created based on one pair
of chromosomes, and everyone is a little bit different. These four chromosomes could be
represented as four siblings, and the process explains why siblings are different.

This also shows that a person will inherit roughly half of one of their parents DNA,
and roughly half of that again will be from one of their grandparents.

Sex chromosomes

With the sex chromosomes, things are a bit different. The X-chromosome that each per-
son inherits from their mother, will have been created the same way, with two homologs
mixing, because a woman has two X-chromosomes that can be mixed.

9

Chapter 2. Genetics

Figure 2.4: An example of how chromosomes are created based on two homologs during meiosis.

However, a man’s X-chromosome and Y-chromosome, which are not homologous, are
not compatible with this mixing process, and therefore they are passed unchanged to the
next generation (roughly half of a man’s sperm cells will have his Y-chromosome and the
other half will have his X-chromosomes, also implicating that the sperm cells decides the
gender of the offspring). In addition, this means that a man’s Y-chromosome has been
passed relatively unchanged through his paternal line of male ancestors.

Mitochondria

How then, is the mtDNA passed down the generations? Egg cells are a bit more compli-
cated than sperm cells. In a way, egg cells are a kind of starter pack for an embryo to
grow and develop, and one of these necessary items in the starter pack is the mitochondria,
while sperm cells mainly contain DNA.

So the mitochondrion is passed directly and unchanged from the mother, during meio-
sis. This, in turn, means that the mtDNA has been passed relatively unchanged through
the direct maternal line of a person’s female ancestors.

Identity-By-Descent

When two people have inherited DNA from the same ancestor, and they have identical
segments of DNA, those segments are said to be identity-by-descent or IBD. Essentially,
there has been no intermediate recombination of the segments through the generations. If
two people have identical segments of DNA because of coincidences (i. e. they haven’t in-
herited the same segment from a common ancestor), those segments are said to be identity-
by-state (IBS).

Thompson (2013) states: “there is no absolute measure of IBD; IBD are always relative
to some ancestral reference population”. Which means that IBD are measured relative to

10

2.2 Heredity

some point in time and the founder population at that point in time.
Besides, there are different IBD levels. IBD0 is the likelihood that two individuals are

unrelated, IBD1 is the likelihood that the individuals are IBD on one haplotype and IBD2
is the likelihood that the individuals are IBD on both haplotypes (Browning & Browning,
2012).

Figure 2.5: This is a pedigree with 12 individuals. Males are shown with squares and females
with circles. The two vertical bars in each node represent two homologous chromosomes (e.g.
chromosome 1), and the colors indicate how these chromosomes are inherited. It shows how
the pair of cousins in the bottom share an IBD segment inherited from their shared grandfather.
Source: user:Gklambauer / Wikimedia Commons / CC-BY-CA-3.0 / GFDL

2.2.2 Degree of relatedness
The degree of relatedness follows the average sharing of DNA between two relatives,
where first degree relatives share 50% of their genes on average, and these are parent/child-
and full sibling-relationships. Second-degree relatives share about 25% of their genes and
include an individual’s grandparents, aunts, uncles, nephews, nieces and double cousins.
3rd degree relatives share about 12.5% of their genes and include an individual’s great-
grandparents, great-grandchildren and first cousins.

2.2.3 Pedigrees and cryptic relationships
A pedigree is a family tree or DNA tree. It might have been made based on reported
relationships, but it can also be inferred from DNA data.

A cryptic relationship is an unknown relationship between two individuals. E.g. a
reported pedigree on a data set that hasn’t included a specific relationship between two
individuals.

11

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License

Chapter 2. Genetics

12

Chapter 3
Background

3.1 The probability of two individuals having different
mitochondrial alleles

Although a SNP can take up to four different alleles, all mitochondrial variants in the
HUNT study are one of two possible alleles (e.g. a certain SNP will either have allele ’A’
or allele ’C’). This means that when you want to count the number of pairs in a population
that do not share a variant, this number is upper bounded, and the highest possible number
of pairs is achieved when half of the population has one allele and the other half has the
other.

If a population consists of n individuals, where d = n/2 has allele A and the same
number has allele C, then for every individual with allele A, there will be d individuals
with allele C. Another way to view this, is to have two subgraphs with d nodes, and edges
between every node in the two subgraph (but none in between nodes in the same subgraph),
and then count the number of edges, as shown in Figure 3.1. The total number of pairs
with different alleles then becomes:

d2 = n2

22 = n2

4

Furthermore, that also affects the probability that two individuals do not share a variant,
given two equal sized groups with two distinct alleles. The total number of pairs in a set
of n individuals is n(n− 1)/2, and the upper bound for the probability becomes:

P(Individuals do not share marker) ≤ n2

4 · 2
n(n− 1) = n

2(n− 1)

This function converges towards 0.5 for increasing n.

13

Chapter 3. Background

Figure 3.1: An example of a population with six individuals, where an edge between two individuals
indicate different alleles on a given marker. The graph is divided in two, with three individuals on
each side: The group on the left has one allele and the one on the right has another. As can be seen,
for every individual in the left group, there are three edges to individuals in the right group, i.e. a
total of 3 × 3 edges.

3.2 A common maternal ancestor
Assume you pick to individuals at random from a population – how likely is it that they
both have a direct maternal line to a maternal ancestor?

3.2.1 Using mitochondrial distance

A way to estimate this, would be to compare their mitochondrial DNA: Two individiuals
that have a direct maternal line to a common female ancestor necessarily needs to have
similar mitochondrial DNA, because it is the mtDNA that are passed down from mother
to child.

Let A and B be two randomly selected individuals from a population, and let the null
hypothesis and alternative hypothesis be:

H0 : A and B does not have a direct maternal line to a common maternal ancestor

H1 : A and B does have a direct maternal line to a common maternal ancestor

Furthermore, let dA,B be the mitochondrial DNA distance between them. The idea
is that the distance dA,B must be low enough, so that we reject H0 and accept H1 – but
at what point will the distance be low enough? We can use p-values for this, where the
p-value will indicate the probability that two individuals have similar mtDNA simply by
chance and not due to common maternal ancestry.

To estimate p-values, we can look at the probability distribution of distances between
father/child relationships. The reason being that father and child share environment be-
cause of their close relatedness (they share autosomal DNA), but, assuming that father and
mother are non-related, their mitochondria DNA is independent. The probability distri-
bution of distances between father/child relationships will therefore serve as our p-values,

14

3.2 A common maternal ancestor

where this probability distribution is denoted by ffather/child(x). To find the p-value for the
distance dA,B , the following equation is used:

pdA,B
=
∫ dA,B

0
ffather/child(x)dx

This value denotes the possibility that individuals A and B have similar mitochon-
dria distances simply by chance, and will be the area under the probability distribution of
mitochondrial distances in father/child relationships, as shown in Figure 3.2.

Figure 3.2: An example of a probability distribution on distances between father/child pairs, with
the p-value given by the distance dA,B being the area under the distribution.

We can set a threshold α, for what chance we are willing to accept, e.g. if we set
α = 0.05 we will reject H0 and accept H1 with a maximum of 5 % chance that the
individuals have similar mitochondrial DNA due to coincidence.

More formally, we reject H0 and accept H1 if:

pdA,B
≤ α

Another way to frame this, would be to find the critical value dc, such that

pdc
= α

and then we would reject H0 and accept H1 if:

dA,B ≤ dc

15

Chapter 3. Background

3.2.2 Using the degree of relatedness

If you knew their degree of relatedness, it would be possible to estimate the probability that
they do have a direct maternal line to a maternal ancestor, with some assumptions. First,
assume that there has been no inbreeding in the population, and second, assume that there
are no half-siblings in the set – all siblings in the population share the same parents. With
these assumptions, the degree of relatedness is the same as the number of parents on the
path between the two individuals, as shown in Figure 3.3. The figure shows 2nd through
4th degree relationships, and the number of parents on the paths between the different
kinds of relationships is the same as the degree.

Figure 3.3: An example of how there are n parents on the paths between nth degree relatives, when
you assume that all siblings share the same parents and no inbreeding has occured.

The probability that two nth degree relatives have a maternal line to a common mater-
nal ancestor is the same as the probability that all parents on the path between them are
female. A parent is either a mother or a father, so the probability A that a parent is female
is P (A) = 0.5. If you look at the cousins among the 3rd degree relatives (the two bottom
leaves in the middle tree), there are three parents between them, and all of these needs to
be female. The probability then becomes:

P (All parents are female) = P (A)P (A)P (A) = 0.53

More specifically: For all D parents on the path between two individuals where D
is the degree of relatedness, the probability XD that the two individuals have a common
female ancestor and a direct maternal line to this ancestor is:

16

3.3 A weighted distance

P (XD) = P (A)D = 0.5D

3.3 A weighted distance

In order to calculate a weighted distance on the mitochondrial DNA between two individu-
als, some kind of weights are needed, and the probability that two individuals do not share
a variant can be used for this.

Ideally, we want variants that has a low probability of being different to have high
weights, because these variants are typically family specific, and the variants with a high
probability of being different should get a lower weight. In order to achieve this from
the probabilities, we take the negative logarithm of the probabilities. More formally, for a
variant v and the probability, pv , that two individuals will not share this variant, the weight
will be:

wv = − log(pv)

Furthermore, if the function f(v) is defined as:

f(v) =
{

1 The two individuals do not share the variant v
0 The two individuals share the variant v

Then the weighted distance dA,B between two individualsA andB for variants v= 1...n
is defined as:

dA,B =
n∑

v=1
wvf(v)

If you did not take the negative logarithm of the probabilities and instead multiplied
the probabilities together, this would be the same as getting the probabilities that two
individuals do not share the specific combination of variants.

3.4 The HUNT study

The ”Nord-Trøndelag Health Study” (HUNT) is a large norwegian health study started
in 1984, where about 120 000 people from Nord-Trondelag has participated and provided
health information. The study has been through three iterations, the first in the eighties, the
second in the nineties and the last in the 2006-08. In addition, a state-of-the-art biobank
was created in the latest survey, with DNA from about 70 000 of the participants gathered,
which includes both nuclear DNA and mitochondrial DNA.

Information about the specification of the HUNT set is found in Appendix F.

17

Chapter 3. Background

3.5 Software

3.5.1 Sequoia
Sequoia (Huisman, 2017) is a pedigree reconstruction method, presented as an R pack-
age, that considers up to third degree relationships, and it can handle data sets with non-
genotyped individuals, inbreeding and unknown birth years. The method assigns first-,
second- and third-degree relationships between individuals, by considering the likelihoods
between all these relationships – including their inbred derivatives – and the alternative of
being unrelated. It takes a hill-climbing approach to the problem, by dividing the problem
in several iterations:

• It starts with parentage assignment, which is done in several iterations until the
total likelihood asymptotes. It also makes use of filtering to speed things up, e.g.
by looking at opposite homozygosity to exclude pairs of individuals as potential
parent-offspring pairs, and subsequently reduce the amount of parent-offspring pairs
to consider (i.e. if one individual has genotype AA on a marker, and another has CC,
then one of them cannot have inherited an allele from the other).

• It continues with finding clusters of half-siblings with one ungenotyped parent and
assigns dummy-parents to these clusters. Individuals may be assigned as parents to
the dummy-parents (i.e. if the individuals are grandparents of the sibship-clusters).
This is also done in an iterative fashion.

• It makes use of sex- and age-information, to ensure that (i) an individual cannot be
its own ancestor, (ii) ancestors are older than their descendants and (iii) parents are
of opposite sex.

For full reconstruction down to 200 independent SNPs, they reported a low error-rate
(< 0.3%) and high assignment rates (> 90%) in a limitied computation time (< 1 h).

3.5.2 DRUID
DRUID (Ramstetter et al., 2018) can do pedigree reconstruction and relatedness estima-
tion. It is an IBD-based method that uses close relatives to infer an ungenotyped ances-
tor’s IBD sharing profile, that way finding up to 12th degree relatives. More specifically,
DRUID leverages multi-way relatedness by taking several individuals into account when
determining relationships. An example of this is how the method combines siblings’ DNA
to infer what their ungenotyped parent’s DNA looks like – a pair of siblings will has more
information about an ungenotyped parent than only one of them. This information is fur-
ther used to find aunts and uncles of the siblings – the authors reported recovering 92.2 %
of real aunts/uncles with zero false positives and > 79 % of 10th degree relatives correctly
or within one degree.

18

Chapter 4
Methods

4.1 Analysis
Ten subsets were created with 1500 individuals randomly selected from the dataset. The
mitochondria of all pairs of individuals in the subsets where compared, and these results
were further compared with the degree of relatedness of the individuals, estimated by
DRUID (Ramstetter et al., 2018).

This section will further describe how the analysis of the data was executed.

4.1.1 Selecting subsets
The complete script for selecting random subsets is found in Listing D.3.

Individuals were randomly chosen from those in the HUNT study that had their mito-
chondrial DNA sampled and an inbreeding coefficient below 0.025, since DRUID assumes
no inbreeding (see subsection B.2.1 for calculation of the inbreeding coefficient) (Ramstet-
ter et al., 2018).

The selecting was done with Python’s function random.sample(), which will
choose k unique values from the provided list, as seen in Listing 4.1.

19 matrix = []
20 for i in range(num_sets):
21 matrix.append(random.sample(list(ids_choose.index), k=num_ind))

Listing 4.1: An excerpt from get-random-subsets.py, where the random selection of
individuals is done. The complete script is found in Listing D.3.

Furthermore, these individuals’ phased genotypes had to be extracted from the .vcf
file created by the phasing program BEAGLE (for use with DRUID – see the next section).
Since .vcf files has one column for each individual and one row for each variant, this
was done with the cut command in Linux (in addition, this file is very big – opening it in
e.g. Python would probably be impossible). To get the correct columns, the header of the
BEAGLE .vcf file was read into the script, and the column number of each individual

19

Chapter 4. Methods

for each subset was written out to a file. The corresponding code for this is found in
lines 45–71 in Listing D.3.

4.1.2 Running DRUID on all subsets
To run DRUID on the subsets, I followed the same procedure as described in my project
thesis (Gudem, 2018). Furthermore, as I’d already used BEAGLE to phase the complete
HUNT set, I reused these results (I spent a rocking three weeks waiting for BEAGLE to
complete and then it crashed – no point repeating that endeavor). Because of the BEAGLE-
crash in the middle of chromosome 20 (due to how the sex chromosomes where struc-
tured), I reran BEAGLE on chromosomes 20–22 on the complete HUNT set, extracted
chromosomes 1–19 from the old file and put the old and new files together.

The complete script for running DRUID on all subsets is found in Listing D.4. This
pipeline includes:

• Cutting out individuals from the BEAGLE .vcf file.

• Running RefinedIBD.

• Running the druid-bakeoff script provided by the authors of DRUID.

• Lastly, running DRUID.

4.1.3 Calculating mitochondrial distances
The function, mitomatch, has been created to compare the mitochondrial DNA between
all pairs of individuals in a dataset.

The function requires an instance of MitochondriaData and (optionally) a list of
individuals’ IIDs. Listing 4.2 shows how to initiate an instance of MitochondriaData,
which requires the path prefix to a .ped and .map file (see PLINKs file format reference
for more information on the .ped and .map format).

The complete source code of MitochondriaData is found in Listing C.3.

mito_data = MitochondriaData("/prefix/to/ped-and-map-file")

Listing 4.2: An example of how to initiate MitochondriaData.

Hamming distance

mitomatch’s default calculation type is the hamming distance, but it can nonetheless be
explicitly defined by setting calculation type=’hamming’. Listing 4.3 shows hos
this was done on the ten subsets.

13 print("> Reading mitochondria data")
14 mito_data = MitochondriaData("/prefix/to/mtdna-ped-and-map")
15

16 print("> Calculating distance for subsets")
17 for subset in range(1, 11):
18 print("> Subset {}".format(subset))

20

https://www.cog-genomics.org/plink2/formats#ped

4.1 Analysis

19 ids = pd.read_csv(ID_PATH_PREFIX + str(subset),
20 header=None,
21 names=["FID", "IID", "ids_beagle_format"],
22 sep=’\s+’)
23

24 # Calculate hamming distances
25 distances = mitomatch(mito_data,
26 individuals=ids.IID,
27 calculation_type=’hamming’)
28 distances.to_csv(DISTANCES_PATH_PREFIX + str(subset) + ".txt",

Listing 4.3: How hamming distances for each pair of individuals has been calculated. The full script
is located in Listing D.2.

Weighted distance

To calculate a weighted distance on a pair of individuals’ mtDNA, calculation type
was set to ’weighted’ and weights were provided as a dictionary with variant ids as
the key and weights as the value. The script located in Listing D.2 calculates weighted
differences for the subsets, and an excerpt is shown in Listing 4.4.

31 # Calculate weighted distances
32 weighted_distances = mitomatch(mito_data,
33 individuals=ids.IID,
34 calculation_type=’weighted’,
35 weights=variant_probabilities.variant_log_probabilities)

Listing 4.4: How mitomatch is called

The weights, variant log probabilities were set to be the negative loga-
rithm of the probability p that two individuals don’t share a marker, as described in sec-
tion 3.3:

wi = − log(p)

The approach to find these p-values for every variant has been described in subsec-
tion 4.1.6.

T-test on weighted distances

A Student’s T-test was applied between 5th–12th degree relatives and the unrelated in-
dividuals. For each degree of relatedness, the median values from distances across all
subsets were used.

The function ttest ind from scipy.stats was used to run the T-test, as shown in
Listing 4.5, and it calculates the T-test for two independent samples.

1 tstats, p_val = stats.ttest_ind(a, b)

Listing 4.5: A t-test on the median values of distances between groups of individuals with different
degrees of relatedness, where a is a list of median values for one kind of relationship and b is a list of
median values for another kind of relationship, e.g. fifth degree relatives and unrelated individuals.

21

Chapter 4. Methods

4.1.4 Comparing mitochondrial differences with DRUID output
When DRUID was run on all subsets and distances were calculated, these results needed
to be merged together. More specifically, the output of DRUID had to be merged together
with the output of mitomatch.

On thing to note, however, is that for a given pair of individuals with ids a and b, their
ids could be stored as a | b in the DRUID output and as b | a in the mitomatch
output or vice versa. Therefore, as shown in Listing 4.6, joining pairwise distances
with druid is done in two turns, once with right on set to [’ind1’, ’ind2’] and
once with it set to [’ind2’, ’ind1’].

1 result = pd.merge(druid, pairwise_distances,
2 left_on=[’ind1’, ’ind2’], right_on=[’ind1’, ’ind2’], how=’inner’)
3 result = result.append(pd.merge(
4 druid, pairwise_distances,
5 left_on=[’ind1’, ’ind2’], right_on=[’ind2’, ’ind1’], how=’inner’),
6 sort=False)

Listing 4.6: This listing shows how the output from DRUID and mitomatch is merged together into
one dataframe. For every subset, the output from DRUID and mitomatch has been read into the
variables druid and pairwise distances, respectively.

4.1.5 Calculating missingness in the data set
PLINK can be used to calculate the missingness in .ped and .map files as shown in
Listing 4.7.

$ plink2 --bfile mtdna-ped-and-map-prefix --keep individuals.inds
--missing --out missing

Listing 4.7: Calculating missingness in a genotype data set with PLINK.

This will produce two files, missing.imiss and missing.lmiss, the former
describing the amount of missingness for each individual listed in the file individuals.inds
and the latter for each variant.

This was calculated separately for each subset of individuals.

4.1.6 The probability of mtDNA variant differences
To find the probability that two individuals don’t share a mtDNA variant, the
mitomatch function was used, with the argument calculation type set to
"true-false-vector", as shown in Listing 4.8.

1 mitochondria_differences = mitomatch(mito_data, individuals=subset,
calculation_type="true-false-vector")

Listing 4.8: An example of getting mitochondria differences with mitomatch.

This will produce a dataframe with one row for each pair of individual, and one column
for each variant, where the columns will be True if the individuals share an allele or

22

4.2 Trio data

False if they do not. This was done for each subset, and the script that does this for all
subsets and writes the results out to a file is found in Listing D.2.

Furthermore, the number of False values were counted for each variant, to get the
total number of pairs who do not share alleles on the markers, as shown in Listing 4.9.

15 # For each subset, mitochondria_differences has been read in from file
16 # We don’t need ids
17 mitochondria_differences = mitochondria_differences.iloc[:, 2:]
18

19 # Count number of different values
20 counted_differences = mitochondria_differences.apply(
21 lambda column: column.value_counts()
22).fillna(0).loc[False]

Listing 4.9: Counting the number of mitochondrial variants that differ. An excerpt taken from
Listing D.1.

To get the probabilities of each subset, the number of counted differences for every
variant were added by a pseudocount of 1 and divided by the total number of possible
pairs, which is n(n− 1)/2 where n is the number of individuals in the subset (i.e. 1500).
The final probabilities were set to be the average probability over all subsets, i.e. the sum
of all subsets’ probabilities divided by 10. This is shown in Listing 4.10.

29 num_pairs = 1500*1499 / 2
30 probabilities_all_subsets = counted_differences_all_subsets.apply(lambda

row: (row + 1) / num_pairs, axis=1)
31 average_probabilities = probabilities_all_subsets.mean()

Listing 4.10: Getting the probabilities for all subsets. An excerpt taken from Listing D.1.

The script that reads in mitochondria differences calculated by mitomatch and cal-
culates the probabilities are found in Listing D.1.

4.2 Trio data
I had access to a data set of mother/father/child trios in the HUNT study, that had been
estimated with (Manichaikul et al., 2010). This set initally consisted of about 16 000 trios,
but only the trios where all three had their mitochondrial DNA sampled were used, which
resulted in 7777 trios, with about 5000 pairs of parents (and hence, some siblings as well).
Furthermore, DRUID were run on all mother/father pairs, and mitochondrial distances
were calculated on mother/child- and father/child-pairs, as described in the next sections.

4.2.1 Estimating the degree of relatedness between parents
DRUID were estimated between all mothers and fathers in the trios. However, some ad-
ditional filtering were needed. DRUID will estimate the relatedness between all pairs in a
set, but I was only interested in the degree of relatedness between the pairs of parents.

Before running DRUID, the parents were split into ten subsets, ensuring that if a
mother of a child were in a subset, the child’s father would also be in the subset. The

23

Chapter 4. Methods

same approach and script described in subsection 4.1.4 were used to run DRUID on these
subset, with some slight modifications to the script.

When DRUID completed, every pair of parents were extracted from the results, ignor-
ing all degrees of relatedness calculated between pairs of individuals that were not parents
of the same child. The degree of relatedness estimated by DRUID were added to the
trio-data.

4.2.2 The mitochondrial distance between parents and their children
mitomatch were used to calculate the weighted distance between father/child- and
mother/child-relationships. mitomatch also calculates the distance between all pairs
of a set, so a script were written that runs mitomatch on small subsets to speed things
up, and extracts only the wanted pairs from the results. In addition, to ensure that the
parents were unrelated, only the trios where the parents were seventh degree relatives or
above were used. The script for doing this is found in Listing D.5.

Both Hamming distances and weighted distances were calculated, with the weights
being negative log-probabilities, as described in section 3.3.

4.2.3 Estimating a density function
To estimate a density function on the distribution of distances between father/child rela-
tionships, the KernelDensity class from the scikit-learn library was used. The code
for doing this is shown in Listing 4.11.

10 pairwise_distances = pd.read_csv(’/path/to/trio-distances’,
11 header=0, sep=’\t’)
12

13 df = pairwise_distances.loc[
14 pairwise_distances.relationship == ’father/child’, ’distance’
15]
16 max_distance = max(df.values)
17 distances = df.values.reshape(-1,1)
18

19 kde = KernelDensity(
20 kernel=’gaussian’,
21 bandwidth=BANDWITH).fit(distances)
22

23 scale = 10
24 x = np.linspace(0, max_distance + PADDING,
25 num=scale*(max_distance + PADDING))
26

27 log_probabilities = kde.score_samples(x.reshape(-1,1))
28 probabilities = np.exp(log_probabilities)

Listing 4.11: Estimating a density function based on the distribution of distances between
father/child pairs with the KernelDensity class from scikit-learn.

A Gaussian kernel was used for fitting the density function to the data, and the prob-
abilities are stored in the probabilities variable. This was done on both hamming
distances and weighted distances, with a BANDWITH of 1 and 5 and a PADDING of 3 and
20, respectively.

24

4.3 Mitodetect

4.3 Mitodetect

Mitodetect calculates mitochondrial distances between individuals in a set and does the
hypothesis test described in subsection 3.2.1 on the pairs of individuals, to decide whether
they are likely to have a direct maternal line to a common maternal ancestor.

To run Mitodetect, a .ped and .map file with mitochondrial genotype data is needed,
and either a list of individuals or the a pedigree calculated by Sequoia is needed. If it gets
a list of individuals, it will compare the mitochondrial distance between all pairs listed in
the file. If it gets a Sequoia-pedigree, it will find all maternal founders in the pedigree, and
calculate the mitochondrial distance between these.

To run Mitodetect with a list of individuals, the following command can be issued:

$ python mitodetect.py prefix/to/ped-and-map-file path/to/output
--individuals path/to/individuals

The file with individuals must be whitespace-delimited, with the first two columns
having family ids and individual ids (FID and IID).

To run Mitodetect with a pedigree calculated by Sequoia, the following command can
be issued:

$ python mitodetect.py prefix/to/ped-and-map-file path/to/output
--pedigree path/to/pedigree.txt

In addition, it is possible to give the following flags:

--alpha
The threshold for when to reject H0 and accept H1 as described in subsection 3.2.1
(default: 0.05).

--hamming
Calculate Hamming distances.

--p value file
A distribution to use for estimating a kernel density function. If this is not provided,
a pickled kernel density function will be used, which is based on father/child mito-
chondrial distance (either Hamming distances or weighted distances) where mother
and father has a degree of relatedness of 7 or above.

4.4 Sequoia

4.4.1 Installation and documentation

Sequoia is available from CRAN, and can be installed in R with the command
install.packages("sequoia). It is also possible to download the source code
from https://github.com/JiscaH/sequoia and compile it oneself.

Furthermore, the R command vignette("sequoia") gives the documentation.

25

https://github.com/JiscaH/sequoia

Chapter 4. Methods

4.4.2 Execution
Sequoia’s pipeline is shown in Figure 4.1. Sequoia requires genotype data as a numeric
GenoM matrix, with one line for each individual and one column per SNP, coded as zero,
one or two copies of the reference allele (e.g. if C is the reference allele, then genotype
AA would be coded as 0, AC as 1 and CC as 2). In addition, the authors recommend to
prune the data to about 500-700 independent SNPs.

Sequoia will also use age and sex-information if available.

Figure 4.1: The pipeline of SEQUOIA. Source: Huisman, 2017 / CC-BY-CA-4.0

Preprocessing

I found that using the following flags and values gave the desired number of SNPs on the
HUNT set:

--maf 0.4985, which is the minor-allele frequency – it was this parameter that
affected the resulting number of SNPs the most.

--geno 0.1

--indep-pairwise 200 20 0.05

To prune the data set and extract the wanted SNPs, the commands shown in List-
ing 4.12 was issued.

26

https://creativecommons.org/licenses/by-sa/4.0/

4.4 Sequoia

$ plink2 --bfile genotyped --geno 0.1 --maf 0.4985 --indep-pairwise 200 20
0.05 --out genotyped-pruned

$ plink2 --bfile genotyped --extract genotyped-pruned.prune.in --out
genotyped-geno-0.1-maf-0.4985-indep-pairwise-200-20-0.05 --make-bed

Listing 4.12: Commands showing how to prune and extract SNPs from the HUNT set, resulting in
a set with 500-700 SNPs.

The required coding of the SNPs can be obtained by using PLINK and the parameter
--recode A on the pruned data set. To extract the wanted subset of individuals and get
the file ready for Sequoia’s GenoConvert function, the following command was issued:

$ plink2 --bfile genotyped-geno-0.1-maf-0.4985-indep-pairwise-200-20-0.05
--keep individuals-to-keep.txt --recode A --out recode-A

Listing 4.13: A command to filter out individuals listed in the file individuals-to-keep.txt
and recode SNPs to show the count of the reference allele.

Life history data

The life history data should be an R dataframe with columns ID, sex and birth year. The
sex column codes female as 1 and male as 2 – note that this is opposite of e.g. PLINK.
Column names are ignored, and therefore the order of the columns are critical.

This dataframe doesn’t have to include information of all individuals, it can contain
more individuals than the genotype data, and it doesn’t need to be ordered.

One thing to note is that Sequoia will by default not use family ids (FID), but if you
want it to use family ids, the ids specified in lifeHistData.txt should be on the
format <FID> <IID> – FID and IID separated by two underscores.

Running Sequoia

The R-script shown in Listing 4.14 will run Sequoia in two steps – first assigning parents
to the individuals in the data set, and then assign more relatives, as described in subsec-
tion 3.5.1.

1 # Read in the genoM
2 genoM <- GenoConvert(InFile=’/path/to/genotype-files.raw’,
3 UseFID=TRUE)
4

5 # Read in life history data
6 lifeHistData <- read.table(’/path/to/lifeHistData.txt’, header=FALSE)
7

8 # Assign parents
9 parOUT <- sequoia(GenoM=genoM, LifeHistData=lifeHistData, MaxSibIter=0)

10

11 # Find pedigree
12 seqOUT <- sequoia(GenoM=genoM, SeqList=parOUT, MaxSibIter=5)
13

14 # Save results in designated folder:
15 writeSeq(SeqList=seqOUT,
16 GenoM=genoM,

27

Chapter 4. Methods

17 folder=’path/to/sequoia-output-folder’)

Listing 4.14: The script for running Sequoia in R.

28

Chapter 5
Results and discussion

This chapter starts with the results of the quantitative analyses run on ten subsets of 1500
individuals randomly chosen from the HUNT study, in section 5.1. More specifically,
Hamming distances has been calculated on all pairs of individuals’ mtDNA. These Ham-
ming distances were further used to estimate probabilities that individuals will not share
a given mitochondrial variant, and the probabilities were used to estimate weighted mi-
tochondrial distances. In addition, genotype missingness in the subsets – the amount of
genotypes that are missing due to e.g. errors when sampling – were looked into, described
in subsection 5.1.4.

The chapter then continues with the results of the quantitative analyses run on father/-
mother/child trios, in section 5.2. Hamming distances and weighted distances were calcu-
lated between father/child- and mother/child pairs, were father and mother were 7th degree
relatives or more distantly related. In addition, the distribution of mitochondrial distances
between father/child pairs were used to estimate p-values for use in the hypothesis test
described in subsection 3.2.1.

The chapter then ends with a description of the program Mitodetect in section 5.3 and
how the function mitomatchwas optimized in section 5.4. Mitodetect uses mitomatch
to calculate mitochondrial distances between individuals in a data set and applies the hy-
pothesis test described in subsection 3.2.1, to decide whether the individuals are related or
not.

5.1 Mitochondrial DNA comparisons and the degree of
relatedness

Similarities in autosomal variants are quickly lost with increasing degrees of relatedness
such that 5th degree relatives have only about 3% inherited variants in common. As mi-
tochondrial DNA instead is maternally inherited, it would be interesting to see how mito-
chondrial DNA differ compared with the degree of relatedness – more specifically, if one
has compared the mtDNA between all pairs of individuals in a population, how would it

29

Chapter 5. Results and discussion

look like, when also taking their degree of relatedness into account? Naturally, one would
expect the distributions to indicate more similar mtDNA for close relatives, but at what
point – at what degree of relatedness – do the distributions of mtDNA differences look
like those of unrelated individuals?

To answer these two questions, ten subsets with 1500 individuals were randomly cho-
sen from the HUNT study, mitochondria DNA were compared for every pair of individual
and their degree of relatedness were estimated with DRUID (Ramstetter et al., 2018).

5.1.1 Hamming distance

Using the hamming distance when comparing two individuals’ mtDNA was the logi-
cal place to start. Given two individuals’ mtDNA, the number of different variants was
counted, meaning that if the hamming distance between two individuals’ mtDNA were
10, they would have 10 variants with different alleles. The approaches used to find the
hamming distance and compare the results with DRUID results are found in section 4.1.3
and subsection 4.1.4.

Figure 5.1 shows a letter value plot (Hofmann, Kafadar, & Wickham, 2011) of the
distribution of mitochondrial distances for different degrees of relatedness in subset 1,
where letter values are used to approximate more quantiles to give more information about
the tails of the distributions. The plots for the remaining subsets are found in section E.1.

As seen in Figure 5.1, the distributions are moving upwards from 1st degree relatedness
and seems to stabilize around 5th-7th degree relatedness. The tail of 6th degree relatives
is slightly bigger compared to 7th degree relatedness, a tendency shown for all the subset
plots, found in section E.1. The results for 12th degree relatives are somewhat surprising
though, but these results are most likely due to the sample size and coincidences, discussed
more thoroughly below.

Figure 5.1: The plot shows the distributions of Hamming distances over all degrees of relatedness
for subset 1, where n is set to be the number of relatives found for each degree. The distributions
are shown as letter value plots (Hofmann, Kafadar, & Wickham, 2011), where letter values are used
to approximate more quantiles, and hence show more information about the tails of the distribution.
The black horizontal lines indicate the median, and the inner boxes correspond to the first upper and
lower quantiles (i.e. 25% and 75%). The dots represent outliers, defined to be a proportion of 0.007.

30

5.1 Mitochondrial DNA comparisons and the degree of relatedness

Figure 5.2 shows the result of the comparison between mitochondrial distances and the
degree of relatedness, over all subsets. More specifically, the plot shows boxplots for the
upper quantiles (75%), median values and lower quantiles (25%) over all subsets.

Figure 5.2: This plot shows the Hamming distance on the y axis and the degree of relatedness on
the x axis, along with the distribution of the upper and lower quantiles (75% and 25% respectively)
and the median values for all ten subsets.

The median (and lower quantile) is 0 for first degree relationships, which includes full
siblings, mother/child and father/child relationships – DRUID found considerably more
siblings than parent/offspring relationships in the subsets, and siblings are expected to
share mitochondrial DNA. The median then increases and stabilizes on distance 10 for 5th
degree relatedness. The upper and lower quantiles are also increasing and seem to stabilize
from 6th degree relatedness.

It is worth mentioning that 12th degree relatedness has a bigger variation, especially on
the lower quantile. However, DRUID found a considerably lower number of 12th degree
relationships over all subsets (around 200–300) compared to fifth through 11th degree
relatedness and ”unrelated” (which ranged from three to five orders of magnitude, as can
be seen in Figure 5.1). This lower number of samples has probably created more variance
over the subsets, simply due to coincidence.

5.1.2 Mitochondrial DNA variant probabilities

When comparing hamming distances with the degree of relatedness, it was not clear
whether differences were more likely to occur at certain positions compared to others.
This information could further be used to calculate weighted distances, and it was therefore
interesting to see how the variants in the mitochondria DNA varies over the population,
e.g. which mitochondrial markers will be shared across the population, and which will
vary across the population. The methods used to find the number of differences between
individuals mtDNA and the corresponding probabilities are described in subsection 4.1.6.

Figure 5.3 shows a heatmap with subsets on the y-axis and mtDNA markers on the x-
axis, where the color indicates the number of pairs that have different alleles on a marker.
What is especially interesting to see, is how uniform the distributions are for a given variant

31

Chapter 5. Results and discussion

Figure 5.3: This figure shows a heatmap with the ten subsets over the y-axis and the 326 mitochon-
drial markers on the x-axis. The colors indicate the number of pairs in a subset that has different
alleles on a mitochondrial marker, where darker color indicated a higher number.

over all subsets, i.e. a variant that varies a lot over one of the subsets also varies a lot for
all the other populations. Note that the number of different variants is upper bounded, as
described in section 3.1. When n = 1500, the upper bound is n2/4 = 562 500.

Figure 5.4: This heatmap shows the probabilities that two individuals don’t share a variant in the
10 subsets, and the average over all subsets has also been added on the bottom. The variants with an
average probability above 0.25 has been marked together with their probabilities.

Figure 5.4 shows a heatmap of the actual probabilities that two markers are different
in all subsets. The upper probability is bounded by 0.5003 when n = 1500 as described
in section 3.1.

This figure shows the same tendencies as Figure 5.3, which is expected, as the high-

32

5.1 Mitochondrial DNA comparisons and the degree of relatedness

est number of different markers are close to the upper bound of the possible number of
pairwise differences.

5.1.3 Weighted distance
By using the probabilities found above, weights were created and used when calculating
the distance, where variants with a lower probability of being different where weighted
higher, and variants with a higher probability where weighted lower. The methods used to
get these results are described in section 4.1.3.

Figure 5.5: The plot shows the distributions of weighted distances over all degrees of relatedness
for subset 1, along with the number of relatives found for each degree.

The results for subset 1 are shown as letter value plots in Figure 5.5 and the distri-
butions show some of the same patterns as those for the hamming distance (Figure 5.1),
especially when looking at the tails of the distributions. The plots showing weighted dis-
tances for all subsets are found in section E.2.

Figure 5.6 shows boxplots for medians, upper quantiles (75 %) and lower quantiles
(75 %) over all subsets. Again, note that the median and lower quantile is 0 for 1st degree
relatives.

In these results, it is slightly clearer that the distributions for 7th degree relatives and
above look more like the distributions for non-relatives. There is not a big difference
between sixth and seventh degree relatives, other than the fact that the lower quantile is
slightly lower for 6th degree relatives – there is a bigger ratio of pairs with similar mtDNA
among the 6th degree relatives.

In order to find out at what degree of relatedness the distributions look like those of
unrelated individuals, Student’s T-tests has been applied. More specifically, the median
values for all subsets of 5th–12th degree relatives were compared with the median values
for all subsets of unrelated individuals.

The null-hypothesis is that there is no significant difference the average of the median-
values, while the alternative hypothesis is that there is a difference. A small p-value (e.g.
p ≤ 0.05) will indicate that if there is a difference, then there is a 5 % chance for it being

33

Chapter 5. Results and discussion

Figure 5.6: This plot shows the weighted distance on the y axis and the degree of relatedness on the
x axis, along with the distribution of the upper and lower quantiles (75% and 25% respectively) and
the median values for all ten subsets.

Table 5.1: The results of t-tests on the distribution of distances between 5th-, 6th-, 7th-degree
relatives and unrelated individuals

t-value p-value
Unrelated

5th degree 3.29 0.004
6th degree 1.27 0.222
7th degree 0.03 0.975
8th degree −0.21 0.833
9th degree −0.40 0.696

10th degree −0.41 0.689
11th degree −0.33 0.744
12th degree 2.73 0.014

coincidence, and hence we will accept the null-hypothesis for small p-values. The results
are shown in Table 5.1.

As can be seen in the table, the p-values are very small for 5th degree relatives versus
unrelated individuals, and it is above the threshold of 0.05 for 6th degree relatives. The p-
value is also small for 12th degree relatives, but this is most likely due to the low sampling
size.

5.1.4 Genotype missingness
One thing to note is how genotype missingness has been handled. When measuring DNA,
genotypes might not be sampled due to some sampling error, and this will be indicated in
the .ped file with a 0. If you have two individuals, A and B, where A has a missing allele
for a marker, while B has not – what should you do with the distance? The conservative
approach is to assume that A has the same allele and add 0 to the distance, while the alter-
native is to assume A has a different allele and add 1. mitomatch used the conservative

34

5.1 Mitochondrial DNA comparisons and the degree of relatedness

Table 5.2: Genotype missingness in all ten subsets, where the first column shows how many geno-
types each individual are missing on average, the second column shows how many individuals who
does not have any genotype missingness and the last column shows the three highest numbers of
missing genotypes found in individuals for every subset.

Subset Average number of missing
genotypes per individual

Individuals with
no missingness (%)

Top 3 missing
genotypes

1 0.36 73.40 5, 4, 4
2 0.35 74.60 5, 5, 4
3 0.33 75.47 4, 4, 4
4 0.35 75.07 14, 5, 4
5 0.32 75.67 5, 4, 4
6 0.34 75.27 4, 4, 4
7 0.36 73.20 4, 4, 4
8 0.33 75.53 4, 4, 4
9 0.33 75.07 5, 5, 5
10 0.35 74.40 14, 4, 4

alternative, because assuming missing genotypes are different results in outliers, especially
among closely related individuals – a mother and child might get a high distance simply
due to missing genotypes.

Figure 5.7: The average number of missing genotypes per variant over all subsets, sorted in increas-
ing order.

Table 5.2 shows more specific information about missingness in the ten subsets, namely
the average number of missing genotypes for each individuals, the percentage of individ-
uals with no missing genotypes and the top three individuals in each set with the highest
number of missing genotypes (the individual with 14 missing genotypes in subset 4 and
10 is the same). Besides, Figure 5.7 shows the average number of missing genotypes per

35

Chapter 5. Results and discussion

variant over all subsets, and as seen, most mitochondrial variants are successfully geno-
typed in all individuals. Furthermore, in the most extreme cases, genotyping has failed for
about 1.7 % of the individuals on average on all ten subsets.

5.2 Looking at trios

DRUID and mitomatch were run on a set of about 7000 trios of mothers, fathers and
their children as described in section 4.2. More specifically, the hamming distances and
weighted distances were calculated on the mitochondrial DNA between every father/child
and mother/child pair, where the mother and father had an estimated degree of relatedness
of seven or above, and the results of the distributions are shown in Figure 5.8.

Figure 5.8: This shows the results from calculating Hamming distances and weighted distances
on father/child and mother/child relationships, where mother and father are 7th degree relatives or
more distantly related, as estimated by DRUID. In addition, the distribution of distances between all
unrelated individuals found in the ten subsets has been added for comparison. There were 6953 pairs
in the father/child- and mother/child-distributions and 486 394 pairs of individuals in the unrelated
distribution.

Every mother/child pair has a distance of 0 between them, while father/child pairs
have a distribution more similar to that of unrelated individuals – the hamming distance
distribution is almost exactly the same, while the weighted distance distribution lies above

36

5.2 Looking at trios

for father/child-pairs. The fact that there exist no mother/child pairs with different mtDNA
is somewhat interesting – it might indicate that mutations when inheriting mtDNA happen
more rarely than in 1 out of 7000 cases. However, it is also worth mentioning that missing
genotypes were ignored and assumed similar, which introduces a slight uncertainty.

As discussed in subsection 3.2.1, the distribution of mitochondrial distances between
father and their children could be used as p-values, when deciding whether two randomly
selected individuals have a direct maternal line to a common maternal ancestor. Figure 5.9
shows the histogram and results of estimating a kernel density function based on the dis-
tribution of weighted distances between fathers and their children in the trio data. The
method used to estimate a kernel density function has been described in subsection 4.2.3.

Figure 5.9: This shows the distribution of weighted distances between father/child pairs, where the
line indicates an estimated density function. The shaded area under the density-function is equal to
α = 0.05.

It does seem like there is an overweight of cases with distance 0 in the weighted dis-
tribution, which is why a kernel density function has been applied on the Hamming dis-
tances between father/child pairs as well, to prove that this is not the case, as shown in
Figure 5.10. The overweight of 0-distances in the weighted distribution is due to the fact
that all cases where no variants differ between father and their children get distance 0,
while cases where e.g. one variant differ between father/child pairs will result in different
distances when the variants have different weights. So if there are three pairs that have a
Hamming distance of 0 and six pairs with a hamming distance of 1, the same three pairs
will get a weighted distance of 0, while the pairs with one differing variant might yield
one pair with a weighted distance of 1.5, two with a distance of 2, two with a distance of
3.5 and one with a distance of 4.0.

A weakness with using a kernel density function is the fact that the lowest possible
p-value for father/child pairs is 0.02, shown in Figure 5.10. This should be the same for
weighted distances, but due to the smoothing of the kernel density function, the lowest
p-value for weighted distances lie a little below 0.003, as shown in Figure 5.9.

It is also worth mentioning that there might exist some father/child-pairs with a direct
maternal line to a common maternal ancestor among these results, which further increases

37

Chapter 5. Results and discussion

the uncertainty.

Figure 5.10: The distribution of hamming distances between father/child pairs, where the line indi-
cates an estimated density function. The shaded area under the density-function is equal toα = 0.05.
The histogram has as many bins as discrete values.

In addition, both plots show a shaded area, which is the area under the distributions
that sums to α = 0.05. The critical values are 10.2 and 0.8 for weighted distances and
Hamming distances respectively and would be the thresholds for when to accept or re-
ject H0 if α = 0.05 given two individuals A and B with distance dA,B , as described in
subsection 3.2.1.

5.3 Mitodetect
Mitodetect is a program that calculates the mitochondrial distance between a group of
individuals, by using the function mitomatch (section 5.4) and tests whether the pairs
are likely to have a direct maternal line to a common maternal ancestor, by looking at the
mitochondrial DNA distances. More specifically, it can calculate the weighted distance
or the hamming distance between individuals as described in subsection 4.1.3 and applies
the hypothesis test described in subsection 3.2.1 by using the estimated p-values found in
section 5.2.

A description of how to use Mitodetect is found in section 4.3.
Mitodetect was tested on all ten subsets, with the weighted distance and with α = 0.05.

As described above, this yielded a critical value of 10.2, meaning that a pair of individuals
with a mitochondrial weighted distance below this value were deemed to have a direct
maternal line to a common maternal ancestor. Figure 5.11 shows the results of these runs –
more specifically, it shows the average number of individuals that had a distance above the
threshold and the number that had a distance below, divided into the degree of relatedness.

For sixth degree relatives and above, there are a little more than 10 times as many
pairs of individuals where the null-hypothesis as been withheld, as opposed to the null-
hypothesis being rejected with the given alpha value, and this ratio is somewhat stable for
all degrees of relatedness above 6th degree.

38

5.4 mitomatch

Figure 5.11: The average number of individuals that have and does not have a direct maternal
line to a maternal ancestor across all subsets, estimated by Mitodetect. The y-axis shows the count
scaled with log10, and the x-axis shows the degree of relatedness. The black vertical lines shows the
confidence intervals for the average values.

One important thing to note, is that Mitodetect does not automatically correct for mul-
tiple testing. This means that when the alpha-value is set to 0.05, about 5% of the pairs
that are deemed to have a direct maternal line to a common maternal ancestor might be
false positives. And this might result in a substantial amount of individuals.

It is not necessarily straightforward to correct for multiple testing, because you might
end up being too stringent as well. However, one approach could be to use nuclear DNA
to determine all groups of individuals who share mitochondrial DNA due to maternal an-
cestry, like mother/child-pairs and full sibling-pairs, and then use one representative from
each of these groups. Mitodetect already identifies these groups for mother/child-pairs if
you provide a pedigree reconstructed by Sequoia, and will only calculate mitochondrial
distances between maternal founders in the set. However, the ratio of mother/child pairs
compared to the total number of pairs in a given subset is very low, making this approach
not very effective. Determining groups of individuals based on full siblings and other close
relatives as well, might have been an improvement.

5.4 mitomatch

The function, mitomatch, calculates pairwise mitochondrial differences between indi-
viduals. It can calculate the hamming distance, a weighted distance, and output True/False
vectors indicating whether a pair of individuals share a variant or not.

5.4.1 Code optimizations
This section describes how I made mitomatch run 10 times faster by simply doing code
optimizations, from spending about 30 minutes to about 3 minutes on a set of 1500 in-
dividuals. The initial code is shown in Listing 5.1. Note that timing and printing have
been removed in the code for clarity, and timing was split into total time, access (getting

39

Chapter 5. Results and discussion

Table 5.3: The timings and speedup of each iteration of the code optimizations.

1st iteration 2nd iteration 3rd iteration 4th iteration
Total 29 minutes 21.5 minutes 11.3 minutes 3 minutes
Access: 34.73 % 40.28 % 74.10 % 2.59 %
Calculation: 65.11 % 59.50 % 25.52 % 55.47 %
Storing: 0.06 % 0.08 % 0.12 % 0.31 %
For-loop NA NA NA 41.35 %
Speedup NA 1.34 2.57 2.98

values from the DataFrame), storage (storing values in a matrix) and calculation (doing
the comparison of mtDNA).

Timings and speedup for all the iterations of the implementations are shown in Ta-
ble 5.3, and as seen in the table, the initial iteration spent about 29 minutes to calculate the
hamming distance between every pair in a set of 1500 individuals.

1 import pandas as pd
2 import numpy as np
3

4 def mitomatch(mito_data, individuals):
5 mito_data.set_subset(individuals)
6 pairwise_thing = pd.DataFrame(columns=["id1", "id2", "distance"])
7 ped_df = mito_data.ped_df
8 gsi = mito_data.genotype_start_index
9 matrix = []

10

11 for index1 in ped_df.index:
12 mito_dna1 = ped_df.iloc[index1, gsi:].values
13 id1 = ped_df.iloc[index1, 1]
14

15 for index2 in range(index1 + 1, len(ped_df.index)):
16 mito_dna2 = ped_df.iloc[index2, gsi:].values
17 id2 = ped_df.iloc[index2, 1]
18

19 temp = np.equal(mito_dna1, mito_dna2)
20 distance = len(temp) - sum(temp)
21

22 matrix.append([id1, id2, distance])
23 pairwise_thing = pd.DataFrame(matrix)
24

25 return pairwise_thing

Listing 5.1: The initial code of mitomatch.

Filter out variants shared across entire set

The individuals’ mitochondria DNA has been sampled on 326 variants, but many of the
variants are shared across the entire subsets. My first idea was, therefore, to simply filter
out those variants which were shared across the entire set – why spend time counting
differences where there are none?

40

5.4 mitomatch

Listing 5.2 shows the additions to the code. The variant filtering is implemented in the
class MitochondriaData.py, shown in Listing C.3. Note that the filtering itself was
not a part of the timing.

4 def mitomatch(mito_data, individuals, filter_out_variants=True):
5 mito_data.set_subset(individuals)
6 mito_data.filter_out_variants() if filter_out_variants else None

Listing 5.2: Filtering out variants shared across the entire set.

This resulted in a speedup of 1.34, with the time spent in calculation somewhat im-
proved.

Using functools.reduce()

At this point, the mitomatch spent most of its time doing calculations, so that was where
I focused my next optimization. Listing 5.3 shows how I tried using reduce from the
standard library functools.

21 distance = reduce(
22 lambda total, x: total + int(x[0] != x[1]),
23 zip(mito_dna1, mito_dna2), 0)

Listing 5.3: Using functools.reduce() to speed up calculation time.

reduce takes one pass over a list, and does some calculations and yields a single re-
sult, as opposed to using a combination of np.equal and sum, which will first calculate
and create a true/false numpy array based on the two arrays, and then this true/false-array
is passed to the sum function – basically, there is more overhead with this, compared to
doing a single pass over a list. As seen in Table 5.3, the amount of time spent doing
calculations was reduced to 25.52 % and with a speedup of 2.57.

Iterating over DataFrame rows with .iterrows()

At last, I looked at whether there was possible to access the DataFrame differently –
and there was. Instead of getting the mtDNA and ids with indexing, I used the method
iterrows, when iterating over the dataframes, as shown in Listing 5.4.

19 for index1, row1 in ped_df.iterrows():
20 mito_dna1 = row1.values[gsi:]
21 id1 = row1.values[1]
22

23 for index2, row2 in ped_df.iloc[index1 + 1:].iterrows():
24 mito_dna2 = row2.values[gsi:]
25 id2 = row2.values[1]
26

27 distance = reduce(
28 lambda total, x: total + int(x[0] != x[1]),
29 zip(mito_dna1, mito_dna2), 0)

Listing 5.4: Spending more of the time in the for-loop, but reducing access time substantially.

41

Chapter 5. Results and discussion

As seen in Table 5.3, this led to another speedup of 2.98, and access time was reduced
to a staggering 2.59 % – or, is that true? Well, no. At this point, the for-loop itself had to be
timed as well (before this, the time spent handling for loop variables was negligible, and
therefore not timed). But by using iterrows, accessing the dataframe became a part of
the for loop-logic, and as seen in the table, 41.35 % of the time was spent in the for-loop.

All in all, the total speedup ended up being 10.26, all by implementing things a little
differently. However, the current implementation of mitomatch uses about 5 minutes
on a subset of 1500 individuals, due to more features.

5.5 Pedigree reconstruction- and relatedness estimation-
methods

In order to answer my first research question, namely to see which pedigree reconstruction
methods could be used to find individuals with a direct maternal line to a common ancestor,
I tested the methods CLAPPER (Huisman, 2017), DRUID (Ramstetter et al., 2018) and
Sequoia (Huisman, 2017).

CLAPPER failed, and PADRE was never tried out, because the program ERSA (Huff
et al., 2011) – which PADRE depends upon – failed. The information about how I run
these programs and what went wrong is described in Appendix B.

The first author of the CLAPPER software (Ko & Nielsen, 2017) recommended I try
the R package Sequoia (Huisman, 2017), which did succeed. The methods for how Se-
quoia can be run on the HUNT set is described in section 4.4. Sequoia scaled well on a
subset of 10 000 individuals, but was never tried out on the full set. However, according to
the documentation, a stand-alone version of the algorithm exists, written in Fortran, which
does not rely on the same memory limitations as R.

In addition, I tested DRUID (Ramstetter et al., 2018) in my project thesis, and al-
though it doesn’t scale well for large sets (Gudem, 2018), it runs well for subsets of 1500
individuals.

However, when selecting subsets of individuals, the chances of the subsets containing
close relatives is rather small, and you would therefore not find that many of these relatives
that way. Because of this, I focused more on using mitochondrial distances to estimate
whether individuals had a direct maternal line to a common maternal ancestor instead. A
combination of using pedigrees within subsets and mitochondrial distances could provide
a stronger hypothesis test, and would be an interesting thing to look further into.

42

Chapter 6
Conclusion

As described in the introduction, my goal was to find a way to estimate whether two
individuals have a direct maternal line to a common maternal ancestor, and my proposal
to this problem is the software Mitodetect. Mitodetect can calculate either the weighted
distance or Hamming distance between individuals in a data set, and runs the hypothesis
test described in section 5.3 to decide whether the individuals are likely to have a direct
maternal line to a common maternal ancestor.

In addition, I have had three research questions to answer:

Question 1: Which pedigree reconstruction-methods can be used to find individuals
that have a direct maternal line to a maternal ancestor for close enough relatives?

Question 2: At what degree of relatedness do the distributions of mtDNA differ-
ences look like those of unrelated individuals?

Question 3: What is the probability that two individuals will not share a given
mitochondrial variant?

The programs Sequoia (Huisman, 2017) and DRUID (Ramstetter et al., 2018) both do
pedigree reconstruction, and can be run on the HUNT set. Sequoia scales well for 10 000
individuals, but it has not been tried on the full set – however, this might be possible if
one uses the stand-alone program written in Fortran. DRUID is also able to do pedigree
reconstruction, but does not scale well for large data sets. Anyhow, the chances of finding
close relatives in small subsets are rather low, which made this approach not that effective,
and I therefore focused more on looking into mitochondrial distances.

To answer questions 2 and 3, I did quantitative analyzes on ten subsets with 1500
individuals from the HUNT study. More specifically, Hamming distances were calculated
between all pairs of individuals, and probabilities that a given mitochondrial variant will
be different for a pair of individuals were estimated based on these Hamming distances.
The probabilities were further used to calculate weighted distances. T-tests indicated that
for 6th degree relatedness and above, the distributions of the weighted distances looked
like those of unrelated individuals.

43

Chapter 6. Conclusion

In addition, quantitative analyses were run on father/mother/child trios, in order to esti-
mate the p-values for use in Mitodetect. Both Hamming distances and weighted distances
were calculated between the father/child-pairs and the mother/child-pairs, where the fa-
ther and mother were 7th degree relatives or more distantly related. All mother/child pairs
had identical mtDNA, which might indicate that the chances of mutations when inheriting
mtDNA might be less than 1 out 7000. The Hamming distribution of father/child pairs
were almost identical to the distribution of Hamming distances between unrelated individ-
uals and the distribution of weighted distances between father/child-pairs lay above that of
unrelated individuals.

Mitodetect was tested on all subsets, with an alpha of 0.05, and the results showed that
for close relatives, more pairs of individuals were deemed to be mitochondrially related
for closer relationships, while for 6th degree relatives and above, there were slightly more
than 10 times as many non-mitochondrial relatives as there were mitochondrial relatives.
However, Mitodetect does not automatically correct for multiple testing, which can give 5
% false positives when α = 0.05.

Further work includes making Mitodetect correct for multiple testing, and a way to
do this would be to look into using pedigree reconstruction methods more actively to de-
termine groups of individuals that share mitochondrial DNA due to common maternal
ancestry. These relationships include mother/child, full siblings and grandmother/grand-
child to name a few. That way, you could have one individual per group who acts as a
”mitochondrial representative” for that group – if two mitochondrial representatives are
deemed to have a direct maternal line to a common maternal ancestor, this would indicate
that all individuals in one group would have a direct maternal line to all individuals in the
other group.

It would also be interesting to leverage degrees of relatedness between individuals in
addition to mitochondrial distances, to determine whether they share maternal ancestry. If
two individuals are closely related and in addition share mitochondrial DNA, this proves as
strong evidence that they have a direct maternal line to a common maternal ancestor. But
how would this be for more distantly related individuals? At one end, if two individuals
are distantly related and share mitochondrial DNA, this can be a strong evidence of them
being mitochondrially related. At the other end, the probability that two individuals have
a direct line to a common maternal ancestor will decrease when the individuals are more
distantly related, as described in subsection 3.2.2 – would this increase the probability that
they share mitochondrial DNA by coincidence?

At last, it would be interesting to look at more levels of maternally related individ-
uals, to find the probability that mutations occur when inheriting mitochondrial DNA.
No mutations were found between 7000 mother/child pairs – how would it look like for
grandmother/grandchild pairs, or great-grandmother/grandchild pairs? If you knew these
probabilities, they could be combined with the degree of relatedness.

44

Bibliography

Auton, A. (2013). Genetic maps generated from the 1000g phased omni data. Retrieved
February 13, 2019, from ftp : / / ftp . 1000genomes . ebi . ac . uk / vol1 / ftp / technical /
working/20130507 omni recombination rates/

Browning, S. R., & Browning, B. L. (2012). Identity by descent between distant relatives:
Detection and applications. Annual Review of Genetics, 46(1), 617–633. doi:10 .
1146/annurev-genet-110711-155534

Daly, A. K., & Day, C. P. (2001). Candidate gene case-control association studies: Advan-
tages and potential pitfalls. British journal of clinical pharmacology, 52(5), 489–
499. doi:10.1046/j.0306-5251.2001.01510.x

Gazal, S., Génin, E., & Leutenegger, A. L. (2016). Relationship inference from the genetic
data on parents or offspring: A comparative study. Theoretical Population Biology,
107, 31–38. doi:10.1016/j.tpb.2015.09.002

Gudem, A. (2018). Relatedness estimation and pedigree reconstruction on large datasets.
Retrieved from http://www.github.com/aliccce/project-thesis-2018

Hofmann, H., Kafadar, K., & Wickham, H. (2011). Letter-value plots: Boxplots for large
data. had.co.nz.

Huff, C. D., Witherspoon, D. J., Simonson, T. S., Xing, J., Watkins, W. S., Zhang, Y.,
. . . Jorde, L. B. (2011). Maximum-likelihood estimation of recent shared ancestry
(ersa). Genome Research, 21(5), 768–774. doi:10.1101/gr.115972.110

Huisman, J. (2017). Pedigree reconstruction from snp data: Parentage assignment, sibship
clustering and beyond. Molecular Ecology Resources, 17(5), 1009–1024. doi:10 .
1111/1755-0998.12665

Inbreeding. (n.d.). Retrieved April 28, 2019, from http://abri.une.edu.au/online/pages/
inbreeding coefficient help.htm

Ko, A., & Nielsen, R. (2017). Composite likelihood method for inferring local pedigrees.
PLoS Genetics, 13(8). doi:10.1371/journal.pgen.1006963

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W.-M.
(2010). Robust relationship inference in genome-wide association studies. Bioin-
formatics, 26(22), 2867–2873. doi:10.1093/bioinformatics/btq559

Ramstetter, M. D., Shenoy, S. A., Dyer, T. D., Lehman, D. M., Curran, J. E., Duggirala,
R., . . . Williams, A. L. (2018). Inferring identical-by-descent sharing of sample an-

45

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130507_omni_recombination_rates/
https://dx.doi.org/10.1146/annurev-genet-110711-155534
https://dx.doi.org/10.1146/annurev-genet-110711-155534
https://dx.doi.org/10.1046/j.0306-5251.2001.01510.x
https://dx.doi.org/10.1016/j.tpb.2015.09.002
http://www.github.com/aliccce/project-thesis-2018
https://dx.doi.org/10.1101/gr.115972.110
https://dx.doi.org/10.1111/1755-0998.12665
https://dx.doi.org/10.1111/1755-0998.12665
http://abri.une.edu.au/online/pages/inbreeding_coefficient_help.htm
http://abri.une.edu.au/online/pages/inbreeding_coefficient_help.htm
https://dx.doi.org/10.1371/journal.pgen.1006963
https://dx.doi.org/10.1093/bioinformatics/btq559

cestors promotes high-resolution relative detection. American Journal of Human
Genetics, 103(1), 30–44. doi:10.1016/j.ajhg.2018.05.008

Schon, E. A., DiMauro, S., & Hirano, M. (2012). Human mitochondrial dna: Roles of
inherited and somatic mutations. Nature Reviews Genetics, 13, 878. doi:10.1038/
nrg3275

Staples, J., Qiao, D., Cho, M. H., Silverman, E. K., Nickerson, D. A., & Below, J. E.
(2014). Primus: Rapid reconstruction of pedigrees from genome-wide estimates of
identity by descent. American Journal of Human Genetics, 95(5), 553–564. doi:10.
1016/j.ajhg.2014.10.005

Staples, J., Witherspoon, D. J., Jorde, L. B., Nickerson, D. A., Below, J. E., & Huff, C. D.
(2016). Padre: Pedigree-aware distant-relationship estimation. American Journal of
Human Genetics, 99(1), 154–162. doi:10.1016/j.ajhg.2016.05.020

Thompson, E. A. (2013). Identity by descent: Variation in meiosis, across genomes, and
in populations. Genetics, 194(2), 301–26. doi:10.1534/genetics.112.148825

Voight, B. F., & Pritchard, J. K. (2005). Confounding from cryptic relatedness in case-
control association studies. PLoS genetics, 1(3). doi:10.1371/journal.pgen.0010032

Weir, B. S., Anderson, A. D., & Hepler, A. B. (2006). Genetic relatedness analysis: Modern
data and new challenges. Nat Rev Genet, 7(10), 771–80. doi:10.1038/nrg1960

46

https://dx.doi.org/10.1016/j.ajhg.2018.05.008
https://dx.doi.org/10.1038/nrg3275
https://dx.doi.org/10.1038/nrg3275
https://dx.doi.org/10.1016/j.ajhg.2014.10.005
https://dx.doi.org/10.1016/j.ajhg.2014.10.005
https://dx.doi.org/10.1016/j.ajhg.2016.05.020
https://dx.doi.org/10.1534/genetics.112.148825
https://dx.doi.org/10.1371/journal.pgen.0010032
https://dx.doi.org/10.1038/nrg1960

Appendices

47

Appendix A
Genetic mapping file

The genetic mapping that has been used is based on the Finnish population. The positions
were taken from (Auton, 2013). The original data has four fields: Physical position (bp),
recombination rate (cM/Mb), genetic position (cM) and a fourth field named ”filtered”.

Only the first three fields are needed, and to clean up the file, the necessary columns
were extracted and whitespace characters were replaced by a space. Since the genetic map-
ping are stored seperately for each chromosome, this must be done on all files. A simple
bash-script that converts the files to the desired format is shown below (Listing A.1).

1 #!/bin/bash
2

3 for chr in {1..22}
4 do
5 sed ’1d’ FIN-$chr-final.txt | sed ’s/ \+//g’ | cut -f 1-3 | sed ’s/\t/

/g’ > gmap-FIN-$chr.txt
6 done

Listing A.1: A simple script that creates genetic mapping files.

When using this in combination with PLINK, the --cm-map flag is used, and the file
path is specified with the wildcard character @ for the chromosome number:

plink2 --bfile input --cm-map gmap-FIN-@.txt --recode --out output

Listing A.2: An example of how the genetic mapping files are used in PLINK.

This will yield a .map file with positions in centimorgans in the third column, which
is often necessary in relatedness analyses (otherwise, these fields are normally zeroed out).

49

50

Appendix B
Programs

My plan was to test and use CLAPPER and PADRE. However, I hit some issues that
wasn’t possible to solve without help from the authors or some access to source code (if I
were to do the debugging myself). Unfortunately, neither was available. I will nonetheless
document what I did up to the point of failure for the programs I tested.

This appendix will describe what I did and what issues that was in my power to solve,
up to the point of failure in both CLAPPER and PADRE.

B.1 Specifications and equipment
The plan was to start with a 1,000 individuals with an inbreeding coefficient below 0.025
(see subsection B.2.1) for both CLAPPER and PADRE, and with initially about 350,000
markers. In both programs, markers ended up being filtered.

The programs and their versions are shown in Table B.1.

Table B.1: The programs and their versions that has been used.

Program Version Last changed
PLINK 1.90p 64-bit March 25th, 2016
CLAPPER 0.9 March 13th, 2018
SHAPEIT v2 r904 January 17th, 2018
GERMLINE 1.5.3 October 10th, 2018
ERSA 2.1 No information
PRIMUS 1.9.0 No information

51

52

B.2 CLAPPER
The writers of CLAPPER advice users to check whether the population is inbred before-
hand, since CLAPPER assumes an outbred population (Ko & Nielsen, 2017).

B.2.1 Inbreeding coefficient
The inbreeding coefficient is the probability that an individual carries two identical-by-
descent alleles at a locus, which also means the probability that the parents’ respective
alleles are identical-by-descent (Weir, Anderson, & Hepler, 2006).

There are several ways of checking inbreeding levels, including approaches that rely
on allele frequencies at each marker considered independently (single-point approaches),
approaches that rely on IBD segments (multi-point approaches) and approaches that com-
bine the two. PLINK’s --het option is a single-point approach that uses method of
moments-estimation. (Gazal, Génin, & Leutenegger, 2016), and it was chosen because of
its simplicity to use.

Calculating the inbreeding coefficient was performed on both a pruned and non-pruned
data set.

To prune the data set, the following commands were issued in PLINK:

$ plink2 --bfile prefix-to-bed-file --indep-pairwise 50 5 .05 --out pruned
$ plink2 --bfile prefix-to-bed-file --extract pruned.pruned.in --make-bed

--out pruned-bed

Listing B.1: Pruning a data set in PLINK.

And to calculate the inbreeding coefficient, the following command was issued:

$ plink2 --bfile prefix-to-bed-file --het --out inbreeding-coefficients

Listing B.2: Calculate the inbreeding coefficient in PLINK.

Listing B.2 outputs a .het file, which contains one row per individual in the data set,
with fields as shown in Table B.2.

Table B.2: The columns of the .het file output when running plink --het.

FID Family ID
IID Individual ID
O(HOM) Observed number of homozygotes
E(HOM) Expected number of homozygotes
N(NM) Number of non-missing genotypes
F F inbreeding coefficient estimate

More specifically, F is the inbreeding coefficient, which we are interested in.
The results where further processed by finding the median and average inbreeding

coefficient:

53

$ awk ’{ NR > 1 && total += $6 } END { print total/(NR-1) }’
inbreeding-coefficients.het

Listing B.3: The average of the inbreeding coefficients

$ sort -gk 6 inbreeding-coefficients.het | awk ’{ a[i++]=$6; } END { print
a[int(i/2)]; }’

Listing B.4: The median of the inbreeding coefficients

The average values for the non-pruned and pruned data sets, were 0.0029484 and
0.00290772 respectively, and the median values were 0.001528 and 0.001635 (again, re-
spectively).

Since both the median and average values are about zero, it is safe to say that the data
set as a whole is not inbred. The histogram in Figure B.1 shows the distribution of the
inbreeding coefficients based on the pruned data set.

Figure B.1: The histogram of the inbreeding coefficients calculated with PLINK based on a pruned
data set.

For further use with CLAPPER, individuals with an inbreeding coefficient above 0.025
were removed from the set, as levels below 0.03 (or 3%) can be considered a low level of
inbreeding (“Inbreeding”, n.d.).

54

B.2.2 Input files for clapper
CLAPPER takes .tped and .tfam files as input, which can be created with PLINK,
with --recode transpose.

However, a few trial-and-error rounds were needed when trying to run the program.
This was issues mainly to do with the input files. To recap:

1. The input files need physical base point positions.

2. Clapper does not accept several markers on the same position.

3. CLAPPER accepts SNPs only, in the form of ’A’, ’C’, ’G’ and ’T’ alleles – there ex-
ists variants in the HUNT set that are multi-nucleotide alleles (markers with several
alleles, e.g. like ’tgaggc’).

4. CLAPPER does not support missing genotypes, which are coded as a pair of 0’s in
the .tped file.

Issue 1), 3) and 4) were solved with PLINK, while issue 2) was solved after PLINK
had created the .tped and .tfam files.

Issue 1, 3 and 4

Issue 1) and 3) are (more or less) straightforward to solve. To ensure that the .tped has
physical positions, the flag --cm-map must be provided together with files containing
genetic mappings separated into one file for each chromosome (where @ serves as the
wildcard character for chromosome number, as seen in Listing B.5). The creation of these
files are described in A. Furthermore, to ensure that the file only contains SNPs (markers
with only one allele), one simply adds the flag --snps-only to the PLINK command.
This will remove markers like ’tgaggc’.

Issue 4) can be tackled in three ways: Either remove the individuals that has missing
genotypes, remove the markers that has missing genotypes or do both. Since the HUNT
study has lot of individuals genotyped on a lot of markers, doing one or the other will
reduce the set substantially. Therefore, I did a combination of the two. The flags --mind
X and --geno Y will filter out individuals and markers with a missingness exceeding X
and Y respectively. The values --mind 0.001 and --geno 0.001 were sufficient to
ensure no missing genotypes in the resulting subset.

The resulting PLINK command is shown in Listing B.5. The --keep flag simply
keeps the individuals listed in individuals-to-keep.txt, which should be space-
or tab-delimited, with the family-id in the first column and the individual id in the second
column.

$ plink2 --bfile genotype-data --keep individuals-to-keep.txt --cm-map
gmap-FIN-@.txt --mind 0.001 --geno 0.001 --snps-only --recode
transpose --out output-prefix

Listing B.5: The PLINK command that solves issue 1), 3) and 4).

55

Issue 2

Issue 2 is dependent on the precision of the map-file, so a possible solution would be to
increase the precision or create a new genetic mapping based on the population in Nord-
Trondelag. However, creating a genetic mapping is not straightforward, and since I was
more interested in getting a successful run of CLAPPER, I chose to simply remove all but
one marker for each position.

The .tped file contains no header line and 2N + 4 columns, where N is the number
of individuals. The first four columns of each row contain chromosome codes, variant
identifiers, positions in centimorgans and base-pair coordinates. There are as many rows
as there are variants. The variants are sorted in increasing position (both on the third and
fourth field), and it is the third column that has duplicate positions.

The following command was issued to filter out duplicate positions:

$ sort -guk 3,3 input.tped | sort -g -k 1,1 -k 3,3 -k 4,4 > output.tped

Listing B.6: Command to remove duplicate centimorgan positions

The command will first filter out all unique values in the third column, and then it will
sort the entire file on chromosome order, centimorgan positions and physical positions.

B.2.3 Running CLAPPER
Clapper needs an optionfile with arguments. The option file is shown in Listing B.7.

1 /path/prefix/to/tped-and-tfam-files #fileName
2 /path/to/age-file.txt #ageFileName

Listing B.7: Optionfile for CLAPPER

As can be seen, a file containing ages is also provided. This file must be white space-
delimited, with three columns: Family ID, individual ID and the age of the individual.

B.2.4 Results
Unfortunately, I hit a roadblock at this point, as CLAPPER failed to execute. The program
reported a NullPointerException, which was not possible for me to debug, as I have no
access to the source code. I sent an email to the first author, but they did not have the op-
portunity to help me at the time. They did, however, recommend checking out SEQUOIA
or COLONY. Because of this, CLAPPER was dropped.

56

B.3 Padre
PADRE is a relatedness estimation method that combines the use of PRIMUS (Staples
et al., 2014) and ERSA (Huff et al., 2011), by estimating three generational pedigrees with
PRIMUS, and using ERSA to estimate the degree of relationship between the founders
of the pedigrees (Staples et al., 2016). PADRE has been able to detect up to 13th degree
relationships, which is accomplishes by the use of multi-way estimation – to best find
the relationship between two founders of a pedigree, it leverages all individiuals in both
pedigrees in a composite likelihood framework.

Figure B.2 shows what programs were necessary to run PADRE. ERSA and PRIMUS
are standalone programs and needs to be run beforehand, and the output must be given to
PADRE.

Figure B.2: The method flow of PADRE.

PRIMUS had a pretty straightforward pipeline, and executed successfully. ERSA re-
quires more programs in the pipeline, and unfortunately, I did not succeed with running it,
which led to PADRE being dropped.

This section begins with an explanation of how the data should be preprocessed be-
fore running any of the programs, and then it continues with explaining the executions of
PRIMUS and ERSA – and what went wrong with the latter.

57

B.3.1 PLINK preprocessing

First and foremost, both SHAPEIT and PRIMUS requires input data prepped by PLINK.
In addition, GERMLINE requires .ped and .map files, and has some of the same expec-
tations of the data as CLAPPER. To ensure that the data set is the same for all programs
– that it includes the same individuals and the same markers – and that the data is filtered
correctly, the data should be preprocessed as shown in Listing B.8.

1 plink2 --bfile genotype-data --keep individuals-to-keep.txt --cm-map
gmap-FIN-@.txt --mind 0.001 --geno 0.001 --maf 0.05 --snps-only
--recode --out temp-prefix

2 sort -guk 3,3 output-prefix.map | sort -g -k 1,1 -k 3,3 -k 4,4 | cut -f 2
> variants-to-extract.txt

3 plink2 --file temp-prefix --extract variants-to-extract --recode --out
preprocessed

Listing B.8: A short script that will make .ped and .map files with positions in centimorgans,
no multi-nucleotide alleles and no missing genotypes. Furthermore, it will find all variants with
unique genetic positions and filter these out. The resulting files are preprocessed.ped and
preprocessed.map, which should be used in further processing.

B.3.2 PRIMUS

PRIMUS (Staples et al., 2014) requires IBD estimates to be calculated by PLINK. These
estimates can be aquired as shown in Listing B.3.2.

$ plink2 --file preprocessed --genome --out plink-ibd-estimates

It is also possible to provide the age and sex of the individuals in the study, which
PRIMUS will use to decrease the amount of possible pedigrees. The age file must be space
delimited, with the columns family id, individual id and age in that order. Similarly, the
sex file must be space delimited with the columns family id, individual id and sex, where
1 = male and 2 = female. These files are given to PRIMUS with the flags --age file
and --sex file. The command to run PRIMUS is shown in Listing B.3.2.

$ Run_PRIMUS.pl --p plink-ibd-estimates.genome --age_file age-file.txt
--sex_file sex-file.txt --out primus-output-directory

B.3.3 ERSA

As shown in Figure B.2, ERSA takes IBD estimates from GERMLINE as input, and the
data was phased with SHAPEIT before running GERMLINE. This section will begin with
and explanation of how the data was phased, before it continues with a description of how
to convert from SHAPEIT output to GERMLINE input, and it will complete with and
explanation of how to run GERMLINE and ERSA, and what went wrong.

58

Phasing: SHAPEIT

SHAPEIT was used for phasing of the data, and it takes PLINK’s .ped and .map format
or the binary coded .bed, .bim and .fam format. In addition, it requires a genetic
mapping. I ran SHAPEIT with .bed/.bim/.fam input files and genetic mappings as
described in A.

Phasing with SHAPEIT can only be done on one chromosome at a time, so I made
a script as shown in Listing B.9, which runs the phasing for each chromosome. This
ended up taking about 67 hours on roughly 1000 individuals, and produced a .haps and
.sample file for each chromosome.

#!/bin/bash
for chr in {1..22}
do

Extract chromosome $chr from the ped and map file
plink2 --file preprocessed --chr $chr --make-bed --out
preprocessed-$chr

Run shapeit on chromosome $chr
./shapeit --input-bed preprocessed-$chr.bed preprocessed-$chr.bim
preprocessed-$chr.fam -M gmap-FIN-$chr.txt -O shapeit-$chr-phased

Remove all bed/bim/fam files for chromosome $chr
rm preprocessed-$chr*

done

Listing B.9: A script that runs shapeit for chromosomes 1-22.

To be fair, I tried to use phased output from BEAGLE first, since I already had used
BEAGLE to phase genotypes of all individuals in the complete data set. However, BEA-
GLE outputs a .vcf file with phased data, and when I converted this file to a .ped and
.map file with plink, the phasing was lost because the .ped format is not intended for
storing phased genotypes, as described more closely in the next section.

Converting from SHAPEIT output to GERMLINE input

GERMLINE takes .ped and .map files as input and the authors recommend phasing the
data with SHAPEIT or EAGLE. As described in the last section, I used SHAPEIT for the
phasing.

One thing to note is that GERMLINE uses PLINK’s .ped and .map format for the
input files. This is somewhat problematic, as the .ped and .map format are not meant to
store phased data at all. Meaning that if you do any kind of work with these files in PLINK
prior to using GERMLINE, phasing information will be lost. This makes file-handling a
bit more tedious, because one has to manually change files, to e.g. extract individuals
or variants. There are other filetypes, like the .vcf format, which does retain phasing
information, has its own suite of tools and would be better suited for this kind of program.

To give an example, Listing B.10 shows how phased data are stored in a .vcf.
More specifically, you can see that both individuals A and B have heterozygote alleles at
marker 1:123:C:T, but on opposite chromosomes, indicated by ”|”. C is also heterozy-
gote on the marker, but it is uncertain which chromosome has what allele, as indicated by

59

”\”.

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT A_A B_B C_C
1 123 1:123:C:T C T . PASS . GT 1|0 0|1 1\0

Listing B.10: An example of a .vcf file, where genotypes are stored as shown in the last three
columns. Whether genotypes are phased or not, are indicated with a | or a \– where the former
indicates phased genotypes and the latter indicates unphased genotypes.

In the corresponding .ped file, shown in Listing B.11, there is nothing that indicates
whether genotypes has been phased or not, and if you use these files with PLINK, the
alleles will be reordered – e.g. the alleles could all be coded as CT for A, B and C as seen
in the listing.

#FID IID SIRE DAM SEX PHENOTYPE ALLELE1 ALLELE2
A A 0 0 0 -9 C T
B B 0 0 0 -9 C T
C C 0 0 0 -9 C T

Listing B.11: An example of a .ped file, and how a pair of alleles are stored for a marker. The .ped
file will simply show whether the marker is heterozygote or homozygote, but not whether it has been
phased or not.

In addition, GERMLINE has many of the same expectations of the data set as CLAP-
PER, but there is little information about this in the documentation. More specifically,
the program will complain about markers on the same position, markers not being bial-
lelic (this might be due to missing genotypes) and markers not being SNPs (as opposed to
multi-nucleotide alleles). These issues can be solved with PLINK, but it should be done
before phasing (i.e. before using SHAPEIT), otherwise the issues must be solved with file
handling, to not lose the phasing information. When you cannot use PLINK for this, it
makes things more complicated.

Nonetheless, at this point, I still had 22 .haps and .sample files which needed to
be converted to .ped and .map format. GERMLINE has provided a script that does this,
namely impute to ped. This must be done for each chromosome, and the resulting
.ped and .map files for all chromosomes must be merged into one .ped file and one
.map file. A script that does this is shown in Listing B.12. The impute to ped script
might output some characters that can cause problems, so the extra perl-command shown
in lines 16 and 20 ensures that only valid characters are printed to avoid this.

1 #!/bin/bash
2

3 # Use impute_to_ped to convert from .haps and .sample to .ped and .map for
each chromosome

4 for chr in {1..22}
5 do
6 ./impute_to_ped shapeit-$chr-phased.haps shapeit-$chr-phased.sample

shapeit-$chr-phased
7

8 # Merge .map files
9 touch shapeit-phased.map

10 for chr in {1..22}
11 do
12 cat shapeit-$chr-phased.map >> shapeit-phased.map

60

13 done
14

15 # Merge .ped files
16 cat shapeit-1-phased.ped > shapeit-phased.ped
17

18 for chr in {2..22}
19 do
20 cut -f 7- -d ’ ’ shapeit-$chr-phased.ped > temp
21 paste -d ’ ’ shapeit-phased.ped temp > temp2
22 cat temp2 > shapeit-phased.ped
23 done

Listing B.12: A script that uses GERMLINE’s script, impute to ped to convert from haps/sample
format to ped/map forimat, and merges all ped and map files into a a single ped and map file.

The last thing that had to be done with the files before running GERMLINE, was to
update the .map file with genetic positions in cM. These positions will be lost from the
SHAPEIT phasing and the impute to ped script, resulting in all zeros.

Why are these genetic positions important? If the .map file does not contain genetic
positions, GERMLINE will output the genetic length of segments in megabases as op-
posed to centimorgans. ERSA will not accept GERMLINE output with the genetic length
in megabases. There is little in the documentation about this, both regarding GERMLINE
and ERSA. The former does not explicitly say what makes the genetic length be in centi-
morgans or megabases and ERSA does not inform of this requirement, other than an error
message when you first run the program.

The command shown in Listing B.13 will take the .ped and .map file generated by
the script above, and update the genetic positions.

plink2 --file shapeit-phased --cm-map gmap-FIN-@.txt --recode --out
shapeit-phased-cm-map

Listing B.13: Getting genetic positions in the .map file.

The command will create the two files shapeit-phased-cm-map.ped and
shapeit-phased-cm-map.map. It is important to note that only the .map file
should be used, because the .ped file will have lost its phasing information. So, to be
more specific, the input files to germline will be shapeit-phased.ped and
shapeit-phased-cm-map.map.

Running GERMLINE and ERSA

At last, GERMLINE can be run, as shown in Listing B.14.

./germline -input shapeit-phased.ped shapeit-phased-cm-map.map -output
germline-ibd-estimates

Listing B.14: ZeroDivisionError in ERSA

GERMLINE completed successfully, and ERSA was executed as shown in Listing B.15.

61

python2 ersa --segment_files=germline-ibd-estimates.match --output_file=
ersa-results

Listing B.15: ZeroDivisionError in ERSA

At this point, ERSA failed. More specifically with a ZeroDivisionError, as shown in
Listing B.16.

1 File "ersa", line 398, in get_cm
2 return cm * float(end_position-begin_position/(segment_end_position-

segment_begin_position))

Listing B.16: ZeroDivisionError in ERSA

The reason seems to be the GERMLINE output. More specifically, GERMLINE out-
puts a .match file, where each line contains information of pairwise shared IBD segments
between two individuals. Essentially, this means that there will be several lines for each
pair of individuals, one line for each shared segment. For some reason, almost all these
shared segments consisted of only one marker.

”Should this be a problem?” One would ask. Well, as seen in Listing B.16, this results
in a ZeroDivisionError. I am guessing that segment end position and
segment begin position is taken from the fields segment start (bp) and
segment end (bp) in the .match file, which would have the same value if the seg-
ment only contains one marker. Ultimately, I cannot be sure, since I don’t have access to
ERSA’s source code.

To avoid this error, the code in ERSA should probably add 1 in the denominator, as a
segment containing one marker should have length 1:

end position − begin position
segment end position − segment begin position + 1

But nonetheless, since this does result in an error, I suspect that there might be some-
thing wrong with the output in GERMLINE. My reasoning being that if it was ”normal”
to have segments of length one in the .match file, the ZeroDivisionError would’ve been
discovered by the authors of ERSA. I sent an email to both the authors of GERMLINE and
the authors of ERSA, explaining my problem, but unfortunately I didn’t get any answers
from neither of them.

I had to give up on this point, and move on to another program, because continuing
working with and fixing this would be outside of the scope of my thesis and too time
consuming.

62

Appendix C
Mitodetect

This appendix contains the source code of Mitodetect.

C.1 Source code

Listing C.1: main.py

1 import argparse
2 import pandas as pd
3 from MitochondriaData import MitochondriaData
4 from Pedigree import Pedigree
5 from MitoMatch import mitomatch
6 from variant_log_probabilities import variant_log_probabilities as vlp
7 from critical_value import get_critical_value,

get_critical_value_from_kernel_density
8 import pickle
9

10

11 if __name__ == ’__main__’:
12

13 parser = argparse.ArgumentParser(description="yaya")
14 parser.add_argument(’mitochondria’, metavar=’ped/map-prefix’, type=str

, nargs=1,
15 help="Path prefix to mitochondrial DNA in PLINK’s ped/map format."

)
16 parser.add_argument(’output’, metavar=’output-path’, type=str, nargs

=1,
17 help="Path to output")
18 parser.add_argument(’--pedigree’, metavar=’Sequoia-pedigree’, type=str

, nargs=1,
19 help="Pedigree output from sequoia.")
20 parser.add_argument(’--individuals’, metavar=’individuals.txt’, type=

str, nargs=1,
21 help="The list of IDs to the individuals whom should be included

in the estimation.")

63

22 parser.add_argument(’--alpha’, metavar=’float’, type=float, nargs=1,
23 help="The value for when to accept whether two individuals are

mitochondrial relatives or not.")
24 parser.add_argument(’--hamming’, action=’store_true’,
25 help="Whether to calculate a hamming distance, as opposed to a

weighted distance.")
26 parser.add_argument(’--p_value_file’, type=str, nargs=1,
27 help="A file with distributions to use for estimating p-values. \n

\
28 If this is not provided, a pickled density function will be

used, \n\
29 based on a distribution of weighted/hamming distances

between \n\
30 father/child pairs where father and mother have a

degree of relatedness of 7 or above..")
31

32 args = parser.parse_args()
33

34 PEDIGREE_FILE = args.pedigree[0] if args.pedigree else False
35 INDIVIDUALS_FILE = args.individuals[0] if args.individuals else False
36 P_VALUE_FILE = args.p_value_file[0] if args.p_value_file else False
37 PEDMAP_PREFIX = args.mitochondria[0]
38 OUTPUT_PATH = args.output[0]
39 ALPHA = args.alpha[0] if args.alpha else 0.05
40 HAMMING = args.hamming
41

42 if not PEDIGREE_FILE and not INDIVIDUALS_FILE:
43 print("You must either specify the path to a sequoia output-

pedigree or a list of individuals.")
44 exit()
45

46 print("\nRunning MitoDetect.")
47 print("\nOptions:\n")
48

49 print("Ped/map file prefix: ", PEDMAP_PREFIX, sep=’\t’)
50 print("Pedigree-filepath: ", PEDIGREE_FILE, sep=’\t’) if

PEDIGREE_FILE else None
51 print("Individuals filepath:", INDIVIDUALS_FILE, sep=’\t’) if

INDIVIDUALS_FILE else None
52 print("Output path: ", OUTPUT_PATH, sep=’\t’)
53 print("Alpha: ", ALPHA, sep=’\t’)
54 print("Distance type: ", "weighted (default)" if not HAMMING

else "Hamming", sep=’\t’)
55 print("p-values from: ", P_VALUE_FILE) if P_VALUE_FILE else None
56

57 if PEDIGREE_FILE:
58 pedigree = Pedigree(PEDIGREE_FILE)
59 individuals = pedigree.founders.id.str.split(’__’, 1, expand=True)
60 individuals.columns = ["FID", "IID"]
61 print("Number of founders:", len(pedigree.founders))
62 else:
63 individuals = pd.read_csv(INDIVIDUALS_FILE, sep=’\s+’, header=None

, usecols=[0, 1])
64 individuals.columns = [’FID’, ’IID’]
65

66 print("\n> Reading ped/map files")
67 mito_data = MitochondriaData(PEDMAP_PREFIX)

64

68

69 print("> Running mitomatch\n")
70 if HAMMING:
71 distances = mitomatch(mito_data, individuals=individuals.IID,

calculation_type="hamming")
72 else:
73 distances = mitomatch(mito_data, individuals=individuals.IID,

calculation_type="weighted", weights=vlp)
74

75 if P_VALUE_FILE:
76 trio_path = P_VALUE_FILE
77 trio_distances = pd.read_csv(trio_path, header=0, sep=’\t’)
78

79 df = trio_distances.loc[trio_distances.relationship == ’father/
child’, ’distance’]

80 bandwidth = 5 if not HAMMING else 1
81 critical_value = get_critical_value(df, bandwidth=bandwidth, alpha

=ALPHA)
82 else:
83 pickled_kernel_density = ’data/father-child-log-prob-weighted-

kernel-density-druid-above-7.pickle’
84 start, end = 0, 300
85 if HAMMING:
86 pickled_kernel_density = ’data/father-child-hamming-kernel-

density-druid-above-7.pickle’
87 start, end = 0, 30
88

89 with open(pickled_kernel_density, ’rb’) as file:
90 kde = pickle.load(file)
91

92 critical_value = get_critical_value_from_kernel_density(kde, start
=start, end=end, alpha=ALPHA)

93

94 print("\n> Running hypothesis tests, with alpha = {} and critical
value = {:.3f}.".format(ALPHA, critical_value))

95 decisions = []
96

97 for row in distances.itertuples():
98 if row.distance <= critical_value:
99 decisions.append(True)

100 else:
101 decisions.append(False)
102

103 distances.loc[decisions, ’mito_relatives’] = True
104 distances.mito_relatives = distances.mito_relatives.fillna(False)
105 print("Number of mitochondrial relatives:", len(distances.loc[

distances.mito_relatives.isin([True])]))
106 distances.to_csv(OUTPUT_PATH, index=False, sep=’\t’)

Listing C.2: MitoMatch.py

1 import pandas as pd
2 import numpy as np
3 import time
4 from functools import reduce
5 import warnings
6

65

7

8 def mitomatch(mito_data, individuals=None, filter_out_variants=True,
calculation_type=’hamming’, weights=None, ignore_missing=True, verbose
=True):

9 """ mitomatch will compare mitochondrial DNA between all pairs of
individuals

10 in mito_data or those defined individuals. It can calculate the
hamming-distance,

11 a weighted distance or a true/false vector for all variants.
12

13 Arguments:
14 mito_data {MitochondriaData} -- An instance of MitochondriaData.
15

16 Keyword Arguments:
17 individuals -- A list of individuals’ IID’s (default: {None})
18 filter_out_variants {bool} -- If this keyword is set to true, all
19 variants shared by all individuals in the set will be filtered

away
20 to improve execution time. (default: {True})
21 calculation_type {str} -- The type of calculation to be specified.
22 Choose between a hamming, weighted or true-false-vector (default:

{’hamming’})
23 weights {dict} -- A dictionary with weights for all variant_ids (

default: {None})
24

25 Returns:
26 [pandas.Dataframe] -- A dataframe that consists of all pairs of

ids, and
27 the result for each pair of individuals in the subsequent columns.
28 """
29 a = time.time() # Total execution timing
30

31 # Timing variables
32 access, calculation, store, for_loop = 0, 0, 0, 0
33

34 # Variables necessary for calculation
35 variant_ids = mito_data.map_df.variant_id.values
36 columns = ["id1", "id2", "distance"]
37

38 # Determine the calculation_type and set calculate_func accordingly
39 if calculation_type == ’hamming’:
40 if ignore_missing:
41 def hamming_distance(mito_dna1, mito_dna2):
42 return [reduce(
43 lambda total, x: total + int(x[0] != x[1]) if 0 not in

(x[0], x[1]) else total,
44 zip(mito_dna1, mito_dna2),
45 0)]
46 else:
47 raise NotImplementedError()
48

49 calculate_func = hamming_distance
50

51 elif calculation_type == ’weighted’:
52 if weights is None:
53 raise ValueError("weights are needed if calculation_type=’

weighted’.")

66

54

55 if ignore_missing:
56 def weighted_distance(mito_dna1, mito_dna2):
57 return [reduce(
58 lambda total, x: total + weights[x[0]] if x[1] != x[2]

and 0 not in (x[1], x[2]) else total + 0,
59 zip(variant_ids, mito_dna1, mito_dna2),
60 0)]
61 else:
62 raise NotImplementedError()
63

64 calculate_func = weighted_distance
65

66 elif calculation_type == ’true-false-vector’:
67 if not weights is None:
68 warnings.warn("Weights will not be applied when True/False

vectors are calculated.")
69

70 if ignore_missing:
71 def true_false_vector(mito_dna1, mito_dna2):
72 return [x == y if 0 not in (x, y) else True for x,y in zip

(mito_dna1, mito_dna2)]
73 else:
74 def true_false_vector(mito_dna1, mito_dna2):
75 return np.equal(mito_dna1, mito_dna2).tolist()
76

77 calculate_func = true_false_vector
78 columns = ["id1", "id2"] + variant_ids.tolist()
79 else:
80 raise ValueError("Unknown calculation_type: {}\n\
81 Choose between ’hamming’, ’weighted’ and ’true-false-vector’".

format(calculation_type))
82

83 print("Using calculation_type:", calculation_type) if verbose else
None

84

85 # Ready up data set
86 mito_data.set_subset(individuals) if not individuals is None else None
87 mito_data.filter_out_variants() if filter_out_variants and

calculation_type != ’true-false-vector’ else None
88

89 # Output
90 matrix = []
91

92 # Progress variables
93 n = len(mito_data)
94 tenth = n // 10
95

96 # Do the calculations!! :D
97 x = time.time() # For loop timing
98 for index1, row1 in mito_data.ped_df.iterrows():
99 y = time.time()

100 for_loop += (y - x)
101

102 if tenth > 0 and verbose: # Show progress
103 print("... {} individuals remaining.".format(n - index1)) if

index1 % tenth == 0 else None

67

104

105 x = time.time() # Access timing
106 mito_dna1 = row1.iloc[mito_data.genotype_start_index:]
107 id1 = row1.values[1]
108 y = time.time()
109 access += (y - x)
110

111 x = time.time() # For loop timing
112 for index2, row2 in mito_data.ped_df.iloc[index1 + 1:].iterrows():
113 y = time.time()
114 for_loop += (y - x)
115

116 x = time.time() # Access timing
117 mito_dna2 = row2.iloc[mito_data.genotype_start_index:]
118 id2 = row2.values[1]
119 y = time.time()
120 access += (y - x)
121

122 x = time.time() # Calculation timing
123 comparison = calculate_func(mito_dna1, mito_dna2)
124 matrix.append([id1, id2] + comparison)
125 y = time.time()
126

127 calculation += (y - x)
128

129 x = time.time() # For loop timing
130 x = time.time() # For loop timing
131

132 pairwise_thing = pd.DataFrame(matrix)
133 pairwise_thing.columns = columns
134

135 b = time.time()
136 total = b - a
137

138 # Timing calculation and printing
139 access_ratio = access / total
140 calculation_ratio = calculation / total
141 for_loop_ratio = for_loop / total
142 store_ratio = store / total
143

144 print("Total time spent: {} seconds\n\
145 Access: {}%\n\
146 Calculation: {}%\n\
147 For-loop: {}%\n\
148 Store: {}%".format(total, access_ratio*100, calculation_ratio*100,
149 for_loop_ratio*100, store_ratio*100)) if verbose else None
150

151 mito_data.unset_subset()
152 return pairwise_thing

Listing C.3: MitochondriaData.py

1 import pandas as pd
2 import numpy as np
3 import warnings
4 import re
5

68

6 class MitochondriaData:
7

8 def __init__(self, file_path_prefix, individuals=None):
9 self.genotype_start_index = 6

10 self.shared_genotypes = None
11

12 self.map_df = self.open_map(file_path_prefix + ’.map’)
13 self.ped_df_complete = self.open_and_clean_ped(file_path_prefix +

’.ped’)
14 self.ped_df = self.ped_df_complete
15

16 self.num_variants = len(self.ped_df.columns) / 2 - self.
genotype_start_index

17

18 self.subset_active = True if individuals != None else False
19 self.set_subset(individuals) if individuals != None else None
20

21

22 def open_map(self, file_path):
23 try:
24 map_df = pd.read_csv(file_path,
25 sep=’\s+’,
26 header=None,
27 names=[’chr’, ’variant_id’, ’genomic_pos’, ’physical_pos’

],
28 dtype={’chr’: str, ’variant_id’: str, ’genomic_pos’: np.

float64, ’physical_pos’: np.int64},
29)
30

31 except FileNotFoundError as e:
32 self.print_file_not_found_message(e)
33 exit()
34

35 return map_df
36

37

38 def open_and_clean_ped(self, file_path):
39 try:
40 ped_df = pd.read_csv(file_path, sep=’\s+’, header=None, dtype=

str)
41

42 except FileNotFoundError as e:
43 self.print_file_not_found_message(e)
44 exit()
45

46 assert len(self.map_df.index) * 2 + 6 == len(ped_df.columns), \
47 "The number of columns in the ped-file does not match the

number of variants.\n\
48 There should be 6 fixed fields + 2v fields where v is the

number of variants\
49 (corresponding to the number of rows in the map-file).\n\
50 See https://www.cog-genomics.org/plink2/formats#ped for

more about the ped-file format."
51

52 ped_df = self.clean_ped_file(ped_df)
53 ped_df.columns = self.create_ped_column_names()
54

69

55 ped_df.sex = pd.to_numeric(ped_df.sex).astype(np.uint8)
56 ped_df = self.convert_ped(ped_df)
57

58 return ped_df
59

60

61 def create_ped_column_names(self):
62 # A ped file should contain 6 fixed fields (as seen in names,

below) + 2v fields where v is
63 # the number of variants. The number of variants is extracted from

the map file.
64 # See https://www.cog-genomics.org/plink2/formats#ped for more

about the format.
65 names = [’FID’, ’IID’, ’sire’, ’dam’, ’sex’, ’phenotype’][:self.

genotype_start_index]
66 variants = self.map_df.variant_id.values.tolist()
67

68 return names + variants
69

70

71 def clean_ped_file(self, ped_df):
72 variants_to_keep = ped_df.iloc[:, self.genotype_start_index::2]
73

74 self.genotype_start_index -= 1 # We don’t need phenotype column
75 fixed_fields = ped_df.iloc[:, :self.genotype_start_index]
76

77 return pd.concat([fixed_fields, variants_to_keep], axis=1)
78

79

80 def convert_ped(self, ped_df):
81 x = self.genotype_start_index
82 ped_df.iloc[:, x:] = ped_df.iloc[:, x:].applymap(MitochondriaData

.allele_map).astype(np.uint8)
83 return ped_df
84

85

86 def get_mtdna(self, i_index):
87 return self.ped_df.iloc[i_index, self.genotype_start_index:].

values
88

89

90 def get_id(self, i_index):
91 return self.ped_df.iloc[i_index, 1]
92

93

94 def set_subset(self, individuals):
95 self.ped_df = self.ped_df_complete.loc[self.ped_df_complete.IID.

isin(individuals)].reset_index(drop=True)
96 self.subset_active = True
97 assert len(self.ped_df) <= len(individuals)
98

99

100 def unset_subset(self):
101 self.subset_active = False
102 self.ped_df = self.ped_df_complete
103

104

70

105 def filter_out_variants(self):
106 if not self.subset_active:
107 warnings.warn("You are currently filtering out variants on the

complete dataset. The full dataset is still retained in
ped_df_complete.")

108

109 columns_to_drop = []
110 for column in self.ped_df.iloc[:, self.genotype_start_index:]:
111 if len(set(self.ped_df[column])) == 1:
112 columns_to_drop.append(column)
113

114 self.ped_df = self.ped_df.drop(columns=columns_to_drop)
115 self.shared_genotypes = len(columns_to_drop)
116 print("... {} variants are shared by all individuals.".format(len(

columns_to_drop)))
117

118

119

120 def print_file_not_found_message(self, e):
121 print("The file(s) was not found.\n",
122 "Ensure that only the prefix to the .ped and .map file is

provided, ",
123 "and that they have the same name.", sep=’’)
124

125

126 def __len__(self):
127 return len(self.ped_df)
128

129

130 @staticmethod
131 def allele_map(x):
132 mapping = { ’0’: 0, ’A’: 1, ’C’: 2, ’G’: 3, ’T’: 4 }
133 return mapping[x]

Listing C.4: Pedigree.py

1 import pandas as pd
2 import numpy as np
3

4 class Pedigree:
5 dtypes = {
6 "id": str,
7 "dam": str,
8 "sire": str,
9 "LLRdam": np.float64,

10 "LLRsire": np.float64,
11 "LLRpair": np.float64
12 }
13

14 def __init__(self, pedigree_file_path, sequoia_specs_path=None,
iterations=10, debug=True):

15 self.debug = debug
16 self.pedigree = pd.read_csv(
17 pedigree_file_path,
18 sep=’\s+’,
19 header=0,
20 dtype=self.dtypes

71

21)
22 self.specs = self.read_specs(sequoia_specs_path) if

sequoia_specs_path else None
23

24 self.find_dummies()
25 self.find_missing_link_mums()
26 self.find_founders()
27

28

29 def read_specs(self, path):
30 specs = {}
31 with open(path, ’r’) as file:
32 for line in file:
33 key, value = line.split(",")
34 specs[key.strip()] = value.strip()
35 return specs
36

37 def find_dummies(self):
38 self.dummies = self.pedigree.loc[self.pedigree.id.str.contains("ˆ

M|F[0-9]+")].copy()
39 print("Number of dummies: ", len(self.dummies)) if self.debug else

None
40

41 def find_missing_link_mums(self):
42 self.missing_link_mums = self.dummies.loc[self.dummies[’dam’].

notnull()].copy()
43 print("Number of missing-link-mums: ", len(self.missing_link_mums)

) if self.debug else None
44

45 def find_founders(self):
46 """ An individual is not a founder if:
47 1. The individual is a dummy
48 2. The individual has a mum which is not a dummy
49 2. The individuals dummy-mum has a mum
50

51 Basically, drop individual if:
52

53 is_dummy or has_mum and (not mum_is_dummy or dummy_has_mum)
54 """
55 drop = self.pedigree.loc[self.pedigree[’id’].isin(self.dummies.id

)
56 | self.pedigree[’dam’].notnull() & (
57 ˜self.pedigree[’dam’].isin(self.dummies.id)
58 | self.pedigree[’dam’].isin(self.missing_link_mums.id)
59)
60]
61

62 self.founders = self.pedigree.drop(index=drop.index).copy()

C.2 Tests

Unit tests were written for the two classes Pedigree and MitochondriaData as well
as the function, mitomatch.

Listing C.5: test mito match.py

72

1 import unittest
2 from unittest.mock import MagicMock
3 from unittest.mock import patch
4 import pandas
5 #from MitochondriaData import MitochondriaData
6 from MitoMatch import mitomatch
7

8 class TestMain(unittest.TestCase):
9

10 def setUp(self):
11 self.mito_data = MagicMock()
12 self.mito_data.map_df = self.valid_map()
13 self.mito_data.genotype_start_index = 5
14

15 def test_output_has_correct_individuals_with_no_duplicates(self):
16 self.mito_data.ped_df = pandas.DataFrame(
17 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
18 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2],
19 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
20)
21

22 valid_pairs = [
23 (’a’, ’b’), (’b’, ’a’),
24 (’a’, ’c’), (’c’, ’a’),
25 (’b’, ’c’), (’c’, ’b’)
26]
27

28 results = mitomatch(self.mito_data, ’dontcare’)
29

30 for index, row in results.iterrows():
31 pair = (row[’id1’], row[’id2’])
32 self.assertIn(pair, valid_pairs)
33

34 self.assertEqual(len(results), 3)
35

36 def test_mito_match_hamming_distance_without_filter_out_variants(self)
:

37 self.mito_data.ped_df = pandas.DataFrame(
38 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
39 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2],
40 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
41)
42

43 expected_1 = [’a’, ’b’, 2]
44 expected_2 = [’a’, ’c’, 2]
45 expected_3 = [’b’, ’c’, 1]
46 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’

hamming’)
47

48 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
49 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
50 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
51

52 def test_mito_match_hamming_distance_with_filter_out_variants(self):
53 self.mito_data.ped_df = pandas.DataFrame(
54 [[’a’, ’a’, ’0’, ’0’, 2, 2, 4],
55 [’b’, ’b’, ’0’, ’0’, 2, 3, 2],

73

56 [’c’, ’c’, ’0’,’0’, 2, 4, 2]]
57)
58

59 expected_1 = [’a’, ’b’, 2]
60 expected_2 = [’a’, ’c’, 2]
61 expected_3 = [’b’, ’c’, 1]
62 results = mitomatch(self.mito_data, ’dontcare’,

filter_out_variants=True, calculation_type=’hamming’)
63

64 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
65 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
66 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
67

68 def
test_mito_match_hamming_distance_adds_0_when_ignores_missing_is_true(
self):

69 self.mito_data.ped_df = pandas.DataFrame(
70 [[’a’, ’a’, ’0’, ’0’, 2, 0, 1, 4],
71 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2],
72 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 0]]
73)
74

75 expected_1 = [’a’, ’b’, 1]
76 expected_2 = [’a’, ’c’, 0]
77 expected_3 = [’b’, ’c’, 1]
78 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’

hamming’, ignore_missing=True)
79

80 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
81 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
82 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
83

84

85 def test_weighted_distance_adds_0_when_ignores_missing_is_true(self):
86 self.mito_data.ped_df = pandas.DataFrame(
87 [[’a’, ’a’, ’0’, ’0’, 2, 0, 1, 4],
88 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2],
89 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 0]]
90)
91 # {’2010-08-MT-841’: 0.5, ’2010-08-MT-981’: 0.25, ’2010-08-MT

-550’: 0.75}
92 expected_1 = [’a’, ’b’, 0 + 0 + 0.75]
93 expected_2 = [’a’, ’c’, 0 + 0 + 0]
94 expected_3 = [’b’, ’c’, 0.5 + 0 + 0]
95 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’

weighted’, ignore_missing=True, weights=self.get_weights())
96

97 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
98 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
99 self.assertListEqual(expected_3, results.iloc[2].values.tolist())

100

101 def test_true_false_vector_sets_true_when_ignores_missing_is_true(self
):

102 self.mito_data.ped_df = pandas.DataFrame(
103 [[’a’, ’a’, ’0’, ’0’, 2, 0, 1, 4],
104 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2],
105 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 0]]

74

106)
107

108 expected_1 = [’a’, ’b’, True, True, False]
109 expected_2 = [’a’, ’c’, True, True, True]
110 expected_3 = [’b’, ’c’, False, True, True]
111 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’

true-false-vector’, ignore_missing=True)
112

113 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
114 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
115 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
116

117

118 def test_mito_match_weighted_distance_without_filter_out_variants(self
):

119 self.mito_data.ped_df = pandas.DataFrame(
120 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
121 [’b’, ’b’, ’0’, ’0’, 2, 3, 2, 2],
122 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
123)
124 self.mito_data.ped_df.columns = [’FID’, ’IID’, ’dc’, ’dc’, ’dc’,
125 ’2010-08-MT-841’, ’2010-08-MT-981’, ’2010-08-MT-550’]
126

127 expected_1 = [’a’, ’b’, 0.5 + 0.25 + 0.75]
128 expected_2 = [’a’, ’c’, 0.5 + 0 + 0.75]
129 expected_3 = [’b’, ’c’, 0.5 + 0.25 + 0]
130 results = mitomatch(self.mito_data, ’dontcare’, weights=self.

get_weights(), calculation_type=’weighted’)
131

132 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
133 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
134 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
135

136 def test_mito_match_weighted_distance_without_weights_raises_error(
self):

137 with self.assertRaises(ValueError) as cm:
138 results = mitomatch(self.mito_data, ’dontcare’, weights=self.

get_weights(), calculation_type=’weighted’)
139 self.assertEqual(cm.exception.code, 1)
140

141 def test_equal_mitochondria_gives_distance_zero(self):
142 self.mito_data.ped_df = pandas.DataFrame(
143 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
144 [’b’, ’b’, ’0’, ’0’, 2, 2, 1, 4],
145 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
146)
147 self.mito_data.ped_df.columns = [’FID’, ’IID’, ’dc’, ’dc’, ’dc’,
148 ’2010-08-MT-841’, ’2010-08-MT-981’, ’2010-08-MT-550’]
149

150 expected = [’a’, ’b’, 0]
151

152 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’
hamming’)

153 self.assertListEqual(expected, results.iloc[0].values.tolist(), "
Equal mtdna doesn’t give distance zero (unweighted)")

154

75

155 results = mitomatch(self.mito_data, ’dontcare’, weights=self.
get_weights(), calculation_type=’weighted’)

156 self.assertListEqual(expected, results.iloc[0].values.tolist(), "
Equal mtdna doesn’t give distance zero (weighted)")

157

158 def test_true_false_vector_gives_right_output(self):
159 self.mito_data.ped_df = pandas.DataFrame(
160 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
161 [’b’, ’b’, ’0’, ’0’, 2, 3, 2, 2],
162 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
163)
164

165 expected_1 = [’a’, ’b’, False, False, False]
166 expected_2 = [’a’, ’c’, False, True, False]
167 expected_3 = [’b’, ’c’, False, False, True]
168

169 results = mitomatch(self.mito_data, ’dontcare’, calculation_type=’
true-false-vector’)

170

171 self.assertListEqual(expected_1, results.iloc[0].values.tolist())
172 self.assertListEqual(expected_2, results.iloc[1].values.tolist())
173 self.assertListEqual(expected_3, results.iloc[2].values.tolist())
174

175 def
test_assert_warning_when_true_false_vector_and_weights_are_provided(
self):

176 self.mito_data.ped_df = pandas.DataFrame(
177 [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
178 [’b’, ’b’, ’0’, ’0’, 2, 3, 2, 2],
179 [’c’, ’c’, ’0’,’0’, 2, 4, 1, 2]]
180)
181

182 with self.assertWarns(Warning):
183 results = mitomatch(self.mito_data, ’dontcare’,

calculation_type=’true-false-vector’, weights=self.get_weights())
184

185 def valid_map(self):
186 valid_map = pandas.DataFrame(
187 [[’26’, ’2010-08-MT-841’, 100, 72],
188 [’26’, ’2010-08-MT-981’, 100, 93],
189 [’26’, ’2010-08-MT-550’, 100, 215]],
190 columns=[’chr’, ’variant_id’, ’genomic_pos’, ’physical_pos’],
191)
192 return valid_map
193

194 def get_weights(self):
195 return {’2010-08-MT-841’: 0.5, ’2010-08-MT-981’: 0.25, ’2010-08-MT

-550’: 0.75}
196

197 def individuals(self):
198 return [’a’, ’b’, ’c’]
199

200 if __name__ == ’__main__’:
201 unittest.main()

Listing C.6: test mitochondria data.py

76

1 import unittest
2 from unittest.mock import patch
3 from MitochondriaData import MitochondriaData
4 import pandas
5 import numpy as np
6

7

8 class TestMitochondriaData(unittest.TestCase):
9

10 @patch(’pandas.read_csv’)
11 def test_ped_file_not_found_exits(self, mock_read_csv):
12 mock_read_csv.side_effect = [None, FileNotFoundError]
13

14 with self.assertRaises(SystemExit) as cm:
15 mito_data = MitochondriaData("dontcare")
16 self.assertEqual(cm.exception.code, 1)
17

18 @patch(’pandas.read_csv’)
19 def test_map_file_not_found_exits(self, mock_read_csv):
20 mock_read_csv.side_effect = [FileNotFoundError, None]
21

22 with self.assertRaises(SystemExit) as cm:
23 mito_data = MitochondriaData("dontcare")
24 self.assertEqual(cm.exception.code, 1)
25

26 @patch(’pandas.read_csv’)
27 def test_map_and_ped_not_compatible_assertion(self, mock_read_csv):
28 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped().

iloc[:, :-2]]
29 with self.assertRaises(AssertionError):
30 mito_data = MitochondriaData("dontcare")
31

32

33 @patch(’pandas.read_csv’)
34 def test_correct_ped_column_names(self, mock_read_csv):
35 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
36 expected_names = [’FID’, ’IID’, ’sire’, ’dam’, ’sex’, ’2010-08-MT

-841’, ’2010-08-MT-981’, ’2010-08-MT-550’]
37

38 mito_data = MitochondriaData("dontcare")
39

40 self.assertListEqual(expected_names, list(mito_data.ped_df.
columns))

41

42 @patch(’pandas.read_csv’)
43 def test_correct_converting(self, mock_read_csv):
44 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
45 expected_data = [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
46 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2]]
47 mito_data = MitochondriaData("dontcare")
48 self.assertListEqual(expected_data, mito_data.ped_df.values.

tolist())
49 self.assertEqual(np.uint8, mito_data.ped_df.iloc[:, -1].dtype) #

last column is genotype
50 self.assertEqual(np.uint8, mito_data.ped_df.iloc[:, 4].dtype) #

sex column
51

77

52 @patch(’pandas.read_csv’)
53 def test_giving_individuals_to_constructor_subsets_properly(self,

mock_read_csv):
54 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
55 mito_data = MitochondriaData("dontcare", individuals=[’a’])
56 expected_data = [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4]]
57

58 self.assertListEqual(expected_data, mito_data.ped_df.values.tolist
())

59 self.assertEqual(mito_data.subset_active, True)
60

61 @patch(’pandas.read_csv’)
62 def test_set_and_unset_subset_works_properly(self, mock_read_csv):
63 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
64 mito_data = MitochondriaData("dontcare")
65 expected_data = [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4]]
66

67 mito_data.set_subset([’a’])
68 self.assertListEqual(expected_data, mito_data.ped_df.values.tolist

(), "Set subset fails")
69 self.assertEqual(mito_data.subset_active, True)
70 self.assertEqual(len(mito_data), 1)
71

72 expected_data = [[’a’, ’a’, ’0’, ’0’, 2, 2, 1, 4],
73 [’b’, ’b’, ’0’, ’0’, 2, 3, 1, 2]]
74

75 mito_data.unset_subset()
76 self.assertListEqual(expected_data, mito_data.ped_df.values.tolist

(), "Unset subset fails")
77 self.assertEqual(mito_data.subset_active, False)
78 self.assertEqual(len(mito_data), 2)
79

80

81 @patch(’pandas.read_csv’)
82 def test_get_id_and_mitdna_from_index_works_properly(self,

mock_read_csv):
83 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
84 mito_data = MitochondriaData("dontcare")
85

86 expected_mtdna_complete_set = [2, 1, 4]
87 expected_id_complete_set = ’a’
88

89 expected_mtdna_subset = [3, 1, 2]
90 expected_id_subset = ’b’
91

92 self.assertEqual(mito_data.get_id(0), expected_id_complete_set, "
ID fails on complete set")

93 self.assertListEqual(mito_data.get_mtdna(0).tolist(),
expected_mtdna_complete_set, "Mtdna fails on complete set")

94

95 mito_data.set_subset([’b’])
96

97 self.assertEqual(mito_data.get_id(0), expected_id_subset, "ID
fails on subset")

98 self.assertListEqual(mito_data.get_mtdna(0).tolist(),
expected_mtdna_subset, "Mtdna fails on subset")

99

78

100 mito_data.unset_subset()
101

102 self.assertEqual(mito_data.get_id(0), expected_id_complete_set, "
ID fails after unsetting subset")

103 self.assertListEqual(mito_data.get_mtdna(0).tolist(),
expected_mtdna_complete_set, "Mtdna fails after unsetting subset")

104

105

106 @patch(’pandas.read_csv’)
107 def test_filter_out_variants_where_all_individuals_share_genotypes(

self, mock_read_csv):
108 extra_ind = [’c’, ’c’, ’0’, ’0’, ’2’, ’-9’, ’T’, ’T’, ’A’, ’A’, ’C

’, ’C’]
109 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped(

extra_ind)]
110 mito_data = MitochondriaData("dontcare", individuals=[’a’, ’b’])
111

112 expected_data = [[’a’, ’a’, ’0’, ’0’, 2, 2, 4],
113 [’b’, ’b’, ’0’, ’0’, 2, 3, 2]]
114

115 self.assertEqual(mito_data.shared_genotypes, None)
116

117 mito_data.filter_out_variants()
118 self.assertListEqual(mito_data.ped_df.values.tolist(),

expected_data, "Filter fails on ped_df")
119 self.assertListEqual(mito_data.get_mtdna(0).tolist(), [2, 4], "

Filter fails on get_mtdna")
120 self.assertEqual(mito_data.shared_genotypes, 1, "Filter doesn’t

show correct amount of shared genotypes")
121

122

123 @patch(’pandas.read_csv’)
124 def test_assert_filter_out_variants_raises_warning_if_not_subset(self,

mock_read_csv):
125 mock_read_csv.side_effect = [self.valid_map(), self.valid_ped()]
126 mito_data = MitochondriaData("dontcare")
127

128 with self.assertWarns(Warning):
129 mito_data.filter_out_variants()
130

131 def valid_map(self):
132 valid_map = pandas.DataFrame(
133 [[’26’, ’2010-08-MT-841’, 100, 72],
134 [’26’, ’2010-08-MT-981’, 100, 93],
135 [’26’, ’2010-08-MT-550’, 100, 215]],
136 columns=[’chr’, ’variant_id’, ’genomic_pos’, ’physical_pos’],
137)
138 return valid_map
139

140 def valid_ped(self, extra_ind=None):
141 temp = [[’a’, ’a’, ’0’, ’0’, ’2’, ’-9’, ’C’, ’C’, ’A’, ’A’, ’T’, ’

T’],
142 [’b’, ’b’, ’0’, ’0’, ’2’, ’-9’, ’G’, ’G’, ’A’, ’A’, ’C’, ’C’]]
143 temp.append(extra_ind) if not extra_ind is None else None
144

145 valid_ped = pandas.DataFrame(
146 temp,

79

147 dtype=str
148)
149

150 return valid_ped
151

152

153

154

155 if __name__ == ’__main__’:
156 unittest.main()

Listing C.7: test pedigree.py

1 import unittest
2 from unittest.mock import patch, mock_open
3 from Pedigree import Pedigree
4 import pandas
5

6 class TestPedigree(unittest.TestCase):
7

8 @patch(’pandas.read_csv’)
9 def test_read_specs(self, mock_read_csv):

10 read_data = "Genofile , Geno.txt\n\
11 LHfile , LifeHist.txt\n\
12 nIndLH , 998"
13

14 with patch("builtins.open", mock_open(read_data=read_data)) as m:
15 pedigree = Pedigree("dontcare", "specs", debug=False)
16

17 assert len(pedigree.specs) == 3
18 assert pedigree.specs[’nIndLH’] == ’998’
19

20

21 @patch(’pandas.read_csv’)
22 def test_finds_dummies_correctly(self, mock_read_csv):
23 dummies = [’F000’, ’M003’, ’F0100’, ’M0’]
24 mock_read_csv.return_value = pandas.DataFrame(
25 self.make_data(id=[’1’,’2’,’4’,’5’] + dummies)
26)
27 pedigree = Pedigree("dontcare", debug=False)
28 assert all([dummie in set(pedigree.dummies.id) for dummie in

dummies])
29

30

31 @patch(’pandas.read_csv’)
32 def test_finds_missing_link_moms_correctly(self, mock_read_csv):
33 ids = [’1’, ’2’, ’F0’]
34 dams = [’F0’, None, ’2’]
35 mock_read_csv.return_value = pandas.DataFrame(
36 self.make_data(id=ids, dam=dams)
37)
38

39 pedigree = Pedigree("dontcare", debug=False)
40

41 assert len(pedigree.missing_link_mums) == 1
42 assert "F0" in set(pedigree.missing_link_mums.id)
43

80

44

45 @patch(’pandas.read_csv’)
46 def test_finds_founders_no_dummies(self, mock_read_csv):
47 mock_read_csv.return_value = pandas.DataFrame(
48 self.make_data(id=["1","2","3","4","5"], dam=["2","3",None,"5"

,None])
49)
50

51 pedigree = Pedigree("dontcare", debug=False)
52 assert len(pedigree.founders) == 2
53 assert all([founder in set(pedigree.founders.id) for founder in [

"3","5"]])
54

55

56 @patch(’pandas.read_csv’)
57 def test_finds_founders_keeps_individuals_with_dummy_mums(self,

mock_read_csv):
58 dummy = "F3"
59 mock_read_csv.return_value = pandas.DataFrame(
60 self.make_data(
61 id= ["1", "2", "F3", "4", "5"],
62 dam=["2", "F3", None, "5", None])
63)
64

65 pedigree = Pedigree("dontcare", debug=False)
66 assert len(pedigree.founders) == 2
67 assert all([founder in set(pedigree.founders.id) for founder in [

"2","5"]])
68

69

70 @patch(’pandas.read_csv’)
71 def

test_finds_founders_drops_individuals_with_grandparent_and_missing_mum
(self, mock_read_csv):

72 mock_read_csv.return_value = pandas.DataFrame(
73 self.make_data(
74 id= ["1", "F2", "3"],
75 dam=["F2", "3", None])
76)
77

78 pedigree = Pedigree("dontcare", debug=False)
79 assert len(pedigree.founders) == 1
80 assert "3" in set(pedigree.founders.id)
81

82

83 def make_data(self, id=None, dam=None, sire=None, LLRdam=None, LLRsire
=None, LLRpair=None):

84 data = {}
85

86 args = (id, dam, sire, LLRdam, LLRsire, LLRpair)
87 for arg in args:
88 if arg != None:
89 n = len(arg)
90

91 data["id"] = id if id != None else [-1]*n
92 data["dam"] = dam if dam != None else [-1]*n
93 data["sire"] = sire if sire != None else [-1]*n

81

94 data["LLRdam"] = LLRdam if LLRdam != None else [-1]*n
95 data["LLRsire"] = LLRsire if LLRsire != None else [-1]*n
96 data["LLRpair"] = LLRpair if LLRpair != None else [-1]*n
97

98 return data
99

100

101 if __name__ == ’__main__’:
102 unittest.main()

82

Appendix D
Scripts

Listing D.1: mitochondria-variant-probabilities.py

1 import pandas as pd
2 import numpy as np
3

4 DIFFERENCES_PATH_PREFIX = "/path/to/pairwise-mtdna-differences-subset
-1500-10-"

5

6 if __name__==’__main__’:
7 counted_differences_all_subsets = pd.DataFrame()
8

9 for subset in range(1, 11):
10 print("> Subset {}".format(subset))
11 mitochondria_differences = pd.read_csv(
12 DIFFERENCES_PATH_PREFIX + str(subset) + ’.txt’,
13 header=0, sep=’\t’)
14

15 # We don’t need ids
16 mitochondria_differences = mitochondria_differences.iloc[:, 2:]
17

18 # Count number of different values
19 counted_differences = mitochondria_differences.apply(
20 lambda column: column.value_counts()
21).fillna(0).loc[False]
22

23 counted_differences_all_subsets = counted_differences_all_subsets.
append(

24 counted_differences)[counted_differences.index]
25

26 counted_differences_all_subsets.index = range(1,11)
27

28 # Calculate probabilities for subsets and average probabilities
29 n = 1500*1499 / 2
30 probabilities_all_subsets = counted_differences_all_subsets.apply(

lambda row: (row + 1) / n, axis=1)
31 average_probabilities = probabilities_all_subsets.mean()

83

32

33 average_probabilities.to_csv("/path/to/variant_probabilities.txt")

Listing D.2: compare-mitochondria.py

1 from MitoMatch import mitomatch
2 from MitochondriaData import MitochondriaData
3 import pandas as pd
4 import variant_probabilities
5

6 ID_PATH_PREFIX = "/path/to/ids/subset-1500-10-"
7 DISTANCES_PATH_PREFIX = "/path/to/pairwise-hamming-distance-subset

-1500-10-"
8 WEIGHTED_DISTANCES_PATH_PREFIX = "/path/to/pairwise-weighted-distance-

subset-1500-10-"
9 DIFFERENCES_PATH_PREFIX = "/path/to/pairwise-mtdna-differences-subset

-1500-10-"
10

11 if __name__==’__main__’:
12 print("> Reading mitochondria data")
13 mito_data = MitochondriaData("/prefix/to/mtdna-ped-and-map")
14

15 print("> Calculating distance for subsets")
16 for subset in range(1, 11):
17 print("> Subset {}".format(subset))
18 ids = pd.read_csv(ID_PATH_PREFIX + str(subset),
19 header=None,
20 names=["FID", "IID", "ids_beagle_format"],
21 sep=’\s+’)
22

23 # Calculate hamming distances
24 distances = mitomatch(mito_data,
25 individuals=ids.IID,
26 calculation_type=’hamming’)
27 distances.to_csv(DISTANCES_PATH_PREFIX + str(subset) + ".txt",
28 index=False, sep=’\t’)
29 del distances
30

31 # Calculate weighted distances
32 weighted_distances = mitomatch(mito_data,
33 individuals=ids.IID,
34 calculation_type=’weighted’,
35 weights=variant_probabilities.variant_probabilities)
36 weighted_distances.to_csv(WEIGHTED_DISTANCES_PATH_PREFIX,
37 index=False, sep=’\t’
38)
39 del weighted_distances
40

41 # Calculate true/false vectors
42 differences = mitomatch(mito_data,
43 individuals=ids.IID,
44 calculation_type=’true-false-vector’)
45 differences.to_csv(DIFFERENCES_PATH_PREFIX + str(subset) + ".txt",
46 index=False, sep=’\t’)
47 del differences

84

Listing D.3: get-random-subsets.py

1 import pandas as pd
2 import random
3

4 if __name__ == ’__main__’:
5 num_sets = 10
6 num_ind = 1500
7

8 ids = pd.read_csv(’/path/to/individual/ids/in/mtdna-set.inds’, header=
None, names=[’IID’, ’FID’], dtype=str, sep=’ ’)

9 ids_not_inbred = pd.read_csv(’/path/to/individuals/with/low/inbreeding
.inds’, header=None, names=[’IID’, ’FID’], dtype=str, sep=’ ’)

10

11 ids_beagle_format = ids.IID.copy()
12 ids_beagle_format = ids_beagle_format.map(lambda x: ’{}_{}’.format(x,

x))
13 ids[’ids_beagle_format’] = ids_beagle_format
14

15 print("Number of people with mtDNA: {}".format(len(ids)))
16 ids_choose = ids.loc[ids.IID.isin(ids_not_inbred.IID)].copy()
17 print("Inbreeding coefficient below 0.25: {}".format(len(ids_choose)))
18

19 matrix = []
20 for i in range(num_sets):
21 matrix.append(random.sample(list(ids_choose.index), k=num_ind))
22

23 total = 0
24 n = 0
25 for subset1 in matrix:
26 subset1 = set(subset1)
27 for subset2 in matrix:
28 subset2 = set(subset2)
29

30 if subset1 == subset2:
31 continue
32

33 total += len(subset1.intersection(subset2))
34 n += 1
35

36 print("Average intersection of each pair of subset: {0:.2f}".format(
total / n))

37 print("Percentage average intersection: {0:.2f}%".format(total/n/
num_ind*100))

38 print("Number of individuals: {}".format(num_ind))
39 print("Number of subsets: {}".format(num_sets))
40

41 for i, subset in enumerate(matrix):
42 df = ids.loc[subset]
43 df.to_csv("/path/to/subset-output-{}-{}-{}".format(num_ind,

num_sets, i+1), sep=’ ’, header=False, index=False)
44

45 # Because the beagle-file is HELLA big, it is easier to use the cut-
command

46 # instead of reading the entire file in python (95Gig, just sayin)
47 # Therefore, we’re gonna read in the header of the beagle-file instead

,
48 # and write out the columns for use in the cut-command.

85

49

50 beagle = pd.read_csv(’/path/to/beagle/file.vcf’,
51 nrows=1,
52 dtype=str,
53 header=9,
54 sep=’\t’
55)
56

57 print("..Finding column numbers in beagle-file")
58 column_numbers = []
59 for i, subset in enumerate(matrix):
60 ids_beagle_format = set(ids.loc[subset, ’ids_beagle_format’])
61 temp = ’1-9,’
62 for col_num, id in enumerate(beagle.columns):
63 if id in ids_beagle_format:
64 temp += ’{},’.format(col_num + 1)
65 column_numbers.append(temp[:-1])
66

67 filepath = ’run-druid-col-numbers.temp’
68 print("..Writing column numbers to {}".format(filepath))
69 with open(filepath, ’w’) as file:
70 for col_num in column_numbers:
71 file.write(col_num + ’\n’)

Listing D.4: run-druid-with-subsets.sh

1 #!/bin/bash
2 NUM_SETS=10
3 SET_SIZE=1500
4 BEAGLE_FILE_PATH_PREFIX="/path/to/

beagle-$SET_SIZE-inds-chr-1-22-ne-100000-seed-1564-subset"
5 REFINED_IBD_FILE_PATH_PREFIX="/path/to/

refined-ibd-$SET_SIZE-inds-chr-1-22-ne-100000-seed-1564-subset"
6 DRUID_BAKEOFF_FILE_PATH_PREFIX="/path/to/

druid-bakeoff-$SET_SIZE-inds-chr-1-22-ne-100000-seed-1564-subset"
7 DRUID_FILE_PATH_PREFIX="/path/to/

druid-$SET_SIZE-inds-chr-1-22-ne-100000-seed-1564-subset"
8 MAP_FILE="/path/to/genotyped-chr-1-22-FIN-cm.map"
9 BIG_BEAGLE="/path/to/beagle-phased-ne-100000-seed-1564-chrom-1-to-22.vcf"

10

11 # Uncomment this if this is not already done.
12 # python get-random-subsets.py
13

14 FILE_NUMBER=1
15

16 date
17 echo "Extract from beagle-files"
18 while read p;
19 do
20 BEAGLE_FILE_PATH="$BEAGLE_FILE_PATH_PREFIX-$FILE_NUMBER.vcf"
21 echo $BEAGLE_FILE_PATH
22 cut -f $p $BIG_BEAGLE > $BEAGLE_FILE_PATH
23 FILE_NUMBER=$((FILE_NUMBER+1))
24 done < run-druid-col-numbers.temp # This file is created by

get-random-subsets.py
25

26 date

86

27 echo "Run refinedIBD on beagle-subsets:"
28 for file_num in {1..10}
29 do
30 BEAGLE_FILE_PATH="$BEAGLE_FILE_PATH_PREFIX-$file_num.vcf"
31 REFINED_IBD_FILE_PATH="$REFINED_IBD_FILE_PATH_PREFIX-$file_num"
32 echo $REFINED_IBD_FILE_PATH
33 java -Xmx32g -jar ˜/localfiles/refinedIBD/refined-ibd.12Jul18.a0b.jar

gt=$BEAGLE_FILE_PATH map=$MAP_FILE out=$REFINED_IBD_FILE_PATH > /dev/
null

34 done
35

36 date
37 echo "Run druid-bakeoff script on refinedibd-files:"
38 for file_num in {1..10}
39 do
40 REFINED_IBD_FILE_PATH="$REFINED_IBD_FILE_PATH_PREFIX-$file_num.ibd"
41 gunzip -c "$REFINED_IBD_FILE_PATH.gz" > "$REFINED_IBD_FILE_PATH"
42

43 DRUID_BAKEOFF_FILE_PATH="$DRUID_BAKEOFF_FILE_PATH_PREFIX-$file_num"
44 echo $DRUID_BAKEOFF_FILE_PATH
45 python ˜/localfiles/druid-bakeoff/getIBD.py -f $REFINED_IBD_FILE_PATH

$REFINED_IBD_FILE_PATH $REFINED_IBD_FILE_PATH -m $MAP_FILE -s 1 -t 1
-o $DRUID_BAKEOFF_FILE_PATH

46 rm $REFINED_IBD_FILE_PATH
47 done
48

49 date
50 echo "Run druid:"
51 for file_num in {1..10}
52 do
53 DRUID_BAKEOFF_FILE_PATH="$DRUID_BAKEOFF_FILE_PATH_PREFIX-$file_num"
54 DRUID_FILE_PATH="$DRUID_FILE_PATH_PREFIX-$file_num"
55 DRUID_BAKEOFF_FILE_PATH="$DRUID_BAKEOFF_FILE_PATH_PREFIX-$file_num"
56 echo $DRUID_FILE_PATH
57 python ˜/localfiles/druid/DRUID.py -o $DRUID_FILE_PATH -i

$DRUID_BAKEOFF_FILE_PATH.ibd12 -s $DRUID_BAKEOFF_FILE_PATH.seg -m
$MAP_FILE

58 done

Listing D.5: run-mitomatch-on-trios.py

1 from MitoMatch import mitomatch
2 from MitochondriaData import MitochondriaData
3 import variant_probabilities
4 import pandas as pd
5 import time
6 from variant_log_probabilities import variant_log_probabilities as vlp
7

8 relationship_to_degree = {
9 ’FS’: 1,

10 ’P’: 1,
11 ’C’: 1,
12 ’HS’: 2,
13 ’GP’: 2,
14 ’GC’: 2,
15 ’AU’: 2,
16 ’NN’: 2,

87

17 ’PC’: 1,
18 ’DC’: 2,
19 ’UN’: 100,
20 }
21

22 if __name__==’__main__’:
23 print("> Reading mitochondria data")
24 mito_data = MitochondriaData("/prefix/to/mtdna-ped-and-map")
25 trio_data = pd.read_csv("/path/to/trio-data-with-druid-degrees", sep=’

\t’, header=0, usecols=[’OFS.ID’, ’PAT.ID’, ’MAT.ID’, ’DRUID’])
26 trio_data.columns = [’child’, ’father’, ’mother’, ’druid’]
27

28 #Filter out seventh degree relatives and above
29 trio_data.druid = trio_data.druid.map(lambda x: relationship_to_degree

[x] if x in relationship_to_degree else x)
30 trio_data = trio_data.loc[trio_data.druid.astype(int) >= 7]
31 trio_data.druid = trio_data.druid.map(lambda x: "unrelated" if x ==

100 else x)
32

33 # Print out the total number of mothers, fathers and children
34 children = set(trio_data.child)
35 mothers = set(trio_data.mother)
36 fathers = set(trio_data.father)
37 total = children.union(mothers).union(fathers)
38 print("Children: {}, fathers {}, mothers {}, total {}".format(len(

children), len(fathers), len(mothers), len(total)))
39

40

41 distances_total = pd.DataFrame()
42 step_size = 30
43 start = time.time()
44 for i in range(0, len(trio_data), step_size):
45 print("Row... ", i) if i % 1000 == 0 else None
46

47 sub_df = trio_data.iloc[i:i + step_size]
48 individuals = set(sub_df.child).union(sub_df.father).union(sub_df.

mother)
49

50 distances = mitomatch(mito_data,
51 individuals=individuals, calculation_type=’weighted’,
52 weights=vlp, verbose=False)
53

54 # filter out stuff:
55 mother_child = [(id1, id2) for id1, id2 in zip(sub_df.mother.

values, sub_df.child.values)]
56 father_child = [(id1, id2) for id1, id2 in zip(sub_df.father.

values, sub_df.child.values)]
57

58 filter_moms = distances.apply(
59 lambda r: (r.id1, r.id2) in mother_child or (r.id2, r.id1) in

mother_child,
60 axis=1)
61 distances.loc[filter_moms, ’relationship’] = "mother/child"
62

63 filter_dads = distances.apply(
64 lambda r: (r.id1, r.id2) in father_child or (r.id2, r.id1) in

father_child,

88

65 axis=1)
66 distances.loc[filter_dads, ’relationship’] = "father/child"
67

68 distances = distances.dropna()
69

70 distances_total = distances_total.append(distances)
71

72 end = time.time()
73 print("Distances, total:", len(distances_total))
74 print("trio_data, total:", len(trio_data))
75 print("Time spent:", (end-start)/60)
76

77 distances_total.to_csv("/path/to/output.txt", index=False, sep=’\t’)

89

90

Appendix E
Plots

E.1 Hamming distance and degree of relatedness (DRUID)
This section contains letter value plots showing the Hamming distance on the y-axis and
the degree of relatedness calculated by DRUID on the x-axis, for all subsets.

Figure E.1: Hamming distances: Subset 1

91

Figure E.2: Hamming distances: Subset 2

Figure E.3: Hamming distances: Subset 3

Figure E.4: Hamming distances: Subset 4

92

Figure E.5: Hamming distances: Subset 5

Figure E.6: Hamming distances: Subset 6

Figure E.7: Hamming distances: Subset 7

93

Figure E.8: Hamming distances: Subset 8

Figure E.9: Hamming distances: Subset 9

Figure E.10: Hamming distances: Subset 10

94

E.2 Weighted distance and degree of relatedness (DRUID)
This section contains letter value plots for all subsets, where a weighted distance has been
calculated and compared with the degree of relatedness estimated by DRUID.

Figure E.11: Weighted distances: Subset 1

Figure E.12: Weighted distances: Subset 2

95

Figure E.13: Weighted distances: Subset 3

Figure E.14: Weighted distances: Subset 4

Figure E.15: Weighted distances: Subset 5

96

Figure E.16: Weighted distances: Subset 6

Figure E.17: Weighted distances: Subset 7

Figure E.18: Weighted distances: Subset 8

97

Figure E.19: Weighted distances: Subset 9

Figure E.20: Weighted distances: Subset 10

98

Appendix F
Information about the HUNT data
set

99

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 1/6

ALL‐IN
GWAS‐data

SNPs

This document provides a description of the

handling of the all‐in genotyped data .

Document version 2018‐09‐07

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 2/6

Table of content
Changes

Documentation for genotyped data

Background

Contact list

Acknowledgements

Quick overview:

About the data‐set:

Quality control

Ancestry/Population structures

Imputation

References

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 3/6

Changes

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 4/6

Documentation for genotyped data

This document provides a brief description of the handling of the all‐in genotyped data from genotyping

through QC. The purpose of the document is to provide background information for research using single or

multiple SNP’s which have been extracted and made available from the total dataset.

Background
From 2012‐2015 the HUNT‐Michigan (HUNT‐MI) collaboration genotyped approximately 72.000 individuals

from the HUNT biobank. The genotyping effort was a research collaboration between researchers at NTNU

and the University of Michigan. Every individual with a DNA sample with a suitable DNA concentration was

selected for genotyping. Samples were picked at random and genotyped in batches. All genotyping was

performed at the Genomics‐Core Facility (GCF) at the Norwegian University of Science and Technology,

NTNU.

Contact list

Kristian Hveem Leader, K.G. Jebsen center for genetic epidemiology kristian.hveem@ntnu.no

Maiken E. Gabrielsen Research coordinator, K.G. Jebsen center for genetic
epidemiology

maiken.e.gabrielsen@ntnu.no

Anne Heidi Skogholt Analysis coordinator, K.G. Jebsen center for genetic
epidemiology

anne.heidi.skogholt@ntnu.no

Ben M. Brumpton Senior Researcher, K.G. Jebsen center for genetic
epidemiology

ben.brumpton@ntnu.no

Oddgeir L. Holmen Leader, HUNT data center oddgeir.l.holmen@ntnu.no

Acknowledgements
When using gwas ‐ SNP´s in publications, please acknowledge the following:

The genotyping was financed by the National Institute of health (NIH), University of Michigan, The

Norwegian Research council, and Central Norway Regional Health Authority and the Faculty of Medicine

and Health Sciences, Norwegian University of Science and Technology (NTNU) .

The genotype quality control and imputation has been conducted by the K.G. Jebsen center for genetic

epidemiology, Department of public health and nursing, Faculty of medicine and health sciences, Norwegian

University of Science and Technology (NTNU).

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 5/6

Quick overview:
Genotyping platform: Illumina

Chip: HumanCoreExome arrays:

● HumanCoreExome 12 v.1.0
● HumanCoreExome 12 v.1.1
● UM HUNT Biobank v1.0 (HumanCoreExome 24 with custom content)

Imputation: Human reference consortium (HRC) and custom panel including 2200 HUNT

individuals with low pass WGS

About the dataset:
The data‐set has been produced and quality controlled at the K.G. Jebsen center for genetic epidemiology,

NTNU, in collaboration with Associate Professor Willer and Professor Abecasis at the University of

Michigan. Below you will find the description of the handling of the original data‐set.

All SNPs in the file have been imputed (including the also genotyped SNPs). Genotypes are coded as dosage.

The value given is the dosage of the alternative allele.

Quality control

In total, DNA from 71,860 HUNT samples was genotyped using one of three different Illumina

HumanCoreExome arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank

v1.0). Samples that failed to reach a 99% call rate, had contamination > 2.5% as estimated with BAF Regress

(Jun et al ., 2012), large chromosomal copy number variants, lower call rate of a technical duplicate pair and

twins, gonosomal constellations other than XX and XY, or whose inferred sex contradicted the reported

gender, were excluded. Samples that passed quality control were analysed in a second round of genotype

calling following the Genome Studio quality control protocol described elsewhere (Guo et al ., 2014).

Genomic position, strand orientation and the reference allele of genotyped variants were determined by

aligning their probe sequences against the human genome (Genome Reference Consortium Human

genome build 37 and revised Cambridge Reference Sequence of the human mitochondrial DNA;

http://genome.ucsc.edu) using BLAT (Dunham et al., 2012). Variants were excluded if (1) their probe

sequences could not be perfectly mapped to the reference genome, cluster separation was < 0.3, Gentrain

score was < 0.15, showed deviations from Hardy Weinberg equilibrium in unrelated samples of European

ancestry with p‐value < 0.0001), their call rate was < 99%, or another assay with higher call rate genotyped

the same variant.

Ancestry/Population structures

Ancestry of all samples was inferred by projecting all genotyped samples into the space of the principal

components of the Human Genome Diversity Project (HGDP) reference panel (938 unrelated individuals;

downloaded from http://csg.sph.umich.edu/chaolong/LASER/) (Li et al., 2008; Wang et al., 2014), using

30.10.2018 Metadata-information sheet for GWAS-data - Google Dokumenter

https://docs.google.com/document/d/1G6bvnZGiIu817IlLzDD6wqjyudtwBRwar4WIW5lTqzI/edit# 6/6

PLINK v1.90 (Chang et al ., 2015). Recent European ancestry was defined as samples that fell into an

ellipsoid spanning exclusively European populations of the HGDP panel. The different arrays were

harmonized by reducing to a set of overlapping variants and excluding variants that showed frequency

differences > 15% between data sets, or that were monomorphic in one and had MAF > 1% in another data

set. The resulting genotype data were phased using Eagle2 v2.3 (Loh et al ., 2016).

Imputation
Imputation was performed on the 69,716 samples of recent European ancestry using Minimac3 (v2.0.1,

http://genome.sph.umich.edu/wiki/Minimac3) (Das et al ., 2016) with default settings (2.5 Mb reference

based chunking with 500kb windows) and a customized Haplotype Reference consortium release 1.1 (HRC

v1.1) for autosomal variants and HRC v1.1 for chromosome X variants (McCarthy et al ., 2016). The

customized reference panel represented the merged panel of two reciprocally imputed reference panels:

(1) 2,201 low‐coverage whole‐genome sequences samples from the HUNT study and (2) HRC v1.1 with

1,023 HUNT WGS samples removed before merging. We excluded imputed variants with Rsq < 0.3 resulting

in over 24.9 million well‐imputed variants.

References
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second‐generation

PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4 , 7.

doi:10.1186/s13742‐015‐0047‐8

Das, S., Forer, L., Schonherr, S., Sidore, C., Locke, A. E., Kwong, A., . . . Fuchsberger, C. (2016).

Next‐generation genotype imputation service and methods. Nat Genet . doi:10.1038/ng.3656

Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., . . . Lochovsky, L. (2012). An

integrated encyclopedia of DNA elements in the human genome. Nature, 489 (7414), 57‐74.

doi:nature11247 [pii] 10.1038/nature11247

Guo, Y., He, J., Zhao, S., Wu, H., Zhong, X., Sheng, Q., . . . Long, J. (2014). Illumina human exome genotyping

array clustering and quality control. Nat Protoc, 9 (11), 2643‐2662.

Jun, G., Flickinger, M., Hetrick, K. N., Romm, J. M., Doheny, K. F., Abecasis, G. R., . . . Kang, H. M. (2012).

Detecting and estimating contamination of human DNA samples in sequencing and array‐based

genotype data. Am J Hum Genet, 91 (5), 839‐848. doi:10.1016/j.ajhg.2012.09.004

Li, J. Z., Absher, D. M., Tang, H., Southwick, A. M., Casto, A. M., Ramachandran, S., . . . Myers, R. M. (2008).

Worldwide human relationships inferred from genome‐wide patterns of variation. Science,

319 (5866), 1100‐1104. doi:10.1126/science.1153717

Loh, P.‐R., Danecek, P., Palamara, P. F., Fuchsberger, C., Reshef, Y. A., Finucane, H. K., . . . Price, A. L. (2016).

Reference‐based phasing using the Haplotype Reference Consortium panel. bioRxiv .

doi: http://dx.doi.org/10.1101/052308

McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., . . . Haplotype Reference, C.

(2016). A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet, 48 (10),

1279‐1283. doi:10.1038/ng.3643

Wang, C., Zhan, X., Bragg‐Gresham, J., Kang, H. M., Stambolian, D., Chew, E. Y., . . . Abecasis, G. R. (2014).

Ancestry estimation and control of population stratification for sequence‐based association studies.

Nat Genet, 46 (4), 409‐415. doi:10.1038/ng.2924

A
lice G

udem
M

itodetect: Estim
ating com

m
on m

aternal ancestry in the H
U

N
T study

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lt

y
of

 In
fo

rm
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ri
ca

l
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

M
as

te
r’

s
th

es
is

Alice Gudem

Mitodetect

Estimating common maternal ancestry in the
HUNT study

Master’s thesis in Computer Science
Supervisor: Prof. Magnus Hetland, Prof. Pål Sætrom

June 2019

	Summary
	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Genetics
	Biology
	Cells
	DNA and the genome
	Loci
	Genes
	Chromosomes
	Alleles, genotypes and phenotypes
	Haplotypes and haplogroups
	Single-nucleotide Polymorphisms

	Heredity
	Meiosis
	Degree of relatedness
	Pedigrees and cryptic relationships

	Background
	The probability of two individuals having different mitochondrial alleles
	A common maternal ancestor
	Using mitochondrial distance
	Using the degree of relatedness

	A weighted distance
	The HUNT study
	Software
	Sequoia
	DRUID

	Methods
	Analysis
	Selecting subsets
	Running DRUID on all subsets
	Calculating mitochondrial distances
	Comparing mitochondrial differences with DRUID output
	Calculating missingness in the data set
	The probability of mtDNA variant differences

	Trio data
	Estimating the degree of relatedness between parents
	The mitochondrial distance between parents and their children
	Estimating a density function

	Mitodetect
	Sequoia
	Installation and documentation
	Execution

	Results and discussion
	Mitochondrial DNA comparisons and the degree of relatedness
	Hamming distance
	Mitochondrial DNA variant probabilities
	Weighted distance
	Genotype missingness

	Looking at trios
	Mitodetect
	mitomatch
	Code optimizations

	Pedigree reconstruction- and relatedness estimation-methods

	Conclusion
	Bibliography
	Appendices
	Genetic mapping file
	Programs
	Specifications and equipment
	CLAPPER
	Inbreeding coefficient
	Input files for clapper
	Running CLAPPER
	Results

	Padre
	PLINK preprocessing
	PRIMUS
	ERSA

	Mitodetect
	Source code
	Tests

	Scripts
	Plots
	Hamming distance and degree of relatedness (DRUID)
	Weighted distance and degree of relatedness (DRUID)

	Information about the HUNT data set

